1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 24 * Copyright (c) 2011, 2015 by Delphix. All rights reserved. 25 * Copyright (c) 2014, Joyent, Inc. All rights reserved. 26 * Copyright 2014 HybridCluster. All rights reserved. 27 */ 28 29 #include <sys/dmu.h> 30 #include <sys/dmu_impl.h> 31 #include <sys/dmu_tx.h> 32 #include <sys/dbuf.h> 33 #include <sys/dnode.h> 34 #include <sys/zfs_context.h> 35 #include <sys/dmu_objset.h> 36 #include <sys/dmu_traverse.h> 37 #include <sys/dsl_dataset.h> 38 #include <sys/dsl_dir.h> 39 #include <sys/dsl_prop.h> 40 #include <sys/dsl_pool.h> 41 #include <sys/dsl_synctask.h> 42 #include <sys/zfs_ioctl.h> 43 #include <sys/zap.h> 44 #include <sys/zio_checksum.h> 45 #include <sys/zfs_znode.h> 46 #include <zfs_fletcher.h> 47 #include <sys/avl.h> 48 #include <sys/ddt.h> 49 #include <sys/zfs_onexit.h> 50 #include <sys/dmu_send.h> 51 #include <sys/dsl_destroy.h> 52 #include <sys/blkptr.h> 53 #include <sys/dsl_bookmark.h> 54 #include <sys/zfeature.h> 55 #include <sys/bqueue.h> 56 57 /* Set this tunable to TRUE to replace corrupt data with 0x2f5baddb10c */ 58 int zfs_send_corrupt_data = B_FALSE; 59 int zfs_send_queue_length = 16 * 1024 * 1024; 60 int zfs_recv_queue_length = 16 * 1024 * 1024; 61 62 static char *dmu_recv_tag = "dmu_recv_tag"; 63 const char *recv_clone_name = "%recv"; 64 65 #define BP_SPAN(datablkszsec, indblkshift, level) \ 66 (((uint64_t)datablkszsec) << (SPA_MINBLOCKSHIFT + \ 67 (level) * (indblkshift - SPA_BLKPTRSHIFT))) 68 69 static void byteswap_record(dmu_replay_record_t *drr); 70 71 struct send_thread_arg { 72 bqueue_t q; 73 dsl_dataset_t *ds; /* Dataset to traverse */ 74 uint64_t fromtxg; /* Traverse from this txg */ 75 int flags; /* flags to pass to traverse_dataset */ 76 int error_code; 77 boolean_t cancel; 78 zbookmark_phys_t resume; 79 }; 80 81 struct send_block_record { 82 boolean_t eos_marker; /* Marks the end of the stream */ 83 blkptr_t bp; 84 zbookmark_phys_t zb; 85 uint8_t indblkshift; 86 uint16_t datablkszsec; 87 bqueue_node_t ln; 88 }; 89 90 static int 91 dump_bytes(dmu_sendarg_t *dsp, void *buf, int len) 92 { 93 dsl_dataset_t *ds = dmu_objset_ds(dsp->dsa_os); 94 ssize_t resid; /* have to get resid to get detailed errno */ 95 ASSERT0(len % 8); 96 97 dsp->dsa_err = vn_rdwr(UIO_WRITE, dsp->dsa_vp, 98 (caddr_t)buf, len, 99 0, UIO_SYSSPACE, FAPPEND, RLIM64_INFINITY, CRED(), &resid); 100 101 mutex_enter(&ds->ds_sendstream_lock); 102 *dsp->dsa_off += len; 103 mutex_exit(&ds->ds_sendstream_lock); 104 105 return (dsp->dsa_err); 106 } 107 108 /* 109 * For all record types except BEGIN, fill in the checksum (overlaid in 110 * drr_u.drr_checksum.drr_checksum). The checksum verifies everything 111 * up to the start of the checksum itself. 112 */ 113 static int 114 dump_record(dmu_sendarg_t *dsp, void *payload, int payload_len) 115 { 116 ASSERT3U(offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum), 117 ==, sizeof (dmu_replay_record_t) - sizeof (zio_cksum_t)); 118 fletcher_4_incremental_native(dsp->dsa_drr, 119 offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum), 120 &dsp->dsa_zc); 121 if (dsp->dsa_drr->drr_type != DRR_BEGIN) { 122 ASSERT(ZIO_CHECKSUM_IS_ZERO(&dsp->dsa_drr->drr_u. 123 drr_checksum.drr_checksum)); 124 dsp->dsa_drr->drr_u.drr_checksum.drr_checksum = dsp->dsa_zc; 125 } 126 fletcher_4_incremental_native(&dsp->dsa_drr-> 127 drr_u.drr_checksum.drr_checksum, 128 sizeof (zio_cksum_t), &dsp->dsa_zc); 129 if (dump_bytes(dsp, dsp->dsa_drr, sizeof (dmu_replay_record_t)) != 0) 130 return (SET_ERROR(EINTR)); 131 if (payload_len != 0) { 132 fletcher_4_incremental_native(payload, payload_len, 133 &dsp->dsa_zc); 134 if (dump_bytes(dsp, payload, payload_len) != 0) 135 return (SET_ERROR(EINTR)); 136 } 137 return (0); 138 } 139 140 static int 141 dump_free(dmu_sendarg_t *dsp, uint64_t object, uint64_t offset, 142 uint64_t length) 143 { 144 struct drr_free *drrf = &(dsp->dsa_drr->drr_u.drr_free); 145 146 /* 147 * When we receive a free record, dbuf_free_range() assumes 148 * that the receiving system doesn't have any dbufs in the range 149 * being freed. This is always true because there is a one-record 150 * constraint: we only send one WRITE record for any given 151 * object,offset. We know that the one-record constraint is 152 * true because we always send data in increasing order by 153 * object,offset. 154 * 155 * If the increasing-order constraint ever changes, we should find 156 * another way to assert that the one-record constraint is still 157 * satisfied. 158 */ 159 ASSERT(object > dsp->dsa_last_data_object || 160 (object == dsp->dsa_last_data_object && 161 offset > dsp->dsa_last_data_offset)); 162 163 /* 164 * If we are doing a non-incremental send, then there can't 165 * be any data in the dataset we're receiving into. Therefore 166 * a free record would simply be a no-op. Save space by not 167 * sending it to begin with. 168 */ 169 if (!dsp->dsa_incremental) 170 return (0); 171 172 if (length != -1ULL && offset + length < offset) 173 length = -1ULL; 174 175 /* 176 * If there is a pending op, but it's not PENDING_FREE, push it out, 177 * since free block aggregation can only be done for blocks of the 178 * same type (i.e., DRR_FREE records can only be aggregated with 179 * other DRR_FREE records. DRR_FREEOBJECTS records can only be 180 * aggregated with other DRR_FREEOBJECTS records. 181 */ 182 if (dsp->dsa_pending_op != PENDING_NONE && 183 dsp->dsa_pending_op != PENDING_FREE) { 184 if (dump_record(dsp, NULL, 0) != 0) 185 return (SET_ERROR(EINTR)); 186 dsp->dsa_pending_op = PENDING_NONE; 187 } 188 189 if (dsp->dsa_pending_op == PENDING_FREE) { 190 /* 191 * There should never be a PENDING_FREE if length is -1 192 * (because dump_dnode is the only place where this 193 * function is called with a -1, and only after flushing 194 * any pending record). 195 */ 196 ASSERT(length != -1ULL); 197 /* 198 * Check to see whether this free block can be aggregated 199 * with pending one. 200 */ 201 if (drrf->drr_object == object && drrf->drr_offset + 202 drrf->drr_length == offset) { 203 drrf->drr_length += length; 204 return (0); 205 } else { 206 /* not a continuation. Push out pending record */ 207 if (dump_record(dsp, NULL, 0) != 0) 208 return (SET_ERROR(EINTR)); 209 dsp->dsa_pending_op = PENDING_NONE; 210 } 211 } 212 /* create a FREE record and make it pending */ 213 bzero(dsp->dsa_drr, sizeof (dmu_replay_record_t)); 214 dsp->dsa_drr->drr_type = DRR_FREE; 215 drrf->drr_object = object; 216 drrf->drr_offset = offset; 217 drrf->drr_length = length; 218 drrf->drr_toguid = dsp->dsa_toguid; 219 if (length == -1ULL) { 220 if (dump_record(dsp, NULL, 0) != 0) 221 return (SET_ERROR(EINTR)); 222 } else { 223 dsp->dsa_pending_op = PENDING_FREE; 224 } 225 226 return (0); 227 } 228 229 static int 230 dump_write(dmu_sendarg_t *dsp, dmu_object_type_t type, 231 uint64_t object, uint64_t offset, int blksz, const blkptr_t *bp, void *data) 232 { 233 struct drr_write *drrw = &(dsp->dsa_drr->drr_u.drr_write); 234 235 /* 236 * We send data in increasing object, offset order. 237 * See comment in dump_free() for details. 238 */ 239 ASSERT(object > dsp->dsa_last_data_object || 240 (object == dsp->dsa_last_data_object && 241 offset > dsp->dsa_last_data_offset)); 242 dsp->dsa_last_data_object = object; 243 dsp->dsa_last_data_offset = offset + blksz - 1; 244 245 /* 246 * If there is any kind of pending aggregation (currently either 247 * a grouping of free objects or free blocks), push it out to 248 * the stream, since aggregation can't be done across operations 249 * of different types. 250 */ 251 if (dsp->dsa_pending_op != PENDING_NONE) { 252 if (dump_record(dsp, NULL, 0) != 0) 253 return (SET_ERROR(EINTR)); 254 dsp->dsa_pending_op = PENDING_NONE; 255 } 256 /* write a WRITE record */ 257 bzero(dsp->dsa_drr, sizeof (dmu_replay_record_t)); 258 dsp->dsa_drr->drr_type = DRR_WRITE; 259 drrw->drr_object = object; 260 drrw->drr_type = type; 261 drrw->drr_offset = offset; 262 drrw->drr_length = blksz; 263 drrw->drr_toguid = dsp->dsa_toguid; 264 if (bp == NULL || BP_IS_EMBEDDED(bp)) { 265 /* 266 * There's no pre-computed checksum for partial-block 267 * writes or embedded BP's, so (like 268 * fletcher4-checkummed blocks) userland will have to 269 * compute a dedup-capable checksum itself. 