1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 24 * Copyright (c) 2011, 2015 by Delphix. All rights reserved. 25 * Copyright (c) 2014, Joyent, Inc. All rights reserved. 26 * Copyright 2014 HybridCluster. All rights reserved. 27 */ 28 29 #include <sys/dmu.h> 30 #include <sys/dmu_impl.h> 31 #include <sys/dmu_tx.h> 32 #include <sys/dbuf.h> 33 #include <sys/dnode.h> 34 #include <sys/zfs_context.h> 35 #include <sys/dmu_objset.h> 36 #include <sys/dmu_traverse.h> 37 #include <sys/dsl_dataset.h> 38 #include <sys/dsl_dir.h> 39 #include <sys/dsl_prop.h> 40 #include <sys/dsl_pool.h> 41 #include <sys/dsl_synctask.h> 42 #include <sys/zfs_ioctl.h> 43 #include <sys/zap.h> 44 #include <sys/zio_checksum.h> 45 #include <sys/zfs_znode.h> 46 #include <zfs_fletcher.h> 47 #include <sys/avl.h> 48 #include <sys/ddt.h> 49 #include <sys/zfs_onexit.h> 50 #include <sys/dmu_send.h> 51 #include <sys/dsl_destroy.h> 52 #include <sys/blkptr.h> 53 #include <sys/dsl_bookmark.h> 54 #include <sys/zfeature.h> 55 #include <sys/bqueue.h> 56 57 /* Set this tunable to TRUE to replace corrupt data with 0x2f5baddb10c */ 58 int zfs_send_corrupt_data = B_FALSE; 59 int zfs_send_queue_length = 16 * 1024 * 1024; 60 int zfs_recv_queue_length = 16 * 1024 * 1024; 61 62 static char *dmu_recv_tag = "dmu_recv_tag"; 63 const char *recv_clone_name = "%recv"; 64 65 #define BP_SPAN(datablkszsec, indblkshift, level) \ 66 (((uint64_t)datablkszsec) << (SPA_MINBLOCKSHIFT + \ 67 (level) * (indblkshift - SPA_BLKPTRSHIFT))) 68 69 static void byteswap_record(dmu_replay_record_t *drr); 70 71 struct send_thread_arg { 72 bqueue_t q; 73 dsl_dataset_t *ds; /* Dataset to traverse */ 74 uint64_t fromtxg; /* Traverse from this txg */ 75 int flags; /* flags to pass to traverse_dataset */ 76 int error_code; 77 boolean_t cancel; 78 zbookmark_phys_t resume; 79 }; 80 81 struct send_block_record { 82 boolean_t eos_marker; /* Marks the end of the stream */ 83 blkptr_t bp; 84 zbookmark_phys_t zb; 85 uint8_t indblkshift; 86 uint16_t datablkszsec; 87 bqueue_node_t ln; 88 }; 89 90 static int 91 dump_bytes(dmu_sendarg_t *dsp, void *buf, int len) 92 { 93 dsl_dataset_t *ds = dmu_objset_ds(dsp->dsa_os); 94 ssize_t resid; /* have to get resid to get detailed errno */ 95 ASSERT0(len % 8); 96 97 dsp->dsa_err = vn_rdwr(UIO_WRITE, dsp->dsa_vp, 98 (caddr_t)buf, len, 99 0, UIO_SYSSPACE, FAPPEND, RLIM64_INFINITY, CRED(), &resid); 100 101 mutex_enter(&ds->ds_sendstream_lock); 102 *dsp->dsa_off += len; 103 mutex_exit(&ds->ds_sendstream_lock); 104 105 return (dsp->dsa_err); 106 } 107 108 /* 109 * For all record types except BEGIN, fill in the checksum (overlaid in 110 * drr_u.drr_checksum.drr_checksum). The checksum verifies everything 111 * up to the start of the checksum itself. 112 */ 113 static int 114 dump_record(dmu_sendarg_t *dsp, void *payload, int payload_len) 115 { 116 ASSERT3U(offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum), 117 ==, sizeof (dmu_replay_record_t) - sizeof (zio_cksum_t)); 118 fletcher_4_incremental_native(dsp->dsa_drr, 119 offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum), 120 &dsp->dsa_zc); 121 if (dsp->dsa_drr->drr_type != DRR_BEGIN) { 122 ASSERT(ZIO_CHECKSUM_IS_ZERO(&dsp->dsa_drr->drr_u. 123 drr_checksum.drr_checksum)); 124 dsp->dsa_drr->drr_u.drr_checksum.drr_checksum = dsp->dsa_zc; 125 } 126 fletcher_4_incremental_native(&dsp->dsa_drr-> 127 drr_u.drr_checksum.drr_checksum, 128 sizeof (zio_cksum_t), &dsp->dsa_zc); 129 if (dump_bytes(dsp, dsp->dsa_drr, sizeof (dmu_replay_record_t)) != 0) 130 return (SET_ERROR(EINTR)); 131 if (payload_len != 0) { 132 fletcher_4_incremental_native(payload, payload_len, 133 &dsp->dsa_zc); 134 if (dump_bytes(dsp, payload, payload_len) != 0) 135 return (SET_ERROR(EINTR)); 136 } 137 return (0); 138 } 139 140 static int 141 dump_free(dmu_sendarg_t *dsp, uint64_t object, uint64_t offset, 142 uint64_t length) 143 { 144 struct drr_free *drrf = &(dsp->dsa_drr->drr_u.drr_free); 145 146 /* 147 * When we receive a free record, dbuf_free_range() assumes 148 * that the receiving system doesn't have any dbufs in the range 149 * being freed. This is always true because there is a one-record 150 * constraint: we only send one WRITE record for any given 151 * object,offset. We know that the one-record constraint is 152 * true because we always send data in increasing order by 153 * object,offset. 154 * 155 * If the increasing-order constraint ever changes, we should find 156 * another way to assert that the one-record constraint is still 157 * satisfied. 158 */ 159 ASSERT(object > dsp->dsa_last_data_object || 160 (object == dsp->dsa_last_data_object && 161 offset > dsp->dsa_last_data_offset)); 162 163 /* 164 * If we are doing a non-incremental send, then there can't 165 * be any data in the dataset we're receiving into. Therefore 166 * a free record would simply be a no-op. Save space by not 167 * sending it to begin with. 168 */ 169 if (!dsp->dsa_incremental) 170 return (0); 171 172 if (length != -1ULL && offset + length < offset) 173 length = -1ULL; 174 175 /* 176 * If there is a pending op, but it's not PENDING_FREE, push it out, 177 * since free block aggregation can only be done for blocks of the 178 * same type (i.e., DRR_FREE records can only be aggregated with 179 * other DRR_FREE records. DRR_FREEOBJECTS records can only be 180 * aggregated with other DRR_FREEOBJECTS records. 181 */ 182 if (dsp->dsa_pending_op != PENDING_NONE && 183 dsp->dsa_pending_op != PENDING_FREE) { 184 if (dump_record(dsp, NULL, 0) != 0) 185 return (SET_ERROR(EINTR)); 186 dsp->dsa_pending_op = PENDING_NONE; 187 } 188 189 if (dsp->dsa_pending_op == PENDING_FREE) { 190 /* 191 * There should never be a PENDING_FREE if length is -1 192 * (because dump_dnode is the only place where this 193 * function is called with a -1, and only after flushing 194 * any pending record). 195 */ 196 ASSERT(length != -1ULL); 197 /* 198 * Check to see whether this free block can be aggregated 199 * with pending one. 200 */ 201 if (drrf->drr_object == object && drrf->drr_offset + 202 drrf->drr_length == offset) { 203 drrf->drr_length += length; 204 return (0); 205 } else { 206 /* not a continuation. Push out pending record */ 207 if (dump_record(dsp, NULL, 0) != 0) 208 return (SET_ERROR(EINTR)); 209 dsp->dsa_pending_op = PENDING_NONE; 210 } 211 } 212 /* create a FREE record and make it pending */ 213 bzero(dsp->dsa_drr, sizeof (dmu_replay_record_t)); 214 dsp->dsa_drr->drr_type = DRR_FREE; 215 drrf->drr_object = object; 216 drrf->drr_offset = offset; 217 drrf->drr_length = length; 218 drrf->drr_toguid = dsp->dsa_toguid; 219 if (length == -1ULL) { 220 if (dump_record(dsp, NULL, 0) != 0) 221 return (SET_ERROR(EINTR)); 222 } else { 223 dsp->dsa_pending_op = PENDING_FREE; 224 } 225 226 return (0); 227 } 228 229 static int 230 dump_write(dmu_sendarg_t *dsp, dmu_object_type_t type, 231 uint64_t object, uint64_t offset, int blksz, const blkptr_t *bp, void *data) 232 { 233 struct drr_write *drrw = &(dsp->dsa_drr->drr_u.drr_write); 234 235 /* 236 * We send data in increasing object, offset order. 237 * See comment in dump_free() for details. 238 */ 239 ASSERT(object > dsp->dsa_last_data_object || 240 (object == dsp->dsa_last_data_object && 241 offset > dsp->dsa_last_data_offset)); 242 dsp->dsa_last_data_object = object; 243 dsp->dsa_last_data_offset = offset + blksz - 1; 244 245 /* 246 * If there is any kind of pending aggregation (currently either 247 * a grouping of free objects or free blocks), push it out to 248 * the stream, since aggregation can't be done across operations 249 * of different types. 250 */ 251 if (dsp->dsa_pending_op != PENDING_NONE) { 252 if (dump_record(dsp, NULL, 0) != 0) 253 return (SET_ERROR(EINTR)); 254 dsp->dsa_pending_op = PENDING_NONE; 255 } 256 /* write a WRITE record */ 257 bzero(dsp->dsa_drr, sizeof (dmu_replay_record_t)); 258 dsp->dsa_drr->drr_type = DRR_WRITE; 259 drrw->drr_object = object; 260 drrw->drr_type = type; 261 drrw->drr_offset = offset; 262 drrw->drr_length = blksz; 263 drrw->drr_toguid = dsp->dsa_toguid; 264 if (bp == NULL || BP_IS_EMBEDDED(bp)) { 265 /* 266 * There's no pre-computed checksum for partial-block 267 * writes or embedded BP's, so (like 268 * fletcher4-checkummed blocks) userland will have to 269 * compute a dedup-capable checksum itself. 270 */ 271 drrw->drr_checksumtype = ZIO_CHECKSUM_OFF; 272 } else { 273 drrw->drr_checksumtype = BP_GET_CHECKSUM(bp); 274 if (zio_checksum_table[drrw->drr_checksumtype].ci_dedup) 275 drrw->drr_checksumflags |= DRR_CHECKSUM_DEDUP; 276 DDK_SET_LSIZE(&drrw->drr_key, BP_GET_LSIZE(bp)); 277 DDK_SET_PSIZE(&drrw->drr_key, BP_GET_PSIZE(bp)); 278 DDK_SET_COMPRESS(&drrw->drr_key, BP_GET_COMPRESS(bp)); 279 drrw->drr_key.ddk_cksum = bp->blk_cksum; 280 } 281 282 if (dump_record(dsp, data, blksz) != 0) 283 return (SET_ERROR(EINTR)); 284 return (0); 285 } 286 287 static int 288 dump_write_embedded(dmu_sendarg_t *dsp, uint64_t object, uint64_t offset, 289 int blksz, const blkptr_t *bp) 290 { 291 char buf[BPE_PAYLOAD_SIZE]; 292 struct drr_write_embedded *drrw = 293 &(dsp->dsa_drr->drr_u.drr_write_embedded); 294 295 if (dsp->dsa_pending_op != PENDING_NONE) { 296 if (dump_record(dsp, NULL, 0) != 0) 297 return (EINTR); 298 dsp->dsa_pending_op = PENDING_NONE; 299 } 300 301 ASSERT(BP_IS_EMBEDDED(bp)); 302 303 bzero(dsp->dsa_drr, sizeof (dmu_replay_record_t)); 304 dsp->dsa_drr->drr_type = DRR_WRITE_EMBEDDED; 305 drrw->drr_object = object; 306 drrw->drr_offset = offset; 307 drrw->drr_length = blksz; 308 drrw->drr_toguid = dsp->dsa_toguid; 309 drrw->drr_compression = BP_GET_COMPRESS(bp); 310 drrw->drr_etype = BPE_GET_ETYPE(bp); 311 drrw->drr_lsize = BPE_GET_LSIZE(bp); 312 drrw->drr_psize = BPE_GET_PSIZE(bp); 313 314 decode_embedded_bp_compressed(bp, buf); 315 316 if (dump_record(dsp, buf, P2ROUNDUP(drrw->drr_psize, 8)) != 0) 317 return (EINTR); 318 return (0); 319 } 320 321 static int 322 dump_spill(dmu_sendarg_t *dsp, uint64_t object, int blksz, void *data) 323 { 324 struct drr_spill *drrs = &(dsp->dsa_drr->drr_u.drr_spill); 325 326 if (dsp->dsa_pending_op != PENDING_NONE) { 327 if (dump_record(dsp, NULL, 0) != 0) 328 return (SET_ERROR(EINTR)); 329 dsp->dsa_pending_op = PENDING_NONE; 330 } 331 332 /* write a SPILL record */ 333 bzero(dsp->dsa_drr, sizeof (dmu_replay_record_t)); 334 dsp->dsa_drr->drr_type = DRR_SPILL; 335 drrs->drr_object = object; 336 drrs->drr_length = blksz; 337 drrs->drr_toguid = dsp->dsa_toguid; 338 339 if (dump_record(dsp, data, blksz) != 0) 340 return (SET_ERROR(EINTR)); 341 return (0); 342 } 343 344 static int 345 dump_freeobjects(dmu_sendarg_t *dsp, uint64_t firstobj, uint64_t numobjs) 346 { 347 struct drr_freeobjects *drrfo = &(dsp->dsa_drr->drr_u.drr_freeobjects); 348 349 /* See comment in dump_free(). */ 350 if (!dsp->dsa_incremental) 351 return (0); 352 353 /* 354 * If there is a pending op, but it's not PENDING_FREEOBJECTS, 355 * push it out, since free block aggregation can only be done for 356 * blocks of the same type (i.e., DRR_FREE records can only be 357 * aggregated with other DRR_FREE records. DRR_FREEOBJECTS records 358 * can only be aggregated with other DRR_FREEOBJECTS records. 359 */ 360 if (dsp->dsa_pending_op != PENDING_NONE && 361 dsp->dsa_pending_op != PENDING_FREEOBJECTS) { 362 if (dump_record(dsp, NULL, 0) != 0) 363 return (SET_ERROR(EINTR)); 364 dsp->dsa_pending_op = PENDING_NONE; 365 } 366 if (dsp->dsa_pending_op == PENDING_FREEOBJECTS) { 367 /* 368 * See whether this free object array can be aggregated 369 * with pending one 370 */ 371 if (drrfo->drr_firstobj + drrfo->drr_numobjs == firstobj) { 372 drrfo->drr_numobjs += numobjs; 373 return (0); 374 } else { 375 /* can't be aggregated. Push out pending record */ 376 if (dump_record(dsp, NULL, 0) != 0) 377 return (SET_ERROR(EINTR)); 378 dsp->dsa_pending_op = PENDING_NONE; 379 } 380 } 381 382 /* write a FREEOBJECTS record */ 383 bzero(dsp->dsa_drr, sizeof (dmu_replay_record_t)); 384 dsp->dsa_drr->drr_type = DRR_FREEOBJECTS; 385 drrfo->drr_firstobj = firstobj; 386 drrfo->drr_numobjs = numobjs; 387 drrfo->drr_toguid = dsp->dsa_toguid; 388 389 dsp->dsa_pending_op = PENDING_FREEOBJECTS; 390 391 return (0); 392 } 393 394 static int 395 dump_dnode(dmu_sendarg_t *dsp, uint64_t object, dnode_phys_t *dnp) 396 { 397 struct drr_object *drro = &(dsp->dsa_drr->drr_u.drr_object); 398 399 if (object < dsp->dsa_resume_object) { 400 /* 401 * Note: when resuming, we will visit all the dnodes in 402 * the block of dnodes that we are resuming from. In 403 * this case it's unnecessary to send the dnodes prior to 404 * the one we are resuming from. We should be at most one 405 * block's worth of dnodes behind the resume point. 