xref: /titanic_44/usr/src/uts/common/fs/zfs/spa.c (revision 3a5240e95e08e42ac1fc82775b3d0ba6e072a74c)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License, Version 1.0 only
6  * (the "License").  You may not use this file except in compliance
7  * with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or http://www.opensolaris.org/os/licensing.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 /*
23  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 /*
30  * This file contains all the routines used when modifying on-disk SPA state.
31  * This includes opening, importing, destroying, exporting a pool, and syncing a
32  * pool.
33  */
34 
35 #include <sys/zfs_context.h>
36 #include <sys/spa_impl.h>
37 #include <sys/zio.h>
38 #include <sys/zio_checksum.h>
39 #include <sys/zio_compress.h>
40 #include <sys/dmu.h>
41 #include <sys/dmu_tx.h>
42 #include <sys/zap.h>
43 #include <sys/zil.h>
44 #include <sys/vdev_impl.h>
45 #include <sys/metaslab.h>
46 #include <sys/uberblock_impl.h>
47 #include <sys/txg.h>
48 #include <sys/avl.h>
49 #include <sys/dmu_traverse.h>
50 #include <sys/unique.h>
51 #include <sys/dsl_pool.h>
52 #include <sys/dsl_dir.h>
53 #include <sys/dsl_prop.h>
54 #include <sys/fs/zfs.h>
55 #include <sys/callb.h>
56 
57 static uint32_t spa_active_count;
58 
59 /*
60  * ==========================================================================
61  * SPA state manipulation (open/create/destroy/import/export)
62  * ==========================================================================
63  */
64 
65 /*
66  * Activate an uninitialized pool.
67  */
68 static void
69 spa_activate(spa_t *spa)
70 {
71 	int t;
72 
73 	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
74 
75 	spa->spa_state = POOL_STATE_ACTIVE;
76 
77 	spa->spa_normal_class = metaslab_class_create();
78 
79 	spa->spa_vdev_retry_taskq = taskq_create("spa_vdev_retry",
80 	    4, maxclsyspri, 50, INT_MAX, TASKQ_PREPOPULATE);
81 
82 	for (t = 0; t < ZIO_TYPES; t++) {
83 		spa->spa_zio_issue_taskq[t] = taskq_create("spa_zio_issue",
84 		    8, maxclsyspri, 50, INT_MAX,
85 		    TASKQ_PREPOPULATE);
86 		spa->spa_zio_intr_taskq[t] = taskq_create("spa_zio_intr",
87 		    8, maxclsyspri, 50, INT_MAX,
88 		    TASKQ_PREPOPULATE);
89 	}
90 
91 	rw_init(&spa->spa_traverse_lock, NULL, RW_DEFAULT, NULL);
92 
93 	list_create(&spa->spa_dirty_list, sizeof (vdev_t),
94 	    offsetof(vdev_t, vdev_dirty_node));
95 
96 	txg_list_create(&spa->spa_vdev_txg_list,
97 	    offsetof(struct vdev, vdev_txg_node));
98 }
99 
100 /*
101  * Opposite of spa_activate().
102  */
103 static void
104 spa_deactivate(spa_t *spa)
105 {
106 	int t;
107 
108 	ASSERT(spa->spa_sync_on == B_FALSE);
109 	ASSERT(spa->spa_dsl_pool == NULL);
110 	ASSERT(spa->spa_root_vdev == NULL);
111 
112 	ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
113 
114 	txg_list_destroy(&spa->spa_vdev_txg_list);
115 
116 	list_destroy(&spa->spa_dirty_list);
117 
118 	rw_destroy(&spa->spa_traverse_lock);
119 
120 	for (t = 0; t < ZIO_TYPES; t++) {
121 		taskq_destroy(spa->spa_zio_issue_taskq[t]);
122 		taskq_destroy(spa->spa_zio_intr_taskq[t]);
123 		spa->spa_zio_issue_taskq[t] = NULL;
124 		spa->spa_zio_intr_taskq[t] = NULL;
125 	}
126 
127 	taskq_destroy(spa->spa_vdev_retry_taskq);
128 	spa->spa_vdev_retry_taskq = NULL;
129 
130 	metaslab_class_destroy(spa->spa_normal_class);
131 	spa->spa_normal_class = NULL;
132 
133 	spa->spa_state = POOL_STATE_UNINITIALIZED;
134 }
135 
136 /*
137  * Verify a pool configuration, and construct the vdev tree appropriately.  This
138  * will create all the necessary vdevs in the appropriate layout, with each vdev
139  * in the CLOSED state.  This will prep the pool before open/creation/import.
140  * All vdev validation is done by the vdev_alloc() routine.
141  */
142 static vdev_t *
143 spa_config_parse(spa_t *spa, nvlist_t *nv, vdev_t *parent, uint_t id, int atype)
144 {
145 	nvlist_t **child;
146 	uint_t c, children;
147 	vdev_t *vd;
148 
149 	if ((vd = vdev_alloc(spa, nv, parent, id, atype)) == NULL)
150 		return (NULL);
151 
152 	if (vd->vdev_ops->vdev_op_leaf)
153 		return (vd);
154 
155 	if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
156 	    &child, &children) != 0) {
157 		vdev_free(vd);
158 		return (NULL);
159 	}
160 
161 	for (c = 0; c < children; c++) {
162 		if (spa_config_parse(spa, child[c], vd, c, atype) == NULL) {
163 			vdev_free(vd);
164 			return (NULL);
165 		}
166 	}
167 
168 	return (vd);
169 }
170 
171 /*
172  * Opposite of spa_load().
173  */
174 static void
175 spa_unload(spa_t *spa)
176 {
177 	/*
178 	 * Stop syncing.
179 	 */
180 	if (spa->spa_sync_on) {
181 		txg_sync_stop(spa->spa_dsl_pool);
182 		spa->spa_sync_on = B_FALSE;
183 	}
184 
185 	/*
186 	 * Wait for any outstanding prefetch I/O to complete.
187 	 */
188 	spa_config_enter(spa, RW_WRITER);
189 	spa_config_exit(spa);
190 
191 	/*
192 	 * Close the dsl pool.
193 	 */
194 	if (spa->spa_dsl_pool) {
195 		dsl_pool_close(spa->spa_dsl_pool);
196 		spa->spa_dsl_pool = NULL;
197 	}
198 
199 	/*
200 	 * Close all vdevs.
201 	 */
202 	if (spa->spa_root_vdev) {
203 		vdev_free(spa->spa_root_vdev);
204 		spa->spa_root_vdev = NULL;
205 	}
206 }
207 
208 /*
209  * Load an existing storage pool, using the pool's builtin spa_config as a
210  * source of configuration information.  The 'readonly' flag will prevent us
211  * from writing any updated state to disk, and can be use when testing a pool
212  * for import.
213  */
214 static int
215 spa_load(spa_t *spa, nvlist_t *config, int readonly, int import, int mosconfig)
216 {
217 	int error = 0;
218 	nvlist_t *nvroot = NULL;
219 	vdev_t *rvd;
220 	uberblock_t *ub = &spa->spa_uberblock;
221 	uint64_t pool_guid;
222 	zio_t *zio;
223 
224 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot) ||
225 	    nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid))
226 		return (EINVAL);
227 
228 	(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
229 	    &spa->spa_config_txg);
230 
231 	if (import && spa_guid_exists(pool_guid, 0))
232 		return (EEXIST);
233 
234 	/*
235 	 * Parse the configuration into a vdev tree.
236 	 */
237 	spa_config_enter(spa, RW_WRITER);
238 	rvd = spa_config_parse(spa, nvroot, NULL, 0, VDEV_ALLOC_LOAD);
239 	spa_config_exit(spa);
240 
241 	if (rvd == NULL)
242 		return (EINVAL);
243 
244 	spa->spa_root_vdev = rvd;
245 	ASSERT(spa_guid(spa) == pool_guid);
246 
247 	/*
248 	 * Try to open all vdevs, loading each label in the process.
249 	 */
250 	if (vdev_open(rvd) != 0)
251 		return (ENXIO);
252 
253 	/*
254 	 * Find the best uberblock.
255 	 */
256 	bzero(ub, sizeof (uberblock_t));
257 
258 	zio = zio_root(spa, NULL, NULL,
259 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
260 	vdev_uberblock_load(zio, rvd, ub);
261 	error = zio_wait(zio);
262 
263 	/*
264 	 * If we weren't able to find a single valid uberblock, return failure.
