1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 /* 30 * This file contains all the routines used when modifying on-disk SPA state. 31 * This includes opening, importing, destroying, exporting a pool, and syncing a 32 * pool. 33 */ 34 35 #include <sys/zfs_context.h> 36 #include <sys/fm/fs/zfs.h> 37 #include <sys/spa_impl.h> 38 #include <sys/zio.h> 39 #include <sys/zio_checksum.h> 40 #include <sys/zio_compress.h> 41 #include <sys/dmu.h> 42 #include <sys/dmu_tx.h> 43 #include <sys/zap.h> 44 #include <sys/zil.h> 45 #include <sys/vdev_impl.h> 46 #include <sys/metaslab.h> 47 #include <sys/uberblock_impl.h> 48 #include <sys/txg.h> 49 #include <sys/avl.h> 50 #include <sys/dmu_traverse.h> 51 #include <sys/dmu_objset.h> 52 #include <sys/unique.h> 53 #include <sys/dsl_pool.h> 54 #include <sys/dsl_dataset.h> 55 #include <sys/dsl_dir.h> 56 #include <sys/dsl_prop.h> 57 #include <sys/dsl_synctask.h> 58 #include <sys/fs/zfs.h> 59 #include <sys/arc.h> 60 #include <sys/callb.h> 61 #include <sys/systeminfo.h> 62 #include <sys/sunddi.h> 63 64 #include "zfs_prop.h" 65 66 int zio_taskq_threads = 8; 67 68 static void spa_sync_props(void *arg1, void *arg2, cred_t *cr, dmu_tx_t *tx); 69 70 /* 71 * ========================================================================== 72 * SPA properties routines 73 * ========================================================================== 74 */ 75 76 /* 77 * Add a (source=src, propname=propval) list to an nvlist. 78 */ 79 static int 80 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval, 81 uint64_t intval, zprop_source_t src) 82 { 83 const char *propname = zpool_prop_to_name(prop); 84 nvlist_t *propval; 85 int err = 0; 86 87 if (err = nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP)) 88 return (err); 89 90 if (err = nvlist_add_uint64(propval, ZPROP_SOURCE, src)) 91 goto out; 92 93 if (strval != NULL) { 94 if (err = nvlist_add_string(propval, ZPROP_VALUE, strval)) 95 goto out; 96 } else { 97 if (err = nvlist_add_uint64(propval, ZPROP_VALUE, intval)) 98 goto out; 99 } 100 101 err = nvlist_add_nvlist(nvl, propname, propval); 102 out: 103 nvlist_free(propval); 104 return (err); 105 } 106 107 /* 108 * Get property values from the spa configuration. 109 */ 110 static int 111 spa_prop_get_config(spa_t *spa, nvlist_t **nvp) 112 { 113 uint64_t size = spa_get_space(spa); 114 uint64_t used = spa_get_alloc(spa); 115 uint64_t cap, version; 116 zprop_source_t src = ZPROP_SRC_NONE; 117 int err; 118 char *cachefile; 119 size_t len; 120 121 /* 122 * readonly properties 123 */ 124 if (err = spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa->spa_name, 125 0, src)) 126 return (err); 127 128 if (err = spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src)) 129 return (err); 130 131 if (err = spa_prop_add_list(*nvp, ZPOOL_PROP_USED, NULL, used, src)) 132 return (err); 133 134 if (err = spa_prop_add_list(*nvp, ZPOOL_PROP_AVAILABLE, NULL, 135 size - used, src)) 136 return (err); 137 138 cap = (size == 0) ? 0 : (used * 100 / size); 139 if (err = spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src)) 140 return (err); 141 142 if (err = spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, 143 spa_guid(spa), src)) 144 return (err); 145 146 if (err = spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL, 147 spa->spa_root_vdev->vdev_state, src)) 148 return (err); 149 150 /* 151 * settable properties that are not stored in the pool property object. 152 */ 153 version = spa_version(spa); 154 if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION)) 155 src = ZPROP_SRC_DEFAULT; 156 else 157 src = ZPROP_SRC_LOCAL; 158 if (err = spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, 159 version, src)) 160 return (err); 161 162 if (spa->spa_root != NULL) { 163 src = ZPROP_SRC_LOCAL; 164 if (err = spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, 165 spa->spa_root, 0, src)) 166 return (err); 167 } 168 169 if (spa->spa_config_dir != NULL) { 170 if (strcmp(spa->spa_config_dir, "none") == 0) { 171 err = spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE, 172 spa->spa_config_dir, 0, ZPROP_SRC_LOCAL); 173 } else { 174 len = strlen(spa->spa_config_dir) + 175 strlen(spa->spa_config_file) + 2; 176 cachefile = kmem_alloc(len, KM_SLEEP); 177 (void) snprintf(cachefile, len, "%s/%s", 178 spa->spa_config_dir, spa->spa_config_file); 179 err = spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE, 180 cachefile, 0, ZPROP_SRC_LOCAL); 181 kmem_free(cachefile, len); 182 } 183 184 if (err) 185 return (err); 186 } 187 188 return (0); 189 } 190 191 /* 192 * Get zpool property values. 193 */ 194 int 195 spa_prop_get(spa_t *spa, nvlist_t **nvp) 196 { 197 zap_cursor_t zc; 198 zap_attribute_t za; 199 objset_t *mos = spa->spa_meta_objset; 200 int err; 201 202 if (err = nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP)) 203 return (err); 204 205 /* 206 * Get properties from the spa config. 207 */ 208 if (err = spa_prop_get_config(spa, nvp)) 209 goto out; 210 211 mutex_enter(&spa->spa_props_lock); 212 /* If no pool property object, no more prop to get. */ 213 if (spa->spa_pool_props_object == 0) { 214 mutex_exit(&spa->spa_props_lock); 215 return (0); 216 } 217 218 /* 219 * Get properties from the MOS pool property object. 220 */ 221 for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object); 222 (err = zap_cursor_retrieve(&zc, &za)) == 0; 223 zap_cursor_advance(&zc)) { 224 uint64_t intval = 0; 225 char *strval = NULL; 226 zprop_source_t src = ZPROP_SRC_DEFAULT; 227 zpool_prop_t prop; 228 229 if ((prop = zpool_name_to_prop(za.za_name)) == ZPROP_INVAL) 230 continue; 231 232 switch (za.za_integer_length) { 233 case 8: 234 /* integer property */ 235 if (za.za_first_integer != 236 zpool_prop_default_numeric(prop)) 237 src = ZPROP_SRC_LOCAL; 238 239 if (prop == ZPOOL_PROP_BOOTFS) { 240 dsl_pool_t *dp; 241 dsl_dataset_t *ds = NULL; 242 243 dp = spa_get_dsl(spa); 244 rw_enter(&dp->dp_config_rwlock, RW_READER); 245 if (err = dsl_dataset_open_obj(dp, 246 za.za_first_integer, NULL, DS_MODE_NONE, 247 FTAG, &ds)) { 248 rw_exit(&dp->dp_config_rwlock); 249 break; 250 } 251 252 strval = kmem_alloc( 253 MAXNAMELEN + strlen(MOS_DIR_NAME) + 1, 254 KM_SLEEP); 255 dsl_dataset_name(ds, strval); 256 dsl_dataset_close(ds, DS_MODE_NONE, FTAG); 257 rw_exit(&dp->dp_config_rwlock); 258 } else { 259 strval = NULL; 260 intval = za.za_first_integer; 261 } 262 263 err = spa_prop_add_list(*nvp, prop, strval, 264 intval, src); 265 266 if (strval != NULL) 267 kmem_free(strval, 268 MAXNAMELEN + strlen(MOS_DIR_NAME) + 1); 269 270 break; 271 272 case 1: 273 /* string property */ 274 strval = kmem_alloc(za.za_num_integers, KM_SLEEP); 275 err = zap_lookup(mos, spa->spa_pool_props_object, 276 za.za_name, 1, za.za_num_integers, strval); 277 if (err) { 278 kmem_free(strval, za.za_num_integers); 279 break; 280 } 281 err = spa_prop_add_list(*nvp, prop, strval, 0, src); 282 kmem_free(strval, za.za_num_integers); 283 break; 284 285 default: 286 break; 287 } 288 } 289 zap_cursor_fini(&zc); 290 mutex_exit(&spa->spa_props_lock); 291 out: 292 if (err && err != ENOENT) { 293 nvlist_free(*nvp); 294 return (err); 295 } 296 297 return (0); 298 } 299 300 /* 301 * Validate the given pool properties nvlist and modify the list 302 * for the property values to be set. 303 */ 304 static int 305 spa_prop_validate(spa_t *spa, nvlist_t *props) 306 { 307 nvpair_t *elem; 308 int error = 0, reset_bootfs = 0; 309 uint64_t objnum; 310 311 elem = NULL; 312 while ((elem = nvlist_next_nvpair(props, elem)) != NULL) { 313 zpool_prop_t prop; 314 char *propname, *strval; 315 uint64_t intval; 316 vdev_t *rvdev; 317 char *vdev_type; 318 objset_t *os; 319 char *slash; 320 321 propname = nvpair_name(elem); 322 323 if ((prop = zpool_name_to_prop(propname)) == ZPROP_INVAL) 324 return (EINVAL); 325 326 switch (prop) { 327 case ZPOOL_PROP_VERSION: 328 error = nvpair_value_uint64(elem, &intval); 329 if (!error && 330 (intval < spa_version(spa) || intval > SPA_VERSION)) 331 error = EINVAL; 332 break; 333 334 case ZPOOL_PROP_DELEGATION: 335 case ZPOOL_PROP_AUTOREPLACE: 336 error = nvpair_value_uint64(elem, &intval); 337 if (!error && intval > 1) 338 error = EINVAL; 339 break; 340 341 case ZPOOL_PROP_BOOTFS: 342 if (spa_version(spa) < SPA_VERSION_BOOTFS) { 343 error = ENOTSUP; 344 break; 345 } 346 347 /* 348 * A bootable filesystem can not be on a RAIDZ pool 349 * nor a striped pool with more than 1 device. 350 */ 351 rvdev = spa->spa_root_vdev; 352 vdev_type = 353 rvdev->vdev_child[0]->vdev_ops->vdev_op_type; 354 if (rvdev->vdev_children > 1 || 355 strcmp(vdev_type, VDEV_TYPE_RAIDZ) == 0 || 356 strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) { 357 error = ENOTSUP; 358 break; 359 } 360 361 reset_bootfs = 1; 362 363 error = nvpair_value_string(elem, &strval); 364 365 if (!error) { 366 if (strval == NULL || strval[0] == '\0') { 367 objnum = zpool_prop_default_numeric( 368 ZPOOL_PROP_BOOTFS); 369 break; 370 } 371 372 if (error = dmu_objset_open(strval, DMU_OST_ZFS, 373 DS_MODE_STANDARD | DS_MODE_READONLY, &os)) 374 break; 375 objnum = dmu_objset_id(os); 376 dmu_objset_close(os); 377 } 378 break; 379 case ZPOOL_PROP_FAILUREMODE: 380 error = nvpair_value_uint64(elem, &intval); 381 if (!error && (intval < ZIO_FAILURE_MODE_WAIT || 382 intval > ZIO_FAILURE_MODE_PANIC)) 383 error = EINVAL; 384 385 /* 386 * This is a special case which only occurs when 387 * the pool has completely failed. This allows 388 * the user to change the in-core failmode property 389 * without syncing it out to disk (I/Os might 390 * currently be blocked). We do this by returning 391 * EIO to the caller (spa_prop_set) to trick it 392 * into thinking we encountered a property validation 393 * error. 394 */ 395 if (!error && spa_state(spa) == POOL_STATE_IO_FAILURE) { 396 spa->spa_failmode = intval; 397 error = EIO; 398 } 399 break; 400 401 case ZPOOL_PROP_CACHEFILE: 402 if ((error = nvpair_value_string(elem, &strval)) != 0) 403 break; 404 405 if (strval[0] == '\0') 406 break; 407 408 if (strcmp(strval, "none") == 0) 409 break; 410 411 if (strval[0] != '/') { 412 error = EINVAL; 413 break; 414 } 415 416 slash = strrchr(strval, '/'); 417 ASSERT(slash != NULL); 418 419 if (slash[1] == '\0' || strcmp(slash, "/.") == 0 || 420 strcmp(slash, "/..") == 0) 421 error = EINVAL; 422 break; 423 } 424 425 if (error) 426 break; 427 } 428 429 if (!error && reset_bootfs) { 430 error = nvlist_remove(props, 431 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING); 432 433 if (!error) { 434 error = nvlist_add_uint64(props, 435 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum); 436 } 437 } 438 439 return (error); 440 } 441 442 int 443 spa_prop_set(spa_t *spa, nvlist_t *nvp) 444 { 445 int error; 446 447 if ((error = spa_prop_validate(spa, nvp)) != 0) 448 return (error); 449 450 return (dsl_sync_task_do(spa_get_dsl(spa), NULL, spa_sync_props, 451 spa, nvp, 3)); 452 } 453 454 /* 455 * If the bootfs property value is dsobj, clear it. 456 */ 457 void 458 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx) 459 { 460 if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) { 461 VERIFY(zap_remove(spa->spa_meta_objset, 462 spa->spa_pool_props_object, 463 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0); 464 spa->spa_bootfs = 0; 465 } 466 } 467 468 /* 469 * ========================================================================== 470 * SPA state manipulation (open/create/destroy/import/export) 471 * ========================================================================== 472 */ 473 474 static int 475 spa_error_entry_compare(const void *a, const void *b) 476 { 477 spa_error_entry_t *sa = (spa_error_entry_t *)a; 478 spa_error_entry_t *sb = (spa_error_entry_t *)b; 479 int ret; 480 481 ret = bcmp(&sa->se_bookmark, &sb->se_bookmark, 482 sizeof (zbookmark_t)); 483 484 if (ret < 0) 485 return (-1); 486 else if (ret > 0) 487 return (1); 488 else 489 return (0); 490 } 491 492 /* 493 * Utility function which retrieves copies of the current logs and 494 * re-initializes them in the process. 495 */ 496 void 497 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub) 498 { 499 ASSERT(MUTEX_HELD(&spa->spa_errlist_lock)); 500 501 bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t)); 502 bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t)); 503 504 avl_create(&spa->spa_errlist_scrub, 505 spa_error_entry_compare, sizeof (spa_error_entry_t), 506 offsetof(spa_error_entry_t, se_avl)); 507 avl_create(&spa->spa_errlist_last, 508 spa_error_entry_compare, sizeof (spa_error_entry_t), 509 offsetof(spa_error_entry_t, se_avl)); 510 } 511 512 /* 513 * Activate an uninitialized pool. 514 */ 515 static void 516 spa_activate(spa_t *spa) 517 { 518 int t; 519 520 ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED); 521 522 spa->spa_state = POOL_STATE_ACTIVE; 523 524 spa->spa_normal_class = metaslab_class_create(); 525 spa->spa_log_class = metaslab_class_create(); 526 527 for (t = 0; t < ZIO_TYPES; t++) { 528 spa->spa_zio_issue_taskq[t] = taskq_create("spa_zio_issue", 529 zio_taskq_threads, maxclsyspri, 50, INT_MAX, 530 TASKQ_PREPOPULATE); 531 spa->spa_zio_intr_taskq[t] = taskq_create("spa_zio_intr", 532 zio_taskq_threads, maxclsyspri, 50, INT_MAX, 533 TASKQ_PREPOPULATE); 534 } 535 536 list_create(&spa->spa_dirty_list, sizeof (vdev_t), 537 offsetof(vdev_t, vdev_dirty_node)); 538 list_create(&spa->spa_zio_list, sizeof (zio_t), 539 offsetof(zio_t, zio_link_node)); 540 541 txg_list_create(&spa->spa_vdev_txg_list, 542 offsetof(struct vdev, vdev_txg_node)); 543 544 avl_create(&spa->spa_errlist_scrub, 545 spa_error_entry_compare, sizeof (spa_error_entry_t), 546 offsetof(spa_error_entry_t, se_avl)); 547 avl_create(&spa->spa_errlist_last, 548 spa_error_entry_compare, sizeof (spa_error_entry_t), 549 offsetof(spa_error_entry_t, se_avl)); 550 } 551 552 /* 553 * Opposite of spa_activate(). 554 */ 555 static void 556 spa_deactivate(spa_t *spa) 557 { 558 int t; 559 560 ASSERT(spa->spa_sync_on == B_FALSE); 561 ASSERT(spa->spa_dsl_pool == NULL); 562 ASSERT(spa->spa_root_vdev == NULL); 563 564 ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED); 565 566 txg_list_destroy(&spa->spa_vdev_txg_list); 567 568 list_destroy(&spa->spa_dirty_list); 569 list_destroy(&spa->spa_zio_list); 570 571 for (t = 0; t < ZIO_TYPES; t++) { 572 taskq_destroy(spa->spa_zio_issue_taskq[t]); 573 taskq_destroy(spa->spa_zio_intr_taskq[t]); 574 spa->spa_zio_issue_taskq[t] = NULL; 575 spa->spa_zio_intr_taskq[t] = NULL; 576 } 577 578 metaslab_class_destroy(spa->spa_normal_class); 579 spa->spa_normal_class = NULL; 580 581 metaslab_class_destroy(spa->spa_log_class); 582 spa->spa_log_class = NULL; 583 584 /* 585 * If this was part of an import or the open otherwise failed, we may 586 * still have errors left in the queues. Empty them just in case. 587 */ 588 spa_errlog_drain(spa); 589 590 avl_destroy(&spa->spa_errlist_scrub); 591 avl_destroy(&spa->spa_errlist_last); 592 593 spa->spa_state = POOL_STATE_UNINITIALIZED; 594 } 595 596 /* 597 * Verify a pool configuration, and construct the vdev tree appropriately. This 598 * will create all the necessary vdevs in the appropriate layout, with each vdev 599 * in the CLOSED state. This will prep the pool before open/creation/import. 600 * All vdev validation is done by the vdev_alloc() routine. 