406 */ 407 ASSERT3U(dsp->dsa_resume_object - object, <, 408 1 << (DNODE_BLOCK_SHIFT - DNODE_SHIFT)); 409 return (0); 410 } 411 412 if (dnp == NULL || dnp->dn_type == DMU_OT_NONE) 413 return (dump_freeobjects(dsp, object, 1)); 414 415 if (dsp->dsa_pending_op != PENDING_NONE) { 416 if (dump_record(dsp, NULL, 0) != 0) 417 return (SET_ERROR(EINTR)); 418 dsp->dsa_pending_op = PENDING_NONE; 419 } 420 421 /* write an OBJECT record */ 422 bzero(dsp->dsa_drr, sizeof (dmu_replay_record_t)); 423 dsp->dsa_drr->drr_type = DRR_OBJECT; 424 drro->drr_object = object; 425 drro->drr_type = dnp->dn_type; 426 drro->drr_bonustype = dnp->dn_bonustype; 427 drro->drr_blksz = dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT; 428 drro->drr_bonuslen = dnp->dn_bonuslen; 429 drro->drr_checksumtype = dnp->dn_checksum; 430 drro->drr_compress = dnp->dn_compress; 431 drro->drr_toguid = dsp->dsa_toguid; 432 433 if (!(dsp->dsa_featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS) && 434 drro->drr_blksz > SPA_OLD_MAXBLOCKSIZE) 435 drro->drr_blksz = SPA_OLD_MAXBLOCKSIZE; 436 437 if (dump_record(dsp, DN_BONUS(dnp), 438 P2ROUNDUP(dnp->dn_bonuslen, 8)) != 0) { 439 return (SET_ERROR(EINTR)); 440 } 441 442 /* Free anything past the end of the file. */ 443 if (dump_free(dsp, object, (dnp->dn_maxblkid + 1) * 444 (dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT), -1ULL) != 0) 445 return (SET_ERROR(EINTR)); 446 if (dsp->dsa_err != 0) 447 return (SET_ERROR(EINTR)); 448 return (0); 449 } 450 451 static boolean_t 452 backup_do_embed(dmu_sendarg_t *dsp, const blkptr_t *bp) 453 { 454 if (!BP_IS_EMBEDDED(bp)) 455 return (B_FALSE); 456 457 /* 458 * Compression function must be legacy, or explicitly enabled. 459 */ 460 if ((BP_GET_COMPRESS(bp) >= ZIO_COMPRESS_LEGACY_FUNCTIONS && 461 !(dsp->dsa_featureflags & DMU_BACKUP_FEATURE_EMBED_DATA_LZ4))) 462 return (B_FALSE); 463 464 /* 465 * Embed type must be explicitly enabled. 466 */ 467 switch (BPE_GET_ETYPE(bp)) { 468 case BP_EMBEDDED_TYPE_DATA: 469 if (dsp->dsa_featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) 470 return (B_TRUE); 471 break; 472 default: 473 return (B_FALSE); 474 } 475 return (B_FALSE); 476 } 477 478 /* 479 * This is the callback function to traverse_dataset that acts as the worker 480 * thread for dmu_send_impl. 481 */ 482 /*ARGSUSED*/ 483 static int 484 send_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp, 485 const zbookmark_phys_t *zb, const struct dnode_phys *dnp, void *arg) 486 { 487 struct send_thread_arg *sta = arg; 488 struct send_block_record *record; 489 uint64_t record_size; 490 int err = 0; 491 492 ASSERT(zb->zb_object == DMU_META_DNODE_OBJECT || 493 zb->zb_object >= sta->resume.zb_object); 494 495 if (sta->cancel) 496 return (SET_ERROR(EINTR)); 497 498 if (bp == NULL) { 499 ASSERT3U(zb->zb_level, ==, ZB_DNODE_LEVEL); 500 return (0); 501 } else if (zb->zb_level < 0) { 502 return (0); 503 } 504 505 record = kmem_zalloc(sizeof (struct send_block_record), KM_SLEEP); 506 record->eos_marker = B_FALSE; 507 record->bp = *bp; 508 record->zb = *zb; 509 record->indblkshift = dnp->dn_indblkshift; 510 record->datablkszsec = dnp->dn_datablkszsec; 511 record_size = dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT; 512 bqueue_enqueue(&sta->q, record, record_size); 513 514 return (err); 515 } 516 517 /* 518 * This function kicks off the traverse_dataset. It also handles setting the 519 * error code of the thread in case something goes wrong, and pushes the End of 520 * Stream record when the traverse_dataset call has finished. If there is no 521 * dataset to traverse, the thread immediately pushes End of Stream marker. 522 */ 523 static void 524 send_traverse_thread(void *arg) 525 { 526 struct send_thread_arg *st_arg = arg; 527 int err; 528 struct send_block_record *data; 529 530 if (st_arg->ds != NULL) { 531 err = traverse_dataset_resume(st_arg->ds, 532 st_arg->fromtxg, &st_arg->resume, 533 st_arg->flags, send_cb, st_arg); 534 535 if (err != EINTR) 536 st_arg->error_code = err; 537 } 538 data = kmem_zalloc(sizeof (*data), KM_SLEEP); 539 data->eos_marker = B_TRUE; 540 bqueue_enqueue(&st_arg->q, data, 1); 541 } 542 543 /* 544 * This function actually handles figuring out what kind of record needs to be 545 * dumped, reading the data (which has hopefully been prefetched), and calling 546 * the appropriate helper function. 547 */ 548 static int 549 do_dump(dmu_sendarg_t *dsa, struct send_block_record *data) 550 { 551 dsl_dataset_t *ds = dmu_objset_ds(dsa->dsa_os); 552 const blkptr_t *bp = &data->bp; 553 const zbookmark_phys_t *zb = &data->zb; 554 uint8_t indblkshift = data->indblkshift; 555 uint16_t dblkszsec = data->datablkszsec; 556 spa_t *spa = ds->ds_dir->dd_pool->dp_spa; 557 dmu_object_type_t type = bp ? BP_GET_TYPE(bp) : DMU_OT_NONE; 558 int err = 0; 559 560 ASSERT3U(zb->zb_level, >=, 0); 561 562 ASSERT(zb->zb_object == DMU_META_DNODE_OBJECT || 563 zb->zb_object >= dsa->dsa_resume_object); 564 565 if (zb->zb_object != DMU_META_DNODE_OBJECT && 566 DMU_OBJECT_IS_SPECIAL(zb->zb_object)) { 567 return (0); 568 } else if (BP_IS_HOLE(bp) && 569 zb->zb_object == DMU_META_DNODE_OBJECT) { 570 uint64_t span = BP_SPAN(dblkszsec, indblkshift, zb->zb_level); 571 uint64_t dnobj = (zb->zb_blkid * span) >> DNODE_SHIFT; 572 err = dump_freeobjects(dsa, dnobj, span >> DNODE_SHIFT); 573 } else if (BP_IS_HOLE(bp)) { 574 uint64_t span = BP_SPAN(dblkszsec, indblkshift, zb->zb_level); 575 uint64_t offset = zb->zb_blkid * span; 576 err = dump_free(dsa, zb->zb_object, offset, span); 577 } else if (zb->zb_level > 0 || type == DMU_OT_OBJSET) { 578 return (0); 579 } else if (type == DMU_OT_DNODE) { 580 int blksz = BP_GET_LSIZE(bp); 581 arc_flags_t aflags = ARC_FLAG_WAIT; 582 arc_buf_t *abuf; 583 584 ASSERT0(zb->zb_level); 585 586 if (arc_read(NULL, spa, bp, arc_getbuf_func, &abuf, 587 ZIO_PRIORITY_ASYNC_READ, ZIO_FLAG_CANFAIL, 588 &aflags, zb) != 0) 589 return (SET_ERROR(EIO)); 590 591 dnode_phys_t *blk = abuf->b_data; 592 uint64_t dnobj = zb->zb_blkid * (blksz >> DNODE_SHIFT); 593 for (int i = 0; i < blksz >> DNODE_SHIFT; i++) { 594 err = dump_dnode(dsa, dnobj + i, blk + i); 595 if (err != 0) 596 break; 597 } 598 (void) arc_buf_remove_ref(abuf, &abuf); 599 } else if (type == DMU_OT_SA) { 600 arc_flags_t aflags = ARC_FLAG_WAIT; 601 arc_buf_t *abuf; 602 int blksz = BP_GET_LSIZE(bp); 603 604 if (arc_read(NULL, spa, bp, arc_getbuf_func, &abuf, 605 ZIO_PRIORITY_ASYNC_READ, ZIO_FLAG_CANFAIL, 606 &aflags, zb) != 0) 607 return (SET_ERROR(EIO)); 608 609 err = dump_spill(dsa, zb->zb_object, blksz, abuf->b_data); 610 (void) arc_buf_remove_ref(abuf, &abuf); 611 } else if (backup_do_embed(dsa, bp)) { 612 /* it's an embedded level-0 block of a regular object */ 613 int blksz = dblkszsec << SPA_MINBLOCKSHIFT; 614 ASSERT0(zb->zb_level); 615 err = dump_write_embedded(dsa, zb->zb_object, 616 zb->zb_blkid * blksz, blksz, bp); 617 } else { 618 /* it's a level-0 block of a regular object */ 619 arc_flags_t aflags = ARC_FLAG_WAIT; 620 arc_buf_t *abuf; 621 int blksz = dblkszsec << SPA_MINBLOCKSHIFT; 622 uint64_t offset; 623 624 ASSERT0(zb->zb_level); 625 ASSERT(zb->zb_object > dsa->dsa_resume_object || 626 (zb->zb_object == dsa->dsa_resume_object && 627 zb->zb_blkid * blksz >= dsa->dsa_resume_offset)); 628 629 if (arc_read(NULL, spa, bp, arc_getbuf_func, &abuf, 630 ZIO_PRIORITY_ASYNC_READ, ZIO_FLAG_CANFAIL, 631 &aflags, zb) != 0) { 632 if (zfs_send_corrupt_data) { 633 /* Send a block filled with 0x"zfs badd bloc" */ 634 abuf = arc_buf_alloc(spa, blksz, &abuf, 635 ARC_BUFC_DATA); 636 uint64_t *ptr; 637 for (ptr = abuf->b_data; 638 (char *)ptr < (char *)abuf->b_data + blksz; 639 ptr++) 640 *ptr = 0x2f5baddb10cULL; 641 } else { 642 return (SET_ERROR(EIO)); 643 } 644 } 645 646 offset = zb->zb_blkid * blksz; 647 648 if (!(dsa->dsa_featureflags & 649 DMU_BACKUP_FEATURE_LARGE_BLOCKS) && 650 blksz > SPA_OLD_MAXBLOCKSIZE) { 651 char *buf = abuf->b_data; 652 while (blksz > 0 && err == 0) { 653 int n = MIN(blksz, SPA_OLD_MAXBLOCKSIZE); 654 err = dump_write(dsa, type, zb->zb_object, 655 offset, n, NULL, buf); 656 offset += n; 657 buf += n; 658 blksz -= n; 659 } 660 } else { 661 err = dump_write(dsa, type, zb->zb_object, 662 offset, blksz, bp, abuf->b_data); 663 } 664 (void) arc_buf_remove_ref(abuf, &abuf); 665 } 666 667 ASSERT(err == 0 || err == EINTR); 668 return (err); 669 } 670 671 /* 672 * Pop the new data off the queue, and free the old data. 673 */ 674 static struct send_block_record * 675 get_next_record(bqueue_t *bq, struct send_block_record *data) 676 { 677 struct send_block_record *tmp = bqueue_dequeue(bq); 678 kmem_free(data, sizeof (*data)); 679 return (tmp); 680 } 681 682 /* 683 * Actually do the bulk of the work in a zfs send. 684 * 685 * Note: Releases dp using the specified tag. 686 */ 687 static int 688 dmu_send_impl(void *tag, dsl_pool_t *dp, dsl_dataset_t *to_ds, 689 zfs_bookmark_phys_t *ancestor_zb, 690 boolean_t is_clone, boolean_t embedok, boolean_t large_block_ok, int outfd, 691 uint64_t resumeobj, uint64_t resumeoff, 692 vnode_t *vp, offset_t *off) 693 { 694 objset_t *os; 695 dmu_replay_record_t *drr; 696 dmu_sendarg_t *dsp; 697 int err; 698 uint64_t fromtxg = 0; 699 uint64_t featureflags = 0; 700 struct send_thread_arg to_arg = { 0 }; 701 702 err = dmu_objset_from_ds(to_ds, &os); 703 if (err != 0) { 704 dsl_pool_rele(dp, tag); 705 return (err); 706 } 707 708 drr = kmem_zalloc(sizeof (dmu_replay_record_t), KM_SLEEP); 709 drr->drr_type = DRR_BEGIN; 710 drr->drr_u.drr_begin.drr_magic = DMU_BACKUP_MAGIC; 711 DMU_SET_STREAM_HDRTYPE(drr->drr_u.drr_begin.drr_versioninfo, 712 DMU_SUBSTREAM); 713 714 #ifdef _KERNEL 715 if (dmu_objset_type(os) == DMU_OST_ZFS) { 716 uint64_t version; 717 if (zfs_get_zplprop(os, ZFS_PROP_VERSION, &version) != 0) { 718 kmem_free(drr, sizeof (dmu_replay_record_t)); 719 dsl_pool_rele(dp, tag); 720 return (SET_ERROR(EINVAL)); 721 } 722 if (version >= ZPL_VERSION_SA) { 723 featureflags |= DMU_BACKUP_FEATURE_SA_SPILL; 724 } 725 } 726 #endif 727 728 if (large_block_ok && to_ds->ds_feature_inuse[SPA_FEATURE_LARGE_BLOCKS]) 729 featureflags |= DMU_BACKUP_FEATURE_LARGE_BLOCKS; 730 if (embedok && 731 spa_feature_is_active(dp->dp_spa, SPA_FEATURE_EMBEDDED_DATA)) { 732 featureflags |= DMU_BACKUP_FEATURE_EMBED_DATA; 733 if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_LZ4_COMPRESS)) 734 featureflags |= DMU_BACKUP_FEATURE_EMBED_DATA_LZ4; 735 } 736 737 if (resumeobj != 0 || resumeoff != 0) { 738 featureflags |= DMU_BACKUP_FEATURE_RESUMING; 739 } 740 741 DMU_SET_FEATUREFLAGS(drr->drr_u.drr_begin.drr_versioninfo, 742 featureflags); 743 744 drr->drr_u.drr_begin.drr_creation_time = 745 dsl_dataset_phys(to_ds)->ds_creation_time; 746 drr->drr_u.drr_begin.drr_type = dmu_objset_type(os); 747 if (is_clone) 748 drr->drr_u.drr_begin.drr_flags |= DRR_FLAG_CLONE; 749 drr->drr_u.drr_begin.drr_toguid = dsl_dataset_phys(to_ds)->ds_guid; 750 if (dsl_dataset_phys(to_ds)->ds_flags & DS_FLAG_CI_DATASET) 751 drr->drr_u.drr_begin.drr_flags |= DRR_FLAG_CI_DATA; 752 753 if (ancestor_zb != NULL) { 754 drr->drr_u.drr_begin.drr_fromguid = 755 ancestor_zb->zbm_guid; 756 fromtxg = ancestor_zb->zbm_creation_txg; 757 } 758 dsl_dataset_name(to_ds, drr->drr_u.drr_begin.drr_toname); 759 if (!to_ds->ds_is_snapshot) { 760 (void) strlcat(drr->drr_u.drr_begin.drr_toname, "@--head--", 761 sizeof (drr->drr_u.drr_begin.drr_toname)); 762 } 763 764 dsp = kmem_zalloc(sizeof (dmu_sendarg_t), KM_SLEEP); 765 766 dsp->dsa_drr = drr; 767 dsp->dsa_vp = vp; 768 