265 	 */
266 	if (ub->ub_txg == 0) {
267 		dprintf("ub_txg is zero\n");
268 		return (ENXIO);
269 	}
270 
271 	/*
272 	 * If the vdev guid sum doesn't match the uberblock, we have an
273 	 * incomplete configuration.
274 	 */
275 	if (rvd->vdev_guid_sum != ub->ub_guid_sum && mosconfig) {
276 		rvd->vdev_state = VDEV_STATE_CANT_OPEN;
277 		rvd->vdev_stat.vs_aux = VDEV_AUX_BAD_GUID_SUM;
278 		dprintf("vdev_guid_sum %llx != ub_guid_sum %llx\n",
279 		    rvd->vdev_guid_sum, ub->ub_guid_sum);
280 		return (ENXIO);
281 	}
282 
283 	/*
284 	 * Initialize internal SPA structures.
285 	 */
286 	spa->spa_state = POOL_STATE_ACTIVE;
287 	spa->spa_ubsync = spa->spa_uberblock;
288 	spa->spa_first_txg = spa_last_synced_txg(spa) + 1;
289 	spa->spa_dsl_pool = dsl_pool_open(spa, spa->spa_first_txg);
290 	spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
291 
292 	VERIFY(zap_lookup(spa->spa_meta_objset,
293 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
294 	    sizeof (uint64_t), 1, &spa->spa_config_object) == 0);
295 
296 	if (!mosconfig) {
297 		dmu_buf_t *db;
298 		char *packed = NULL;
299 		size_t nvsize = 0;
300 		nvlist_t *newconfig = NULL;
301 
302 		db = dmu_bonus_hold(spa->spa_meta_objset,
303 		    spa->spa_config_object);
304 		dmu_buf_read(db);
305 		nvsize = *(uint64_t *)db->db_data;
306 		dmu_buf_rele(db);
307 
308 		packed = kmem_alloc(nvsize, KM_SLEEP);
309 		error = dmu_read_canfail(spa->spa_meta_objset,
310 		    spa->spa_config_object, 0, nvsize, packed);
311 		if (error == 0)
312 			error = nvlist_unpack(packed, nvsize, &newconfig, 0);
313 		kmem_free(packed, nvsize);
314 
315 		if (error)
316 			return (ENXIO);
317 
318 		spa_config_set(spa, newconfig);
319 
320 		spa_unload(spa);
321 		spa_deactivate(spa);
322 		spa_activate(spa);
323 
324 		return (spa_load(spa, newconfig, readonly, import, B_TRUE));
325 	}
326 
327 	VERIFY(zap_lookup(spa->spa_meta_objset,
328 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPLIST,
329 	    sizeof (uint64_t), 1, &spa->spa_sync_bplist_obj) == 0);
330 
331 	/*
332 	 * Load the vdev state for all top level vdevs.
333 	 */
334 	if ((error = vdev_load(rvd, import)) != 0)
335 		return (error);
336 
337 	/*
338 	 * Propagate the leaf DTLs we just loaded all the way up the tree.
339 	 */
340 	spa_config_enter(spa, RW_WRITER);
341 	vdev_dtl_reassess(rvd, 0, 0, B_FALSE);
342 	spa_config_exit(spa);
343 
344 	/*
345 	 * Check the state of the root vdev.  If it can't be opened, it
346 	 * indicates one or more toplevel vdevs are faulted.
347 	 */
348 	if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
349 		return (ENXIO);
350 
351 	/*
352 	 * Claim log blocks that haven't been committed yet, and update all
353 	 * top-level vdevs to sync any config changes found in vdev_load().
354 	 * This must all happen in a single txg.
355 	 */
356 	if ((spa_mode & FWRITE) && !readonly) {
357 		dmu_tx_t *tx = dmu_tx_create_assigned(spa_get_dsl(spa),
358 		    spa_first_txg(spa));
359 		dmu_objset_find(spa->spa_name, zil_claim, tx, 0);
360 		vdev_config_dirty(rvd);
361 		dmu_tx_commit(tx);
362 
363 		spa->spa_sync_on = B_TRUE;
364 		txg_sync_start(spa->spa_dsl_pool);
365 
366 		/*
367 		 * Wait for all claims to sync.
368 		 */
369 		txg_wait_synced(spa->spa_dsl_pool, 0);
370 	}
371 
372 	return (0);
373 }
374 
375 /*
376  * Pool Open/Import
377  *
378  * The import case is identical to an open except that the configuration is sent
379  * down from userland, instead of grabbed from the configuration cache.  For the
380  * case of an open, the pool configuration will exist in the
381  * POOL_STATE_UNITIALIZED state.
382  *
383  * The stats information (gen/count/ustats) is used to gather vdev statistics at
384  * the same time open the pool, without having to keep around the spa_t in some
385  * ambiguous state.
386  */
387 static int
388 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t **config)
389 {
390 	spa_t *spa;
391 	int error;
392 	int loaded = B_FALSE;
393 	int locked = B_FALSE;
394 
395 	*spapp = NULL;
396 
397 	/*
398 	 * As disgusting as this is, we need to support recursive calls to this
399 	 * function because dsl_dir_open() is called during spa_load(), and ends
400 	 * up calling spa_open() again.  The real fix is to figure out how to
401 	 * avoid dsl_dir_open() calling this in the first place.
402 	 */
403 	if (mutex_owner(&spa_namespace_lock) != curthread) {
404 		mutex_enter(&spa_namespace_lock);
405 		locked = B_TRUE;
406 	}
407 
408 	if ((spa = spa_lookup(pool)) == NULL) {
409 		if (locked)
410 			mutex_exit(&spa_namespace_lock);
411 		return (ENOENT);
412 	}
413 	if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
414 
415 		spa_activate(spa);
416 
417 		error = spa_load(spa, spa->spa_config,
418 		    B_FALSE, B_FALSE, B_FALSE);
419 
420 		if (error == EBADF) {
421 			/*
422 			 * If vdev_load() returns EBADF, it indicates that one
423 			 * of the vdevs indicates that the pool has been
424 			 * exported or destroyed.  If this is the case, the
425 			 * config cache is out of sync and we should remove the
426 			 * pool from the namespace.
427 			 */
428 			spa_unload(spa);
429 			spa_deactivate(spa);
430 			spa_remove(spa);
431 			spa_config_sync();
432 			if (locked)
433 				mutex_exit(&spa_namespace_lock);
434 			return (ENOENT);
435 		} if (error) {
436 			/*
437 			 * We can't open the pool, but we still have useful
438 			 * information: the state of each vdev after the
439 			 * attempted vdev_open().  Return this to the user.
440 			 */
441 			if (config != NULL && spa->spa_root_vdev != NULL)
442 				*config = spa_config_generate(spa, NULL, -1ULL,
443 				    B_TRUE);
444 			spa_unload(spa);
445 			spa_deactivate(spa);
446 			if (locked)
447 				mutex_exit(&spa_namespace_lock);
448 			*spapp = NULL;
449 			return (error);
450 		}
451 
452 		loaded = B_TRUE;
453 	}
454 
455 	spa_open_ref(spa, tag);
456 	if (locked)
457 		mutex_exit(&spa_namespace_lock);
458 
459 	*spapp = spa;
460 
461 	if (config != NULL) {
462 		spa_config_enter(spa, RW_READER);
463 		*config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
464 		spa_config_exit(spa);
465 	}
466 
467 	/*
468 	 * If we just loaded the pool, resilver anything that's out of date.
469 	 */
470 	if (loaded && (spa_mode & FWRITE))
471 		VERIFY(spa_scrub(spa, POOL_SCRUB_RESILVER, B_TRUE) == 0);
472 
473 	return (0);
474 }
475 
476 int
477 spa_open(const char *name, spa_t **spapp, void *tag)
478 {
479 	return (spa_open_common(name, spapp, tag, NULL));
480 }
481 
482 int
483 spa_get_stats(const char *name, nvlist_t **config)
484 {
485 	int error;
486 	spa_t *spa;
487 
488 	*config = NULL;
489 	error = spa_open_common(name, &spa, FTAG, config);
490 
491 	if (spa != NULL)
492 		spa_close(spa, FTAG);
493 
494 	return (error);
495 }
496 
497 /*
498  * Pool Creation
499  */
500 int
501 spa_create(const char *pool, nvlist_t *nvroot, char *altroot)
502 {
503 	spa_t *spa;
504 	dsl_pool_t *dp;
505 	dmu_tx_t *tx;
506 	int error;
507 	uint64_t txg = TXG_INITIAL;
508 
509 	/*
510 	 * If this pool already exists, return failure.
