xref: /titanic_44/usr/src/uts/common/fs/zfs/spa.c (revision 2f8aaab38e6371ad39ed90a1211ba8921acbb4d5)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 /*
30  * This file contains all the routines used when modifying on-disk SPA state.
31  * This includes opening, importing, destroying, exporting a pool, and syncing a
32  * pool.
33  */
34 
35 #include <sys/zfs_context.h>
36 #include <sys/fm/fs/zfs.h>
37 #include <sys/spa_impl.h>
38 #include <sys/zio.h>
39 #include <sys/zio_checksum.h>
40 #include <sys/zio_compress.h>
41 #include <sys/dmu.h>
42 #include <sys/dmu_tx.h>
43 #include <sys/zap.h>
44 #include <sys/zil.h>
45 #include <sys/vdev_impl.h>
46 #include <sys/metaslab.h>
47 #include <sys/uberblock_impl.h>
48 #include <sys/txg.h>
49 #include <sys/avl.h>
50 #include <sys/dmu_traverse.h>
51 #include <sys/dmu_objset.h>
52 #include <sys/unique.h>
53 #include <sys/dsl_pool.h>
54 #include <sys/dsl_dataset.h>
55 #include <sys/dsl_dir.h>
56 #include <sys/dsl_prop.h>
57 #include <sys/dsl_synctask.h>
58 #include <sys/fs/zfs.h>
59 #include <sys/callb.h>
60 #include <sys/systeminfo.h>
61 #include <sys/sunddi.h>
62 
63 #include "zfs_prop.h"
64 
65 int zio_taskq_threads = 8;
66 
67 static void spa_sync_props(void *arg1, void *arg2, cred_t *cr, dmu_tx_t *tx);
68 
69 /*
70  * ==========================================================================
71  * SPA properties routines
72  * ==========================================================================
73  */
74 
75 /*
76  * Add a (source=src, propname=propval) list to an nvlist.
77  */
78 static int
79 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval,
80     uint64_t intval, zprop_source_t src)
81 {
82 	const char *propname = zpool_prop_to_name(prop);
83 	nvlist_t *propval;
84 	int err = 0;
85 
86 	if (err = nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP))
87 		return (err);
88 
89 	if (err = nvlist_add_uint64(propval, ZPROP_SOURCE, src))
90 		goto out;
91 
92 	if (strval != NULL) {
93 		if (err = nvlist_add_string(propval, ZPROP_VALUE, strval))
94 			goto out;
95 	} else {
96 		if (err = nvlist_add_uint64(propval, ZPROP_VALUE, intval))
97 			goto out;
98 	}
99 
100 	err = nvlist_add_nvlist(nvl, propname, propval);
101 out:
102 	nvlist_free(propval);
103 	return (err);
104 }
105 
106 /*
107  * Get property values from the spa configuration.
108  */
109 static int
110 spa_prop_get_config(spa_t *spa, nvlist_t **nvp)
111 {
112 	uint64_t size = spa_get_space(spa);
113 	uint64_t used = spa_get_alloc(spa);
114 	uint64_t cap, version;
115 	zprop_source_t src = ZPROP_SRC_NONE;
116 	int err;
117 	char *cachefile;
118 	size_t len;
119 
120 	/*
121 	 * readonly properties
122 	 */
123 	if (err = spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa->spa_name,
124 	    0, src))
125 		return (err);
126 
127 	if (err = spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src))
128 		return (err);
129 
130 	if (err = spa_prop_add_list(*nvp, ZPOOL_PROP_USED, NULL, used, src))
131 		return (err);
132 
133 	if (err = spa_prop_add_list(*nvp, ZPOOL_PROP_AVAILABLE, NULL,
134 	    size - used, src))
135 		return (err);
136 
137 	cap = (size == 0) ? 0 : (used * 100 / size);
138 	if (err = spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src))
139 		return (err);
140 
141 	if (err = spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL,
142 	    spa_guid(spa), src))
143 		return (err);
144 
145 	if (err = spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL,
146 	    spa->spa_root_vdev->vdev_state, src))
147 		return (err);
148 
149 	/*
150 	 * settable properties that are not stored in the pool property object.
151 	 */
152 	version = spa_version(spa);
153 	if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION))
154 		src = ZPROP_SRC_DEFAULT;
155 	else
156 		src = ZPROP_SRC_LOCAL;
157 	if (err = spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL,
158 	    version, src))
159 		return (err);
160 
161 	if (spa->spa_root != NULL) {
162 		src = ZPROP_SRC_LOCAL;
163 		if (err = spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT,
164 		    spa->spa_root, 0, src))
165 			return (err);
166 	}
167 
168 	if (spa->spa_config_dir != NULL) {
169 		if (strcmp(spa->spa_config_dir, "none") == 0) {
170 			err = spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
171 			    spa->spa_config_dir, 0, ZPROP_SRC_LOCAL);
172 		} else {
173 			len = strlen(spa->spa_config_dir) +
174 			    strlen(spa->spa_config_file) + 2;
175 			cachefile = kmem_alloc(len, KM_SLEEP);
176 			(void) snprintf(cachefile, len, "%s/%s",
177 			    spa->spa_config_dir, spa->spa_config_file);
178 			err = spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
179 			    cachefile, 0, ZPROP_SRC_LOCAL);
180 			kmem_free(cachefile, len);
181 		}
182 
183 		if (err)
184 			return (err);
185 	}
186 
187 	return (0);
188 }
189 
190 /*
191  * Get zpool property values.
192  */
193 int
194 spa_prop_get(spa_t *spa, nvlist_t **nvp)
195 {
196 	zap_cursor_t zc;
197 	zap_attribute_t za;
198 	objset_t *mos = spa->spa_meta_objset;
199 	int err;
200 
201 	if (err = nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP))
202 		return (err);
203 
204 	/*
205 	 * Get properties from the spa config.
206 	 */
207 	if (err = spa_prop_get_config(spa, nvp))
208 		goto out;
209 
210 	mutex_enter(&spa->spa_props_lock);
211 	/* If no pool property object, no more prop to get. */
212 	if (spa->spa_pool_props_object == 0) {
213 		mutex_exit(&spa->spa_props_lock);
214 		return (0);
215 	}
216 
217 	/*
218 	 * Get properties from the MOS pool property object.
219 	 */
220 	for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
221 	    (err = zap_cursor_retrieve(&zc, &za)) == 0;
222 	    zap_cursor_advance(&zc)) {
223 		uint64_t intval = 0;
224 		char *strval = NULL;
225 		zprop_source_t src = ZPROP_SRC_DEFAULT;
226 		zpool_prop_t prop;
227 
228 		if ((prop = zpool_name_to_prop(za.za_name)) == ZPROP_INVAL)
229 			continue;
230 
231 		switch (za.za_integer_length) {
232 		case 8:
233 			/* integer property */
234 			if (za.za_first_integer !=
235 			    zpool_prop_default_numeric(prop))
236 				src = ZPROP_SRC_LOCAL;
237 
238 			if (prop == ZPOOL_PROP_BOOTFS) {
239 				dsl_pool_t *dp;
240 				dsl_dataset_t *ds = NULL;
241 
242 				dp = spa_get_dsl(spa);
243 				rw_enter(&dp->dp_config_rwlock, RW_READER);
244 				if (err = dsl_dataset_open_obj(dp,
245 				    za.za_first_integer, NULL, DS_MODE_NONE,
246 				    FTAG, &ds)) {
247 					rw_exit(&dp->dp_config_rwlock);
248 					break;
249 				}
250 
251 				strval = kmem_alloc(
252 				    MAXNAMELEN + strlen(MOS_DIR_NAME) + 1,
253 				    KM_SLEEP);
254 				dsl_dataset_name(ds, strval);
255 				dsl_dataset_close(ds, DS_MODE_NONE, FTAG);
256 				rw_exit(&dp->dp_config_rwlock);
257 			} else {
258 				strval = NULL;
259 				intval = za.za_first_integer;
260 			}
261 
262 			err = spa_prop_add_list(*nvp, prop, strval,
263 			    intval, src);
264 
265 			if (strval != NULL)
266 				kmem_free(strval,
267 				    MAXNAMELEN + strlen(MOS_DIR_NAME) + 1);
268 
269 			break;
270 
271 		case 1:
272 			/* string property */
273 			strval = kmem_alloc(za.za_num_integers, KM_SLEEP);
274 			err = zap_lookup(mos, spa->spa_pool_props_object,
275 			    za.za_name, 1, za.za_num_integers, strval);
276 			if (err) {
277 				kmem_free(strval, za.za_num_integers);
278 				break;
279 			}
280 			err = spa_prop_add_list(*nvp, prop, strval, 0, src);
281 			kmem_free(strval, za.za_num_integers);
282 			break;
283 
284 		default:
285 			break;
286 		}
287 	}
288 	zap_cursor_fini(&zc);
289 	mutex_exit(&spa->spa_props_lock);
290 out:
291 	if (err && err != ENOENT) {
292 		nvlist_free(*nvp);
293 		return (err);
294 	}
295 
296 	return (0);
297 }
298 
299 /*
300  * Validate the given pool properties nvlist and modify the list
301  * for the property values to be set.
302  */
303 static int
304 spa_prop_validate(spa_t *spa, nvlist_t *props)
305 {
306 	nvpair_t *elem;
307 	int error = 0, reset_bootfs = 0;
308 	uint64_t objnum;
309 
310 	elem = NULL;
311 	while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
312 		zpool_prop_t prop;
313 		char *propname, *strval;
314 		uint64_t intval;
315 		vdev_t *rvdev;
316 		char *vdev_type;
317 		objset_t *os;
318 		char *slash;
319 
320 		propname = nvpair_name(elem);
321 
322 		if ((prop = zpool_name_to_prop(propname)) == ZPROP_INVAL)
323 			return (EINVAL);
324 
325 		switch (prop) {
326 		case ZPOOL_PROP_VERSION:
327 			error = nvpair_value_uint64(elem, &intval);
328 			if (!error &&
329 			    (intval < spa_version(spa) || intval > SPA_VERSION))
330 				error = EINVAL;
331 			break;
332 
333 		case ZPOOL_PROP_DELEGATION:
334 		case ZPOOL_PROP_AUTOREPLACE:
335 			error = nvpair_value_uint64(elem, &intval);
336 			if (!error && intval > 1)
337 				error = EINVAL;
338 			break;
339 
340 		case ZPOOL_PROP_BOOTFS:
341 			if (spa_version(spa) < SPA_VERSION_BOOTFS) {
342 				error = ENOTSUP;
343 				break;
344 			}
345 
346 			/*
347 			 * A bootable filesystem can not be on a RAIDZ pool
348 			 * nor a striped pool with more than 1 device.
349 			 */
350 			rvdev = spa->spa_root_vdev;
351 			vdev_type =
352 			    rvdev->vdev_child[0]->vdev_ops->vdev_op_type;
353 			if (rvdev->vdev_children > 1 ||
354 			    strcmp(vdev_type, VDEV_TYPE_RAIDZ) == 0 ||
355 			    strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) {
356 				error = ENOTSUP;
357 				break;
358 			}
359 
360 			reset_bootfs = 1;
361 
362 			error = nvpair_value_string(elem, &strval);
363 
364 			if (!error) {
365 				if (strval == NULL || strval[0] == '\0') {
366 					objnum = zpool_prop_default_numeric(
367 					    ZPOOL_PROP_BOOTFS);
368 					break;
369 				}
370 
371 				if (error = dmu_objset_open(strval, DMU_OST_ZFS,
372 				    DS_MODE_STANDARD | DS_MODE_READONLY, &os))
373 					break;
374 				objnum = dmu_objset_id(os);
375 				dmu_objset_close(os);
376 			}
377 			break;
378 		case ZPOOL_PROP_FAILUREMODE:
379 			error = nvpair_value_uint64(elem, &intval);
380 			if (!error && (intval < ZIO_FAILURE_MODE_WAIT ||
381 			    intval > ZIO_FAILURE_MODE_PANIC))
382 				error = EINVAL;
383 
384 			/*
385 			 * This is a special case which only occurs when
386 			 * the pool has completely failed. This allows
387 			 * the user to change the in-core failmode property
388 			 * without syncing it out to disk (I/Os might
389 			 * currently be blocked). We do this by returning
390 			 * EIO to the caller (spa_prop_set) to trick it
391 			 * into thinking we encountered a property validation
392 			 * error.
393 			 */
394 			if (!error && spa_state(spa) == POOL_STATE_IO_FAILURE) {
395 				spa->spa_failmode = intval;
396 				error = EIO;
397 			}
398 			break;
399 
400 		case ZPOOL_PROP_CACHEFILE:
401 			if ((error = nvpair_value_string(elem, &strval)) != 0)
402 				break;
403 
404 			if (strval[0] == '\0')
405 				break;
406 
407 			if (strcmp(strval, "none") == 0)
408 				break;
409 
410 			if (strval[0] != '/') {
411 				error = EINVAL;
412 				break;
413 			}
414 
415 			slash = strrchr(strval, '/');
416 			ASSERT(slash != NULL);
417 
418 			if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
419 			    strcmp(slash, "/..") == 0)
420 				error = EINVAL;
421 			break;
422 		}
423 
424 		if (error)
425 			break;
426 	}
427 
428 	if (!error && reset_bootfs) {
429 		error = nvlist_remove(props,
430 		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
431 
432 		if (!error) {
433 			error = nvlist_add_uint64(props,
434 			    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
435 		}
436 	}
437 
438 	return (error);
439 }
440 
441 int
442 spa_prop_set(spa_t *spa, nvlist_t *nvp)
443 {
444 	int error;
445 
446 	if ((error = spa_prop_validate(spa, nvp)) != 0)
447 		return (error);
448 
449 	return (dsl_sync_task_do(spa_get_dsl(spa), NULL, spa_sync_props,
450 	    spa, nvp, 3));
451 }
452 
453 /*
454  * If the bootfs property value is dsobj, clear it.
455  */
456 void
457 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
458 {
459 	if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
460 		VERIFY(zap_remove(spa->spa_meta_objset,
461 		    spa->spa_pool_props_object,
462 		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
463 		spa->spa_bootfs = 0;
464 	}
465 }
466 
467 /*
468  * ==========================================================================
469  * SPA state manipulation (open/create/destroy/import/export)
470  * ==========================================================================
471  */
472 
473 static int
474 spa_error_entry_compare(const void *a, const void *b)
475 {
476 	spa_error_entry_t *sa = (spa_error_entry_t *)a;
477 	spa_error_entry_t *sb = (spa_error_entry_t *)b;
478 	int ret;
479 
480 	ret = bcmp(&sa->se_bookmark, &sb->se_bookmark,
481 	    sizeof (zbookmark_t));
482 
483 	if (ret < 0)
484 		return (-1);
485 	else if (ret > 0)
486 		return (1);
487 	else
488 		return (0);
489 }
490 
491 /*
492  * Utility function which retrieves copies of the current logs and
493  * re-initializes them in the process.
494  */
495 void
496 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
497 {
498 	ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
499 
500 	bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t));
501 	bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t));
502 
503 	avl_create(&spa->spa_errlist_scrub,
504 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
505 	    offsetof(spa_error_entry_t, se_avl));
506 	avl_create(&spa->spa_errlist_last,
507 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
508 	    offsetof(spa_error_entry_t, se_avl));
509 }
510 
511 /*
512  * Activate an uninitialized pool.
513  */
514 static void
515 spa_activate(spa_t *spa)
516 {
517 	int t;
518 
519 	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
520 
521 	spa->spa_state = POOL_STATE_ACTIVE;
522 
523 	spa->spa_normal_class = metaslab_class_create();
524 	spa->spa_log_class = metaslab_class_create();
525 
526 	for (t = 0; t < ZIO_TYPES; t++) {
527 		spa->spa_zio_issue_taskq[t] = taskq_create("spa_zio_issue",
528 		    zio_taskq_threads, maxclsyspri, 50, INT_MAX,
529 		    TASKQ_PREPOPULATE);
530 		spa->spa_zio_intr_taskq[t] = taskq_create("spa_zio_intr",
531 		    zio_taskq_threads, maxclsyspri, 50, INT_MAX,
532 		    TASKQ_PREPOPULATE);
533 	}
534 
535 	list_create(&spa->spa_dirty_list, sizeof (vdev_t),
536 	    offsetof(vdev_t, vdev_dirty_node));
537 	list_create(&spa->spa_zio_list, sizeof (zio_t),
538 	    offsetof(zio_t, zio_link_node));
539 
540 	txg_list_create(&spa->spa_vdev_txg_list,
541 	    offsetof(struct vdev, vdev_txg_node));
542 
543 	avl_create(&spa->spa_errlist_scrub,
544 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
545 	    offsetof(spa_error_entry_t, se_avl));
546 	avl_create(&spa->spa_errlist_last,
547 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
548 	    offsetof(spa_error_entry_t, se_avl));
549 }
550 
551 /*
552  * Opposite of spa_activate().
553  */
554 static void
555 spa_deactivate(spa_t *spa)
556 {
557 	int t;
558 
559 	ASSERT(spa->spa_sync_on == B_FALSE);
560 	ASSERT(spa->spa_dsl_pool == NULL);
561 	ASSERT(spa->spa_root_vdev == NULL);
562 
563 	ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
564 
565 	txg_list_destroy(&spa->spa_vdev_txg_list);
566 
567 	list_destroy(&spa->spa_dirty_list);
568 	list_destroy(&spa->spa_zio_list);
569 
570 	for (t = 0; t < ZIO_TYPES; t++) {
571 		taskq_destroy(spa->spa_zio_issue_taskq[t]);
572 		taskq_destroy(spa->spa_zio_intr_taskq[t]);
573 		spa->spa_zio_issue_taskq[t] = NULL;
574 		spa->spa_zio_intr_taskq[t] = NULL;
575 	}
576 
577 	metaslab_class_destroy(spa->spa_normal_class);
578 	spa->spa_normal_class = NULL;
579 
580 	metaslab_class_destroy(spa->spa_log_class);
581 	spa->spa_log_class = NULL;
582 
583 	/*
584 	 * If this was part of an import or the open otherwise failed, we may
585 	 * still have errors left in the queues.  Empty them just in case.