dsp->dsa_outfd = outfd; 769 dsp->dsa_proc = curproc; 770 dsp->dsa_os = os; 771 dsp->dsa_off = off; 772 dsp->dsa_toguid = dsl_dataset_phys(to_ds)->ds_guid; 773 dsp->dsa_pending_op = PENDING_NONE; 774 dsp->dsa_incremental = (ancestor_zb != NULL); 775 dsp->dsa_featureflags = featureflags; 776 dsp->dsa_resume_object = resumeobj; 777 dsp->dsa_resume_offset = resumeoff; 778 779 mutex_enter(&to_ds->ds_sendstream_lock); 780 list_insert_head(&to_ds->ds_sendstreams, dsp); 781 mutex_exit(&to_ds->ds_sendstream_lock); 782 783 dsl_dataset_long_hold(to_ds, FTAG); 784 dsl_pool_rele(dp, tag); 785 786 void *payload = NULL; 787 size_t payload_len = 0; 788 if (resumeobj != 0 || resumeoff != 0) { 789 dmu_object_info_t to_doi; 790 err = dmu_object_info(os, resumeobj, &to_doi); 791 if (err != 0) 792 goto out; 793 SET_BOOKMARK(&to_arg.resume, to_ds->ds_object, resumeobj, 0, 794 resumeoff / to_doi.doi_data_block_size); 795 796 nvlist_t *nvl = fnvlist_alloc(); 797 fnvlist_add_uint64(nvl, "resume_object", resumeobj); 798 fnvlist_add_uint64(nvl, "resume_offset", resumeoff); 799 payload = fnvlist_pack(nvl, &payload_len); 800 drr->drr_payloadlen = payload_len; 801 fnvlist_free(nvl); 802 } 803 804 err = dump_record(dsp, payload, payload_len); 805 fnvlist_pack_free(payload, payload_len); 806 if (err != 0) { 807 err = dsp->dsa_err; 808 goto out; 809 } 810 811 err = bqueue_init(&to_arg.q, zfs_send_queue_length, 812 offsetof(struct send_block_record, ln)); 813 to_arg.error_code = 0; 814 to_arg.cancel = B_FALSE; 815 to_arg.ds = to_ds; 816 to_arg.fromtxg = fromtxg; 817 to_arg.flags = TRAVERSE_PRE | TRAVERSE_PREFETCH; 818 (void) thread_create(NULL, 0, send_traverse_thread, &to_arg, 0, curproc, 819 TS_RUN, minclsyspri); 820 821 struct send_block_record *to_data; 822 to_data = bqueue_dequeue(&to_arg.q); 823 824 while (!to_data->eos_marker && err == 0) { 825 err = do_dump(dsp, to_data); 826 to_data = get_next_record(&to_arg.q, to_data); 827 if (issig(JUSTLOOKING) && issig(FORREAL)) 828 err = EINTR; 829 } 830 831 if (err != 0) { 832 to_arg.cancel = B_TRUE; 833 while (!to_data->eos_marker) { 834 to_data = get_next_record(&to_arg.q, to_data); 835 } 836 } 837 kmem_free(to_data, sizeof (*to_data)); 838 839 bqueue_destroy(&to_arg.q); 840 841 if (err == 0 && to_arg.error_code != 0) 842 err = to_arg.error_code; 843 844 if (err != 0) 845 goto out; 846 847 if (dsp->dsa_pending_op != PENDING_NONE) 848 if (dump_record(dsp, NULL, 0) != 0) 849 err = SET_ERROR(EINTR); 850 851 if (err != 0) { 852 if (err == EINTR && dsp->dsa_err != 0) 853 err = dsp->dsa_err; 854 goto out; 855 } 856 857 bzero(drr, sizeof (dmu_replay_record_t)); 858 drr->drr_type = DRR_END; 859 drr->drr_u.drr_end.drr_checksum = dsp->dsa_zc; 860 drr->drr_u.drr_end.drr_toguid = dsp->dsa_toguid; 861 862 if (dump_record(dsp, NULL, 0) != 0) 863 err = dsp->dsa_err; 864 865 out: 866 mutex_enter(&to_ds->ds_sendstream_lock); 867 list_remove(&to_ds->ds_sendstreams, dsp); 868 mutex_exit(&to_ds->ds_sendstream_lock); 869 870 kmem_free(drr, sizeof (dmu_replay_record_t)); 871 kmem_free(dsp, sizeof (dmu_sendarg_t)); 872 873 dsl_dataset_long_rele(to_ds, FTAG); 874 875 return (err); 876 } 877 878 int 879 dmu_send_obj(const char *pool, uint64_t tosnap, uint64_t fromsnap, 880 boolean_t embedok, boolean_t large_block_ok, 881 int outfd, vnode_t *vp, offset_t *off) 882 { 883 dsl_pool_t *dp; 884 dsl_dataset_t *ds; 885 dsl_dataset_t *fromds = NULL; 886 int err; 887 888 err = dsl_pool_hold(pool, FTAG, &dp); 889 if (err != 0) 890 return (err); 891 892 err = dsl_dataset_hold_obj(dp, tosnap, FTAG, &ds); 893 if (err != 0) { 894 dsl_pool_rele(dp, FTAG); 895 return (err); 896 } 897 898 if (fromsnap != 0) { 899 zfs_bookmark_phys_t zb; 900 boolean_t is_clone; 901 902 err = dsl_dataset_hold_obj(dp, fromsnap, FTAG, &fromds); 903 if (err != 0) { 904 dsl_dataset_rele(ds, FTAG); 905 dsl_pool_rele(dp, FTAG); 906 return (err); 907 } 908 if (!dsl_dataset_is_before(ds, fromds, 0)) 909 err = SET_ERROR(EXDEV); 910 zb.zbm_creation_time = 911 dsl_dataset_phys(fromds)->ds_creation_time; 912 zb.zbm_creation_txg = dsl_dataset_phys(fromds)->ds_creation_txg; 913 zb.zbm_guid = dsl_dataset_phys(fromds)->ds_guid; 914 is_clone = (fromds->ds_dir != ds->ds_dir); 915 dsl_dataset_rele(fromds, FTAG); 916 err = dmu_send_impl(FTAG, dp, ds, &zb, is_clone, 917 embedok, large_block_ok, outfd, 0, 0, vp, off); 918 } else { 919 err = dmu_send_impl(FTAG, dp, ds, NULL, B_FALSE, 920 embedok, large_block_ok, outfd, 0, 0, vp, off); 921 } 922 dsl_dataset_rele(ds, FTAG); 923 return (err); 924 } 925 926 int 927 dmu_send(const char *tosnap, const char *fromsnap, boolean_t embedok, 928 boolean_t large_block_ok, int outfd, uint64_t resumeobj, uint64_t resumeoff, 929 vnode_t *vp, offset_t *off) 930 { 931 dsl_pool_t *dp; 932 dsl_dataset_t *ds; 933 int err; 934 boolean_t owned = B_FALSE; 935 936 if (fromsnap != NULL && strpbrk(fromsnap, "@#") == NULL) 937 return (SET_ERROR(EINVAL)); 938 939 err = dsl_pool_hold(tosnap, FTAG, &dp); 940 if (err != 0) 941 return (err); 942 943 if (strchr(tosnap, '@') == NULL && spa_writeable(dp->dp_spa)) { 944 /* 945 * We are sending a filesystem or volume. Ensure 946 * that it doesn't change by owning the dataset. 947 */ 948 err = dsl_dataset_own(dp, tosnap, FTAG, &ds); 949 owned = B_TRUE; 950 } else { 951 err = dsl_dataset_hold(dp, tosnap, FTAG, &ds); 952 } 953 if (err != 0) { 954 dsl_pool_rele(dp, FTAG); 955 return (err); 956 } 957 958 if (fromsnap != NULL) { 959 zfs_bookmark_phys_t zb; 960 boolean_t is_clone = B_FALSE; 961 int fsnamelen = strchr(tosnap, '@') - tosnap; 962 963 /* 964 * If the fromsnap is in a different filesystem, then 965 * mark the send stream as a clone. 966 */ 967 if (strncmp(tosnap, fromsnap, fsnamelen) != 0 || 968 (fromsnap[fsnamelen] != '@' && 969 fromsnap[fsnamelen] != '#')) { 970 is_clone = B_TRUE; 971 } 972 973 if (strchr(fromsnap, '@')) { 974 dsl_dataset_t *fromds; 975 err = dsl_dataset_hold(dp, fromsnap, FTAG, &fromds); 976 if (err == 0) { 977 if (!dsl_dataset_is_before(ds, fromds, 0)) 978 err = SET_ERROR(EXDEV); 979 zb.zbm_creation_time = 980 dsl_dataset_phys(fromds)->ds_creation_time; 981 zb.zbm_creation_txg = 982 dsl_dataset_phys(fromds)->ds_creation_txg; 983 zb.zbm_guid = dsl_dataset_phys(fromds)->ds_guid; 984 is_clone = (ds->ds_dir != fromds->ds_dir); 985 dsl_dataset_rele(fromds, FTAG); 986 } 987 } else { 988 err = dsl_bookmark_lookup(dp, fromsnap, ds, &zb); 989 } 990 if (err != 0) { 991 dsl_dataset_rele(ds, FTAG); 992 dsl_pool_rele(dp, FTAG); 993 return (err); 994 } 995 err = dmu_send_impl(FTAG, dp, ds, &zb, is_clone, 996 embedok, large_block_ok, 997 outfd, resumeobj, resumeoff, vp, off); 998 } else { 999 err = dmu_send_impl(FTAG, dp, ds, NULL, B_FALSE, 1000 embedok, large_block_ok, 1001 outfd, resumeobj, resumeoff, vp, off); 1002 } 1003 if (owned) 1004 dsl_dataset_disown(ds, FTAG); 1005 else 1006 dsl_dataset_rele(ds, FTAG); 1007 return (err); 1008 } 1009 1010 static int 1011 dmu_adjust_send_estimate_for_indirects(dsl_dataset_t *ds, uint64_t size, 1012 uint64_t *sizep) 1013 { 1014 int err; 1015 /* 1016 * Assume that space (both on-disk and in-stream) is dominated by 1017 * data. We will adjust for indirect blocks and the copies property, 1018 * but ignore per-object space used (eg, dnodes and DRR_OBJECT records). 1019 */ 1020 1021 /* 1022 * Subtract out approximate space used by indirect blocks. 1023 * Assume most space is used by data blocks (non-indirect, non-dnode). 1024 * Assume all blocks are recordsize. Assume ditto blocks and 1025 * internal fragmentation counter out compression. 1026 * 1027 * Therefore, space used by indirect blocks is sizeof(blkptr_t) per 1028 * block, which we observe in practice. 1029 */ 1030 uint64_t recordsize; 1031 err = dsl_prop_get_int_ds(ds, "recordsize", &recordsize); 1032 if (err != 0) 1033 return (err); 1034 size -= size / recordsize * sizeof (blkptr_t); 1035 1036 /* Add in the space for the record associated with each block. */ 1037 size += size / recordsize * sizeof (dmu_replay_record_t); 1038 1039 *sizep = size; 1040 1041 return (0); 1042 } 1043 1044 int 1045 dmu_send_estimate(dsl_dataset_t *ds, dsl_dataset_t *fromds, uint64_t *sizep) 1046 { 1047 dsl_pool_t *dp = ds->ds_dir->dd_pool; 1048 int err; 1049 uint64_t size; 1050 1051 ASSERT(dsl_pool_config_held(dp)); 1052 1053 /* tosnap must be a snapshot */ 1054 if (!ds->ds_is_snapshot) 1055 return (SET_ERROR(EINVAL)); 1056 1057 /* fromsnap, if provided, must be a snapshot */ 1058 if (fromds != NULL && !fromds->ds_is_snapshot) 1059 return (SET_ERROR(EINVAL)); 1060 1061 /* 1062 * fromsnap must be an earlier snapshot from the same fs as tosnap, 1063 * or the origin's fs. 1064 */ 1065 if (fromds != NULL && !dsl_dataset_is_before(ds, fromds, 0)) 1066 return (SET_ERROR(EXDEV)); 1067 1068 /* Get uncompressed size estimate of changed data. */ 1069 if (fromds == NULL) { 1070 size = dsl_dataset_phys(ds)->ds_uncompressed_bytes; 1071 } else { 1072 uint64_t used, comp; 1073 err = dsl_dataset_space_written(fromds, ds, 1074 &used, &comp, &size); 1075 if (err != 0) 1076 return (err); 1077 } 1078 1079 err = dmu_adjust_send_estimate_for_indirects(ds, size, sizep); 1080 return (err); 1081 } 1082 1083 /* 1084 * Simple callback used to traverse the blocks of a snapshot and sum their 1085 * uncompressed size 1086 */ 1087 /* ARGSUSED */ 1088 static int 1089 dmu_calculate_send_traversal(spa_t *spa, zilog_t *zilog, const blkptr_t *bp, 1090 const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg) 1091 { 1092 uint64_t *spaceptr = arg; 1093 if (bp != NULL && !BP_IS_HOLE(bp)) { 1094 *spaceptr += BP_GET_UCSIZE(bp); 1095 } 1096 return (0); 1097 } 1098 1099 /* 1100 * Given a desination snapshot and a TXG, calculate the approximate size of a 1101 * send stream sent from that TXG. from_txg may be zero, indicating that the 1102 * whole snapshot will be sent. 1103 */ 1104 int 1105 dmu_send_estimate_from_txg(dsl_dataset_t *ds, uint64_t from_txg, 1106 uint64_t *sizep) 1107 { 1108 dsl_pool_t *dp = ds->ds_dir->dd_pool; 1109 int err; 1110 uint64_t size = 0; 1111 1112 ASSERT(dsl_pool_config_held(dp)); 1113 1114 /* tosnap must be a snapshot */ 1115 if (!dsl_dataset_is_snapshot(ds)) 1116 return (SET_ERROR(EINVAL)); 1117 1118 /* verify that from_txg is before the provided snapshot was taken */ 1119 if (from_txg >= dsl_dataset_phys(ds)->ds_creation_txg) { 1120 return (SET_ERROR(EXDEV)); 1121 } 1122 1123 /* 1124 * traverse the blocks of the snapshot with birth times after 1125 * from_txg, summing their uncompressed size 1126 */ 1127 err = traverse_dataset(ds, from_txg, TRAVERSE_POST, 1128 dmu_calculate_send_traversal, &size); 1129 if (err) 1130 return (err); 1131 1132 err = dmu_adjust_send_estimate_for_indirects(ds, size, sizep); 1133 return (err); 1134 } 1135 1136 typedef struct dmu_recv_begin_arg { 1137 const char *drba_origin; 1138 dmu_recv_cookie_t *drba_cookie; 1139 cred_t *drba_cred; 1140 uint64_t drba_snapobj; 1141 } dmu_recv_begin_arg_t; 1142 1143 static int 1144 recv_begin_check_existing_impl(dmu_recv_begin_arg_t *drba, dsl_dataset_t *ds, 1145 uint64_t fromguid) 1146 { 1147 uint64_t val; 1148 int error; 1149 dsl_pool_t *dp = ds->ds_dir->dd_pool; 1150 1151 /* temporary clone name must not exist */ 1152 error = zap_lookup(dp->dp_meta_objset, 1153 dsl_dir_phys(ds->ds_dir)->dd_child_dir_zapobj, recv_clone_name, 1154 8, 1, &val); 1155 if (error != ENOENT) 1156 return (error == 0 ? EBUSY : error); 1157 1158 /* new snapshot name must not exist */ 1159 error = zap_lookup(dp->dp_meta_objset, 1160 dsl_dataset_phys(ds)->ds_snapnames_zapobj, 1161 drba->drba_cookie->drc_tosnap, 8, 1, &val); 1162 if (error != ENOENT) 1163 return (error == 0 ? EEXIST : error); 1164 1165 /* 1166 * Check snapshot limit before receiving. We'll recheck again at the 1167 * end, but might as well abort before receiving if we're already over 1168 * the limit. 1169 * 1170 * Note that we do not check the file system limit with 1171 * dsl_dir_fscount_check because the temporary %clones don't count 1172 * against that limit. 