270 */ 271 drrw->drr_checksumtype = ZIO_CHECKSUM_OFF; 272 } else { 273 drrw->drr_checksumtype = BP_GET_CHECKSUM(bp); 274 if (zio_checksum_table[drrw->drr_checksumtype].ci_dedup) 275 drrw->drr_checksumflags |= DRR_CHECKSUM_DEDUP; 276 DDK_SET_LSIZE(&drrw->drr_key, BP_GET_LSIZE(bp)); 277 DDK_SET_PSIZE(&drrw->drr_key, BP_GET_PSIZE(bp)); 278 DDK_SET_COMPRESS(&drrw->drr_key, BP_GET_COMPRESS(bp)); 279 drrw->drr_key.ddk_cksum = bp->blk_cksum; 280 } 281 282 if (dump_record(dsp, data, blksz) != 0) 283 return (SET_ERROR(EINTR)); 284 return (0); 285 } 286 287 static int 288 dump_write_embedded(dmu_sendarg_t *dsp, uint64_t object, uint64_t offset, 289 int blksz, const blkptr_t *bp) 290 { 291 char buf[BPE_PAYLOAD_SIZE]; 292 struct drr_write_embedded *drrw = 293 &(dsp->dsa_drr->drr_u.drr_write_embedded); 294 295 if (dsp->dsa_pending_op != PENDING_NONE) { 296 if (dump_record(dsp, NULL, 0) != 0) 297 return (EINTR); 298 dsp->dsa_pending_op = PENDING_NONE; 299 } 300 301 ASSERT(BP_IS_EMBEDDED(bp)); 302 303 bzero(dsp->dsa_drr, sizeof (dmu_replay_record_t)); 304 dsp->dsa_drr->drr_type = DRR_WRITE_EMBEDDED; 305 drrw->drr_object = object; 306 drrw->drr_offset = offset; 307 drrw->drr_length = blksz; 308 drrw->drr_toguid = dsp->dsa_toguid; 309 drrw->drr_compression = BP_GET_COMPRESS(bp); 310 drrw->drr_etype = BPE_GET_ETYPE(bp); 311 drrw->drr_lsize = BPE_GET_LSIZE(bp); 312 drrw->drr_psize = BPE_GET_PSIZE(bp); 313 314 decode_embedded_bp_compressed(bp, buf); 315 316 if (dump_record(dsp, buf, P2ROUNDUP(drrw->drr_psize, 8)) != 0) 317 return (EINTR); 318 return (0); 319 } 320 321 static int 322 dump_spill(dmu_sendarg_t *dsp, uint64_t object, int blksz, void *data) 323 { 324 struct drr_spill *drrs = &(dsp->dsa_drr->drr_u.drr_spill); 325 326 if (dsp->dsa_pending_op != PENDING_NONE) { 327 if (dump_record(dsp, NULL, 0) != 0) 328 return (SET_ERROR(EINTR)); 329 dsp->dsa_pending_op = PENDING_NONE; 330 } 331 332 /* write a SPILL record */ 333 bzero(dsp->dsa_drr, sizeof (dmu_replay_record_t)); 334 dsp->dsa_drr->drr_type = DRR_SPILL; 335 drrs->drr_object = object; 336 drrs->drr_length = blksz; 337 drrs->drr_toguid = dsp->dsa_toguid; 338 339 if (dump_record(dsp, data, blksz) != 0) 340 return (SET_ERROR(EINTR)); 341 return (0); 342 } 343 344 static int 345 dump_freeobjects(dmu_sendarg_t *dsp, uint64_t firstobj, uint64_t numobjs) 346 { 347 struct drr_freeobjects *drrfo = &(dsp->dsa_drr->drr_u.drr_freeobjects); 348 349 /* See comment in dump_free(). */ 350 if (!dsp->dsa_incremental) 351 return (0); 352 353 /* 354 * If there is a pending op, but it's not PENDING_FREEOBJECTS, 355 * push it out, since free block aggregation can only be done for 356 * blocks of the same type (i.e., DRR_FREE records can only be 357 * aggregated with other DRR_FREE records. DRR_FREEOBJECTS records 358 * can only be aggregated with other DRR_FREEOBJECTS records. 359 */ 360 if (dsp->dsa_pending_op != PENDING_NONE && 361 dsp->dsa_pending_op != PENDING_FREEOBJECTS) { 362 if (dump_record(dsp, NULL, 0) != 0) 363 return (SET_ERROR(EINTR)); 364 dsp->dsa_pending_op = PENDING_NONE; 365 } 366 if (dsp->dsa_pending_op == PENDING_FREEOBJECTS) { 367 /* 368 * See whether this free object array can be aggregated 369 * with pending one 370 */ 371 if (drrfo->drr_firstobj + drrfo->drr_numobjs == firstobj) { 372 drrfo->drr_numobjs += numobjs; 373 return (0); 374 } else { 375 /* can't be aggregated. Push out pending record */ 376 if (dump_record(dsp, NULL, 0) != 0) 377 return (SET_ERROR(EINTR)); 378 dsp->dsa_pending_op = PENDING_NONE; 379 } 380 } 381 382 /* write a FREEOBJECTS record */ 383 bzero(dsp->dsa_drr, sizeof (dmu_replay_record_t)); 384 dsp->dsa_drr->drr_type = DRR_FREEOBJECTS; 385 drrfo->drr_firstobj = firstobj; 386 drrfo->drr_numobjs = numobjs; 387 drrfo->drr_toguid = dsp->dsa_toguid; 388 389 dsp->dsa_pending_op = PENDING_FREEOBJECTS; 390 391 return (0); 392 } 393 394 static int 395 dump_dnode(dmu_sendarg_t *dsp, uint64_t object, dnode_phys_t *dnp) 396 { 397 struct drr_object *drro = &(dsp->dsa_drr->drr_u.drr_object); 398 399 if (object < dsp->dsa_resume_object) { 400 /* 401 * Note: when resuming, we will visit all the dnodes in 402 * the block of dnodes that we are resuming from. In 403 * this case it's unnecessary to send the dnodes prior to 404 * the one we are resuming from. We should be at most one 405 * block's worth of dnodes behind the resume point. 406 */ 407 ASSERT3U(dsp->dsa_resume_object - object, <, 408 1 << (DNODE_BLOCK_SHIFT - DNODE_SHIFT)); 409 return (0); 410 } 411 412 if (dnp == NULL || dnp->dn_type == DMU_OT_NONE) 413 return (dump_freeobjects(dsp, object, 1)); 414 415 if (dsp->dsa_pending_op != PENDING_NONE) { 416 if (dump_record(dsp, NULL, 0) != 0) 417 return (SET_ERROR(EINTR)); 418 dsp->dsa_pending_op = PENDING_NONE; 419 } 420 421 /* write an OBJECT record */ 422 bzero(dsp->dsa_drr, sizeof (dmu_replay_record_t)); 423 dsp->dsa_drr->drr_type = DRR_OBJECT; 424 drro->drr_object = object; 425 drro->drr_type = dnp->dn_type; 426 drro->drr_bonustype = dnp->dn_bonustype; 427 drro->drr_blksz = dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT; 428 drro->drr_bonuslen = dnp->dn_bonuslen; 429 drro->drr_checksumtype = dnp->dn_checksum; 430 drro->drr_compress = dnp->dn_compress; 431 drro->drr_toguid = dsp->dsa_toguid; 432 433 if (!(dsp->dsa_featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS) && 434 drro->drr_blksz > SPA_OLD_MAXBLOCKSIZE) 435 drro->drr_blksz = SPA_OLD_MAXBLOCKSIZE; 436 437 if (dump_record(dsp, DN_BONUS(dnp), 438 P2ROUNDUP(dnp->dn_bonuslen, 8)) != 0) { 439 return (SET_ERROR(EINTR)); 440 } 441 442 /* Free anything past the end of the file. */ 443 if (dump_free(dsp, object, (dnp->dn_maxblkid + 1) * 444 (dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT), -1ULL) != 0) 445 return (SET_ERROR(EINTR)); 446 if (dsp->dsa_err != 0) 447 return (SET_ERROR(EINTR)); 448 return (0); 449 } 450 451 static boolean_t 452 backup_do_embed(dmu_sendarg_t *dsp, const blkptr_t *bp) 453 { 454 if (!BP_IS_EMBEDDED(bp)) 455 return (B_FALSE); 456 457 /* 458 * Compression function must be legacy, or explicitly enabled. 459 */ 460 if ((BP_GET_COMPRESS(bp) >= ZIO_COMPRESS_LEGACY_FUNCTIONS && 461 !(dsp->dsa_featureflags & DMU_BACKUP_FEATURE_EMBED_DATA_LZ4))) 462 return (B_FALSE); 463 464 /* 465 * Embed type must be explicitly enabled. 466 */ 467 switch (BPE_GET_ETYPE(bp)) { 468 case BP_EMBEDDED_TYPE_DATA: 469 if (dsp->dsa_featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) 470 return (B_TRUE); 471 break; 472 default: 473 return (B_FALSE); 474 } 475 return (B_FALSE); 476 } 477 478 /* 479 * This is the callback function to traverse_dataset that acts as the worker 480 * thread for dmu_send_impl. 481 */ 482 /*ARGSUSED*/ 483 static int 484 send_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp, 485 const zbookmark_phys_t *zb, const struct dnode_phys *dnp, void *arg) 486 { 487 struct send_thread_arg *sta = arg; 488 struct send_block_record *record; 489 uint64_t record_size; 490 int err = 0; 491 492 ASSERT(zb->zb_object == DMU_META_DNODE_OBJECT || 493 zb->zb_object >= sta->resume.zb_object); 494 495 if (sta->cancel) 496 return (SET_ERROR(EINTR)); 497 498 if (bp == NULL) { 499 ASSERT3U(zb->zb_level, ==, ZB_DNODE_LEVEL); 500 return (0); 501 } else if (zb->zb_level < 0) { 502 return (0); 503 } 504 505 record = kmem_zalloc(sizeof (struct send_block_record), KM_SLEEP); 506 record->eos_marker = B_FALSE; 507 record->bp = *bp; 508 record->zb = *zb; 509 record->indblkshift = dnp->dn_indblkshift; 510 record->datablkszsec = dnp->dn_datablkszsec; 511 record_size = dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT; 512 bqueue_enqueue(&sta->q, record, record_size); 513 514 return (err); 515 } 516 517 /* 518 * This function kicks off the traverse_dataset. It also handles setting the 519 * error code of the thread in case something goes wrong, and pushes the End of 520 * Stream record when the traverse_dataset call has finished. If there is no 521 * dataset to traverse, the thread immediately pushes End of Stream marker. 