511 	 */
512 	mutex_enter(&spa_namespace_lock);
513 	if (spa_lookup(pool) != NULL) {
514 		mutex_exit(&spa_namespace_lock);
515 		return (EEXIST);
516 	}
517 	spa = spa_add(pool);
518 
519 	/*
520 	 * Allocate a new spa_t structure.
521 	 */
522 	spa_activate(spa);
523 
524 	spa->spa_uberblock.ub_txg = txg - 1;
525 	spa->spa_ubsync = spa->spa_uberblock;
526 
527 	error = spa_vdev_add(spa, nvroot);
528 
529 	if (error) {
530 		spa_unload(spa);
531 		spa_deactivate(spa);
532 		spa_remove(spa);
533 		mutex_exit(&spa_namespace_lock);
534 		return (error);
535 	}
536 
537 	if (altroot != NULL) {
538 		spa->spa_root = spa_strdup(altroot);
539 		atomic_add_32(&spa_active_count, 1);
540 	}
541 
542 	spa->spa_dsl_pool = dp = dsl_pool_create(spa, txg);
543 	spa->spa_meta_objset = dp->dp_meta_objset;
544 
545 	tx = dmu_tx_create_assigned(dp, txg);
546 
547 	/*
548 	 * Create the pool config object.
549 	 */
550 	spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
551 	    DMU_OT_PACKED_NVLIST, 1 << 14,
552 	    DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
553 
554 	VERIFY(zap_add(spa->spa_meta_objset,
555 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
556 	    sizeof (uint64_t), 1, &spa->spa_config_object, tx) == 0);
557 
558 	/*
559 	 * Create the deferred-free bplist object.  Turn off compression
560 	 * because sync-to-convergence takes longer if the blocksize
561 	 * keeps changing.
562 	 */
563 	spa->spa_sync_bplist_obj = bplist_create(spa->spa_meta_objset,
564 	    1 << 14, tx);
565 	dmu_object_set_compress(spa->spa_meta_objset, spa->spa_sync_bplist_obj,
566 	    ZIO_COMPRESS_OFF, tx);
567 
568 	VERIFY(zap_add(spa->spa_meta_objset,
569 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPLIST,
570 	    sizeof (uint64_t), 1, &spa->spa_sync_bplist_obj, tx) == 0);
571 
572 	dmu_tx_commit(tx);
573 
574 	spa->spa_sync_on = B_TRUE;
575 	txg_sync_start(spa->spa_dsl_pool);
576 
577 	/*
578 	 * We explicitly wait for the first transaction to complete so that our
579 	 * bean counters are appropriately updated.
580 	 */
581 	txg_wait_synced(spa->spa_dsl_pool, txg);
582 
583 	spa_config_sync();
584 
585 	mutex_exit(&spa_namespace_lock);
586 
587 	return (0);
588 }
589 
590 /*
591  * Import the given pool into the system.  We set up the necessary spa_t and
592  * then call spa_load() to do the dirty work.
593  */
594 int
595 spa_import(const char *pool, nvlist_t *config, char *altroot)
596 {
597 	spa_t *spa;
598 	int error;
599 
600 	if (!(spa_mode & FWRITE))
601 		return (EROFS);
602 
603 	/*
604 	 * If a pool with this name exists, return failure.
605 	 */
606 	mutex_enter(&spa_namespace_lock);
607 	if (spa_lookup(pool) != NULL) {
608 		mutex_exit(&spa_namespace_lock);
609 		return (EEXIST);
610 	}
611 
612 	/*
613 	 * Create an initialize the spa structure
614 	 */
615 	spa = spa_add(pool);
616 	spa_activate(spa);
617 
618 	/*
619 	 * Pass off the heavy lifting to spa_load().  We pass TRUE for mosconfig
620 	 * so that we don't try to open the pool if the config is damaged.
621 	 */
622 	error = spa_load(spa, config, B_FALSE, B_TRUE, B_TRUE);
623 
624 	if (error) {
625 		spa_unload(spa);
626 		spa_deactivate(spa);
627 		spa_remove(spa);
628 		mutex_exit(&spa_namespace_lock);
629 		return (error);
630 	}
631 
632 	/*
633 	 * Set the alternate root, if there is one.
634 	 */
635 	if (altroot != NULL) {
636 		atomic_add_32(&spa_active_count, 1);
637 		spa->spa_root = spa_strdup(altroot);
638 	}
639 
640 	/*
641 	 * Initialize the config based on the in-core state.
642 	 */
643 	config = spa_config_generate(spa, NULL, spa_last_synced_txg(spa), 0);
644 
645 	spa_config_set(spa, config);
646 
647 	/*
648 	 * Sync the configuration cache.
649 	 */
650 	spa_config_sync();
651 
652 	mutex_exit(&spa_namespace_lock);
653 
654 	/*
655 	 * Resilver anything that's out of date.
656 	 */
657 	if (spa_mode & FWRITE)
658 		VERIFY(spa_scrub(spa, POOL_SCRUB_RESILVER, B_TRUE) == 0);
659 
660 	return (0);
661 }
662 
663 /*
664  * This (illegal) pool name is used when temporarily importing a spa_t in order
665  * to get the vdev stats associated with the imported devices.
666  */
667 #define	TRYIMPORT_NAME	"$import"
668 
669 nvlist_t *
670 spa_tryimport(nvlist_t *tryconfig)
671 {
672 	nvlist_t *config = NULL;
673 	char *poolname;
674 	spa_t *spa;
675 	uint64_t state;
676 
677 	if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
678 		return (NULL);
679 
680 	if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
681 		return (NULL);
682 
683 	mutex_enter(&spa_namespace_lock);
684 	spa = spa_add(TRYIMPORT_NAME);
685 
686 	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
687 
688 	/*
689 	 * Initialize the spa_t structure.
690 	 */
691 	spa_activate(spa);
692 
693 	/*
694 	 * Pass off the heavy lifting to spa_load().  We pass TRUE for mosconfig
695 	 * so we don't try to open the pool if the config is damaged.
696 	 */
697 	(void) spa_load(spa, tryconfig, B_TRUE, B_TRUE, B_TRUE);
698 
699 	/*
700 	 * If 'tryconfig' was at least parsable, return the current config.
701 	 */
702 	if (spa->spa_root_vdev != NULL) {
703 		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
704 		VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
705 		    poolname) == 0);
706 		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
707 		    state) == 0);
708 	}
709 
710 	spa_unload(spa);
711 	spa_deactivate(spa);
712 	spa_remove(spa);
713 	mutex_exit(&spa_namespace_lock);
714 
715 	return (config);
716 }
717 
718 /*
719  * Pool export/destroy
720  *
721  * The act of destroying or exporting a pool is very simple.  We make sure there
722  * is no more pending I/O and any references to the pool are gone.  Then, we
723  * update the pool state and sync all the labels to disk, removing the
724  * configuration from the cache afterwards.
725  */
726 static int
727 spa_export_common(char *pool, int new_state)
728 {
729 	spa_t *spa;
730 
731 	if (!(spa_mode & FWRITE))
732 		return (EROFS);
733 
734 	mutex_enter(&spa_namespace_lock);
735 	if ((spa = spa_lookup(pool)) == NULL) {
736 		mutex_exit(&spa_namespace_lock);
737 		return (ENOENT);
738 	}
739 
740 	/*
741 	 * The pool will be in core if it's openable,
742 	 * in which case we can modify its state.
743 	 */
744 	if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) {
745 		/*
746 		 * Objsets may be open only because they're dirty, so we
747 		 * have to force it to sync before checking spa_refcnt.
748 		 */
749 		spa_scrub_suspend(spa);
750 		txg_wait_synced(spa->spa_dsl_pool, 0);
751 
752 		if (!spa_refcount_zero(spa)) {
753 			spa_scrub_resume(spa);
754 			mutex_exit(&spa_namespace_lock);
755 			return (EBUSY);
756 		}
757 
758 		/*
759 		 * Update the pool state.