1173 */ 1174 error = dsl_fs_ss_limit_check(ds->ds_dir, 1, ZFS_PROP_SNAPSHOT_LIMIT, 1175 NULL, drba->drba_cred); 1176 if (error != 0) 1177 return (error); 1178 1179 if (fromguid != 0) { 1180 dsl_dataset_t *snap; 1181 uint64_t obj = dsl_dataset_phys(ds)->ds_prev_snap_obj; 1182 1183 /* Find snapshot in this dir that matches fromguid. */ 1184 while (obj != 0) { 1185 error = dsl_dataset_hold_obj(dp, obj, FTAG, 1186 &snap); 1187 if (error != 0) 1188 return (SET_ERROR(ENODEV)); 1189 if (snap->ds_dir != ds->ds_dir) { 1190 dsl_dataset_rele(snap, FTAG); 1191 return (SET_ERROR(ENODEV)); 1192 } 1193 if (dsl_dataset_phys(snap)->ds_guid == fromguid) 1194 break; 1195 obj = dsl_dataset_phys(snap)->ds_prev_snap_obj; 1196 dsl_dataset_rele(snap, FTAG); 1197 } 1198 if (obj == 0) 1199 return (SET_ERROR(ENODEV)); 1200 1201 if (drba->drba_cookie->drc_force) { 1202 drba->drba_snapobj = obj; 1203 } else { 1204 /* 1205 * If we are not forcing, there must be no 1206 * changes since fromsnap. 1207 */ 1208 if (dsl_dataset_modified_since_snap(ds, snap)) { 1209 dsl_dataset_rele(snap, FTAG); 1210 return (SET_ERROR(ETXTBSY)); 1211 } 1212 drba->drba_snapobj = ds->ds_prev->ds_object; 1213 } 1214 1215 dsl_dataset_rele(snap, FTAG); 1216 } else { 1217 /* if full, then must be forced */ 1218 if (!drba->drba_cookie->drc_force) 1219 return (SET_ERROR(EEXIST)); 1220 /* start from $ORIGIN@$ORIGIN, if supported */ 1221 drba->drba_snapobj = dp->dp_origin_snap != NULL ? 1222 dp->dp_origin_snap->ds_object : 0; 1223 } 1224 1225 return (0); 1226 1227 } 1228 1229 static int 1230 dmu_recv_begin_check(void *arg, dmu_tx_t *tx) 1231 { 1232 dmu_recv_begin_arg_t *drba = arg; 1233 dsl_pool_t *dp = dmu_tx_pool(tx); 1234 struct drr_begin *drrb = drba->drba_cookie->drc_drrb; 1235 uint64_t fromguid = drrb->drr_fromguid; 1236 int flags = drrb->drr_flags; 1237 int error; 1238 uint64_t featureflags = DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo); 1239 dsl_dataset_t *ds; 1240 const char *tofs = drba->drba_cookie->drc_tofs; 1241 1242 /* already checked */ 1243 ASSERT3U(drrb->drr_magic, ==, DMU_BACKUP_MAGIC); 1244 ASSERT(!(featureflags & DMU_BACKUP_FEATURE_RESUMING)); 1245 1246 if (DMU_GET_STREAM_HDRTYPE(drrb->drr_versioninfo) == 1247 DMU_COMPOUNDSTREAM || 1248 drrb->drr_type >= DMU_OST_NUMTYPES || 1249 ((flags & DRR_FLAG_CLONE) && drba->drba_origin == NULL)) 1250 return (SET_ERROR(EINVAL)); 1251 1252 /* Verify pool version supports SA if SA_SPILL feature set */ 1253 if ((featureflags & DMU_BACKUP_FEATURE_SA_SPILL) && 1254 spa_version(dp->dp_spa) < SPA_VERSION_SA) 1255 return (SET_ERROR(ENOTSUP)); 1256 1257 if (drba->drba_cookie->drc_resumable && 1258 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_EXTENSIBLE_DATASET)) 1259 return (SET_ERROR(ENOTSUP)); 1260 1261 /* 1262 * The receiving code doesn't know how to translate a WRITE_EMBEDDED 1263 * record to a plan WRITE record, so the pool must have the 1264 * EMBEDDED_DATA feature enabled if the stream has WRITE_EMBEDDED 1265 * records. Same with WRITE_EMBEDDED records that use LZ4 compression. 1266 */ 1267 if ((featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) && 1268 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_EMBEDDED_DATA)) 1269 return (SET_ERROR(ENOTSUP)); 1270 if ((featureflags & DMU_BACKUP_FEATURE_EMBED_DATA_LZ4) && 1271 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_LZ4_COMPRESS)) 1272 return (SET_ERROR(ENOTSUP)); 1273 1274 /* 1275 * The receiving code doesn't know how to translate large blocks 1276 * to smaller ones, so the pool must have the LARGE_BLOCKS 1277 * feature enabled if the stream has LARGE_BLOCKS. 1278 */ 1279 if ((featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS) && 1280 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_LARGE_BLOCKS)) 1281 return (SET_ERROR(ENOTSUP)); 1282 1283 error = dsl_dataset_hold(dp, tofs, FTAG, &ds); 1284 if (error == 0) { 1285 /* target fs already exists; recv into temp clone */ 1286 1287 /* Can't recv a clone into an existing fs */ 1288 if (flags & DRR_FLAG_CLONE) { 1289 dsl_dataset_rele(ds, FTAG); 1290 return (SET_ERROR(EINVAL)); 1291 } 1292 1293 error = recv_begin_check_existing_impl(drba, ds, fromguid); 1294 dsl_dataset_rele(ds, FTAG); 1295 } else if (error == ENOENT) { 1296 /* target fs does not exist; must be a full backup or clone */ 1297 char buf[MAXNAMELEN]; 1298 1299 /* 1300 * If it's a non-clone incremental, we are missing the 1301 * target fs, so fail the recv. 1302 */ 1303 if (fromguid != 0 && !(flags & DRR_FLAG_CLONE || 1304 drba->drba_origin)) 1305 return (SET_ERROR(ENOENT)); 1306 1307 /* Open the parent of tofs */ 1308 ASSERT3U(strlen(tofs), <, MAXNAMELEN); 1309 (void) strlcpy(buf, tofs, strrchr(tofs, '/') - tofs + 1); 1310 error = dsl_dataset_hold(dp, buf, FTAG, &ds); 1311 if (error != 0) 1312 return (error); 1313 1314 /* 1315 * Check filesystem and snapshot limits before receiving. We'll 1316 * recheck snapshot limits again at the end (we create the 1317 * filesystems and increment those counts during begin_sync). 1318 */ 1319 error = dsl_fs_ss_limit_check(ds->ds_dir, 1, 1320 ZFS_PROP_FILESYSTEM_LIMIT, NULL, drba->drba_cred); 1321 if (error != 0) { 1322 dsl_dataset_rele(ds, FTAG); 1323 return (error); 1324 } 1325 1326 error = dsl_fs_ss_limit_check(ds->ds_dir, 1, 1327 ZFS_PROP_SNAPSHOT_LIMIT, NULL, drba->drba_cred); 1328 if (error != 0) { 1329 dsl_dataset_rele(ds, FTAG); 1330 return (error); 1331 } 1332 1333 if (drba->drba_origin != NULL) { 1334 dsl_dataset_t *origin; 1335 error = dsl_dataset_hold(dp, drba->drba_origin, 1336 FTAG, &origin); 1337 if (error != 0) { 1338 dsl_dataset_rele(ds, FTAG); 1339 return (error); 1340 } 1341 if (!origin->ds_is_snapshot) { 1342 dsl_dataset_rele(origin, FTAG); 1343 dsl_dataset_rele(ds, FTAG); 1344 return (SET_ERROR(EINVAL)); 1345 } 1346 if (dsl_dataset_phys(origin)->ds_guid != fromguid) { 1347 dsl_dataset_rele(origin, FTAG); 1348 dsl_dataset_rele(ds, FTAG); 1349 return (SET_ERROR(ENODEV)); 1350 } 1351 dsl_dataset_rele(origin, FTAG); 1352 } 1353 dsl_dataset_rele(ds, FTAG); 1354 error = 0; 1355 } 1356 return (error); 1357 } 1358 1359 static void 1360 dmu_recv_begin_sync(void *arg, dmu_tx_t *tx) 1361 { 1362 dmu_recv_begin_arg_t *drba = arg; 1363 dsl_pool_t *dp = dmu_tx_pool(tx); 1364 objset_t *mos = dp->dp_meta_objset; 1365 struct drr_begin *drrb = drba->drba_cookie->drc_drrb; 1366 const char *tofs = drba->drba_cookie->drc_tofs; 1367 dsl_dataset_t *ds, *newds; 1368 uint64_t dsobj; 1369 int error; 1370 uint64_t crflags = 0; 1371 1372 if (drrb->drr_flags & DRR_FLAG_CI_DATA) 1373 crflags |= DS_FLAG_CI_DATASET; 1374 1375 error = dsl_dataset_hold(dp, tofs, FTAG, &ds); 1376 if (error == 0) { 1377 /* create temporary clone */ 1378 dsl_dataset_t *snap = NULL; 1379 if (drba->drba_snapobj != 0) { 1380 VERIFY0(dsl_dataset_hold_obj(dp, 1381 drba->drba_snapobj, FTAG, &snap)); 1382 } 1383 dsobj = dsl_dataset_create_sync(ds->ds_dir, recv_clone_name, 1384 snap, crflags, drba->drba_cred, tx); 1385 if (drba->drba_snapobj != 0) 1386 dsl_dataset_rele(snap, FTAG); 1387 dsl_dataset_rele(ds, FTAG); 1388 } else { 1389 dsl_dir_t *dd; 1390 const char *tail; 1391 dsl_dataset_t *origin = NULL; 1392 1393 VERIFY0(dsl_dir_hold(dp, tofs, FTAG, &dd, &tail)); 1394 1395 if (drba->drba_origin != NULL) { 1396 VERIFY0(dsl_dataset_hold(dp, drba->drba_origin, 1397 FTAG, &origin)); 1398 } 1399 1400 /* Create new dataset. */ 1401 dsobj = dsl_dataset_create_sync(dd, 1402 strrchr(tofs, '/') + 1, 1403 origin, crflags, drba->drba_cred, tx); 1404 if (origin != NULL) 1405 dsl_dataset_rele(origin, FTAG); 1406 dsl_dir_rele(dd, FTAG); 1407 drba->drba_cookie->drc_newfs = B_TRUE; 1408 } 1409 VERIFY0(dsl_dataset_own_obj(dp, dsobj, dmu_recv_tag, &newds)); 1410 1411 if (drba->drba_cookie->drc_resumable) { 1412 dsl_dataset_zapify(newds, tx); 1413 if (drrb->drr_fromguid != 0) { 1414 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_FROMGUID, 1415 8, 1, &drrb->drr_fromguid, tx)); 1416 } 1417 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_TOGUID, 1418 8, 1, &drrb->drr_toguid, tx)); 1419 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_TONAME, 1420 1, strlen(drrb->drr_toname) + 1, drrb->drr_toname, tx)); 1421 uint64_t one = 1; 1422 uint64_t zero = 0; 1423 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_OBJECT, 1424 8, 1, &one, tx)); 1425 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_OFFSET, 1426 8, 1, &zero, tx)); 1427 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_BYTES, 1428 8, 1, &zero, tx)); 1429 if (DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo) & 1430 DMU_BACKUP_FEATURE_EMBED_DATA) { 1431 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_EMBEDOK, 1432 8, 1, &one, tx)); 1433 } 1434 } 1435 1436 dmu_buf_will_dirty(newds->ds_dbuf, tx); 1437 dsl_dataset_phys(newds)->ds_flags |= DS_FLAG_INCONSISTENT; 1438 1439 /* 1440 * If we actually created a non-clone, we need to create the 1441 * objset in our new dataset. 1442 */ 1443 if (BP_IS_HOLE(dsl_dataset_get_blkptr(newds))) { 1444 (void) dmu_objset_create_impl(dp->dp_spa, 1445 newds, dsl_dataset_get_blkptr(newds), drrb->drr_type, tx); 1446 } 1447 1448 drba->drba_cookie->drc_ds = newds; 1449 1450 spa_history_log_internal_ds(newds, "receive", tx, ""); 1451 } 1452 1453 static int 1454 dmu_recv_resume_begin_check(void *arg, dmu_tx_t *tx) 1455 { 1456 dmu_recv_begin_arg_t *drba = arg; 1457 dsl_pool_t *dp = dmu_tx_pool(tx); 1458 struct drr_begin *drrb = drba->drba_cookie->drc_drrb; 1459 int error; 1460 uint64_t featureflags = DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo); 1461 dsl_dataset_t *ds; 1462 const char *tofs = drba->drba_cookie->drc_tofs; 1463 1464 /* already checked */ 1465 ASSERT3U(drrb->drr_magic, ==, DMU_BACKUP_MAGIC); 1466 ASSERT(featureflags & DMU_BACKUP_FEATURE_RESUMING); 1467 1468 if (DMU_GET_STREAM_HDRTYPE(drrb->drr_versioninfo) == 1469 DMU_COMPOUNDSTREAM || 1470 drrb->drr_type >= DMU_OST_NUMTYPES) 1471 return (SET_ERROR(EINVAL)); 1472 1473 /* Verify pool version supports SA if SA_SPILL feature set */ 1474 if ((featureflags & DMU_BACKUP_FEATURE_SA_SPILL) && 1475 spa_version(dp->dp_spa) < SPA_VERSION_SA) 1476 return (SET_ERROR(ENOTSUP)); 1477 1478 /* 1479 * The receiving code doesn't know how to translate a WRITE_EMBEDDED 1480 * record to a plain WRITE record, so the pool must have the 1481 * EMBEDDED_DATA feature enabled if the stream has WRITE_EMBEDDED 1482 * records. Same with WRITE_EMBEDDED records that use LZ4 compression. 1483 */ 1484 if ((featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) && 1485 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_EMBEDDED_DATA)) 1486 return (SET_ERROR(ENOTSUP)); 1487 if ((featureflags & DMU_BACKUP_FEATURE_EMBED_DATA_LZ4) && 1488 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_LZ4_COMPRESS)) 1489 return (SET_ERROR(ENOTSUP)); 1490 1491 char recvname[ZFS_MAXNAMELEN]; 1492 1493 (void) snprintf(recvname, sizeof (recvname), "%s/%s", 1494 tofs, recv_clone_name); 1495 1496 if (dsl_dataset_hold(dp, recvname, FTAG, &ds) != 0) { 1497 /* %recv does not exist; continue in tofs */ 1498 error = dsl_dataset_hold(dp, tofs, FTAG, &ds); 1499 if (error != 0) 1500 return (error); 1501 } 1502 1503 /* check that ds is marked inconsistent */ 1504 if (!DS_IS_INCONSISTENT(ds)) { 1505 dsl_dataset_rele(ds, FTAG); 1506 return (SET_ERROR(EINVAL)); 1507 } 1508 1509 /* check that there is resuming data, and that the toguid matches */ 1510 if (!dsl_dataset_is_zapified(ds)) { 1511 dsl_dataset_rele(ds, FTAG); 1512 return (SET_ERROR(EINVAL)); 1513 } 1514 uint64_t val; 1515 error = zap_lookup(dp->dp_meta_objset, ds->ds_object, 1516 DS_FIELD_RESUME_TOGUID, sizeof (val), 1, &val); 1517 if (error != 0 || drrb->drr_toguid != val) { 1518 dsl_dataset_rele(ds, FTAG); 1519 return (SET_ERROR(EINVAL)); 1520 } 1521 1522 /* 1523 * Check if the receive is still running. If so, it will be owned. 1524 * Note that nothing else can own the dataset (e.g. after the receive 1525 * fails) because it will be marked inconsistent. 