522 */ 523 static void 524 send_traverse_thread(void *arg) 525 { 526 struct send_thread_arg *st_arg = arg; 527 int err; 528 struct send_block_record *data; 529 530 if (st_arg->ds != NULL) { 531 err = traverse_dataset_resume(st_arg->ds, 532 st_arg->fromtxg, &st_arg->resume, 533 st_arg->flags, send_cb, st_arg); 534 535 if (err != EINTR) 536 st_arg->error_code = err; 537 } 538 data = kmem_zalloc(sizeof (*data), KM_SLEEP); 539 data->eos_marker = B_TRUE; 540 bqueue_enqueue(&st_arg->q, data, 1); 541 } 542 543 /* 544 * This function actually handles figuring out what kind of record needs to be 545 * dumped, reading the data (which has hopefully been prefetched), and calling 546 * the appropriate helper function. 547 */ 548 static int 549 do_dump(dmu_sendarg_t *dsa, struct send_block_record *data) 550 { 551 dsl_dataset_t *ds = dmu_objset_ds(dsa->dsa_os); 552 const blkptr_t *bp = &data->bp; 553 const zbookmark_phys_t *zb = &data->zb; 554 uint8_t indblkshift = data->indblkshift; 555 uint16_t dblkszsec = data->datablkszsec; 556 spa_t *spa = ds->ds_dir->dd_pool->dp_spa; 557 dmu_object_type_t type = bp ? BP_GET_TYPE(bp) : DMU_OT_NONE; 558 int err = 0; 559 560 ASSERT3U(zb->zb_level, >=, 0); 561 562 ASSERT(zb->zb_object == DMU_META_DNODE_OBJECT || 563 zb->zb_object >= dsa->dsa_resume_object); 564 565 if (zb->zb_object != DMU_META_DNODE_OBJECT && 566 DMU_OBJECT_IS_SPECIAL(zb->zb_object)) { 567 return (0); 568 } else if (BP_IS_HOLE(bp) && 569 zb->zb_object == DMU_META_DNODE_OBJECT) { 570 uint64_t span = BP_SPAN(dblkszsec, indblkshift, zb->zb_level); 571 uint64_t dnobj = (zb->zb_blkid * span) >> DNODE_SHIFT; 572 err = dump_freeobjects(dsa, dnobj, span >> DNODE_SHIFT); 573 } else if (BP_IS_HOLE(bp)) { 574 uint64_t span = BP_SPAN(dblkszsec, indblkshift, zb->zb_level); 575 uint64_t offset = zb->zb_blkid * span; 576 err = dump_free(dsa, zb->zb_object, offset, span); 577 } else if (zb->zb_level > 0 || type == DMU_OT_OBJSET) { 578 return (0); 579 } else if (type == DMU_OT_DNODE) { 580 int blksz = BP_GET_LSIZE(bp); 581 arc_flags_t aflags = ARC_FLAG_WAIT; 582 arc_buf_t *abuf; 583 584 ASSERT0(zb->zb_level); 585 586 if (arc_read(NULL, spa, bp, arc_getbuf_func, &abuf, 587 ZIO_PRIORITY_ASYNC_READ, ZIO_FLAG_CANFAIL, 588 &aflags, zb) != 0) 589 return (SET_ERROR(EIO)); 590 591 dnode_phys_t *blk = abuf->b_data; 592 uint64_t dnobj = zb->zb_blkid * (blksz >> DNODE_SHIFT); 593 for (int i = 0; i < blksz >> DNODE_SHIFT; i++) { 594 err = dump_dnode(dsa, dnobj + i, blk + i); 595 if (err != 0) 596 break; 597 } 598 (void) arc_buf_remove_ref(abuf, &abuf); 599 } else if (type == DMU_OT_SA) { 600 arc_flags_t aflags = ARC_FLAG_WAIT; 601 arc_buf_t *abuf; 602 int blksz = BP_GET_LSIZE(bp); 603 604 if (arc_read(NULL, spa, bp, arc_getbuf_func, &abuf, 605 ZIO_PRIORITY_ASYNC_READ, ZIO_FLAG_CANFAIL, 606 &aflags, zb) != 0) 607 return (SET_ERROR(EIO)); 608 609 err = dump_spill(dsa, zb->zb_object, blksz, abuf->b_data); 610 (void) arc_buf_remove_ref(abuf, &abuf); 611 } else if (backup_do_embed(dsa, bp)) { 612 /* it's an embedded level-0 block of a regular object */ 613 int blksz = dblkszsec << SPA_MINBLOCKSHIFT; 614 ASSERT0(zb->zb_level); 615 err = dump_write_embedded(dsa, zb->zb_object, 616 zb->zb_blkid * blksz, blksz, bp); 617 } else { 618 /* it's a level-0 block of a regular object */ 619 arc_flags_t aflags = ARC_FLAG_WAIT; 620 arc_buf_t *abuf; 621 int blksz = dblkszsec << SPA_MINBLOCKSHIFT; 622 uint64_t offset; 623 624 ASSERT0(zb->zb_level); 625 ASSERT(zb->zb_object > dsa->dsa_resume_object || 626 (zb->zb_object == dsa->dsa_resume_object && 627 zb->zb_blkid * blksz >= dsa->dsa_resume_offset)); 628 629 if (arc_read(NULL, spa, bp, arc_getbuf_func, &abuf, 630 ZIO_PRIORITY_ASYNC_READ, ZIO_FLAG_CANFAIL, 631 &aflags, zb) != 0) { 632 if (zfs_send_corrupt_data) { 633 /* Send a block filled with 0x"zfs badd bloc" */ 634 abuf = arc_buf_alloc(spa, blksz, &abuf, 635 ARC_BUFC_DATA); 636 uint64_t *ptr; 637 for (ptr = abuf->b_data; 638 (char *)ptr < (char *)abuf->b_data + blksz; 639 ptr++) 640 *ptr = 0x2f5baddb10cULL; 641 } else { 642 return (SET_ERROR(EIO)); 643 } 644 } 645 646 offset = zb->zb_blkid * blksz; 647 648 if (!(dsa->dsa_featureflags & 649 DMU_BACKUP_FEATURE_LARGE_BLOCKS) && 650 blksz > SPA_OLD_MAXBLOCKSIZE) { 651 char *buf = abuf->b_data; 652 while (blksz > 0 && err == 0) { 653 int n = MIN(blksz, SPA_OLD_MAXBLOCKSIZE); 654 err = dump_write(dsa, type, zb->zb_object, 655 offset, n, NULL, buf); 656 offset += n; 657 buf += n; 658 blksz -= n; 659 } 660 } else { 661 err = dump_write(dsa, type, zb->zb_object, 662 offset, blksz, bp, abuf->b_data); 663 } 664 (void) arc_buf_remove_ref(abuf, &abuf); 665 } 666 667 ASSERT(err == 0 || err == EINTR); 668 return (err); 669 } 670 671 /* 672 * Pop the new data off the queue, and free the old data. 673 */ 674 static struct send_block_record * 675 get_next_record(bqueue_t *bq, struct send_block_record *data) 676 { 677 struct send_block_record *tmp = bqueue_dequeue(bq); 678 kmem_free(data, sizeof (*data)); 679 return (tmp); 680 } 681 682 /* 683 * Actually do the bulk of the work in a zfs send. 684 * 685 * Note: Releases dp using the specified tag. 686 */ 687 static int 688 dmu_send_impl(void *tag, dsl_pool_t *dp, dsl_dataset_t *to_ds, 689 zfs_bookmark_phys_t *ancestor_zb, 690 boolean_t is_clone, boolean_t embedok, boolean_t large_block_ok, int outfd, 691 uint64_t resumeobj, uint64_t resumeoff, 692 vnode_t *vp, offset_t *off) 693 { 694 objset_t *os; 695 dmu_replay_record_t *drr; 696 dmu_sendarg_t *dsp; 697 int err; 698 uint64_t fromtxg = 0; 699 uint64_t featureflags = 0; 700 struct send_thread_arg to_arg = { 0 }; 701 702 err = dmu_objset_from_ds(to_ds, &os); 703 if (err != 0) { 704 dsl_pool_rele(dp, tag); 705 return (err); 706 } 707 708 drr = kmem_zalloc(sizeof (dmu_replay_record_t), KM_SLEEP); 709 drr->drr_type = DRR_BEGIN; 710 drr->drr_u.drr_begin.drr_magic = DMU_BACKUP_MAGIC; 711 DMU_SET_STREAM_HDRTYPE(drr->drr_u.drr_begin.drr_versioninfo, 712 DMU_SUBSTREAM); 713 714 #ifdef _KERNEL 715 if (dmu_objset_type(os) == DMU_OST_ZFS) { 716 uint64_t version; 717 if (zfs_get_zplprop(os, ZFS_PROP_VERSION, &version) != 0) { 718 kmem_free(drr, sizeof (dmu_replay_record_t)); 719 dsl_pool_rele(dp, tag); 720 return (SET_ERROR(EINVAL)); 721 } 722 if (version >= ZPL_VERSION_SA) { 723 featureflags |= DMU_BACKUP_FEATURE_SA_SPILL; 724 } 725 } 726 #endif 727 728 if (large_block_ok && to_ds->ds_feature_inuse[SPA_FEATURE_LARGE_BLOCKS]) 729 featureflags |= DMU_BACKUP_FEATURE_LARGE_BLOCKS; 730 if (embedok && 731 spa_feature_is_active(dp->dp_spa, SPA_FEATURE_EMBEDDED_DATA)) { 732 featureflags |= DMU_BACKUP_FEATURE_EMBED_DATA; 733 if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_LZ4_COMPRESS)) 734 featureflags |= DMU_BACKUP_FEATURE_EMBED_DATA_LZ4; 735 } 736 737 if (resumeobj != 0 || resumeoff != 0) { 738 featureflags |= DMU_BACKUP_FEATURE_RESUMING; 739 } 740 741 DMU_SET_FEATUREFLAGS(drr->drr_u.drr_begin.drr_versioninfo, 742 featureflags); 743 744 drr->drr_u.drr_begin.drr_creation_time = 745 dsl_dataset_phys(to_ds)->ds_creation_time; 746 drr->drr_u.drr_begin.drr_type = dmu_objset_type(os); 747 if (is_clone) 748 drr->drr_u.drr_begin.drr_flags |= DRR_FLAG_CLONE; 749 drr->drr_u.drr_begin.drr_toguid = dsl_dataset_phys(to_ds)->ds_guid; 750 if (dsl_dataset_phys(to_ds)->ds_flags & DS_FLAG_CI_DATASET) 751 drr->drr_u.drr_begin.drr_flags |= DRR_FLAG_CI_DATA; 752 753 if (ancestor_zb != NULL) { 754 drr->drr_u.drr_begin.drr_fromguid = 755 ancestor_zb->zbm_guid; 756 fromtxg = ancestor_zb->zbm_creation_txg; 757 } 758 dsl_dataset_name(to_ds, drr->drr_u.drr_begin.drr_toname); 759 if (!to_ds->ds_is_snapshot) { 760 (void) strlcat(drr->drr_u.drr_begin.drr_toname, "@--head--", 761 sizeof (drr->drr_u.drr_begin.drr_toname)); 762 } 763 764 dsp = kmem_zalloc(sizeof (dmu_sendarg_t), KM_SLEEP); 765 766 dsp->dsa_drr = drr; 767 dsp->dsa_vp = vp; 768 dsp->dsa_outfd = outfd; 769 dsp->dsa_proc = curproc; 770 dsp->dsa_os = os; 771 dsp->dsa_off = off; 772 dsp->dsa_toguid = dsl_dataset_phys(to_ds)->ds_guid; 773 dsp->dsa_pending_op = PENDING_NONE; 774 dsp->dsa_incremental = (ancestor_zb != NULL); 775 dsp->dsa_featureflags = featureflags; 776 dsp->dsa_resume_object = resumeobj; 777 dsp->dsa_resume_offset = resumeoff; 778 779 mutex_enter(&to_ds->ds_sendstream_lock); 780 list_insert_head(&to_ds->ds_sendstreams, dsp); 781 mutex_exit(&to_ds->ds_sendstream_lock); 782 783 dsl_dataset_long_hold(to_ds, FTAG); 784 dsl_pool_rele(dp, tag); 785 786 void *payload = NULL; 787 size_t payload_len = 0; 788 if (resumeobj != 0 || resumeoff != 0) { 789 dmu_object_info_t to_doi; 790 err = dmu_object_info(os, resumeobj, &to_doi); 791 if (err != 0) 792 goto out; 793 SET_BOOKMARK(&to_arg.resume, to_ds->ds_object, resumeobj, 0, 794 resumeoff / to_doi.doi_data_block_size); 795 796 nvlist_t *nvl = fnvlist_alloc(); 797 fnvlist_add_uint64(nvl, "resume_object", resumeobj); 798 fnvlist_add_uint64(nvl, "resume_offset", resumeoff); 799 payload = fnvlist_pack(nvl, &payload_len); 800 drr->drr_payloadlen = payload_len; 801 fnvlist_free(nvl); 802 } 803 804 err = dump_record(dsp, payload, payload_len); 805 fnvlist_pack_free(payload, payload_len); 806 if (err != 0) { 807 err = dsp->dsa_err; 808 goto out; 809 } 810 811 err = bqueue_init(&to_arg.q, zfs_send_queue_length, 812 offsetof(struct send_block_record, ln)); 813 to_arg.error_code = 0; 814 to_arg.cancel = B_FALSE; 815 to_arg.ds = to_ds; 816 to_arg.fromtxg = fromtxg; 817 to_arg.flags = TRAVERSE_PRE | TRAVERSE_PREFETCH; 818 (void) thread_create(NULL, 0, send_traverse_thread, &to_arg, 0, curproc, 819 TS_RUN, minclsyspri); 820 821 struct send_block_record *to_data; 822 to_data = bqueue_dequeue(&to_arg.q); 823 824 while (!to_data->eos_marker && err == 0) { 825 err = do_dump(dsp, to_data); 826 to_data = get_next_record(&to_arg.q, to_data); 827 if (issig(JUSTLOOKING) && issig(FORREAL)) 828 err = EINTR; 829 } 830 831 if (err != 0) { 832 to_arg.cancel = B_TRUE; 833 while (!to_data->eos_marker) { 834 to_data = get_next_record(&to_arg.q, to_data); 835 } 836 } 837 kmem_free(to_data, sizeof (*to_data)); 838 839 bqueue_destroy(&to_arg.q); 840 841 if (err == 0 && to_arg.error_code != 0) 842 err = to_arg.error_code; 843 844 if (err != 0) 845 goto out; 846 847 if (dsp->dsa_pending_op != PENDING_NONE) 848 if (dump_record(dsp, NULL, 0) != 0) 849 err = SET_ERROR(EINTR); 850 851 if (err != 0) { 852 if (err == EINTR && dsp->dsa_err != 0) 853 err = dsp->dsa_err; 854 goto out; 855 } 856 857 bzero(drr, sizeof (dmu_replay_record_t)); 858 drr->drr_type = DRR_END; 859 drr->drr_u.drr_end.drr_checksum = dsp->dsa_zc; 860 drr->drr_u.drr_end.drr_toguid = dsp->dsa_toguid; 861 862 if (dump_record(dsp, NULL, 0) != 0) 863 err = dsp->dsa_err; 864 865 out: 866 mutex_enter(&to_ds->ds_sendstream_lock); 867 list_remove(&to_ds->ds_sendstreams, dsp); 868 mutex_exit(&to_ds->ds_sendstream_lock); 869 870 kmem_free(drr, sizeof (dmu_replay_record_t)); 871 kmem_free(dsp, sizeof (dmu_sendarg_t)); 872 873 dsl_dataset_long_rele(to_ds, FTAG); 874 875 return (err); 876 } 877 878 int 879 dmu_send_obj(const char *pool, uint64_t tosnap, uint64_t fromsnap, 880 boolean_t embedok, boolean_t large_block_ok, 881 int outfd, vnode_t *vp, offset_t *off) 882 { 883 dsl_pool_t *dp; 884 dsl_dataset_t *ds; 885 dsl_dataset_t *fromds = NULL; 886 int err; 887 888 err = dsl_pool_hold(pool, FTAG, &dp); 889 if (err != 0) 890 return (err); 891 892 err = dsl_dataset_hold_obj(dp, tosnap, FTAG, &ds); 893 if (err != 0) { 894 dsl_pool_rele(dp, FTAG); 895 return (err); 896 } 897 898 if (fromsnap != 0) { 899 zfs_bookmark_phys_t zb; 900 boolean_t is_clone; 901 902 err = dsl_dataset_hold_obj(dp, fromsnap, FTAG, &fromds); 903 if (err != 0) { 904 dsl_dataset_rele(ds, FTAG); 905 dsl_pool_rele(dp, FTAG); 906 return (err); 907 } 908 if (!dsl_dataset_is_before(ds, fromds, 0)) 909 err = SET_ERROR(EXDEV); 910 zb.zbm_creation_time = 911 dsl_dataset_phys(fromds)->ds_creation_time; 912 zb.zbm_creation_txg = dsl_dataset_phys(fromds)->ds_creation_txg; 913 zb.zbm_guid = dsl_dataset_phys(fromds)->ds_guid; 914 is_clone = (fromds->ds_dir != ds->ds_dir); 915 dsl_dataset_rele(fromds, FTAG); 916 err = dmu_send_impl(FTAG, dp, ds, &zb, is_clone, 917 embedok, large_block_ok, outfd, 0, 0, vp, off); 918 } else { 919 err = dmu_send_impl(FTAG, dp, ds, NULL, B_FALSE, 920 embedok, large_block_ok, outfd, 0, 0, vp, off); 921 } 922 dsl_dataset_rele(ds, FTAG); 923 return (err); 924 } 925 926 int 927 dmu_send(const char *tosnap, const char *fromsnap, boolean_t embedok, 928 boolean_t large_block_ok, int outfd, uint64_t resumeobj, uint64_t resumeoff, 929 vnode_t *vp, offset_t *off) 930 { 931 dsl_pool_t *dp; 932 dsl_dataset_t *ds; 933 int err; 934 boolean_t owned = B_FALSE; 935 936 if (fromsnap != NULL && strpbrk(fromsnap, "@#") == NULL) 937 return (SET_ERROR(EINVAL)); 938 939 err = dsl_pool_hold(tosnap, FTAG, &dp); 940 if (err != 0) 941 return (err); 942 943 if (strchr(tosnap, '@') == NULL && spa_writeable(dp->dp_spa)) { 944 /* 945 * We are sending a filesystem or volume. Ensure 946 * that it doesn't change by owning the dataset. 947 */ 948 err = dsl_dataset_own(dp, tosnap, FTAG, &ds); 949 owned = B_TRUE; 950 } else { 951 err = dsl_dataset_hold(dp, tosnap, FTAG, &ds); 952 } 953 if (err != 0) { 954 dsl_pool_rele(dp, FTAG); 955 return (err); 956 } 957 958 if (fromsnap != NULL) { 959 zfs_bookmark_phys_t zb; 960 boolean_t is_clone = B_FALSE; 961 int fsnamelen = strchr(tosnap, '@') - tosnap; 962 963 /* 964 * If the fromsnap is in a different filesystem, then 965 * mark the send stream as a clone. 966 */ 967 if (strncmp(tosnap, fromsnap, fsnamelen) != 0 || 968 (fromsnap[fsnamelen] != '@' && 969 fromsnap[fsnamelen] != '#')) { 970 is_clone = B_TRUE; 971 } 972 973 if (strchr(fromsnap, '@')) { 974 dsl_dataset_t *fromds; 975 err = dsl_dataset_hold(dp, fromsnap, FTAG, &fromds); 976 if (err == 0) { 977 if (!dsl_dataset_is_before(ds, fromds, 0)) 978 err = SET_ERROR(EXDEV); 979 zb.zbm_creation_time = 980 dsl_dataset_phys(fromds)->ds_creation_time; 981 zb.zbm_creation_txg = 982 dsl_dataset_phys(fromds)->ds_creation_txg; 983 zb.zbm_guid = dsl_dataset_phys(fromds)->ds_guid; 984 is_clone = (ds->ds_dir != fromds->ds_dir); 985 dsl_dataset_rele(fromds, FTAG); 986 } 987 } else { 988 err = dsl_bookmark_lookup(dp, fromsnap, ds, &zb); 989 } 990 if (err != 0) { 991 dsl_dataset_rele(ds, FTAG); 992 dsl_pool_rele(dp, FTAG); 993 return (err); 994 } 995 err = dmu_send_impl(FTAG, dp, ds, &zb, is_clone, 996 embedok, large_block_ok, 997 outfd, resumeobj, resumeoff, vp, off); 998 } else { 999 err = dmu_send_impl(FTAG, dp, ds, NULL, B_FALSE, 1000 embedok, large_block_ok, 1001 outfd, resumeobj, resumeoff, vp, off); 1002 } 1003 if (owned) 1004 dsl_dataset_disown(ds, FTAG); 1005 else 1006 dsl_dataset_rele(ds, FTAG); 1007 return (err); 1008 } 1009 1010 static int 1011 dmu_adjust_send_estimate_for_indirects(dsl_dataset_t *ds, uint64_t size, 1012 uint64_t *sizep) 1013 { 1014 int err; 1015 /* 1016 * Assume that space (both on-disk and in-stream) is dominated by 1017 * data. We will adjust for indirect blocks and the copies property, 1018 * but ignore per-object space used (eg, dnodes and DRR_OBJECT records). 1019 */ 1020 1021 /* 1022 * Subtract out approximate space used by indirect blocks. 1023 * Assume most space is used by data blocks (non-indirect, non-dnode). 1024 * Assume all blocks are recordsize. Assume ditto blocks and 1025 * internal fragmentation counter out compression. 1026 * 1027 * Therefore, space used by indirect blocks is sizeof(blkptr_t) per 1028 * block, which we observe in practice. 