601 */ 602 static int 603 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, 604 uint_t id, int atype) 605 { 606 nvlist_t **child; 607 uint_t c, children; 608 int error; 609 610 if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0) 611 return (error); 612 613 if ((*vdp)->vdev_ops->vdev_op_leaf) 614 return (0); 615 616 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, 617 &child, &children) != 0) { 618 vdev_free(*vdp); 619 *vdp = NULL; 620 return (EINVAL); 621 } 622 623 for (c = 0; c < children; c++) { 624 vdev_t *vd; 625 if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c, 626 atype)) != 0) { 627 vdev_free(*vdp); 628 *vdp = NULL; 629 return (error); 630 } 631 } 632 633 ASSERT(*vdp != NULL); 634 635 return (0); 636 } 637 638 /* 639 * Opposite of spa_load(). 640 */ 641 static void 642 spa_unload(spa_t *spa) 643 { 644 int i; 645 646 /* 647 * Stop async tasks. 648 */ 649 spa_async_suspend(spa); 650 651 /* 652 * Stop syncing. 653 */ 654 if (spa->spa_sync_on) { 655 txg_sync_stop(spa->spa_dsl_pool); 656 spa->spa_sync_on = B_FALSE; 657 } 658 659 /* 660 * Wait for any outstanding prefetch I/O to complete. 661 */ 662 spa_config_enter(spa, RW_WRITER, FTAG); 663 spa_config_exit(spa, FTAG); 664 665 /* 666 * Drop and purge level 2 cache 667 */ 668 spa_l2cache_drop(spa); 669 670 /* 671 * Close the dsl pool. 672 */ 673 if (spa->spa_dsl_pool) { 674 dsl_pool_close(spa->spa_dsl_pool); 675 spa->spa_dsl_pool = NULL; 676 } 677 678 /* 679 * Close all vdevs. 680 */ 681 if (spa->spa_root_vdev) 682 vdev_free(spa->spa_root_vdev); 683 ASSERT(spa->spa_root_vdev == NULL); 684 685 for (i = 0; i < spa->spa_spares.sav_count; i++) 686 vdev_free(spa->spa_spares.sav_vdevs[i]); 687 if (spa->spa_spares.sav_vdevs) { 688 kmem_free(spa->spa_spares.sav_vdevs, 689 spa->spa_spares.sav_count * sizeof (void *)); 690 spa->spa_spares.sav_vdevs = NULL; 691 } 692 if (spa->spa_spares.sav_config) { 693 nvlist_free(spa->spa_spares.sav_config); 694 spa->spa_spares.sav_config = NULL; 695 } 696 697 for (i = 0; i < spa->spa_l2cache.sav_count; i++) 698 vdev_free(spa->spa_l2cache.sav_vdevs[i]); 699 if (spa->spa_l2cache.sav_vdevs) { 700 kmem_free(spa->spa_l2cache.sav_vdevs, 701 spa->spa_l2cache.sav_count * sizeof (void *)); 702 spa->spa_l2cache.sav_vdevs = NULL; 703 } 704 if (spa->spa_l2cache.sav_config) { 705 nvlist_free(spa->spa_l2cache.sav_config); 706 spa->spa_l2cache.sav_config = NULL; 707 } 708 709 spa->spa_async_suspended = 0; 710 } 711 712 /* 713 * Load (or re-load) the current list of vdevs describing the active spares for 714 * this pool. When this is called, we have some form of basic information in 715 * 'spa_spares.sav_config'. We parse this into vdevs, try to open them, and 716 * then re-generate a more complete list including status information. 717 */ 718 static void 719 spa_load_spares(spa_t *spa) 720 { 721 nvlist_t **spares; 722 uint_t nspares; 723 int i; 724 vdev_t *vd, *tvd; 725 726 /* 727 * First, close and free any existing spare vdevs. 728 */ 729 for (i = 0; i < spa->spa_spares.sav_count; i++) { 730 vd = spa->spa_spares.sav_vdevs[i]; 731 732 /* Undo the call to spa_activate() below */ 733 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid)) != NULL && 734 tvd->vdev_isspare) 735 spa_spare_remove(tvd); 736 vdev_close(vd); 737 vdev_free(vd); 738 } 739 740 if (spa->spa_spares.sav_vdevs) 741 kmem_free(spa->spa_spares.sav_vdevs, 742 spa->spa_spares.sav_count * sizeof (void *)); 743 744 if (spa->spa_spares.sav_config == NULL) 745 nspares = 0; 746 else 747 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, 748 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0); 749 750 spa->spa_spares.sav_count = (int)nspares; 751 spa->spa_spares.sav_vdevs = NULL; 752 753 if (nspares == 0) 754 return; 755 756 /* 757 * Construct the array of vdevs, opening them to get status in the 758 * process. For each spare, there is potentially two different vdev_t 759 * structures associated with it: one in the list of spares (used only 760 * for basic validation purposes) and one in the active vdev 761 * configuration (if it's spared in). During this phase we open and 762 * validate each vdev on the spare list. If the vdev also exists in the 763 * active configuration, then we also mark this vdev as an active spare. 764 */ 765 spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *), 766 KM_SLEEP); 767 for (i = 0; i < spa->spa_spares.sav_count; i++) { 768 VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0, 769 VDEV_ALLOC_SPARE) == 0); 770 ASSERT(vd != NULL); 771 772 spa->spa_spares.sav_vdevs[i] = vd; 773 774 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid)) != NULL) { 775 if (!tvd->vdev_isspare) 776 spa_spare_add(tvd); 777 778 /* 779 * We only mark the spare active if we were successfully 780 * able to load the vdev. Otherwise, importing a pool 781 * with a bad active spare would result in strange 782 * behavior, because multiple pool would think the spare 783 * is actively in use. 784 * 785 * There is a vulnerability here to an equally bizarre 786 * circumstance, where a dead active spare is later 787 * brought back to life (onlined or otherwise). Given 788 * the rarity of this scenario, and the extra complexity 789 * it adds, we ignore the possibility. 790 */ 791 if (!vdev_is_dead(tvd)) 792 spa_spare_activate(tvd); 793 } 794 795 if (vdev_open(vd) != 0) 796 continue; 797 798 vd->vdev_top = vd; 799 if (vdev_validate_aux(vd) == 0) 800 spa_spare_add(vd); 801 } 802 803 /* 804 * Recompute the stashed list of spares, with status information 805 * this time. 806 */ 807 VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES, 808 DATA_TYPE_NVLIST_ARRAY) == 0); 809 810 spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *), 811 KM_SLEEP); 812 for (i = 0; i < spa->spa_spares.sav_count; i++) 813 spares[i] = vdev_config_generate(spa, 814 spa->spa_spares.sav_vdevs[i], B_TRUE, B_TRUE, B_FALSE); 815 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config, 816 ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0); 817 for (i = 0; i < spa->spa_spares.sav_count; i++) 818 nvlist_free(spares[i]); 819 kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *)); 820 } 821 822 /* 823 * Load (or re-load) the current list of vdevs describing the active l2cache for 824 * this pool. When this is called, we have some form of basic information in 825 * 'spa_l2cache.sav_config'. We parse this into vdevs, try to open them, and 826 * then re-generate a more complete list including status information. 827 * Devices which are already active have their details maintained, and are 828 * not re-opened. 829 */ 830 static void 831 spa_load_l2cache(spa_t *spa) 832 { 833 nvlist_t **l2cache; 834 uint_t nl2cache; 835 int i, j, oldnvdevs; 836 uint64_t guid; 837 vdev_t *vd, **oldvdevs, **newvdevs; 838 spa_aux_vdev_t *sav = &spa->spa_l2cache; 839 840 if (sav->sav_config != NULL) { 841 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, 842 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0); 843 newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP); 844 } else { 845 nl2cache = 0; 846 } 847 848 oldvdevs = sav->sav_vdevs; 849 oldnvdevs = sav->sav_count; 850 sav->sav_vdevs = NULL; 851 sav->sav_count = 0; 852 853 /* 854 * Process new nvlist of vdevs. 855 */ 856 for (i = 0; i < nl2cache; i++) { 857 VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID, 858 &guid) == 0); 859 860 newvdevs[i] = NULL; 861 for (j = 0; j < oldnvdevs; j++) { 862 vd = oldvdevs[j]; 863 if (vd != NULL && guid == vd->vdev_guid) { 864 /* 865 * Retain previous vdev for add/remove ops. 866 */ 867 newvdevs[i] = vd; 868 oldvdevs[j] = NULL; 869 break; 870 } 871 } 872 873 if (newvdevs[i] == NULL) { 874 /* 875 * Create new vdev 876 */ 877 VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0, 878 VDEV_ALLOC_L2CACHE) == 0); 879 ASSERT(vd != NULL); 880 newvdevs[i] = vd; 881 882 /* 883 * Commit this vdev as an l2cache device, 884 * even if it fails to open. 885 */ 886 spa_l2cache_add(vd); 887 888 if (vdev_open(vd) != 0) 889 continue; 890 891 vd->vdev_top = vd; 892 (void) vdev_validate_aux(vd); 893 894 if (!vdev_is_dead(vd)) { 895 uint64_t size; 896 size = vdev_get_rsize(vd); 897 ASSERT3U(size, >, 0); 898 if (spa_mode & FWRITE) { 899 l2arc_add_vdev(spa, vd, 900 VDEV_LABEL_START_SIZE, 901 size - VDEV_LABEL_START_SIZE); 902 } 903 spa_l2cache_activate(vd); 904 } 905 } 906 } 907 908 /* 909 * Purge vdevs that were dropped 910 */ 911 for (i = 0; i < oldnvdevs; i++) { 912 uint64_t pool; 913 914 vd = oldvdevs[i]; 915 if (vd != NULL) { 916 if (spa_mode & FWRITE && 917 spa_l2cache_exists(vd->vdev_guid, &pool) && 918 pool != 0ULL) { 919 l2arc_remove_vdev(vd); 920 } 921 (void) vdev_close(vd); 922 spa_l2cache_remove(vd); 923 } 924 } 925 926 if (oldvdevs) 927 kmem_free(oldvdevs, oldnvdevs * sizeof (void *)); 928 929 if (sav->sav_config == NULL) 930 goto out; 931 932 sav->sav_vdevs = newvdevs; 933 sav->sav_count = (int)nl2cache; 934 935 /* 936 * Recompute the stashed list of l2cache devices, with status 937 * information this time. 938 */ 939 VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE, 940 DATA_TYPE_NVLIST_ARRAY) == 0); 941 942 l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP); 943 for (i = 0; i < sav->sav_count; i++) 944 l2cache[i] = vdev_config_generate(spa, 945 sav->sav_vdevs[i], B_TRUE, B_FALSE, B_TRUE); 946 VERIFY(nvlist_add_nvlist_array(sav->sav_config, 947 ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0); 948 out: 949 for (i = 0; i < sav->sav_count; i++) 950 nvlist_free(l2cache[i]); 951 if (sav->sav_count) 952 kmem_free(l2cache, sav->sav_count * sizeof (void *)); 953 } 954 955 static int 956 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value) 957 { 958 dmu_buf_t *db; 959 char *packed = NULL; 960 size_t nvsize = 0; 961 int error; 962 *value = NULL; 963 964 VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db)); 965 nvsize = *(uint64_t *)db->db_data; 966 dmu_buf_rele(db, FTAG); 967 968 packed = kmem_alloc(nvsize, KM_SLEEP); 969 error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed); 970 if (error == 0) 971 error = nvlist_unpack(packed, nvsize, value, 0); 972 kmem_free(packed, nvsize); 973 974 return (error); 975 } 976 977 /* 978 * Checks to see if the given vdev could not be opened, in which case we post a 979 * sysevent to notify the autoreplace code that the device has been removed. 980 */ 981 static void 982 spa_check_removed(vdev_t *vd) 983 { 984 int c; 985 986 for (c = 0; c < vd->vdev_children; c++) 987 spa_check_removed(vd->vdev_child[c]); 988 989 if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd)) { 990 zfs_post_autoreplace(vd->vdev_spa, vd); 991 spa_event_notify(vd->vdev_spa, vd, ESC_ZFS_VDEV_CHECK); 992 } 993 } 994 995 /* 996 * Load an existing storage pool, using the pool's builtin spa_config as a 997 * source of configuration information. 998 */ 999 static int 1000 spa_load(spa_t *spa, nvlist_t *config, spa_load_state_t state, int mosconfig) 1001 { 1002 int error = 0; 1003 nvlist_t *nvroot = NULL; 1004 vdev_t *rvd; 1005 uberblock_t *ub = &spa->spa_uberblock; 1006 uint64_t config_cache_txg = spa->spa_config_txg; 1007 uint64_t pool_guid; 1008 uint64_t version; 1009 zio_t *zio; 1010 uint64_t autoreplace = 0; 1011 1012 spa->spa_load_state = state; 1013 1014 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot) || 1015 nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid)) { 1016 error = EINVAL; 1017 goto out; 1018 } 1019 1020 /* 1021 * Versioning wasn't explicitly added to the label until later, so if 1022 * it's not present treat it as the initial version. 1023 */ 1024 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION, &version) != 0) 1025 version = SPA_VERSION_INITIAL; 1026 1027 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, 1028 &spa->spa_config_txg); 1029 1030 if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) && 1031 spa_guid_exists(pool_guid, 0)) { 1032 error = EEXIST; 1033 goto out; 1034 } 1035 1036 spa->spa_load_guid = pool_guid; 1037 1038 /* 1039 * Parse the configuration into a vdev tree. We explicitly set the 1040 * value that will be returned by spa_version() since parsing the 1041 * configuration requires knowing the version number. 1042 */ 1043 spa_config_enter(spa, RW_WRITER, FTAG); 1044 spa->spa_ubsync.ub_version = version; 1045 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_LOAD); 1046 spa_config_exit(spa, FTAG); 1047 1048 if (error != 0) 1049 goto out; 1050 1051 ASSERT(spa->spa_root_vdev == rvd); 1052 ASSERT(spa_guid(spa) == pool_guid); 1053 1054 /* 1055 * Try to open all vdevs, loading each label in the process. 1056 */ 1057 error = vdev_open(rvd); 1058 if (error != 0) 1059 goto out; 1060 1061 /* 1062 * Validate the labels for all leaf vdevs. We need to grab the config 1063 * lock because all label I/O is done with the ZIO_FLAG_CONFIG_HELD 1064 * flag. 1065 */ 1066 spa_config_enter(spa, RW_READER, FTAG); 1067 error = vdev_validate(rvd); 1068 spa_config_exit(spa, FTAG); 1069 1070 if (error != 0) 1071 goto out; 1072 1073 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) { 1074 error = ENXIO; 1075 goto out; 1076 } 1077 1078 /* 1079 * Find the best uberblock. 1080 */ 1081 bzero(ub, sizeof (uberblock_t)); 1082 1083 zio = zio_root(spa, NULL, NULL, 1084 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE); 1085 vdev_uberblock_load(zio, rvd, ub); 1086 error = zio_wait(zio); 1087 1088 /* 1089 * If we weren't able to find a single valid uberblock, return failure. 1090 */ 1091 if (ub->ub_txg == 0) { 1092 vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN, 1093 VDEV_AUX_CORRUPT_DATA); 1094 error = ENXIO; 1095 goto out; 1096 } 1097 1098 /* 1099 * If the pool is newer than the code, we can't open it. 1100 */ 1101 if (ub->ub_version > SPA_VERSION) { 1102 vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN, 1103 VDEV_AUX_VERSION_NEWER); 1104 error = ENOTSUP; 1105 goto out; 1106 } 1107 1108 /* 1109 * If the vdev guid sum doesn't match the uberblock, we have an 1110 * incomplete configuration. 1111 */ 1112 if (rvd->vdev_guid_sum != ub->ub_guid_sum && mosconfig) { 1113 vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN, 1114 VDEV_AUX_BAD_GUID_SUM); 1115 error = ENXIO; 1116 goto out; 1117 } 1118 1119 /* 1120 * Initialize internal SPA structures. 1121 */ 1122 spa->spa_state = POOL_STATE_ACTIVE; 1123 spa->spa_ubsync = spa->spa_uberblock; 1124 spa->spa_first_txg = spa_last_synced_txg(spa) + 1; 1125 error = dsl_pool_open(spa, spa->spa_first_txg, &spa->spa_dsl_pool); 1126 if (error) { 1127 vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN, 1128 VDEV_AUX_CORRUPT_DATA); 1129 goto out; 1130 } 1131 spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset; 1132 1133 if (zap_lookup(spa->spa_meta_objset, 1134 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG, 1135 sizeof (uint64_t), 1, &spa->spa_config_object) != 0) { 1136 vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN, 1137 VDEV_AUX_CORRUPT_DATA); 1138 error = EIO; 1139 goto out; 1140 } 1141 1142 if (!mosconfig) { 1143 nvlist_t *newconfig; 1144 uint64_t hostid; 1145 1146 if (load_nvlist(spa, spa->spa_config_object, &newconfig) != 0) { 1147 vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN, 1148 VDEV_AUX_CORRUPT_DATA); 1149 error = EIO; 1150 goto out; 1151 } 1152 1153 if (nvlist_lookup_uint64(newconfig, ZPOOL_CONFIG_HOSTID, 1154 &hostid) == 0) { 1155 char *hostname; 1156 unsigned long myhostid = 0; 1157 1158 VERIFY(nvlist_lookup_string(newconfig, 1159 ZPOOL_CONFIG_HOSTNAME, &hostname) == 0); 1160 1161 (void) ddi_strtoul(hw_serial, NULL, 10, &myhostid); 1162 if (hostid != 0 && myhostid != 0 && 1163 (unsigned long)hostid != myhostid) { 1164 cmn_err(CE_WARN, "pool '%s' could not be " 1165 "loaded as it was last accessed by " 1166 "another system (host: %s hostid: 0x%lx). " 1167 "See: http://www.sun.com/msg/ZFS-8000-EY", 1168 spa->spa_name, hostname, 1169 (unsigned long)hostid); 1170 error = EBADF; 1171 goto out; 1172 } 1173 } 1174 1175 spa_config_set(spa, newconfig); 1176 spa_unload(spa); 1177 spa_deactivate(spa); 1178 spa_activate(spa); 1179 1180 return (spa_load(spa, newconfig, state, B_TRUE)); 1181 } 1182 1183 if (zap_lookup(spa->spa_meta_objset, 1184 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPLIST, 1185 sizeof (uint64_t), 1, &spa->spa_sync_bplist_obj) != 0) { 1186 vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN, 1187 VDEV_AUX_CORRUPT_DATA); 1188 error = EIO; 1189 goto out; 1190 } 1191 1192 /* 1193 * Load the bit that tells us to use the new accounting function 1194 * (raid-z deflation). If we have an older pool, this will not 1195 * be present. 