1526 */ 1527 if (dsl_dataset_has_owner(ds)) { 1528 dsl_dataset_rele(ds, FTAG); 1529 return (SET_ERROR(EBUSY)); 1530 } 1531 1532 /* There should not be any snapshots of this fs yet. */ 1533 if (ds->ds_prev != NULL && ds->ds_prev->ds_dir == ds->ds_dir) { 1534 dsl_dataset_rele(ds, FTAG); 1535 return (SET_ERROR(EINVAL)); 1536 } 1537 1538 /* 1539 * Note: resume point will be checked when we process the first WRITE 1540 * record. 1541 */ 1542 1543 /* check that the origin matches */ 1544 val = 0; 1545 (void) zap_lookup(dp->dp_meta_objset, ds->ds_object, 1546 DS_FIELD_RESUME_FROMGUID, sizeof (val), 1, &val); 1547 if (drrb->drr_fromguid != val) { 1548 dsl_dataset_rele(ds, FTAG); 1549 return (SET_ERROR(EINVAL)); 1550 } 1551 1552 dsl_dataset_rele(ds, FTAG); 1553 return (0); 1554 } 1555 1556 static void 1557 dmu_recv_resume_begin_sync(void *arg, dmu_tx_t *tx) 1558 { 1559 dmu_recv_begin_arg_t *drba = arg; 1560 dsl_pool_t *dp = dmu_tx_pool(tx); 1561 const char *tofs = drba->drba_cookie->drc_tofs; 1562 dsl_dataset_t *ds; 1563 uint64_t dsobj; 1564 char recvname[ZFS_MAXNAMELEN]; 1565 1566 (void) snprintf(recvname, sizeof (recvname), "%s/%s", 1567 tofs, recv_clone_name); 1568 1569 if (dsl_dataset_hold(dp, recvname, FTAG, &ds) != 0) { 1570 /* %recv does not exist; continue in tofs */ 1571 VERIFY0(dsl_dataset_hold(dp, tofs, FTAG, &ds)); 1572 drba->drba_cookie->drc_newfs = B_TRUE; 1573 } 1574 1575 /* clear the inconsistent flag so that we can own it */ 1576 ASSERT(DS_IS_INCONSISTENT(ds)); 1577 dmu_buf_will_dirty(ds->ds_dbuf, tx); 1578 dsl_dataset_phys(ds)->ds_flags &= ~DS_FLAG_INCONSISTENT; 1579 dsobj = ds->ds_object; 1580 dsl_dataset_rele(ds, FTAG); 1581 1582 VERIFY0(dsl_dataset_own_obj(dp, dsobj, dmu_recv_tag, &ds)); 1583 1584 dmu_buf_will_dirty(ds->ds_dbuf, tx); 1585 dsl_dataset_phys(ds)->ds_flags |= DS_FLAG_INCONSISTENT; 1586 1587 ASSERT(!BP_IS_HOLE(dsl_dataset_get_blkptr(ds))); 1588 1589 drba->drba_cookie->drc_ds = ds; 1590 1591 spa_history_log_internal_ds(ds, "resume receive", tx, ""); 1592 } 1593 1594 /* 1595 * NB: callers *MUST* call dmu_recv_stream() if dmu_recv_begin() 1596 * succeeds; otherwise we will leak the holds on the datasets. 1597 */ 1598 int 1599 dmu_recv_begin(char *tofs, char *tosnap, dmu_replay_record_t *drr_begin, 1600 boolean_t force, boolean_t resumable, char *origin, dmu_recv_cookie_t *drc) 1601 { 1602 dmu_recv_begin_arg_t drba = { 0 }; 1603 1604 bzero(drc, sizeof (dmu_recv_cookie_t)); 1605 drc->drc_drr_begin = drr_begin; 1606 drc->drc_drrb = &drr_begin->drr_u.drr_begin; 1607 drc->drc_tosnap = tosnap; 1608 drc->drc_tofs = tofs; 1609 drc->drc_force = force; 1610 drc->drc_resumable = resumable; 1611 drc->drc_cred = CRED(); 1612 1613 if (drc->drc_drrb->drr_magic == BSWAP_64(DMU_BACKUP_MAGIC)) { 1614 drc->drc_byteswap = B_TRUE; 1615 fletcher_4_incremental_byteswap(drr_begin, 1616 sizeof (dmu_replay_record_t), &drc->drc_cksum); 1617 byteswap_record(drr_begin); 1618 } else if (drc->drc_drrb->drr_magic == DMU_BACKUP_MAGIC) { 1619 fletcher_4_incremental_native(drr_begin, 1620 sizeof (dmu_replay_record_t), &drc->drc_cksum); 1621 } else { 1622 return (SET_ERROR(EINVAL)); 1623 } 1624 1625 drba.drba_origin = origin; 1626 drba.drba_cookie = drc; 1627 drba.drba_cred = CRED(); 1628 1629 if (DMU_GET_FEATUREFLAGS(drc->drc_drrb->drr_versioninfo) & 1630 DMU_BACKUP_FEATURE_RESUMING) { 1631 return (dsl_sync_task(tofs, 1632 dmu_recv_resume_begin_check, dmu_recv_resume_begin_sync, 1633 &drba, 5, ZFS_SPACE_CHECK_NORMAL)); 1634 } else { 1635 return (dsl_sync_task(tofs, 1636 dmu_recv_begin_check, dmu_recv_begin_sync, 1637 &drba, 5, ZFS_SPACE_CHECK_NORMAL)); 1638 } 1639 } 1640 1641 struct receive_record_arg { 1642 dmu_replay_record_t header; 1643 void *payload; /* Pointer to a buffer containing the payload */ 1644 /* 1645 * If the record is a write, pointer to the arc_buf_t containing the 1646 * payload. 1647 */ 1648 arc_buf_t *write_buf; 1649 int payload_size; 1650 uint64_t bytes_read; /* bytes read from stream when record created */ 1651 boolean_t eos_marker; /* Marks the end of the stream */ 1652 bqueue_node_t node; 1653 }; 1654 1655 struct receive_writer_arg { 1656 objset_t *os; 1657 boolean_t byteswap; 1658 bqueue_t q; 1659 1660 /* 1661 * These three args are used to signal to the main thread that we're 1662 * done. 1663 */ 1664 kmutex_t mutex; 1665 kcondvar_t cv; 1666 boolean_t done; 1667 1668 int err; 1669 /* A map from guid to dataset to help handle dedup'd streams. */ 1670 avl_tree_t *guid_to_ds_map; 1671 boolean_t resumable; 1672 uint64_t last_object, last_offset; 1673 uint64_t bytes_read; /* bytes read when current record created */ 1674 }; 1675 1676 struct receive_arg { 1677 objset_t *os; 1678 vnode_t *vp; /* The vnode to read the stream from */ 1679 uint64_t voff; /* The current offset in the stream */ 1680 uint64_t bytes_read; 1681 /* 1682 * A record that has had its payload read in, but hasn't yet been handed 1683 * off to the worker thread. 1684 */ 1685 struct receive_record_arg *rrd; 1686 /* A record that has had its header read in, but not its payload. */ 1687 struct receive_record_arg *next_rrd; 1688 zio_cksum_t cksum; 1689 zio_cksum_t prev_cksum; 1690 int err; 1691 boolean_t byteswap; 1692 /* Sorted list of objects not to issue prefetches for. */ 1693 list_t ignore_obj_list; 1694 }; 1695 1696 struct receive_ign_obj_node { 1697 list_node_t node; 1698 uint64_t object; 1699 }; 1700 1701 typedef struct guid_map_entry { 1702 uint64_t guid; 1703 dsl_dataset_t *gme_ds; 1704 avl_node_t avlnode; 1705 } guid_map_entry_t; 1706 1707 static int 1708 guid_compare(const void *arg1, const void *arg2) 1709 { 1710 const guid_map_entry_t *gmep1 = arg1; 1711 const guid_map_entry_t *gmep2 = arg2; 1712 1713 if (gmep1->guid < gmep2->guid) 1714 return (-1); 1715 else if (gmep1->guid > gmep2->guid) 1716 return (1); 1717 return (0); 1718 } 1719 1720 static void 1721 free_guid_map_onexit(void *arg) 1722 { 1723 avl_tree_t *ca = arg; 1724 void *cookie = NULL; 1725 guid_map_entry_t *gmep; 1726 1727 while ((gmep = avl_destroy_nodes(ca, &cookie)) != NULL) { 1728 dsl_dataset_long_rele(gmep->gme_ds, gmep); 1729 dsl_dataset_rele(gmep->gme_ds, gmep); 1730 kmem_free(gmep, sizeof (guid_map_entry_t)); 1731 } 1732 avl_destroy(ca); 1733 kmem_free(ca, sizeof (avl_tree_t)); 1734 } 1735 1736 static int 1737 receive_read(struct receive_arg *ra, int len, void *buf) 1738 { 1739 int done = 0; 1740 1741 /* some things will require 8-byte alignment, so everything must */ 1742 ASSERT0(len % 8); 1743 1744 while (done < len) { 1745 ssize_t resid; 1746 1747 ra->err = vn_rdwr(UIO_READ, ra->vp, 1748 (char *)buf + done, len - done, 1749 ra->voff, UIO_SYSSPACE, FAPPEND, 1750 RLIM64_INFINITY, CRED(), &resid); 1751 1752 if (resid == len - done) { 1753 /* 1754 * Note: ECKSUM indicates that the receive 1755 * was interrupted and can potentially be resumed. 1756 */ 1757 ra->err = SET_ERROR(ECKSUM); 1758 } 1759 ra->voff += len - done - resid; 1760 done = len - resid; 1761 if (ra->err != 0) 1762 return (ra->err); 1763 } 1764 1765 ra->bytes_read += len; 1766 1767 ASSERT3U(done, ==, len); 1768 return (0); 1769 } 1770 1771 static void 1772 byteswap_record(dmu_replay_record_t *drr) 1773 { 1774 #define DO64(X) (drr->drr_u.X = BSWAP_64(drr->drr_u.X)) 1775 #define DO32(X) (drr->drr_u.X = BSWAP_32(drr->drr_u.X)) 1776 drr->drr_type = BSWAP_32(drr->drr_type); 1777 drr->drr_payloadlen = BSWAP_32(drr->drr_payloadlen); 1778 1779 switch (drr->drr_type) { 1780 case DRR_BEGIN: 1781 DO64(drr_begin.drr_magic); 1782 DO64(drr_begin.drr_versioninfo); 1783 DO64(drr_begin.drr_creation_time); 1784 DO32(drr_begin.drr_type); 1785 DO32(drr_begin.drr_flags); 1786 DO64(drr_begin.drr_toguid); 1787 DO64(drr_begin.drr_fromguid); 1788 break; 1789 case DRR_OBJECT: 1790 DO64(drr_object.drr_object); 1791 DO32(drr_object.drr_type); 1792 DO32(drr_object.drr_bonustype); 1793 DO32(drr_object.drr_blksz); 1794 DO32(drr_object.drr_bonuslen); 1795 DO64(drr_object.drr_toguid); 1796 break; 1797 case DRR_FREEOBJECTS: 1798 DO64(drr_freeobjects.drr_firstobj); 1799 DO64(drr_freeobjects.drr_numobjs); 1800 DO64(drr_freeobjects.drr_toguid); 1801 break; 1802 case DRR_WRITE: 1803 DO64(drr_write.drr_object); 1804 DO32(drr_write.drr_type); 1805 DO64(drr_write.drr_offset); 1806 DO64(drr_write.drr_length); 1807 DO64(drr_write.drr_toguid); 1808 ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_write.drr_key.ddk_cksum); 1809 DO64(drr_write.drr_key.ddk_prop); 1810 break; 1811 case DRR_WRITE_BYREF: 1812 DO64(drr_write_byref.drr_object); 1813 DO64(drr_write_byref.drr_offset); 1814 DO64(drr_write_byref.drr_length); 1815 DO64(drr_write_byref.drr_toguid); 1816 DO64(drr_write_byref.drr_refguid); 1817 DO64(drr_write_byref.drr_refobject); 1818 DO64(drr_write_byref.drr_refoffset); 1819 ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_write_byref. 1820 drr_key.ddk_cksum); 1821 DO64(drr_write_byref.drr_key.ddk_prop); 1822 break; 1823 case DRR_WRITE_EMBEDDED: 1824 DO64(drr_write_embedded.drr_object); 1825 DO64(drr_write_embedded.drr_offset); 1826 DO64(drr_write_embedded.drr_length); 1827 DO64(drr_write_embedded.drr_toguid); 1828 DO32(drr_write_embedded.drr_lsize); 1829 DO32(drr_write_embedded.drr_psize); 1830 break; 1831 case DRR_FREE: 1832 DO64(drr_free.drr_object); 1833 DO64(drr_free.drr_offset); 1834 DO64(drr_free.drr_length); 1835 DO64(drr_free.drr_toguid); 1836 break; 1837 case DRR_SPILL: 1838 DO64(drr_spill.drr_object); 1839 DO64(drr_spill.drr_length); 1840 DO64(drr_spill.drr_toguid); 1841 break; 1842 case DRR_END: 1843 DO64(drr_end.drr_toguid); 1844 ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_end.drr_checksum); 1845 break; 1846 } 1847 1848 if (drr->drr_type != DRR_BEGIN) { 1849 ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_checksum.drr_checksum); 1850 } 1851 1852 #undef DO64 1853 #undef DO32 1854 } 1855 1856 static inline uint8_t 1857 deduce_nblkptr(dmu_object_type_t bonus_type, uint64_t bonus_size) 1858 { 1859 if (bonus_type == DMU_OT_SA) { 1860 return (1); 1861 } else { 1862 return (1 + 1863 ((DN_MAX_BONUSLEN - bonus_size) >> SPA_BLKPTRSHIFT)); 1864 } 1865 } 1866 1867 static void 1868 save_resume_state(struct receive_writer_arg *rwa, 1869 uint64_t object, uint64_t offset, dmu_tx_t *tx) 1870 { 1871 int txgoff = dmu_tx_get_txg(tx) & TXG_MASK; 1872 1873 if (!rwa->resumable) 1874 return; 1875 1876 /* 1877 * We use ds_resume_bytes[] != 0 to indicate that we need to 1878 * update this on disk, so it must not be 0. 1879 */ 1880 ASSERT(rwa->bytes_read != 0); 1881 1882 /* 1883 * We only resume from write records, which have a valid 1884 * (non-meta-dnode) object number. 1885 */ 1886 ASSERT(object != 0); 1887 1888 /* 1889 * For resuming to work correctly, we must receive records in order, 1890 * sorted by object,offset. This is checked by the callers, but 1891 * assert it here for good measure. 1892 */ 1893 ASSERT3U(object, >=, rwa->os->os_dsl_dataset->ds_resume_object[txgoff]); 1894 ASSERT(object != rwa->os->os_dsl_dataset->ds_resume_object[txgoff] || 1895 offset >= rwa->os->os_dsl_dataset->ds_resume_offset[txgoff]); 1896 ASSERT3U(rwa->bytes_read, >=, 1897 rwa->os->os_dsl_dataset->ds_resume_bytes[txgoff]); 1898 1899 rwa->os->os_dsl_dataset->ds_resume_object[txgoff] = object; 1900 rwa->os->os_dsl_dataset->ds_resume_offset[txgoff] = offset; 1901 rwa->os->os_dsl_dataset->ds_resume_bytes[txgoff] = rwa->bytes_read; 1902 } 1903 1904 static int 1905 receive_object(struct receive_writer_arg *rwa, struct drr_object *drro, 1906 void *data) 1907 { 1908 dmu_object_info_t doi; 1909 dmu_tx_t *tx; 1910 uint64_t object; 1911 int err; 1912 1913 if (drro->drr_type == DMU_OT_NONE || 1914 !DMU_OT_IS_VALID(drro->drr_type) || 1915 !DMU_OT_IS_VALID(drro->drr_bonustype) || 1916 drro->drr_checksumtype >= ZIO_CHECKSUM_FUNCTIONS || 1917 drro->drr_compress >= ZIO_COMPRESS_FUNCTIONS || 1918 P2PHASE(drro->drr_blksz, SPA_MINBLOCKSIZE) || 1919 drro->drr_blksz < SPA_MINBLOCKSIZE || 1920 drro->drr_blksz > spa_maxblocksize(dmu_objset_spa(rwa->os)) || 1921 drro->drr_bonuslen > DN_MAX_BONUSLEN) { 1922 return (SET_ERROR(EINVAL)); 1923 } 1924 1925 err = dmu_object_info(rwa->os, drro->drr_object, &doi); 1926 1927 if (err != 0 && err != ENOENT) 1928 return (SET_ERROR(EINVAL)); 1929 object = err == 0 ? drro->drr_object : DMU_NEW_OBJECT; 1930 1931 /* 1932 * If we are losing blkptrs or changing the block size this must 1933 * be a new file instance. We must clear out the previous file 1934 * contents before we can change this type of metadata in the dnode. 