760 		 */
761 		spa->spa_state = new_state;
762 
763 		spa_scrub_resume(spa);
764 		VERIFY(spa_scrub(spa, POOL_SCRUB_NONE, B_TRUE) == 0);
765 
766 		if (spa->spa_root != NULL)
767 			atomic_add_32(&spa_active_count, -1);
768 
769 		/*
770 		 * We want this to be reflected on every label,
771 		 * so mark them all dirty.  spa_unload() will do the
772 		 * final sync that pushes these changes out.
773 		 */
774 		vdev_config_dirty(spa->spa_root_vdev);
775 	}
776 
777 	if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
778 		spa_unload(spa);
779 		spa_deactivate(spa);
780 	}
781 
782 	spa_remove(spa);
783 	spa_config_sync();
784 	mutex_exit(&spa_namespace_lock);
785 
786 	return (0);
787 }
788 
789 /*
790  * Destroy a storage pool.
791  */
792 int
793 spa_destroy(char *pool)
794 {
795 	return (spa_export_common(pool, POOL_STATE_DESTROYED));
796 }
797 
798 /*
799  * Export a storage pool.
800  */
801 int
802 spa_export(char *pool)
803 {
804 	return (spa_export_common(pool, POOL_STATE_EXPORTED));
805 }
806 
807 /*
808  * ==========================================================================
809  * Device manipulation
810  * ==========================================================================
811  */
812 
813 /*
814  * Add capacity to a storage pool.
815  */
816 int
817 spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
818 {
819 	uint64_t txg;
820 	int c, error;
821 	vdev_t *rvd = spa->spa_root_vdev;
822 	vdev_t *vd;
823 
824 	txg = spa_vdev_enter(spa);
825 
826 	vd = spa_config_parse(spa, nvroot, NULL, 0, VDEV_ALLOC_ADD);
827 
828 	if (vd == NULL)
829 		return (spa_vdev_exit(spa, vd, txg, EINVAL));
830 
831 	if (rvd == NULL)			/* spa_create() */
832 		spa->spa_root_vdev = rvd = vd;
833 
834 	if ((error = vdev_create(vd, txg)) != 0)
835 		return (spa_vdev_exit(spa, vd, txg, error));
836 
837 	/*
838 	 * Transfer each top-level vdev from the temporary root
839 	 * to the spa's root and initialize its metaslabs.
840 	 */
841 	for (c = 0; c < vd->vdev_children; c++) {
842 		vdev_t *tvd = vd->vdev_child[c];
843 		if (vd != rvd) {
844 			vdev_remove_child(vd, tvd);
845 			tvd->vdev_id = rvd->vdev_children;
846 			vdev_add_child(rvd, tvd);
847 		}
848 		vdev_init(tvd, txg);
849 		vdev_config_dirty(tvd);
850 	}
851 
852 	/*
853 	 * Update the config based on the new in-core state.
854 	 */
855 	spa_config_set(spa, spa_config_generate(spa, rvd, txg, 0));
856 
857 	return (spa_vdev_exit(spa, vd, txg, 0));
858 }
859 
860 /*
861  * Attach a device to a mirror.  The arguments are the path to any device
862  * in the mirror, and the nvroot for the new device.  If the path specifies
863  * a device that is not mirrored, we automatically insert the mirror vdev.
864  *
865  * If 'replacing' is specified, the new device is intended to replace the
866  * existing device; in this case the two devices are made into their own
867  * mirror using the 'replacing' vdev, which is functionally idendical to
868  * the mirror vdev (it actually reuses all the same ops) but has a few
869  * extra rules: you can't attach to it after it's been created, and upon
870  * completion of resilvering, the first disk (the one being replaced)
871  * is automatically detached.
872  */
873 int
874 spa_vdev_attach(spa_t *spa, const char *path, nvlist_t *nvroot, int replacing)
875 {
876 	uint64_t txg, open_txg;
877 	int error;
878 	vdev_t *rvd = spa->spa_root_vdev;
879 	vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
880 	vdev_ops_t *pvops = replacing ? &vdev_replacing_ops : &vdev_mirror_ops;
881 
882 	txg = spa_vdev_enter(spa);
883 
884 	oldvd = vdev_lookup_by_path(rvd, path);
885 
886 	if (oldvd == NULL)
887 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
888 
889 	pvd = oldvd->vdev_parent;
890 
891 	/*
892 	 * The parent must be a mirror or the root, unless we're replacing;
893 	 * in that case, the parent can be anything but another replacing vdev.
894 	 */
895 	if (pvd->vdev_ops != &vdev_mirror_ops &&
896 	    pvd->vdev_ops != &vdev_root_ops &&
897 	    (!replacing || pvd->vdev_ops == &vdev_replacing_ops))
898 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
899 
900 	newrootvd = spa_config_parse(spa, nvroot, NULL, 0, VDEV_ALLOC_ADD);
901 
902 	if (newrootvd == NULL || newrootvd->vdev_children != 1)
903 		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
904 
905 	newvd = newrootvd->vdev_child[0];
906 
907 	if (!newvd->vdev_ops->vdev_op_leaf)
908 		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
909 
910 	if ((error = vdev_create(newrootvd, txg)) != 0)
911 		return (spa_vdev_exit(spa, newrootvd, txg, error));
912 
913 	/*
914 	 * Compare the new device size with the replaceable/attachable
915 	 * device size.
916 	 */
917 	if (newvd->vdev_psize < vdev_get_rsize(oldvd))
918 		return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
919 
920 	if (newvd->vdev_ashift != oldvd->vdev_ashift && oldvd->vdev_ashift != 0)
921 		return (spa_vdev_exit(spa, newrootvd, txg, EDOM));
922 
923 	/*
924 	 * If this is an in-place replacement, update oldvd's path and devid
925 	 * to make it distinguishable from newvd, and unopenable from now on.
926 	 */
927 	if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
928 		spa_strfree(oldvd->vdev_path);
929 		oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
930 		    KM_SLEEP);
931 		(void) sprintf(oldvd->vdev_path, "%s/%s",
932 		    newvd->vdev_path, "old");
933 		if (oldvd->vdev_devid != NULL) {
934 			spa_strfree(oldvd->vdev_devid);
935 			oldvd->vdev_devid = NULL;
936 		}
937 	}
938 
939 	/*
940 	 * If the parent is not a mirror, or if we're replacing,
941 	 * insert the new mirror/replacing vdev above oldvd.
942 	 */
943 	if (pvd->vdev_ops != pvops)
944 		pvd = vdev_add_parent(oldvd, pvops);
945 
946 	ASSERT(pvd->vdev_top->vdev_parent == rvd);
947 	ASSERT(pvd->vdev_ops == pvops);
948 	ASSERT(oldvd->vdev_parent == pvd);
949 
950 	/*
951 	 * Extract the new device from its root and add it to pvd.
952 	 */
953 	vdev_remove_child(newrootvd, newvd);
954 	newvd->vdev_id = pvd->vdev_children;
955 	vdev_add_child(pvd, newvd);
956 
957 	tvd = newvd->vdev_top;
958 	ASSERT(pvd->vdev_top == tvd);
959 	ASSERT(tvd->vdev_parent == rvd);
960 
961 	/*
962 	 * Update the config based on the new in-core state.
963 	 */
964 	spa_config_set(spa, spa_config_generate(spa, rvd, txg, 0));
965 
966 	vdev_config_dirty(tvd);
967 
968 	/*
969 	 * Set newvd's DTL to [TXG_INITIAL, open_txg].  It will propagate
970 	 * upward when spa_vdev_exit() calls vdev_dtl_reassess().
971 	 */
972 	open_txg = txg + TXG_CONCURRENT_STATES - 1;
973 
974 	mutex_enter(&newvd->vdev_dtl_lock);
975 	space_map_add(&newvd->vdev_dtl_map, TXG_INITIAL,
976 	    open_txg - TXG_INITIAL + 1);
977 	mutex_exit(&newvd->vdev_dtl_lock);
978 
979 	/*
980 	 * Mark newvd's DTL dirty in this txg.
981 	 */
982 	vdev_dirty(tvd, VDD_DTL, txg);
983 	(void) txg_list_add(&tvd->vdev_dtl_list, newvd, txg);
984 
985 	dprintf("attached %s, replacing=%d\n", path, replacing);
986 
987 	(void) spa_vdev_exit(spa, newrootvd, open_txg, 0);
988 
989 	/*
990 	 * Kick off a resilver to update newvd.