586 	 */
587 	spa_errlog_drain(spa);
588 
589 	avl_destroy(&spa->spa_errlist_scrub);
590 	avl_destroy(&spa->spa_errlist_last);
591 
592 	spa->spa_state = POOL_STATE_UNINITIALIZED;
593 }
594 
595 /*
596  * Verify a pool configuration, and construct the vdev tree appropriately.  This
597  * will create all the necessary vdevs in the appropriate layout, with each vdev
598  * in the CLOSED state.  This will prep the pool before open/creation/import.
599  * All vdev validation is done by the vdev_alloc() routine.
600  */
601 static int
602 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
603     uint_t id, int atype)
604 {
605 	nvlist_t **child;
606 	uint_t c, children;
607 	int error;
608 
609 	if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
610 		return (error);
611 
612 	if ((*vdp)->vdev_ops->vdev_op_leaf)
613 		return (0);
614 
615 	if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
616 	    &child, &children) != 0) {
617 		vdev_free(*vdp);
618 		*vdp = NULL;
619 		return (EINVAL);
620 	}
621 
622 	for (c = 0; c < children; c++) {
623 		vdev_t *vd;
624 		if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
625 		    atype)) != 0) {
626 			vdev_free(*vdp);
627 			*vdp = NULL;
628 			return (error);
629 		}
630 	}
631 
632 	ASSERT(*vdp != NULL);
633 
634 	return (0);
635 }
636 
637 /*
638  * Opposite of spa_load().
639  */
640 static void
641 spa_unload(spa_t *spa)
642 {
643 	int i;
644 
645 	/*
646 	 * Stop async tasks.
647 	 */
648 	spa_async_suspend(spa);
649 
650 	/*
651 	 * Stop syncing.
652 	 */
653 	if (spa->spa_sync_on) {
654 		txg_sync_stop(spa->spa_dsl_pool);
655 		spa->spa_sync_on = B_FALSE;
656 	}
657 
658 	/*
659 	 * Wait for any outstanding prefetch I/O to complete.
660 	 */
661 	spa_config_enter(spa, RW_WRITER, FTAG);
662 	spa_config_exit(spa, FTAG);
663 
664 	/*
665 	 * Close the dsl pool.
666 	 */
667 	if (spa->spa_dsl_pool) {
668 		dsl_pool_close(spa->spa_dsl_pool);
669 		spa->spa_dsl_pool = NULL;
670 	}
671 
672 	/*
673 	 * Close all vdevs.
674 	 */
675 	if (spa->spa_root_vdev)
676 		vdev_free(spa->spa_root_vdev);
677 	ASSERT(spa->spa_root_vdev == NULL);
678 
679 	for (i = 0; i < spa->spa_nspares; i++)
680 		vdev_free(spa->spa_spares[i]);
681 	if (spa->spa_spares) {
682 		kmem_free(spa->spa_spares, spa->spa_nspares * sizeof (void *));
683 		spa->spa_spares = NULL;
684 	}
685 	if (spa->spa_sparelist) {
686 		nvlist_free(spa->spa_sparelist);
687 		spa->spa_sparelist = NULL;
688 	}
689 
690 	spa->spa_async_suspended = 0;
691 }
692 
693 /*
694  * Load (or re-load) the current list of vdevs describing the active spares for
695  * this pool.  When this is called, we have some form of basic information in
696  * 'spa_sparelist'.  We parse this into vdevs, try to open them, and then
697  * re-generate a more complete list including status information.
698  */
699 static void
700 spa_load_spares(spa_t *spa)
701 {
702 	nvlist_t **spares;
703 	uint_t nspares;
704 	int i;
705 	vdev_t *vd, *tvd;
706 
707 	/*
708 	 * First, close and free any existing spare vdevs.
709 	 */
710 	for (i = 0; i < spa->spa_nspares; i++) {
711 		vd = spa->spa_spares[i];
712 
713 		/* Undo the call to spa_activate() below */
714 		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid)) != NULL &&
715 		    tvd->vdev_isspare)
716 			spa_spare_remove(tvd);
717 		vdev_close(vd);
718 		vdev_free(vd);
719 	}
720 
721 	if (spa->spa_spares)
722 		kmem_free(spa->spa_spares, spa->spa_nspares * sizeof (void *));
723 
724 	if (spa->spa_sparelist == NULL)
725 		nspares = 0;
726 	else
727 		VERIFY(nvlist_lookup_nvlist_array(spa->spa_sparelist,
728 		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
729 
730 	spa->spa_nspares = (int)nspares;
731 	spa->spa_spares = NULL;
732 
733 	if (nspares == 0)
734 		return;
735 
736 	/*
737 	 * Construct the array of vdevs, opening them to get status in the
738 	 * process.   For each spare, there is potentially two different vdev_t
739 	 * structures associated with it: one in the list of spares (used only
740 	 * for basic validation purposes) and one in the active vdev
741 	 * configuration (if it's spared in).  During this phase we open and
742 	 * validate each vdev on the spare list.  If the vdev also exists in the
743 	 * active configuration, then we also mark this vdev as an active spare.
744 	 */
745 	spa->spa_spares = kmem_alloc(nspares * sizeof (void *), KM_SLEEP);
746 	for (i = 0; i < spa->spa_nspares; i++) {
747 		VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
748 		    VDEV_ALLOC_SPARE) == 0);
749 		ASSERT(vd != NULL);
750 
751 		spa->spa_spares[i] = vd;
752 
753 		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid)) != NULL) {
754 			if (!tvd->vdev_isspare)
755 				spa_spare_add(tvd);
756 
757 			/*
758 			 * We only mark the spare active if we were successfully
759 			 * able to load the vdev.  Otherwise, importing a pool
760 			 * with a bad active spare would result in strange
761 			 * behavior, because multiple pool would think the spare
762 			 * is actively in use.
763 			 *
764 			 * There is a vulnerability here to an equally bizarre
765 			 * circumstance, where a dead active spare is later
766 			 * brought back to life (onlined or otherwise).  Given
767 			 * the rarity of this scenario, and the extra complexity
768 			 * it adds, we ignore the possibility.
769 			 */
770 			if (!vdev_is_dead(tvd))
771 				spa_spare_activate(tvd);
772 		}
773 
774 		if (vdev_open(vd) != 0)
775 			continue;
776 
777 		vd->vdev_top = vd;
778 		(void) vdev_validate_spare(vd);
779 	}
780 
781 	/*
782 	 * Recompute the stashed list of spares, with status information
783 	 * this time.
784 	 */
785 	VERIFY(nvlist_remove(spa->spa_sparelist, ZPOOL_CONFIG_SPARES,
786 	    DATA_TYPE_NVLIST_ARRAY) == 0);
787 
788 	spares = kmem_alloc(spa->spa_nspares * sizeof (void *), KM_SLEEP);
789 	for (i = 0; i < spa->spa_nspares; i++)
790 		spares[i] = vdev_config_generate(spa, spa->spa_spares[i],
791 		    B_TRUE, B_TRUE);
792 	VERIFY(nvlist_add_nvlist_array(spa->spa_sparelist, ZPOOL_CONFIG_SPARES,
793 	    spares, spa->spa_nspares) == 0);
794 	for (i = 0; i < spa->spa_nspares; i++)
795 		nvlist_free(spares[i]);
796 	kmem_free(spares, spa->spa_nspares * sizeof (void *));
797 }
798 
799 static int
800 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
801 {
802 	dmu_buf_t *db;
803 	char *packed = NULL;
804 	size_t nvsize = 0;
805 	int error;
806 	*value = NULL;
807 
808 	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
809 	nvsize = *(uint64_t *)db->db_data;
810 	dmu_buf_rele(db, FTAG);
811 
812 	packed = kmem_alloc(nvsize, KM_SLEEP);
813 	error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed);
814 	if (error == 0)
815 		error = nvlist_unpack(packed, nvsize, value, 0);
816 	kmem_free(packed, nvsize);
817 
818 	return (error);
819 }
820 
821 /*
822  * Checks to see if the given vdev could not be opened, in which case we post a
823  * sysevent to notify the autoreplace code that the device has been removed.
824  */
825 static void
826 spa_check_removed(vdev_t *vd)
827 {
828 	int c;
829 
830 	for (c = 0; c < vd->vdev_children; c++)
831 		spa_check_removed(vd->vdev_child[c]);
832 
833 	if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd)) {
834 		zfs_post_autoreplace(vd->vdev_spa, vd);
835 		spa_event_notify(vd->vdev_spa, vd, ESC_ZFS_VDEV_CHECK);
836 	}
837 }
838 
839 /*
840  * Load an existing storage pool, using the pool's builtin spa_config as a
841  * source of configuration information.
842  */
843 static int
844 spa_load(spa_t *spa, nvlist_t *config, spa_load_state_t state, int mosconfig)
845 {
846 	int error = 0;
847 	nvlist_t *nvroot = NULL;
848 	vdev_t *rvd;
849 	uberblock_t *ub = &spa->spa_uberblock;
850 	uint64_t config_cache_txg = spa->spa_config_txg;
851 	uint64_t pool_guid;
852 	uint64_t version;
853 	zio_t *zio;
854 	uint64_t autoreplace = 0;
855 
856 	spa->spa_load_state = state;
857 
858 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot) ||
859 	    nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid)) {
860 		error = EINVAL;
861 		goto out;
862 	}
863 
864 	/*
865 	 * Versioning wasn't explicitly added to the label until later, so if
866 	 * it's not present treat it as the initial version.
867 	 */
868 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION, &version) != 0)
869 		version = SPA_VERSION_INITIAL;
870 
871 	(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
872 	    &spa->spa_config_txg);
873 
874 	if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) &&
875 	    spa_guid_exists(pool_guid, 0)) {
876 		error = EEXIST;
877 		goto out;
878 	}
879 
880 	spa->spa_load_guid = pool_guid;
881 
882 	/*
883 	 * Parse the configuration into a vdev tree.  We explicitly set the
884 	 * value that will be returned by spa_version() since parsing the
885 	 * configuration requires knowing the version number.
886 	 */
887 	spa_config_enter(spa, RW_WRITER, FTAG);
888 	spa->spa_ubsync.ub_version = version;
889 	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_LOAD);
890 	spa_config_exit(spa, FTAG);
891 
892 	if (error != 0)
893 		goto out;
894 
895 	ASSERT(spa->spa_root_vdev == rvd);
896 	ASSERT(spa_guid(spa) == pool_guid);
897 
898 	/*
899 	 * Try to open all vdevs, loading each label in the process.
900 	 */
901 	error = vdev_open(rvd);
902 	if (error != 0)
903 		goto out;
904 
905 	/*
906 	 * Validate the labels for all leaf vdevs.  We need to grab the config
907 	 * lock because all label I/O is done with the ZIO_FLAG_CONFIG_HELD
908 	 * flag.
909 	 */
910 	spa_config_enter(spa, RW_READER, FTAG);
911 	error = vdev_validate(rvd);
912 	spa_config_exit(spa, FTAG);
913 
914 	if (error != 0)
915 		goto out;
916 
917 	if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) {
918 		error = ENXIO;
919 		goto out;
920 	}
921 
922 	/*
923 	 * Find the best uberblock.
924 	 */
925 	bzero(ub, sizeof (uberblock_t));
926 
927 	zio = zio_root(spa, NULL, NULL,
928 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
929 	vdev_uberblock_load(zio, rvd, ub);
930 	error = zio_wait(zio);
931 
932 	/*
933 	 * If we weren't able to find a single valid uberblock, return failure.
934 	 */
935 	if (ub->ub_txg == 0) {
936 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
937 		    VDEV_AUX_CORRUPT_DATA);
938 		error = ENXIO;
939 		goto out;
940 	}
941 
942 	/*
943 	 * If the pool is newer than the code, we can't open it.
944 	 */
945 	if (ub->ub_version > SPA_VERSION) {
946 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
947 		    VDEV_AUX_VERSION_NEWER);
948 		error = ENOTSUP;
949 		goto out;
950 	}
951 
952 	/*
953 	 * If the vdev guid sum doesn't match the uberblock, we have an
954 	 * incomplete configuration.
955 	 */
956 	if (rvd->vdev_guid_sum != ub->ub_guid_sum && mosconfig) {
957 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
958 		    VDEV_AUX_BAD_GUID_SUM);
959 		error = ENXIO;
960 		goto out;
961 	}
962 
963 	/*
964 	 * Initialize internal SPA structures.
965 	 */
966 	spa->spa_state = POOL_STATE_ACTIVE;
967 	spa->spa_ubsync = spa->spa_uberblock;
968 	spa->spa_first_txg = spa_last_synced_txg(spa) + 1;
969 	error = dsl_pool_open(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
970 	if (error) {
971 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
972 		    VDEV_AUX_CORRUPT_DATA);
973 		goto out;
974 	}
975 	spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
976 
977 	if (zap_lookup(spa->spa_meta_objset,
978 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
979 	    sizeof (uint64_t), 1, &spa->spa_config_object) != 0) {
980 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
981 		    VDEV_AUX_CORRUPT_DATA);
982 		error = EIO;
983 		goto out;
984 	}
985 
986 	if (!mosconfig) {
987 		nvlist_t *newconfig;
988 		uint64_t hostid;
989 
990 		if (load_nvlist(spa, spa->spa_config_object, &newconfig) != 0) {
991 			vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
992 			    VDEV_AUX_CORRUPT_DATA);
993 			error = EIO;
994 			goto out;
995 		}
996 
997 		if (nvlist_lookup_uint64(newconfig, ZPOOL_CONFIG_HOSTID,
998 		    &hostid) == 0) {
999 			char *hostname;
1000 			unsigned long myhostid = 0;
1001 
1002 			VERIFY(nvlist_lookup_string(newconfig,
1003 			    ZPOOL_CONFIG_HOSTNAME, &hostname) == 0);
1004 
1005 			(void) ddi_strtoul(hw_serial, NULL, 10, &myhostid);
1006 			if (hostid != 0 && myhostid != 0 &&
1007 			    (unsigned long)hostid != myhostid) {
1008 				cmn_err(CE_WARN, "pool '%s' could not be "
1009 				    "loaded as it was last accessed by "
1010 				    "another system (host: %s hostid: 0x%lx).  "
1011 				    "See: http://www.sun.com/msg/ZFS-8000-EY",
1012 				    spa->spa_name, hostname,
1013 				    (unsigned long)hostid);
1014 				error = EBADF;
1015 				goto out;
1016 			}
1017 		}
1018 
1019 		spa_config_set(spa, newconfig);
1020 		spa_unload(spa);
1021 		spa_deactivate(spa);
1022 		spa_activate(spa);
1023 
1024 		return (spa_load(spa, newconfig, state, B_TRUE));
1025 	}
1026 
1027 	if (zap_lookup(spa->spa_meta_objset,
1028 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPLIST,
1029 	    sizeof (uint64_t), 1, &spa->spa_sync_bplist_obj) != 0) {
1030 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1031 		    VDEV_AUX_CORRUPT_DATA);
1032 		error = EIO;
1033 		goto out;
1034 	}
1035 
1036 	/*
1037 	 * Load the bit that tells us to use the new accounting function
1038 	 * (raid-z deflation).  If we have an older pool, this will not
1039 	 * be present.
1040 	 */
1041 	error = zap_lookup(spa->spa_meta_objset,
1042 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
1043 	    sizeof (uint64_t), 1, &spa->spa_deflate);
1044 	if (error != 0 && error != ENOENT) {
1045 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1046 		    VDEV_AUX_CORRUPT_DATA);
1047 		error = EIO;
1048 		goto out;
1049 	}
1050 
1051 	/*
1052 	 * Load the persistent error log.  If we have an older pool, this will
1053 	 * not be present.
1054 	 */
1055 	error = zap_lookup(spa->spa_meta_objset,
1056 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_ERRLOG_LAST,
1057 	    sizeof (uint64_t), 1, &spa->spa_errlog_last);
1058 	if (error != 0 && error != ENOENT) {
1059 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1060 		    VDEV_AUX_CORRUPT_DATA);
1061 		error = EIO;
1062 		goto out;
1063 	}
1064 
1065 	error = zap_lookup(spa->spa_meta_objset,
1066 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_ERRLOG_SCRUB,
1067 	    sizeof (uint64_t), 1, &spa->spa_errlog_scrub);
1068 	if (error != 0 && error != ENOENT) {
1069 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1070 		    VDEV_AUX_CORRUPT_DATA);
1071 		error = EIO;
1072 		goto out;
1073 	}
1074 
1075 	/*
1076 	 * Load the history object.  If we have an older pool, this
1077 	 * will not be present.
1078 	 */
1079 	error = zap_lookup(spa->spa_meta_objset,
1080 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_HISTORY,
1081 	    sizeof (uint64_t), 1, &spa->spa_history);
1082 	if (error != 0 && error != ENOENT) {
1083 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1084 		    VDEV_AUX_CORRUPT_DATA);
1085 		error = EIO;
1086 		goto out;
1087 	}
1088 
1089 	/*
1090 	 * Load any hot spares for this pool.