1029 */ 1030 uint64_t recordsize; 1031 err = dsl_prop_get_int_ds(ds, "recordsize", &recordsize); 1032 if (err != 0) 1033 return (err); 1034 size -= size / recordsize * sizeof (blkptr_t); 1035 1036 /* Add in the space for the record associated with each block. */ 1037 size += size / recordsize * sizeof (dmu_replay_record_t); 1038 1039 *sizep = size; 1040 1041 return (0); 1042 } 1043 1044 int 1045 dmu_send_estimate(dsl_dataset_t *ds, dsl_dataset_t *fromds, uint64_t *sizep) 1046 { 1047 dsl_pool_t *dp = ds->ds_dir->dd_pool; 1048 int err; 1049 uint64_t size; 1050 1051 ASSERT(dsl_pool_config_held(dp)); 1052 1053 /* tosnap must be a snapshot */ 1054 if (!ds->ds_is_snapshot) 1055 return (SET_ERROR(EINVAL)); 1056 1057 /* fromsnap, if provided, must be a snapshot */ 1058 if (fromds != NULL && !fromds->ds_is_snapshot) 1059 return (SET_ERROR(EINVAL)); 1060 1061 /* 1062 * fromsnap must be an earlier snapshot from the same fs as tosnap, 1063 * or the origin's fs. 1064 */ 1065 if (fromds != NULL && !dsl_dataset_is_before(ds, fromds, 0)) 1066 return (SET_ERROR(EXDEV)); 1067 1068 /* Get uncompressed size estimate of changed data. */ 1069 if (fromds == NULL) { 1070 size = dsl_dataset_phys(ds)->ds_uncompressed_bytes; 1071 } else { 1072 uint64_t used, comp; 1073 err = dsl_dataset_space_written(fromds, ds, 1074 &used, &comp, &size); 1075 if (err != 0) 1076 return (err); 1077 } 1078 1079 err = dmu_adjust_send_estimate_for_indirects(ds, size, sizep); 1080 return (err); 1081 } 1082 1083 /* 1084 * Simple callback used to traverse the blocks of a snapshot and sum their 1085 * uncompressed size 1086 */ 1087 /* ARGSUSED */ 1088 static int 1089 dmu_calculate_send_traversal(spa_t *spa, zilog_t *zilog, const blkptr_t *bp, 1090 const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg) 1091 { 1092 uint64_t *spaceptr = arg; 1093 if (bp != NULL && !BP_IS_HOLE(bp)) { 1094 *spaceptr += BP_GET_UCSIZE(bp); 1095 } 1096 return (0); 1097 } 1098 1099 /* 1100 * Given a desination snapshot and a TXG, calculate the approximate size of a 1101 * send stream sent from that TXG. from_txg may be zero, indicating that the 1102 * whole snapshot will be sent. 1103 */ 1104 int 1105 dmu_send_estimate_from_txg(dsl_dataset_t *ds, uint64_t from_txg, 1106 uint64_t *sizep) 1107 { 1108 dsl_pool_t *dp = ds->ds_dir->dd_pool; 1109 int err; 1110 uint64_t size = 0; 1111 1112 ASSERT(dsl_pool_config_held(dp)); 1113 1114 /* tosnap must be a snapshot */ 1115 if (!dsl_dataset_is_snapshot(ds)) 1116 return (SET_ERROR(EINVAL)); 1117 1118 /* verify that from_txg is before the provided snapshot was taken */ 1119 if (from_txg >= dsl_dataset_phys(ds)->ds_creation_txg) { 1120 return (SET_ERROR(EXDEV)); 1121 } 1122 1123 /* 1124 * traverse the blocks of the snapshot with birth times after 1125 * from_txg, summing their uncompressed size 1126 */ 1127 err = traverse_dataset(ds, from_txg, TRAVERSE_POST, 1128 dmu_calculate_send_traversal, &size); 1129 if (err) 1130 return (err); 1131 1132 err = dmu_adjust_send_estimate_for_indirects(ds, size, sizep); 1133 return (err); 1134 } 1135 1136 typedef struct dmu_recv_begin_arg { 1137 const char *drba_origin; 1138 dmu_recv_cookie_t *drba_cookie; 1139 cred_t *drba_cred; 1140 uint64_t drba_snapobj; 1141 } dmu_recv_begin_arg_t; 1142 1143 static int 1144 recv_begin_check_existing_impl(dmu_recv_begin_arg_t *drba, dsl_dataset_t *ds, 1145 uint64_t fromguid) 1146 { 1147 uint64_t val; 1148 int error; 1149 dsl_pool_t *dp = ds->ds_dir->dd_pool; 1150 1151 /* temporary clone name must not exist */ 1152 error = zap_lookup(dp->dp_meta_objset, 1153 dsl_dir_phys(ds->ds_dir)->dd_child_dir_zapobj, recv_clone_name, 1154 8, 1, &val); 1155 if (error != ENOENT) 1156 return (error == 0 ? EBUSY : error); 1157 1158 /* new snapshot name must not exist */ 1159 error = zap_lookup(dp->dp_meta_objset, 1160 dsl_dataset_phys(ds)->ds_snapnames_zapobj, 1161 drba->drba_cookie->drc_tosnap, 8, 1, &val); 1162 if (error != ENOENT) 1163 return (error == 0 ? EEXIST : error); 1164 1165 /* 1166 * Check snapshot limit before receiving. We'll recheck again at the 1167 * end, but might as well abort before receiving if we're already over 1168 * the limit. 1169 * 1170 * Note that we do not check the file system limit with 1171 * dsl_dir_fscount_check because the temporary %clones don't count 1172 * against that limit. 1173 */ 1174 error = dsl_fs_ss_limit_check(ds->ds_dir, 1, ZFS_PROP_SNAPSHOT_LIMIT, 1175 NULL, drba->drba_cred); 1176 if (error != 0) 1177 return (error); 1178 1179 if (fromguid != 0) { 1180 dsl_dataset_t *snap; 1181 uint64_t obj = dsl_dataset_phys(ds)->ds_prev_snap_obj; 1182 1183 /* Find snapshot in this dir that matches fromguid. */ 1184 while (obj != 0) { 1185 error = dsl_dataset_hold_obj(dp, obj, FTAG, 1186 &snap); 1187 if (error != 0) 1188 return (SET_ERROR(ENODEV)); 1189 if (snap->ds_dir != ds->ds_dir) { 1190 dsl_dataset_rele(snap, FTAG); 1191 return (SET_ERROR(ENODEV)); 1192 } 1193 if (dsl_dataset_phys(snap)->ds_guid == fromguid) 1194 break; 1195 obj = dsl_dataset_phys(snap)->ds_prev_snap_obj; 1196 dsl_dataset_rele(snap, FTAG); 1197 } 1198 if (obj == 0) 1199 return (SET_ERROR(ENODEV)); 1200 1201 if (drba->drba_cookie->drc_force) { 1202 drba->drba_snapobj = obj; 1203 } else { 1204 /* 1205 * If we are not forcing, there must be no 1206 * changes since fromsnap. 1207 */ 1208 if (dsl_dataset_modified_since_snap(ds, snap)) { 1209 dsl_dataset_rele(snap, FTAG); 1210 return (SET_ERROR(ETXTBSY)); 1211 } 1212 drba->drba_snapobj = ds->ds_prev->ds_object; 1213 } 1214 1215 dsl_dataset_rele(snap, FTAG); 1216 } else { 1217 /* if full, then must be forced */ 1218 if (!drba->drba_cookie->drc_force) 1219 return (SET_ERROR(EEXIST)); 1220 /* start from $ORIGIN@$ORIGIN, if supported */ 1221 drba->drba_snapobj = dp->dp_origin_snap != NULL ? 1222 dp->dp_origin_snap->ds_object : 0; 1223 } 1224 1225 return (0); 1226 1227 } 1228 1229 static int 1230 dmu_recv_begin_check(void *arg, dmu_tx_t *tx) 1231 { 1232 dmu_recv_begin_arg_t *drba = arg; 1233 dsl_pool_t *dp = dmu_tx_pool(tx); 1234 struct drr_begin *drrb = drba->drba_cookie->drc_drrb; 1235 uint64_t fromguid = drrb->drr_fromguid; 1236 int flags = drrb->drr_flags; 1237 int error; 1238 uint64_t featureflags = DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo); 1239 dsl_dataset_t *ds; 1240 const char *tofs = drba->drba_cookie->drc_tofs; 1241 1242 /* already checked */ 1243 ASSERT3U(drrb->drr_magic, ==, DMU_BACKUP_MAGIC); 1244 ASSERT(!(featureflags & DMU_BACKUP_FEATURE_RESUMING)); 1245 1246 if (DMU_GET_STREAM_HDRTYPE(drrb->drr_versioninfo) == 1247 DMU_COMPOUNDSTREAM || 1248 drrb->drr_type >= DMU_OST_NUMTYPES || 1249 ((flags & DRR_FLAG_CLONE) && drba->drba_origin == NULL)) 1250 return (SET_ERROR(EINVAL)); 1251 1252 /* Verify pool version supports SA if SA_SPILL feature set */ 1253 if ((featureflags & DMU_BACKUP_FEATURE_SA_SPILL) && 1254 spa_version(dp->dp_spa) < SPA_VERSION_SA) 1255 return (SET_ERROR(ENOTSUP)); 1256 1257 if (drba->drba_cookie->drc_resumable && 1258 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_EXTENSIBLE_DATASET)) 1259 return (SET_ERROR(ENOTSUP)); 1260 1261 /* 1262 * The receiving code doesn't know how to translate a WRITE_EMBEDDED 1263 * record to a plan WRITE record, so the pool must have the 1264 * EMBEDDED_DATA feature enabled if the stream has WRITE_EMBEDDED 1265 * records. Same with WRITE_EMBEDDED records that use LZ4 compression. 1266 */ 1267 if ((featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) && 1268 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_EMBEDDED_DATA)) 1269 return (SET_ERROR(ENOTSUP)); 1270 if ((featureflags & DMU_BACKUP_FEATURE_EMBED_DATA_LZ4) && 1271 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_LZ4_COMPRESS)) 1272 return (SET_ERROR(ENOTSUP)); 1273 1274 /* 1275 * The receiving code doesn't know how to translate large blocks 1276 * to smaller ones, so the pool must have the LARGE_BLOCKS 1277 * feature enabled if the stream has LARGE_BLOCKS. 1278 */ 1279 if ((featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS) && 1280 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_LARGE_BLOCKS)) 1281 return (SET_ERROR(ENOTSUP)); 1282 1283 error = dsl_dataset_hold(dp, tofs, FTAG, &ds); 1284 if (error == 0) { 1285 /* target fs already exists; recv into temp clone */ 1286 1287 /* Can't recv a clone into an existing fs */ 1288 if (flags & DRR_FLAG_CLONE) { 1289 dsl_dataset_rele(ds, FTAG); 1290 return (SET_ERROR(EINVAL)); 1291 } 1292 1293 error = recv_begin_check_existing_impl(drba, ds, fromguid); 1294 dsl_dataset_rele(ds, FTAG); 1295 } else if (error == ENOENT) { 1296 /* target fs does not exist; must be a full backup or clone */ 1297 char buf[ZFS_MAX_DATASET_NAME_LEN]; 1298 1299 /* 1300 * If it's a non-clone incremental, we are missing the 1301 * target fs, so fail the recv. 1302 */ 1303 if (fromguid != 0 && !