991 	 */
992 	VERIFY(spa_scrub(spa, POOL_SCRUB_RESILVER, B_TRUE) == 0);
993 
994 	return (0);
995 }
996 
997 /*
998  * Detach a device from a mirror or replacing vdev.
999  * If 'replace_done' is specified, only detach if the parent
1000  * is a replacing vdev.
1001  */
1002 int
1003 spa_vdev_detach(spa_t *spa, const char *path, uint64_t guid, int replace_done)
1004 {
1005 	uint64_t txg;
1006 	int c, t, error;
1007 	vdev_t *rvd = spa->spa_root_vdev;
1008 	vdev_t *vd, *pvd, *cvd, *tvd;
1009 
1010 	txg = spa_vdev_enter(spa);
1011 
1012 	vd = vdev_lookup_by_path(rvd, path);
1013 
1014 	if (vd == NULL)
1015 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
1016 
1017 	if (guid != 0 && vd->vdev_guid != guid)
1018 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
1019 
1020 	pvd = vd->vdev_parent;
1021 
1022 	/*
1023 	 * If replace_done is specified, only remove this device if it's
1024 	 * the first child of a replacing vdev.
1025 	 */
1026 	if (replace_done &&
1027 	    (vd->vdev_id != 0 || pvd->vdev_ops != &vdev_replacing_ops))
1028 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
1029 
1030 	/*
1031 	 * Only mirror and replacing vdevs support detach.
1032 	 */
1033 	if (pvd->vdev_ops != &vdev_replacing_ops &&
1034 	    pvd->vdev_ops != &vdev_mirror_ops)
1035 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
1036 
1037 	/*
1038 	 * If there's only one replica, you can't detach it.
1039 	 */
1040 	if (pvd->vdev_children <= 1)
1041 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
1042 
1043 	/*
1044 	 * If all siblings have non-empty DTLs, this device may have the only
1045 	 * valid copy of the data, which means we cannot safely detach it.
1046 	 *
1047 	 * XXX -- as in the vdev_offline() case, we really want a more
1048 	 * precise DTL check.
1049 	 */
1050 	for (c = 0; c < pvd->vdev_children; c++) {
1051 		uint64_t dirty;
1052 
1053 		cvd = pvd->vdev_child[c];
1054 		if (cvd == vd)
1055 			continue;
1056 		if (vdev_is_dead(cvd))
1057 			continue;
1058 		mutex_enter(&cvd->vdev_dtl_lock);
1059 		dirty = cvd->vdev_dtl_map.sm_space |
1060 		    cvd->vdev_dtl_scrub.sm_space;
1061 		mutex_exit(&cvd->vdev_dtl_lock);
1062 		if (!dirty)
1063 			break;
1064 	}
1065 	if (c == pvd->vdev_children)
1066 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
1067 
1068 	/*
1069 	 * Erase the disk labels so the disk can be used for other things.
1070 	 * This must be done after all other error cases are handled,
1071 	 * but before we disembowel vd (so we can still do I/O to it).
1072 	 * But if we can't do it, don't treat the error as fatal --
1073 	 * it may be that the unwritability of the disk is the reason
1074 	 * it's being detached!
1075 	 */
1076 	error = vdev_label_init(vd, 0);
1077 	if (error)
1078 		dprintf("unable to erase labels on %s\n", vdev_description(vd));
1079 
1080 	/*
1081 	 * Remove vd from its parent and compact the parent's children.
1082 	 */
1083 	vdev_remove_child(pvd, vd);
1084 	vdev_compact_children(pvd);
1085 
1086 	/*
1087 	 * Remember one of the remaining children so we can get tvd below.
1088 	 */
1089 	cvd = pvd->vdev_child[0];
1090 
1091 	/*
1092 	 * If the parent mirror/replacing vdev only has one child,
1093 	 * the parent is no longer needed.  Remove it from the tree.
1094 	 */
1095 	if (pvd->vdev_children == 1)
1096 		vdev_remove_parent(cvd);
1097 
1098 	/*
1099 	 * We don't set tvd until now because the parent we just removed
1100 	 * may have been the previous top-level vdev.
1101 	 */
1102 	tvd = cvd->vdev_top;
1103 	ASSERT(tvd->vdev_parent == rvd);
1104 
1105 	/*
1106 	 * Reopen this top-level vdev to reassess health after detach.
1107 	 */
1108 	vdev_reopen(tvd, NULL);
1109 
1110 	/*
1111 	 * If the device we just detached was smaller than the others,
1112 	 * it may be possible to add metaslabs (i.e. grow the pool).
1113 	 */
1114 	vdev_metaslab_init(tvd, txg);
1115 
1116 	/*
1117 	 * Update the config based on the new in-core state.
1118 	 */
1119 	spa_config_set(spa, spa_config_generate(spa, rvd, txg, 0));
1120 
1121 	vdev_config_dirty(tvd);
1122 
1123 	/*
1124 	 * Mark vd's DTL as dirty in this txg.
1125 	 * vdev_dtl_sync() will see that vd->vdev_detached is set
1126 	 * and free vd's DTL object in syncing context.
1127 	 * But first make sure we're not on any *other* txg's DTL list,
1128 	 * to prevent vd from being accessed after it's freed.
1129 	 */
1130 	vdev_dirty(tvd, VDD_DTL, txg);
1131 	vd->vdev_detached = B_TRUE;
1132 	for (t = 0; t < TXG_SIZE; t++)
1133 		(void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
1134 	(void) txg_list_add(&tvd->vdev_dtl_list, vd, txg);
1135 
1136 	dprintf("detached %s\n", path);
1137 
1138 	return (spa_vdev_exit(spa, vd, txg, 0));
1139 }
1140 
1141 /*
1142  * If there are any replacing vdevs that have finished replacing, detach them.
1143  * We can't hold the config lock across detaches, so we lock the config,
1144  * build a list of candidates, unlock the config, and try each candidate.
1145  */
1146 typedef struct vdev_detach_link {
1147 	char		*vdl_path;
1148 	uint64_t	vdl_guid;
1149 	list_node_t	vdl_node;
1150 } vdev_detach_link_t;
1151 
1152 static void
1153 spa_vdev_replace_done_make_list(list_t *l, vdev_t *vd)
1154 {
1155 	int c;
1156 
1157 	for (c = 0; c < vd->vdev_children; c++)
1158 		spa_vdev_replace_done_make_list(l, vd->vdev_child[c]);
1159 
1160 	if (vd->vdev_ops == &vdev_replacing_ops && vd->vdev_children == 2) {
1161 		vdev_t *cvd0 = vd->vdev_child[0];
1162 		vdev_t *cvd1 = vd->vdev_child[1];
1163 		vdev_detach_link_t *vdl;
1164 		int dirty1;
1165 
1166 		mutex_enter(&cvd1->vdev_dtl_lock);
1167 		dirty1 = cvd1->vdev_dtl_map.sm_space |
1168 		    cvd1->vdev_dtl_scrub.sm_space;
1169 		mutex_exit(&cvd1->vdev_dtl_lock);
1170 
1171 		if (!dirty1) {
1172 			vdl = kmem_zalloc(sizeof (*vdl), KM_SLEEP);
1173 			vdl->vdl_path = spa_strdup(cvd0->vdev_path);
1174 			vdl->vdl_guid = cvd0->vdev_guid;
1175 			list_insert_tail(l, vdl);
1176 		}
1177 	}
1178 }
1179 
1180 void
1181 spa_vdev_replace_done(spa_t *spa)
1182 {
1183 	vdev_detach_link_t *vdl;
1184 	list_t vdlist;
1185 
1186 	list_create(&vdlist, sizeof (vdev_detach_link_t),
1187 	    offsetof(vdev_detach_link_t, vdl_node));
1188 
1189 	spa_config_enter(spa, RW_READER);
1190 	spa_vdev_replace_done_make_list(&vdlist, spa->spa_root_vdev);
1191 	spa_config_exit(spa);
1192 
1193 	while ((vdl = list_head(&vdlist)) != NULL) {
1194 		list_remove(&vdlist, vdl);
1195 		(void) spa_vdev_detach(spa, vdl->vdl_path, vdl->vdl_guid,
1196 		    B_TRUE);
1197 		spa_strfree(vdl->vdl_path);
1198 		kmem_free(vdl, sizeof (*vdl));
1199 	}
1200 
1201 	list_destroy(&vdlist);
1202 }
1203 
1204 /*
1205  * Update the stored path for this vdev.  Dirty the vdev configuration, relying
1206  * on spa_vdev_enter/exit() to synchronize the labels and cache.