1196 */ 1197 error = zap_lookup(spa->spa_meta_objset, 1198 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE, 1199 sizeof (uint64_t), 1, &spa->spa_deflate); 1200 if (error != 0 && error != ENOENT) { 1201 vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN, 1202 VDEV_AUX_CORRUPT_DATA); 1203 error = EIO; 1204 goto out; 1205 } 1206 1207 /* 1208 * Load the persistent error log. If we have an older pool, this will 1209 * not be present. 1210 */ 1211 error = zap_lookup(spa->spa_meta_objset, 1212 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_ERRLOG_LAST, 1213 sizeof (uint64_t), 1, &spa->spa_errlog_last); 1214 if (error != 0 && error != ENOENT) { 1215 vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN, 1216 VDEV_AUX_CORRUPT_DATA); 1217 error = EIO; 1218 goto out; 1219 } 1220 1221 error = zap_lookup(spa->spa_meta_objset, 1222 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_ERRLOG_SCRUB, 1223 sizeof (uint64_t), 1, &spa->spa_errlog_scrub); 1224 if (error != 0 && error != ENOENT) { 1225 vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN, 1226 VDEV_AUX_CORRUPT_DATA); 1227 error = EIO; 1228 goto out; 1229 } 1230 1231 /* 1232 * Load the history object. If we have an older pool, this 1233 * will not be present. 1234 */ 1235 error = zap_lookup(spa->spa_meta_objset, 1236 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_HISTORY, 1237 sizeof (uint64_t), 1, &spa->spa_history); 1238 if (error != 0 && error != ENOENT) { 1239 vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN, 1240 VDEV_AUX_CORRUPT_DATA); 1241 error = EIO; 1242 goto out; 1243 } 1244 1245 /* 1246 * Load any hot spares for this pool. 1247 */ 1248 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 1249 DMU_POOL_SPARES, sizeof (uint64_t), 1, &spa->spa_spares.sav_object); 1250 if (error != 0 && error != ENOENT) { 1251 vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN, 1252 VDEV_AUX_CORRUPT_DATA); 1253 error = EIO; 1254 goto out; 1255 } 1256 if (error == 0) { 1257 ASSERT(spa_version(spa) >= SPA_VERSION_SPARES); 1258 if (load_nvlist(spa, spa->spa_spares.sav_object, 1259 &spa->spa_spares.sav_config) != 0) { 1260 vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN, 1261 VDEV_AUX_CORRUPT_DATA); 1262 error = EIO; 1263 goto out; 1264 } 1265 1266 spa_config_enter(spa, RW_WRITER, FTAG); 1267 spa_load_spares(spa); 1268 spa_config_exit(spa, FTAG); 1269 } 1270 1271 /* 1272 * Load any level 2 ARC devices for this pool. 1273 */ 1274 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 1275 DMU_POOL_L2CACHE, sizeof (uint64_t), 1, 1276 &spa->spa_l2cache.sav_object); 1277 if (error != 0 && error != ENOENT) { 1278 vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN, 1279 VDEV_AUX_CORRUPT_DATA); 1280 error = EIO; 1281 goto out; 1282 } 1283 if (error == 0) { 1284 ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE); 1285 if (load_nvlist(spa, spa->spa_l2cache.sav_object, 1286 &spa->spa_l2cache.sav_config) != 0) { 1287 vdev_set_state(rvd, B_TRUE, 1288 VDEV_STATE_CANT_OPEN, 1289 VDEV_AUX_CORRUPT_DATA); 1290 error = EIO; 1291 goto out; 1292 } 1293 1294 spa_config_enter(spa, RW_WRITER, FTAG); 1295 spa_load_l2cache(spa); 1296 spa_config_exit(spa, FTAG); 1297 } 1298 1299 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION); 1300 1301 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 1302 DMU_POOL_PROPS, sizeof (uint64_t), 1, &spa->spa_pool_props_object); 1303 1304 if (error && error != ENOENT) { 1305 vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN, 1306 VDEV_AUX_CORRUPT_DATA); 1307 error = EIO; 1308 goto out; 1309 } 1310 1311 if (error == 0) { 1312 (void) zap_lookup(spa->spa_meta_objset, 1313 spa->spa_pool_props_object, 1314 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), 1315 sizeof (uint64_t), 1, &spa->spa_bootfs); 1316 (void) zap_lookup(spa->spa_meta_objset, 1317 spa->spa_pool_props_object, 1318 zpool_prop_to_name(ZPOOL_PROP_AUTOREPLACE), 1319 sizeof (uint64_t), 1, &autoreplace); 1320 (void) zap_lookup(spa->spa_meta_objset, 1321 spa->spa_pool_props_object, 1322 zpool_prop_to_name(ZPOOL_PROP_DELEGATION), 1323 sizeof (uint64_t), 1, &spa->spa_delegation); 1324 (void) zap_lookup(spa->spa_meta_objset, 1325 spa->spa_pool_props_object, 1326 zpool_prop_to_name(ZPOOL_PROP_FAILUREMODE), 1327 sizeof (uint64_t), 1, &spa->spa_failmode); 1328 } 1329 1330 /* 1331 * If the 'autoreplace' property is set, then post a resource notifying 1332 * the ZFS DE that it should not issue any faults for unopenable 1333 * devices. We also iterate over the vdevs, and post a sysevent for any 1334 * unopenable vdevs so that the normal autoreplace handler can take 1335 * over. 1336 */ 1337 if (autoreplace) 1338 spa_check_removed(spa->spa_root_vdev); 1339 1340 /* 1341 * Load the vdev state for all toplevel vdevs. 1342 */ 1343 vdev_load(rvd); 1344 1345 /* 1346 * Propagate the leaf DTLs we just loaded all the way up the tree. 1347 */ 1348 spa_config_enter(spa, RW_WRITER, FTAG); 1349 vdev_dtl_reassess(rvd, 0, 0, B_FALSE); 1350 spa_config_exit(spa, FTAG); 1351 1352 /* 1353 * Check the state of the root vdev. If it can't be opened, it 1354 * indicates one or more toplevel vdevs are faulted. 1355 */ 1356 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) { 1357 error = ENXIO; 1358 goto out; 1359 } 1360 1361 if ((spa_mode & FWRITE) && state != SPA_LOAD_TRYIMPORT) { 1362 dmu_tx_t *tx; 1363 int need_update = B_FALSE; 1364 int c; 1365 1366 /* 1367 * Claim log blocks that haven't been committed yet. 1368 * This must all happen in a single txg. 1369 */ 1370 tx = dmu_tx_create_assigned(spa_get_dsl(spa), 1371 spa_first_txg(spa)); 1372 (void) dmu_objset_find(spa->spa_name, 1373 zil_claim, tx, DS_FIND_CHILDREN); 1374 dmu_tx_commit(tx); 1375 1376 spa->spa_sync_on = B_TRUE; 1377 txg_sync_start(spa->spa_dsl_pool); 1378 1379 /* 1380 * Wait for all claims to sync. 1381 */ 1382 txg_wait_synced(spa->spa_dsl_pool, 0); 1383 1384 /* 1385 * If the config cache is stale, or we have uninitialized 1386 * metaslabs (see spa_vdev_add()), then update the config. 1387 */ 1388 if (config_cache_txg != spa->spa_config_txg || 1389 state == SPA_LOAD_IMPORT) 1390 need_update = B_TRUE; 1391 1392 for (c = 0; c < rvd->vdev_children; c++) 1393 if (rvd->vdev_child[c]->vdev_ms_array == 0) 1394 need_update = B_TRUE; 1395 1396 /* 1397 * Update the config cache asychronously in case we're the 1398 * root pool, in which case the config cache isn't writable yet. 1399 */ 1400 if (need_update) 1401 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 1402 } 1403 1404 error = 0; 1405 out: 1406 if (error && error != EBADF) 1407 zfs_ereport_post(FM_EREPORT_ZFS_POOL, spa, NULL, NULL, 0, 0); 1408 spa->spa_load_state = SPA_LOAD_NONE; 1409 spa->spa_ena = 0; 1410 1411 return (error); 1412 } 1413 1414 /* 1415 * Pool Open/Import 1416 * 1417 * The import case is identical to an open except that the configuration is sent 1418 * down from userland, instead of grabbed from the configuration cache. For the 1419 * case of an open, the pool configuration will exist in the 1420 * POOL_STATE_UNINITIALIZED state. 1421 * 1422 * The stats information (gen/count/ustats) is used to gather vdev statistics at 1423 * the same time open the pool, without having to keep around the spa_t in some 1424 * ambiguous state. 1425 */ 1426 static int 1427 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t **config) 1428 { 1429 spa_t *spa; 1430 int error; 1431 int loaded = B_FALSE; 1432 int locked = B_FALSE; 1433 1434 *spapp = NULL; 1435 1436 /* 1437 * As disgusting as this is, we need to support recursive calls to this 1438 * function because dsl_dir_open() is called during spa_load(), and ends 1439 * up calling spa_open() again. The real fix is to figure out how to 1440 * avoid dsl_dir_open() calling this in the first place. 1441 */ 1442 if (mutex_owner(&spa_namespace_lock) != curthread) { 1443 mutex_enter(&spa_namespace_lock); 1444 locked = B_TRUE; 1445 } 1446 1447 if ((spa = spa_lookup(pool)) == NULL) { 1448 if (locked) 1449 mutex_exit(&spa_namespace_lock); 1450 return (ENOENT); 1451 } 1452 if (spa->spa_state == POOL_STATE_UNINITIALIZED) { 1453 1454 spa_activate(spa); 1455 1456 error = spa_load(spa, spa->spa_config, SPA_LOAD_OPEN, B_FALSE); 1457 1458 if (error == EBADF) { 1459 /* 1460 * If vdev_validate() returns failure (indicated by 1461 * EBADF), it indicates that one of the vdevs indicates 1462 * that the pool has been exported or destroyed. If 1463 * this is the case, the config cache is out of sync and 1464 * we should remove the pool from the namespace. 1465 */ 1466 zfs_post_ok(spa, NULL); 1467 spa_unload(spa); 1468 spa_deactivate(spa); 1469 spa_remove(spa); 1470 spa_config_sync(); 1471 if (locked) 1472 mutex_exit(&spa_namespace_lock); 1473 return (ENOENT); 1474 } 1475 1476 if (error) { 1477 /* 1478 * We can't open the pool, but we still have useful 1479 * information: the state of each vdev after the 1480 * attempted vdev_open(). Return this to the user. 1481 */ 1482 if (config != NULL && spa->spa_root_vdev != NULL) { 1483 spa_config_enter(spa, RW_READER, FTAG); 1484 *config = spa_config_generate(spa, NULL, -1ULL, 1485 B_TRUE); 1486 spa_config_exit(spa, FTAG); 1487 } 1488 spa_unload(spa); 1489 spa_deactivate(spa); 1490 spa->spa_last_open_failed = B_TRUE; 1491 if (locked) 1492 mutex_exit(&spa_namespace_lock); 1493 *spapp = NULL; 1494 return (error); 1495 } else { 1496 zfs_post_ok(spa, NULL); 1497 spa->spa_last_open_failed = B_FALSE; 1498 } 1499 1500 loaded = B_TRUE; 1501 } 1502 1503 spa_open_ref(spa, tag); 1504 1505 /* 1506 * If we just loaded the pool, resilver anything that's out of date. 1507 */ 1508 if (loaded && (spa_mode & FWRITE)) 1509 VERIFY(spa_scrub(spa, POOL_SCRUB_RESILVER, B_TRUE) == 0); 1510 1511 if (locked) 1512 mutex_exit(&spa_namespace_lock); 1513 1514 *spapp = spa; 1515 1516 if (config != NULL) { 1517 spa_config_enter(spa, RW_READER, FTAG); 1518 *config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); 1519 spa_config_exit(spa, FTAG); 1520 } 1521 1522 return (0); 1523 } 1524 1525 int 1526 spa_open(const char *name, spa_t **spapp, void *tag) 1527 { 1528 return (spa_open_common(name, spapp, tag, NULL)); 1529 } 1530 1531 /* 1532 * Lookup the given spa_t, incrementing the inject count in the process, 1533 * preventing it from being exported or destroyed. 1534 */ 1535 spa_t * 1536 spa_inject_addref(char *name) 1537 { 1538 spa_t *spa; 1539 1540 mutex_enter(&spa_namespace_lock); 1541 if ((spa = spa_lookup(name)) == NULL) { 1542 mutex_exit(&spa_namespace_lock); 1543 return (NULL); 1544 } 1545 spa->spa_inject_ref++; 1546 mutex_exit(&spa_namespace_lock); 1547 1548 return (spa); 1549 } 1550 1551 void 1552 spa_inject_delref(spa_t *spa) 1553 { 1554 mutex_enter(&spa_namespace_lock); 1555 spa->spa_inject_ref--; 1556 mutex_exit(&spa_namespace_lock); 1557 } 1558 1559 /* 1560 * Add spares device information to the nvlist. 1561 */ 1562 static void 1563 spa_add_spares(spa_t *spa, nvlist_t *config) 1564 { 1565 nvlist_t **spares; 1566 uint_t i, nspares; 1567 nvlist_t *nvroot; 1568 uint64_t guid; 1569 vdev_stat_t *vs; 1570 uint_t vsc; 1571 uint64_t pool; 1572 1573 if (spa->spa_spares.sav_count == 0) 1574 return; 1575 1576 VERIFY(nvlist_lookup_nvlist(config, 1577 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0); 1578 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, 1579 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0); 1580 if (nspares != 0) { 1581 VERIFY(nvlist_add_nvlist_array(nvroot, 1582 ZPOOL_CONFIG_SPARES, spares, nspares) == 0); 1583 VERIFY(nvlist_lookup_nvlist_array(nvroot, 1584 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0); 1585 1586 /* 1587 * Go through and find any spares which have since been 1588 * repurposed as an active spare. If this is the case, update 1589 * their status appropriately. 1590 */ 1591 for (i = 0; i < nspares; i++) { 1592 VERIFY(nvlist_lookup_uint64(spares[i], 1593 ZPOOL_CONFIG_GUID, &guid) == 0); 1594 if (spa_spare_exists(guid, &pool) && pool != 0ULL) { 1595 VERIFY(nvlist_lookup_uint64_array( 1596 spares[i], ZPOOL_CONFIG_STATS, 1597 (uint64_t **)&vs, &vsc) == 0); 1598 vs->vs_state = VDEV_STATE_CANT_OPEN; 1599 vs->vs_aux = VDEV_AUX_SPARED; 1600 } 1601 } 1602 } 1603 } 1604 1605 /* 1606 * Add l2cache device information to the nvlist, including vdev stats. 1607 */ 1608 static void 1609 spa_add_l2cache(spa_t *spa, nvlist_t *config) 1610 { 1611 nvlist_t **l2cache; 1612 uint_t i, j, nl2cache; 1613 nvlist_t *nvroot; 1614 uint64_t guid; 1615 vdev_t *vd; 1616 vdev_stat_t *vs; 1617 uint_t vsc; 1618 1619 if (spa->spa_l2cache.sav_count == 0) 1620 return; 1621 1622 spa_config_enter(spa, RW_READER, FTAG); 1623 1624 VERIFY(nvlist_lookup_nvlist(config, 1625 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0); 1626 VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config, 1627 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0); 1628 if (nl2cache != 0) { 1629 VERIFY(nvlist_add_nvlist_array(nvroot, 1630 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0); 1631 VERIFY(nvlist_lookup_nvlist_array(nvroot, 1632 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0); 1633 1634 /* 1635 * Update level 2 cache device stats. 1636 */ 1637 1638 for (i = 0; i < nl2cache; i++) { 1639 VERIFY(nvlist_lookup_uint64(l2cache[i], 1640 ZPOOL_CONFIG_GUID, &guid) == 0); 1641 1642 vd = NULL; 1643 for (j = 0; j < spa->spa_l2cache.sav_count; j++) { 1644 if (guid == 1645 spa->spa_l2cache.sav_vdevs[j]->vdev_guid) { 1646 vd = spa->spa_l2cache.sav_vdevs[j]; 1647 break; 1648 } 1649 } 1650 ASSERT(vd != NULL); 1651 1652 VERIFY(nvlist_lookup_uint64_array(l2cache[i], 1653 ZPOOL_CONFIG_STATS, (uint64_t **)&vs, &vsc) == 0); 1654 vdev_get_stats(vd, vs); 1655 } 1656 } 1657 1658 spa_config_exit(spa, FTAG); 1659 } 1660 1661 int 1662 spa_get_stats(const char *name, nvlist_t **config, char *altroot, size_t buflen) 1663 { 1664 int error; 1665 spa_t *spa; 1666 1667 *config = NULL; 1668 error = spa_open_common(name, &spa, FTAG, config); 1669 1670 if (spa && *config != NULL) { 1671 VERIFY(nvlist_add_uint64(*config, ZPOOL_CONFIG_ERRCOUNT, 1672 spa_get_errlog_size(spa)) == 0); 1673 1674 spa_add_spares(spa, *config); 1675 spa_add_l2cache(spa, *config); 1676 } 1677 1678 /* 1679 * We want to get the alternate root even for faulted pools, so we cheat 1680 * and call spa_lookup() directly. 1681 */ 1682 if (altroot) { 1683 if (spa == NULL) { 1684 mutex_enter(&spa_namespace_lock); 1685 spa = spa_lookup(name); 1686 if (spa) 1687 spa_altroot(spa, altroot, buflen); 1688 else 1689 altroot[0] = '\0'; 1690 spa = NULL; 1691 mutex_exit(&spa_namespace_lock); 1692 } else { 1693 spa_altroot(spa, altroot, buflen); 1694 } 1695 } 1696 1697 if (spa != NULL) 1698 spa_close(spa, FTAG); 1699 1700 return (error); 1701 } 1702 1703 /* 1704 * Validate that the auxiliary device array is well formed. We must have an 1705 * array of nvlists, each which describes a valid leaf vdev. If this is an 1706 * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be 1707 * specified, as long as they are well-formed. 