1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 24 * Copyright (c) 2012, 2014 by Delphix. All rights reserved. 25 */ 26 27 #include <sys/dmu.h> 28 #include <sys/dmu_impl.h> 29 #include <sys/dbuf.h> 30 #include <sys/dmu_tx.h> 31 #include <sys/dmu_objset.h> 32 #include <sys/dsl_dataset.h> /* for dsl_dataset_block_freeable() */ 33 #include <sys/dsl_dir.h> /* for dsl_dir_tempreserve_*() */ 34 #include <sys/dsl_pool.h> 35 #include <sys/zap_impl.h> /* for fzap_default_block_shift */ 36 #include <sys/spa.h> 37 #include <sys/sa.h> 38 #include <sys/sa_impl.h> 39 #include <sys/zfs_context.h> 40 #include <sys/varargs.h> 41 42 typedef void (*dmu_tx_hold_func_t)(dmu_tx_t *tx, struct dnode *dn, 43 uint64_t arg1, uint64_t arg2); 44 45 46 dmu_tx_t * 47 dmu_tx_create_dd(dsl_dir_t *dd) 48 { 49 dmu_tx_t *tx = kmem_zalloc(sizeof (dmu_tx_t), KM_SLEEP); 50 tx->tx_dir = dd; 51 if (dd != NULL) 52 tx->tx_pool = dd->dd_pool; 53 list_create(&tx->tx_holds, sizeof (dmu_tx_hold_t), 54 offsetof(dmu_tx_hold_t, txh_node)); 55 list_create(&tx->tx_callbacks, sizeof (dmu_tx_callback_t), 56 offsetof(dmu_tx_callback_t, dcb_node)); 57 tx->tx_start = gethrtime(); 58 #ifdef ZFS_DEBUG 59 refcount_create(&tx->tx_space_written); 60 refcount_create(&tx->tx_space_freed); 61 #endif 62 return (tx); 63 } 64 65 dmu_tx_t * 66 dmu_tx_create(objset_t *os) 67 { 68 dmu_tx_t *tx = dmu_tx_create_dd(os->os_dsl_dataset->ds_dir); 69 tx->tx_objset = os; 70 tx->tx_lastsnap_txg = dsl_dataset_prev_snap_txg(os->os_dsl_dataset); 71 return (tx); 72 } 73 74 dmu_tx_t * 75 dmu_tx_create_assigned(struct dsl_pool *dp, uint64_t txg) 76 { 77 dmu_tx_t *tx = dmu_tx_create_dd(NULL); 78 79 ASSERT3U(txg, <=, dp->dp_tx.tx_open_txg); 80 tx->tx_pool = dp; 81 tx->tx_txg = txg; 82 tx->tx_anyobj = TRUE; 83 84 return (tx); 85 } 86 87 int 88 dmu_tx_is_syncing(dmu_tx_t *tx) 89 { 90 return (tx->tx_anyobj); 91 } 92 93 int 94 dmu_tx_private_ok(dmu_tx_t *tx) 95 { 96 return (tx->tx_anyobj); 97 } 98 99 static dmu_tx_hold_t * 100 dmu_tx_hold_object_impl(dmu_tx_t *tx, objset_t *os, uint64_t object, 101 enum dmu_tx_hold_type type, uint64_t arg1, uint64_t arg2) 102 { 103 dmu_tx_hold_t *txh; 104 dnode_t *dn = NULL; 105 int err; 106 107 if (object != DMU_NEW_OBJECT) { 108 err = dnode_hold(os, object, tx, &dn); 109 if (err) { 110 tx->tx_err = err; 111 return (NULL); 112 } 113 114 if (err == 0 && tx->tx_txg != 0) { 115 mutex_enter(&dn->dn_mtx); 116 /* 117 * dn->dn_assigned_txg == tx->tx_txg doesn't pose a 118 * problem, but there's no way for it to happen (for 119 * now, at least). 120 */ 121 ASSERT(dn->dn_assigned_txg == 0); 122 dn->dn_assigned_txg = tx->tx_txg; 123 (void) refcount_add(&dn->dn_tx_holds, tx); 124 mutex_exit(&dn->dn_mtx); 125 } 126 } 127 128 txh = kmem_zalloc(sizeof (dmu_tx_hold_t), KM_SLEEP); 129 txh->txh_tx = tx; 130 txh->txh_dnode = dn; 131 #ifdef ZFS_DEBUG 132 txh->txh_type = type; 133 txh->txh_arg1 = arg1; 134 txh->txh_arg2 = arg2; 135 #endif 136 list_insert_tail(&tx->tx_holds, txh); 137 138 return (txh); 139 } 140 141 void 142 dmu_tx_add_new_object(dmu_tx_t *tx, objset_t *os, uint64_t object) 143 { 144 /* 145 * If we're syncing, they can manipulate any object anyhow, and 146 * the hold on the dnode_t can cause problems. 147 */ 148 if (!dmu_tx_is_syncing(tx)) { 149 (void) dmu_tx_hold_object_impl(tx, os, 150 object, THT_NEWOBJECT, 0, 0); 151 } 152 } 153 154 static int 155 dmu_tx_check_ioerr(zio_t *zio, dnode_t *dn, int level, uint64_t blkid) 156 { 157 int err; 158 dmu_buf_impl_t *db; 159 160 rw_enter(&dn->dn_struct_rwlock, RW_READER); 161 db = dbuf_hold_level(dn, level, blkid, FTAG); 162 rw_exit(&dn->dn_struct_rwlock); 163 if (db == NULL) 164 return (SET_ERROR(EIO)); 165 err = dbuf_read(db, zio, DB_RF_CANFAIL | DB_RF_NOPREFETCH); 166 dbuf_rele(db, FTAG); 167 return (err); 168 } 169 170 static void 171 dmu_tx_count_twig(dmu_tx_hold_t *txh, dnode_t *dn, dmu_buf_impl_t *db, 172 int level, uint64_t blkid, boolean_t freeable, uint64_t *history) 173 { 174 objset_t *os = dn->dn_objset; 175 dsl_dataset_t *ds = os->os_dsl_dataset; 176 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 177 dmu_buf_impl_t *parent = NULL; 178 blkptr_t *bp = NULL; 179 uint64_t space; 180 181 if (level >= dn->dn_nlevels || history[level] == blkid) 182 return; 183 184 history[level] = blkid; 185 186 space = (level == 0) ? dn->dn_datablksz : (1ULL << dn->dn_indblkshift); 187 188 if (db == NULL || db == dn->dn_dbuf) { 189 ASSERT(level != 0); 190 db = NULL; 191 } else { 192 ASSERT(DB_DNODE(db) == dn); 193 ASSERT(db->db_level == level); 194 ASSERT(db->db.db_size == space); 195 ASSERT(db->db_blkid == blkid); 196 bp = db->db_blkptr; 197 parent = db->db_parent; 198 } 199 200 freeable = (bp && (freeable || 201 dsl_dataset_block_freeable(ds, bp, bp->blk_birth))); 202 203 if (freeable) 204 txh->txh_space_tooverwrite += space; 205 else 206 txh->txh_space_towrite += space; 207 if (bp) 208 txh->txh_space_tounref += bp_get_dsize(os->os_spa, bp); 209 210 dmu_tx_count_twig(txh, dn, parent, level + 1, 211 blkid >> epbs, freeable, history); 212 } 213 214 /* ARGSUSED */ 215 static void 216 dmu_tx_count_write(dmu_tx_hold_t *txh, uint64_t off, uint64_t len) 217 { 218 dnode_t *dn = txh->txh_dnode; 219 uint64_t start, end, i; 220 int min_bs, max_bs, min_ibs, max_ibs, epbs, bits; 221 int err = 0; 222 223 if (len == 0) 224 return; 225 226 min_bs = SPA_MINBLOCKSHIFT; 227 max_bs = SPA_MAXBLOCKSHIFT; 228 min_ibs = DN_MIN_INDBLKSHIFT; 229 max_ibs = DN_MAX_INDBLKSHIFT; 230 231 if (dn) { 232 uint64_t history[DN_MAX_LEVELS]; 233 int nlvls = dn->dn_nlevels; 234 int delta; 235 236 /* 237 * For i/o error checking, read the first and last level-0 238 * blocks (if they are not aligned), and all the level-1 blocks. 239 */ 240 if (dn->dn_maxblkid == 0) { 241 delta = dn->dn_datablksz; 242 start = (off < dn->dn_datablksz) ? 0 : 1; 243 end = (off+len <= dn->dn_datablksz) ? 