1207  */
1208 int
1209 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
1210 {
1211 	vdev_t *rvd, *vd;
1212 	uint64_t txg;
1213 
1214 	rvd = spa->spa_root_vdev;
1215 
1216 	txg = spa_vdev_enter(spa);
1217 
1218 	if ((vd = vdev_lookup_by_guid(rvd, guid)) == NULL)
1219 		return (spa_vdev_exit(spa, NULL, txg, ENOENT));
1220 
1221 	spa_strfree(vd->vdev_path);
1222 	vd->vdev_path = spa_strdup(newpath);
1223 
1224 	spa_config_set(spa, spa_config_generate(spa, rvd, txg, 0));
1225 
1226 	vdev_config_dirty(vd->vdev_top);
1227 
1228 	return (spa_vdev_exit(spa, NULL, txg, 0));
1229 }
1230 
1231 /*
1232  * ==========================================================================
1233  * SPA Scrubbing
1234  * ==========================================================================
1235  */
1236 
1237 static int spa_scrub_locked(spa_t *, pool_scrub_type_t, boolean_t);
1238 
1239 static void
1240 spa_scrub_io_done(zio_t *zio)
1241 {
1242 	spa_t *spa = zio->io_spa;
1243 
1244 	zio_buf_free(zio->io_data, zio->io_size);
1245 
1246 	mutex_enter(&spa->spa_scrub_lock);
1247 	if (zio->io_error)
1248 		spa->spa_scrub_errors++;
1249 	if (--spa->spa_scrub_inflight == 0)
1250 		cv_broadcast(&spa->spa_scrub_io_cv);
1251 	mutex_exit(&spa->spa_scrub_lock);
1252 
1253 	if (zio->io_error) {
1254 		vdev_t *vd = zio->io_vd;
1255 		mutex_enter(&vd->vdev_stat_lock);
1256 		vd->vdev_stat.vs_scrub_errors++;
1257 		mutex_exit(&vd->vdev_stat_lock);
1258 	}
1259 }
1260 
1261 static void
1262 spa_scrub_io_start(spa_t *spa, blkptr_t *bp, int priority, int flags)
1263 {
1264 	size_t size = BP_GET_LSIZE(bp);
1265 	void *data = zio_buf_alloc(size);
1266 
1267 	mutex_enter(&spa->spa_scrub_lock);
1268 	spa->spa_scrub_inflight++;
1269 	mutex_exit(&spa->spa_scrub_lock);
1270 
1271 	zio_nowait(zio_read(NULL, spa, bp, data, size,
1272 	    spa_scrub_io_done, NULL, priority, flags));
1273 }
1274 
1275 /* ARGSUSED */
1276 static int
1277 spa_scrub_cb(traverse_blk_cache_t *bc, spa_t *spa, void *a)
1278 {
1279 	blkptr_t *bp = &bc->bc_blkptr;
1280 	vdev_t *vd = vdev_lookup_top(spa, DVA_GET_VDEV(&bp->blk_dva[0]));
1281 
1282 	if (bc->bc_errno || vd == NULL) {
1283 		/*
1284 		 * We can't scrub this block, but we can continue to scrub
1285 		 * the rest of the pool.  Note the error and move along.
1286 		 */
1287 		mutex_enter(&spa->spa_scrub_lock);
1288 		spa->spa_scrub_errors++;
1289 		mutex_exit(&spa->spa_scrub_lock);
1290 
1291 		if (vd != NULL) {
1292 			mutex_enter(&vd->vdev_stat_lock);
1293 			vd->vdev_stat.vs_scrub_errors++;
1294 			mutex_exit(&vd->vdev_stat_lock);
1295 		}
1296 
1297 		return (ERESTART);
1298 	}
1299 
1300 	ASSERT(bp->blk_birth < spa->spa_scrub_maxtxg);
1301 
1302 	/*
1303 	 * Keep track of how much data we've examined so that
1304 	 * zpool(1M) status can make useful progress reports.
1305 	 */
1306 	mutex_enter(&vd->vdev_stat_lock);
1307 	vd->vdev_stat.vs_scrub_examined += BP_GET_ASIZE(bp);
1308 	mutex_exit(&vd->vdev_stat_lock);
1309 
1310 	if (spa->spa_scrub_type == POOL_SCRUB_RESILVER) {
1311 		if (DVA_GET_GANG(&bp->blk_dva[0])) {
1312 			/*
1313 			 * Gang members may be spread across multiple vdevs,
1314 			 * so the best we can do is look at the pool-wide DTL.
1315 			 * XXX -- it would be better to change our allocation
1316 			 * policy to ensure that this can't happen.
1317 			 */
1318 			vd = spa->spa_root_vdev;
1319 		}
1320 		if (vdev_dtl_contains(&vd->vdev_dtl_map, bp->blk_birth, 1)) {
1321 			spa_scrub_io_start(spa, bp, ZIO_PRIORITY_RESILVER,
1322 			    ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY |
1323 			    ZIO_FLAG_RESILVER);
1324 		}
1325 	} else {
1326 		spa_scrub_io_start(spa, bp, ZIO_PRIORITY_SCRUB,
1327 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY | ZIO_FLAG_SCRUB);
1328 	}
1329 
1330 	return (0);
1331 }
1332 
1333 static void
1334 spa_scrub_thread(spa_t *spa)
1335 {
1336 	callb_cpr_t cprinfo;
1337 	traverse_handle_t *th = spa->spa_scrub_th;
1338 	vdev_t *rvd = spa->spa_root_vdev;
1339 	pool_scrub_type_t scrub_type = spa->spa_scrub_type;
1340 	int error = 0;
1341 	boolean_t complete;
1342 
1343 	CALLB_CPR_INIT(&cprinfo, &spa->spa_scrub_lock, callb_generic_cpr, FTAG);
1344 
1345 	/*
1346 	 * If we're restarting due to a snapshot create/delete,
1347 	 * wait for that to complete.
1348 	 */
1349 	txg_wait_synced(spa_get_dsl(spa), 0);
1350 
1351 	spa_config_enter(spa, RW_WRITER);
1352 	vdev_reopen(rvd, NULL);		/* purge all vdev caches */
1353 	vdev_config_dirty(rvd);		/* rewrite all disk labels */
1354 	vdev_scrub_stat_update(rvd, scrub_type, B_FALSE);
1355 	spa_config_exit(spa);
1356 
1357 	mutex_enter(&spa->spa_scrub_lock);
1358 	spa->spa_scrub_errors = 0;
1359 	spa->spa_scrub_active = 1;
1360 
1361 	while (!spa->spa_scrub_stop) {
1362 		CALLB_CPR_SAFE_BEGIN(&cprinfo);
1363 		while (spa->spa_scrub_suspend) {
1364 			spa->spa_scrub_active = 0;
1365 			cv_broadcast(&spa->spa_scrub_cv);
1366 			cv_wait(&spa->spa_scrub_cv, &spa->spa_scrub_lock);
1367 			spa->spa_scrub_active = 1;
1368 		}
1369 		CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_scrub_lock);
1370 
1371 		if (spa->spa_scrub_restart_txg != 0)
1372 			break;
1373 
1374 		mutex_exit(&spa->spa_scrub_lock);
1375 		error = traverse_more(th);
1376 		mutex_enter(&spa->spa_scrub_lock);
1377 		if (error != EAGAIN)
1378 			break;
1379 	}
1380 
1381 	while (spa->spa_scrub_inflight)
1382 		cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
1383 
1384 	if (spa->spa_scrub_restart_txg != 0)
1385 		error = ERESTART;
1386 
1387 	spa->spa_scrub_active = 0;
1388 	cv_broadcast(&spa->spa_scrub_cv);
1389 
1390 	/*
1391 	 * If the traverse completed, and there were no errors,
1392 	 * then the scrub was completely successful.
1393 	 */
1394 	complete = (error == 0 && spa->spa_scrub_errors == 0);
1395 
1396 	dprintf("scrub to maxtxg=%llu %s, traverse=%d, %llu errors, stop=%u\n",
1397 	    spa->spa_scrub_maxtxg, complete ? "done" : "FAILED",
1398 	    error, spa->spa_scrub_errors, spa->spa_scrub_stop);
1399 
1400 	mutex_exit(&spa->spa_scrub_lock);
1401 
1402 	/*
1403 	 * If the scrub/resilver completed, update all DTLs to reflect this.