1935 */ 1936 if (err == 0) { 1937 int nblkptr; 1938 1939 nblkptr = deduce_nblkptr(drro->drr_bonustype, 1940 drro->drr_bonuslen); 1941 1942 if (drro->drr_blksz != doi.doi_data_block_size || 1943 nblkptr < doi.doi_nblkptr) { 1944 err = dmu_free_long_range(rwa->os, drro->drr_object, 1945 0, DMU_OBJECT_END); 1946 if (err != 0) 1947 return (SET_ERROR(EINVAL)); 1948 } 1949 } 1950 1951 tx = dmu_tx_create(rwa->os); 1952 dmu_tx_hold_bonus(tx, object); 1953 err = dmu_tx_assign(tx, TXG_WAIT); 1954 if (err != 0) { 1955 dmu_tx_abort(tx); 1956 return (err); 1957 } 1958 1959 if (object == DMU_NEW_OBJECT) { 1960 /* currently free, want to be allocated */ 1961 err = dmu_object_claim(rwa->os, drro->drr_object, 1962 drro->drr_type, drro->drr_blksz, 1963 drro->drr_bonustype, drro->drr_bonuslen, tx); 1964 } else if (drro->drr_type != doi.doi_type || 1965 drro->drr_blksz != doi.doi_data_block_size || 1966 drro->drr_bonustype != doi.doi_bonus_type || 1967 drro->drr_bonuslen != doi.doi_bonus_size) { 1968 /* currently allocated, but with different properties */ 1969 err = dmu_object_reclaim(rwa->os, drro->drr_object, 1970 drro->drr_type, drro->drr_blksz, 1971 drro->drr_bonustype, drro->drr_bonuslen, tx); 1972 } 1973 if (err != 0) { 1974 dmu_tx_commit(tx); 1975 return (SET_ERROR(EINVAL)); 1976 } 1977 1978 dmu_object_set_checksum(rwa->os, drro->drr_object, 1979 drro->drr_checksumtype, tx); 1980 dmu_object_set_compress(rwa->os, drro->drr_object, 1981 drro->drr_compress, tx); 1982 1983 if (data != NULL) { 1984 dmu_buf_t *db; 1985 1986 VERIFY0(dmu_bonus_hold(rwa->os, drro->drr_object, FTAG, &db)); 1987 dmu_buf_will_dirty(db, tx); 1988 1989 ASSERT3U(db->db_size, >=, drro->drr_bonuslen); 1990 bcopy(data, db->db_data, drro->drr_bonuslen); 1991 if (rwa->byteswap) { 1992 dmu_object_byteswap_t byteswap = 1993 DMU_OT_BYTESWAP(drro->drr_bonustype); 1994 dmu_ot_byteswap[byteswap].ob_func(db->db_data, 1995 drro->drr_bonuslen); 1996 } 1997 dmu_buf_rele(db, FTAG); 1998 } 1999 dmu_tx_commit(tx); 2000 2001 return (0); 2002 } 2003 2004 /* ARGSUSED */ 2005 static int 2006 receive_freeobjects(struct receive_writer_arg *rwa, 2007 struct drr_freeobjects *drrfo) 2008 { 2009 uint64_t obj; 2010 2011 if (drrfo->drr_firstobj + drrfo->drr_numobjs < drrfo->drr_firstobj) 2012 return (SET_ERROR(EINVAL)); 2013 2014 for (obj = drrfo->drr_firstobj; 2015 obj < drrfo->drr_firstobj + drrfo->drr_numobjs; 2016 (void) dmu_object_next(rwa->os, &obj, FALSE, 0)) { 2017 int err; 2018 2019 if (dmu_object_info(rwa->os, obj, NULL) != 0) 2020 continue; 2021 2022 err = dmu_free_long_object(rwa->os, obj); 2023 if (err != 0) 2024 return (err); 2025 } 2026 2027 return (0); 2028 } 2029 2030 static int 2031 receive_write(struct receive_writer_arg *rwa, struct drr_write *drrw, 2032 arc_buf_t *abuf) 2033 { 2034 dmu_tx_t *tx; 2035 int err; 2036 2037 if (drrw->drr_offset + drrw->drr_length < drrw->drr_offset || 2038 !DMU_OT_IS_VALID(drrw->drr_type)) 2039 return (SET_ERROR(EINVAL)); 2040 2041 /* 2042 * For resuming to work, records must be in increasing order 2043 * by (object, offset). 2044 */ 2045 if (drrw->drr_object < rwa->last_object || 2046 (drrw->drr_object == rwa->last_object && 2047 drrw->drr_offset < rwa->last_offset)) { 2048 return (SET_ERROR(EINVAL)); 2049 } 2050 rwa->last_object = drrw->drr_object; 2051 rwa->last_offset = drrw->drr_offset; 2052 2053 if (dmu_object_info(rwa->os, drrw->drr_object, NULL) != 0) 2054 return (SET_ERROR(EINVAL)); 2055 2056 tx = dmu_tx_create(rwa->os); 2057 2058 dmu_tx_hold_write(tx, drrw->drr_object, 2059 drrw->drr_offset, drrw->drr_length); 2060 err = dmu_tx_assign(tx, TXG_WAIT); 2061 if (err != 0) { 2062 dmu_tx_abort(tx); 2063 return (err); 2064 } 2065 if (rwa->byteswap) { 2066 dmu_object_byteswap_t byteswap = 2067 DMU_OT_BYTESWAP(drrw->drr_type); 2068 dmu_ot_byteswap[byteswap].ob_func(abuf->b_data, 2069 drrw->drr_length); 2070 } 2071 2072 dmu_buf_t *bonus; 2073 if (dmu_bonus_hold(rwa->os, drrw->drr_object, FTAG, &bonus) != 0) 2074 return (SET_ERROR(EINVAL)); 2075 dmu_assign_arcbuf(bonus, drrw->drr_offset, abuf, tx); 2076 2077 /* 2078 * Note: If the receive fails, we want the resume stream to start 2079 * with the same record that we last successfully received (as opposed 2080 * to the next record), so that we can verify that we are 2081 * resuming from the correct location. 2082 */ 2083 save_resume_state(rwa, drrw->drr_object, drrw->drr_offset, tx); 2084 dmu_tx_commit(tx); 2085 dmu_buf_rele(bonus, FTAG); 2086 2087 return (0); 2088 } 2089 2090 /* 2091 * Handle a DRR_WRITE_BYREF record. This record is used in dedup'ed 2092 * streams to refer to a copy of the data that is already on the 2093 * system because it came in earlier in the stream. This function 2094 * finds the earlier copy of the data, and uses that copy instead of 2095 * data from the stream to fulfill this write. 2096 */ 2097 static int 2098 receive_write_byref(struct receive_writer_arg *rwa, 2099 struct drr_write_byref *drrwbr) 2100 { 2101 dmu_tx_t *tx; 2102 int err; 2103 guid_map_entry_t gmesrch; 2104 guid_map_entry_t *gmep; 2105 avl_index_t where; 2106 objset_t *ref_os = NULL; 2107 dmu_buf_t *dbp; 2108 2109 if (drrwbr->drr_offset + drrwbr->drr_length < drrwbr->drr_offset) 2110 return (SET_ERROR(EINVAL)); 2111 2112 /* 2113 * If the GUID of the referenced dataset is different from the 2114 * GUID of the target dataset, find the referenced dataset. 2115 */ 2116 if (drrwbr->drr_toguid != drrwbr->drr_refguid) { 2117 gmesrch.guid = drrwbr->drr_refguid; 2118 if ((gmep = avl_find(rwa->guid_to_ds_map, &gmesrch, 2119 &where)) == NULL) { 2120 return (SET_ERROR(EINVAL)); 2121 } 2122 if (dmu_objset_from_ds(gmep->gme_ds, &ref_os)) 2123 return (SET_ERROR(EINVAL)); 2124 } else { 2125 ref_os = rwa->os; 2126 } 2127 2128 err = dmu_buf_hold(ref_os, drrwbr->drr_refobject, 2129 drrwbr->drr_refoffset, FTAG, &dbp, DMU_READ_PREFETCH); 2130 if (err != 0) 2131 return (err); 2132 2133 tx = dmu_tx_create(rwa->os); 2134 2135 dmu_tx_hold_write(tx, drrwbr->drr_object, 2136 drrwbr->drr_offset, drrwbr->drr_length); 2137 err = dmu_tx_assign(tx, TXG_WAIT); 2138 if (err != 0) { 2139 dmu_tx_abort(tx); 2140 return (err); 2141 } 2142 dmu_write(rwa->os, drrwbr->drr_object, 2143 drrwbr->drr_offset, drrwbr->drr_length, dbp->db_data, tx); 2144 dmu_buf_rele(dbp, FTAG); 2145 2146 /* See comment in restore_write. */ 2147 save_resume_state(rwa, drrwbr->drr_object, drrwbr->drr_offset, tx); 2148 dmu_tx_commit(tx); 2149 return (0); 2150 } 2151 2152 static int 2153 receive_write_embedded(struct receive_writer_arg *rwa, 2154 struct drr_write_embedded *drrwe, void *data) 2155 { 2156 dmu_tx_t *tx; 2157 int err; 2158 2159 if (drrwe->drr_offset + drrwe->drr_length < drrwe->drr_offset) 2160 return (EINVAL); 2161 2162 if (drrwe->drr_psize > BPE_PAYLOAD_SIZE) 2163 return (EINVAL); 2164 2165 if (drrwe->drr_etype >= NUM_BP_EMBEDDED_TYPES) 2166 return (EINVAL); 2167 if (drrwe->drr_compression >= ZIO_COMPRESS_FUNCTIONS) 2168 return (EINVAL); 2169 2170 tx = dmu_tx_create(rwa->os); 2171 2172 dmu_tx_hold_write(tx, drrwe->drr_object, 2173 drrwe->drr_offset, drrwe->drr_length); 2174 err = dmu_tx_assign(tx, TXG_WAIT); 2175 if (err != 0) { 2176 dmu_tx_abort(tx); 2177 return (err); 2178 } 2179 2180 dmu_write_embedded(rwa->os, drrwe->drr_object, 2181 drrwe->drr_offset, data, drrwe->drr_etype, 2182 drrwe->drr_compression, drrwe->drr_lsize, drrwe->drr_psize, 2183 rwa->byteswap ^ ZFS_HOST_BYTEORDER, tx); 2184 2185 /* See comment in restore_write. */ 2186 save_resume_state(rwa, drrwe->drr_object, drrwe->drr_offset, tx); 2187 dmu_tx_commit(tx); 2188 return (0); 2189 } 2190 2191 static int 2192 receive_spill(struct receive_writer_arg *rwa, struct drr_spill *drrs, 2193 void *data) 2194 { 2195 dmu_tx_t *tx; 2196 dmu_buf_t *db, *db_spill; 2197 int err; 2198 2199 if (drrs->drr_length < SPA_MINBLOCKSIZE || 2200 drrs->drr_length > spa_maxblocksize(dmu_objset_spa(rwa->os))) 2201 return (SET_ERROR(EINVAL)); 2202 2203 if (dmu_object_info(rwa->os, drrs->drr_object, NULL) != 0) 2204 return (SET_ERROR(EINVAL)); 2205 2206 VERIFY0(dmu_bonus_hold(rwa->os, drrs->drr_object, FTAG, &db)); 2207 if ((err = dmu_spill_hold_by_bonus(db, FTAG, &db_spill)) != 0) { 2208 dmu_buf_rele(db, FTAG); 2209 return (err); 2210 } 2211 2212 tx = dmu_tx_create(rwa->os); 2213 2214 dmu_tx_hold_spill(tx, db->db_object); 2215 2216 err = dmu_tx_assign(tx, TXG_WAIT); 2217 if (err != 0) { 2218 dmu_buf_rele(db, FTAG); 2219 dmu_buf_rele(db_spill, FTAG); 2220 dmu_tx_abort(tx); 2221 return (err); 2222 } 2223 dmu_buf_will_dirty(db_spill, tx); 2224 2225 if (db_spill->db_size < drrs->drr_length) 2226 VERIFY(0 == dbuf_spill_set_blksz(db_spill, 2227 drrs->drr_length, tx)); 2228 bcopy(data, db_spill->db_data, drrs->drr_length); 2229 2230 dmu_buf_rele(db, FTAG); 2231 dmu_buf_rele(db_spill, FTAG); 2232 2233 dmu_tx_commit(tx); 2234 return (0); 2235 } 2236 2237 /* ARGSUSED */ 2238 static int 2239 receive_free(struct receive_writer_arg *rwa, struct drr_free *drrf) 2240 { 2241 int err; 2242 2243 if (drrf->drr_length != -1ULL && 2244 drrf->drr_offset + drrf->drr_length < drrf->drr_offset) 2245 return (SET_ERROR(EINVAL)); 2246 2247 if (dmu_object_info(rwa->os, drrf->drr_object, NULL) != 0) 2248 return (SET_ERROR(EINVAL)); 2249 2250 err = dmu_free_long_range(rwa->os, drrf->drr_object, 2251 drrf->drr_offset, drrf->drr_length); 2252 2253 return (err); 2254 } 2255 2256 /* used to destroy the drc_ds on error */ 2257 static void 2258 dmu_recv_cleanup_ds(dmu_recv_cookie_t *drc) 2259 { 2260 if (drc->drc_resumable) { 2261 /* wait for our resume state to be written to disk */ 2262 txg_wait_synced(drc->drc_ds->ds_dir->dd_pool, 0); 2263 dsl_dataset_disown(drc->drc_ds, dmu_recv_tag); 2264 } else { 2265 char name[MAXNAMELEN]; 2266 dsl_dataset_name(drc->drc_ds, name); 2267 dsl_dataset_disown(drc->drc_ds, dmu_recv_tag); 2268 (void) dsl_destroy_head(name); 2269 } 2270 } 2271 2272 static void 2273 receive_cksum(struct receive_arg *ra, int len, void *buf) 2274 { 2275 if (ra->byteswap) { 2276 fletcher_4_incremental_byteswap(buf, len, &ra->cksum); 2277 } else { 2278 fletcher_4_incremental_native(buf, len, &ra->cksum); 2279 } 2280 } 2281 2282 /* 2283 * Read the payload into a buffer of size len, and update the current record's 2284 * payload field. 2285 * Allocate ra->next_rrd and read the next record's header into 2286 * ra->next_rrd->header. 2287 * Verify checksum of payload and next record. 2288 */ 2289 static int 2290 receive_read_payload_and_next_header(struct receive_arg *ra, int len, void *buf) 2291 { 2292 int err; 2293 2294 if (len != 0) { 2295 ASSERT3U(len, <=, SPA_MAXBLOCKSIZE); 2296 err = receive_read(ra, len, buf); 2297 if (err != 0) 2298 return (err); 2299 receive_cksum(ra, len, buf); 2300 2301 /* note: rrd is NULL when reading the begin record's payload */ 2302 if (ra->rrd != NULL) { 2303 ra->rrd->payload = buf; 2304 ra->rrd->payload_size = len; 2305 ra->rrd->bytes_read = ra->bytes_read; 2306 } 2307 } 2308 2309 ra->prev_cksum = ra->cksum; 2310 2311 ra->next_rrd = kmem_zalloc(sizeof (*ra->next_rrd), KM_SLEEP); 2312 err = receive_read(ra, sizeof (ra->next_rrd->header), 2313 &ra->next_rrd->header); 2314 ra->next_rrd->bytes_read = ra->bytes_read; 2315 if (err != 0) { 2316 kmem_free(ra->next_rrd, sizeof (*ra->next_rrd)); 2317 ra->next_rrd = NULL; 2318 return (err); 2319 } 2320 if (ra->next_rrd->header.drr_type == DRR_BEGIN) { 2321 kmem_free(ra->next_rrd, sizeof (*ra->next_rrd)); 2322 ra->next_rrd = NULL; 2323 return (SET_ERROR(EINVAL)); 2324 } 2325 2326 /* 2327 * Note: checksum is of everything up to but not including the 2328 * checksum itself. 