1708 */ 1709 static int 1710 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode, 1711 spa_aux_vdev_t *sav, const char *config, uint64_t version, 1712 vdev_labeltype_t label) 1713 { 1714 nvlist_t **dev; 1715 uint_t i, ndev; 1716 vdev_t *vd; 1717 int error; 1718 1719 /* 1720 * It's acceptable to have no devs specified. 1721 */ 1722 if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0) 1723 return (0); 1724 1725 if (ndev == 0) 1726 return (EINVAL); 1727 1728 /* 1729 * Make sure the pool is formatted with a version that supports this 1730 * device type. 1731 */ 1732 if (spa_version(spa) < version) 1733 return (ENOTSUP); 1734 1735 /* 1736 * Set the pending device list so we correctly handle device in-use 1737 * checking. 1738 */ 1739 sav->sav_pending = dev; 1740 sav->sav_npending = ndev; 1741 1742 for (i = 0; i < ndev; i++) { 1743 if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0, 1744 mode)) != 0) 1745 goto out; 1746 1747 if (!vd->vdev_ops->vdev_op_leaf) { 1748 vdev_free(vd); 1749 error = EINVAL; 1750 goto out; 1751 } 1752 1753 /* 1754 * The L2ARC currently only supports disk devices. 1755 */ 1756 if ((strcmp(config, ZPOOL_CONFIG_L2CACHE) == 0) && 1757 strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) != 0) { 1758 error = ENOTBLK; 1759 goto out; 1760 } 1761 1762 vd->vdev_top = vd; 1763 1764 if ((error = vdev_open(vd)) == 0 && 1765 (error = vdev_label_init(vd, crtxg, label)) == 0) { 1766 VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID, 1767 vd->vdev_guid) == 0); 1768 } 1769 1770 vdev_free(vd); 1771 1772 if (error && 1773 (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE)) 1774 goto out; 1775 else 1776 error = 0; 1777 } 1778 1779 out: 1780 sav->sav_pending = NULL; 1781 sav->sav_npending = 0; 1782 return (error); 1783 } 1784 1785 static int 1786 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode) 1787 { 1788 int error; 1789 1790 if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode, 1791 &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES, 1792 VDEV_LABEL_SPARE)) != 0) { 1793 return (error); 1794 } 1795 1796 return (spa_validate_aux_devs(spa, nvroot, crtxg, mode, 1797 &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE, 1798 VDEV_LABEL_L2CACHE)); 1799 } 1800 1801 static void 1802 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs, 1803 const char *config) 1804 { 1805 int i; 1806 1807 if (sav->sav_config != NULL) { 1808 nvlist_t **olddevs; 1809 uint_t oldndevs; 1810 nvlist_t **newdevs; 1811 1812 /* 1813 * Generate new dev list by concatentating with the 1814 * current dev list. 1815 */ 1816 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config, 1817 &olddevs, &oldndevs) == 0); 1818 1819 newdevs = kmem_alloc(sizeof (void *) * 1820 (ndevs + oldndevs), KM_SLEEP); 1821 for (i = 0; i < oldndevs; i++) 1822 VERIFY(nvlist_dup(olddevs[i], &newdevs[i], 1823 KM_SLEEP) == 0); 1824 for (i = 0; i < ndevs; i++) 1825 VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs], 1826 KM_SLEEP) == 0); 1827 1828 VERIFY(nvlist_remove(sav->sav_config, config, 1829 DATA_TYPE_NVLIST_ARRAY) == 0); 1830 1831 VERIFY(nvlist_add_nvlist_array(sav->sav_config, 1832 config, newdevs, ndevs + oldndevs) == 0); 1833 for (i = 0; i < oldndevs + ndevs; i++) 1834 nvlist_free(newdevs[i]); 1835 kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *)); 1836 } else { 1837 /* 1838 * Generate a new dev list. 1839 */ 1840 VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME, 1841 KM_SLEEP) == 0); 1842 VERIFY(nvlist_add_nvlist_array(sav->sav_config, config, 1843 devs, ndevs) == 0); 1844 } 1845 } 1846 1847 /* 1848 * Stop and drop level 2 ARC devices 1849 */ 1850 void 1851 spa_l2cache_drop(spa_t *spa) 1852 { 1853 vdev_t *vd; 1854 int i; 1855 spa_aux_vdev_t *sav = &spa->spa_l2cache; 1856 1857 for (i = 0; i < sav->sav_count; i++) { 1858 uint64_t pool; 1859 1860 vd = sav->sav_vdevs[i]; 1861 ASSERT(vd != NULL); 1862 1863 if (spa_mode & FWRITE && 1864 spa_l2cache_exists(vd->vdev_guid, &pool) && pool != 0ULL) { 1865 l2arc_remove_vdev(vd); 1866 } 1867 if (vd->vdev_isl2cache) 1868 spa_l2cache_remove(vd); 1869 vdev_clear_stats(vd); 1870 (void) vdev_close(vd); 1871 } 1872 } 1873 1874 /* 1875 * Pool Creation 1876 */ 1877 int 1878 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props, 1879 const char *history_str) 1880 { 1881 spa_t *spa; 1882 char *altroot = NULL; 1883 vdev_t *rvd; 1884 dsl_pool_t *dp; 1885 dmu_tx_t *tx; 1886 int c, error = 0; 1887 uint64_t txg = TXG_INITIAL; 1888 nvlist_t **spares, **l2cache; 1889 uint_t nspares, nl2cache; 1890 uint64_t version; 1891 1892 /* 1893 * If this pool already exists, return failure. 1894 */ 1895 mutex_enter(&spa_namespace_lock); 1896 if (spa_lookup(pool) != NULL) { 1897 mutex_exit(&spa_namespace_lock); 1898 return (EEXIST); 1899 } 1900 1901 /* 1902 * Allocate a new spa_t structure. 1903 */ 1904 (void) nvlist_lookup_string(props, 1905 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); 1906 spa = spa_add(pool, altroot); 1907 spa_activate(spa); 1908 1909 spa->spa_uberblock.ub_txg = txg - 1; 1910 1911 if (props && (error = spa_prop_validate(spa, props))) { 1912 spa_unload(spa); 1913 spa_deactivate(spa); 1914 spa_remove(spa); 1915 return (error); 1916 } 1917 1918 if (nvlist_lookup_uint64(props, zpool_prop_to_name(ZPOOL_PROP_VERSION), 1919 &version) != 0) 1920 version = SPA_VERSION; 1921 ASSERT(version <= SPA_VERSION); 1922 spa->spa_uberblock.ub_version = version; 1923 spa->spa_ubsync = spa->spa_uberblock; 1924 1925 /* 1926 * Create the root vdev. 1927 */ 1928 spa_config_enter(spa, RW_WRITER, FTAG); 1929 1930 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD); 1931 1932 ASSERT(error != 0 || rvd != NULL); 1933 ASSERT(error != 0 || spa->spa_root_vdev == rvd); 1934 1935 if (error == 0 && rvd->vdev_children == 0) 1936 error = EINVAL; 1937 1938 if (error == 0 && 1939 (error = vdev_create(rvd, txg, B_FALSE)) == 0 && 1940 (error = spa_validate_aux(spa, nvroot, txg, 1941 VDEV_ALLOC_ADD)) == 0) { 1942 for (c = 0; c < rvd->vdev_children; c++) 1943 vdev_init(rvd->vdev_child[c], txg); 1944 vdev_config_dirty(rvd); 1945 } 1946 1947 spa_config_exit(spa, FTAG); 1948 1949 if (error != 0) { 1950 spa_unload(spa); 1951 spa_deactivate(spa); 1952 spa_remove(spa); 1953 mutex_exit(&spa_namespace_lock); 1954 return (error); 1955 } 1956 1957 /* 1958 * Get the list of spares, if specified. 1959 */ 1960 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, 1961 &spares, &nspares) == 0) { 1962 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME, 1963 KM_SLEEP) == 0); 1964 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config, 1965 ZPOOL_CONFIG_SPARES, spares, nspares) == 0); 1966 spa_config_enter(spa, RW_WRITER, FTAG); 1967 spa_load_spares(spa); 1968 spa_config_exit(spa, FTAG); 1969 spa->spa_spares.sav_sync = B_TRUE; 1970 } 1971 1972 /* 1973 * Get the list of level 2 cache devices, if specified. 1974 */ 1975 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, 1976 &l2cache, &nl2cache) == 0) { 1977 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config, 1978 NV_UNIQUE_NAME, KM_SLEEP) == 0); 1979 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config, 1980 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0); 1981 spa_config_enter(spa, RW_WRITER, FTAG); 1982 spa_load_l2cache(spa); 1983 spa_config_exit(spa, FTAG); 1984 spa->spa_l2cache.sav_sync = B_TRUE; 1985 } 1986 1987 spa->spa_dsl_pool = dp = dsl_pool_create(spa, txg); 1988 spa->spa_meta_objset = dp->dp_meta_objset; 1989 1990 tx = dmu_tx_create_assigned(dp, txg); 1991 1992 /* 1993 * Create the pool config object. 1994 */ 1995 spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset, 1996 DMU_OT_PACKED_NVLIST, 1 << 14, 1997 DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx); 1998 1999 if (zap_add(spa->spa_meta_objset, 2000 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG, 2001 sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) { 2002 cmn_err(CE_PANIC, "failed to add pool config"); 2003 } 2004 2005 /* Newly created pools with the right version are always deflated. */ 2006 if (version >= SPA_VERSION_RAIDZ_DEFLATE) { 2007 spa->spa_deflate = TRUE; 2008 if (zap_add(spa->spa_meta_objset, 2009 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE, 2010 sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) { 2011 cmn_err(CE_PANIC, "failed to add deflate"); 2012 } 2013 } 2014 2015 /* 2016 * Create the deferred-free bplist object. Turn off compression 2017 * because sync-to-convergence takes longer if the blocksize 2018 * keeps changing. 2019 */ 2020 spa->spa_sync_bplist_obj = bplist_create(spa->spa_meta_objset, 2021 1 << 14, tx); 2022 dmu_object_set_compress(spa->spa_meta_objset, spa->spa_sync_bplist_obj, 2023 ZIO_COMPRESS_OFF, tx); 2024 2025 if (zap_add(spa->spa_meta_objset, 2026 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPLIST, 2027 sizeof (uint64_t), 1, &spa->spa_sync_bplist_obj, tx) != 0) { 2028 cmn_err(CE_PANIC, "failed to add bplist"); 2029 } 2030 2031 /* 2032 * Create the pool's history object. 2033 */ 2034 if (version >= SPA_VERSION_ZPOOL_HISTORY) 2035 spa_history_create_obj(spa, tx); 2036 2037 /* 2038 * Set pool properties. 2039 */ 2040 spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS); 2041 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION); 2042 spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE); 2043 if (props) 2044 spa_sync_props(spa, props, CRED(), tx); 2045 2046 dmu_tx_commit(tx); 2047 2048 spa->spa_sync_on = B_TRUE; 2049 txg_sync_start(spa->spa_dsl_pool); 2050 2051 /* 2052 * We explicitly wait for the first transaction to complete so that our 2053 * bean counters are appropriately updated. 2054 */ 2055 txg_wait_synced(spa->spa_dsl_pool, txg); 2056 2057 spa_config_sync(); 2058 2059 if (version >= SPA_VERSION_ZPOOL_HISTORY && history_str != NULL) 2060 (void) spa_history_log(spa, history_str, LOG_CMD_POOL_CREATE); 2061 2062 mutex_exit(&spa_namespace_lock); 2063 2064 return (0); 2065 } 2066 2067 /* 2068 * Import the given pool into the system. We set up the necessary spa_t and 2069 * then call spa_load() to do the dirty work. 2070 */ 2071 int 2072 spa_import(const char *pool, nvlist_t *config, nvlist_t *props) 2073 { 2074 spa_t *spa; 2075 char *altroot = NULL; 2076 int error; 2077 nvlist_t *nvroot; 2078 nvlist_t **spares, **l2cache; 2079 uint_t nspares, nl2cache; 2080 2081 /* 2082 * If a pool with this name exists, return failure. 2083 */ 2084 mutex_enter(&spa_namespace_lock); 2085 if (spa_lookup(pool) != NULL) { 2086 mutex_exit(&spa_namespace_lock); 2087 return (EEXIST); 2088 } 2089 2090 /* 2091 * Create and initialize the spa structure. 2092 */ 2093 (void) nvlist_lookup_string(props, 2094 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); 2095 spa = spa_add(pool, altroot); 2096 spa_activate(spa); 2097 2098 /* 2099 * Pass off the heavy lifting to spa_load(). 2100 * Pass TRUE for mosconfig because the user-supplied config 2101 * is actually the one to trust when doing an import. 2102 */ 2103 error = spa_load(spa, config, SPA_LOAD_IMPORT, B_TRUE); 2104 2105 spa_config_enter(spa, RW_WRITER, FTAG); 2106 /* 2107 * Toss any existing sparelist, as it doesn't have any validity anymore, 2108 * and conflicts with spa_has_spare(). 2109 */ 2110 if (spa->spa_spares.sav_config) { 2111 nvlist_free(spa->spa_spares.sav_config); 2112 spa->spa_spares.sav_config = NULL; 2113 spa_load_spares(spa); 2114 } 2115 if (spa->spa_l2cache.sav_config) { 2116 nvlist_free(spa->spa_l2cache.sav_config); 2117 spa->spa_l2cache.sav_config = NULL; 2118 spa_load_l2cache(spa); 2119 } 2120 2121 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 2122 &nvroot) == 0); 2123 if (error == 0) 2124 error = spa_validate_aux(spa, nvroot, -1ULL, VDEV_ALLOC_SPARE); 2125 if (error == 0) 2126 error = spa_validate_aux(spa, nvroot, -1ULL, 2127 VDEV_ALLOC_L2CACHE); 2128 spa_config_exit(spa, FTAG); 2129 2130 if (error != 0 || (props && (error = spa_prop_set(spa, props)))) { 2131 spa_unload(spa); 2132 spa_deactivate(spa); 2133 spa_remove(spa); 2134 mutex_exit(&spa_namespace_lock); 2135 return (error); 2136 } 2137 2138 /* 2139 * Override any spares and level 2 cache devices as specified by 2140 * the user, as these may have correct device names/devids, etc. 2141 */ 2142 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, 2143 &spares, &nspares) == 0) { 2144 if (spa->spa_spares.sav_config) 2145 VERIFY(nvlist_remove(spa->spa_spares.sav_config, 2146 ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0); 2147 else 2148 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, 2149 NV_UNIQUE_NAME, KM_SLEEP) == 0); 2150 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config, 2151 ZPOOL_CONFIG_SPARES, spares, nspares) == 0); 2152 spa_config_enter(spa, RW_WRITER, FTAG); 2153 spa_load_spares(spa); 2154 spa_config_exit(spa, FTAG); 2155 spa->spa_spares.sav_sync = B_TRUE; 2156 } 2157 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, 2158 &l2cache, &nl2cache) == 0) { 2159 if (spa->spa_l2cache.sav_config) 2160 VERIFY(nvlist_remove(spa->spa_l2cache.sav_config, 2161 ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0); 2162 else 2163 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config, 2164 NV_UNIQUE_NAME, KM_SLEEP) == 0); 2165 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config, 2166 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0); 2167 spa_config_enter(spa, RW_WRITER, FTAG); 2168 spa_load_l2cache(spa); 2169 spa_config_exit(spa, FTAG); 2170 spa->spa_l2cache.sav_sync = B_TRUE; 2171 } 2172 2173 /* 2174 * Update the config cache to include the newly-imported pool. 2175 */ 2176 if (spa_mode & FWRITE) 2177 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); 2178 2179 /* 2180 * Resilver anything that's out of date. 2181 */ 2182 if (spa_mode & FWRITE) 2183 VERIFY(spa_scrub(spa, POOL_SCRUB_RESILVER, B_TRUE) == 0); 2184 2185 mutex_exit(&spa_namespace_lock); 2186 2187 return (0); 2188 } 2189 2190 /* 2191 * This (illegal) pool name is used when temporarily importing a spa_t in order 2192 * to get the vdev stats associated with the imported devices. 2193 */ 2194 #define TRYIMPORT_NAME "$import" 2195 2196 nvlist_t * 2197 spa_tryimport(nvlist_t *tryconfig) 2198 { 2199 nvlist_t *config = NULL; 2200 char *poolname; 2201 spa_t *spa; 2202 uint64_t state; 2203 2204 if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname)) 2205 return (NULL); 2206 2207 if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state)) 2208 return (NULL); 2209 2210 /* 2211 * Create and initialize the spa structure. 2212 */ 2213 mutex_enter(&spa_namespace_lock); 2214 spa = spa_add(TRYIMPORT_NAME, NULL); 2215 spa_activate(spa); 2216 2217 /* 2218 * Pass off the heavy lifting to spa_load(). 2219 * Pass TRUE for mosconfig because the user-supplied config 2220 * is actually the one to trust when doing an import. 2221 */ 2222 (void) spa_load(spa, tryconfig, SPA_LOAD_TRYIMPORT, B_TRUE); 2223 2224 /* 2225 * If 'tryconfig' was at least parsable, return the current config. 2226 */ 2227 if (spa->spa_root_vdev != NULL) { 2228 spa_config_enter(spa, RW_READER, FTAG); 2229 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); 2230 spa_config_exit(spa, FTAG); 2231 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, 2232 poolname) == 0); 2233 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE, 2234 state) == 0); 2235 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP, 2236 spa->spa_uberblock.ub_timestamp) == 0); 2237 2238 /* 2239 * Add the list of hot spares and level 2 cache devices. 