1404 	 * Whether it succeeded or not, vacate all temporary scrub DTLs.
1405 	 */
1406 	spa_config_enter(spa, RW_WRITER);
1407 	vdev_dtl_reassess(rvd, spa_last_synced_txg(spa) + 1,
1408 	    complete ? spa->spa_scrub_maxtxg : 0, B_TRUE);
1409 	spa_config_exit(spa);
1410 
1411 	spa_vdev_replace_done(spa);
1412 
1413 	spa_config_enter(spa, RW_READER);
1414 	vdev_scrub_stat_update(rvd, POOL_SCRUB_NONE, complete);
1415 	spa_config_exit(spa);
1416 
1417 	mutex_enter(&spa->spa_scrub_lock);
1418 
1419 	spa->spa_scrub_type = POOL_SCRUB_NONE;
1420 	spa->spa_scrub_active = 0;
1421 	spa->spa_scrub_thread = NULL;
1422 
1423 	cv_broadcast(&spa->spa_scrub_cv);
1424 
1425 	/*
1426 	 * If we were told to restart, our final act is to start a new scrub.
1427 	 */
1428 	if (error == ERESTART)
1429 		VERIFY(spa_scrub_locked(spa, scrub_type, B_TRUE) == 0);
1430 
1431 	CALLB_CPR_EXIT(&cprinfo);	/* drops &spa->spa_scrub_lock */
1432 	thread_exit();
1433 }
1434 
1435 void
1436 spa_scrub_suspend(spa_t *spa)
1437 {
1438 	mutex_enter(&spa->spa_scrub_lock);
1439 	spa->spa_scrub_suspend++;
1440 	while (spa->spa_scrub_active) {
1441 		cv_broadcast(&spa->spa_scrub_cv);
1442 		cv_wait(&spa->spa_scrub_cv, &spa->spa_scrub_lock);
1443 	}
1444 	while (spa->spa_scrub_inflight)
1445 		cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
1446 	mutex_exit(&spa->spa_scrub_lock);
1447 }
1448 
1449 void
1450 spa_scrub_resume(spa_t *spa)
1451 {
1452 	mutex_enter(&spa->spa_scrub_lock);
1453 	ASSERT(spa->spa_scrub_suspend != 0);
1454 	if (--spa->spa_scrub_suspend == 0)
1455 		cv_broadcast(&spa->spa_scrub_cv);
1456 	mutex_exit(&spa->spa_scrub_lock);
1457 }
1458 
1459 void
1460 spa_scrub_restart(spa_t *spa, uint64_t txg)
1461 {
1462 	/*
1463 	 * Something happened (e.g. snapshot create/delete) that means
1464 	 * we must restart any in-progress scrubs.  The itinerary will
1465 	 * fix this properly.
1466 	 */
1467 	mutex_enter(&spa->spa_scrub_lock);
1468 	spa->spa_scrub_restart_txg = txg;
1469 	mutex_exit(&spa->spa_scrub_lock);
1470 }
1471 
1472 static int
1473 spa_scrub_locked(spa_t *spa, pool_scrub_type_t type, boolean_t force)
1474 {
1475 	space_seg_t *ss;
1476 	uint64_t mintxg, maxtxg;
1477 	vdev_t *rvd = spa->spa_root_vdev;
1478 	int advance = 0;
1479 
1480 	if ((uint_t)type >= POOL_SCRUB_TYPES)
1481 		return (ENOTSUP);
1482 
1483 	/*
1484 	 * If there's a scrub or resilver already in progress, stop it.
1485 	 */
1486 	while (spa->spa_scrub_thread != NULL) {
1487 		/*
1488 		 * Don't stop a resilver unless forced.
1489 		 */
1490 		if (spa->spa_scrub_type == POOL_SCRUB_RESILVER && !force)
1491 			return (EBUSY);
1492 
1493 		spa->spa_scrub_stop = 1;
1494 		cv_broadcast(&spa->spa_scrub_cv);
1495 		cv_wait(&spa->spa_scrub_cv, &spa->spa_scrub_lock);
1496 	}
1497 
1498 	/*
1499 	 * Terminate the previous traverse.
1500 	 */
1501 	if (spa->spa_scrub_th != NULL) {
1502 		traverse_fini(spa->spa_scrub_th);
1503 		spa->spa_scrub_th = NULL;
1504 	}
1505 
1506 	spa->spa_scrub_stop = 0;
1507 	spa->spa_scrub_type = type;
1508 	spa->spa_scrub_restart_txg = 0;
1509 
1510 	mintxg = TXG_INITIAL - 1;
1511 	maxtxg = spa_last_synced_txg(spa) + 1;
1512 
1513 	switch (type) {
1514 
1515 	case POOL_SCRUB_NONE:
1516 		break;
1517 
1518 	case POOL_SCRUB_RESILVER:
1519 		/*
1520 		 * Determine the resilvering boundaries.
1521 		 *
1522 		 * Note: (mintxg, maxtxg) is an open interval,
1523 		 * i.e. mintxg and maxtxg themselves are not included.
1524 		 *
1525 		 * Note: for maxtxg, we MIN with spa_last_synced_txg(spa) + 1
1526 		 * so we don't claim to resilver a txg that's still changing.
1527 		 */
1528 		mutex_enter(&rvd->vdev_dtl_lock);
1529 		ss = avl_first(&rvd->vdev_dtl_map.sm_root);
1530 		mintxg = ss ? ss->ss_start - 1 : 0;
1531 		ss = avl_last(&rvd->vdev_dtl_map.sm_root);
1532 		maxtxg = ss ? ss->ss_end : 0;
1533 		maxtxg = MIN(maxtxg, spa_last_synced_txg(spa) + 1);
1534 		mutex_exit(&rvd->vdev_dtl_lock);
1535 
1536 		advance = ADVANCE_PRE | ADVANCE_PRUNE;
1537 		break;
1538 
1539 	case POOL_SCRUB_EVERYTHING:
1540 		/*
1541 		 * A scrub is like a resilver, but not pruned by DTL.
1542 		 */
1543 		advance = ADVANCE_PRE;
1544 		break;
1545 	}
1546 
1547 	if (mintxg != 0 && maxtxg != 0 && type != POOL_SCRUB_NONE) {
1548 		spa->spa_scrub_maxtxg = maxtxg;
1549 		spa->spa_scrub_th = traverse_init(spa, spa_scrub_cb, NULL,
1550 		    advance, ZIO_FLAG_CANFAIL);
1551 		traverse_add_pool(spa->spa_scrub_th, mintxg, maxtxg);
1552 		spa->spa_scrub_thread = thread_create(NULL, 0,
1553 		    spa_scrub_thread, spa, 0, &p0, TS_RUN, minclsyspri);
1554 	}
1555 
1556 	return (0);
1557 }
1558 
1559 int
1560 spa_scrub(spa_t *spa, pool_scrub_type_t type, boolean_t force)
1561 {
1562 	int error;
1563 	traverse_handle_t *th;
1564 
1565 	mutex_enter(&spa->spa_scrub_lock);
1566 	error = spa_scrub_locked(spa, type, force);
1567 	th = spa->spa_scrub_th;
1568 	mutex_exit(&spa->spa_scrub_lock);
1569 
1570 	if (th == NULL && type != POOL_SCRUB_NONE)
1571 		spa_vdev_replace_done(spa);
1572 
1573 	return (error);
1574 }
1575 
1576 /*
1577  * ==========================================================================
1578  * SPA syncing routines
1579  * ==========================================================================
1580  */
1581 
1582 static void
1583 spa_sync_deferred_frees(spa_t *spa, uint64_t txg)
1584 {
1585 	bplist_t *bpl = &spa->spa_sync_bplist;
1586 	dmu_tx_t *tx;
1587 	blkptr_t blk;
1588 	uint64_t itor = 0;
1589 	zio_t *zio;
1590 	int error;
1591 	uint8_t c = 1;
1592 
1593 	zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CONFIG_HELD);
1594 
1595 	while (bplist_iterate(bpl, &itor, &blk) == 0)
1596 		zio_nowait(zio_free(zio, spa, txg, &blk, NULL, NULL));
1597 
1598 	error = zio_wait(zio);
1599 	ASSERT3U(error, ==, 0);
1600 
1601 	tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
1602 	bplist_vacate(bpl, tx);
1603 
1604 	/*
1605 	 * Pre-dirty the first block so we sync to convergence faster.