0 : 1; 244 if (start == 0 && (off > 0 || len < dn->dn_datablksz)) { 245 err = dmu_tx_check_ioerr(NULL, dn, 0, 0); 246 if (err) 247 goto out; 248 delta -= off; 249 } 250 } else { 251 zio_t *zio = zio_root(dn->dn_objset->os_spa, 252 NULL, NULL, ZIO_FLAG_CANFAIL); 253 254 /* first level-0 block */ 255 start = off >> dn->dn_datablkshift; 256 if (P2PHASE(off, dn->dn_datablksz) || 257 len < dn->dn_datablksz) { 258 err = dmu_tx_check_ioerr(zio, dn, 0, start); 259 if (err) 260 goto out; 261 } 262 263 /* last level-0 block */ 264 end = (off+len-1) >> dn->dn_datablkshift; 265 if (end != start && end <= dn->dn_maxblkid && 266 P2PHASE(off+len, dn->dn_datablksz)) { 267 err = dmu_tx_check_ioerr(zio, dn, 0, end); 268 if (err) 269 goto out; 270 } 271 272 /* level-1 blocks */ 273 if (nlvls > 1) { 274 int shft = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 275 for (i = (start>>shft)+1; i < end>>shft; i++) { 276 err = dmu_tx_check_ioerr(zio, dn, 1, i); 277 if (err) 278 goto out; 279 } 280 } 281 282 err = zio_wait(zio); 283 if (err) 284 goto out; 285 delta = P2NPHASE(off, dn->dn_datablksz); 286 } 287 288 min_ibs = max_ibs = dn->dn_indblkshift; 289 if (dn->dn_maxblkid > 0) { 290 /* 291 * The blocksize can't change, 292 * so we can make a more precise estimate. 293 */ 294 ASSERT(dn->dn_datablkshift != 0); 295 min_bs = max_bs = dn->dn_datablkshift; 296 } 297 298 /* 299 * If this write is not off the end of the file 300 * we need to account for overwrites/unref. 301 */ 302 if (start <= dn->dn_maxblkid) { 303 for (int l = 0; l < DN_MAX_LEVELS; l++) 304 history[l] = -1ULL; 305 } 306 while (start <= dn->dn_maxblkid) { 307 dmu_buf_impl_t *db; 308 309 rw_enter(&dn->dn_struct_rwlock, RW_READER); 310 err = dbuf_hold_impl(dn, 0, start, FALSE, FTAG, &db); 311 rw_exit(&dn->dn_struct_rwlock); 312 313 if (err) { 314 txh->txh_tx->tx_err = err; 315 return; 316 } 317 318 dmu_tx_count_twig(txh, dn, db, 0, start, B_FALSE, 319 history); 320 dbuf_rele(db, FTAG); 321 if (++start > end) { 322 /* 323 * Account for new indirects appearing 324 * before this IO gets assigned into a txg. 325 */ 326 bits = 64 - min_bs; 327 epbs = min_ibs - SPA_BLKPTRSHIFT; 328 for (bits -= epbs * (nlvls - 1); 329 bits >= 0; bits -= epbs) 330 txh->txh_fudge += 1ULL << max_ibs; 331 goto out; 332 } 333 off += delta; 334 if (len >= delta) 335 len -= delta; 336 delta = dn->dn_datablksz; 337 } 338 } 339 340 /* 341 * 'end' is the last thing we will access, not one past. 342 * This way we won't overflow when accessing the last byte. 343 */ 344 start = P2ALIGN(off, 1ULL << max_bs); 345 end = P2ROUNDUP(off + len, 1ULL << max_bs) - 1; 346 txh->txh_space_towrite += end - start + 1; 347 348 start >>= min_bs; 349 end >>= min_bs; 350 351 epbs = min_ibs - SPA_BLKPTRSHIFT; 352 353 /* 354 * The object contains at most 2^(64 - min_bs) blocks, 355 * and each indirect level maps 2^epbs. 356 */ 357 for (bits = 64 - min_bs; bits >= 0; bits -= epbs) { 358 start >>= epbs; 359 end >>= epbs; 360 ASSERT3U(end, >=, start); 361 txh->txh_space_towrite += (end - start + 1) << max_ibs; 362 if (start != 0) { 363 /* 364 * We also need a new blkid=0 indirect block 365 * to reference any existing file data. 366 */ 367 txh->txh_space_towrite += 1ULL << max_ibs; 368 } 369 } 370 371 out: 372 if (txh->txh_space_towrite + txh->txh_space_tooverwrite > 373 2 * DMU_MAX_ACCESS) 374 err = SET_ERROR(EFBIG); 375 376 if (err) 377 txh->txh_tx->tx_err = err; 378 } 379 380 static void 381 dmu_tx_count_dnode(dmu_tx_hold_t *txh) 382 { 383 dnode_t *dn = txh->txh_dnode; 384 dnode_t *mdn = DMU_META_DNODE(txh->txh_tx->tx_objset); 385 uint64_t space = mdn->dn_datablksz + 386 ((mdn->dn_nlevels-1) << mdn->dn_indblkshift); 387 388 if (dn && dn->dn_dbuf->db_blkptr && 389 dsl_dataset_block_freeable(dn->dn_objset->os_dsl_dataset, 390 dn->dn_dbuf->db_blkptr, dn->dn_dbuf->db_blkptr->blk_birth)) { 391 txh->txh_space_tooverwrite += space; 392 txh->txh_space_tounref += space; 393 } else { 394 txh->txh_space_towrite += space; 395 if (dn && dn->dn_dbuf->db_blkptr) 396 txh->txh_space_tounref += space; 397 } 398 } 399 400 void 401 dmu_tx_hold_write(dmu_tx_t *tx, uint64_t object, uint64_t off, int len) 402 { 403 dmu_tx_hold_t *txh; 404 405 ASSERT(tx->tx_txg == 0); 406 ASSERT(len < DMU_MAX_ACCESS); 407 ASSERT(len == 0 || UINT64_MAX - off >= len - 1); 408 409 txh = dmu_tx_hold_object_impl(tx, tx->tx_objset, 410 object, THT_WRITE, off, len); 411 if (txh == NULL) 412 return; 413 414 dmu_tx_count_write(txh, off, len); 415 dmu_tx_count_dnode(txh); 416 } 417 418 static void 419 dmu_tx_count_free(dmu_tx_hold_t *txh, uint64_t off, uint64_t len) 420 { 421 uint64_t blkid, nblks, lastblk; 422 uint64_t space = 0, unref = 0, skipped = 0; 423 dnode_t *dn = txh->txh_dnode; 424 dsl_dataset_t *ds = dn->dn_objset->os_dsl_dataset; 425 spa_t *spa = txh->txh_tx->tx_pool->dp_spa; 426 int epbs; 427 uint64_t l0span = 0, nl1blks = 0; 428 429 if (dn->dn_nlevels == 0) 430 return; 431 432 /* 433 * The struct_rwlock protects us against dn_nlevels 434 * changing, in case (against all odds) we manage to dirty & 435 * sync out the changes after we check for being dirty. 436 * Also, dbuf_hold_impl() wants us to have the struct_rwlock. 