2240 */ 2241 spa_add_spares(spa, config); 2242 spa_add_l2cache(spa, config); 2243 } 2244 2245 spa_unload(spa); 2246 spa_deactivate(spa); 2247 spa_remove(spa); 2248 mutex_exit(&spa_namespace_lock); 2249 2250 return (config); 2251 } 2252 2253 /* 2254 * Pool export/destroy 2255 * 2256 * The act of destroying or exporting a pool is very simple. We make sure there 2257 * is no more pending I/O and any references to the pool are gone. Then, we 2258 * update the pool state and sync all the labels to disk, removing the 2259 * configuration from the cache afterwards. 2260 */ 2261 static int 2262 spa_export_common(char *pool, int new_state, nvlist_t **oldconfig) 2263 { 2264 spa_t *spa; 2265 2266 if (oldconfig) 2267 *oldconfig = NULL; 2268 2269 if (!(spa_mode & FWRITE)) 2270 return (EROFS); 2271 2272 mutex_enter(&spa_namespace_lock); 2273 if ((spa = spa_lookup(pool)) == NULL) { 2274 mutex_exit(&spa_namespace_lock); 2275 return (ENOENT); 2276 } 2277 2278 /* 2279 * Put a hold on the pool, drop the namespace lock, stop async tasks, 2280 * reacquire the namespace lock, and see if we can export. 2281 */ 2282 spa_open_ref(spa, FTAG); 2283 mutex_exit(&spa_namespace_lock); 2284 spa_async_suspend(spa); 2285 mutex_enter(&spa_namespace_lock); 2286 spa_close(spa, FTAG); 2287 2288 /* 2289 * The pool will be in core if it's openable, 2290 * in which case we can modify its state. 2291 */ 2292 if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) { 2293 /* 2294 * Objsets may be open only because they're dirty, so we 2295 * have to force it to sync before checking spa_refcnt. 2296 */ 2297 spa_scrub_suspend(spa); 2298 txg_wait_synced(spa->spa_dsl_pool, 0); 2299 2300 /* 2301 * A pool cannot be exported or destroyed if there are active 2302 * references. If we are resetting a pool, allow references by 2303 * fault injection handlers. 2304 */ 2305 if (!spa_refcount_zero(spa) || 2306 (spa->spa_inject_ref != 0 && 2307 new_state != POOL_STATE_UNINITIALIZED)) { 2308 spa_scrub_resume(spa); 2309 spa_async_resume(spa); 2310 mutex_exit(&spa_namespace_lock); 2311 return (EBUSY); 2312 } 2313 2314 spa_scrub_resume(spa); 2315 VERIFY(spa_scrub(spa, POOL_SCRUB_NONE, B_TRUE) == 0); 2316 2317 /* 2318 * We want this to be reflected on every label, 2319 * so mark them all dirty. spa_unload() will do the 2320 * final sync that pushes these changes out. 2321 */ 2322 if (new_state != POOL_STATE_UNINITIALIZED) { 2323 spa_config_enter(spa, RW_WRITER, FTAG); 2324 spa->spa_state = new_state; 2325 spa->spa_final_txg = spa_last_synced_txg(spa) + 1; 2326 vdev_config_dirty(spa->spa_root_vdev); 2327 spa_config_exit(spa, FTAG); 2328 } 2329 } 2330 2331 spa_event_notify(spa, NULL, ESC_ZFS_POOL_DESTROY); 2332 2333 if (spa->spa_state != POOL_STATE_UNINITIALIZED) { 2334 spa_unload(spa); 2335 spa_deactivate(spa); 2336 } 2337 2338 if (oldconfig && spa->spa_config) 2339 VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0); 2340 2341 if (new_state != POOL_STATE_UNINITIALIZED) { 2342 spa_config_check(spa->spa_config_dir, 2343 spa->spa_config_file); 2344 spa_remove(spa); 2345 spa_config_sync(); 2346 } 2347 mutex_exit(&spa_namespace_lock); 2348 2349 return (0); 2350 } 2351 2352 /* 2353 * Destroy a storage pool. 2354 */ 2355 int 2356 spa_destroy(char *pool) 2357 { 2358 return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL)); 2359 } 2360 2361 /* 2362 * Export a storage pool. 2363 */ 2364 int 2365 spa_export(char *pool, nvlist_t **oldconfig) 2366 { 2367 return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig)); 2368 } 2369 2370 /* 2371 * Similar to spa_export(), this unloads the spa_t without actually removing it 2372 * from the namespace in any way. 2373 */ 2374 int 2375 spa_reset(char *pool) 2376 { 2377 return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL)); 2378 } 2379 2380 2381 /* 2382 * ========================================================================== 2383 * Device manipulation 2384 * ========================================================================== 2385 */ 2386 2387 /* 2388 * Add a device to a storage pool. 2389 */ 2390 int 2391 spa_vdev_add(spa_t *spa, nvlist_t *nvroot) 2392 { 2393 uint64_t txg; 2394 int c, error; 2395 vdev_t *rvd = spa->spa_root_vdev; 2396 vdev_t *vd, *tvd; 2397 nvlist_t **spares, **l2cache; 2398 uint_t nspares, nl2cache; 2399 2400 txg = spa_vdev_enter(spa); 2401 2402 if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0, 2403 VDEV_ALLOC_ADD)) != 0) 2404 return (spa_vdev_exit(spa, NULL, txg, error)); 2405 2406 spa->spa_pending_vdev = vd; 2407 2408 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares, 2409 &nspares) != 0) 2410 nspares = 0; 2411 2412 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache, 2413 &nl2cache) != 0) 2414 nl2cache = 0; 2415 2416 if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0) { 2417 spa->spa_pending_vdev = NULL; 2418 return (spa_vdev_exit(spa, vd, txg, EINVAL)); 2419 } 2420 2421 if (vd->vdev_children != 0) { 2422 if ((error = vdev_create(vd, txg, B_FALSE)) != 0) { 2423 spa->spa_pending_vdev = NULL; 2424 return (spa_vdev_exit(spa, vd, txg, error)); 2425 } 2426 } 2427 2428 /* 2429 * We must validate the spares and l2cache devices after checking the 2430 * children. Otherwise, vdev_inuse() will blindly overwrite the spare. 2431 */ 2432 if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0) { 2433 spa->spa_pending_vdev = NULL; 2434 return (spa_vdev_exit(spa, vd, txg, error)); 2435 } 2436 2437 spa->spa_pending_vdev = NULL; 2438 2439 /* 2440 * Transfer each new top-level vdev from vd to rvd. 2441 */ 2442 for (c = 0; c < vd->vdev_children; c++) { 2443 tvd = vd->vdev_child[c]; 2444 vdev_remove_child(vd, tvd); 2445 tvd->vdev_id = rvd->vdev_children; 2446 vdev_add_child(rvd, tvd); 2447 vdev_config_dirty(tvd); 2448 } 2449 2450 if (nspares != 0) { 2451 spa_set_aux_vdevs(&spa->spa_spares, spares, nspares, 2452 ZPOOL_CONFIG_SPARES); 2453 spa_load_spares(spa); 2454 spa->spa_spares.sav_sync = B_TRUE; 2455 } 2456 2457 if (nl2cache != 0) { 2458 spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache, 2459 ZPOOL_CONFIG_L2CACHE); 2460 spa_load_l2cache(spa); 2461 spa->spa_l2cache.sav_sync = B_TRUE; 2462 } 2463 2464 /* 2465 * We have to be careful when adding new vdevs to an existing pool. 2466 * If other threads start allocating from these vdevs before we 2467 * sync the config cache, and we lose power, then upon reboot we may 2468 * fail to open the pool because there are DVAs that the config cache 2469 * can't translate. Therefore, we first add the vdevs without 2470 * initializing metaslabs; sync the config cache (via spa_vdev_exit()); 2471 * and then let spa_config_update() initialize the new metaslabs. 2472 * 2473 * spa_load() checks for added-but-not-initialized vdevs, so that 2474 * if we lose power at any point in this sequence, the remaining 2475 * steps will be completed the next time we load the pool. 2476 */ 2477 (void) spa_vdev_exit(spa, vd, txg, 0); 2478 2479 mutex_enter(&spa_namespace_lock); 2480 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); 2481 mutex_exit(&spa_namespace_lock); 2482 2483 return (0); 2484 } 2485 2486 /* 2487 * Attach a device to a mirror. The arguments are the path to any device 2488 * in the mirror, and the nvroot for the new device. If the path specifies 2489 * a device that is not mirrored, we automatically insert the mirror vdev. 2490 * 2491 * If 'replacing' is specified, the new device is intended to replace the 2492 * existing device; in this case the two devices are made into their own 2493 * mirror using the 'replacing' vdev, which is functionally identical to 2494 * the mirror vdev (it actually reuses all the same ops) but has a few 2495 * extra rules: you can't attach to it after it's been created, and upon 2496 * completion of resilvering, the first disk (the one being replaced) 2497 * is automatically detached. 2498 */ 2499 int 2500 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing) 2501 { 2502 uint64_t txg, open_txg; 2503 int error; 2504 vdev_t *rvd = spa->spa_root_vdev; 2505 vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd; 2506 vdev_ops_t *pvops; 2507 int is_log; 2508 2509 txg = spa_vdev_enter(spa); 2510 2511 oldvd = vdev_lookup_by_guid(rvd, guid); 2512 2513 if (oldvd == NULL) 2514 return (spa_vdev_exit(spa, NULL, txg, ENODEV)); 2515 2516 if (!oldvd->vdev_ops->vdev_op_leaf) 2517 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 2518 2519 pvd = oldvd->vdev_parent; 2520 2521 if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0, 2522 VDEV_ALLOC_ADD)) != 0) 2523 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 2524 2525 if (newrootvd->vdev_children != 1) 2526 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL)); 2527 2528 newvd = newrootvd->vdev_child[0]; 2529 2530 if (!newvd->vdev_ops->vdev_op_leaf) 2531 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL)); 2532 2533 if ((error = vdev_create(newrootvd, txg, replacing)) != 0) 2534 return (spa_vdev_exit(spa, newrootvd, txg, error)); 2535 2536 /* 2537 * Spares can't replace logs 2538 */ 2539 is_log = oldvd->vdev_islog; 2540 if (is_log && newvd->vdev_isspare) 2541 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 2542 2543 if (!replacing) { 2544 /* 2545 * For attach, the only allowable parent is a mirror or the root 2546 * vdev. 2547 */ 2548 if (pvd->vdev_ops != &vdev_mirror_ops && 2549 pvd->vdev_ops != &vdev_root_ops) 2550 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 2551 2552 pvops = &vdev_mirror_ops; 2553 } else { 2554 /* 2555 * Active hot spares can only be replaced by inactive hot 2556 * spares. 2557 */ 2558 if (pvd->vdev_ops == &vdev_spare_ops && 2559 pvd->vdev_child[1] == oldvd && 2560 !spa_has_spare(spa, newvd->vdev_guid)) 2561 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 2562 2563 /* 2564 * If the source is a hot spare, and the parent isn't already a 2565 * spare, then we want to create a new hot spare. Otherwise, we 2566 * want to create a replacing vdev. The user is not allowed to 2567 * attach to a spared vdev child unless the 'isspare' state is 2568 * the same (spare replaces spare, non-spare replaces 2569 * non-spare). 2570 */ 2571 if (pvd->vdev_ops == &vdev_replacing_ops) 2572 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 2573 else if (pvd->vdev_ops == &vdev_spare_ops && 2574 newvd->vdev_isspare != oldvd->vdev_isspare) 2575 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 2576 else if (pvd->vdev_ops != &vdev_spare_ops && 2577 newvd->vdev_isspare) 2578 pvops = &vdev_spare_ops; 2579 else 2580 pvops = &vdev_replacing_ops; 2581 } 2582 2583 /* 2584 * Compare the new device size with the replaceable/attachable 2585 * device size. 2586 */ 2587 if (newvd->vdev_psize < vdev_get_rsize(oldvd)) 2588 return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW)); 2589 2590 /* 2591 * The new device cannot have a higher alignment requirement 2592 * than the top-level vdev. 2593 */ 2594 if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift) 2595 return (spa_vdev_exit(spa, newrootvd, txg, EDOM)); 2596 2597 /* 2598 * If this is an in-place replacement, update oldvd's path and devid 2599 * to make it distinguishable from newvd, and unopenable from now on. 2600 */ 2601 if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) { 2602 spa_strfree(oldvd->vdev_path); 2603 oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5, 2604 KM_SLEEP); 2605 (void) sprintf(oldvd->vdev_path, "%s/%s", 2606 newvd->vdev_path, "old"); 2607 if (oldvd->vdev_devid != NULL) { 2608 spa_strfree(oldvd->vdev_devid); 2609 oldvd->vdev_devid = NULL; 2610 } 2611 } 2612 2613 /* 2614 * If the parent is not a mirror, or if we're replacing, insert the new 2615 * mirror/replacing/spare vdev above oldvd. 2616 */ 2617 if (pvd->vdev_ops != pvops) 2618 pvd = vdev_add_parent(oldvd, pvops); 2619 2620 ASSERT(pvd->vdev_top->vdev_parent == rvd); 2621 ASSERT(pvd->vdev_ops == pvops); 2622 ASSERT(oldvd->vdev_parent == pvd); 2623 2624 /* 2625 * Extract the new device from its root and add it to pvd. 2626 */ 2627 vdev_remove_child(newrootvd, newvd); 2628 newvd->vdev_id = pvd->vdev_children; 2629 vdev_add_child(pvd, newvd); 2630 2631 /* 2632 * If newvd is smaller than oldvd, but larger than its rsize, 2633 * the addition of newvd may have decreased our parent's asize. 2634 */ 2635 pvd->vdev_asize = MIN(pvd->vdev_asize, newvd->vdev_asize); 2636 2637 tvd = newvd->vdev_top; 2638 ASSERT(pvd->vdev_top == tvd); 2639 ASSERT(tvd->vdev_parent == rvd); 2640 2641 vdev_config_dirty(tvd); 2642 2643 /* 2644 * Set newvd's DTL to [TXG_INITIAL, open_txg]. It will propagate 2645 * upward when spa_vdev_exit() calls vdev_dtl_reassess(). 2646 */ 2647 open_txg = txg + TXG_CONCURRENT_STATES - 1; 2648 2649 mutex_enter(&newvd->vdev_dtl_lock); 2650 space_map_add(&newvd->vdev_dtl_map, TXG_INITIAL, 2651 open_txg - TXG_INITIAL + 1); 2652 mutex_exit(&newvd->vdev_dtl_lock); 2653 2654 if (newvd->vdev_isspare) 2655 spa_spare_activate(newvd); 2656 2657 /* 2658 * Mark newvd's DTL dirty in this txg. 2659 */ 2660 vdev_dirty(tvd, VDD_DTL, newvd, txg); 2661 2662 (void) spa_vdev_exit(spa, newrootvd, open_txg, 0); 2663 2664 /* 2665 * Kick off a resilver to update newvd. We need to grab the namespace 2666 * lock because spa_scrub() needs to post a sysevent with the pool name. 2667 */ 2668 mutex_enter(&spa_namespace_lock); 2669 VERIFY(spa_scrub(spa, POOL_SCRUB_RESILVER, B_TRUE) == 0); 2670 mutex_exit(&spa_namespace_lock); 2671 2672 return (0); 2673 } 2674 2675 /* 2676 * Detach a device from a mirror or replacing vdev. 2677 * If 'replace_done' is specified, only detach if the parent 2678 * is a replacing vdev. 2679 */ 2680 int 2681 spa_vdev_detach(spa_t *spa, uint64_t guid, int replace_done) 2682 { 2683 uint64_t txg; 2684 int c, t, error; 2685 vdev_t *rvd = spa->spa_root_vdev; 2686 vdev_t *vd, *pvd, *cvd, *tvd; 2687 boolean_t unspare = B_FALSE; 2688 uint64_t unspare_guid; 2689 2690 txg = spa_vdev_enter(spa); 2691 2692 vd = vdev_lookup_by_guid(rvd, guid); 2693 2694 if (vd == NULL) 2695 return (spa_vdev_exit(spa, NULL, txg, ENODEV)); 2696 2697 if (!vd->vdev_ops->vdev_op_leaf) 2698 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 2699 2700 pvd = vd->vdev_parent; 2701 2702 /* 2703 * If replace_done is specified, only remove this device if it's 2704 * the first child of a replacing vdev. For the 'spare' vdev, either 2705 * disk can be removed. 2706 */ 2707 if (replace_done) { 2708 if (pvd->vdev_ops == &vdev_replacing_ops) { 2709 if (vd->vdev_id != 0) 2710 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 2711 } else if (pvd->vdev_ops != &vdev_spare_ops) { 2712 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 2713 } 2714 } 2715 2716 ASSERT(pvd->vdev_ops != &vdev_spare_ops || 2717 spa_version(spa) >= SPA_VERSION_SPARES); 2718 2719 /* 2720 * Only mirror, replacing, and spare vdevs support detach. 2721 */ 2722 if (pvd->vdev_ops != &vdev_replacing_ops && 2723 pvd->vdev_ops != &vdev_mirror_ops && 2724 pvd->vdev_ops != &vdev_spare_ops) 2725 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 2726 2727 /* 2728 * If there's only one replica, you can't detach it. 2729 */ 2730 if (pvd->vdev_children <= 1) 2731 return (spa_vdev_exit(spa, NULL, txg, EBUSY)); 2732 2733 /* 2734 * If all siblings have non-empty DTLs, this device may have the only 2735 * valid copy of the data, which means we cannot safely detach it. 2736 * 2737 * XXX -- as in the vdev_offline() case, we really want a more 2738 * precise DTL check. 2739 */ 2740 for (c = 0; c < pvd->vdev_children; c++) { 2741 uint64_t dirty; 2742 2743 cvd = pvd->vdev_child[c]; 2744 if (cvd == vd) 2745 continue; 2746 if (vdev_is_dead(cvd)) 2747 continue; 2748 mutex_enter(&cvd->vdev_dtl_lock); 2749 dirty = cvd->vdev_dtl_map.sm_space | 2750 cvd->vdev_dtl_scrub.sm_space; 2751 mutex_exit(&cvd->vdev_dtl_lock); 2752 if (!dirty) 2753 break; 2754 } 2755 2756 /* 2757 * If we are a replacing or spare vdev, then we can always detach the 2758 * latter child, as that is how one cancels the operation. 