1091 	 */
1092 	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
1093 	    DMU_POOL_SPARES, sizeof (uint64_t), 1, &spa->spa_spares_object);
1094 	if (error != 0 && error != ENOENT) {
1095 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1096 		    VDEV_AUX_CORRUPT_DATA);
1097 		error = EIO;
1098 		goto out;
1099 	}
1100 	if (error == 0) {
1101 		ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
1102 		if (load_nvlist(spa, spa->spa_spares_object,
1103 		    &spa->spa_sparelist) != 0) {
1104 			vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1105 			    VDEV_AUX_CORRUPT_DATA);
1106 			error = EIO;
1107 			goto out;
1108 		}
1109 
1110 		spa_config_enter(spa, RW_WRITER, FTAG);
1111 		spa_load_spares(spa);
1112 		spa_config_exit(spa, FTAG);
1113 	}
1114 
1115 	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
1116 
1117 	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
1118 	    DMU_POOL_PROPS, sizeof (uint64_t), 1, &spa->spa_pool_props_object);
1119 
1120 	if (error && error != ENOENT) {
1121 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1122 		    VDEV_AUX_CORRUPT_DATA);
1123 		error = EIO;
1124 		goto out;
1125 	}
1126 
1127 	if (error == 0) {
1128 		(void) zap_lookup(spa->spa_meta_objset,
1129 		    spa->spa_pool_props_object,
1130 		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS),
1131 		    sizeof (uint64_t), 1, &spa->spa_bootfs);
1132 		(void) zap_lookup(spa->spa_meta_objset,
1133 		    spa->spa_pool_props_object,
1134 		    zpool_prop_to_name(ZPOOL_PROP_AUTOREPLACE),
1135 		    sizeof (uint64_t), 1, &autoreplace);
1136 		(void) zap_lookup(spa->spa_meta_objset,
1137 		    spa->spa_pool_props_object,
1138 		    zpool_prop_to_name(ZPOOL_PROP_DELEGATION),
1139 		    sizeof (uint64_t), 1, &spa->spa_delegation);
1140 		(void) zap_lookup(spa->spa_meta_objset,
1141 		    spa->spa_pool_props_object,
1142 		    zpool_prop_to_name(ZPOOL_PROP_FAILUREMODE),
1143 		    sizeof (uint64_t), 1, &spa->spa_failmode);
1144 	}
1145 
1146 	/*
1147 	 * If the 'autoreplace' property is set, then post a resource notifying
1148 	 * the ZFS DE that it should not issue any faults for unopenable
1149 	 * devices.  We also iterate over the vdevs, and post a sysevent for any
1150 	 * unopenable vdevs so that the normal autoreplace handler can take
1151 	 * over.
1152 	 */
1153 	if (autoreplace)
1154 		spa_check_removed(spa->spa_root_vdev);
1155 
1156 	/*
1157 	 * Load the vdev state for all toplevel vdevs.
1158 	 */
1159 	vdev_load(rvd);
1160 
1161 	/*
1162 	 * Propagate the leaf DTLs we just loaded all the way up the tree.
1163 	 */
1164 	spa_config_enter(spa, RW_WRITER, FTAG);
1165 	vdev_dtl_reassess(rvd, 0, 0, B_FALSE);
1166 	spa_config_exit(spa, FTAG);
1167 
1168 	/*
1169 	 * Check the state of the root vdev.  If it can't be opened, it
1170 	 * indicates one or more toplevel vdevs are faulted.
1171 	 */
1172 	if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) {
1173 		error = ENXIO;
1174 		goto out;
1175 	}
1176 
1177 	if ((spa_mode & FWRITE) && state != SPA_LOAD_TRYIMPORT) {
1178 		dmu_tx_t *tx;
1179 		int need_update = B_FALSE;
1180 		int c;
1181 
1182 		/*
1183 		 * Claim log blocks that haven't been committed yet.
1184 		 * This must all happen in a single txg.
1185 		 */
1186 		tx = dmu_tx_create_assigned(spa_get_dsl(spa),
1187 		    spa_first_txg(spa));
1188 		(void) dmu_objset_find(spa->spa_name,
1189 		    zil_claim, tx, DS_FIND_CHILDREN);
1190 		dmu_tx_commit(tx);
1191 
1192 		spa->spa_sync_on = B_TRUE;
1193 		txg_sync_start(spa->spa_dsl_pool);
1194 
1195 		/*
1196 		 * Wait for all claims to sync.
1197 		 */
1198 		txg_wait_synced(spa->spa_dsl_pool, 0);
1199 
1200 		/*
1201 		 * If the config cache is stale, or we have uninitialized
1202 		 * metaslabs (see spa_vdev_add()), then update the config.
1203 		 */
1204 		if (config_cache_txg != spa->spa_config_txg ||
1205 		    state == SPA_LOAD_IMPORT)
1206 			need_update = B_TRUE;
1207 
1208 		for (c = 0; c < rvd->vdev_children; c++)
1209 			if (rvd->vdev_child[c]->vdev_ms_array == 0)
1210 				need_update = B_TRUE;
1211 
1212 		/*
1213 		 * Update the config cache asychronously in case we're the
1214 		 * root pool, in which case the config cache isn't writable yet.
1215 		 */
1216 		if (need_update)
1217 			spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
1218 	}
1219 
1220 	error = 0;
1221 out:
1222 	if (error && error != EBADF)
1223 		zfs_ereport_post(FM_EREPORT_ZFS_POOL, spa, NULL, NULL, 0, 0);
1224 	spa->spa_load_state = SPA_LOAD_NONE;
1225 	spa->spa_ena = 0;
1226 
1227 	return (error);
1228 }
1229 
1230 /*
1231  * Pool Open/Import
1232  *
1233  * The import case is identical to an open except that the configuration is sent
1234  * down from userland, instead of grabbed from the configuration cache.  For the
1235  * case of an open, the pool configuration will exist in the
1236  * POOL_STATE_UNINITIALIZED state.
1237  *
1238  * The stats information (gen/count/ustats) is used to gather vdev statistics at
1239  * the same time open the pool, without having to keep around the spa_t in some
1240  * ambiguous state.
1241  */
1242 static int
1243 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t **config)
1244 {
1245 	spa_t *spa;
1246 	int error;
1247 	int loaded = B_FALSE;
1248 	int locked = B_FALSE;
1249 
1250 	*spapp = NULL;
1251 
1252 	/*
1253 	 * As disgusting as this is, we need to support recursive calls to this
1254 	 * function because dsl_dir_open() is called during spa_load(), and ends
1255 	 * up calling spa_open() again.  The real fix is to figure out how to
1256 	 * avoid dsl_dir_open() calling this in the first place.
1257 	 */
1258 	if (mutex_owner(&spa_namespace_lock) != curthread) {
1259 		mutex_enter(&spa_namespace_lock);
1260 		locked = B_TRUE;
1261 	}
1262 
1263 	if ((spa = spa_lookup(pool)) == NULL) {
1264 		if (locked)
1265 			mutex_exit(&spa_namespace_lock);
1266 		return (ENOENT);
1267 	}
1268 	if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
1269 
1270 		spa_activate(spa);
1271 
1272 		error = spa_load(spa, spa->spa_config, SPA_LOAD_OPEN, B_FALSE);
1273 
1274 		if (error == EBADF) {
1275 			/*
1276 			 * If vdev_validate() returns failure (indicated by
1277 			 * EBADF), it indicates that one of the vdevs indicates
1278 			 * that the pool has been exported or destroyed.  If
1279 			 * this is the case, the config cache is out of sync and
1280 			 * we should remove the pool from the namespace.
1281 			 */
1282 			zfs_post_ok(spa, NULL);
1283 			spa_unload(spa);
1284 			spa_deactivate(spa);
1285 			spa_remove(spa);
1286 			spa_config_sync();
1287 			if (locked)
1288 				mutex_exit(&spa_namespace_lock);
1289 			return (ENOENT);
1290 		}
1291 
1292 		if (error) {
1293 			/*
1294 			 * We can't open the pool, but we still have useful
1295 			 * information: the state of each vdev after the
1296 			 * attempted vdev_open().  Return this to the user.
1297 			 */
1298 			if (config != NULL && spa->spa_root_vdev != NULL) {
1299 				spa_config_enter(spa, RW_READER, FTAG);
1300 				*config = spa_config_generate(spa, NULL, -1ULL,
1301 				    B_TRUE);
1302 				spa_config_exit(spa, FTAG);
1303 			}
1304 			spa_unload(spa);
1305 			spa_deactivate(spa);
1306 			spa->spa_last_open_failed = B_TRUE;
1307 			if (locked)
1308 				mutex_exit(&spa_namespace_lock);
1309 			*spapp = NULL;
1310 			return (error);
1311 		} else {
1312 			zfs_post_ok(spa, NULL);
1313 			spa->spa_last_open_failed = B_FALSE;
1314 		}
1315 
1316 		loaded = B_TRUE;
1317 	}
1318 
1319 	spa_open_ref(spa, tag);
1320 
1321 	/*
1322 	 * If we just loaded the pool, resilver anything that's out of date.
1323 	 */
1324 	if (loaded && (spa_mode & FWRITE))
1325 		VERIFY(spa_scrub(spa, POOL_SCRUB_RESILVER, B_TRUE) == 0);
1326 
1327 	if (locked)
1328 		mutex_exit(&spa_namespace_lock);
1329 
1330 	*spapp = spa;
1331 
1332 	if (config != NULL) {
1333 		spa_config_enter(spa, RW_READER, FTAG);
1334 		*config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
1335 		spa_config_exit(spa, FTAG);
1336 	}
1337 
1338 	return (0);
1339 }
1340 
1341 int
1342 spa_open(const char *name, spa_t **spapp, void *tag)
1343 {
1344 	return (spa_open_common(name, spapp, tag, NULL));
1345 }
1346 
1347 /*
1348  * Lookup the given spa_t, incrementing the inject count in the process,
1349  * preventing it from being exported or destroyed.
1350  */
1351 spa_t *
1352 spa_inject_addref(char *name)
1353 {
1354 	spa_t *spa;
1355 
1356 	mutex_enter(&spa_namespace_lock);
1357 	if ((spa = spa_lookup(name)) == NULL) {
1358 		mutex_exit(&spa_namespace_lock);
1359 		return (NULL);
1360 	}
1361 	spa->spa_inject_ref++;
1362 	mutex_exit(&spa_namespace_lock);
1363 
1364 	return (spa);
1365 }
1366 
1367 void
1368 spa_inject_delref(spa_t *spa)
1369 {
1370 	mutex_enter(&spa_namespace_lock);
1371 	spa->spa_inject_ref--;
1372 	mutex_exit(&spa_namespace_lock);
1373 }
1374 
1375 static void
1376 spa_add_spares(spa_t *spa, nvlist_t *config)
1377 {
1378 	nvlist_t **spares;
1379 	uint_t i, nspares;
1380 	nvlist_t *nvroot;
1381 	uint64_t guid;
1382 	vdev_stat_t *vs;
1383 	uint_t vsc;
1384 	uint64_t pool;
1385 
1386 	if (spa->spa_nspares == 0)
1387 		return;
1388 
1389 	VERIFY(nvlist_lookup_nvlist(config,
1390 	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
1391 	VERIFY(nvlist_lookup_nvlist_array(spa->spa_sparelist,
1392 	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
1393 	if (nspares != 0) {
1394 		VERIFY(nvlist_add_nvlist_array(nvroot,
1395 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
1396 		VERIFY(nvlist_lookup_nvlist_array(nvroot,
1397 		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
1398 
1399 		/*
1400 		 * Go through and find any spares which have since been
1401 		 * repurposed as an active spare.  If this is the case, update
1402 		 * their status appropriately.
1403 		 */
1404 		for (i = 0; i < nspares; i++) {
1405 			VERIFY(nvlist_lookup_uint64(spares[i],
1406 			    ZPOOL_CONFIG_GUID, &guid) == 0);
1407 			if (spa_spare_exists(guid, &pool) && pool != 0ULL) {
1408 				VERIFY(nvlist_lookup_uint64_array(
1409 				    spares[i], ZPOOL_CONFIG_STATS,
1410 				    (uint64_t **)&vs, &vsc) == 0);
1411 				vs->vs_state = VDEV_STATE_CANT_OPEN;
1412 				vs->vs_aux = VDEV_AUX_SPARED;
1413 			}
1414 		}
1415 	}
1416 }
1417 
1418 int
1419 spa_get_stats(const char *name, nvlist_t **config, char *altroot, size_t buflen)
1420 {
1421 	int error;
1422 	spa_t *spa;
1423 
1424 	*config = NULL;
1425 	error = spa_open_common(name, &spa, FTAG, config);
1426 
1427 	if (spa && *config != NULL) {
1428 		VERIFY(nvlist_add_uint64(*config, ZPOOL_CONFIG_ERRCOUNT,
1429 		    spa_get_errlog_size(spa)) == 0);
1430 
1431 		spa_add_spares(spa, *config);
1432 	}
1433 
1434 	/*
1435 	 * We want to get the alternate root even for faulted pools, so we cheat
1436 	 * and call spa_lookup() directly.
1437 	 */
1438 	if (altroot) {
1439 		if (spa == NULL) {
1440 			mutex_enter(&spa_namespace_lock);
1441 			spa = spa_lookup(name);
1442 			if (spa)
1443 				spa_altroot(spa, altroot, buflen);
1444 			else
1445 				altroot[0] = '\0';
1446 			spa = NULL;
1447 			mutex_exit(&spa_namespace_lock);
1448 		} else {
1449 			spa_altroot(spa, altroot, buflen);
1450 		}
1451 	}
1452 
1453 	if (spa != NULL)
1454 		spa_close(spa, FTAG);
1455 
1456 	return (error);
1457 }
1458 
1459 /*
1460  * Validate that the 'spares' array is well formed.  We must have an array of
1461  * nvlists, each which describes a valid leaf vdev.  If this is an import (mode
1462  * is VDEV_ALLOC_SPARE), then we allow corrupted spares to be specified, as long
1463  * as they are well-formed.
1464  */
1465 static int
1466 spa_validate_spares(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
1467 {
1468 	nvlist_t **spares;
1469 	uint_t i, nspares;
1470 	vdev_t *vd;
1471 	int error;
1472 
1473 	/*
1474 	 * It's acceptable to have no spares specified.
1475 	 */
1476 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
1477 	    &spares, &nspares) != 0)
1478 		return (0);
1479 
1480 	if (nspares == 0)
1481 		return (EINVAL);
1482 
1483 	/*
1484 	 * Make sure the pool is formatted with a version that supports hot
1485 	 * spares.
1486 	 */
1487 	if (spa_version(spa) < SPA_VERSION_SPARES)
1488 		return (ENOTSUP);
1489 
1490 	/*
1491 	 * Set the pending spare list so we correctly handle device in-use
1492 	 * checking.
1493 	 */
1494 	spa->spa_pending_spares = spares;
1495 	spa->spa_pending_nspares = nspares;
1496 
1497 	for (i = 0; i < nspares; i++) {
1498 		if ((error = spa_config_parse(spa, &vd, spares[i], NULL, 0,
1499 		    mode)) != 0)
1500 			goto out;
1501 
1502 		if (!vd->vdev_ops->vdev_op_leaf) {
1503 			vdev_free(vd);
1504 			error = EINVAL;
1505 			goto out;
1506 		}
1507 
1508 		vd->vdev_top = vd;
1509 
1510 		if ((error = vdev_open(vd)) == 0 &&
1511 		    (error = vdev_label_init(vd, crtxg,
1512 		    VDEV_LABEL_SPARE)) == 0) {
1513 			VERIFY(nvlist_add_uint64(spares[i], ZPOOL_CONFIG_GUID,
1514 			    vd->vdev_guid) == 0);
1515 		}
1516 
1517 		vdev_free(vd);
1518 
1519 		if (error && mode != VDEV_ALLOC_SPARE)
1520 			goto out;
1521 		else
1522 			error = 0;
1523 	}
1524 
1525 out:
1526 	spa->spa_pending_spares = NULL;
1527 	spa->spa_pending_nspares = 0;
1528 	return (error);
1529 }
1530 
1531 /*
1532  * Pool Creation
1533  */
1534 int
1535 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
1536     const char *history_str)
1537 {
1538 	spa_t *spa;
1539 	char *altroot = NULL;
1540 	vdev_t *rvd;
1541 	dsl_pool_t *dp;
1542 	dmu_tx_t *tx;
1543 	int c, error = 0;
1544 	uint64_t txg = TXG_INITIAL;
1545 	nvlist_t **spares;
1546 	uint_t nspares;
1547 	uint64_t version;
1548 
1549 	/*
1550 	 * If this pool already exists, return failure.
1551 	 */
1552 	mutex_enter(&spa_namespace_lock);
1553 	if (spa_lookup(pool) != NULL) {
1554 		mutex_exit(&spa_namespace_lock);
1555 		return (EEXIST);
1556 	}
1557 
1558 	/*
1559 	 * Allocate a new spa_t structure.
1560 	 */
1561 	(void) nvlist_lookup_string(props,
1562 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
1563 	spa = spa_add(pool, altroot);
1564 	spa_activate(spa);
1565 
1566 	spa->spa_uberblock.ub_txg = txg - 1;
1567 
1568 	if (props && (error = spa_prop_validate(spa, props))) {
1569 		spa_unload(spa);
1570 		spa_deactivate(spa);
1571 		spa_remove(spa);
1572 		return (error);
1573 	}
1574 
1575 	if (nvlist_lookup_uint64(props, zpool_prop_to_name(ZPOOL_PROP_VERSION),
1576 	    &version) != 0)
1577 		version = SPA_VERSION;
1578 	ASSERT(version <= SPA_VERSION);
1579 	spa->spa_uberblock.ub_version = version;
1580 	spa->spa_ubsync = spa->spa_uberblock;
1581 
1582 	/*
1583 	 * Create the root vdev.