437 */ 438 rw_enter(&dn->dn_struct_rwlock, RW_READER); 439 epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 440 if (dn->dn_maxblkid == 0) { 441 if (off == 0 && len >= dn->dn_datablksz) { 442 blkid = 0; 443 nblks = 1; 444 } else { 445 rw_exit(&dn->dn_struct_rwlock); 446 return; 447 } 448 } else { 449 blkid = off >> dn->dn_datablkshift; 450 nblks = (len + dn->dn_datablksz - 1) >> dn->dn_datablkshift; 451 452 if (blkid > dn->dn_maxblkid) { 453 rw_exit(&dn->dn_struct_rwlock); 454 return; 455 } 456 if (blkid + nblks > dn->dn_maxblkid) 457 nblks = dn->dn_maxblkid - blkid + 1; 458 459 } 460 l0span = nblks; /* save for later use to calc level > 1 overhead */ 461 if (dn->dn_nlevels == 1) { 462 int i; 463 for (i = 0; i < nblks; i++) { 464 blkptr_t *bp = dn->dn_phys->dn_blkptr; 465 ASSERT3U(blkid + i, <, dn->dn_nblkptr); 466 bp += blkid + i; 467 if (dsl_dataset_block_freeable(ds, bp, bp->blk_birth)) { 468 dprintf_bp(bp, "can free old%s", ""); 469 space += bp_get_dsize(spa, bp); 470 } 471 unref += BP_GET_ASIZE(bp); 472 } 473 nl1blks = 1; 474 nblks = 0; 475 } 476 477 lastblk = blkid + nblks - 1; 478 while (nblks) { 479 dmu_buf_impl_t *dbuf; 480 uint64_t ibyte, new_blkid; 481 int epb = 1 << epbs; 482 int err, i, blkoff, tochk; 483 blkptr_t *bp; 484 485 ibyte = blkid << dn->dn_datablkshift; 486 err = dnode_next_offset(dn, 487 DNODE_FIND_HAVELOCK, &ibyte, 2, 1, 0); 488 new_blkid = ibyte >> dn->dn_datablkshift; 489 if (err == ESRCH) { 490 skipped += (lastblk >> epbs) - (blkid >> epbs) + 1; 491 break; 492 } 493 if (err) { 494 txh->txh_tx->tx_err = err; 495 break; 496 } 497 if (new_blkid > lastblk) { 498 skipped += (lastblk >> epbs) - (blkid >> epbs) + 1; 499 break; 500 } 501 502 if (new_blkid > blkid) { 503 ASSERT((new_blkid >> epbs) > (blkid >> epbs)); 504 skipped += (new_blkid >> epbs) - (blkid >> epbs) - 1; 505 nblks -= new_blkid - blkid; 506 blkid = new_blkid; 507 } 508 blkoff = P2PHASE(blkid, epb); 509 tochk = MIN(epb - blkoff, nblks); 510 511 err = dbuf_hold_impl(dn, 1, blkid >> epbs, FALSE, FTAG, &dbuf); 512 if (err) { 513 txh->txh_tx->tx_err = err; 514 break; 515 } 516 517 txh->txh_memory_tohold += dbuf->db.db_size; 518 519 /* 520 * We don't check memory_tohold against DMU_MAX_ACCESS because 521 * memory_tohold is an over-estimation (especially the >L1 522 * indirect blocks), so it could fail. Callers should have 523 * already verified that they will not be holding too much 524 * memory. 525 */ 526 527 err = dbuf_read(dbuf, NULL, DB_RF_HAVESTRUCT | DB_RF_CANFAIL); 528 if (err != 0) { 529 txh->txh_tx->tx_err = err; 530 dbuf_rele(dbuf, FTAG); 531 break; 532 } 533 534 bp = dbuf->db.db_data; 535 bp += blkoff; 536 537 for (i = 0; i < tochk; i++) { 538 if (dsl_dataset_block_freeable(ds, &bp[i], 539 bp[i].blk_birth)) { 540 dprintf_bp(&bp[i], "can free old%s", ""); 541 space += bp_get_dsize(spa, &bp[i]); 542 } 543 unref += BP_GET_ASIZE(bp); 544 } 545 dbuf_rele(dbuf, FTAG); 546 547 ++nl1blks; 548 blkid += tochk; 549 nblks -= tochk; 550 } 551 rw_exit(&dn->dn_struct_rwlock); 552 553 /* 554 * Add in memory requirements of higher-level indirects. 555 * This assumes a worst-possible scenario for dn_nlevels and a 556 * worst-possible distribution of l1-blocks over the region to free. 557 */ 558 { 559 uint64_t blkcnt = 1 + ((l0span >> epbs) >> epbs); 560 int level = 2; 561 /* 562 * Here we don't use DN_MAX_LEVEL, but calculate it with the 563 * given datablkshift and indblkshift. This makes the 564 * difference between 19 and 8 on large files. 565 */ 566 int maxlevel = 2 + (DN_MAX_OFFSET_SHIFT - dn->dn_datablkshift) / 567 (dn->dn_indblkshift - SPA_BLKPTRSHIFT); 568 569 while (level++ < maxlevel) { 570 txh->txh_memory_tohold += MAX(MIN(blkcnt, nl1blks), 1) 571 << dn->dn_indblkshift; 572 blkcnt = 1 + (blkcnt >> epbs); 573 } 574 } 575 576 /* account for new level 1 indirect blocks that might show up */ 577 if (skipped > 0) { 578 txh->txh_fudge += skipped << dn->dn_indblkshift; 579 skipped = MIN(skipped, DMU_MAX_DELETEBLKCNT >> epbs); 580 txh->txh_memory_tohold += skipped << dn->dn_indblkshift; 581 } 582 txh->txh_space_tofree += space; 583 txh->txh_space_tounref += unref; 584 } 585 586 /* 587 * This function marks the transaction as being a "net free". The end 588 * result is that refquotas will be disabled for this transaction, and 589 * this transaction will be able to use half of the pool space overhead 590 * (see dsl_pool_adjustedsize()). Therefore this function should only 591 * be called for transactions that we expect will not cause a net increase 592 * in the amount of space used (but it's OK if that is occasionally not true). 593 */ 594 void 595 dmu_tx_mark_netfree(dmu_tx_t *tx) 596 { 597 dmu_tx_hold_t *txh; 598 599 txh = dmu_tx_hold_object_impl(tx, tx->tx_objset, 600 DMU_NEW_OBJECT, THT_FREE, 0, 0); 601 602 /* 603 * Pretend that this operation will free 1GB of space. This 604 * should be large enough to cancel out the largest write. 605 * We don't want to use something like UINT64_MAX, because that would 606 * cause overflows when doing math with these values (e.g. in 607 * dmu_tx_try_assign()). 608 */ 609 txh->txh_space_tofree = txh->txh_space_tounref = 1024 * 1024 * 1024; 610 } 611 612 void 613 dmu_tx_hold_free(dmu_tx_t *tx, uint64_t object, uint64_t off, uint64_t len) 614 { 615 dmu_tx_hold_t *txh; 616 dnode_t *dn; 617 int err; 618 zio_t *zio; 619 620 ASSERT(tx->tx_txg == 0); 621 622 txh = dmu_tx_hold_object_impl(tx, tx->tx_objset, 623 object, THT_FREE, off, len); 624 if (txh == NULL) 625 return; 626 dn = txh->txh_dnode; 627 dmu_tx_count_dnode(txh); 628 629 if (off >= (dn->dn_maxblkid+1) * dn->dn_datablksz) 630 return; 631 if (len == DMU_OBJECT_END) 632 len = (dn->dn_maxblkid+1) * dn->dn_datablksz - off; 633 634 /* 635 * For i/o error checking, we read the first and last level-0 636 * blocks if they are not aligned, and all the level-1 blocks. 637 * 638 * Note: dbuf_free_range() assumes that we have not instantiated 639 * any level-0 dbufs that will be completely freed. Therefore we must 640 * exercise care to not read or count the first and last blocks 641 * if they are blocksize-aligned. 642 */ 643 if (dn->dn_datablkshift == 0) { 644 if (off != 0 || len < dn->dn_datablksz) 645 dmu_tx_count_write(txh, 0, dn->dn_datablksz); 646 } else { 647 /* first block will be modified if it is not aligned */ 648 if (!IS_P2ALIGNED(off, 1 << dn->dn_datablkshift)) 649 dmu_tx_count_write(txh, off, 1); 650 /* last block will be modified if it is not aligned */ 651 if (!IS_P2ALIGNED(off + len, 1 << dn->dn_datablkshift)) 652 dmu_tx_count_write(txh, off+len, 1); 653 } 654 655 /* 656 * Check level-1 blocks. 