2759 */ 2760 if ((pvd->vdev_ops == &vdev_mirror_ops || vd->vdev_id != 1) && 2761 c == pvd->vdev_children) 2762 return (spa_vdev_exit(spa, NULL, txg, EBUSY)); 2763 2764 /* 2765 * If we are detaching the original disk from a spare, then it implies 2766 * that the spare should become a real disk, and be removed from the 2767 * active spare list for the pool. 2768 */ 2769 if (pvd->vdev_ops == &vdev_spare_ops && 2770 vd->vdev_id == 0) 2771 unspare = B_TRUE; 2772 2773 /* 2774 * Erase the disk labels so the disk can be used for other things. 2775 * This must be done after all other error cases are handled, 2776 * but before we disembowel vd (so we can still do I/O to it). 2777 * But if we can't do it, don't treat the error as fatal -- 2778 * it may be that the unwritability of the disk is the reason 2779 * it's being detached! 2780 */ 2781 error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE); 2782 2783 /* 2784 * Remove vd from its parent and compact the parent's children. 2785 */ 2786 vdev_remove_child(pvd, vd); 2787 vdev_compact_children(pvd); 2788 2789 /* 2790 * Remember one of the remaining children so we can get tvd below. 2791 */ 2792 cvd = pvd->vdev_child[0]; 2793 2794 /* 2795 * If we need to remove the remaining child from the list of hot spares, 2796 * do it now, marking the vdev as no longer a spare in the process. We 2797 * must do this before vdev_remove_parent(), because that can change the 2798 * GUID if it creates a new toplevel GUID. 2799 */ 2800 if (unspare) { 2801 ASSERT(cvd->vdev_isspare); 2802 spa_spare_remove(cvd); 2803 unspare_guid = cvd->vdev_guid; 2804 } 2805 2806 /* 2807 * If the parent mirror/replacing vdev only has one child, 2808 * the parent is no longer needed. Remove it from the tree. 2809 */ 2810 if (pvd->vdev_children == 1) 2811 vdev_remove_parent(cvd); 2812 2813 /* 2814 * We don't set tvd until now because the parent we just removed 2815 * may have been the previous top-level vdev. 2816 */ 2817 tvd = cvd->vdev_top; 2818 ASSERT(tvd->vdev_parent == rvd); 2819 2820 /* 2821 * Reevaluate the parent vdev state. 2822 */ 2823 vdev_propagate_state(cvd); 2824 2825 /* 2826 * If the device we just detached was smaller than the others, it may be 2827 * possible to add metaslabs (i.e. grow the pool). vdev_metaslab_init() 2828 * can't fail because the existing metaslabs are already in core, so 2829 * there's nothing to read from disk. 2830 */ 2831 VERIFY(vdev_metaslab_init(tvd, txg) == 0); 2832 2833 vdev_config_dirty(tvd); 2834 2835 /* 2836 * Mark vd's DTL as dirty in this txg. vdev_dtl_sync() will see that 2837 * vd->vdev_detached is set and free vd's DTL object in syncing context. 2838 * But first make sure we're not on any *other* txg's DTL list, to 2839 * prevent vd from being accessed after it's freed. 2840 */ 2841 for (t = 0; t < TXG_SIZE; t++) 2842 (void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t); 2843 vd->vdev_detached = B_TRUE; 2844 vdev_dirty(tvd, VDD_DTL, vd, txg); 2845 2846 spa_event_notify(spa, vd, ESC_ZFS_VDEV_REMOVE); 2847 2848 error = spa_vdev_exit(spa, vd, txg, 0); 2849 2850 /* 2851 * If this was the removal of the original device in a hot spare vdev, 2852 * then we want to go through and remove the device from the hot spare 2853 * list of every other pool. 2854 */ 2855 if (unspare) { 2856 spa = NULL; 2857 mutex_enter(&spa_namespace_lock); 2858 while ((spa = spa_next(spa)) != NULL) { 2859 if (spa->spa_state != POOL_STATE_ACTIVE) 2860 continue; 2861 2862 (void) spa_vdev_remove(spa, unspare_guid, B_TRUE); 2863 } 2864 mutex_exit(&spa_namespace_lock); 2865 } 2866 2867 return (error); 2868 } 2869 2870 /* 2871 * Remove a spares vdev from the nvlist config. 2872 */ 2873 static int 2874 spa_remove_spares(spa_aux_vdev_t *sav, uint64_t guid, boolean_t unspare, 2875 nvlist_t **spares, int nspares, vdev_t *vd) 2876 { 2877 nvlist_t *nv, **newspares; 2878 int i, j; 2879 2880 nv = NULL; 2881 for (i = 0; i < nspares; i++) { 2882 uint64_t theguid; 2883 2884 VERIFY(nvlist_lookup_uint64(spares[i], 2885 ZPOOL_CONFIG_GUID, &theguid) == 0); 2886 if (theguid == guid) { 2887 nv = spares[i]; 2888 break; 2889 } 2890 } 2891 2892 /* 2893 * Only remove the hot spare if it's not currently in use in this pool. 2894 */ 2895 if (nv == NULL && vd == NULL) 2896 return (ENOENT); 2897 2898 if (nv == NULL && vd != NULL) 2899 return (ENOTSUP); 2900 2901 if (!unspare && nv != NULL && vd != NULL) 2902 return (EBUSY); 2903 2904 if (nspares == 1) { 2905 newspares = NULL; 2906 } else { 2907 newspares = kmem_alloc((nspares - 1) * sizeof (void *), 2908 KM_SLEEP); 2909 for (i = 0, j = 0; i < nspares; i++) { 2910 if (spares[i] != nv) 2911 VERIFY(nvlist_dup(spares[i], 2912 &newspares[j++], KM_SLEEP) == 0); 2913 } 2914 } 2915 2916 VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_SPARES, 2917 DATA_TYPE_NVLIST_ARRAY) == 0); 2918 VERIFY(nvlist_add_nvlist_array(sav->sav_config, 2919 ZPOOL_CONFIG_SPARES, newspares, nspares - 1) == 0); 2920 for (i = 0; i < nspares - 1; i++) 2921 nvlist_free(newspares[i]); 2922 kmem_free(newspares, (nspares - 1) * sizeof (void *)); 2923 2924 return (0); 2925 } 2926 2927 /* 2928 * Remove an l2cache vdev from the nvlist config. 2929 */ 2930 static int 2931 spa_remove_l2cache(spa_aux_vdev_t *sav, uint64_t guid, nvlist_t **l2cache, 2932 int nl2cache, vdev_t *vd) 2933 { 2934 nvlist_t *nv, **newl2cache; 2935 int i, j; 2936 2937 nv = NULL; 2938 for (i = 0; i < nl2cache; i++) { 2939 uint64_t theguid; 2940 2941 VERIFY(nvlist_lookup_uint64(l2cache[i], 2942 ZPOOL_CONFIG_GUID, &theguid) == 0); 2943 if (theguid == guid) { 2944 nv = l2cache[i]; 2945 break; 2946 } 2947 } 2948 2949 if (vd == NULL) { 2950 for (i = 0; i < nl2cache; i++) { 2951 if (sav->sav_vdevs[i]->vdev_guid == guid) { 2952 vd = sav->sav_vdevs[i]; 2953 break; 2954 } 2955 } 2956 } 2957 2958 if (nv == NULL && vd == NULL) 2959 return (ENOENT); 2960 2961 if (nv == NULL && vd != NULL) 2962 return (ENOTSUP); 2963 2964 if (nl2cache == 1) { 2965 newl2cache = NULL; 2966 } else { 2967 newl2cache = kmem_alloc((nl2cache - 1) * sizeof (void *), 2968 KM_SLEEP); 2969 for (i = 0, j = 0; i < nl2cache; i++) { 2970 if (l2cache[i] != nv) 2971 VERIFY(nvlist_dup(l2cache[i], 2972 &newl2cache[j++], KM_SLEEP) == 0); 2973 } 2974 } 2975 2976 VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE, 2977 DATA_TYPE_NVLIST_ARRAY) == 0); 2978 VERIFY(nvlist_add_nvlist_array(sav->sav_config, 2979 ZPOOL_CONFIG_L2CACHE, newl2cache, nl2cache - 1) == 0); 2980 for (i = 0; i < nl2cache - 1; i++) 2981 nvlist_free(newl2cache[i]); 2982 kmem_free(newl2cache, (nl2cache - 1) * sizeof (void *)); 2983 2984 return (0); 2985 } 2986 2987 /* 2988 * Remove a device from the pool. Currently, this supports removing only hot 2989 * spares and level 2 ARC devices. 2990 */ 2991 int 2992 spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare) 2993 { 2994 vdev_t *vd; 2995 nvlist_t **spares, **l2cache; 2996 uint_t nspares, nl2cache; 2997 int error = 0; 2998 2999 spa_config_enter(spa, RW_WRITER, FTAG); 3000 3001 vd = spa_lookup_by_guid(spa, guid); 3002 3003 if (spa->spa_spares.sav_vdevs != NULL && 3004 spa_spare_exists(guid, NULL) && 3005 nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, 3006 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0) { 3007 if ((error = spa_remove_spares(&spa->spa_spares, guid, unspare, 3008 spares, nspares, vd)) != 0) 3009 goto out; 3010 spa_load_spares(spa); 3011 spa->spa_spares.sav_sync = B_TRUE; 3012 goto out; 3013 } 3014 3015 if (spa->spa_l2cache.sav_vdevs != NULL && 3016 spa_l2cache_exists(guid, NULL) && 3017 nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config, 3018 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0) { 3019 if ((error = spa_remove_l2cache(&spa->spa_l2cache, guid, 3020 l2cache, nl2cache, vd)) != 0) 3021 goto out; 3022 spa_load_l2cache(spa); 3023 spa->spa_l2cache.sav_sync = B_TRUE; 3024 } 3025 3026 out: 3027 spa_config_exit(spa, FTAG); 3028 return (error); 3029 } 3030 3031 /* 3032 * Find any device that's done replacing, or a vdev marked 'unspare' that's 3033 * current spared, so we can detach it. 3034 */ 3035 static vdev_t * 3036 spa_vdev_resilver_done_hunt(vdev_t *vd) 3037 { 3038 vdev_t *newvd, *oldvd; 3039 int c; 3040 3041 for (c = 0; c < vd->vdev_children; c++) { 3042 oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]); 3043 if (oldvd != NULL) 3044 return (oldvd); 3045 } 3046 3047 /* 3048 * Check for a completed replacement. 3049 */ 3050 if (vd->vdev_ops == &vdev_replacing_ops && vd->vdev_children == 2) { 3051 oldvd = vd->vdev_child[0]; 3052 newvd = vd->vdev_child[1]; 3053 3054 mutex_enter(&newvd->vdev_dtl_lock); 3055 if (newvd->vdev_dtl_map.sm_space == 0 && 3056 newvd->vdev_dtl_scrub.sm_space == 0) { 3057 mutex_exit(&newvd->vdev_dtl_lock); 3058 return (oldvd); 3059 } 3060 mutex_exit(&newvd->vdev_dtl_lock); 3061 } 3062 3063 /* 3064 * Check for a completed resilver with the 'unspare' flag set. 3065 */ 3066 if (vd->vdev_ops == &vdev_spare_ops && vd->vdev_children == 2) { 3067 newvd = vd->vdev_child[0]; 3068 oldvd = vd->vdev_child[1]; 3069 3070 mutex_enter(&newvd->vdev_dtl_lock); 3071 if (newvd->vdev_unspare && 3072 newvd->vdev_dtl_map.sm_space == 0 && 3073 newvd->vdev_dtl_scrub.sm_space == 0) { 3074 newvd->vdev_unspare = 0; 3075 mutex_exit(&newvd->vdev_dtl_lock); 3076 return (oldvd); 3077 } 3078 mutex_exit(&newvd->vdev_dtl_lock); 3079 } 3080 3081 return (NULL); 3082 } 3083 3084 static void 3085 spa_vdev_resilver_done(spa_t *spa) 3086 { 3087 vdev_t *vd; 3088 vdev_t *pvd; 3089 uint64_t guid; 3090 uint64_t pguid = 0; 3091 3092 spa_config_enter(spa, RW_READER, FTAG); 3093 3094 while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) { 3095 guid = vd->vdev_guid; 3096 /* 3097 * If we have just finished replacing a hot spared device, then 3098 * we need to detach the parent's first child (the original hot 3099 * spare) as well. 3100 */ 3101 pvd = vd->vdev_parent; 3102 if (pvd->vdev_parent->vdev_ops == &vdev_spare_ops && 3103 pvd->vdev_id == 0) { 3104 ASSERT(pvd->vdev_ops == &vdev_replacing_ops); 3105 ASSERT(pvd->vdev_parent->vdev_children == 2); 3106 pguid = pvd->vdev_parent->vdev_child[1]->vdev_guid; 3107 } 3108 spa_config_exit(spa, FTAG); 3109 if (spa_vdev_detach(spa, guid, B_TRUE) != 0) 3110 return; 3111 if (pguid != 0 && spa_vdev_detach(spa, pguid, B_TRUE) != 0) 3112 return; 3113 spa_config_enter(spa, RW_READER, FTAG); 3114 } 3115 3116 spa_config_exit(spa, FTAG); 3117 } 3118 3119 /* 3120 * Update the stored path for this vdev. Dirty the vdev configuration, relying 3121 * on spa_vdev_enter/exit() to synchronize the labels and cache. 3122 */ 3123 int 3124 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath) 3125 { 3126 vdev_t *rvd, *vd; 3127 uint64_t txg; 3128 3129 rvd = spa->spa_root_vdev; 3130 3131 txg = spa_vdev_enter(spa); 3132 3133 if ((vd = vdev_lookup_by_guid(rvd, guid)) == NULL) { 3134 /* 3135 * Determine if this is a reference to a hot spare or l2cache 3136 * device. If it is, update the path as stored in their 3137 * device list. 3138 */ 3139 nvlist_t **spares, **l2cache; 3140 uint_t i, nspares, nl2cache; 3141 3142 if (spa->spa_spares.sav_config != NULL) { 3143 VERIFY(nvlist_lookup_nvlist_array( 3144 spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES, 3145 &spares, &nspares) == 0); 3146 for (i = 0; i < nspares; i++) { 3147 uint64_t theguid; 3148 VERIFY(nvlist_lookup_uint64(spares[i], 3149 ZPOOL_CONFIG_GUID, &theguid) == 0); 3150 if (theguid == guid) { 3151 VERIFY(nvlist_add_string(spares[i], 3152 ZPOOL_CONFIG_PATH, newpath) == 0); 3153 spa_load_spares(spa); 3154 spa->spa_spares.sav_sync = B_TRUE; 3155 return (spa_vdev_exit(spa, NULL, txg, 3156 0)); 3157 } 3158 } 3159 } 3160 3161 if (spa->spa_l2cache.sav_config != NULL) { 3162 VERIFY(nvlist_lookup_nvlist_array( 3163 spa->spa_l2cache.sav_config, ZPOOL_CONFIG_L2CACHE, 3164 &l2cache, &nl2cache) == 0); 3165 for (i = 0; i < nl2cache; i++) { 3166 uint64_t theguid; 3167 VERIFY(nvlist_lookup_uint64(l2cache[i], 3168 ZPOOL_CONFIG_GUID, &theguid) == 0); 3169 if (theguid == guid) { 3170 VERIFY(nvlist_add_string(l2cache[i], 3171 ZPOOL_CONFIG_PATH, newpath) == 0); 3172 spa_load_l2cache(spa); 3173 spa->spa_l2cache.sav_sync = B_TRUE; 3174 return (spa_vdev_exit(spa, NULL, txg, 3175 0)); 3176 } 3177 } 3178 } 3179 3180 return (spa_vdev_exit(spa, NULL, txg, ENOENT)); 3181 } 3182 3183 if (!vd->vdev_ops->vdev_op_leaf) 3184 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 3185 3186 spa_strfree(vd->vdev_path); 3187 vd->vdev_path = spa_strdup(newpath); 3188 3189 vdev_config_dirty(vd->vdev_top); 3190 3191 return (spa_vdev_exit(spa, NULL, txg, 0)); 3192 } 3193 3194 /* 3195 * ========================================================================== 3196 * SPA Scrubbing 3197 * ========================================================================== 3198 */ 3199 3200 static void 3201 spa_scrub_io_done(zio_t *zio) 3202 { 3203 spa_t *spa = zio->io_spa; 3204 3205 arc_data_buf_free(zio->io_data, zio->io_size); 3206 3207 mutex_enter(&spa->spa_scrub_lock); 3208 if (zio->io_error && !(zio->io_flags & ZIO_FLAG_SPECULATIVE)) { 3209 vdev_t *vd = zio->io_vd ? zio->io_vd : spa->spa_root_vdev; 3210 spa->spa_scrub_errors++; 3211 mutex_enter(&vd->vdev_stat_lock); 3212 vd->vdev_stat.vs_scrub_errors++; 3213 mutex_exit(&vd->vdev_stat_lock); 3214 } 3215 3216 if (--spa->spa_scrub_inflight < spa->spa_scrub_maxinflight) 3217 cv_broadcast(&spa->spa_scrub_io_cv); 3218 3219 ASSERT(spa->spa_scrub_inflight >= 0); 3220 3221 mutex_exit(&spa->spa_scrub_lock); 3222 } 3223 3224 static void 3225 spa_scrub_io_start(spa_t *spa, blkptr_t *bp, int priority, int flags, 3226 zbookmark_t *zb) 3227 { 3228 size_t size = BP_GET_LSIZE(bp); 3229 void *data; 3230 3231 mutex_enter(&spa->spa_scrub_lock); 3232 /* 3233 * Do not give too much work to vdev(s). 3234 */ 3235 while (spa->spa_scrub_inflight >= spa->spa_scrub_maxinflight) { 3236 cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock); 3237 } 3238 spa->spa_scrub_inflight++; 3239 mutex_exit(&spa->spa_scrub_lock); 3240 3241 data = arc_data_buf_alloc(size); 3242 3243 if (zb->zb_level == -1 && BP_GET_TYPE(bp) != DMU_OT_OBJSET) 3244 flags |= ZIO_FLAG_SPECULATIVE; /* intent log block */ 3245 3246 flags |= ZIO_FLAG_SCRUB_THREAD | ZIO_FLAG_CANFAIL; 3247 3248 zio_nowait(zio_read(NULL, spa, bp, data, size, 3249 spa_scrub_io_done, NULL, priority, flags, zb)); 3250 } 3251 3252 /* ARGSUSED */ 3253 static int 3254 spa_scrub_cb(traverse_blk_cache_t *bc, spa_t *spa, void *a) 3255 { 3256 blkptr_t *bp = &bc->bc_blkptr; 3257 vdev_t *vd = spa->spa_root_vdev; 3258 dva_t *dva = bp->blk_dva; 3259 int needs_resilver = B_FALSE; 3260 int d; 3261 3262 if (bc->bc_errno) { 3263 /* 3264 * We can't scrub this block, but we can continue to scrub 3265 * the rest of the pool. Note the error and move along. 3266 */ 3267 mutex_enter(&spa->spa_scrub_lock); 3268 spa->spa_scrub_errors++; 3269 mutex_exit(&spa->spa_scrub_lock); 3270 3271 mutex_enter(&vd->vdev_stat_lock); 3272 vd->vdev_stat.vs_scrub_errors++; 3273 mutex_exit(&vd->vdev_stat_lock); 3274 3275 return (ERESTART); 3276 } 3277 3278 ASSERT(bp->blk_birth < spa->spa_scrub_maxtxg); 3279 3280 for (d = 0; d < BP_GET_NDVAS(bp); d++) { 3281 vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d])); 3282 3283 ASSERT(vd != NULL); 3284 3285 /* 3286 * Keep track of how much data we've examined so that 3287 * zpool(1M) status can make useful progress reports. 3288 */ 3289 mutex_enter(&vd->vdev_stat_lock); 3290 vd->vdev_stat.vs_scrub_examined += DVA_GET_ASIZE(&dva[d]); 3291 mutex_exit(&vd->vdev_stat_lock); 3292 3293 if (spa->spa_scrub_type == POOL_SCRUB_RESILVER) { 3294 if (DVA_GET_GANG(&dva[d])) { 3295 /* 3296 * Gang members may be spread across multiple 3297 * vdevs, so the best we can do is look at the 3298 * pool-wide DTL. 3299 * XXX -- it would be better to change our 3300 * allocation policy to ensure that this can't 3301 * happen. 