(flags & DRR_FLAG_CLONE || 1304 drba->drba_origin)) 1305 return (SET_ERROR(ENOENT)); 1306 1307 /* Open the parent of tofs */ 1308 ASSERT3U(strlen(tofs), <, sizeof (buf)); 1309 (void) strlcpy(buf, tofs, strrchr(tofs, '/') - tofs + 1); 1310 error = dsl_dataset_hold(dp, buf, FTAG, &ds); 1311 if (error != 0) 1312 return (error); 1313 1314 /* 1315 * Check filesystem and snapshot limits before receiving. We'll 1316 * recheck snapshot limits again at the end (we create the 1317 * filesystems and increment those counts during begin_sync). 1318 */ 1319 error = dsl_fs_ss_limit_check(ds->ds_dir, 1, 1320 ZFS_PROP_FILESYSTEM_LIMIT, NULL, drba->drba_cred); 1321 if (error != 0) { 1322 dsl_dataset_rele(ds, FTAG); 1323 return (error); 1324 } 1325 1326 error = dsl_fs_ss_limit_check(ds->ds_dir, 1, 1327 ZFS_PROP_SNAPSHOT_LIMIT, NULL, drba->drba_cred); 1328 if (error != 0) { 1329 dsl_dataset_rele(ds, FTAG); 1330 return (error); 1331 } 1332 1333 if (drba->drba_origin != NULL) { 1334 dsl_dataset_t *origin; 1335 error = dsl_dataset_hold(dp, drba->drba_origin, 1336 FTAG, &origin); 1337 if (error != 0) { 1338 dsl_dataset_rele(ds, FTAG); 1339 return (error); 1340 } 1341 if (!origin->ds_is_snapshot) { 1342 dsl_dataset_rele(origin, FTAG); 1343 dsl_dataset_rele(ds, FTAG); 1344 return (SET_ERROR(EINVAL)); 1345 } 1346 if (dsl_dataset_phys(origin)->ds_guid != fromguid) { 1347 dsl_dataset_rele(origin, FTAG); 1348 dsl_dataset_rele(ds, FTAG); 1349 return (SET_ERROR(ENODEV)); 1350 } 1351 dsl_dataset_rele(origin, FTAG); 1352 } 1353 dsl_dataset_rele(ds, FTAG); 1354 error = 0; 1355 } 1356 return (error); 1357 } 1358 1359 static void 1360 dmu_recv_begin_sync(void *arg, dmu_tx_t *tx) 1361 { 1362 dmu_recv_begin_arg_t *drba = arg; 1363 dsl_pool_t *dp = dmu_tx_pool(tx); 1364 objset_t *mos = dp->dp_meta_objset; 1365 struct drr_begin *drrb = drba->drba_cookie->drc_drrb; 1366 const char *tofs = drba->drba_cookie->drc_tofs; 1367 dsl_dataset_t *ds, *newds; 1368 uint64_t dsobj; 1369 int error; 1370 uint64_t crflags = 0; 1371 1372 if (drrb->drr_flags & DRR_FLAG_CI_DATA) 1373 crflags |= DS_FLAG_CI_DATASET; 1374 1375 error = dsl_dataset_hold(dp, tofs, FTAG, &ds); 1376 if (error == 0) { 1377 /* create temporary clone */ 1378 dsl_dataset_t *snap = NULL; 1379 if (drba->drba_snapobj != 0) { 1380 VERIFY0(dsl_dataset_hold_obj(dp, 1381 drba->drba_snapobj, FTAG, &snap)); 1382 } 1383 dsobj = dsl_dataset_create_sync(ds->ds_dir, recv_clone_name, 1384 snap, crflags, drba->drba_cred, tx); 1385 if (drba->drba_snapobj != 0) 1386 dsl_dataset_rele(snap, FTAG); 1387 dsl_dataset_rele(ds, FTAG); 1388 } else { 1389 dsl_dir_t *dd; 1390 const char *tail; 1391 dsl_dataset_t *origin = NULL; 1392 1393 VERIFY0(dsl_dir_hold(dp, tofs, FTAG, &dd, &tail)); 1394 1395 if (drba->drba_origin != NULL) { 1396 VERIFY0(dsl_dataset_hold(dp, drba->drba_origin, 1397 FTAG, &origin)); 1398 } 1399 1400 /* Create new dataset. */ 1401 dsobj = dsl_dataset_create_sync(dd, 1402 strrchr(tofs, '/') + 1, 1403 origin, crflags, drba->drba_cred, tx); 1404 if (origin != NULL) 1405 dsl_dataset_rele(origin, FTAG); 1406 dsl_dir_rele(dd, FTAG); 1407 drba->drba_cookie->drc_newfs = B_TRUE; 1408 } 1409 VERIFY0(dsl_dataset_own_obj(dp, dsobj, dmu_recv_tag, &newds)); 1410 1411 if (drba->drba_cookie->drc_resumable) { 1412 dsl_dataset_zapify(newds, tx); 1413 if (drrb->drr_fromguid != 0) { 1414 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_FROMGUID, 1415 8, 1, &drrb->drr_fromguid, tx)); 1416 } 1417 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_TOGUID, 1418 8, 1, &drrb->drr_toguid, tx)); 1419 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_TONAME, 1420 1, strlen(drrb->drr_toname) + 1, drrb->drr_toname, tx)); 1421 uint64_t one = 1; 1422 uint64_t zero = 0; 1423 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_OBJECT, 1424 8, 1, &one, tx)); 1425 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_OFFSET, 1426 8, 1, &zero, tx)); 1427 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_BYTES, 1428 8, 1, &zero, tx)); 1429 if (DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo) & 1430 DMU_BACKUP_FEATURE_EMBED_DATA) { 1431 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_EMBEDOK, 1432 8, 1, &one, tx)); 1433 } 1434 } 1435 1436 dmu_buf_will_dirty(newds->ds_dbuf, tx); 1437 dsl_dataset_phys(newds)->ds_flags |= DS_FLAG_INCONSISTENT; 1438 1439 /* 1440 * If we actually created a non-clone, we need to create the 1441 * objset in our new dataset. 1442 */ 1443 if (BP_IS_HOLE(dsl_dataset_get_blkptr(newds))) { 1444 (void) dmu_objset_create_impl(dp->dp_spa, 1445 newds, dsl_dataset_get_blkptr(newds), drrb->drr_type, tx); 1446 } 1447 1448 drba->drba_cookie->drc_ds = newds; 1449 1450 spa_history_log_internal_ds(newds, "receive", tx, ""); 1451 } 1452 1453 static int 1454 dmu_recv_resume_begin_check(void *arg, dmu_tx_t *tx) 1455 { 1456 dmu_recv_begin_arg_t *drba = arg; 1457 dsl_pool_t *dp = dmu_tx_pool(tx); 1458 struct drr_begin *drrb = drba->drba_cookie->drc_drrb; 1459 int error; 1460 uint64_t featureflags = DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo); 1461 dsl_dataset_t *ds; 1462 const char *tofs = drba->drba_cookie->drc_tofs; 1463 1464 /* already checked */ 1465 ASSERT3U(drrb->drr_magic, ==, DMU_BACKUP_MAGIC); 1466 ASSERT(featureflags & DMU_BACKUP_FEATURE_RESUMING); 1467 1468 if (DMU_GET_STREAM_HDRTYPE(drrb->drr_versioninfo) == 1469 DMU_COMPOUNDSTREAM || 1470 drrb->drr_type >= DMU_OST_NUMTYPES) 1471 return (SET_ERROR(EINVAL)); 1472 1473 /* Verify pool version supports SA if SA_SPILL feature set */ 1474 if ((featureflags & DMU_BACKUP_FEATURE_SA_SPILL) && 1475 spa_version(dp->dp_spa) < SPA_VERSION_SA) 1476 return (SET_ERROR(ENOTSUP)); 1477 1478 /* 1479 * The receiving code doesn't know how to translate a WRITE_EMBEDDED 1480 * record to a plain WRITE record, so the pool must have the 1481 * EMBEDDED_DATA feature enabled if the stream has WRITE_EMBEDDED 1482 * records. Same with WRITE_EMBEDDED records that use LZ4 compression. 1483 */ 1484 if ((featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) && 1485 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_EMBEDDED_DATA)) 1486 return (SET_ERROR(ENOTSUP)); 1487 if ((featureflags & DMU_BACKUP_FEATURE_EMBED_DATA_LZ4) && 1488 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_LZ4_COMPRESS)) 1489 return (SET_ERROR(ENOTSUP)); 1490 1491 /* 6 extra bytes for /%recv */ 1492 char recvname[ZFS_MAX_DATASET_NAME_LEN + 6]; 1493 1494 (void) snprintf(recvname, sizeof (recvname), "%s/%s", 1495 tofs, recv_clone_name); 1496 1497 if (dsl_dataset_hold(dp, recvname, FTAG, &ds) != 0) { 1498 /* %recv does not exist; continue in tofs */ 1499 error = dsl_dataset_hold(dp, tofs, FTAG, &ds); 1500 if (error != 0) 1501 return (error); 1502 } 1503 1504 /* check that ds is marked inconsistent */ 1505 if (!DS_IS_INCONSISTENT(ds)) { 1506 dsl_dataset_rele(ds, FTAG); 1507 return (SET_ERROR(EINVAL)); 1508 } 1509 1510 /* check that there is resuming data, and that the toguid matches */ 1511 if (!dsl_dataset_is_zapified(ds)) { 1512 dsl_dataset_rele(ds, FTAG); 1513 return (SET_ERROR(EINVAL)); 1514 } 1515 uint64_t val; 1516 error = zap_lookup(dp->dp_meta_objset, ds->ds_object, 1517 DS_FIELD_RESUME_TOGUID, sizeof (val), 1, &val); 1518 if (error != 0 || drrb->drr_toguid != val) { 1519 dsl_dataset_rele(ds, FTAG); 1520 return (SET_ERROR(EINVAL)); 1521 } 1522 1523 /* 1524 * Check if the receive is still running. If so, it will be owned. 1525 * Note that nothing else can own the dataset (e.g. after the receive 1526 * fails) because it will be marked inconsistent. 1527 */ 1528 if (dsl_dataset_has_owner(ds)) { 1529 dsl_dataset_rele(ds, FTAG); 1530 return (SET_ERROR(EBUSY)); 1531 } 1532 1533 /* There should not be any snapshots of this fs yet. */ 1534 if (ds->ds_prev != NULL && ds->ds_prev->ds_dir == ds->ds_dir) { 1535 dsl_dataset_rele(ds, FTAG); 1536 return (SET_ERROR(EINVAL)); 1537 } 1538 1539 /* 1540 * Note: resume point will be checked when we process the first WRITE 1541 * record. 