2329 */ 2330 ASSERT3U(offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum), 2331 ==, sizeof (dmu_replay_record_t) - sizeof (zio_cksum_t)); 2332 receive_cksum(ra, 2333 offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum), 2334 &ra->next_rrd->header); 2335 2336 zio_cksum_t cksum_orig = 2337 ra->next_rrd->header.drr_u.drr_checksum.drr_checksum; 2338 zio_cksum_t *cksump = 2339 &ra->next_rrd->header.drr_u.drr_checksum.drr_checksum; 2340 2341 if (ra->byteswap) 2342 byteswap_record(&ra->next_rrd->header); 2343 2344 if ((!ZIO_CHECKSUM_IS_ZERO(cksump)) && 2345 !ZIO_CHECKSUM_EQUAL(ra->cksum, *cksump)) { 2346 kmem_free(ra->next_rrd, sizeof (*ra->next_rrd)); 2347 ra->next_rrd = NULL; 2348 return (SET_ERROR(ECKSUM)); 2349 } 2350 2351 receive_cksum(ra, sizeof (cksum_orig), &cksum_orig); 2352 2353 return (0); 2354 } 2355 2356 /* 2357 * Issue the prefetch reads for any necessary indirect blocks. 2358 * 2359 * We use the object ignore list to tell us whether or not to issue prefetches 2360 * for a given object. We do this for both correctness (in case the blocksize 2361 * of an object has changed) and performance (if the object doesn't exist, don't 2362 * needlessly try to issue prefetches). We also trim the list as we go through 2363 * the stream to prevent it from growing to an unbounded size. 2364 * 2365 * The object numbers within will always be in sorted order, and any write 2366 * records we see will also be in sorted order, but they're not sorted with 2367 * respect to each other (i.e. we can get several object records before 2368 * receiving each object's write records). As a result, once we've reached a 2369 * given object number, we can safely remove any reference to lower object 2370 * numbers in the ignore list. In practice, we receive up to 32 object records 2371 * before receiving write records, so the list can have up to 32 nodes in it. 2372 */ 2373 /* ARGSUSED */ 2374 static void 2375 receive_read_prefetch(struct receive_arg *ra, 2376 uint64_t object, uint64_t offset, uint64_t length) 2377 { 2378 struct receive_ign_obj_node *node = list_head(&ra->ignore_obj_list); 2379 while (node != NULL && node->object < object) { 2380 VERIFY3P(node, ==, list_remove_head(&ra->ignore_obj_list)); 2381 kmem_free(node, sizeof (*node)); 2382 node = list_head(&ra->ignore_obj_list); 2383 } 2384 if (node == NULL || node->object > object) { 2385 dmu_prefetch(ra->os, object, 1, offset, length, 2386 ZIO_PRIORITY_SYNC_READ); 2387 } 2388 } 2389 2390 /* 2391 * Read records off the stream, issuing any necessary prefetches. 2392 */ 2393 static int 2394 receive_read_record(struct receive_arg *ra) 2395 { 2396 int err; 2397 2398 switch (ra->rrd->header.drr_type) { 2399 case DRR_OBJECT: 2400 { 2401 struct drr_object *drro = &ra->rrd->header.drr_u.drr_object; 2402 uint32_t size = P2ROUNDUP(drro->drr_bonuslen, 8); 2403 void *buf = kmem_zalloc(size, KM_SLEEP); 2404 dmu_object_info_t doi; 2405 err = receive_read_payload_and_next_header(ra, size, buf); 2406 if (err != 0) { 2407 kmem_free(buf, size); 2408 return (err); 2409 } 2410 err = dmu_object_info(ra->os, drro->drr_object, &doi); 2411 /* 2412 * See receive_read_prefetch for an explanation why we're 2413 * storing this object in the ignore_obj_list. 2414 */ 2415 if (err == ENOENT || 2416 (err == 0 && doi.doi_data_block_size != drro->drr_blksz)) { 2417 struct receive_ign_obj_node *node = 2418 kmem_zalloc(sizeof (*node), 2419 KM_SLEEP); 2420 node->object = drro->drr_object; 2421 #ifdef ZFS_DEBUG 2422 struct receive_ign_obj_node *last_object = 2423 list_tail(&ra->ignore_obj_list); 2424 uint64_t last_objnum = (last_object != NULL ? 2425 last_object->object : 0); 2426 ASSERT3U(node->object, >, last_objnum); 2427 #endif 2428 list_insert_tail(&ra->ignore_obj_list, node); 2429 err = 0; 2430 } 2431 return (err); 2432 } 2433 case DRR_FREEOBJECTS: 2434 { 2435 err = receive_read_payload_and_next_header(ra, 0, NULL); 2436 return (err); 2437 } 2438 case DRR_WRITE: 2439 { 2440 struct drr_write *drrw = &ra->rrd->header.drr_u.drr_write; 2441 arc_buf_t *abuf = arc_loan_buf(dmu_objset_spa(ra->os), 2442 drrw->drr_length); 2443 2444 err = receive_read_payload_and_next_header(ra, 2445 drrw->drr_length, abuf->b_data); 2446 if (err != 0) { 2447 dmu_return_arcbuf(abuf); 2448 return (err); 2449 } 2450 ra->rrd->write_buf = abuf; 2451 receive_read_prefetch(ra, drrw->drr_object, drrw->drr_offset, 2452 drrw->drr_length); 2453 return (err); 2454 } 2455 case DRR_WRITE_BYREF: 2456 { 2457 struct drr_write_byref *drrwb = 2458 &ra->rrd->header.drr_u.drr_write_byref; 2459 err = receive_read_payload_and_next_header(ra, 0, NULL); 2460 receive_read_prefetch(ra, drrwb->drr_object, drrwb->drr_offset, 2461 drrwb->drr_length); 2462 return (err); 2463 } 2464 case DRR_WRITE_EMBEDDED: 2465 { 2466 struct drr_write_embedded *drrwe = 2467 &ra->rrd->header.drr_u.drr_write_embedded; 2468 uint32_t size = P2ROUNDUP(drrwe->drr_psize, 8); 2469 void *buf = kmem_zalloc(size, KM_SLEEP); 2470 2471 err = receive_read_payload_and_next_header(ra, size, buf); 2472 if (err != 0) { 2473 kmem_free(buf, size); 2474 return (err); 2475 } 2476 2477 receive_read_prefetch(ra, drrwe->drr_object, drrwe->drr_offset, 2478 drrwe->drr_length); 2479 return (err); 2480 } 2481 case DRR_FREE: 2482 { 2483 /* 2484 * It might be beneficial to prefetch indirect blocks here, but 2485 * we don't really have the data to decide for sure. 2486 */ 2487 err = receive_read_payload_and_next_header(ra, 0, NULL); 2488 return (err); 2489 } 2490 case DRR_END: 2491 { 2492 struct drr_end *drre = &ra->rrd->header.drr_u.drr_end; 2493 if (!ZIO_CHECKSUM_EQUAL(ra->prev_cksum, drre->drr_checksum)) 2494 return (SET_ERROR(ECKSUM)); 2495 return (0); 2496 } 2497 case DRR_SPILL: 2498 { 2499 struct drr_spill *drrs = &ra->rrd->header.drr_u.drr_spill; 2500 void *buf = kmem_zalloc(drrs->drr_length, KM_SLEEP); 2501 err = receive_read_payload_and_next_header(ra, drrs->drr_length, 2502 buf); 2503 if (err != 0) 2504 kmem_free(buf, drrs->drr_length); 2505 return (err); 2506 } 2507 default: 2508 return (SET_ERROR(EINVAL)); 2509 } 2510 } 2511 2512 /* 2513 * Commit the records to the pool. 2514 */ 2515 static int 2516 receive_process_record(struct receive_writer_arg *rwa, 2517 struct receive_record_arg *rrd) 2518 { 2519 int err; 2520 2521 /* Processing in order, therefore bytes_read should be increasing. */ 2522 ASSERT3U(rrd->bytes_read, >=, rwa->bytes_read); 2523 rwa->bytes_read = rrd->bytes_read; 2524 2525 switch (rrd->header.drr_type) { 2526 case DRR_OBJECT: 2527 { 2528 struct drr_object *drro = &rrd->header.drr_u.drr_object; 2529 err = receive_object(rwa, drro, rrd->payload); 2530 kmem_free(rrd->payload, rrd->payload_size); 2531 rrd->payload = NULL; 2532 return (err); 2533 } 2534 case DRR_FREEOBJECTS: 2535 { 2536 struct drr_freeobjects *drrfo = 2537 &rrd->header.drr_u.drr_freeobjects; 2538 return (receive_freeobjects(rwa, drrfo)); 2539 } 2540 case DRR_WRITE: 2541 { 2542 struct drr_write *drrw = &rrd->header.drr_u.drr_write; 2543 err = receive_write(rwa, drrw, rrd->write_buf); 2544 /* if receive_write() is successful, it consumes the arc_buf */ 2545 if (err != 0) 2546 dmu_return_arcbuf(rrd->write_buf); 2547 rrd->write_buf = NULL; 2548 rrd->payload = NULL; 2549 return (err); 2550 } 2551 case DRR_WRITE_BYREF: 2552 { 2553 struct drr_write_byref *drrwbr = 2554 &rrd->header.drr_u.drr_write_byref; 2555 return (receive_write_byref(rwa, drrwbr)); 2556 } 2557 case DRR_WRITE_EMBEDDED: 2558 { 2559 struct drr_write_embedded *drrwe = 2560 &rrd->header.drr_u.drr_write_embedded; 2561 err = receive_write_embedded(rwa, drrwe, rrd->payload); 2562 kmem_free(rrd->payload, rrd->payload_size); 2563 rrd->payload = NULL; 2564 return (err); 2565 } 2566 case DRR_FREE: 2567 { 2568 struct drr_free *drrf = &rrd->header.drr_u.drr_free; 2569 return (receive_free(rwa, drrf)); 2570 } 2571 case DRR_SPILL: 2572 { 2573 struct drr_spill *drrs = &rrd->header.drr_u.drr_spill; 2574 err = receive_spill(rwa, drrs, rrd->payload); 2575 kmem_free(rrd->payload, rrd->payload_size); 2576 rrd->payload = NULL; 2577 return (err); 2578 } 2579 default: 2580 return (SET_ERROR(EINVAL)); 2581 } 2582 } 2583 2584 /* 2585 * dmu_recv_stream's worker thread; pull records off the queue, and then call 2586 * receive_process_record When we're done, signal the main thread and exit. 2587 */ 2588 static void 2589 receive_writer_thread(void *arg) 2590 { 2591 struct receive_writer_arg *rwa = arg; 2592 struct receive_record_arg *rrd; 2593 for (rrd = bqueue_dequeue(&rwa->q); !rrd->eos_marker; 2594 rrd = bqueue_dequeue(&rwa->q)) { 2595 /* 2596 * If there's an error, the main thread will stop putting things 2597 * on the queue, but we need to clear everything in it before we 2598 * can exit. 2599 */ 2600 if (rwa->err == 0) { 2601 rwa->err = receive_process_record(rwa, rrd); 2602 } else if (rrd->write_buf != NULL) { 2603 dmu_return_arcbuf(rrd->write_buf); 2604 rrd->write_buf = NULL; 2605 rrd->payload = NULL; 2606 } else if (rrd->payload != NULL) { 2607 kmem_free(rrd->payload, rrd->payload_size); 2608 rrd->payload = NULL; 2609 } 2610 kmem_free(rrd, sizeof (*rrd)); 2611 } 2612 kmem_free(rrd, sizeof (*rrd)); 2613 mutex_enter(&rwa->mutex); 2614 rwa->done = B_TRUE; 2615 cv_signal(&rwa->cv); 2616 mutex_exit(&rwa->mutex); 2617 } 2618 2619 static int 2620 resume_check(struct receive_arg *ra, nvlist_t *begin_nvl) 2621 { 2622 uint64_t val; 2623 objset_t *mos = dmu_objset_pool(ra->os)->dp_meta_objset; 2624 uint64_t dsobj = dmu_objset_id(ra->os); 2625 uint64_t resume_obj, resume_off; 2626 2627 if (nvlist_lookup_uint64(begin_nvl, 2628 "resume_object", &resume_obj) != 0 || 2629 nvlist_lookup_uint64(begin_nvl, 2630 "resume_offset", &resume_off) != 0) { 2631 return (SET_ERROR(EINVAL)); 2632 } 2633 VERIFY0(zap_lookup(mos, dsobj, 2634 DS_FIELD_RESUME_OBJECT, sizeof (val), 1, &val)); 2635 if (resume_obj != val) 2636 return (SET_ERROR(EINVAL)); 2637 VERIFY0(zap_lookup(mos, dsobj, 2638 DS_FIELD_RESUME_OFFSET, sizeof (val), 1, &val)); 2639 if (resume_off != val) 2640 return (SET_ERROR(EINVAL)); 2641 2642 return (0); 2643 } 2644 2645 2646 /* 2647 * Read in the stream's records, one by one, and apply them to the pool. There 2648 * are two threads involved; the thread that calls this function will spin up a 2649 * worker thread, read the records off the stream one by one, and issue 2650 * prefetches for any necessary indirect blocks. It will then push the records 2651 * onto an internal blocking queue. The worker thread will pull the records off 2652 * the queue, and actually write the data into the DMU. This way, the worker 2653 * thread doesn't have to wait for reads to complete, since everything it needs 2654 * (the indirect blocks) will be prefetched. 2655 * 2656 * NB: callers *must* call dmu_recv_end() if this succeeds. 2657 */ 2658 int 2659 dmu_recv_stream(dmu_recv_cookie_t *drc, vnode_t *vp, offset_t *voffp, 2660 int cleanup_fd, uint64_t *action_handlep) 2661 { 2662 int err = 0; 2663 struct receive_arg ra = { 0 }; 2664 struct receive_writer_arg rwa = { 0 }; 2665 int featureflags; 2666 nvlist_t *begin_nvl = NULL; 2667 2668 ra.byteswap = drc->drc_byteswap; 2669 ra.cksum = drc->drc_cksum; 2670 ra.vp = vp; 2671 ra.voff = *voffp; 2672 2673 if (dsl_dataset_is_zapified(drc->drc_ds)) { 2674 (void) zap_lookup(drc->drc_ds->ds_dir->dd_pool->dp_meta_objset, 2675 drc->drc_ds->ds_object, DS_FIELD_RESUME_BYTES, 2676 sizeof (ra.bytes_read), 1, &ra.bytes_read); 2677 } 2678 2679 list_create(&ra.ignore_obj_list, sizeof (struct receive_ign_obj_node), 2680 offsetof(struct receive_ign_obj_node, node)); 2681 2682 /* these were verified in dmu_recv_begin */ 2683 ASSERT3U(DMU_GET_STREAM_HDRTYPE(drc->drc_drrb->drr_versioninfo), ==, 2684 DMU_SUBSTREAM); 2685 ASSERT3U(drc->drc_drrb->drr_type, <, DMU_OST_NUMTYPES); 2686 2687 /* 2688 * Open the objset we are modifying. 