3302 */ 3303 vd = spa->spa_root_vdev; 3304 } 3305 if (vdev_dtl_contains(&vd->vdev_dtl_map, 3306 bp->blk_birth, 1)) 3307 needs_resilver = B_TRUE; 3308 } 3309 } 3310 3311 if (spa->spa_scrub_type == POOL_SCRUB_EVERYTHING) 3312 spa_scrub_io_start(spa, bp, ZIO_PRIORITY_SCRUB, 3313 ZIO_FLAG_SCRUB, &bc->bc_bookmark); 3314 else if (needs_resilver) 3315 spa_scrub_io_start(spa, bp, ZIO_PRIORITY_RESILVER, 3316 ZIO_FLAG_RESILVER, &bc->bc_bookmark); 3317 3318 return (0); 3319 } 3320 3321 static void 3322 spa_scrub_thread(spa_t *spa) 3323 { 3324 callb_cpr_t cprinfo; 3325 traverse_handle_t *th = spa->spa_scrub_th; 3326 vdev_t *rvd = spa->spa_root_vdev; 3327 pool_scrub_type_t scrub_type = spa->spa_scrub_type; 3328 int error = 0; 3329 boolean_t complete; 3330 3331 CALLB_CPR_INIT(&cprinfo, &spa->spa_scrub_lock, callb_generic_cpr, FTAG); 3332 3333 /* 3334 * If we're restarting due to a snapshot create/delete, 3335 * wait for that to complete. 3336 */ 3337 txg_wait_synced(spa_get_dsl(spa), 0); 3338 3339 dprintf("start %s mintxg=%llu maxtxg=%llu\n", 3340 scrub_type == POOL_SCRUB_RESILVER ? "resilver" : "scrub", 3341 spa->spa_scrub_mintxg, spa->spa_scrub_maxtxg); 3342 3343 spa_config_enter(spa, RW_WRITER, FTAG); 3344 vdev_reopen(rvd); /* purge all vdev caches */ 3345 vdev_config_dirty(rvd); /* rewrite all disk labels */ 3346 vdev_scrub_stat_update(rvd, scrub_type, B_FALSE); 3347 spa_config_exit(spa, FTAG); 3348 3349 mutex_enter(&spa->spa_scrub_lock); 3350 spa->spa_scrub_errors = 0; 3351 spa->spa_scrub_active = 1; 3352 ASSERT(spa->spa_scrub_inflight == 0); 3353 3354 while (!spa->spa_scrub_stop) { 3355 CALLB_CPR_SAFE_BEGIN(&cprinfo); 3356 while (spa->spa_scrub_suspended) { 3357 spa->spa_scrub_active = 0; 3358 cv_broadcast(&spa->spa_scrub_cv); 3359 cv_wait(&spa->spa_scrub_cv, &spa->spa_scrub_lock); 3360 spa->spa_scrub_active = 1; 3361 } 3362 CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_scrub_lock); 3363 3364 if (spa->spa_scrub_restart_txg != 0) 3365 break; 3366 3367 mutex_exit(&spa->spa_scrub_lock); 3368 error = traverse_more(th); 3369 mutex_enter(&spa->spa_scrub_lock); 3370 if (error != EAGAIN) 3371 break; 3372 } 3373 3374 while (spa->spa_scrub_inflight) 3375 cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock); 3376 3377 spa->spa_scrub_active = 0; 3378 cv_broadcast(&spa->spa_scrub_cv); 3379 3380 mutex_exit(&spa->spa_scrub_lock); 3381 3382 spa_config_enter(spa, RW_WRITER, FTAG); 3383 3384 mutex_enter(&spa->spa_scrub_lock); 3385 3386 /* 3387 * Note: we check spa_scrub_restart_txg under both spa_scrub_lock 3388 * AND the spa config lock to synchronize with any config changes 3389 * that revise the DTLs under spa_vdev_enter() / spa_vdev_exit(). 3390 */ 3391 if (spa->spa_scrub_restart_txg != 0) 3392 error = ERESTART; 3393 3394 if (spa->spa_scrub_stop) 3395 error = EINTR; 3396 3397 /* 3398 * Even if there were uncorrectable errors, we consider the scrub 3399 * completed. The downside is that if there is a transient error during 3400 * a resilver, we won't resilver the data properly to the target. But 3401 * if the damage is permanent (more likely) we will resilver forever, 3402 * which isn't really acceptable. Since there is enough information for 3403 * the user to know what has failed and why, this seems like a more 3404 * tractable approach. 3405 */ 3406 complete = (error == 0); 3407 3408 dprintf("end %s to maxtxg=%llu %s, traverse=%d, %llu errors, stop=%u\n", 3409 scrub_type == POOL_SCRUB_RESILVER ? "resilver" : "scrub", 3410 spa->spa_scrub_maxtxg, complete ? "done" : "FAILED", 3411 error, spa->spa_scrub_errors, spa->spa_scrub_stop); 3412 3413 mutex_exit(&spa->spa_scrub_lock); 3414 3415 /* 3416 * If the scrub/resilver completed, update all DTLs to reflect this. 3417 * Whether it succeeded or not, vacate all temporary scrub DTLs. 3418 */ 3419 vdev_dtl_reassess(rvd, spa_last_synced_txg(spa) + 1, 3420 complete ? spa->spa_scrub_maxtxg : 0, B_TRUE); 3421 vdev_scrub_stat_update(rvd, POOL_SCRUB_NONE, complete); 3422 spa_errlog_rotate(spa); 3423 3424 if (scrub_type == POOL_SCRUB_RESILVER && complete) 3425 spa_event_notify(spa, NULL, ESC_ZFS_RESILVER_FINISH); 3426 3427 spa_config_exit(spa, FTAG); 3428 3429 mutex_enter(&spa->spa_scrub_lock); 3430 3431 /* 3432 * We may have finished replacing a device. 3433 * Let the async thread assess this and handle the detach. 3434 */ 3435 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE); 3436 3437 /* 3438 * If we were told to restart, our final act is to start a new scrub. 3439 */ 3440 if (error == ERESTART) 3441 spa_async_request(spa, scrub_type == POOL_SCRUB_RESILVER ? 3442 SPA_ASYNC_RESILVER : SPA_ASYNC_SCRUB); 3443 3444 spa->spa_scrub_type = POOL_SCRUB_NONE; 3445 spa->spa_scrub_active = 0; 3446 spa->spa_scrub_thread = NULL; 3447 cv_broadcast(&spa->spa_scrub_cv); 3448 CALLB_CPR_EXIT(&cprinfo); /* drops &spa->spa_scrub_lock */ 3449 thread_exit(); 3450 } 3451 3452 void 3453 spa_scrub_suspend(spa_t *spa) 3454 { 3455 mutex_enter(&spa->spa_scrub_lock); 3456 spa->spa_scrub_suspended++; 3457 while (spa->spa_scrub_active) { 3458 cv_broadcast(&spa->spa_scrub_cv); 3459 cv_wait(&spa->spa_scrub_cv, &spa->spa_scrub_lock); 3460 } 3461 while (spa->spa_scrub_inflight) 3462 cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock); 3463 mutex_exit(&spa->spa_scrub_lock); 3464 } 3465 3466 void 3467 spa_scrub_resume(spa_t *spa) 3468 { 3469 mutex_enter(&spa->spa_scrub_lock); 3470 ASSERT(spa->spa_scrub_suspended != 0); 3471 if (--spa->spa_scrub_suspended == 0) 3472 cv_broadcast(&spa->spa_scrub_cv); 3473 mutex_exit(&spa->spa_scrub_lock); 3474 } 3475 3476 void 3477 spa_scrub_restart(spa_t *spa, uint64_t txg) 3478 { 3479 /* 3480 * Something happened (e.g. snapshot create/delete) that means 3481 * we must restart any in-progress scrubs. The itinerary will 3482 * fix this properly. 3483 */ 3484 mutex_enter(&spa->spa_scrub_lock); 3485 spa->spa_scrub_restart_txg = txg; 3486 mutex_exit(&spa->spa_scrub_lock); 3487 } 3488 3489 int 3490 spa_scrub(spa_t *spa, pool_scrub_type_t type, boolean_t force) 3491 { 3492 space_seg_t *ss; 3493 uint64_t mintxg, maxtxg; 3494 vdev_t *rvd = spa->spa_root_vdev; 3495 3496 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 3497 ASSERT(!spa_config_held(spa, RW_WRITER)); 3498 3499 if ((uint_t)type >= POOL_SCRUB_TYPES) 3500 return (ENOTSUP); 3501 3502 mutex_enter(&spa->spa_scrub_lock); 3503 3504 /* 3505 * If there's a scrub or resilver already in progress, stop it. 3506 */ 3507 while (spa->spa_scrub_thread != NULL) { 3508 /* 3509 * Don't stop a resilver unless forced. 3510 */ 3511 if (spa->spa_scrub_type == POOL_SCRUB_RESILVER && !force) { 3512 mutex_exit(&spa->spa_scrub_lock); 3513 return (EBUSY); 3514 } 3515 spa->spa_scrub_stop = 1; 3516 cv_broadcast(&spa->spa_scrub_cv); 3517 cv_wait(&spa->spa_scrub_cv, &spa->spa_scrub_lock); 3518 } 3519 3520 /* 3521 * Terminate the previous traverse. 3522 */ 3523 if (spa->spa_scrub_th != NULL) { 3524 traverse_fini(spa->spa_scrub_th); 3525 spa->spa_scrub_th = NULL; 3526 } 3527 3528 if (rvd == NULL) { 3529 ASSERT(spa->spa_scrub_stop == 0); 3530 ASSERT(spa->spa_scrub_type == type); 3531 ASSERT(spa->spa_scrub_restart_txg == 0); 3532 mutex_exit(&spa->spa_scrub_lock); 3533 return (0); 3534 } 3535 3536 mintxg = TXG_INITIAL - 1; 3537 maxtxg = spa_last_synced_txg(spa) + 1; 3538 3539 mutex_enter(&rvd->vdev_dtl_lock); 3540 3541 if (rvd->vdev_dtl_map.sm_space == 0) { 3542 /* 3543 * The pool-wide DTL is empty. 3544 * If this is a resilver, there's nothing to do except 3545 * check whether any in-progress replacements have completed. 3546 */ 3547 if (type == POOL_SCRUB_RESILVER) { 3548 type = POOL_SCRUB_NONE; 3549 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE); 3550 } 3551 } else { 3552 /* 3553 * The pool-wide DTL is non-empty. 3554 * If this is a normal scrub, upgrade to a resilver instead. 3555 */ 3556 if (type == POOL_SCRUB_EVERYTHING) 3557 type = POOL_SCRUB_RESILVER; 3558 } 3559 3560 if (type == POOL_SCRUB_RESILVER) { 3561 /* 3562 * Determine the resilvering boundaries. 3563 * 3564 * Note: (mintxg, maxtxg) is an open interval, 3565 * i.e. mintxg and maxtxg themselves are not included. 3566 * 3567 * Note: for maxtxg, we MIN with spa_last_synced_txg(spa) + 1 3568 * so we don't claim to resilver a txg that's still changing. 3569 */ 3570 ss = avl_first(&rvd->vdev_dtl_map.sm_root); 3571 mintxg = ss->ss_start - 1; 3572 ss = avl_last(&rvd->vdev_dtl_map.sm_root); 3573 maxtxg = MIN(ss->ss_end, maxtxg); 3574 3575 spa_event_notify(spa, NULL, ESC_ZFS_RESILVER_START); 3576 } 3577 3578 mutex_exit(&rvd->vdev_dtl_lock); 3579 3580 spa->spa_scrub_stop = 0; 3581 spa->spa_scrub_type = type; 3582 spa->spa_scrub_restart_txg = 0; 3583 3584 if (type != POOL_SCRUB_NONE) { 3585 spa->spa_scrub_mintxg = mintxg; 3586 spa->spa_scrub_maxtxg = maxtxg; 3587 spa->spa_scrub_th = traverse_init(spa, spa_scrub_cb, NULL, 3588 ADVANCE_PRE | ADVANCE_PRUNE | ADVANCE_ZIL, 3589 ZIO_FLAG_CANFAIL); 3590 traverse_add_pool(spa->spa_scrub_th, mintxg, maxtxg); 3591 spa->spa_scrub_thread = thread_create(NULL, 0, 3592 spa_scrub_thread, spa, 0, &p0, TS_RUN, minclsyspri); 3593 } 3594 3595 mutex_exit(&spa->spa_scrub_lock); 3596 3597 return (0); 3598 } 3599 3600 /* 3601 * ========================================================================== 3602 * SPA async task processing 3603 * ========================================================================== 3604 */ 3605 3606 static void 3607 spa_async_remove(spa_t *spa, vdev_t *vd) 3608 { 3609 vdev_t *tvd; 3610 int c; 3611 3612 for (c = 0; c < vd->vdev_children; c++) { 3613 tvd = vd->vdev_child[c]; 3614 if (tvd->vdev_remove_wanted) { 3615 tvd->vdev_remove_wanted = 0; 3616 vdev_set_state(tvd, B_FALSE, VDEV_STATE_REMOVED, 3617 VDEV_AUX_NONE); 3618 vdev_clear(spa, tvd, B_TRUE); 3619 vdev_config_dirty(tvd->vdev_top); 3620 } 3621 spa_async_remove(spa, tvd); 3622 } 3623 } 3624 3625 static void 3626 spa_async_thread(spa_t *spa) 3627 { 3628 int tasks; 3629 uint64_t txg; 3630 3631 ASSERT(spa->spa_sync_on); 3632 3633 mutex_enter(&spa->spa_async_lock); 3634 tasks = spa->spa_async_tasks; 3635 spa->spa_async_tasks = 0; 3636 mutex_exit(&spa->spa_async_lock); 3637 3638 /* 3639 * See if the config needs to be updated. 3640 */ 3641 if (tasks & SPA_ASYNC_CONFIG_UPDATE) { 3642 mutex_enter(&spa_namespace_lock); 3643 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); 3644 mutex_exit(&spa_namespace_lock); 3645 } 3646 3647 /* 3648 * See if any devices need to be marked REMOVED. 3649 * 3650 * XXX - We avoid doing this when we are in 3651 * I/O failure state since spa_vdev_enter() grabs 3652 * the namespace lock and would not be able to obtain 3653 * the writer config lock. 3654 */ 3655 if (tasks & SPA_ASYNC_REMOVE && 3656 spa_state(spa) != POOL_STATE_IO_FAILURE) { 3657 txg = spa_vdev_enter(spa); 3658 spa_async_remove(spa, spa->spa_root_vdev); 3659 (void) spa_vdev_exit(spa, NULL, txg, 0); 3660 } 3661 3662 /* 3663 * If any devices are done replacing, detach them. 3664 */ 3665 if (tasks & SPA_ASYNC_RESILVER_DONE) 3666 spa_vdev_resilver_done(spa); 3667 3668 /* 3669 * Kick off a scrub. When starting a RESILVER scrub (or an EVERYTHING 3670 * scrub which can become a resilver), we need to hold 3671 * spa_namespace_lock() because the sysevent we post via 3672 * spa_event_notify() needs to get the name of the pool. 3673 */ 3674 if (tasks & SPA_ASYNC_SCRUB) { 3675 mutex_enter(&spa_namespace_lock); 3676 VERIFY(spa_scrub(spa, POOL_SCRUB_EVERYTHING, B_TRUE) == 0); 3677 mutex_exit(&spa_namespace_lock); 3678 } 3679 3680 /* 3681 * Kick off a resilver. 3682 */ 3683 if (tasks & SPA_ASYNC_RESILVER) { 3684 mutex_enter(&spa_namespace_lock); 3685 VERIFY(spa_scrub(spa, POOL_SCRUB_RESILVER, B_TRUE) == 0); 3686 mutex_exit(&spa_namespace_lock); 3687 } 3688 3689 /* 3690 * Let the world know that we're done. 3691 */ 3692 mutex_enter(&spa->spa_async_lock); 3693 spa->spa_async_thread = NULL; 3694 cv_broadcast(&spa->spa_async_cv); 3695 mutex_exit(&spa->spa_async_lock); 3696 thread_exit(); 3697 } 3698 3699 void 3700 spa_async_suspend(spa_t *spa) 3701 { 3702 mutex_enter(&spa->spa_async_lock); 3703 spa->spa_async_suspended++; 3704 while (spa->spa_async_thread != NULL) 3705 cv_wait(&spa->spa_async_cv, &spa->spa_async_lock); 3706 mutex_exit(&spa->spa_async_lock); 3707 } 3708 3709 void 3710 spa_async_resume(spa_t *spa) 3711 { 3712 mutex_enter(&spa->spa_async_lock); 3713 ASSERT(spa->spa_async_suspended != 0); 3714 spa->spa_async_suspended--; 3715 mutex_exit(&spa->spa_async_lock); 3716 } 3717 3718 static void 3719 spa_async_dispatch(spa_t *spa) 3720 { 3721 mutex_enter(&spa->spa_async_lock); 3722 if (spa->spa_async_tasks && !spa->spa_async_suspended && 3723 spa->spa_async_thread == NULL && 3724 rootdir != NULL && !vn_is_readonly(rootdir)) 3725 spa->spa_async_thread = thread_create(NULL, 0, 3726 spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri); 3727 mutex_exit(&spa->spa_async_lock); 3728 } 3729 3730 void 3731 spa_async_request(spa_t *spa, int task) 3732 { 3733 mutex_enter(&spa->spa_async_lock); 3734 spa->spa_async_tasks |= task; 3735 mutex_exit(&spa->spa_async_lock); 3736 } 3737 3738 /* 3739 * ========================================================================== 3740 * SPA syncing routines 3741 * ========================================================================== 3742 */ 3743 3744 static void 3745 spa_sync_deferred_frees(spa_t *spa, uint64_t txg) 3746 { 3747 bplist_t *bpl = &spa->spa_sync_bplist; 3748 dmu_tx_t *tx; 3749 blkptr_t blk; 3750 uint64_t itor = 0; 3751 zio_t *zio; 3752 int error; 3753 uint8_t c = 1; 3754 3755 zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CONFIG_HELD); 3756 3757 while (bplist_iterate(bpl, &itor, &blk) == 0) 3758 zio_nowait(zio_free(zio, spa, txg, &blk, NULL, NULL)); 3759 3760 error = zio_wait(zio); 3761 ASSERT3U(error, ==, 0); 3762 3763 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); 3764 bplist_vacate(bpl, tx); 3765 3766 /* 3767 * Pre-dirty the first block so we sync to convergence faster. 3768 * (Usually only the first block is needed.) 3769 */ 3770 dmu_write(spa->spa_meta_objset, spa->spa_sync_bplist_obj, 0, 1, &c, tx); 3771 dmu_tx_commit(tx); 3772 } 3773 3774 static void 3775 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx) 3776 { 3777 char *packed = NULL; 3778 size_t nvsize = 0; 3779 dmu_buf_t *db; 3780 3781 VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0); 3782 3783 packed = kmem_alloc(nvsize, KM_SLEEP); 3784 3785 VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR, 3786 KM_SLEEP) == 0); 3787 3788 dmu_write(spa->spa_meta_objset, obj, 0, nvsize, packed, tx); 3789 3790 kmem_free(packed, nvsize); 3791 3792 VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db)); 3793 dmu_buf_will_dirty(db, tx); 3794 *(uint64_t *)db->db_data = nvsize; 3795 dmu_buf_rele(db, FTAG); 3796 } 3797 3798 static void 3799 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx, 3800 const char *config, const char *entry) 3801 { 3802 nvlist_t *nvroot; 3803 nvlist_t **list; 3804 int i; 3805 3806 if (!sav->sav_sync) 3807 return; 3808 3809 /* 3810 * Update the MOS nvlist describing the list of available devices. 3811 * spa_validate_aux() will have already made sure this nvlist is 3812 * valid and the vdevs are labeled appropriately. 