1606 	 * (Usually only the first block is needed.)
1607 	 */
1608 	dmu_write(spa->spa_meta_objset, spa->spa_sync_bplist_obj, 0, 1, &c, tx);
1609 	dmu_tx_commit(tx);
1610 }
1611 
1612 static void
1613 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
1614 {
1615 	nvlist_t *config;
1616 	char *packed = NULL;
1617 	size_t nvsize = 0;
1618 	dmu_buf_t *db;
1619 
1620 	if (list_is_empty(&spa->spa_dirty_list))
1621 		return;
1622 
1623 	config = spa_config_generate(spa, NULL, dmu_tx_get_txg(tx), B_FALSE);
1624 
1625 	spa_config_set(spa, config);
1626 
1627 	VERIFY(nvlist_size(config, &nvsize, NV_ENCODE_XDR) == 0);
1628 
1629 	packed = kmem_alloc(nvsize, KM_SLEEP);
1630 
1631 	VERIFY(nvlist_pack(config, &packed, &nvsize, NV_ENCODE_XDR, 0) == 0);
1632 
1633 	dmu_write(spa->spa_meta_objset, spa->spa_config_object, 0, nvsize,
1634 	    packed, tx);
1635 
1636 	kmem_free(packed, nvsize);
1637 
1638 	db = dmu_bonus_hold(spa->spa_meta_objset, spa->spa_config_object);
1639 	dmu_buf_will_dirty(db, tx);
1640 	*(uint64_t *)db->db_data = nvsize;
1641 	dmu_buf_rele(db);
1642 }
1643 
1644 /*
1645  * Sync the specified transaction group.  New blocks may be dirtied as
1646  * part of the process, so we iterate until it converges.
1647  */
1648 void
1649 spa_sync(spa_t *spa, uint64_t txg)
1650 {
1651 	dsl_pool_t *dp = spa->spa_dsl_pool;
1652 	objset_t *mos = spa->spa_meta_objset;
1653 	bplist_t *bpl = &spa->spa_sync_bplist;
1654 	vdev_t *rvd = spa->spa_root_vdev;
1655 	vdev_t *vd;
1656 	dmu_tx_t *tx;
1657 	int dirty_vdevs;
1658 
1659 	/*
1660 	 * Lock out configuration changes.
1661 	 */
1662 	spa_config_enter(spa, RW_READER);
1663 
1664 	spa->spa_syncing_txg = txg;
1665 	spa->spa_sync_pass = 0;
1666 
1667 	bplist_open(bpl, mos, spa->spa_sync_bplist_obj);
1668 
1669 	/*
1670 	 * If anything has changed in this txg, push the deferred frees
1671 	 * from the previous txg.  If not, leave them alone so that we
1672 	 * don't generate work on an otherwise idle system.
1673 	 */
1674 	if (!txg_list_empty(&dp->dp_dirty_datasets, txg) ||
1675 	    !txg_list_empty(&dp->dp_dirty_dirs, txg))
1676 		spa_sync_deferred_frees(spa, txg);
1677 
1678 	/*
1679 	 * Iterate to convergence.
1680 	 */
1681 	do {
1682 		spa->spa_sync_pass++;
1683 
1684 		tx = dmu_tx_create_assigned(dp, txg);
1685 		spa_sync_config_object(spa, tx);
1686 		dmu_tx_commit(tx);
1687 
1688 		dsl_pool_sync(dp, txg);
1689 
1690 		dirty_vdevs = 0;
1691 		while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg)) {
1692 			vdev_sync(vd, txg);
1693 			dirty_vdevs++;
1694 		}
1695 
1696 		tx = dmu_tx_create_assigned(dp, txg);
1697 		bplist_sync(bpl, tx);
1698 		dmu_tx_commit(tx);
1699 
1700 	} while (dirty_vdevs);
1701 
1702 	bplist_close(bpl);
1703 
1704 	dprintf("txg %llu passes %d\n", txg, spa->spa_sync_pass);
1705 
1706 	/*
1707 	 * Rewrite the vdev configuration (which includes the uberblock)
1708 	 * to commit the transaction group.
1709 	 */
1710 	while (spa_sync_labels(spa, txg)) {
1711 		dprintf("waiting for devices to heal\n");
1712 		delay(hz);
1713 		vdev_reopen(rvd, NULL);
1714 	}
1715 
1716 	/*
1717 	 * Make a stable copy of the fully synced uberblock.
1718 	 * We use this as the root for pool traversals.
1719 	 */
1720 	spa->spa_traverse_wanted = 1;	/* tells traverse_more() to stop */
1721 
1722 	spa_scrub_suspend(spa);		/* stop scrubbing and finish I/Os */
1723 
1724 	rw_enter(&spa->spa_traverse_lock, RW_WRITER);
1725 	spa->spa_traverse_wanted = 0;
1726 	spa->spa_ubsync = spa->spa_uberblock;
1727 	rw_exit(&spa->spa_traverse_lock);
1728 
1729 	spa_scrub_resume(spa);		/* resume scrub with new ubsync */
1730 
1731 	/*
1732 	 * Clean up the ZIL records for the synced txg.
1733 	 */
1734 	dsl_pool_zil_clean(dp);
1735 
1736 	/*
1737 	 * Update usable space statistics.
1738 	 */
1739 	while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
1740 		vdev_sync_done(vd, txg);
1741 
1742 	/*
1743 	 * It had better be the case that we didn't dirty anything
1744 	 * since spa_sync_labels().
1745 	 */
1746 	ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
1747 	ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
1748 	ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
1749 	ASSERT(bpl->bpl_queue == NULL);
1750 
1751 	spa_config_exit(spa);
1752 }
1753 
1754 /*
1755  * Sync all pools.  We don't want to hold the namespace lock across these
1756  * operations, so we take a reference on the spa_t and drop the lock during the
1757  * sync.
1758  */
1759 void
1760 spa_sync_allpools(void)
1761 {
1762 	spa_t *spa = NULL;
1763 	mutex_enter(&spa_namespace_lock);
1764 	while ((spa = spa_next(spa)) != NULL) {
1765 		if (spa_state(spa) != POOL_STATE_ACTIVE)
1766 			continue;
1767 		spa_open_ref(spa, FTAG);
1768 		mutex_exit(&spa_namespace_lock);
1769 		txg_wait_synced(spa_get_dsl(spa), 0);
1770 		mutex_enter(&spa_namespace_lock);
1771 		spa_close(spa, FTAG);
1772 	}
1773 	mutex_exit(&spa_namespace_lock);
1774 }
1775 
1776 /*
1777  * ==========================================================================
1778  * Miscellaneous routines
1779  * ==========================================================================
1780  */
1781 
1782 int
1783 spa_busy(void)
1784 {
1785 	return (spa_active_count != 0);
1786 }
1787 
1788 /*
1789  * Remove all pools in the system.
1790  */
1791 void
1792 spa_evict_all(void)
1793 {
1794 	spa_t *spa;
1795 
1796 	/*
1797 	 * Remove all cached state.  All pools should be closed now,
1798 	 * so every spa in the AVL tree should be unreferenced.
1799 	 */
1800 	mutex_enter(&spa_namespace_lock);
1801 	while ((spa = spa_next(NULL)) != NULL) {
1802 		/*
1803 		 * Stop all scrub and resilver activity.  spa_scrub() needs to
1804 		 * wait for the scrub thread, which may do a detach and sync the
1805 		 * configs, which needs spa_namespace_lock.  Drop the lock while
1806 		 * maintaining a hold on the spa_t.
1807 		 */
1808 		spa_open_ref(spa, FTAG);
1809 		mutex_exit(&spa_namespace_lock);
1810 		VERIFY(spa_scrub(spa, POOL_SCRUB_NONE, B_TRUE) == 0);
1811 		mutex_enter(&spa_namespace_lock);
1812 		spa_close(spa, FTAG);
1813 
1814 		if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
1815 			spa_unload(spa);
1816 			spa_deactivate(spa);
1817 		}
1818 		spa_remove(spa);
1819 	}
1820 	mutex_exit(&spa_namespace_lock);
1821 }
1822