657 */ 658 if (dn->dn_nlevels > 1) { 659 int shift = dn->dn_datablkshift + dn->dn_indblkshift - 660 SPA_BLKPTRSHIFT; 661 uint64_t start = off >> shift; 662 uint64_t end = (off + len) >> shift; 663 664 ASSERT(dn->dn_indblkshift != 0); 665 666 /* 667 * dnode_reallocate() can result in an object with indirect 668 * blocks having an odd data block size. In this case, 669 * just check the single block. 670 */ 671 if (dn->dn_datablkshift == 0) 672 start = end = 0; 673 674 zio = zio_root(tx->tx_pool->dp_spa, 675 NULL, NULL, ZIO_FLAG_CANFAIL); 676 for (uint64_t i = start; i <= end; i++) { 677 uint64_t ibyte = i << shift; 678 err = dnode_next_offset(dn, 0, &ibyte, 2, 1, 0); 679 i = ibyte >> shift; 680 if (err == ESRCH) 681 break; 682 if (err) { 683 tx->tx_err = err; 684 return; 685 } 686 687 err = dmu_tx_check_ioerr(zio, dn, 1, i); 688 if (err) { 689 tx->tx_err = err; 690 return; 691 } 692 } 693 err = zio_wait(zio); 694 if (err) { 695 tx->tx_err = err; 696 return; 697 } 698 } 699 700 dmu_tx_count_free(txh, off, len); 701 } 702 703 void 704 dmu_tx_hold_zap(dmu_tx_t *tx, uint64_t object, int add, const char *name) 705 { 706 dmu_tx_hold_t *txh; 707 dnode_t *dn; 708 uint64_t nblocks; 709 int epbs, err; 710 711 ASSERT(tx->tx_txg == 0); 712 713 txh = dmu_tx_hold_object_impl(tx, tx->tx_objset, 714 object, THT_ZAP, add, (uintptr_t)name); 715 if (txh == NULL) 716 return; 717 dn = txh->txh_dnode; 718 719 dmu_tx_count_dnode(txh); 720 721 if (dn == NULL) { 722 /* 723 * We will be able to fit a new object's entries into one leaf 724 * block. So there will be at most 2 blocks total, 725 * including the header block. 726 */ 727 dmu_tx_count_write(txh, 0, 2 << fzap_default_block_shift); 728 return; 729 } 730 731 ASSERT3P(DMU_OT_BYTESWAP(dn->dn_type), ==, DMU_BSWAP_ZAP); 732 733 if (dn->dn_maxblkid == 0 && !add) { 734 blkptr_t *bp; 735 736 /* 737 * If there is only one block (i.e. this is a micro-zap) 738 * and we are not adding anything, the accounting is simple. 739 */ 740 err = dmu_tx_check_ioerr(NULL, dn, 0, 0); 741 if (err) { 742 tx->tx_err = err; 743 return; 744 } 745 746 /* 747 * Use max block size here, since we don't know how much 748 * the size will change between now and the dbuf dirty call. 749 */ 750 bp = &dn->dn_phys->dn_blkptr[0]; 751 if (dsl_dataset_block_freeable(dn->dn_objset->os_dsl_dataset, 752 bp, bp->blk_birth)) 753 txh->txh_space_tooverwrite += SPA_MAXBLOCKSIZE; 754 else 755 txh->txh_space_towrite += SPA_MAXBLOCKSIZE; 756 if (!BP_IS_HOLE(bp)) 757 txh->txh_space_tounref += SPA_MAXBLOCKSIZE; 758 return; 759 } 760 761 if (dn->dn_maxblkid > 0 && name) { 762 /* 763 * access the name in this fat-zap so that we'll check 764 * for i/o errors to the leaf blocks, etc. 765 */ 766 err = zap_lookup(dn->dn_objset, dn->dn_object, name, 767 8, 0, NULL); 768 if (err == EIO) { 769 tx->tx_err = err; 770 return; 771 } 772 } 773 774 err = zap_count_write(dn->dn_objset, dn->dn_object, name, add, 775 &txh->txh_space_towrite, &txh->txh_space_tooverwrite); 776 777 /* 778 * If the modified blocks are scattered to the four winds, 779 * we'll have to modify an indirect twig for each. 780 */ 781 epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 782 for (nblocks = dn->dn_maxblkid >> epbs; nblocks != 0; nblocks >>= epbs) 783 if (dn->dn_objset->os_dsl_dataset->ds_phys->ds_prev_snap_obj) 784 txh->txh_space_towrite += 3 << dn->dn_indblkshift; 785 else 786 txh->txh_space_tooverwrite += 3 << dn->dn_indblkshift; 787 } 788 789 void 790 dmu_tx_hold_bonus(dmu_tx_t *tx, uint64_t object) 791 { 792 dmu_tx_hold_t *txh; 793 794 ASSERT(tx->tx_txg == 0); 795 796 txh = dmu_tx_hold_object_impl(tx, tx->tx_objset, 797 object, THT_BONUS, 0, 0); 798 if (txh) 799 dmu_tx_count_dnode(txh); 800 } 801 802 void 803 dmu_tx_hold_space(dmu_tx_t *tx, uint64_t space) 804 { 805 dmu_tx_hold_t *txh; 806 ASSERT(tx->tx_txg == 0); 807 808 txh = dmu_tx_hold_object_impl(tx, tx->tx_objset, 809 DMU_NEW_OBJECT, THT_SPACE, space, 0); 810 811 txh->txh_space_towrite += space; 812 } 813 814 int 815 dmu_tx_holds(dmu_tx_t *tx, uint64_t object) 816 { 817 dmu_tx_hold_t *txh; 818 int holds = 0; 819 820 /* 821 * By asserting that the tx is assigned, we're counting the 822 * number of dn_tx_holds, which is the same as the number of 823 * dn_holds. Otherwise, we'd be counting dn_holds, but 824 * dn_tx_holds could be 0. 825 */ 826 ASSERT(tx->tx_txg != 0); 827 828 /* if (tx->tx_anyobj == TRUE) */ 829 /* return (0); */ 830 831 for (txh = list_head(&tx->tx_holds); txh; 832 txh = list_next(&tx->tx_holds, txh)) { 833 if (txh->txh_dnode && txh->txh_dnode->dn_object == object) 834 holds++; 835 } 836 837 return (holds); 838 } 839 840 #ifdef ZFS_DEBUG 841 void 842 dmu_tx_dirty_buf(dmu_tx_t *tx, dmu_buf_impl_t *db) 843 { 844 dmu_tx_hold_t *txh; 845 int match_object = FALSE, match_offset = FALSE; 846 dnode_t *dn; 847 848 DB_DNODE_ENTER(db); 849 dn = DB_DNODE(db); 850 ASSERT(tx->tx_txg != 0); 851 ASSERT(tx->tx_objset == NULL || dn->dn_objset == tx->tx_objset); 852 ASSERT3U(dn->dn_object, ==, db->db.db_object); 853 854 if (tx->tx_anyobj) { 855 DB_DNODE_EXIT(db); 856 return; 857 } 858 859 /* XXX No checking on the meta dnode for now */ 860 if (db->db.db_object == DMU_META_DNODE_OBJECT) { 861 DB_DNODE_EXIT(db); 862 return; 863 } 864 865 for (txh = list_head(&tx->tx_holds); txh; 866 txh = list_next(&tx->tx_holds, txh)) { 867 ASSERT(dn == NULL || dn->dn_assigned_txg == tx->tx_txg); 868 if (txh->txh_dnode == dn && txh->txh_type != THT_NEWOBJECT) 869 match_object = TRUE; 870 if (txh->txh_dnode == NULL || txh->txh_dnode == dn) { 871 int datablkshift = dn->dn_datablkshift ? 872 dn->dn_datablkshift : SPA_MAXBLOCKSHIFT; 873 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 874 int shift = datablkshift + epbs * db->db_level; 875 uint64_t beginblk = shift >= 64 ? 