3813 */ 3814 if (sav->sav_object == 0) { 3815 sav->sav_object = dmu_object_alloc(spa->spa_meta_objset, 3816 DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE, 3817 sizeof (uint64_t), tx); 3818 VERIFY(zap_update(spa->spa_meta_objset, 3819 DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1, 3820 &sav->sav_object, tx) == 0); 3821 } 3822 3823 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0); 3824 if (sav->sav_count == 0) { 3825 VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0); 3826 } else { 3827 list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP); 3828 for (i = 0; i < sav->sav_count; i++) 3829 list[i] = vdev_config_generate(spa, sav->sav_vdevs[i], 3830 B_FALSE, B_FALSE, B_TRUE); 3831 VERIFY(nvlist_add_nvlist_array(nvroot, config, list, 3832 sav->sav_count) == 0); 3833 for (i = 0; i < sav->sav_count; i++) 3834 nvlist_free(list[i]); 3835 kmem_free(list, sav->sav_count * sizeof (void *)); 3836 } 3837 3838 spa_sync_nvlist(spa, sav->sav_object, nvroot, tx); 3839 nvlist_free(nvroot); 3840 3841 sav->sav_sync = B_FALSE; 3842 } 3843 3844 static void 3845 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx) 3846 { 3847 nvlist_t *config; 3848 3849 if (list_is_empty(&spa->spa_dirty_list)) 3850 return; 3851 3852 config = spa_config_generate(spa, NULL, dmu_tx_get_txg(tx), B_FALSE); 3853 3854 if (spa->spa_config_syncing) 3855 nvlist_free(spa->spa_config_syncing); 3856 spa->spa_config_syncing = config; 3857 3858 spa_sync_nvlist(spa, spa->spa_config_object, config, tx); 3859 } 3860 3861 /* 3862 * Set zpool properties. 3863 */ 3864 static void 3865 spa_sync_props(void *arg1, void *arg2, cred_t *cr, dmu_tx_t *tx) 3866 { 3867 spa_t *spa = arg1; 3868 objset_t *mos = spa->spa_meta_objset; 3869 nvlist_t *nvp = arg2; 3870 nvpair_t *elem; 3871 uint64_t intval; 3872 char *strval, *slash; 3873 zpool_prop_t prop; 3874 const char *propname; 3875 zprop_type_t proptype; 3876 3877 elem = NULL; 3878 while ((elem = nvlist_next_nvpair(nvp, elem))) { 3879 switch (prop = zpool_name_to_prop(nvpair_name(elem))) { 3880 case ZPOOL_PROP_VERSION: 3881 /* 3882 * Only set version for non-zpool-creation cases 3883 * (set/import). spa_create() needs special care 3884 * for version setting. 3885 */ 3886 if (tx->tx_txg != TXG_INITIAL) { 3887 VERIFY(nvpair_value_uint64(elem, 3888 &intval) == 0); 3889 ASSERT(intval <= SPA_VERSION); 3890 ASSERT(intval >= spa_version(spa)); 3891 spa->spa_uberblock.ub_version = intval; 3892 vdev_config_dirty(spa->spa_root_vdev); 3893 } 3894 break; 3895 3896 case ZPOOL_PROP_ALTROOT: 3897 /* 3898 * 'altroot' is a non-persistent property. It should 3899 * have been set temporarily at creation or import time. 3900 */ 3901 ASSERT(spa->spa_root != NULL); 3902 break; 3903 3904 case ZPOOL_PROP_CACHEFILE: 3905 /* 3906 * 'cachefile' is a non-persistent property, but note 3907 * an async request that the config cache needs to be 3908 * udpated. 3909 */ 3910 VERIFY(nvpair_value_string(elem, &strval) == 0); 3911 if (spa->spa_config_dir) 3912 spa_strfree(spa->spa_config_dir); 3913 if (spa->spa_config_file) 3914 spa_strfree(spa->spa_config_file); 3915 3916 if (strval[0] == '\0') { 3917 spa->spa_config_dir = NULL; 3918 spa->spa_config_file = NULL; 3919 } else if (strcmp(strval, "none") == 0) { 3920 spa->spa_config_dir = spa_strdup(strval); 3921 spa->spa_config_file = NULL; 3922 } else { 3923 /* 3924 * If the cachefile is in the root directory, 3925 * we will end up with an empty string for 3926 * spa_config_dir. This value is only ever 3927 * used when concatenated with '/', so an empty 3928 * string still behaves correctly and keeps the 3929 * rest of the code simple. 3930 */ 3931 slash = strrchr(strval, '/'); 3932 ASSERT(slash != NULL); 3933 *slash = '\0'; 3934 if (strcmp(strval, spa_config_dir) == 0 && 3935 strcmp(slash + 1, ZPOOL_CACHE_FILE) == 0) { 3936 spa->spa_config_dir = NULL; 3937 spa->spa_config_file = NULL; 3938 } else { 3939 spa->spa_config_dir = 3940 spa_strdup(strval); 3941 spa->spa_config_file = 3942 spa_strdup(slash + 1); 3943 } 3944 } 3945 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 3946 break; 3947 default: 3948 /* 3949 * Set pool property values in the poolprops mos object. 3950 */ 3951 mutex_enter(&spa->spa_props_lock); 3952 if (spa->spa_pool_props_object == 0) { 3953 objset_t *mos = spa->spa_meta_objset; 3954 3955 VERIFY((spa->spa_pool_props_object = 3956 zap_create(mos, DMU_OT_POOL_PROPS, 3957 DMU_OT_NONE, 0, tx)) > 0); 3958 3959 VERIFY(zap_update(mos, 3960 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS, 3961 8, 1, &spa->spa_pool_props_object, tx) 3962 == 0); 3963 } 3964 mutex_exit(&spa->spa_props_lock); 3965 3966 /* normalize the property name */ 3967 propname = zpool_prop_to_name(prop); 3968 proptype = zpool_prop_get_type(prop); 3969 3970 if (nvpair_type(elem) == DATA_TYPE_STRING) { 3971 ASSERT(proptype == PROP_TYPE_STRING); 3972 VERIFY(nvpair_value_string(elem, &strval) == 0); 3973 VERIFY(zap_update(mos, 3974 spa->spa_pool_props_object, propname, 3975 1, strlen(strval) + 1, strval, tx) == 0); 3976 3977 } else if (nvpair_type(elem) == DATA_TYPE_UINT64) { 3978 VERIFY(nvpair_value_uint64(elem, &intval) == 0); 3979 3980 if (proptype == PROP_TYPE_INDEX) { 3981 const char *unused; 3982 VERIFY(zpool_prop_index_to_string( 3983 prop, intval, &unused) == 0); 3984 } 3985 VERIFY(zap_update(mos, 3986 spa->spa_pool_props_object, propname, 3987 8, 1, &intval, tx) == 0); 3988 } else { 3989 ASSERT(0); /* not allowed */ 3990 } 3991 3992 switch (prop) { 3993 case ZPOOL_PROP_DELEGATION: 3994 spa->spa_delegation = intval; 3995 break; 3996 case ZPOOL_PROP_BOOTFS: 3997 spa->spa_bootfs = intval; 3998 break; 3999 case ZPOOL_PROP_FAILUREMODE: 4000 spa->spa_failmode = intval; 4001 break; 4002 default: 4003 break; 4004 } 4005 } 4006 4007 /* log internal history if this is not a zpool create */ 4008 if (spa_version(spa) >= SPA_VERSION_ZPOOL_HISTORY && 4009 tx->tx_txg != TXG_INITIAL) { 4010 spa_history_internal_log(LOG_POOL_PROPSET, 4011 spa, tx, cr, "%s %lld %s", 4012 nvpair_name(elem), intval, spa->spa_name); 4013 } 4014 } 4015 } 4016 4017 /* 4018 * Sync the specified transaction group. New blocks may be dirtied as 4019 * part of the process, so we iterate until it converges. 4020 */ 4021 void 4022 spa_sync(spa_t *spa, uint64_t txg) 4023 { 4024 dsl_pool_t *dp = spa->spa_dsl_pool; 4025 objset_t *mos = spa->spa_meta_objset; 4026 bplist_t *bpl = &spa->spa_sync_bplist; 4027 vdev_t *rvd = spa->spa_root_vdev; 4028 vdev_t *vd; 4029 dmu_tx_t *tx; 4030 int dirty_vdevs; 4031 4032 /* 4033 * Lock out configuration changes. 4034 */ 4035 spa_config_enter(spa, RW_READER, FTAG); 4036 4037 spa->spa_syncing_txg = txg; 4038 spa->spa_sync_pass = 0; 4039 4040 VERIFY(0 == bplist_open(bpl, mos, spa->spa_sync_bplist_obj)); 4041 4042 tx = dmu_tx_create_assigned(dp, txg); 4043 4044 /* 4045 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg, 4046 * set spa_deflate if we have no raid-z vdevs. 4047 */ 4048 if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE && 4049 spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) { 4050 int i; 4051 4052 for (i = 0; i < rvd->vdev_children; i++) { 4053 vd = rvd->vdev_child[i]; 4054 if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE) 4055 break; 4056 } 4057 if (i == rvd->vdev_children) { 4058 spa->spa_deflate = TRUE; 4059 VERIFY(0 == zap_add(spa->spa_meta_objset, 4060 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE, 4061 sizeof (uint64_t), 1, &spa->spa_deflate, tx)); 4062 } 4063 } 4064 4065 /* 4066 * If anything has changed in this txg, push the deferred frees 4067 * from the previous txg. If not, leave them alone so that we 4068 * don't generate work on an otherwise idle system. 4069 */ 4070 if (!txg_list_empty(&dp->dp_dirty_datasets, txg) || 4071 !txg_list_empty(&dp->dp_dirty_dirs, txg) || 4072 !txg_list_empty(&dp->dp_sync_tasks, txg)) 4073 spa_sync_deferred_frees(spa, txg); 4074 4075 /* 4076 * Iterate to convergence. 4077 */ 4078 do { 4079 spa->spa_sync_pass++; 4080 4081 spa_sync_config_object(spa, tx); 4082 spa_sync_aux_dev(spa, &spa->spa_spares, tx, 4083 ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES); 4084 spa_sync_aux_dev(spa, &spa->spa_l2cache, tx, 4085 ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE); 4086 spa_errlog_sync(spa, txg); 4087 dsl_pool_sync(dp, txg); 4088 4089 dirty_vdevs = 0; 4090 while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg)) { 4091 vdev_sync(vd, txg); 4092 dirty_vdevs++; 4093 } 4094 4095 bplist_sync(bpl, tx); 4096 } while (dirty_vdevs); 4097 4098 bplist_close(bpl); 4099 4100 dprintf("txg %llu passes %d\n", txg, spa->spa_sync_pass); 4101 4102 /* 4103 * Rewrite the vdev configuration (which includes the uberblock) 4104 * to commit the transaction group. 4105 * 4106 * If there are any dirty vdevs, sync the uberblock to all vdevs. 4107 * Otherwise, pick a random top-level vdev that's known to be 4108 * visible in the config cache (see spa_vdev_add() for details). 4109 * If the write fails, try the next vdev until we're tried them all. 4110 */ 4111 if (!list_is_empty(&spa->spa_dirty_list)) { 4112 VERIFY(vdev_config_sync(rvd, txg) == 0); 4113 } else { 4114 int children = rvd->vdev_children; 4115 int c0 = spa_get_random(children); 4116 int c; 4117 4118 for (c = 0; c < children; c++) { 4119 vd = rvd->vdev_child[(c0 + c) % children]; 4120 if (vd->vdev_ms_array == 0) 4121 continue; 4122 if (vdev_config_sync(vd, txg) == 0) 4123 break; 4124 } 4125 if (c == children) 4126 VERIFY(vdev_config_sync(rvd, txg) == 0); 4127 } 4128 4129 dmu_tx_commit(tx); 4130 4131 /* 4132 * Clear the dirty config list. 4133 */ 4134 while ((vd = list_head(&spa->spa_dirty_list)) != NULL) 4135 vdev_config_clean(vd); 4136 4137 /* 4138 * Now that the new config has synced transactionally, 4139 * let it become visible to the config cache. 4140 */ 4141 if (spa->spa_config_syncing != NULL) { 4142 spa_config_set(spa, spa->spa_config_syncing); 4143 spa->spa_config_txg = txg; 4144 spa->spa_config_syncing = NULL; 4145 } 4146 4147 /* 4148 * Make a stable copy of the fully synced uberblock. 4149 * We use this as the root for pool traversals. 4150 */ 4151 spa->spa_traverse_wanted = 1; /* tells traverse_more() to stop */ 4152 4153 spa_scrub_suspend(spa); /* stop scrubbing and finish I/Os */ 4154 4155 rw_enter(&spa->spa_traverse_lock, RW_WRITER); 4156 spa->spa_traverse_wanted = 0; 4157 spa->spa_ubsync = spa->spa_uberblock; 4158 rw_exit(&spa->spa_traverse_lock); 4159 4160 spa_scrub_resume(spa); /* resume scrub with new ubsync */ 4161 4162 /* 4163 * Clean up the ZIL records for the synced txg. 4164 */ 4165 dsl_pool_zil_clean(dp); 4166 4167 /* 4168 * Update usable space statistics. 4169 */ 4170 while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg))) 4171 vdev_sync_done(vd, txg); 4172 4173 /* 4174 * It had better be the case that we didn't dirty anything 4175 * since vdev_config_sync(). 4176 */ 4177 ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg)); 4178 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg)); 4179 ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg)); 4180 ASSERT(bpl->bpl_queue == NULL); 4181 4182 spa_config_exit(spa, FTAG); 4183 4184 /* 4185 * If any async tasks have been requested, kick them off. 4186 */ 4187 spa_async_dispatch(spa); 4188 } 4189 4190 /* 4191 * Sync all pools. We don't want to hold the namespace lock across these 4192 * operations, so we take a reference on the spa_t and drop the lock during the 4193 * sync. 4194 */ 4195 void 4196 spa_sync_allpools(void) 4197 { 4198 spa_t *spa = NULL; 4199 mutex_enter(&spa_namespace_lock); 4200 while ((spa = spa_next(spa)) != NULL) { 4201 if (spa_state(spa) != POOL_STATE_ACTIVE) 4202 continue; 4203 spa_open_ref(spa, FTAG); 4204 mutex_exit(&spa_namespace_lock); 4205 txg_wait_synced(spa_get_dsl(spa), 0); 4206 mutex_enter(&spa_namespace_lock); 4207 spa_close(spa, FTAG); 4208 } 4209 mutex_exit(&spa_namespace_lock); 4210 } 4211 4212 /* 4213 * ========================================================================== 4214 * Miscellaneous routines 4215 * ========================================================================== 4216 */ 4217 4218 /* 4219 * Remove all pools in the system. 4220 */ 4221 void 4222 spa_evict_all(void) 4223 { 4224 spa_t *spa; 4225 4226 /* 4227 * Remove all cached state. All pools should be closed now, 4228 * so every spa in the AVL tree should be unreferenced. 4229 */ 4230 mutex_enter(&spa_namespace_lock); 4231 while ((spa = spa_next(NULL)) != NULL) { 4232 /* 4233 * Stop async tasks. The async thread may need to detach 4234 * a device that's been replaced, which requires grabbing 4235 * spa_namespace_lock, so we must drop it here. 4236 */ 4237 spa_open_ref(spa, FTAG); 4238 mutex_exit(&spa_namespace_lock); 4239 spa_async_suspend(spa); 4240 mutex_enter(&spa_namespace_lock); 4241 VERIFY(spa_scrub(spa, POOL_SCRUB_NONE, B_TRUE) == 0); 4242 spa_close(spa, FTAG); 4243 4244 if (spa->spa_state != POOL_STATE_UNINITIALIZED) { 4245 spa_unload(spa); 4246 spa_deactivate(spa); 4247 } 4248 spa_remove(spa); 4249 } 4250 mutex_exit(&spa_namespace_lock); 4251 } 4252 4253 vdev_t * 4254 spa_lookup_by_guid(spa_t *spa, uint64_t guid) 4255 { 4256 return (vdev_lookup_by_guid(spa->spa_root_vdev, guid)); 4257 } 4258 4259 void 4260 spa_upgrade(spa_t *spa, uint64_t version) 4261 { 4262 spa_config_enter(spa, RW_WRITER, FTAG); 4263 4264 /* 4265 * This should only be called for a non-faulted pool, and since a 4266 * future version would result in an unopenable pool, this shouldn't be 4267 * possible. 4268 */ 4269 ASSERT(spa->spa_uberblock.ub_version <= SPA_VERSION); 4270 ASSERT(version >= spa->spa_uberblock.ub_version); 4271 4272 spa->spa_uberblock.ub_version = version; 4273 vdev_config_dirty(spa->spa_root_vdev); 4274 4275 spa_config_exit(spa, FTAG); 4276 4277 txg_wait_synced(spa_get_dsl(spa), 0); 4278 } 4279 4280 boolean_t 4281 spa_has_spare(spa_t *spa, uint64_t guid) 4282 { 4283 int i; 4284 uint64_t spareguid; 4285 spa_aux_vdev_t *sav = &spa->spa_spares; 4286 4287 for (i = 0; i < sav->sav_count; i++) 4288 if (sav->sav_vdevs[i]->vdev_guid == guid) 4289 return (B_TRUE); 4290 4291 for (i = 0; i < sav->sav_npending; i++) { 4292 if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID, 4293 &spareguid) == 0 && spareguid == guid) 4294 return (B_TRUE); 4295 } 4296 4297 return (B_FALSE); 4298 } 4299 4300 /* 4301 * Post a sysevent corresponding to the given event. The 'name' must be one of 4302 * the event definitions in sys/sysevent/eventdefs.h. The payload will be 4303 * filled in from the spa and (optionally) the vdev. This doesn't do anything 4304 * in the userland libzpool, as we don't want consumers to misinterpret ztest 4305 * or zdb as real changes. 4306 */ 4307 void 4308 spa_event_notify(spa_t *spa, vdev_t *vd, const char *name) 4309 { 4310 #ifdef _KERNEL 4311 sysevent_t *ev; 4312 sysevent_attr_list_t *attr = NULL; 4313 sysevent_value_t value; 4314 sysevent_id_t eid; 4315 4316 ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs", 4317 SE_SLEEP); 4318 4319 value.value_type = SE_DATA_TYPE_STRING; 4320 value.value.sv_string = spa_name(spa); 4321 if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0) 4322 goto done; 4323 4324 value.value_type = SE_DATA_TYPE_UINT64; 4325 value.value.sv_uint64 = spa_guid(spa); 4326 if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0) 4327 goto done; 4328 4329 if (vd) { 4330 value.value_type = SE_DATA_TYPE_UINT64; 4331 value.value.sv_uint64 = vd->vdev_guid; 4332 if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value, 4333 SE_SLEEP) != 0) 4334 goto done; 4335 4336 if (vd->vdev_path) { 4337 value.value_type = SE_DATA_TYPE_STRING; 4338 value.value.sv_string = vd->vdev_path; 4339 if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH, 4340 &value, SE_SLEEP) != 0) 4341 goto done; 4342 } 4343 } 4344 4345 (void) log_sysevent(ev, SE_SLEEP, &eid); 4346 4347 done: 4348 if (attr) 4349 sysevent_free_attr(attr); 4350 sysevent_free(ev); 4351 #endif 4352 } 4353