1584 	 */
1585 	spa_config_enter(spa, RW_WRITER, FTAG);
1586 
1587 	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
1588 
1589 	ASSERT(error != 0 || rvd != NULL);
1590 	ASSERT(error != 0 || spa->spa_root_vdev == rvd);
1591 
1592 	if (error == 0 && rvd->vdev_children == 0)
1593 		error = EINVAL;
1594 
1595 	if (error == 0 &&
1596 	    (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
1597 	    (error = spa_validate_spares(spa, nvroot, txg,
1598 	    VDEV_ALLOC_ADD)) == 0) {
1599 		for (c = 0; c < rvd->vdev_children; c++)
1600 			vdev_init(rvd->vdev_child[c], txg);
1601 		vdev_config_dirty(rvd);
1602 	}
1603 
1604 	spa_config_exit(spa, FTAG);
1605 
1606 	if (error != 0) {
1607 		spa_unload(spa);
1608 		spa_deactivate(spa);
1609 		spa_remove(spa);
1610 		mutex_exit(&spa_namespace_lock);
1611 		return (error);
1612 	}
1613 
1614 	/*
1615 	 * Get the list of spares, if specified.
1616 	 */
1617 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
1618 	    &spares, &nspares) == 0) {
1619 		VERIFY(nvlist_alloc(&spa->spa_sparelist, NV_UNIQUE_NAME,
1620 		    KM_SLEEP) == 0);
1621 		VERIFY(nvlist_add_nvlist_array(spa->spa_sparelist,
1622 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
1623 		spa_config_enter(spa, RW_WRITER, FTAG);
1624 		spa_load_spares(spa);
1625 		spa_config_exit(spa, FTAG);
1626 		spa->spa_sync_spares = B_TRUE;
1627 	}
1628 
1629 	spa->spa_dsl_pool = dp = dsl_pool_create(spa, txg);
1630 	spa->spa_meta_objset = dp->dp_meta_objset;
1631 
1632 	tx = dmu_tx_create_assigned(dp, txg);
1633 
1634 	/*
1635 	 * Create the pool config object.
1636 	 */
1637 	spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
1638 	    DMU_OT_PACKED_NVLIST, 1 << 14,
1639 	    DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
1640 
1641 	if (zap_add(spa->spa_meta_objset,
1642 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
1643 	    sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
1644 		cmn_err(CE_PANIC, "failed to add pool config");
1645 	}
1646 
1647 	/* Newly created pools with the right version are always deflated. */
1648 	if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
1649 		spa->spa_deflate = TRUE;
1650 		if (zap_add(spa->spa_meta_objset,
1651 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
1652 		    sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
1653 			cmn_err(CE_PANIC, "failed to add deflate");
1654 		}
1655 	}
1656 
1657 	/*
1658 	 * Create the deferred-free bplist object.  Turn off compression
1659 	 * because sync-to-convergence takes longer if the blocksize
1660 	 * keeps changing.
1661 	 */
1662 	spa->spa_sync_bplist_obj = bplist_create(spa->spa_meta_objset,
1663 	    1 << 14, tx);
1664 	dmu_object_set_compress(spa->spa_meta_objset, spa->spa_sync_bplist_obj,
1665 	    ZIO_COMPRESS_OFF, tx);
1666 
1667 	if (zap_add(spa->spa_meta_objset,
1668 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPLIST,
1669 	    sizeof (uint64_t), 1, &spa->spa_sync_bplist_obj, tx) != 0) {
1670 		cmn_err(CE_PANIC, "failed to add bplist");
1671 	}
1672 
1673 	/*
1674 	 * Create the pool's history object.
1675 	 */
1676 	if (version >= SPA_VERSION_ZPOOL_HISTORY)
1677 		spa_history_create_obj(spa, tx);
1678 
1679 	/*
1680 	 * Set pool properties.
1681 	 */
1682 	spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
1683 	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
1684 	spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
1685 	if (props)
1686 		spa_sync_props(spa, props, CRED(), tx);
1687 
1688 	dmu_tx_commit(tx);
1689 
1690 	spa->spa_sync_on = B_TRUE;
1691 	txg_sync_start(spa->spa_dsl_pool);
1692 
1693 	/*
1694 	 * We explicitly wait for the first transaction to complete so that our
1695 	 * bean counters are appropriately updated.
1696 	 */
1697 	txg_wait_synced(spa->spa_dsl_pool, txg);
1698 
1699 	spa_config_sync();
1700 
1701 	if (version >= SPA_VERSION_ZPOOL_HISTORY && history_str != NULL)
1702 		(void) spa_history_log(spa, history_str, LOG_CMD_POOL_CREATE);
1703 
1704 	mutex_exit(&spa_namespace_lock);
1705 
1706 	return (0);
1707 }
1708 
1709 /*
1710  * Import the given pool into the system.  We set up the necessary spa_t and
1711  * then call spa_load() to do the dirty work.
1712  */
1713 int
1714 spa_import(const char *pool, nvlist_t *config, nvlist_t *props)
1715 {
1716 	spa_t *spa;
1717 	char *altroot = NULL;
1718 	int error;
1719 	nvlist_t *nvroot;
1720 	nvlist_t **spares;
1721 	uint_t nspares;
1722 
1723 	/*
1724 	 * If a pool with this name exists, return failure.
1725 	 */
1726 	mutex_enter(&spa_namespace_lock);
1727 	if (spa_lookup(pool) != NULL) {
1728 		mutex_exit(&spa_namespace_lock);
1729 		return (EEXIST);
1730 	}
1731 
1732 	/*
1733 	 * Create and initialize the spa structure.
1734 	 */
1735 	(void) nvlist_lookup_string(props,
1736 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
1737 	spa = spa_add(pool, altroot);
1738 	spa_activate(spa);
1739 
1740 	/*
1741 	 * Pass off the heavy lifting to spa_load().
1742 	 * Pass TRUE for mosconfig because the user-supplied config
1743 	 * is actually the one to trust when doing an import.
1744 	 */
1745 	error = spa_load(spa, config, SPA_LOAD_IMPORT, B_TRUE);
1746 
1747 	spa_config_enter(spa, RW_WRITER, FTAG);
1748 	/*
1749 	 * Toss any existing sparelist, as it doesn't have any validity anymore,
1750 	 * and conflicts with spa_has_spare().
1751 	 */
1752 	if (spa->spa_sparelist) {
1753 		nvlist_free(spa->spa_sparelist);
1754 		spa->spa_sparelist = NULL;
1755 		spa_load_spares(spa);
1756 	}
1757 
1758 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
1759 	    &nvroot) == 0);
1760 	if (error == 0) {
1761 		error = spa_validate_spares(spa, nvroot, -1ULL,
1762 		    VDEV_ALLOC_SPARE);
1763 	}
1764 	spa_config_exit(spa, FTAG);
1765 
1766 	if (error != 0 || (props && (error = spa_prop_set(spa, props)))) {
1767 		spa_unload(spa);
1768 		spa_deactivate(spa);
1769 		spa_remove(spa);
1770 		mutex_exit(&spa_namespace_lock);
1771 		return (error);
1772 	}
1773 
1774 	/*
1775 	 * Override any spares as specified by the user, as these may have
1776 	 * correct device names/devids, etc.
1777 	 */
1778 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
1779 	    &spares, &nspares) == 0) {
1780 		if (spa->spa_sparelist)
1781 			VERIFY(nvlist_remove(spa->spa_sparelist,
1782 			    ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0);
1783 		else
1784 			VERIFY(nvlist_alloc(&spa->spa_sparelist,
1785 			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
1786 		VERIFY(nvlist_add_nvlist_array(spa->spa_sparelist,
1787 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
1788 		spa_config_enter(spa, RW_WRITER, FTAG);
1789 		spa_load_spares(spa);
1790 		spa_config_exit(spa, FTAG);
1791 		spa->spa_sync_spares = B_TRUE;
1792 	}
1793 
1794 	/*
1795 	 * Update the config cache to include the newly-imported pool.
1796 	 */
1797 	if (spa_mode & FWRITE)
1798 		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
1799 
1800 	/*
1801 	 * Resilver anything that's out of date.
1802 	 */
1803 	if (spa_mode & FWRITE)
1804 		VERIFY(spa_scrub(spa, POOL_SCRUB_RESILVER, B_TRUE) == 0);
1805 
1806 	mutex_exit(&spa_namespace_lock);
1807 
1808 	return (0);
1809 }
1810 
1811 /*
1812  * This (illegal) pool name is used when temporarily importing a spa_t in order
1813  * to get the vdev stats associated with the imported devices.
1814  */
1815 #define	TRYIMPORT_NAME	"$import"
1816 
1817 nvlist_t *
1818 spa_tryimport(nvlist_t *tryconfig)
1819 {
1820 	nvlist_t *config = NULL;
1821 	char *poolname;
1822 	spa_t *spa;
1823 	uint64_t state;
1824 
1825 	if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
1826 		return (NULL);
1827 
1828 	if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
1829 		return (NULL);
1830 
1831 	/*
1832 	 * Create and initialize the spa structure.
1833 	 */
1834 	mutex_enter(&spa_namespace_lock);
1835 	spa = spa_add(TRYIMPORT_NAME, NULL);
1836 	spa_activate(spa);
1837 
1838 	/*
1839 	 * Pass off the heavy lifting to spa_load().
1840 	 * Pass TRUE for mosconfig because the user-supplied config
1841 	 * is actually the one to trust when doing an import.
1842 	 */
1843 	(void) spa_load(spa, tryconfig, SPA_LOAD_TRYIMPORT, B_TRUE);
1844 
1845 	/*
1846 	 * If 'tryconfig' was at least parsable, return the current config.
1847 	 */
1848 	if (spa->spa_root_vdev != NULL) {
1849 		spa_config_enter(spa, RW_READER, FTAG);
1850 		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
1851 		spa_config_exit(spa, FTAG);
1852 		VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
1853 		    poolname) == 0);
1854 		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
1855 		    state) == 0);
1856 		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
1857 		    spa->spa_uberblock.ub_timestamp) == 0);
1858 
1859 		/*
1860 		 * Add the list of hot spares.
1861 		 */
1862 		spa_add_spares(spa, config);
1863 	}
1864 
1865 	spa_unload(spa);
1866 	spa_deactivate(spa);
1867 	spa_remove(spa);
1868 	mutex_exit(&spa_namespace_lock);
1869 
1870 	return (config);
1871 }
1872 
1873 /*
1874  * Pool export/destroy
1875  *
1876  * The act of destroying or exporting a pool is very simple.  We make sure there
1877  * is no more pending I/O and any references to the pool are gone.  Then, we
1878  * update the pool state and sync all the labels to disk, removing the
1879  * configuration from the cache afterwards.
1880  */
1881 static int
1882 spa_export_common(char *pool, int new_state, nvlist_t **oldconfig)
1883 {
1884 	spa_t *spa;
1885 
1886 	if (oldconfig)
1887 		*oldconfig = NULL;
1888 
1889 	if (!(spa_mode & FWRITE))
1890 		return (EROFS);
1891 
1892 	mutex_enter(&spa_namespace_lock);
1893 	if ((spa = spa_lookup(pool)) == NULL) {
1894 		mutex_exit(&spa_namespace_lock);
1895 		return (ENOENT);
1896 	}
1897 
1898 	/*
1899 	 * Put a hold on the pool, drop the namespace lock, stop async tasks,
1900 	 * reacquire the namespace lock, and see if we can export.
1901 	 */
1902 	spa_open_ref(spa, FTAG);
1903 	mutex_exit(&spa_namespace_lock);
1904 	spa_async_suspend(spa);
1905 	mutex_enter(&spa_namespace_lock);
1906 	spa_close(spa, FTAG);
1907 
1908 	/*
1909 	 * The pool will be in core if it's openable,
1910 	 * in which case we can modify its state.
1911 	 */
1912 	if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) {
1913 		/*
1914 		 * Objsets may be open only because they're dirty, so we
1915 		 * have to force it to sync before checking spa_refcnt.
1916 		 */
1917 		spa_scrub_suspend(spa);
1918 		txg_wait_synced(spa->spa_dsl_pool, 0);
1919 
1920 		/*
1921 		 * A pool cannot be exported or destroyed if there are active
1922 		 * references.  If we are resetting a pool, allow references by
1923 		 * fault injection handlers.
1924 		 */
1925 		if (!spa_refcount_zero(spa) ||
1926 		    (spa->spa_inject_ref != 0 &&
1927 		    new_state != POOL_STATE_UNINITIALIZED)) {
1928 			spa_scrub_resume(spa);
1929 			spa_async_resume(spa);
1930 			mutex_exit(&spa_namespace_lock);
1931 			return (EBUSY);
1932 		}
1933 
1934 		spa_scrub_resume(spa);
1935 		VERIFY(spa_scrub(spa, POOL_SCRUB_NONE, B_TRUE) == 0);
1936 
1937 		/*
1938 		 * We want this to be reflected on every label,
1939 		 * so mark them all dirty.  spa_unload() will do the
1940 		 * final sync that pushes these changes out.
1941 		 */
1942 		if (new_state != POOL_STATE_UNINITIALIZED) {
1943 			spa_config_enter(spa, RW_WRITER, FTAG);
1944 			spa->spa_state = new_state;
1945 			spa->spa_final_txg = spa_last_synced_txg(spa) + 1;
1946 			vdev_config_dirty(spa->spa_root_vdev);
1947 			spa_config_exit(spa, FTAG);
1948 		}
1949 	}
1950 
1951 	spa_event_notify(spa, NULL, ESC_ZFS_POOL_DESTROY);
1952 
1953 	if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
1954 		spa_unload(spa);
1955 		spa_deactivate(spa);
1956 	}
1957 
1958 	if (oldconfig && spa->spa_config)
1959 		VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0);
1960 
1961 	if (new_state != POOL_STATE_UNINITIALIZED) {
1962 		spa_config_check(spa->spa_config_dir,
1963 		    spa->spa_config_file);
1964 		spa_remove(spa);
1965 		spa_config_sync();
1966 	}
1967 	mutex_exit(&spa_namespace_lock);
1968 
1969 	return (0);
1970 }
1971 
1972 /*
1973  * Destroy a storage pool.
1974  */
1975 int
1976 spa_destroy(char *pool)
1977 {
1978 	return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL));
1979 }
1980 
1981 /*
1982  * Export a storage pool.
1983  */
1984 int
1985 spa_export(char *pool, nvlist_t **oldconfig)
1986 {
1987 	return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig));
1988 }
1989 
1990 /*
1991  * Similar to spa_export(), this unloads the spa_t without actually removing it
1992  * from the namespace in any way.
1993  */
1994 int
1995 spa_reset(char *pool)
1996 {
1997 	return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL));
1998 }
1999 
2000 
2001 /*
2002  * ==========================================================================
2003  * Device manipulation
2004  * ==========================================================================
2005  */
2006 
2007 /*
2008  * Add a device to a storage pool.
2009  */
2010 int
2011 spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
2012 {
2013 	uint64_t txg;
2014 	int c, error;
2015 	vdev_t *rvd = spa->spa_root_vdev;
2016 	vdev_t *vd, *tvd;
2017 	nvlist_t **spares;
2018 	uint_t i, nspares;
2019 
2020 	txg = spa_vdev_enter(spa);
2021 
2022 	if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
2023 	    VDEV_ALLOC_ADD)) != 0)
2024 		return (spa_vdev_exit(spa, NULL, txg, error));
2025 
2026 	spa->spa_pending_vdev = vd;
2027 
2028 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
2029 	    &spares, &nspares) != 0)
2030 		nspares = 0;
2031 
2032 	if (vd->vdev_children == 0 && nspares == 0) {
2033 		spa->spa_pending_vdev = NULL;
2034 		return (spa_vdev_exit(spa, vd, txg, EINVAL));
2035 	}
2036 
2037 	if (vd->vdev_children != 0) {
2038 		if ((error = vdev_create(vd, txg, B_FALSE)) != 0) {
2039 			spa->spa_pending_vdev = NULL;
2040 			return (spa_vdev_exit(spa, vd, txg, error));
2041 		}
2042 	}
2043 
2044 	/*
2045 	 * We must validate the spares after checking the children.  Otherwise,
2046 	 * vdev_inuse() will blindly overwrite the spare.
2047 	 */
2048 	if ((error = spa_validate_spares(spa, nvroot, txg,
2049 	    VDEV_ALLOC_ADD)) != 0) {
2050 		spa->spa_pending_vdev = NULL;
2051 		return (spa_vdev_exit(spa, vd, txg, error));
2052 	}
2053 
2054 	spa->spa_pending_vdev = NULL;
2055 
2056 	/*
2057 	 * Transfer each new top-level vdev from vd to rvd.