0 : 876 (txh->txh_arg1 >> shift); 877 uint64_t endblk = shift >= 64 ? 0 : 878 ((txh->txh_arg1 + txh->txh_arg2 - 1) >> shift); 879 uint64_t blkid = db->db_blkid; 880 881 /* XXX txh_arg2 better not be zero... */ 882 883 dprintf("found txh type %x beginblk=%llx endblk=%llx\n", 884 txh->txh_type, beginblk, endblk); 885 886 switch (txh->txh_type) { 887 case THT_WRITE: 888 if (blkid >= beginblk && blkid <= endblk) 889 match_offset = TRUE; 890 /* 891 * We will let this hold work for the bonus 892 * or spill buffer so that we don't need to 893 * hold it when creating a new object. 894 */ 895 if (blkid == DMU_BONUS_BLKID || 896 blkid == DMU_SPILL_BLKID) 897 match_offset = TRUE; 898 /* 899 * They might have to increase nlevels, 900 * thus dirtying the new TLIBs. Or the 901 * might have to change the block size, 902 * thus dirying the new lvl=0 blk=0. 903 */ 904 if (blkid == 0) 905 match_offset = TRUE; 906 break; 907 case THT_FREE: 908 /* 909 * We will dirty all the level 1 blocks in 910 * the free range and perhaps the first and 911 * last level 0 block. 912 */ 913 if (blkid >= beginblk && (blkid <= endblk || 914 txh->txh_arg2 == DMU_OBJECT_END)) 915 match_offset = TRUE; 916 break; 917 case THT_SPILL: 918 if (blkid == DMU_SPILL_BLKID) 919 match_offset = TRUE; 920 break; 921 case THT_BONUS: 922 if (blkid == DMU_BONUS_BLKID) 923 match_offset = TRUE; 924 break; 925 case THT_ZAP: 926 match_offset = TRUE; 927 break; 928 case THT_NEWOBJECT: 929 match_object = TRUE; 930 break; 931 default: 932 ASSERT(!"bad txh_type"); 933 } 934 } 935 if (match_object && match_offset) { 936 DB_DNODE_EXIT(db); 937 return; 938 } 939 } 940 DB_DNODE_EXIT(db); 941 panic("dirtying dbuf obj=%llx lvl=%u blkid=%llx but not tx_held\n", 942 (u_longlong_t)db->db.db_object, db->db_level, 943 (u_longlong_t)db->db_blkid); 944 } 945 #endif 946 947 /* 948 * If we can't do 10 iops, something is wrong. Let us go ahead 949 * and hit zfs_dirty_data_max. 950 */ 951 hrtime_t zfs_delay_max_ns = MSEC2NSEC(100); 952 int zfs_delay_resolution_ns = 100 * 1000; /* 100 microseconds */ 953 954 /* 955 * We delay transactions when we've determined that the backend storage 956 * isn't able to accommodate the rate of incoming writes. 957 * 958 * If there is already a transaction waiting, we delay relative to when 959 * that transaction finishes waiting. This way the calculated min_time 960 * is independent of the number of threads concurrently executing 961 * transactions. 962 * 963 * If we are the only waiter, wait relative to when the transaction 964 * started, rather than the current time. This credits the transaction for 965 * "time already served", e.g. reading indirect blocks. 966 * 967 * The minimum time for a transaction to take is calculated as: 968 * min_time = scale * (dirty - min) / (max - dirty) 969 * min_time is then capped at zfs_delay_max_ns. 970 * 971 * The delay has two degrees of freedom that can be adjusted via tunables. 972 * The percentage of dirty data at which we start to delay is defined by 973 * zfs_delay_min_dirty_percent. This should typically be at or above 974 * zfs_vdev_async_write_active_max_dirty_percent so that we only start to 975 * delay after writing at full speed has failed to keep up with the incoming 976 * write rate. The scale of the curve is defined by zfs_delay_scale. Roughly 977 * speaking, this variable determines the amount of delay at the midpoint of 978 * the curve. 979 * 980 * delay 981 * 10ms +-------------------------------------------------------------*+ 982 * | *| 983 * 9ms + *+ 984 * | *| 985 * 8ms + *+ 986 * | * | 987 * 7ms + * + 988 * | * | 989 * 6ms + * + 990 * | * | 991 * 5ms + * + 992 * | * | 993 * 4ms + * + 994 * | * | 995 * 3ms + * + 996 * | * | 997 * 2ms + (midpoint) * + 998 * | | ** | 999 * 1ms + v *** + 1000 * | zfs_delay_scale ----------> ******** | 1001 * 0 +-------------------------------------*********----------------+ 1002 * 0% <- zfs_dirty_data_max -> 100% 1003 * 1004 * Note that since the delay is added to the outstanding time remaining on the 1005 * most recent transaction, the delay is effectively the inverse of IOPS. 1006 * Here the midpoint of 500us translates to 2000 IOPS. The shape of the curve 1007 * was chosen such that small changes in the amount of accumulated dirty data 1008 * in the first 3/4 of the curve yield relatively small differences in the 1009 * amount of delay. 1010 * 1011 * The effects can be easier to understand when the amount of delay is 1012 * represented on a log scale: 1013 * 1014 * delay 1015 * 100ms +-------------------------------------------------------------++ 1016 * + + 1017 * | | 1018 * + *+ 1019 * 10ms + *+ 1020 * + ** + 1021 * | (midpoint) ** | 1022 * + | ** + 1023 * 1ms + v **** + 1024 * + zfs_delay_scale ----------> ***** + 1025 * | **** | 1026 * + **** + 1027 * 100us + ** + 1028 * + * + 1029 * | * | 1030 * + * + 1031 * 10us + * + 1032 * + + 1033 * | | 1034 * + + 1035 * +--------------------------------------------------------------+ 1036 * 0% <- zfs_dirty_data_max -> 100% 1037 * 1038 * Note here that only as the amount of dirty data approaches its limit does 1039 * the delay start to increase rapidly. The goal of a properly tuned system 1040 * should be to keep the amount of dirty data out of that range by first 1041 * ensuring that the appropriate limits are set for the I/O scheduler to reach 1042 * optimal throughput on the backend storage, and then by changing the value 1043 * of zfs_delay_scale to increase the steepness of the curve. 