2689 */ 2690 VERIFY0(dmu_objset_from_ds(drc->drc_ds, &ra.os)); 2691 2692 ASSERT(dsl_dataset_phys(drc->drc_ds)->ds_flags & DS_FLAG_INCONSISTENT); 2693 2694 featureflags = DMU_GET_FEATUREFLAGS(drc->drc_drrb->drr_versioninfo); 2695 2696 /* if this stream is dedup'ed, set up the avl tree for guid mapping */ 2697 if (featureflags & DMU_BACKUP_FEATURE_DEDUP) { 2698 minor_t minor; 2699 2700 if (cleanup_fd == -1) { 2701 ra.err = SET_ERROR(EBADF); 2702 goto out; 2703 } 2704 ra.err = zfs_onexit_fd_hold(cleanup_fd, &minor); 2705 if (ra.err != 0) { 2706 cleanup_fd = -1; 2707 goto out; 2708 } 2709 2710 if (*action_handlep == 0) { 2711 rwa.guid_to_ds_map = 2712 kmem_alloc(sizeof (avl_tree_t), KM_SLEEP); 2713 avl_create(rwa.guid_to_ds_map, guid_compare, 2714 sizeof (guid_map_entry_t), 2715 offsetof(guid_map_entry_t, avlnode)); 2716 err = zfs_onexit_add_cb(minor, 2717 free_guid_map_onexit, rwa.guid_to_ds_map, 2718 action_handlep); 2719 if (ra.err != 0) 2720 goto out; 2721 } else { 2722 err = zfs_onexit_cb_data(minor, *action_handlep, 2723 (void **)&rwa.guid_to_ds_map); 2724 if (ra.err != 0) 2725 goto out; 2726 } 2727 2728 drc->drc_guid_to_ds_map = rwa.guid_to_ds_map; 2729 } 2730 2731 uint32_t payloadlen = drc->drc_drr_begin->drr_payloadlen; 2732 void *payload = NULL; 2733 if (payloadlen != 0) 2734 payload = kmem_alloc(payloadlen, KM_SLEEP); 2735 2736 err = receive_read_payload_and_next_header(&ra, payloadlen, payload); 2737 if (err != 0) { 2738 if (payloadlen != 0) 2739 kmem_free(payload, payloadlen); 2740 goto out; 2741 } 2742 if (payloadlen != 0) { 2743 err = nvlist_unpack(payload, payloadlen, &begin_nvl, KM_SLEEP); 2744 kmem_free(payload, payloadlen); 2745 if (err != 0) 2746 goto out; 2747 } 2748 2749 if (featureflags & DMU_BACKUP_FEATURE_RESUMING) { 2750 err = resume_check(&ra, begin_nvl); 2751 if (err != 0) 2752 goto out; 2753 } 2754 2755 (void) bqueue_init(&rwa.q, zfs_recv_queue_length, 2756 offsetof(struct receive_record_arg, node)); 2757 cv_init(&rwa.cv, NULL, CV_DEFAULT, NULL); 2758 mutex_init(&rwa.mutex, NULL, MUTEX_DEFAULT, NULL); 2759 rwa.os = ra.os; 2760 rwa.byteswap = drc->drc_byteswap; 2761 rwa.resumable = drc->drc_resumable; 2762 2763 (void) thread_create(NULL, 0, receive_writer_thread, &rwa, 0, curproc, 2764 TS_RUN, minclsyspri); 2765 /* 2766 * We're reading rwa.err without locks, which is safe since we are the 2767 * only reader, and the worker thread is the only writer. It's ok if we 2768 * miss a write for an iteration or two of the loop, since the writer 2769 * thread will keep freeing records we send it until we send it an eos 2770 * marker. 2771 * 2772 * We can leave this loop in 3 ways: First, if rwa.err is 2773 * non-zero. In that case, the writer thread will free the rrd we just 2774 * pushed. Second, if we're interrupted; in that case, either it's the 2775 * first loop and ra.rrd was never allocated, or it's later, and ra.rrd 2776 * has been handed off to the writer thread who will free it. Finally, 2777 * if receive_read_record fails or we're at the end of the stream, then 2778 * we free ra.rrd and exit. 2779 */ 2780 while (rwa.err == 0) { 2781 if (issig(JUSTLOOKING) && issig(FORREAL)) { 2782 err = SET_ERROR(EINTR); 2783 break; 2784 } 2785 2786 ASSERT3P(ra.rrd, ==, NULL); 2787 ra.rrd = ra.next_rrd; 2788 ra.next_rrd = NULL; 2789 /* Allocates and loads header into ra.next_rrd */ 2790 err = receive_read_record(&ra); 2791 2792 if (ra.rrd->header.drr_type == DRR_END || err != 0) { 2793 kmem_free(ra.rrd, sizeof (*ra.rrd)); 2794 ra.rrd = NULL; 2795 break; 2796 } 2797 2798 bqueue_enqueue(&rwa.q, ra.rrd, 2799 sizeof (struct receive_record_arg) + ra.rrd->payload_size); 2800 ra.rrd = NULL; 2801 } 2802 if (ra.next_rrd == NULL) 2803 ra.next_rrd = kmem_zalloc(sizeof (*ra.next_rrd), KM_SLEEP); 2804 ra.next_rrd->eos_marker = B_TRUE; 2805 bqueue_enqueue(&rwa.q, ra.next_rrd, 1); 2806 2807 mutex_enter(&rwa.mutex); 2808 while (!rwa.done) { 2809 cv_wait(&rwa.cv, &rwa.mutex); 2810 } 2811 mutex_exit(&rwa.mutex); 2812 2813 cv_destroy(&rwa.cv); 2814 mutex_destroy(&rwa.mutex); 2815 bqueue_destroy(&rwa.q); 2816 if (err == 0) 2817 err = rwa.err; 2818 2819 out: 2820 nvlist_free(begin_nvl); 2821 if ((featureflags & DMU_BACKUP_FEATURE_DEDUP) && (cleanup_fd != -1)) 2822 zfs_onexit_fd_rele(cleanup_fd); 2823 2824 if (err != 0) { 2825 /* 2826 * Clean up references. If receive is not resumable, 2827 * destroy what we created, so we don't leave it in 2828 * the inconsistent state. 2829 */ 2830 dmu_recv_cleanup_ds(drc); 2831 } 2832 2833 *voffp = ra.voff; 2834 for (struct receive_ign_obj_node *n = 2835 list_remove_head(&ra.ignore_obj_list); n != NULL; 2836 n = list_remove_head(&ra.ignore_obj_list)) { 2837 kmem_free(n, sizeof (*n)); 2838 } 2839 list_destroy(&ra.ignore_obj_list); 2840 return (err); 2841 } 2842 2843 static int 2844 dmu_recv_end_check(void *arg, dmu_tx_t *tx) 2845 { 2846 dmu_recv_cookie_t *drc = arg; 2847 dsl_pool_t *dp = dmu_tx_pool(tx); 2848 int error; 2849 2850 ASSERT3P(drc->drc_ds->ds_owner, ==, dmu_recv_tag); 2851 2852 if (!drc->drc_newfs) { 2853 dsl_dataset_t *origin_head; 2854 2855 error = dsl_dataset_hold(dp, drc->drc_tofs, FTAG, &origin_head); 2856 if (error != 0) 2857 return (error); 2858 if (drc->drc_force) { 2859 /* 2860 * We will destroy any snapshots in tofs (i.e. before 2861 * origin_head) that are after the origin (which is 2862 * the snap before drc_ds, because drc_ds can not 2863 * have any snaps of its own). 2864 */ 2865 uint64_t obj; 2866 2867 obj = dsl_dataset_phys(origin_head)->ds_prev_snap_obj; 2868 while (obj != 2869 dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj) { 2870 dsl_dataset_t *snap; 2871 error = dsl_dataset_hold_obj(dp, obj, FTAG, 2872 &snap); 2873 if (error != 0) 2874 break; 2875 if (snap->ds_dir != origin_head->ds_dir) 2876 error = SET_ERROR(EINVAL); 2877 if (error == 0) { 2878 error = dsl_destroy_snapshot_check_impl( 2879 snap, B_FALSE); 2880 } 2881 obj = dsl_dataset_phys(snap)->ds_prev_snap_obj; 2882 dsl_dataset_rele(snap, FTAG); 2883 if (error != 0) 2884 break; 2885 } 2886 if (error != 0) { 2887 dsl_dataset_rele(origin_head, FTAG); 2888 return (error); 2889 } 2890 } 2891 error = dsl_dataset_clone_swap_check_impl(drc->drc_ds, 2892 origin_head, drc->drc_force, drc->drc_owner, tx); 2893 if (error != 0) { 2894 dsl_dataset_rele(origin_head, FTAG); 2895 return (error); 2896 } 2897 error = dsl_dataset_snapshot_check_impl(origin_head, 2898 drc->drc_tosnap, tx, B_TRUE, 1, drc->drc_cred); 2899 dsl_dataset_rele(origin_head, FTAG); 2900 if (error != 0) 2901 return (error); 2902 2903 error = dsl_destroy_head_check_impl(drc->drc_ds, 1); 2904 } else { 2905 error = dsl_dataset_snapshot_check_impl(drc->drc_ds, 2906 drc->drc_tosnap, tx, B_TRUE, 1, drc->drc_cred); 2907 } 2908 return (error); 2909 } 2910 2911 static void 2912 dmu_recv_end_sync(void *arg, dmu_tx_t *tx) 2913 { 2914 dmu_recv_cookie_t *drc = arg; 2915 dsl_pool_t *dp = dmu_tx_pool(tx); 2916 2917 spa_history_log_internal_ds(drc->drc_ds, "finish receiving", 2918 tx, "snap=%s", drc->drc_tosnap); 2919 2920 if (!drc->drc_newfs) { 2921 dsl_dataset_t *origin_head; 2922 2923 VERIFY0(dsl_dataset_hold(dp, drc->drc_tofs, FTAG, 2924 &origin_head)); 2925 2926 if (drc->drc_force) { 2927 /* 2928 * Destroy any snapshots of drc_tofs (origin_head) 2929 * after the origin (the snap before drc_ds). 2930 */ 2931 uint64_t obj; 2932 2933 obj = dsl_dataset_phys(origin_head)->ds_prev_snap_obj; 2934 while (obj != 2935 dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj) { 2936 dsl_dataset_t *snap; 2937 VERIFY0(dsl_dataset_hold_obj(dp, obj, FTAG, 2938 &snap)); 2939 ASSERT3P(snap->ds_dir, ==, origin_head->ds_dir); 2940 obj = dsl_dataset_phys(snap)->ds_prev_snap_obj; 2941 dsl_destroy_snapshot_sync_impl(snap, 2942 B_FALSE, tx); 2943 dsl_dataset_rele(snap, FTAG); 2944 } 2945 } 2946 VERIFY3P(drc->drc_ds->ds_prev, ==, 2947 origin_head->ds_prev); 2948 2949 dsl_dataset_clone_swap_sync_impl(drc->drc_ds, 2950 origin_head, tx); 2951 dsl_dataset_snapshot_sync_impl(origin_head, 2952 drc->drc_tosnap, tx); 2953 2954 /* set snapshot's creation time and guid */ 2955 dmu_buf_will_dirty(origin_head->ds_prev->ds_dbuf, tx); 2956 dsl_dataset_phys(origin_head->ds_prev)->ds_creation_time = 2957 drc->drc_drrb->drr_creation_time; 2958 dsl_dataset_phys(origin_head->ds_prev)->ds_guid = 2959 drc->drc_drrb->drr_toguid; 2960 dsl_dataset_phys(origin_head->ds_prev)->ds_flags &= 2961 ~DS_FLAG_INCONSISTENT; 2962 2963 dmu_buf_will_dirty(origin_head->ds_dbuf, tx); 2964 dsl_dataset_phys(origin_head)->ds_flags &= 2965 ~DS_FLAG_INCONSISTENT; 2966 2967 dsl_dataset_rele(origin_head, FTAG); 2968 dsl_destroy_head_sync_impl(drc->drc_ds, tx); 2969 2970 if (drc->drc_owner != NULL) 2971 VERIFY3P(origin_head->ds_owner, ==, drc->drc_owner); 2972 } else { 2973 dsl_dataset_t *ds = drc->drc_ds; 2974 2975 dsl_dataset_snapshot_sync_impl(ds, drc->drc_tosnap, tx); 2976 2977 /* set snapshot's creation time and guid */ 2978 dmu_buf_will_dirty(ds->ds_prev->ds_dbuf, tx); 2979 dsl_dataset_phys(ds->ds_prev)->ds_creation_time = 2980 drc->drc_drrb->drr_creation_time; 2981 dsl_dataset_phys(ds->ds_prev)->ds_guid = 2982 drc->drc_drrb->drr_toguid; 2983 dsl_dataset_phys(ds->ds_prev)->ds_flags &= 2984 ~DS_FLAG_INCONSISTENT; 2985 2986 dmu_buf_will_dirty(ds->ds_dbuf, tx); 2987 dsl_dataset_phys(ds)->ds_flags &= ~DS_FLAG_INCONSISTENT; 2988 if (dsl_dataset_has_resume_receive_state(ds)) { 2989 (void) zap_remove(dp->dp_meta_objset, ds->ds_object, 2990 DS_FIELD_RESUME_FROMGUID, tx); 2991 (void) zap_remove(dp->dp_meta_objset, ds->ds_object, 2992 DS_FIELD_RESUME_OBJECT, tx); 2993 (void) zap_remove(dp->dp_meta_objset, ds->ds_object, 2994 DS_FIELD_RESUME_OFFSET, tx); 2995 (void) zap_remove(dp->dp_meta_objset, ds->ds_object, 2996 DS_FIELD_RESUME_BYTES, tx); 2997 (void) zap_remove(dp->dp_meta_objset, ds->ds_object, 2998 DS_FIELD_RESUME_TOGUID, tx); 2999 (void) zap_remove(dp->dp_meta_objset, ds->ds_object, 3000 DS_FIELD_RESUME_TONAME, tx); 3001 } 3002 } 3003 drc->drc_newsnapobj = dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj; 3004 /* 3005 * Release the hold from dmu_recv_begin. This must be done before 3006 * we return to open context, so that when we free the dataset's dnode, 3007 * we can evict its bonus buffer. 3008 */ 3009 dsl_dataset_disown(drc->drc_ds, dmu_recv_tag); 3010 drc->drc_ds = NULL; 3011 } 3012 3013 static int 3014 add_ds_to_guidmap(const char *name, avl_tree_t *guid_map, uint64_t snapobj) 3015 { 3016 dsl_pool_t *dp; 3017 dsl_dataset_t *snapds; 3018 guid_map_entry_t *gmep; 3019 int err; 3020 3021 ASSERT(guid_map != NULL); 3022 3023 err = dsl_pool_hold(name, FTAG, &dp); 3024 if (err != 0) 3025 return (err); 3026 gmep = kmem_alloc(sizeof (*gmep), KM_SLEEP); 3027 err = dsl_dataset_hold_obj(dp, snapobj, gmep, &snapds); 3028 if (err == 0) { 3029 gmep->guid = dsl_dataset_phys(snapds)->ds_guid; 3030 gmep->gme_ds = snapds; 3031 avl_add(guid_map, gmep); 3032 dsl_dataset_long_hold(snapds, gmep); 3033 } else { 3034 kmem_free(gmep, sizeof (*gmep)); 3035 } 3036 3037 dsl_pool_rele(dp, FTAG); 3038 return (err); 3039 } 3040 3041 static int dmu_recv_end_modified_blocks = 3; 3042 3043 static int 3044 dmu_recv_existing_end(dmu_recv_cookie_t *drc) 3045 { 3046 int error; 3047 char name[MAXNAMELEN]; 3048 3049 #ifdef _KERNEL 3050 /* 3051 * We will be destroying the ds; make sure its origin is unmounted if 3052 * necessary. 3053 */ 3054 dsl_dataset_name(drc->drc_ds, name); 3055 zfs_destroy_unmount_origin(name); 3056 #endif 3057 3058 error = dsl_sync_task(drc->drc_tofs, 3059 dmu_recv_end_check, dmu_recv_end_sync, drc, 3060 dmu_recv_end_modified_blocks, ZFS_SPACE_CHECK_NORMAL); 3061 3062 if (error != 0) 3063 dmu_recv_cleanup_ds(drc); 3064 return (error); 3065 } 3066 3067 static int 3068 dmu_recv_new_end(dmu_recv_cookie_t *drc) 3069 { 3070 int error; 3071 3072 error = dsl_sync_task(drc->drc_tofs, 3073 dmu_recv_end_check, dmu_recv_end_sync, drc, 3074 dmu_recv_end_modified_blocks, ZFS_SPACE_CHECK_NORMAL); 3075 3076 if (error != 0) { 3077 dmu_recv_cleanup_ds(drc); 3078 } else if (drc->drc_guid_to_ds_map != NULL) { 3079 (void) add_ds_to_guidmap(drc->drc_tofs, 3080 drc->drc_guid_to_ds_map, 3081 drc->drc_newsnapobj); 3082 } 3083 return (error); 3084 } 3085 3086 int 3087 dmu_recv_end(dmu_recv_cookie_t *drc, void *owner) 3088 { 3089 drc->drc_owner = owner; 3090 3091 if (drc->drc_newfs) 3092 return (dmu_recv_new_end(drc)); 3093 else 3094 return (dmu_recv_existing_end(drc)); 3095 } 3096 3097 /* 3098 * Return TRUE if this objset is currently being received into. 3099 */ 3100 boolean_t 3101 dmu_objset_is_receiving(objset_t *os) 3102 { 3103 return (os->os_dsl_dataset != NULL && 3104 os->os_dsl_dataset->ds_owner == dmu_recv_tag); 3105 } 3106