2058 	 */
2059 	for (c = 0; c < vd->vdev_children; c++) {
2060 		tvd = vd->vdev_child[c];
2061 		vdev_remove_child(vd, tvd);
2062 		tvd->vdev_id = rvd->vdev_children;
2063 		vdev_add_child(rvd, tvd);
2064 		vdev_config_dirty(tvd);
2065 	}
2066 
2067 	if (nspares != 0) {
2068 		if (spa->spa_sparelist != NULL) {
2069 			nvlist_t **oldspares;
2070 			uint_t oldnspares;
2071 			nvlist_t **newspares;
2072 
2073 			VERIFY(nvlist_lookup_nvlist_array(spa->spa_sparelist,
2074 			    ZPOOL_CONFIG_SPARES, &oldspares, &oldnspares) == 0);
2075 
2076 			newspares = kmem_alloc(sizeof (void *) *
2077 			    (nspares + oldnspares), KM_SLEEP);
2078 			for (i = 0; i < oldnspares; i++)
2079 				VERIFY(nvlist_dup(oldspares[i],
2080 				    &newspares[i], KM_SLEEP) == 0);
2081 			for (i = 0; i < nspares; i++)
2082 				VERIFY(nvlist_dup(spares[i],
2083 				    &newspares[i + oldnspares],
2084 				    KM_SLEEP) == 0);
2085 
2086 			VERIFY(nvlist_remove(spa->spa_sparelist,
2087 			    ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0);
2088 
2089 			VERIFY(nvlist_add_nvlist_array(spa->spa_sparelist,
2090 			    ZPOOL_CONFIG_SPARES, newspares,
2091 			    nspares + oldnspares) == 0);
2092 			for (i = 0; i < oldnspares + nspares; i++)
2093 				nvlist_free(newspares[i]);
2094 			kmem_free(newspares, (oldnspares + nspares) *
2095 			    sizeof (void *));
2096 		} else {
2097 			VERIFY(nvlist_alloc(&spa->spa_sparelist,
2098 			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
2099 			VERIFY(nvlist_add_nvlist_array(spa->spa_sparelist,
2100 			    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
2101 		}
2102 
2103 		spa_load_spares(spa);
2104 		spa->spa_sync_spares = B_TRUE;
2105 	}
2106 
2107 	/*
2108 	 * We have to be careful when adding new vdevs to an existing pool.
2109 	 * If other threads start allocating from these vdevs before we
2110 	 * sync the config cache, and we lose power, then upon reboot we may
2111 	 * fail to open the pool because there are DVAs that the config cache
2112 	 * can't translate.  Therefore, we first add the vdevs without
2113 	 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
2114 	 * and then let spa_config_update() initialize the new metaslabs.
2115 	 *
2116 	 * spa_load() checks for added-but-not-initialized vdevs, so that
2117 	 * if we lose power at any point in this sequence, the remaining
2118 	 * steps will be completed the next time we load the pool.
2119 	 */
2120 	(void) spa_vdev_exit(spa, vd, txg, 0);
2121 
2122 	mutex_enter(&spa_namespace_lock);
2123 	spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
2124 	mutex_exit(&spa_namespace_lock);
2125 
2126 	return (0);
2127 }
2128 
2129 /*
2130  * Attach a device to a mirror.  The arguments are the path to any device
2131  * in the mirror, and the nvroot for the new device.  If the path specifies
2132  * a device that is not mirrored, we automatically insert the mirror vdev.
2133  *
2134  * If 'replacing' is specified, the new device is intended to replace the
2135  * existing device; in this case the two devices are made into their own
2136  * mirror using the 'replacing' vdev, which is functionally identical to
2137  * the mirror vdev (it actually reuses all the same ops) but has a few
2138  * extra rules: you can't attach to it after it's been created, and upon
2139  * completion of resilvering, the first disk (the one being replaced)
2140  * is automatically detached.
2141  */
2142 int
2143 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing)
2144 {
2145 	uint64_t txg, open_txg;
2146 	int error;
2147 	vdev_t *rvd = spa->spa_root_vdev;
2148 	vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
2149 	vdev_ops_t *pvops;
2150 	int is_log;
2151 
2152 	txg = spa_vdev_enter(spa);
2153 
2154 	oldvd = vdev_lookup_by_guid(rvd, guid);
2155 
2156 	if (oldvd == NULL)
2157 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
2158 
2159 	if (!oldvd->vdev_ops->vdev_op_leaf)
2160 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
2161 
2162 	pvd = oldvd->vdev_parent;
2163 
2164 	if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
2165 	    VDEV_ALLOC_ADD)) != 0)
2166 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
2167 
2168 	if (newrootvd->vdev_children != 1)
2169 		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
2170 
2171 	newvd = newrootvd->vdev_child[0];
2172 
2173 	if (!newvd->vdev_ops->vdev_op_leaf)
2174 		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
2175 
2176 	if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
2177 		return (spa_vdev_exit(spa, newrootvd, txg, error));
2178 
2179 	/*
2180 	 * Spares can't replace logs
2181 	 */
2182 	is_log = oldvd->vdev_islog;
2183 	if (is_log && newvd->vdev_isspare)
2184 		return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
2185 
2186 	if (!replacing) {
2187 		/*
2188 		 * For attach, the only allowable parent is a mirror or the root
2189 		 * vdev.
2190 		 */
2191 		if (pvd->vdev_ops != &vdev_mirror_ops &&
2192 		    pvd->vdev_ops != &vdev_root_ops)
2193 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
2194 
2195 		pvops = &vdev_mirror_ops;
2196 	} else {
2197 		/*
2198 		 * Active hot spares can only be replaced by inactive hot
2199 		 * spares.
2200 		 */
2201 		if (pvd->vdev_ops == &vdev_spare_ops &&
2202 		    pvd->vdev_child[1] == oldvd &&
2203 		    !spa_has_spare(spa, newvd->vdev_guid))
2204 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
2205 
2206 		/*
2207 		 * If the source is a hot spare, and the parent isn't already a
2208 		 * spare, then we want to create a new hot spare.  Otherwise, we
2209 		 * want to create a replacing vdev.  The user is not allowed to
2210 		 * attach to a spared vdev child unless the 'isspare' state is
2211 		 * the same (spare replaces spare, non-spare replaces
2212 		 * non-spare).
2213 		 */
2214 		if (pvd->vdev_ops == &vdev_replacing_ops)
2215 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
2216 		else if (pvd->vdev_ops == &vdev_spare_ops &&
2217 		    newvd->vdev_isspare != oldvd->vdev_isspare)
2218 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
2219 		else if (pvd->vdev_ops != &vdev_spare_ops &&
2220 		    newvd->vdev_isspare)
2221 			pvops = &vdev_spare_ops;
2222 		else
2223 			pvops = &vdev_replacing_ops;
2224 	}
2225 
2226 	/*
2227 	 * Compare the new device size with the replaceable/attachable
2228 	 * device size.
2229 	 */
2230 	if (newvd->vdev_psize < vdev_get_rsize(oldvd))
2231 		return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
2232 
2233 	/*
2234 	 * The new device cannot have a higher alignment requirement
2235 	 * than the top-level vdev.
2236 	 */
2237 	if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
2238 		return (spa_vdev_exit(spa, newrootvd, txg, EDOM));
2239 
2240 	/*
2241 	 * If this is an in-place replacement, update oldvd's path and devid
2242 	 * to make it distinguishable from newvd, and unopenable from now on.
2243 	 */
2244 	if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
2245 		spa_strfree(oldvd->vdev_path);
2246 		oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
2247 		    KM_SLEEP);
2248 		(void) sprintf(oldvd->vdev_path, "%s/%s",
2249 		    newvd->vdev_path, "old");
2250 		if (oldvd->vdev_devid != NULL) {
2251 			spa_strfree(oldvd->vdev_devid);
2252 			oldvd->vdev_devid = NULL;
2253 		}
2254 	}
2255 
2256 	/*
2257 	 * If the parent is not a mirror, or if we're replacing, insert the new
2258 	 * mirror/replacing/spare vdev above oldvd.
2259 	 */
2260 	if (pvd->vdev_ops != pvops)
2261 		pvd = vdev_add_parent(oldvd, pvops);
2262 
2263 	ASSERT(pvd->vdev_top->vdev_parent == rvd);
2264 	ASSERT(pvd->vdev_ops == pvops);
2265 	ASSERT(oldvd->vdev_parent == pvd);
2266 
2267 	/*
2268 	 * Extract the new device from its root and add it to pvd.
2269 	 */
2270 	vdev_remove_child(newrootvd, newvd);
2271 	newvd->vdev_id = pvd->vdev_children;
2272 	vdev_add_child(pvd, newvd);
2273 
2274 	/*
2275 	 * If newvd is smaller than oldvd, but larger than its rsize,
2276 	 * the addition of newvd may have decreased our parent's asize.
2277 	 */
2278 	pvd->vdev_asize = MIN(pvd->vdev_asize, newvd->vdev_asize);
2279 
2280 	tvd = newvd->vdev_top;
2281 	ASSERT(pvd->vdev_top == tvd);
2282 	ASSERT(tvd->vdev_parent == rvd);
2283 
2284 	vdev_config_dirty(tvd);
2285 
2286 	/*
2287 	 * Set newvd's DTL to [TXG_INITIAL, open_txg].  It will propagate
2288 	 * upward when spa_vdev_exit() calls vdev_dtl_reassess().
2289 	 */
2290 	open_txg = txg + TXG_CONCURRENT_STATES - 1;
2291 
2292 	mutex_enter(&newvd->vdev_dtl_lock);
2293 	space_map_add(&newvd->vdev_dtl_map, TXG_INITIAL,
2294 	    open_txg - TXG_INITIAL + 1);
2295 	mutex_exit(&newvd->vdev_dtl_lock);
2296 
2297 	if (newvd->vdev_isspare)
2298 		spa_spare_activate(newvd);
2299 
2300 	/*
2301 	 * Mark newvd's DTL dirty in this txg.
2302 	 */
2303 	vdev_dirty(tvd, VDD_DTL, newvd, txg);
2304 
2305 	(void) spa_vdev_exit(spa, newrootvd, open_txg, 0);
2306 
2307 	/*
2308 	 * Kick off a resilver to update newvd.  We need to grab the namespace
2309 	 * lock because spa_scrub() needs to post a sysevent with the pool name.
2310 	 */
2311 	mutex_enter(&spa_namespace_lock);
2312 	VERIFY(spa_scrub(spa, POOL_SCRUB_RESILVER, B_TRUE) == 0);
2313 	mutex_exit(&spa_namespace_lock);
2314 
2315 	return (0);
2316 }
2317 
2318 /*
2319  * Detach a device from a mirror or replacing vdev.
2320  * If 'replace_done' is specified, only detach if the parent
2321  * is a replacing vdev.
2322  */
2323 int
2324 spa_vdev_detach(spa_t *spa, uint64_t guid, int replace_done)
2325 {
2326 	uint64_t txg;
2327 	int c, t, error;
2328 	vdev_t *rvd = spa->spa_root_vdev;
2329 	vdev_t *vd, *pvd, *cvd, *tvd;
2330 	boolean_t unspare = B_FALSE;
2331 	uint64_t unspare_guid;
2332 
2333 	txg = spa_vdev_enter(spa);
2334 
2335 	vd = vdev_lookup_by_guid(rvd, guid);
2336 
2337 	if (vd == NULL)
2338 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
2339 
2340 	if (!vd->vdev_ops->vdev_op_leaf)
2341 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
2342 
2343 	pvd = vd->vdev_parent;
2344 
2345 	/*
2346 	 * If replace_done is specified, only remove this device if it's
2347 	 * the first child of a replacing vdev.  For the 'spare' vdev, either
2348 	 * disk can be removed.
2349 	 */
2350 	if (replace_done) {
2351 		if (pvd->vdev_ops == &vdev_replacing_ops) {
2352 			if (vd->vdev_id != 0)
2353 				return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
2354 		} else if (pvd->vdev_ops != &vdev_spare_ops) {
2355 			return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
2356 		}
2357 	}
2358 
2359 	ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
2360 	    spa_version(spa) >= SPA_VERSION_SPARES);
2361 
2362 	/*
2363 	 * Only mirror, replacing, and spare vdevs support detach.
2364 	 */
2365 	if (pvd->vdev_ops != &vdev_replacing_ops &&
2366 	    pvd->vdev_ops != &vdev_mirror_ops &&
2367 	    pvd->vdev_ops != &vdev_spare_ops)
2368 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
2369 
2370 	/*
2371 	 * If there's only one replica, you can't detach it.
2372 	 */
2373 	if (pvd->vdev_children <= 1)
2374 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
2375 
2376 	/*
2377 	 * If all siblings have non-empty DTLs, this device may have the only
2378 	 * valid copy of the data, which means we cannot safely detach it.
2379 	 *
2380 	 * XXX -- as in the vdev_offline() case, we really want a more
2381 	 * precise DTL check.
2382 	 */
2383 	for (c = 0; c < pvd->vdev_children; c++) {
2384 		uint64_t dirty;
2385 
2386 		cvd = pvd->vdev_child[c];
2387 		if (cvd == vd)
2388 			continue;
2389 		if (vdev_is_dead(cvd))
2390 			continue;
2391 		mutex_enter(&cvd->vdev_dtl_lock);
2392 		dirty = cvd->vdev_dtl_map.sm_space |
2393 		    cvd->vdev_dtl_scrub.sm_space;
2394 		mutex_exit(&cvd->vdev_dtl_lock);
2395 		if (!dirty)
2396 			break;
2397 	}
2398 
2399 	/*
2400 	 * If we are a replacing or spare vdev, then we can always detach the
2401 	 * latter child, as that is how one cancels the operation.
2402 	 */
2403 	if ((pvd->vdev_ops == &vdev_mirror_ops || vd->vdev_id != 1) &&
2404 	    c == pvd->vdev_children)
2405 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
2406 
2407 	/*
2408 	 * If we are detaching the original disk from a spare, then it implies
2409 	 * that the spare should become a real disk, and be removed from the
2410 	 * active spare list for the pool.
2411 	 */
2412 	if (pvd->vdev_ops == &vdev_spare_ops &&
2413 	    vd->vdev_id == 0)
2414 		unspare = B_TRUE;
2415 
2416 	/*
2417 	 * Erase the disk labels so the disk can be used for other things.
2418 	 * This must be done after all other error cases are handled,
2419 	 * but before we disembowel vd (so we can still do I/O to it).
2420 	 * But if we can't do it, don't treat the error as fatal --
2421 	 * it may be that the unwritability of the disk is the reason
2422 	 * it's being detached!
2423 	 */
2424 	error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
2425 
2426 	/*
2427 	 * Remove vd from its parent and compact the parent's children.
2428 	 */
2429 	vdev_remove_child(pvd, vd);
2430 	vdev_compact_children(pvd);
2431 
2432 	/*
2433 	 * Remember one of the remaining children so we can get tvd below.
2434 	 */
2435 	cvd = pvd->vdev_child[0];
2436 
2437 	/*
2438 	 * If we need to remove the remaining child from the list of hot spares,
2439 	 * do it now, marking the vdev as no longer a spare in the process.  We
2440 	 * must do this before vdev_remove_parent(), because that can change the
2441 	 * GUID if it creates a new toplevel GUID.
2442 	 */
2443 	if (unspare) {
2444 		ASSERT(cvd->vdev_isspare);
2445 		spa_spare_remove(cvd);
2446 		unspare_guid = cvd->vdev_guid;
2447 	}
2448 
2449 	/*
2450 	 * If the parent mirror/replacing vdev only has one child,
2451 	 * the parent is no longer needed.  Remove it from the tree.
2452 	 */
2453 	if (pvd->vdev_children == 1)
2454 		vdev_remove_parent(cvd);
2455 
2456 	/*
2457 	 * We don't set tvd until now because the parent we just removed
2458 	 * may have been the previous top-level vdev.
2459 	 */
2460 	tvd = cvd->vdev_top;
2461 	ASSERT(tvd->vdev_parent == rvd);
2462 
2463 	/*
2464 	 * Reevaluate the parent vdev state.
2465 	 */
2466 	vdev_propagate_state(cvd);
2467 
2468 	/*
2469 	 * If the device we just detached was smaller than the others, it may be
2470 	 * possible to add metaslabs (i.e. grow the pool).  vdev_metaslab_init()
2471 	 * can't fail because the existing metaslabs are already in core, so
2472 	 * there's nothing to read from disk.
2473 	 */
2474 	VERIFY(vdev_metaslab_init(tvd, txg) == 0);
2475 
2476 	vdev_config_dirty(tvd);
2477 
2478 	/*
2479 	 * Mark vd's DTL as dirty in this txg.  vdev_dtl_sync() will see that
2480 	 * vd->vdev_detached is set and free vd's DTL object in syncing context.
2481 	 * But first make sure we're not on any *other* txg's DTL list, to
2482 	 * prevent vd from being accessed after it's freed.
2483 	 */
2484 	for (t = 0; t < TXG_SIZE; t++)
2485 		(void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
2486 	vd->vdev_detached = B_TRUE;
2487 	vdev_dirty(tvd, VDD_DTL, vd, txg);
2488 
2489 	spa_event_notify(spa, vd, ESC_ZFS_VDEV_REMOVE);
2490 
2491 	error = spa_vdev_exit(spa, vd, txg, 0);
2492 
2493 	/*
2494 	 * If this was the removal of the original device in a hot spare vdev,
2495 	 * then we want to go through and remove the device from the hot spare
2496 	 * list of every other pool.
2497 	 */
2498 	if (unspare) {
2499 		spa = NULL;
2500 		mutex_enter(&spa_namespace_lock);
2501 		while ((spa = spa_next(spa)) != NULL) {
2502 			if (spa->spa_state != POOL_STATE_ACTIVE)
2503 				continue;
2504 
2505 			(void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
2506 		}
2507 		mutex_exit(&spa_namespace_lock);
2508 	}
2509 
2510 	return (error);
2511 }
2512 
2513 /*
2514  * Remove a device from the pool.  Currently, this supports removing only hot
2515  * spares.
2516  */
2517 int
2518 spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare)
2519 {
2520 	vdev_t *vd;
2521 	nvlist_t **spares, *nv, **newspares;
2522 	uint_t i, j, nspares;
2523 	int ret = 0;
2524 
2525 	spa_config_enter(spa, RW_WRITER, FTAG);
2526 
2527 	vd = spa_lookup_by_guid(spa, guid);
2528 
2529 	nv = NULL;
2530 	if (spa->spa_spares != NULL &&
2531 	    nvlist_lookup_nvlist_array(spa->spa_sparelist, ZPOOL_CONFIG_SPARES,
2532 	    &spares, &nspares) == 0) {
2533 		for (i = 0; i < nspares; i++) {
2534 			uint64_t theguid;
2535 
2536 			VERIFY(nvlist_lookup_uint64(spares[i],
2537 			    ZPOOL_CONFIG_GUID, &theguid) == 0);
2538 			if (theguid == guid) {
2539 				nv = spares[i];
2540 				break;
2541 			}
2542 		}
2543 	}
2544 
2545 	/*
2546 	 * We only support removing a hot spare, and only if it's not currently
2547 	 * in use in this pool.