1044 */ 1045 static void 1046 dmu_tx_delay(dmu_tx_t *tx, uint64_t dirty) 1047 { 1048 dsl_pool_t *dp = tx->tx_pool; 1049 uint64_t delay_min_bytes = 1050 zfs_dirty_data_max * zfs_delay_min_dirty_percent / 100; 1051 hrtime_t wakeup, min_tx_time, now; 1052 1053 if (dirty <= delay_min_bytes) 1054 return; 1055 1056 /* 1057 * The caller has already waited until we are under the max. 1058 * We make them pass us the amount of dirty data so we don't 1059 * have to handle the case of it being >= the max, which could 1060 * cause a divide-by-zero if it's == the max. 1061 */ 1062 ASSERT3U(dirty, <, zfs_dirty_data_max); 1063 1064 now = gethrtime(); 1065 min_tx_time = zfs_delay_scale * 1066 (dirty - delay_min_bytes) / (zfs_dirty_data_max - dirty); 1067 if (now > tx->tx_start + min_tx_time) 1068 return; 1069 1070 min_tx_time = MIN(min_tx_time, zfs_delay_max_ns); 1071 1072 DTRACE_PROBE3(delay__mintime, dmu_tx_t *, tx, uint64_t, dirty, 1073 uint64_t, min_tx_time); 1074 1075 mutex_enter(&dp->dp_lock); 1076 wakeup = MAX(tx->tx_start + min_tx_time, 1077 dp->dp_last_wakeup + min_tx_time); 1078 dp->dp_last_wakeup = wakeup; 1079 mutex_exit(&dp->dp_lock); 1080 1081 #ifdef _KERNEL 1082 mutex_enter(&curthread->t_delay_lock); 1083 while (cv_timedwait_hires(&curthread->t_delay_cv, 1084 &curthread->t_delay_lock, wakeup, zfs_delay_resolution_ns, 1085 CALLOUT_FLAG_ABSOLUTE | CALLOUT_FLAG_ROUNDUP) > 0) 1086 continue; 1087 mutex_exit(&curthread->t_delay_lock); 1088 #else 1089 hrtime_t delta = wakeup - gethrtime(); 1090 struct timespec ts; 1091 ts.tv_sec = delta / NANOSEC; 1092 ts.tv_nsec = delta % NANOSEC; 1093 (void) nanosleep(&ts, NULL); 1094 #endif 1095 } 1096 1097 static int 1098 dmu_tx_try_assign(dmu_tx_t *tx, txg_how_t txg_how) 1099 { 1100 dmu_tx_hold_t *txh; 1101 spa_t *spa = tx->tx_pool->dp_spa; 1102 uint64_t memory, asize, fsize, usize; 1103 uint64_t towrite, tofree, tooverwrite, tounref, tohold, fudge; 1104 1105 ASSERT0(tx->tx_txg); 1106 1107 if (tx->tx_err) 1108 return (tx->tx_err); 1109 1110 if (spa_suspended(spa)) { 1111 /* 1112 * If the user has indicated a blocking failure mode 1113 * then return ERESTART which will block in dmu_tx_wait(). 1114 * Otherwise, return EIO so that an error can get 1115 * propagated back to the VOP calls. 1116 * 1117 * Note that we always honor the txg_how flag regardless 1118 * of the failuremode setting. 1119 */ 1120 if (spa_get_failmode(spa) == ZIO_FAILURE_MODE_CONTINUE && 1121 txg_how != TXG_WAIT) 1122 return (SET_ERROR(EIO)); 1123 1124 return (SET_ERROR(ERESTART)); 1125 } 1126 1127 if (!tx->tx_waited && 1128 dsl_pool_need_dirty_delay(tx->tx_pool)) { 1129 tx->tx_wait_dirty = B_TRUE; 1130 return (SET_ERROR(ERESTART)); 1131 } 1132 1133 tx->tx_txg = txg_hold_open(tx->tx_pool, &tx->tx_txgh); 1134 tx->tx_needassign_txh = NULL; 1135 1136 /* 1137 * NB: No error returns are allowed after txg_hold_open, but 1138 * before processing the dnode holds, due to the 1139 * dmu_tx_unassign() logic. 1140 */ 1141 1142 towrite = tofree = tooverwrite = tounref = tohold = fudge = 0; 1143 for (txh = list_head(&tx->tx_holds); txh; 1144 txh = list_next(&tx->tx_holds, txh)) { 1145 dnode_t *dn = txh->txh_dnode; 1146 if (dn != NULL) { 1147 mutex_enter(&dn->dn_mtx); 1148 if (dn->dn_assigned_txg == tx->tx_txg - 1) { 1149 mutex_exit(&dn->dn_mtx); 1150 tx->tx_needassign_txh = txh; 1151 return (SET_ERROR(ERESTART)); 1152 } 1153 if (dn->dn_assigned_txg == 0) 1154 dn->dn_assigned_txg = tx->tx_txg; 1155 ASSERT3U(dn->dn_assigned_txg, ==, tx->tx_txg); 1156 (void) refcount_add(&dn->dn_tx_holds, tx); 1157 mutex_exit(&dn->dn_mtx); 1158 } 1159 towrite += txh->txh_space_towrite; 1160 tofree += txh->txh_space_tofree; 1161 tooverwrite += txh->txh_space_tooverwrite; 1162 tounref += txh->txh_space_tounref; 1163 tohold += txh->txh_memory_tohold; 1164 fudge += txh->txh_fudge; 1165 } 1166 1167 /* 1168 * If a snapshot has been taken since we made our estimates, 1169 * assume that we won't be able to free or overwrite anything. 1170 */ 1171 if (tx->tx_objset && 1172 dsl_dataset_prev_snap_txg(tx->tx_objset->os_dsl_dataset) > 1173 tx->tx_lastsnap_txg) { 1174 towrite += tooverwrite; 1175 tooverwrite = tofree = 0; 1176 } 1177 1178 /* needed allocation: worst-case estimate of write space */ 1179 asize = spa_get_asize(tx->tx_pool->dp_spa, towrite + tooverwrite); 1180 /* freed space estimate: worst-case overwrite + free estimate */ 1181 fsize = spa_get_asize(tx->tx_pool->dp_spa, tooverwrite) + tofree; 1182 /* convert unrefd space to worst-case estimate */ 1183 usize = spa_get_asize(tx->tx_pool->dp_spa, tounref); 1184 /* calculate memory footprint estimate */ 1185 memory = towrite + tooverwrite + tohold; 1186 1187 #ifdef ZFS_DEBUG 1188 /* 1189 * Add in 'tohold' to account for our dirty holds on this memory 1190 * XXX - the "fudge" factor is to account for skipped blocks that 1191 * we missed because dnode_next_offset() misses in-core-only blocks. 1192 */ 1193 tx->tx_space_towrite = asize + 1194 spa_get_asize(tx->tx_pool->dp_spa, tohold + fudge); 1195 tx->tx_space_tofree = tofree; 1196 tx->tx_space_tooverwrite = tooverwrite; 1197 tx->tx_space_tounref = tounref; 1198 #endif 1199 1200 if (tx->tx_dir && asize != 0) { 1201 int err = dsl_dir_tempreserve_space(tx->tx_dir, memory, 1202 asize, fsize, usize, &tx->tx_tempreserve_cookie, tx); 1203 if (err) 1204 return (err); 1205 } 1206 1207 return (0); 1208 } 1209 1210 static void 1211 dmu_tx_unassign(dmu_tx_t *tx) 1212 { 1213 dmu_tx_hold_t *txh; 1214 1215 if (tx->tx_txg == 0) 1216 return; 1217 1218 txg_rele_to_quiesce(&tx->tx_txgh); 1219 1220 /* 1221 * Walk the transaction's hold list, removing the hold on the 1222 * associated dnode, and notifying waiters if the refcount drops to 0. 1223 */ 1224 for (txh = list_head(&tx->tx_holds); txh != tx->tx_needassign_txh; 1225 txh = list_next(&tx->tx_holds, txh)) { 1226 dnode_t *dn = txh->txh_dnode; 1227 1228 if (dn == NULL) 1229 continue; 1230 mutex_enter(&dn->dn_mtx); 1231 ASSERT3U(dn->dn_assigned_txg, ==, tx->tx_txg); 1232 1233 if (refcount_remove(&dn->dn_tx_holds, tx) == 0) { 1234 dn->dn_assigned_txg = 0; 1235 cv_broadcast(&dn->dn_notxholds); 1236 } 1237 mutex_exit(&dn->dn_mtx); 1238 } 1239 1240 txg_rele_to_sync(&tx->tx_txgh); 1241 1242 tx->tx_lasttried_txg = tx->tx_txg; 1243 tx->tx_txg = 0; 1244 } 1245 1246 /* 1247 * Assign tx to a transaction group. txg_how can be one of: 1248 * 1249 * (1) TXG_WAIT. If the current open txg is full, waits until there's 1250 * a new one. This should be used when you're not holding locks. 