1542 */ 1543 1544 /* check that the origin matches */ 1545 val = 0; 1546 (void) zap_lookup(dp->dp_meta_objset, ds->ds_object, 1547 DS_FIELD_RESUME_FROMGUID, sizeof (val), 1, &val); 1548 if (drrb->drr_fromguid != val) { 1549 dsl_dataset_rele(ds, FTAG); 1550 return (SET_ERROR(EINVAL)); 1551 } 1552 1553 dsl_dataset_rele(ds, FTAG); 1554 return (0); 1555 } 1556 1557 static void 1558 dmu_recv_resume_begin_sync(void *arg, dmu_tx_t *tx) 1559 { 1560 dmu_recv_begin_arg_t *drba = arg; 1561 dsl_pool_t *dp = dmu_tx_pool(tx); 1562 const char *tofs = drba->drba_cookie->drc_tofs; 1563 dsl_dataset_t *ds; 1564 uint64_t dsobj; 1565 /* 6 extra bytes for /%recv */ 1566 char recvname[ZFS_MAX_DATASET_NAME_LEN + 6]; 1567 1568 (void) snprintf(recvname, sizeof (recvname), "%s/%s", 1569 tofs, recv_clone_name); 1570 1571 if (dsl_dataset_hold(dp, recvname, FTAG, &ds) != 0) { 1572 /* %recv does not exist; continue in tofs */ 1573 VERIFY0(dsl_dataset_hold(dp, tofs, FTAG, &ds)); 1574 drba->drba_cookie->drc_newfs = B_TRUE; 1575 } 1576 1577 /* clear the inconsistent flag so that we can own it */ 1578 ASSERT(DS_IS_INCONSISTENT(ds)); 1579 dmu_buf_will_dirty(ds->ds_dbuf, tx); 1580 dsl_dataset_phys(ds)->ds_flags &= ~DS_FLAG_INCONSISTENT; 1581 dsobj = ds->ds_object; 1582 dsl_dataset_rele(ds, FTAG); 1583 1584 VERIFY0(dsl_dataset_own_obj(dp, dsobj, dmu_recv_tag, &ds)); 1585 1586 dmu_buf_will_dirty(ds->ds_dbuf, tx); 1587 dsl_dataset_phys(ds)->ds_flags |= DS_FLAG_INCONSISTENT; 1588 1589 ASSERT(!BP_IS_HOLE(dsl_dataset_get_blkptr(ds))); 1590 1591 drba->drba_cookie->drc_ds = ds; 1592 1593 spa_history_log_internal_ds(ds, "resume receive", tx, ""); 1594 } 1595 1596 /* 1597 * NB: callers *MUST* call dmu_recv_stream() if dmu_recv_begin() 1598 * succeeds; otherwise we will leak the holds on the datasets. 1599 */ 1600 int 1601 dmu_recv_begin(char *tofs, char *tosnap, dmu_replay_record_t *drr_begin, 1602 boolean_t force, boolean_t resumable, char *origin, dmu_recv_cookie_t *drc) 1603 { 1604 dmu_recv_begin_arg_t drba = { 0 }; 1605 1606 bzero(drc, sizeof (dmu_recv_cookie_t)); 1607 drc->drc_drr_begin = drr_begin; 1608 drc->drc_drrb = &drr_begin->drr_u.drr_begin; 1609 drc->drc_tosnap = tosnap; 1610 drc->drc_tofs = tofs; 1611 drc->drc_force = force; 1612 drc->drc_resumable = resumable; 1613 drc->drc_cred = CRED(); 1614 1615 if (drc->drc_drrb->drr_magic == BSWAP_64(DMU_BACKUP_MAGIC)) { 1616 drc->drc_byteswap = B_TRUE; 1617 fletcher_4_incremental_byteswap(drr_begin, 1618 sizeof (dmu_replay_record_t), &drc->drc_cksum); 1619 byteswap_record(drr_begin); 1620 } else if (drc->drc_drrb->drr_magic == DMU_BACKUP_MAGIC) { 1621 fletcher_4_incremental_native(drr_begin, 1622 sizeof (dmu_replay_record_t), &drc->drc_cksum); 1623 } else { 1624 return (SET_ERROR(EINVAL)); 1625 } 1626 1627 drba.drba_origin = origin; 1628 drba.drba_cookie = drc; 1629 drba.drba_cred = CRED(); 1630 1631 if (DMU_GET_FEATUREFLAGS(drc->drc_drrb->drr_versioninfo) & 1632 DMU_BACKUP_FEATURE_RESUMING) { 1633 return (dsl_sync_task(tofs, 1634 dmu_recv_resume_begin_check, dmu_recv_resume_begin_sync, 1635 &drba, 5, ZFS_SPACE_CHECK_NORMAL)); 1636 } else { 1637 return (dsl_sync_task(tofs, 1638 dmu_recv_begin_check, dmu_recv_begin_sync, 1639 &drba, 5, ZFS_SPACE_CHECK_NORMAL)); 1640 } 1641 } 1642 1643 struct receive_record_arg { 1644 dmu_replay_record_t header; 1645 void *payload; /* Pointer to a buffer containing the payload */ 1646 /* 1647 * If the record is a write, pointer to the arc_buf_t containing the 1648 * payload. 1649 */ 1650 arc_buf_t *write_buf; 1651 int payload_size; 1652 uint64_t bytes_read; /* bytes read from stream when record created */ 1653 boolean_t eos_marker; /* Marks the end of the stream */ 1654 bqueue_node_t node; 1655 }; 1656 1657 struct receive_writer_arg { 1658 objset_t *os; 1659 boolean_t byteswap; 1660 bqueue_t q; 1661 1662 /* 1663 * These three args are used to signal to the main thread that we're 1664 * done. 1665 */ 1666 kmutex_t mutex; 1667 kcondvar_t cv; 1668 boolean_t done; 1669 1670 int err; 1671 /* A map from guid to dataset to help handle dedup'd streams. */ 1672 avl_tree_t *guid_to_ds_map; 1673 boolean_t resumable; 1674 uint64_t last_object, last_offset; 1675 uint64_t bytes_read; /* bytes read when current record created */ 1676 }; 1677 1678 struct receive_arg { 1679 objset_t *os; 1680 vnode_t *vp; /* The vnode to read the stream from */ 1681 uint64_t voff; /* The current offset in the stream */ 1682 uint64_t bytes_read; 1683 /* 1684 * A record that has had its payload read in, but hasn't yet been handed 1685 * off to the worker thread. 1686 */ 1687 struct receive_record_arg *rrd; 1688 /* A record that has had its header read in, but not its payload. */ 1689 struct receive_record_arg *next_rrd; 1690 zio_cksum_t cksum; 1691 zio_cksum_t prev_cksum; 1692 int err; 1693 boolean_t byteswap; 1694 /* Sorted list of objects not to issue prefetches for. */ 1695 list_t ignore_obj_list; 1696 }; 1697 1698 struct receive_ign_obj_node { 1699 list_node_t node; 1700 uint64_t object; 1701 }; 1702 1703 typedef struct guid_map_entry { 1704 uint64_t guid; 1705 dsl_dataset_t *gme_ds; 1706 avl_node_t avlnode; 1707 } guid_map_entry_t; 1708 1709 static int 1710 guid_compare(const void *arg1, const void *arg2) 1711 { 1712 const guid_map_entry_t *gmep1 = arg1; 1713 const guid_map_entry_t *gmep2 = arg2; 1714 1715 if (gmep1->guid < gmep2->guid) 1716 return (-1); 1717 else if (gmep1->guid > gmep2->guid) 1718 return (1); 1719 return (0); 1720 } 1721 1722 static void 1723 free_guid_map_onexit(void *arg) 1724 { 1725 avl_tree_t *ca = arg; 1726 void *cookie = NULL; 1727 guid_map_entry_t *gmep; 1728 1729 while ((gmep = avl_destroy_nodes(ca, &cookie)) != NULL) { 1730 dsl_dataset_long_rele(gmep->gme_ds, gmep); 1731 dsl_dataset_rele(gmep->gme_ds, gmep); 1732 kmem_free(gmep, sizeof (guid_map_entry_t)); 1733 } 1734 avl_destroy(ca); 1735 kmem_free(ca, sizeof (avl_tree_t)); 1736 } 1737 1738 static int 1739 receive_read(struct receive_arg *ra, int len, void *buf) 1740 { 1741 int done = 0; 1742 1743 /* some things will require 8-byte alignment, so everything must */ 1744 ASSERT0(len % 8); 1745 1746 while (done < len) { 1747 ssize_t resid; 1748 1749 ra->err = vn_rdwr(UIO_READ, ra->vp, 1750 (char *)buf + done, len - done, 1751 ra->voff, UIO_SYSSPACE, FAPPEND, 1752 RLIM64_INFINITY, CRED(), &resid); 1753 1754 if (resid == len - done) { 1755 /* 1756 * Note: ECKSUM indicates that the receive 1757 * was interrupted and can potentially be resumed. 1758 */ 1759 ra->err = SET_ERROR(ECKSUM); 1760 } 1761 ra->voff += len - done - resid; 1762 done = len - resid; 1763 if (ra->err != 0) 1764 return (ra->err); 1765 } 1766 1767 ra->bytes_read += len; 1768 1769 ASSERT3U(done, ==, len); 1770 return (0); 1771 } 1772 1773 static void 1774 byteswap_record(dmu_replay_record_t *drr) 1775 { 1776 #define DO64(X) (drr->drr_u.X = BSWAP_64(drr->drr_u.X)) 1777 #define DO32(X) (drr->drr_u.X = BSWAP_32(drr->drr_u.X)) 1778 drr->drr_type = BSWAP_32(drr->drr_type); 1779 drr->drr_payloadlen = BSWAP_32(drr->drr_payloadlen); 1780 1781 switch (drr->drr_type) { 1782 case DRR_BEGIN: 1783 DO64(drr_begin.drr_magic); 1784 DO64(drr_begin.drr_versioninfo); 1785 DO64(drr_begin.drr_creation_time); 1786 DO32(drr_begin.drr_type); 1787 DO32(drr_begin.drr_flags); 1788 DO64(drr_begin.drr_toguid); 1789 DO64(drr_begin.drr_fromguid); 1790 break; 1791 case DRR_OBJECT: 1792 DO64(drr_object.drr_object); 1793 DO32(drr_object.drr_type); 1794 DO32(drr_object.drr_bonustype); 1795 DO32(drr_object.drr_blksz); 1796 DO32(drr_object.drr_bonuslen); 1797 DO64(drr_object.drr_toguid); 1798 break; 1799 case DRR_FREEOBJECTS: 1800 DO64(drr_freeobjects.drr_firstobj); 1801 DO64(drr_freeobjects.drr_numobjs); 1802 DO64(drr_freeobjects.drr_toguid); 1803 break; 1804 case DRR_WRITE: 1805 DO64(drr_write.drr_object); 1806 DO32(drr_write.drr_type); 1807 DO64(drr_write.drr_offset); 1808 DO64(drr_write.drr_length); 1809 DO64(drr_write.drr_toguid); 1810 ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_write.drr_key.ddk_cksum); 1811 DO64(drr_write.drr_key.ddk_prop); 1812 break; 1813 case DRR_WRITE_BYREF: 1814 DO64(drr_write_byref.drr_object); 1815 DO64(drr_write_byref.drr_offset); 1816 DO64(drr_write_byref.drr_length); 1817 DO64(drr_write_byref.drr_toguid); 1818 DO64(drr_write_byref.drr_refguid); 1819 DO64(drr_write_byref.drr_refobject); 1820 DO64(drr_write_byref.drr_refoffset); 1821 ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_write_byref. 