2548 	 */
2549 	if (nv == NULL && vd == NULL) {
2550 		ret = ENOENT;
2551 		goto out;
2552 	}
2553 
2554 	if (nv == NULL && vd != NULL) {
2555 		ret = ENOTSUP;
2556 		goto out;
2557 	}
2558 
2559 	if (!unspare && nv != NULL && vd != NULL) {
2560 		ret = EBUSY;
2561 		goto out;
2562 	}
2563 
2564 	if (nspares == 1) {
2565 		newspares = NULL;
2566 	} else {
2567 		newspares = kmem_alloc((nspares - 1) * sizeof (void *),
2568 		    KM_SLEEP);
2569 		for (i = 0, j = 0; i < nspares; i++) {
2570 			if (spares[i] != nv)
2571 				VERIFY(nvlist_dup(spares[i],
2572 				    &newspares[j++], KM_SLEEP) == 0);
2573 		}
2574 	}
2575 
2576 	VERIFY(nvlist_remove(spa->spa_sparelist, ZPOOL_CONFIG_SPARES,
2577 	    DATA_TYPE_NVLIST_ARRAY) == 0);
2578 	VERIFY(nvlist_add_nvlist_array(spa->spa_sparelist, ZPOOL_CONFIG_SPARES,
2579 	    newspares, nspares - 1) == 0);
2580 	for (i = 0; i < nspares - 1; i++)
2581 		nvlist_free(newspares[i]);
2582 	kmem_free(newspares, (nspares - 1) * sizeof (void *));
2583 	spa_load_spares(spa);
2584 	spa->spa_sync_spares = B_TRUE;
2585 
2586 out:
2587 	spa_config_exit(spa, FTAG);
2588 
2589 	return (ret);
2590 }
2591 
2592 /*
2593  * Find any device that's done replacing, or a vdev marked 'unspare' that's
2594  * current spared, so we can detach it.
2595  */
2596 static vdev_t *
2597 spa_vdev_resilver_done_hunt(vdev_t *vd)
2598 {
2599 	vdev_t *newvd, *oldvd;
2600 	int c;
2601 
2602 	for (c = 0; c < vd->vdev_children; c++) {
2603 		oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
2604 		if (oldvd != NULL)
2605 			return (oldvd);
2606 	}
2607 
2608 	/*
2609 	 * Check for a completed replacement.
2610 	 */
2611 	if (vd->vdev_ops == &vdev_replacing_ops && vd->vdev_children == 2) {
2612 		oldvd = vd->vdev_child[0];
2613 		newvd = vd->vdev_child[1];
2614 
2615 		mutex_enter(&newvd->vdev_dtl_lock);
2616 		if (newvd->vdev_dtl_map.sm_space == 0 &&
2617 		    newvd->vdev_dtl_scrub.sm_space == 0) {
2618 			mutex_exit(&newvd->vdev_dtl_lock);
2619 			return (oldvd);
2620 		}
2621 		mutex_exit(&newvd->vdev_dtl_lock);
2622 	}
2623 
2624 	/*
2625 	 * Check for a completed resilver with the 'unspare' flag set.
2626 	 */
2627 	if (vd->vdev_ops == &vdev_spare_ops && vd->vdev_children == 2) {
2628 		newvd = vd->vdev_child[0];
2629 		oldvd = vd->vdev_child[1];
2630 
2631 		mutex_enter(&newvd->vdev_dtl_lock);
2632 		if (newvd->vdev_unspare &&
2633 		    newvd->vdev_dtl_map.sm_space == 0 &&
2634 		    newvd->vdev_dtl_scrub.sm_space == 0) {
2635 			newvd->vdev_unspare = 0;
2636 			mutex_exit(&newvd->vdev_dtl_lock);
2637 			return (oldvd);
2638 		}
2639 		mutex_exit(&newvd->vdev_dtl_lock);
2640 	}
2641 
2642 	return (NULL);
2643 }
2644 
2645 static void
2646 spa_vdev_resilver_done(spa_t *spa)
2647 {
2648 	vdev_t *vd;
2649 	vdev_t *pvd;
2650 	uint64_t guid;
2651 	uint64_t pguid = 0;
2652 
2653 	spa_config_enter(spa, RW_READER, FTAG);
2654 
2655 	while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
2656 		guid = vd->vdev_guid;
2657 		/*
2658 		 * If we have just finished replacing a hot spared device, then
2659 		 * we need to detach the parent's first child (the original hot
2660 		 * spare) as well.
2661 		 */
2662 		pvd = vd->vdev_parent;
2663 		if (pvd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2664 		    pvd->vdev_id == 0) {
2665 			ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
2666 			ASSERT(pvd->vdev_parent->vdev_children == 2);
2667 			pguid = pvd->vdev_parent->vdev_child[1]->vdev_guid;
2668 		}
2669 		spa_config_exit(spa, FTAG);
2670 		if (spa_vdev_detach(spa, guid, B_TRUE) != 0)
2671 			return;
2672 		if (pguid != 0 && spa_vdev_detach(spa, pguid, B_TRUE) != 0)
2673 			return;
2674 		spa_config_enter(spa, RW_READER, FTAG);
2675 	}
2676 
2677 	spa_config_exit(spa, FTAG);
2678 }
2679 
2680 /*
2681  * Update the stored path for this vdev.  Dirty the vdev configuration, relying
2682  * on spa_vdev_enter/exit() to synchronize the labels and cache.
2683  */
2684 int
2685 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
2686 {
2687 	vdev_t *rvd, *vd;
2688 	uint64_t txg;
2689 
2690 	rvd = spa->spa_root_vdev;
2691 
2692 	txg = spa_vdev_enter(spa);
2693 
2694 	if ((vd = vdev_lookup_by_guid(rvd, guid)) == NULL) {
2695 		/*
2696 		 * Determine if this is a reference to a hot spare.  In that
2697 		 * case, update the path as stored in the spare list.
2698 		 */
2699 		nvlist_t **spares;
2700 		uint_t i, nspares;
2701 		if (spa->spa_sparelist != NULL) {
2702 			VERIFY(nvlist_lookup_nvlist_array(spa->spa_sparelist,
2703 			    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
2704 			for (i = 0; i < nspares; i++) {
2705 				uint64_t theguid;
2706 				VERIFY(nvlist_lookup_uint64(spares[i],
2707 				    ZPOOL_CONFIG_GUID, &theguid) == 0);
2708 				if (theguid == guid)
2709 					break;
2710 			}
2711 
2712 			if (i == nspares)
2713 				return (spa_vdev_exit(spa, NULL, txg, ENOENT));
2714 
2715 			VERIFY(nvlist_add_string(spares[i],
2716 			    ZPOOL_CONFIG_PATH, newpath) == 0);
2717 			spa_load_spares(spa);
2718 			spa->spa_sync_spares = B_TRUE;
2719 			return (spa_vdev_exit(spa, NULL, txg, 0));
2720 		} else {
2721 			return (spa_vdev_exit(spa, NULL, txg, ENOENT));
2722 		}
2723 	}
2724 
2725 	if (!vd->vdev_ops->vdev_op_leaf)
2726 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
2727 
2728 	spa_strfree(vd->vdev_path);
2729 	vd->vdev_path = spa_strdup(newpath);
2730 
2731 	vdev_config_dirty(vd->vdev_top);
2732 
2733 	return (spa_vdev_exit(spa, NULL, txg, 0));
2734 }
2735 
2736 /*
2737  * ==========================================================================
2738  * SPA Scrubbing
2739  * ==========================================================================
2740  */
2741 
2742 static void
2743 spa_scrub_io_done(zio_t *zio)
2744 {
2745 	spa_t *spa = zio->io_spa;
2746 
2747 	arc_data_buf_free(zio->io_data, zio->io_size);
2748 
2749 	mutex_enter(&spa->spa_scrub_lock);
2750 	if (zio->io_error && !(zio->io_flags & ZIO_FLAG_SPECULATIVE)) {
2751 		vdev_t *vd = zio->io_vd ? zio->io_vd : spa->spa_root_vdev;
2752 		spa->spa_scrub_errors++;
2753 		mutex_enter(&vd->vdev_stat_lock);
2754 		vd->vdev_stat.vs_scrub_errors++;
2755 		mutex_exit(&vd->vdev_stat_lock);
2756 	}
2757 
2758 	if (--spa->spa_scrub_inflight < spa->spa_scrub_maxinflight)
2759 		cv_broadcast(&spa->spa_scrub_io_cv);
2760 
2761 	ASSERT(spa->spa_scrub_inflight >= 0);
2762 
2763 	mutex_exit(&spa->spa_scrub_lock);
2764 }
2765 
2766 static void
2767 spa_scrub_io_start(spa_t *spa, blkptr_t *bp, int priority, int flags,
2768     zbookmark_t *zb)
2769 {
2770 	size_t size = BP_GET_LSIZE(bp);
2771 	void *data;
2772 
2773 	mutex_enter(&spa->spa_scrub_lock);
2774 	/*
2775 	 * Do not give too much work to vdev(s).
2776 	 */
2777 	while (spa->spa_scrub_inflight >= spa->spa_scrub_maxinflight) {
2778 		cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
2779 	}
2780 	spa->spa_scrub_inflight++;
2781 	mutex_exit(&spa->spa_scrub_lock);
2782 
2783 	data = arc_data_buf_alloc(size);
2784 
2785 	if (zb->zb_level == -1 && BP_GET_TYPE(bp) != DMU_OT_OBJSET)
2786 		flags |= ZIO_FLAG_SPECULATIVE;	/* intent log block */
2787 
2788 	flags |= ZIO_FLAG_SCRUB_THREAD | ZIO_FLAG_CANFAIL;
2789 
2790 	zio_nowait(zio_read(NULL, spa, bp, data, size,
2791 	    spa_scrub_io_done, NULL, priority, flags, zb));
2792 }
2793 
2794 /* ARGSUSED */
2795 static int
2796 spa_scrub_cb(traverse_blk_cache_t *bc, spa_t *spa, void *a)
2797 {
2798 	blkptr_t *bp = &bc->bc_blkptr;
2799 	vdev_t *vd = spa->spa_root_vdev;
2800 	dva_t *dva = bp->blk_dva;
2801 	int needs_resilver = B_FALSE;
2802 	int d;
2803 
2804 	if (bc->bc_errno) {
2805 		/*
2806 		 * We can't scrub this block, but we can continue to scrub
2807 		 * the rest of the pool.  Note the error and move along.
2808 		 */
2809 		mutex_enter(&spa->spa_scrub_lock);
2810 		spa->spa_scrub_errors++;
2811 		mutex_exit(&spa->spa_scrub_lock);
2812 
2813 		mutex_enter(&vd->vdev_stat_lock);
2814 		vd->vdev_stat.vs_scrub_errors++;
2815 		mutex_exit(&vd->vdev_stat_lock);
2816 
2817 		return (ERESTART);
2818 	}
2819 
2820 	ASSERT(bp->blk_birth < spa->spa_scrub_maxtxg);
2821 
2822 	for (d = 0; d < BP_GET_NDVAS(bp); d++) {
2823 		vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d]));
2824 
2825 		ASSERT(vd != NULL);
2826 
2827 		/*
2828 		 * Keep track of how much data we've examined so that
2829 		 * zpool(1M) status can make useful progress reports.
2830 		 */
2831 		mutex_enter(&vd->vdev_stat_lock);
2832 		vd->vdev_stat.vs_scrub_examined += DVA_GET_ASIZE(&dva[d]);
2833 		mutex_exit(&vd->vdev_stat_lock);
2834 
2835 		if (spa->spa_scrub_type == POOL_SCRUB_RESILVER) {
2836 			if (DVA_GET_GANG(&dva[d])) {
2837 				/*
2838 				 * Gang members may be spread across multiple
2839 				 * vdevs, so the best we can do is look at the
2840 				 * pool-wide DTL.
2841 				 * XXX -- it would be better to change our
2842 				 * allocation policy to ensure that this can't
2843 				 * happen.
2844 				 */
2845 				vd = spa->spa_root_vdev;
2846 			}
2847 			if (vdev_dtl_contains(&vd->vdev_dtl_map,
2848 			    bp->blk_birth, 1))
2849 				needs_resilver = B_TRUE;
2850 		}
2851 	}
2852 
2853 	if (spa->spa_scrub_type == POOL_SCRUB_EVERYTHING)
2854 		spa_scrub_io_start(spa, bp, ZIO_PRIORITY_SCRUB,
2855 		    ZIO_FLAG_SCRUB, &bc->bc_bookmark);
2856 	else if (needs_resilver)
2857 		spa_scrub_io_start(spa, bp, ZIO_PRIORITY_RESILVER,
2858 		    ZIO_FLAG_RESILVER, &bc->bc_bookmark);
2859 
2860 	return (0);
2861 }
2862 
2863 static void
2864 spa_scrub_thread(spa_t *spa)
2865 {
2866 	callb_cpr_t cprinfo;
2867 	traverse_handle_t *th = spa->spa_scrub_th;
2868 	vdev_t *rvd = spa->spa_root_vdev;
2869 	pool_scrub_type_t scrub_type = spa->spa_scrub_type;
2870 	int error = 0;
2871 	boolean_t complete;
2872 
2873 	CALLB_CPR_INIT(&cprinfo, &spa->spa_scrub_lock, callb_generic_cpr, FTAG);
2874 
2875 	/*
2876 	 * If we're restarting due to a snapshot create/delete,
2877 	 * wait for that to complete.
2878 	 */
2879 	txg_wait_synced(spa_get_dsl(spa), 0);
2880 
2881 	dprintf("start %s mintxg=%llu maxtxg=%llu\n",
2882 	    scrub_type == POOL_SCRUB_RESILVER ? "resilver" : "scrub",
2883 	    spa->spa_scrub_mintxg, spa->spa_scrub_maxtxg);
2884 
2885 	spa_config_enter(spa, RW_WRITER, FTAG);
2886 	vdev_reopen(rvd);		/* purge all vdev caches */
2887 	vdev_config_dirty(rvd);		/* rewrite all disk labels */
2888 	vdev_scrub_stat_update(rvd, scrub_type, B_FALSE);
2889 	spa_config_exit(spa, FTAG);
2890 
2891 	mutex_enter(&spa->spa_scrub_lock);
2892 	spa->spa_scrub_errors = 0;
2893 	spa->spa_scrub_active = 1;
2894 	ASSERT(spa->spa_scrub_inflight == 0);
2895 
2896 	while (!spa->spa_scrub_stop) {
2897 		CALLB_CPR_SAFE_BEGIN(&cprinfo);
2898 		while (spa->spa_scrub_suspended) {
2899 			spa->spa_scrub_active = 0;
2900 			cv_broadcast(&spa->spa_scrub_cv);
2901 			cv_wait(&spa->spa_scrub_cv, &spa->spa_scrub_lock);
2902 			spa->spa_scrub_active = 1;
2903 		}
2904 		CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_scrub_lock);
2905 
2906 		if (spa->spa_scrub_restart_txg != 0)
2907 			break;
2908 
2909 		mutex_exit(&spa->spa_scrub_lock);
2910 		error = traverse_more(th);
2911 		mutex_enter(&spa->spa_scrub_lock);
2912 		if (error != EAGAIN)
2913 			break;
2914 	}
2915 
2916 	while (spa->spa_scrub_inflight)
2917 		cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
2918 
2919 	spa->spa_scrub_active = 0;
2920 	cv_broadcast(&spa->spa_scrub_cv);
2921 
2922 	mutex_exit(&spa->spa_scrub_lock);
2923 
2924 	spa_config_enter(spa, RW_WRITER, FTAG);
2925 
2926 	mutex_enter(&spa->spa_scrub_lock);
2927 
2928 	/*
2929 	 * Note: we check spa_scrub_restart_txg under both spa_scrub_lock
2930 	 * AND the spa config lock to synchronize with any config changes
2931 	 * that revise the DTLs under spa_vdev_enter() / spa_vdev_exit().
2932 	 */
2933 	if (spa->spa_scrub_restart_txg != 0)
2934 		error = ERESTART;
2935 
2936 	if (spa->spa_scrub_stop)
2937 		error = EINTR;
2938 
2939 	/*
2940 	 * Even if there were uncorrectable errors, we consider the scrub
2941 	 * completed.  The downside is that if there is a transient error during
2942 	 * a resilver, we won't resilver the data properly to the target.  But
2943 	 * if the damage is permanent (more likely) we will resilver forever,
2944 	 * which isn't really acceptable.  Since there is enough information for
2945 	 * the user to know what has failed and why, this seems like a more
2946 	 * tractable approach.
2947 	 */
2948 	complete = (error == 0);
2949 
2950 	dprintf("end %s to maxtxg=%llu %s, traverse=%d, %llu errors, stop=%u\n",
2951 	    scrub_type == POOL_SCRUB_RESILVER ? "resilver" : "scrub",
2952 	    spa->spa_scrub_maxtxg, complete ? "done" : "FAILED",
2953 	    error, spa->spa_scrub_errors, spa->spa_scrub_stop);
2954 
2955 	mutex_exit(&spa->spa_scrub_lock);
2956 
2957 	/*
2958 	 * If the scrub/resilver completed, update all DTLs to reflect this.
2959 	 * Whether it succeeded or not, vacate all temporary scrub DTLs.