1251 * It will only fail if we're truly out of space (or over quota). 1252 * 1253 * (2) TXG_NOWAIT. If we can't assign into the current open txg without 1254 * blocking, returns immediately with ERESTART. This should be used 1255 * whenever you're holding locks. On an ERESTART error, the caller 1256 * should drop locks, do a dmu_tx_wait(tx), and try again. 1257 * 1258 * (3) TXG_WAITED. Like TXG_NOWAIT, but indicates that dmu_tx_wait() 1259 * has already been called on behalf of this operation (though 1260 * most likely on a different tx). 1261 */ 1262 int 1263 dmu_tx_assign(dmu_tx_t *tx, txg_how_t txg_how) 1264 { 1265 int err; 1266 1267 ASSERT(tx->tx_txg == 0); 1268 ASSERT(txg_how == TXG_WAIT || txg_how == TXG_NOWAIT || 1269 txg_how == TXG_WAITED); 1270 ASSERT(!dsl_pool_sync_context(tx->tx_pool)); 1271 1272 /* If we might wait, we must not hold the config lock. */ 1273 ASSERT(txg_how != TXG_WAIT || !dsl_pool_config_held(tx->tx_pool)); 1274 1275 if (txg_how == TXG_WAITED) 1276 tx->tx_waited = B_TRUE; 1277 1278 while ((err = dmu_tx_try_assign(tx, txg_how)) != 0) { 1279 dmu_tx_unassign(tx); 1280 1281 if (err != ERESTART || txg_how != TXG_WAIT) 1282 return (err); 1283 1284 dmu_tx_wait(tx); 1285 } 1286 1287 txg_rele_to_quiesce(&tx->tx_txgh); 1288 1289 return (0); 1290 } 1291 1292 void 1293 dmu_tx_wait(dmu_tx_t *tx) 1294 { 1295 spa_t *spa = tx->tx_pool->dp_spa; 1296 dsl_pool_t *dp = tx->tx_pool; 1297 1298 ASSERT(tx->tx_txg == 0); 1299 ASSERT(!dsl_pool_config_held(tx->tx_pool)); 1300 1301 if (tx->tx_wait_dirty) { 1302 /* 1303 * dmu_tx_try_assign() has determined that we need to wait 1304 * because we've consumed much or all of the dirty buffer 1305 * space. 1306 */ 1307 mutex_enter(&dp->dp_lock); 1308 while (dp->dp_dirty_total >= zfs_dirty_data_max) 1309 cv_wait(&dp->dp_spaceavail_cv, &dp->dp_lock); 1310 uint64_t dirty = dp->dp_dirty_total; 1311 mutex_exit(&dp->dp_lock); 1312 1313 dmu_tx_delay(tx, dirty); 1314 1315 tx->tx_wait_dirty = B_FALSE; 1316 1317 /* 1318 * Note: setting tx_waited only has effect if the caller 1319 * used TX_WAIT. Otherwise they are going to destroy 1320 * this tx and try again. The common case, zfs_write(), 1321 * uses TX_WAIT. 1322 */ 1323 tx->tx_waited = B_TRUE; 1324 } else if (spa_suspended(spa) || tx->tx_lasttried_txg == 0) { 1325 /* 1326 * If the pool is suspended we need to wait until it 1327 * is resumed. Note that it's possible that the pool 1328 * has become active after this thread has tried to 1329 * obtain a tx. If that's the case then tx_lasttried_txg 1330 * would not have been set. 1331 */ 1332 txg_wait_synced(dp, spa_last_synced_txg(spa) + 1); 1333 } else if (tx->tx_needassign_txh) { 1334 /* 1335 * A dnode is assigned to the quiescing txg. Wait for its 1336 * transaction to complete. 1337 */ 1338 dnode_t *dn = tx->tx_needassign_txh->txh_dnode; 1339 1340 mutex_enter(&dn->dn_mtx); 1341 while (dn->dn_assigned_txg == tx->tx_lasttried_txg - 1) 1342 cv_wait(&dn->dn_notxholds, &dn->dn_mtx); 1343 mutex_exit(&dn->dn_mtx); 1344 tx->tx_needassign_txh = NULL; 1345 } else { 1346 txg_wait_open(tx->tx_pool, tx->tx_lasttried_txg + 1); 1347 } 1348 } 1349 1350 void 1351 dmu_tx_willuse_space(dmu_tx_t *tx, int64_t delta) 1352 { 1353 #ifdef ZFS_DEBUG 1354 if (tx->tx_dir == NULL || delta == 0) 1355 return; 1356 1357 if (delta > 0) { 1358 ASSERT3U(refcount_count(&tx->tx_space_written) + delta, <=, 1359 tx->tx_space_towrite); 1360 (void) refcount_add_many(&tx->tx_space_written, delta, NULL); 1361 } else { 1362 (void) refcount_add_many(&tx->tx_space_freed, -delta, NULL); 1363 } 1364 #endif 1365 } 1366 1367 void 1368 dmu_tx_commit(dmu_tx_t *tx) 1369 { 1370 dmu_tx_hold_t *txh; 1371 1372 ASSERT(tx->tx_txg != 0); 1373 1374 /* 1375 * Go through the transaction's hold list and remove holds on 1376 * associated dnodes, notifying waiters if no holds remain. 1377 */ 1378 while (txh = list_head(&tx->tx_holds)) { 1379 dnode_t *dn = txh->txh_dnode; 1380 1381 list_remove(&tx->tx_holds, txh); 1382 kmem_free(txh, sizeof (dmu_tx_hold_t)); 1383 if (dn == NULL) 1384 continue; 1385 mutex_enter(&dn->dn_mtx); 1386 ASSERT3U(dn->dn_assigned_txg, ==, tx->tx_txg); 1387 1388 if (refcount_remove(&dn->dn_tx_holds, tx) == 0) { 1389 dn->dn_assigned_txg = 0; 1390 cv_broadcast(&dn->dn_notxholds); 1391 } 1392 mutex_exit(&dn->dn_mtx); 1393 dnode_rele(dn, tx); 1394 } 1395 1396 if (tx->tx_tempreserve_cookie) 1397 dsl_dir_tempreserve_clear(tx->tx_tempreserve_cookie, tx); 1398 1399 if (!list_is_empty(&tx->tx_callbacks)) 1400 txg_register_callbacks(&tx->tx_txgh, &tx->tx_callbacks); 1401 1402 if (tx->tx_anyobj == FALSE) 1403 txg_rele_to_sync(&tx->tx_txgh); 1404 1405 list_destroy(&tx->tx_callbacks); 1406 list_destroy(&tx->tx_holds); 1407 #ifdef ZFS_DEBUG 1408 dprintf("towrite=%llu written=%llu tofree=%llu freed=%llu\n", 1409 tx->tx_space_towrite, refcount_count(&tx->tx_space_written), 1410 tx->tx_space_tofree, refcount_count(&tx->tx_space_freed)); 1411 refcount_destroy_many(&tx->tx_space_written, 1412 refcount_count(&tx->tx_space_written)); 1413 refcount_destroy_many(&tx->tx_space_freed, 1414 refcount_count(&tx->tx_space_freed)); 1415 #endif 1416 kmem_free(tx, sizeof (dmu_tx_t)); 1417 } 1418 1419 void 1420 dmu_tx_abort(dmu_tx_t *tx) 1421 { 1422 dmu_tx_hold_t *txh; 1423 1424 ASSERT(tx->tx_txg == 0); 1425 1426 while (txh = list_head(&tx->tx_holds)) { 1427 dnode_t *dn = txh->txh_dnode; 1428 1429 list_remove(&tx->tx_holds, txh); 1430 kmem_free(txh, sizeof (dmu_tx_hold_t)); 1431 if (dn != NULL) 1432 dnode_rele(dn, tx); 1433 } 1434 1435 /* 1436 * Call any registered callbacks with an error code. 1437 */ 1438 if (!list_is_empty(&tx->tx_callbacks)) 1439 dmu_tx_do_callbacks(&tx->tx_callbacks, ECANCELED); 1440 1441 list_destroy(&tx->tx_callbacks); 1442 list_destroy(&tx->tx_holds); 1443 #ifdef ZFS_DEBUG 1444 refcount_destroy_many(&tx->tx_space_written, 1445 refcount_count(&tx->tx_space_written)); 1446 refcount_destroy_many(&tx->tx_space_freed, 1447 refcount_count(&tx->tx_space_freed)); 1448 #endif 1449 kmem_free(tx, sizeof (dmu_tx_t)); 1450 } 1451 1452 uint64_t 1453 dmu_tx_get_txg(dmu_tx_t *tx) 1454 { 1455 ASSERT(tx->tx_txg != 0); 1456 return (tx->tx_txg); 1457 } 1458 1459 dsl_pool_t * 1460 dmu_tx_pool(dmu_tx_t *tx) 1461 { 1462 ASSERT(tx->tx_pool != NULL); 1463 return (tx->tx_pool); 1464 } 1465 1466 1467 void 1468 dmu_tx_callback_register(dmu_tx_t *tx, dmu_tx_callback_func_t *func, void *data) 1469 { 1470 dmu_tx_callback_t *dcb; 1471 1472 dcb = kmem_alloc(sizeof (dmu_tx_callback_t), KM_SLEEP); 1473 1474 dcb->dcb_func = func; 1475 dcb->dcb_data = data; 1476 1477 list_insert_tail(&tx->tx_callbacks, dcb); 1478 } 1479 1480 /* 1481 * Call all the commit callbacks on a list, with a given error code. 1482 */ 1483 void 1484 dmu_tx_do_callbacks(list_t *cb_list, int error) 1485 { 1486 dmu_tx_callback_t *dcb; 1487 1488 while (dcb = list_head(cb_list)) { 1489 list_remove(cb_list, dcb); 1490 dcb->dcb_func(dcb->dcb_data, error); 1491 kmem_free(dcb, sizeof (dmu_tx_callback_t)); 1492 } 1493 } 1494 1495 /* 1496 * Interface to hold a bunch of attributes. 1497 * used for creating new files. 1498 * attrsize is the total size of all attributes 1499 * to be added during object creation 1500 * 1501 * For updating/adding a single attribute dmu_tx_hold_sa() should be used. 1502 */ 1503 1504 /* 1505 * hold necessary attribute name for attribute registration. 1506 * should be a very rare case where this is needed. If it does 1507 * happen it would only happen on the first write to the file system. 1508 */ 1509 static void 1510 dmu_tx_sa_registration_hold(sa_os_t *sa, dmu_tx_t *tx) 1511 { 1512 int i; 1513 1514 if (!sa->sa_need_attr_registration) 1515 return; 1516 1517 for (i = 0; i != sa->sa_num_attrs; i++) { 1518 if (!sa->sa_attr_table[i].sa_registered) { 1519 if (sa->sa_reg_attr_obj) 1520 dmu_tx_hold_zap(tx, sa->sa_reg_attr_obj, 1521 B_TRUE, sa->sa_attr_table[i].sa_name); 1522 else 1523 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, 1524 B_TRUE, sa->sa_attr_table[i].sa_name); 1525 } 1526 } 1527 } 1528 1529 1530 void 1531 dmu_tx_hold_spill(dmu_tx_t *tx, uint64_t object) 1532 { 1533 dnode_t *dn; 1534 dmu_tx_hold_t *txh; 1535 1536 txh = dmu_tx_hold_object_impl(tx, tx->tx_objset, object, 1537 THT_SPILL, 0, 0); 1538 1539 dn = txh->txh_dnode; 1540 1541 if (dn == NULL) 1542 return; 1543 1544 /* If blkptr doesn't exist then add space to towrite */ 1545 if (!(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR)) { 1546 txh->txh_space_towrite += SPA_MAXBLOCKSIZE; 1547 } else { 1548 blkptr_t *bp; 1549 1550 bp = &dn->dn_phys->dn_spill; 1551 if (dsl_dataset_block_freeable(dn->dn_objset->os_dsl_dataset, 1552 bp, bp->blk_birth)) 1553 txh->txh_space_tooverwrite += SPA_MAXBLOCKSIZE; 1554 else 1555 txh->txh_space_towrite += SPA_MAXBLOCKSIZE; 1556 if (!BP_IS_HOLE(bp)) 1557 txh->txh_space_tounref += SPA_MAXBLOCKSIZE; 1558 } 1559 } 1560 1561 void 1562 dmu_tx_hold_sa_create(dmu_tx_t *tx, int attrsize) 1563 { 1564 sa_os_t *sa = tx->tx_objset->os_sa; 1565 1566 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); 1567 1568 if (tx->tx_objset->os_sa->sa_master_obj == 0) 1569 return; 1570 1571 if (tx->tx_objset->os_sa->sa_layout_attr_obj) 1572 dmu_tx_hold_zap(tx, sa->sa_layout_attr_obj, B_TRUE, NULL); 1573 else { 1574 dmu_tx_hold_zap(tx, sa->sa_master_obj, B_TRUE, SA_LAYOUTS); 1575 dmu_tx_hold_zap(tx, sa->sa_master_obj, B_TRUE, SA_REGISTRY); 1576 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL); 1577 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL); 1578 } 1579 1580 dmu_tx_sa_registration_hold(sa, tx); 1581 1582 if (attrsize <= DN_MAX_BONUSLEN && !sa->sa_force_spill) 1583 return; 1584 1585 (void) dmu_tx_hold_object_impl(tx, tx->tx_objset, DMU_NEW_OBJECT, 1586 THT_SPILL, 0, 0); 1587 } 1588 1589 /* 1590 * Hold SA attribute 1591 * 1592 * dmu_tx_hold_sa(dmu_tx_t *tx, sa_handle_t *, attribute, add, size) 1593 * 1594 * variable_size is the total size of all variable sized attributes 1595 * passed to this function. It is not the total size of all 1596 * variable size attributes that *may* exist on this object. 1597 */ 1598 void 1599 dmu_tx_hold_sa(dmu_tx_t *tx, sa_handle_t *hdl, boolean_t may_grow) 1600 { 1601 uint64_t object; 1602 sa_os_t *sa = tx->tx_objset->os_sa; 1603 1604 ASSERT(hdl != NULL); 1605 1606 object = sa_handle_object(hdl); 1607 1608 dmu_tx_hold_bonus(tx, object); 1609 1610 if (tx->tx_objset->os_sa->sa_master_obj == 0) 1611 return; 1612 1613 if (tx->tx_objset->os_sa->sa_reg_attr_obj == 0 || 1614 tx->tx_objset->os_sa->sa_layout_attr_obj == 0) { 1615 dmu_tx_hold_zap(tx, sa->sa_master_obj, B_TRUE, SA_LAYOUTS); 1616 dmu_tx_hold_zap(tx, sa->sa_master_obj, B_TRUE, SA_REGISTRY); 1617 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL); 1618 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL); 1619 } 1620 1621 dmu_tx_sa_registration_hold(sa, tx); 1622 1623 if (may_grow && tx->tx_objset->os_sa->sa_layout_attr_obj) 1624 dmu_tx_hold_zap(tx, sa->sa_layout_attr_obj, B_TRUE, NULL); 1625 1626 if (sa->sa_force_spill || may_grow || hdl->sa_spill) { 1627 ASSERT(tx->tx_txg == 0); 1628 dmu_tx_hold_spill(tx, object); 1629 } else { 1630 dmu_buf_impl_t *db = (dmu_buf_impl_t *)hdl->sa_bonus; 1631 dnode_t *dn; 1632 1633 DB_DNODE_ENTER(db); 1634 dn = DB_DNODE(db); 1635 if (dn->dn_have_spill) { 1636 ASSERT(tx->tx_txg == 0); 1637 dmu_tx_hold_spill(tx, object); 1638 } 1639 DB_DNODE_EXIT(db); 1640 } 1641 } 1642