2960 	 */
2961 	vdev_dtl_reassess(rvd, spa_last_synced_txg(spa) + 1,
2962 	    complete ? spa->spa_scrub_maxtxg : 0, B_TRUE);
2963 	vdev_scrub_stat_update(rvd, POOL_SCRUB_NONE, complete);
2964 	spa_errlog_rotate(spa);
2965 
2966 	if (scrub_type == POOL_SCRUB_RESILVER && complete)
2967 		spa_event_notify(spa, NULL, ESC_ZFS_RESILVER_FINISH);
2968 
2969 	spa_config_exit(spa, FTAG);
2970 
2971 	mutex_enter(&spa->spa_scrub_lock);
2972 
2973 	/*
2974 	 * We may have finished replacing a device.
2975 	 * Let the async thread assess this and handle the detach.
2976 	 */
2977 	spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
2978 
2979 	/*
2980 	 * If we were told to restart, our final act is to start a new scrub.
2981 	 */
2982 	if (error == ERESTART)
2983 		spa_async_request(spa, scrub_type == POOL_SCRUB_RESILVER ?
2984 		    SPA_ASYNC_RESILVER : SPA_ASYNC_SCRUB);
2985 
2986 	spa->spa_scrub_type = POOL_SCRUB_NONE;
2987 	spa->spa_scrub_active = 0;
2988 	spa->spa_scrub_thread = NULL;
2989 	cv_broadcast(&spa->spa_scrub_cv);
2990 	CALLB_CPR_EXIT(&cprinfo);	/* drops &spa->spa_scrub_lock */
2991 	thread_exit();
2992 }
2993 
2994 void
2995 spa_scrub_suspend(spa_t *spa)
2996 {
2997 	mutex_enter(&spa->spa_scrub_lock);
2998 	spa->spa_scrub_suspended++;
2999 	while (spa->spa_scrub_active) {
3000 		cv_broadcast(&spa->spa_scrub_cv);
3001 		cv_wait(&spa->spa_scrub_cv, &spa->spa_scrub_lock);
3002 	}
3003 	while (spa->spa_scrub_inflight)
3004 		cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
3005 	mutex_exit(&spa->spa_scrub_lock);
3006 }
3007 
3008 void
3009 spa_scrub_resume(spa_t *spa)
3010 {
3011 	mutex_enter(&spa->spa_scrub_lock);
3012 	ASSERT(spa->spa_scrub_suspended != 0);
3013 	if (--spa->spa_scrub_suspended == 0)
3014 		cv_broadcast(&spa->spa_scrub_cv);
3015 	mutex_exit(&spa->spa_scrub_lock);
3016 }
3017 
3018 void
3019 spa_scrub_restart(spa_t *spa, uint64_t txg)
3020 {
3021 	/*
3022 	 * Something happened (e.g. snapshot create/delete) that means
3023 	 * we must restart any in-progress scrubs.  The itinerary will
3024 	 * fix this properly.
3025 	 */
3026 	mutex_enter(&spa->spa_scrub_lock);
3027 	spa->spa_scrub_restart_txg = txg;
3028 	mutex_exit(&spa->spa_scrub_lock);
3029 }
3030 
3031 int
3032 spa_scrub(spa_t *spa, pool_scrub_type_t type, boolean_t force)
3033 {
3034 	space_seg_t *ss;
3035 	uint64_t mintxg, maxtxg;
3036 	vdev_t *rvd = spa->spa_root_vdev;
3037 
3038 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
3039 	ASSERT(!spa_config_held(spa, RW_WRITER));
3040 
3041 	if ((uint_t)type >= POOL_SCRUB_TYPES)
3042 		return (ENOTSUP);
3043 
3044 	mutex_enter(&spa->spa_scrub_lock);
3045 
3046 	/*
3047 	 * If there's a scrub or resilver already in progress, stop it.
3048 	 */
3049 	while (spa->spa_scrub_thread != NULL) {
3050 		/*
3051 		 * Don't stop a resilver unless forced.
3052 		 */
3053 		if (spa->spa_scrub_type == POOL_SCRUB_RESILVER && !force) {
3054 			mutex_exit(&spa->spa_scrub_lock);
3055 			return (EBUSY);
3056 		}
3057 		spa->spa_scrub_stop = 1;
3058 		cv_broadcast(&spa->spa_scrub_cv);
3059 		cv_wait(&spa->spa_scrub_cv, &spa->spa_scrub_lock);
3060 	}
3061 
3062 	/*
3063 	 * Terminate the previous traverse.
3064 	 */
3065 	if (spa->spa_scrub_th != NULL) {
3066 		traverse_fini(spa->spa_scrub_th);
3067 		spa->spa_scrub_th = NULL;
3068 	}
3069 
3070 	if (rvd == NULL) {
3071 		ASSERT(spa->spa_scrub_stop == 0);
3072 		ASSERT(spa->spa_scrub_type == type);
3073 		ASSERT(spa->spa_scrub_restart_txg == 0);
3074 		mutex_exit(&spa->spa_scrub_lock);
3075 		return (0);
3076 	}
3077 
3078 	mintxg = TXG_INITIAL - 1;
3079 	maxtxg = spa_last_synced_txg(spa) + 1;
3080 
3081 	mutex_enter(&rvd->vdev_dtl_lock);
3082 
3083 	if (rvd->vdev_dtl_map.sm_space == 0) {
3084 		/*
3085 		 * The pool-wide DTL is empty.
3086 		 * If this is a resilver, there's nothing to do except
3087 		 * check whether any in-progress replacements have completed.
3088 		 */
3089 		if (type == POOL_SCRUB_RESILVER) {
3090 			type = POOL_SCRUB_NONE;
3091 			spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
3092 		}
3093 	} else {
3094 		/*
3095 		 * The pool-wide DTL is non-empty.
3096 		 * If this is a normal scrub, upgrade to a resilver instead.
3097 		 */
3098 		if (type == POOL_SCRUB_EVERYTHING)
3099 			type = POOL_SCRUB_RESILVER;
3100 	}
3101 
3102 	if (type == POOL_SCRUB_RESILVER) {
3103 		/*
3104 		 * Determine the resilvering boundaries.
3105 		 *
3106 		 * Note: (mintxg, maxtxg) is an open interval,
3107 		 * i.e. mintxg and maxtxg themselves are not included.
3108 		 *
3109 		 * Note: for maxtxg, we MIN with spa_last_synced_txg(spa) + 1
3110 		 * so we don't claim to resilver a txg that's still changing.
3111 		 */
3112 		ss = avl_first(&rvd->vdev_dtl_map.sm_root);
3113 		mintxg = ss->ss_start - 1;
3114 		ss = avl_last(&rvd->vdev_dtl_map.sm_root);
3115 		maxtxg = MIN(ss->ss_end, maxtxg);
3116 
3117 		spa_event_notify(spa, NULL, ESC_ZFS_RESILVER_START);
3118 	}
3119 
3120 	mutex_exit(&rvd->vdev_dtl_lock);
3121 
3122 	spa->spa_scrub_stop = 0;
3123 	spa->spa_scrub_type = type;
3124 	spa->spa_scrub_restart_txg = 0;
3125 
3126 	if (type != POOL_SCRUB_NONE) {
3127 		spa->spa_scrub_mintxg = mintxg;
3128 		spa->spa_scrub_maxtxg = maxtxg;
3129 		spa->spa_scrub_th = traverse_init(spa, spa_scrub_cb, NULL,
3130 		    ADVANCE_PRE | ADVANCE_PRUNE | ADVANCE_ZIL,
3131 		    ZIO_FLAG_CANFAIL);
3132 		traverse_add_pool(spa->spa_scrub_th, mintxg, maxtxg);
3133 		spa->spa_scrub_thread = thread_create(NULL, 0,
3134 		    spa_scrub_thread, spa, 0, &p0, TS_RUN, minclsyspri);
3135 	}
3136 
3137 	mutex_exit(&spa->spa_scrub_lock);
3138 
3139 	return (0);
3140 }
3141 
3142 /*
3143  * ==========================================================================
3144  * SPA async task processing
3145  * ==========================================================================
3146  */
3147 
3148 static void
3149 spa_async_remove(spa_t *spa, vdev_t *vd)
3150 {
3151 	vdev_t *tvd;
3152 	int c;
3153 
3154 	for (c = 0; c < vd->vdev_children; c++) {
3155 		tvd = vd->vdev_child[c];
3156 		if (tvd->vdev_remove_wanted) {
3157 			tvd->vdev_remove_wanted = 0;
3158 			vdev_set_state(tvd, B_FALSE, VDEV_STATE_REMOVED,
3159 			    VDEV_AUX_NONE);
3160 			vdev_clear(spa, tvd, B_TRUE);
3161 			vdev_config_dirty(tvd->vdev_top);
3162 		}
3163 		spa_async_remove(spa, tvd);
3164 	}
3165 }
3166 
3167 static void
3168 spa_async_thread(spa_t *spa)
3169 {
3170 	int tasks;
3171 	uint64_t txg;
3172 
3173 	ASSERT(spa->spa_sync_on);
3174 
3175 	mutex_enter(&spa->spa_async_lock);
3176 	tasks = spa->spa_async_tasks;
3177 	spa->spa_async_tasks = 0;
3178 	mutex_exit(&spa->spa_async_lock);
3179 
3180 	/*
3181 	 * See if the config needs to be updated.
3182 	 */
3183 	if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
3184 		mutex_enter(&spa_namespace_lock);
3185 		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
3186 		mutex_exit(&spa_namespace_lock);
3187 	}
3188 
3189 	/*
3190 	 * See if any devices need to be marked REMOVED.
3191 	 *
3192 	 * XXX - We avoid doing this when we are in
3193 	 * I/O failure state since spa_vdev_enter() grabs
3194 	 * the namespace lock and would not be able to obtain
3195 	 * the writer config lock.
3196 	 */
3197 	if (tasks & SPA_ASYNC_REMOVE &&
3198 	    spa_state(spa) != POOL_STATE_IO_FAILURE) {
3199 		txg = spa_vdev_enter(spa);
3200 		spa_async_remove(spa, spa->spa_root_vdev);
3201 		(void) spa_vdev_exit(spa, NULL, txg, 0);
3202 	}
3203 
3204 	/*
3205 	 * If any devices are done replacing, detach them.
3206 	 */
3207 	if (tasks & SPA_ASYNC_RESILVER_DONE)
3208 		spa_vdev_resilver_done(spa);
3209 
3210 	/*
3211 	 * Kick off a scrub.  When starting a RESILVER scrub (or an EVERYTHING
3212 	 * scrub which can become a resilver), we need to hold
3213 	 * spa_namespace_lock() because the sysevent we post via
3214 	 * spa_event_notify() needs to get the name of the pool.
3215 	 */
3216 	if (tasks & SPA_ASYNC_SCRUB) {
3217 		mutex_enter(&spa_namespace_lock);
3218 		VERIFY(spa_scrub(spa, POOL_SCRUB_EVERYTHING, B_TRUE) == 0);
3219 		mutex_exit(&spa_namespace_lock);
3220 	}
3221 
3222 	/*
3223 	 * Kick off a resilver.
3224 	 */
3225 	if (tasks & SPA_ASYNC_RESILVER) {
3226 		mutex_enter(&spa_namespace_lock);
3227 		VERIFY(spa_scrub(spa, POOL_SCRUB_RESILVER, B_TRUE) == 0);
3228 		mutex_exit(&spa_namespace_lock);
3229 	}
3230 
3231 	/*
3232 	 * Let the world know that we're done.
3233 	 */
3234 	mutex_enter(&spa->spa_async_lock);
3235 	spa->spa_async_thread = NULL;
3236 	cv_broadcast(&spa->spa_async_cv);
3237 	mutex_exit(&spa->spa_async_lock);
3238 	thread_exit();
3239 }
3240 
3241 void
3242 spa_async_suspend(spa_t *spa)
3243 {
3244 	mutex_enter(&spa->spa_async_lock);
3245 	spa->spa_async_suspended++;
3246 	while (spa->spa_async_thread != NULL)
3247 		cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
3248 	mutex_exit(&spa->spa_async_lock);
3249 }
3250 
3251 void
3252 spa_async_resume(spa_t *spa)
3253 {
3254 	mutex_enter(&spa->spa_async_lock);
3255 	ASSERT(spa->spa_async_suspended != 0);
3256 	spa->spa_async_suspended--;
3257 	mutex_exit(&spa->spa_async_lock);
3258 }
3259 
3260 static void
3261 spa_async_dispatch(spa_t *spa)
3262 {
3263 	mutex_enter(&spa->spa_async_lock);
3264 	if (spa->spa_async_tasks && !spa->spa_async_suspended &&
3265 	    spa->spa_async_thread == NULL &&
3266 	    rootdir != NULL && !vn_is_readonly(rootdir))
3267 		spa->spa_async_thread = thread_create(NULL, 0,
3268 		    spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
3269 	mutex_exit(&spa->spa_async_lock);
3270 }
3271 
3272 void
3273 spa_async_request(spa_t *spa, int task)
3274 {
3275 	mutex_enter(&spa->spa_async_lock);
3276 	spa->spa_async_tasks |= task;
3277 	mutex_exit(&spa->spa_async_lock);
3278 }
3279 
3280 /*
3281  * ==========================================================================
3282  * SPA syncing routines
3283  * ==========================================================================
3284  */
3285 
3286 static void
3287 spa_sync_deferred_frees(spa_t *spa, uint64_t txg)
3288 {
3289 	bplist_t *bpl = &spa->spa_sync_bplist;
3290 	dmu_tx_t *tx;
3291 	blkptr_t blk;
3292 	uint64_t itor = 0;
3293 	zio_t *zio;
3294 	int error;
3295 	uint8_t c = 1;
3296 
3297 	zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CONFIG_HELD);
3298 
3299 	while (bplist_iterate(bpl, &itor, &blk) == 0)
3300 		zio_nowait(zio_free(zio, spa, txg, &blk, NULL, NULL));
3301 
3302 	error = zio_wait(zio);
3303 	ASSERT3U(error, ==, 0);
3304 
3305 	tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
3306 	bplist_vacate(bpl, tx);
3307 
3308 	/*
3309 	 * Pre-dirty the first block so we sync to convergence faster.
3310 	 * (Usually only the first block is needed.)
3311 	 */
3312 	dmu_write(spa->spa_meta_objset, spa->spa_sync_bplist_obj, 0, 1, &c, tx);
3313 	dmu_tx_commit(tx);
3314 }
3315 
3316 static void
3317 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
3318 {
3319 	char *packed = NULL;
3320 	size_t nvsize = 0;
3321 	dmu_buf_t *db;
3322 
3323 	VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
3324 
3325 	packed = kmem_alloc(nvsize, KM_SLEEP);
3326 
3327 	VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
3328 	    KM_SLEEP) == 0);
3329 
3330 	dmu_write(spa->spa_meta_objset, obj, 0, nvsize, packed, tx);
3331 
3332 	kmem_free(packed, nvsize);
3333 
3334 	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
3335 	dmu_buf_will_dirty(db, tx);
3336 	*(uint64_t *)db->db_data = nvsize;
3337 	dmu_buf_rele(db, FTAG);
3338 }
3339 
3340 static void
3341 spa_sync_spares(spa_t *spa, dmu_tx_t *tx)
3342 {
3343 	nvlist_t *nvroot;
3344 	nvlist_t **spares;
3345 	int i;
3346 
3347 	if (!spa->spa_sync_spares)
3348 		return;
3349 
3350 	/*
3351 	 * Update the MOS nvlist describing the list of available spares.
3352 	 * spa_validate_spares() will have already made sure this nvlist is
3353 	 * valid and the vdevs are labeled appropriately.
3354 	 */
3355 	if (spa->spa_spares_object == 0) {
3356 		spa->spa_spares_object = dmu_object_alloc(spa->spa_meta_objset,
3357 		    DMU_OT_PACKED_NVLIST, 1 << 14,
3358 		    DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
3359 		VERIFY(zap_update(spa->spa_meta_objset,
3360 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SPARES,
3361 		    sizeof (uint64_t), 1, &spa->spa_spares_object, tx) == 0);
3362 	}
3363 
3364 	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3365 	if (spa->spa_nspares == 0) {
3366 		VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
3367 		    NULL, 0) == 0);
3368 	} else {
3369 		spares = kmem_alloc(spa->spa_nspares * sizeof (void *),
3370 		    KM_SLEEP);
3371 		for (i = 0; i < spa->spa_nspares; i++)
3372 			spares[i] = vdev_config_generate(spa,
3373 			    spa->spa_spares[i], B_FALSE, B_TRUE);
3374 		VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
3375 		    spares, spa->spa_nspares) == 0);
3376 		for (i = 0; i < spa->spa_nspares; i++)
3377 			nvlist_free(spares[i]);
3378 		kmem_free(spares, spa->spa_nspares * sizeof (void *));
3379 	}
3380 
3381 	spa_sync_nvlist(spa, spa->spa_spares_object, nvroot, tx);
3382 	nvlist_free(nvroot);
3383 
3384 	spa->spa_sync_spares = B_FALSE;
3385 }
3386 
3387 static void
3388 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
3389 {
3390 	nvlist_t *config;
3391 
3392 	if (list_is_empty(&spa->spa_dirty_list))
3393 		return;
3394 
3395 	config = spa_config_generate(spa, NULL, dmu_tx_get_txg(tx), B_FALSE);
3396 
3397 	if (spa->spa_config_syncing)
3398 		nvlist_free(spa->spa_config_syncing);
3399 	spa->spa_config_syncing = config;
3400 
3401 	spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
3402 }
3403 
3404 /*
3405  * Set zpool properties.
3406  */
3407 static void
3408 spa_sync_props(void *arg1, void *arg2, cred_t *cr, dmu_tx_t *tx)
3409 {
3410 	spa_t *spa = arg1;
3411 	objset_t *mos = spa->spa_meta_objset;
3412 	nvlist_t *nvp = arg2;
3413 	nvpair_t *elem;
3414 	uint64_t intval;
3415 	char *strval, *slash;
3416 	zpool_prop_t prop;
3417 	const char *propname;
3418 	zprop_type_t proptype;
3419 
3420 	elem = NULL;
3421 	while ((elem = nvlist_next_nvpair(nvp, elem))) {
3422 		switch (prop = zpool_name_to_prop(nvpair_name(elem))) {
3423 		case ZPOOL_PROP_VERSION:
3424 			/*
3425 			 * Only set version for non-zpool-creation cases
3426 			 * (set/import). spa_create() needs special care
3427 			 * for version setting.
3428 			 */
3429 			if (tx->tx_txg != TXG_INITIAL) {
3430 				VERIFY(nvpair_value_uint64(elem,
3431 				    &intval) == 0);
3432 				ASSERT(intval <= SPA_VERSION);
3433 				ASSERT(intval >= spa_version(spa));
3434 				spa->spa_uberblock.ub_version = intval;
3435 				vdev_config_dirty(spa->spa_root_vdev);
3436 			}
3437 			break;
3438 
3439 		case ZPOOL_PROP_ALTROOT:
3440 			/*
3441 			 * 'altroot' is a non-persistent property. It should
3442 			 * have been set temporarily at creation or import time.
3443 			 */
3444 			ASSERT(spa->spa_root != NULL);
3445 			break;
3446 
3447 		case ZPOOL_PROP_CACHEFILE:
3448 			/*
3449 			 * 'cachefile' is a non-persistent property, but note
3450 			 * an async request that the config cache needs to be
3451 			 * udpated.
3452 			 */
3453 			VERIFY(nvpair_value_string(elem, &strval) == 0);
3454 			if (spa->spa_config_dir)
3455 				spa_strfree(spa->spa_config_dir);
3456 			if (spa->spa_config_file)
3457 				spa_strfree(spa->spa_config_file);
3458 
3459 			if (strval[0] == '\0') {
3460 				spa->spa_config_dir = NULL;
3461 				spa->spa_config_file = NULL;
3462 			} else if (strcmp(strval, "none") == 0) {
3463 				spa->spa_config_dir = spa_strdup(strval);
3464 				spa->spa_config_file = NULL;
3465 			} else {
3466 				slash = strrchr(strval, '/');
3467 				ASSERT(slash != NULL);
3468 				*slash = '\0';
3469 				spa->spa_config_dir = spa_strdup(strval);
3470 				spa->spa_config_file = spa_strdup(slash + 1);
3471 			}
3472 			spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
3473 			break;
3474 		default:
3475 			/*
3476 			 * Set pool property values in the poolprops mos object.
3477 			 */
3478 			mutex_enter(&spa->spa_props_lock);
3479 			if (spa->spa_pool_props_object == 0) {
3480 				objset_t *mos = spa->spa_meta_objset;
3481 
3482 				VERIFY((spa->spa_pool_props_object =
3483 				    zap_create(mos, DMU_OT_POOL_PROPS,
3484 				    DMU_OT_NONE, 0, tx)) > 0);
3485 
3486 				VERIFY(zap_update(mos,
3487 				    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
3488 				    8, 1, &spa->spa_pool_props_object, tx)
3489 				    == 0);
3490 			}
3491 			mutex_exit(&spa->spa_props_lock);
3492 
3493 			/* normalize the property name */
3494 			propname = zpool_prop_to_name(prop);
3495 			proptype = zpool_prop_get_type(prop);
3496 
3497 			if (nvpair_type(elem) == DATA_TYPE_STRING) {
3498 				ASSERT(proptype == PROP_TYPE_STRING);
3499 				VERIFY(nvpair_value_string(elem, &strval) == 0);
3500 				VERIFY(zap_update(mos,
3501 				    spa->spa_pool_props_object, propname,
3502 				    1, strlen(strval) + 1, strval, tx) == 0);
3503 
3504 			} else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
3505 				VERIFY(nvpair_value_uint64(elem, &intval) == 0);
3506 
3507 				if (proptype == PROP_TYPE_INDEX) {
3508 					const char *unused;
3509 					VERIFY(zpool_prop_index_to_string(
3510 					    prop, intval, &unused) == 0);
3511 				}
3512 				VERIFY(zap_update(mos,
3513 				    spa->spa_pool_props_object, propname,
3514 				    8, 1, &intval, tx) == 0);
3515 			} else {
3516 				ASSERT(0); /* not allowed */
3517 			}
3518 
3519 			switch (prop) {
3520 			case ZPOOL_PROP_DELEGATION:
3521 				spa->spa_delegation = intval;
3522 				break;
3523 			case ZPOOL_PROP_BOOTFS:
3524 				spa->spa_bootfs = intval;
3525 				break;
3526 			case ZPOOL_PROP_FAILUREMODE:
3527 				spa->spa_failmode = intval;
3528 				break;
3529 			default:
3530 				break;
3531 			}
3532 		}
3533 
3534 		/* log internal history if this is not a zpool create */
3535 		if (spa_version(spa) >= SPA_VERSION_ZPOOL_HISTORY &&
3536 		    tx->tx_txg != TXG_INITIAL) {
3537 			spa_history_internal_log(LOG_POOL_PROPSET,
3538 			    spa, tx, cr, "%s %lld %s",
3539 			    nvpair_name(elem), intval, spa->spa_name);
3540 		}
3541 	}
3542 }
3543 
3544 /*
3545  * Sync the specified transaction group.  New blocks may be dirtied as
3546  * part of the process, so we iterate until it converges.
3547  */
3548 void
3549 spa_sync(spa_t *spa, uint64_t txg)
3550 {
3551 	dsl_pool_t *dp = spa->spa_dsl_pool;
3552 	objset_t *mos = spa->spa_meta_objset;
3553 	bplist_t *bpl = &spa->spa_sync_bplist;
3554 	vdev_t *rvd = spa->spa_root_vdev;
3555 	vdev_t *vd;
3556 	dmu_tx_t *tx;
3557 	int dirty_vdevs;
3558 
3559 	/*
3560 	 * Lock out configuration changes.
3561 	 */
3562 	spa_config_enter(spa, RW_READER, FTAG);
3563 
3564 	spa->spa_syncing_txg = txg;
3565 	spa->spa_sync_pass = 0;
3566 
3567 	VERIFY(0 == bplist_open(bpl, mos, spa->spa_sync_bplist_obj));
3568 
3569 	tx = dmu_tx_create_assigned(dp, txg);
3570 
3571 	/*
3572 	 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
3573 	 * set spa_deflate if we have no raid-z vdevs.
3574 	 */
3575 	if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
3576 	    spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
3577 		int i;
3578 
3579 		for (i = 0; i < rvd->vdev_children; i++) {
3580 			vd = rvd->vdev_child[i];
3581 			if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
3582 				break;
3583 		}
3584 		if (i == rvd->vdev_children) {
3585 			spa->spa_deflate = TRUE;
3586 			VERIFY(0 == zap_add(spa->spa_meta_objset,
3587 			    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
3588 			    sizeof (uint64_t), 1, &spa->spa_deflate, tx));
3589 		}
3590 	}
3591 
3592 	/*
3593 	 * If anything has changed in this txg, push the deferred frees
3594 	 * from the previous txg.  If not, leave them alone so that we
3595 	 * don't generate work on an otherwise idle system.
3596 	 */
3597 	if (!txg_list_empty(&dp->dp_dirty_datasets, txg) ||
3598 	    !txg_list_empty(&dp->dp_dirty_dirs, txg) ||
3599 	    !txg_list_empty(&dp->dp_sync_tasks, txg))
3600 		spa_sync_deferred_frees(spa, txg);
3601 
3602 	/*
3603 	 * Iterate to convergence.
3604 	 */
3605 	do {
3606 		spa->spa_sync_pass++;
3607 
3608 		spa_sync_config_object(spa, tx);
3609 		spa_sync_spares(spa, tx);
3610 		spa_errlog_sync(spa, txg);
3611 		dsl_pool_sync(dp, txg);
3612 
3613 		dirty_vdevs = 0;
3614 		while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg)) {
3615 			vdev_sync(vd, txg);
3616 			dirty_vdevs++;
3617 		}
3618 
3619 		bplist_sync(bpl, tx);
3620 	} while (dirty_vdevs);
3621 
3622 	bplist_close(bpl);
3623 
3624 	dprintf("txg %llu passes %d\n", txg, spa->spa_sync_pass);
3625 
3626 	/*
3627 	 * Rewrite the vdev configuration (which includes the uberblock)
3628 	 * to commit the transaction group.
3629 	 *
3630 	 * If there are any dirty vdevs, sync the uberblock to all vdevs.
3631 	 * Otherwise, pick a random top-level vdev that's known to be
3632 	 * visible in the config cache (see spa_vdev_add() for details).
3633 	 * If the write fails, try the next vdev until we're tried them all.
3634 	 */
3635 	if (!list_is_empty(&spa->spa_dirty_list)) {
3636 		VERIFY(vdev_config_sync(rvd, txg) == 0);
3637 	} else {
3638 		int children = rvd->vdev_children;
3639 		int c0 = spa_get_random(children);
3640 		int c;
3641 
3642 		for (c = 0; c < children; c++) {
3643 			vd = rvd->vdev_child[(c0 + c) % children];
3644 			if (vd->vdev_ms_array == 0)
3645 				continue;
3646 			if (vdev_config_sync(vd, txg) == 0)
3647 				break;
3648 		}
3649 		if (c == children)
3650 			VERIFY(vdev_config_sync(rvd, txg) == 0);
3651 	}
3652 
3653 	dmu_tx_commit(tx);
3654 
3655 	/*
3656 	 * Clear the dirty config list.
3657 	 */
3658 	while ((vd = list_head(&spa->spa_dirty_list)) != NULL)
3659 		vdev_config_clean(vd);
3660 
3661 	/*
3662 	 * Now that the new config has synced transactionally,
3663 	 * let it become visible to the config cache.
3664 	 */
3665 	if (spa->spa_config_syncing != NULL) {
3666 		spa_config_set(spa, spa->spa_config_syncing);
3667 		spa->spa_config_txg = txg;
3668 		spa->spa_config_syncing = NULL;
3669 	}
3670 
3671 	/*
3672 	 * Make a stable copy of the fully synced uberblock.
3673 	 * We use this as the root for pool traversals.
3674 	 */
3675 	spa->spa_traverse_wanted = 1;	/* tells traverse_more() to stop */
3676 
3677 	spa_scrub_suspend(spa);		/* stop scrubbing and finish I/Os */
3678 
3679 	rw_enter(&spa->spa_traverse_lock, RW_WRITER);
3680 	spa->spa_traverse_wanted = 0;
3681 	spa->spa_ubsync = spa->spa_uberblock;
3682 	rw_exit(&spa->spa_traverse_lock);
3683 
3684 	spa_scrub_resume(spa);		/* resume scrub with new ubsync */
3685 
3686 	/*
3687 	 * Clean up the ZIL records for the synced txg.
3688 	 */
3689 	dsl_pool_zil_clean(dp);
3690 
3691 	/*
3692 	 * Update usable space statistics.
3693 	 */
3694 	while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
3695 		vdev_sync_done(vd, txg);
3696 
3697 	/*
3698 	 * It had better be the case that we didn't dirty anything
3699 	 * since vdev_config_sync().
3700 	 */
3701 	ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
3702 	ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
3703 	ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
3704 	ASSERT(bpl->bpl_queue == NULL);
3705 
3706 	spa_config_exit(spa, FTAG);
3707 
3708 	/*
3709 	 * If any async tasks have been requested, kick them off.
3710 	 */
3711 	spa_async_dispatch(spa);
3712 }
3713 
3714 /*
3715  * Sync all pools.  We don't want to hold the namespace lock across these
3716  * operations, so we take a reference on the spa_t and drop the lock during the
3717  * sync.
3718  */
3719 void
3720 spa_sync_allpools(void)
3721 {
3722 	spa_t *spa = NULL;
3723 	mutex_enter(&spa_namespace_lock);
3724 	while ((spa = spa_next(spa)) != NULL) {
3725 		if (spa_state(spa) != POOL_STATE_ACTIVE)
3726 			continue;
3727 		spa_open_ref(spa, FTAG);
3728 		mutex_exit(&spa_namespace_lock);
3729 		txg_wait_synced(spa_get_dsl(spa), 0);
3730 		mutex_enter(&spa_namespace_lock);
3731 		spa_close(spa, FTAG);
3732 	}
3733 	mutex_exit(&spa_namespace_lock);
3734 }
3735 
3736 /*
3737  * ==========================================================================
3738  * Miscellaneous routines
3739  * ==========================================================================
3740  */
3741 
3742 /*
3743  * Remove all pools in the system.
3744  */
3745 void
3746 spa_evict_all(void)
3747 {
3748 	spa_t *spa;
3749 
3750 	/*
3751 	 * Remove all cached state.  All pools should be closed now,
3752 	 * so every spa in the AVL tree should be unreferenced.
3753 	 */
3754 	mutex_enter(&spa_namespace_lock);
3755 	while ((spa = spa_next(NULL)) != NULL) {
3756 		/*
3757 		 * Stop async tasks.  The async thread may need to detach
3758 		 * a device that's been replaced, which requires grabbing
3759 		 * spa_namespace_lock, so we must drop it here.
3760 		 */
3761 		spa_open_ref(spa, FTAG);
3762 		mutex_exit(&spa_namespace_lock);
3763 		spa_async_suspend(spa);
3764 		mutex_enter(&spa_namespace_lock);
3765 		VERIFY(spa_scrub(spa, POOL_SCRUB_NONE, B_TRUE) == 0);
3766 		spa_close(spa, FTAG);
3767 
3768 		if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
3769 			spa_unload(spa);
3770 			spa_deactivate(spa);
3771 		}
3772 		spa_remove(spa);
3773 	}
3774 	mutex_exit(&spa_namespace_lock);
3775 }
3776 
3777 vdev_t *
3778 spa_lookup_by_guid(spa_t *spa, uint64_t guid)
3779 {
3780 	return (vdev_lookup_by_guid(spa->spa_root_vdev, guid));
3781 }
3782 
3783 void
3784 spa_upgrade(spa_t *spa, uint64_t version)
3785 {
3786 	spa_config_enter(spa, RW_WRITER, FTAG);
3787 
3788 	/*
3789 	 * This should only be called for a non-faulted pool, and since a
3790 	 * future version would result in an unopenable pool, this shouldn't be
3791 	 * possible.
3792 	 */
3793 	ASSERT(spa->spa_uberblock.ub_version <= SPA_VERSION);
3794 	ASSERT(version >= spa->spa_uberblock.ub_version);
3795 
3796 	spa->spa_uberblock.ub_version = version;
3797 	vdev_config_dirty(spa->spa_root_vdev);
3798 
3799 	spa_config_exit(spa, FTAG);
3800 
3801 	txg_wait_synced(spa_get_dsl(spa), 0);
3802 }
3803 
3804 boolean_t
3805 spa_has_spare(spa_t *spa, uint64_t guid)
3806 {
3807 	int i;
3808 	uint64_t spareguid;
3809 
3810 	for (i = 0; i < spa->spa_nspares; i++)
3811 		if (spa->spa_spares[i]->vdev_guid == guid)
3812 			return (B_TRUE);
3813 
3814 	for (i = 0; i < spa->spa_pending_nspares; i++) {
3815 		if (nvlist_lookup_uint64(spa->spa_pending_spares[i],
3816 		    ZPOOL_CONFIG_GUID, &spareguid) == 0 &&
3817 		    spareguid == guid)
3818 			return (B_TRUE);
3819 	}
3820 
3821 	return (B_FALSE);
3822 }
3823 
3824 /*
3825  * Post a sysevent corresponding to the given event.  The 'name' must be one of
3826  * the event definitions in sys/sysevent/eventdefs.h.  The payload will be
3827  * filled in from the spa and (optionally) the vdev.  This doesn't do anything
3828  * in the userland libzpool, as we don't want consumers to misinterpret ztest
3829  * or zdb as real changes.
3830  */
3831 void
3832 spa_event_notify(spa_t *spa, vdev_t *vd, const char *name)
3833 {
3834 #ifdef _KERNEL
3835 	sysevent_t		*ev;
3836 	sysevent_attr_list_t	*attr = NULL;
3837 	sysevent_value_t	value;
3838 	sysevent_id_t		eid;
3839 
3840 	ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs",
3841 	    SE_SLEEP);
3842 
3843 	value.value_type = SE_DATA_TYPE_STRING;
3844 	value.value.sv_string = spa_name(spa);
3845 	if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0)
3846 		goto done;
3847 
3848 	value.value_type = SE_DATA_TYPE_UINT64;
3849 	value.value.sv_uint64 = spa_guid(spa);
3850 	if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0)
3851 		goto done;
3852 
3853 	if (vd) {
3854 		value.value_type = SE_DATA_TYPE_UINT64;
3855 		value.value.sv_uint64 = vd->vdev_guid;
3856 		if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value,
3857 		    SE_SLEEP) != 0)
3858 			goto done;
3859 
3860 		if (vd->vdev_path) {
3861 			value.value_type = SE_DATA_TYPE_STRING;
3862 			value.value.sv_string = vd->vdev_path;
3863 			if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH,
3864 			    &value, SE_SLEEP) != 0)
3865 				goto done;
3866 		}
3867 	}
3868 
3869 	(void) log_sysevent(ev, SE_SLEEP, &eid);
3870 
3871 done:
3872 	if (attr)
3873 		sysevent_free_attr(attr);
3874 	sysevent_free(ev);
3875 #endif
3876 }
3877