1822 drr_key.ddk_cksum); 1823 DO64(drr_write_byref.drr_key.ddk_prop); 1824 break; 1825 case DRR_WRITE_EMBEDDED: 1826 DO64(drr_write_embedded.drr_object); 1827 DO64(drr_write_embedded.drr_offset); 1828 DO64(drr_write_embedded.drr_length); 1829 DO64(drr_write_embedded.drr_toguid); 1830 DO32(drr_write_embedded.drr_lsize); 1831 DO32(drr_write_embedded.drr_psize); 1832 break; 1833 case DRR_FREE: 1834 DO64(drr_free.drr_object); 1835 DO64(drr_free.drr_offset); 1836 DO64(drr_free.drr_length); 1837 DO64(drr_free.drr_toguid); 1838 break; 1839 case DRR_SPILL: 1840 DO64(drr_spill.drr_object); 1841 DO64(drr_spill.drr_length); 1842 DO64(drr_spill.drr_toguid); 1843 break; 1844 case DRR_END: 1845 DO64(drr_end.drr_toguid); 1846 ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_end.drr_checksum); 1847 break; 1848 } 1849 1850 if (drr->drr_type != DRR_BEGIN) { 1851 ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_checksum.drr_checksum); 1852 } 1853 1854 #undef DO64 1855 #undef DO32 1856 } 1857 1858 static inline uint8_t 1859 deduce_nblkptr(dmu_object_type_t bonus_type, uint64_t bonus_size) 1860 { 1861 if (bonus_type == DMU_OT_SA) { 1862 return (1); 1863 } else { 1864 return (1 + 1865 ((DN_MAX_BONUSLEN - bonus_size) >> SPA_BLKPTRSHIFT)); 1866 } 1867 } 1868 1869 static void 1870 save_resume_state(struct receive_writer_arg *rwa, 1871 uint64_t object, uint64_t offset, dmu_tx_t *tx) 1872 { 1873 int txgoff = dmu_tx_get_txg(tx) & TXG_MASK; 1874 1875 if (!rwa->resumable) 1876 return; 1877 1878 /* 1879 * We use ds_resume_bytes[] != 0 to indicate that we need to 1880 * update this on disk, so it must not be 0. 1881 */ 1882 ASSERT(rwa->bytes_read != 0); 1883 1884 /* 1885 * We only resume from write records, which have a valid 1886 * (non-meta-dnode) object number. 1887 */ 1888 ASSERT(object != 0); 1889 1890 /* 1891 * For resuming to work correctly, we must receive records in order, 1892 * sorted by object,offset. This is checked by the callers, but 1893 * assert it here for good measure. 1894 */ 1895 ASSERT3U(object, >=, rwa->os->os_dsl_dataset->ds_resume_object[txgoff]); 1896 ASSERT(object != rwa->os->os_dsl_dataset->ds_resume_object[txgoff] || 1897 offset >= rwa->os->os_dsl_dataset->ds_resume_offset[txgoff]); 1898 ASSERT3U(rwa->bytes_read, >=, 1899 rwa->os->os_dsl_dataset->ds_resume_bytes[txgoff]); 1900 1901 rwa->os->os_dsl_dataset->ds_resume_object[txgoff] = object; 1902 rwa->os->os_dsl_dataset->ds_resume_offset[txgoff] = offset; 1903 rwa->os->os_dsl_dataset->ds_resume_bytes[txgoff] = rwa->bytes_read; 1904 } 1905 1906 static int 1907 receive_object(struct receive_writer_arg *rwa, struct drr_object *drro, 1908 void *data) 1909 { 1910 dmu_object_info_t doi; 1911 dmu_tx_t *tx; 1912 uint64_t object; 1913 int err; 1914 1915 if (drro->drr_type == DMU_OT_NONE || 1916 !DMU_OT_IS_VALID(drro->drr_type) || 1917 !DMU_OT_IS_VALID(drro->drr_bonustype) || 1918 drro->drr_checksumtype >= ZIO_CHECKSUM_FUNCTIONS || 1919 drro->drr_compress >= ZIO_COMPRESS_FUNCTIONS || 1920 P2PHASE(drro->drr_blksz, SPA_MINBLOCKSIZE) || 1921 drro->drr_blksz < SPA_MINBLOCKSIZE || 1922 drro->drr_blksz > spa_maxblocksize(dmu_objset_spa(rwa->os)) || 1923 drro->drr_bonuslen > DN_MAX_BONUSLEN) { 1924 return (SET_ERROR(EINVAL)); 1925 } 1926 1927 err = dmu_object_info(rwa->os, drro->drr_object, &doi); 1928 1929 if (err != 0 && err != ENOENT) 1930 return (SET_ERROR(EINVAL)); 1931 object = err == 0 ? drro->drr_object : DMU_NEW_OBJECT; 1932 1933 /* 1934 * If we are losing blkptrs or changing the block size this must 1935 * be a new file instance. We must clear out the previous file 1936 * contents before we can change this type of metadata in the dnode. 1937 */ 1938 if (err == 0) { 1939 int nblkptr; 1940 1941 nblkptr = deduce_nblkptr(drro->drr_bonustype, 1942 drro->drr_bonuslen); 1943 1944 if (drro->drr_blksz != doi.doi_data_block_size || 1945 nblkptr < doi.doi_nblkptr) { 1946 err = dmu_free_long_range(rwa->os, drro->drr_object, 1947 0, DMU_OBJECT_END); 1948 if (err != 0) 1949 return (SET_ERROR(EINVAL)); 1950 } 1951 } 1952 1953 tx = dmu_tx_create(rwa->os); 1954 dmu_tx_hold_bonus(tx, object); 1955 err = dmu_tx_assign(tx, TXG_WAIT); 1956 if (err != 0) { 1957 dmu_tx_abort(tx); 1958 return (err); 1959 } 1960 1961 if (object == DMU_NEW_OBJECT) { 1962 /* currently free, want to be allocated */ 1963 err = dmu_object_claim(rwa->os, drro->drr_object, 1964 drro->drr_type, drro->drr_blksz, 1965 drro->drr_bonustype, drro->drr_bonuslen, tx); 1966 } else if (drro->drr_type != doi.doi_type || 1967 drro->drr_blksz != doi.doi_data_block_size || 1968 drro->drr_bonustype != doi.doi_bonus_type || 1969 drro->drr_bonuslen != doi.doi_bonus_size) { 1970 /* currently allocated, but with different properties */ 1971 err = dmu_object_reclaim(rwa->os, drro->drr_object, 1972 drro->drr_type, drro->drr_blksz, 1973 drro->drr_bonustype, drro->drr_bonuslen, tx); 1974 } 1975 if (err != 0) { 1976 dmu_tx_commit(tx); 1977 return (SET_ERROR(EINVAL)); 1978 } 1979 1980 dmu_object_set_checksum(rwa->os, drro->drr_object, 1981 drro->drr_checksumtype, tx); 1982 dmu_object_set_compress(rwa->os, drro->drr_object, 1983 drro->drr_compress, tx); 1984 1985 if (data != NULL) { 1986 dmu_buf_t *db; 1987 1988 VERIFY0(dmu_bonus_hold(rwa->os, drro->drr_object, FTAG, &db)); 1989 dmu_buf_will_dirty(db, tx); 1990 1991 ASSERT3U(db->db_size, >=, drro->drr_bonuslen); 1992 bcopy(data, db->db_data, drro->drr_bonuslen); 1993 if (rwa->byteswap) { 1994 dmu_object_byteswap_t byteswap = 1995 DMU_OT_BYTESWAP(drro->drr_bonustype); 1996 dmu_ot_byteswap[byteswap].ob_func(db->db_data, 1997 drro->drr_bonuslen); 1998 } 1999 dmu_buf_rele(db, FTAG); 2000 } 2001 dmu_tx_commit(tx); 2002 2003 return (0); 2004 } 2005 2006 /* ARGSUSED */ 2007 static int 2008 receive_freeobjects(struct receive_writer_arg *rwa, 2009 struct drr_freeobjects *drrfo) 2010 { 2011 uint64_t obj; 2012 2013 if (drrfo->drr_firstobj + drrfo->drr_numobjs < drrfo->drr_firstobj) 2014 return (SET_ERROR(EINVAL)); 2015 2016 for (obj = drrfo->drr_firstobj; 2017 obj < drrfo->drr_firstobj + drrfo->drr_numobjs; 2018 (void) dmu_object_next(rwa->os, &obj, FALSE, 0)) { 2019 int err; 2020 2021 if (dmu_object_info(rwa->os, obj, NULL) != 0) 2022 continue; 2023 2024 err = dmu_free_long_object(rwa->os, obj); 2025 if (err != 0) 2026 return (err); 2027 } 2028 2029 return (0); 2030 } 2031 2032 static int 2033 receive_write(struct receive_writer_arg *rwa, struct drr_write *drrw, 2034 arc_buf_t *abuf) 2035 { 2036 dmu_tx_t *tx; 2037 int err; 2038 2039 if (drrw->drr_offset + drrw->drr_length < drrw->drr_offset || 2040 !DMU_OT_IS_VALID(drrw->drr_type)) 2041 return (SET_ERROR(EINVAL)); 2042 2043 /* 2044 * For resuming to work, records must be in increasing order 2045 * by (object, offset). 2046 */ 2047 if (drrw->drr_object < rwa->last_object || 2048 (drrw->drr_object == rwa->last_object && 2049 drrw->drr_offset < rwa->last_offset)) { 2050 return (SET_ERROR(EINVAL)); 2051 } 2052 rwa->last_object = drrw->drr_object; 2053 rwa->last_offset = drrw->drr_offset; 2054 2055 if (dmu_object_info(rwa->os, drrw->drr_object, NULL) != 0) 2056 return (SET_ERROR(EINVAL)); 2057 2058 tx = dmu_tx_create(rwa->os); 2059 2060 dmu_tx_hold_write(tx, drrw->drr_object, 2061 drrw->drr_offset, drrw->drr_length); 2062 err = dmu_tx_assign(tx, TXG_WAIT); 2063 if (err != 0) { 2064 dmu_tx_abort(tx); 2065 return (err); 2066 } 2067 if (rwa->byteswap) { 2068 dmu_object_byteswap_t byteswap = 2069 DMU_OT_BYTESWAP(drrw->drr_type); 2070 dmu_ot_byteswap[byteswap].ob_func(abuf->b_data, 2071 drrw->drr_length); 2072 } 2073 2074 dmu_buf_t *bonus; 2075 if (dmu_bonus_hold(rwa->os, drrw->drr_object, FTAG, &bonus) != 0) 2076 return (SET_ERROR(EINVAL)); 2077 dmu_assign_arcbuf(bonus, drrw->drr_offset, abuf, tx); 2078 2079 /* 2080 * Note: If the receive fails, we want the resume stream to start 2081 * with the same record that we last successfully received (as opposed 2082 * to the next record), so that we can verify that we are 2083 * resuming from the correct location. 2084 */ 2085 save_resume_state(rwa, drrw->drr_object, drrw->drr_offset, tx); 2086 dmu_tx_commit(tx); 2087 dmu_buf_rele(bonus, FTAG); 2088 2089 return (0); 2090 } 2091 2092 /* 2093 * Handle a DRR_WRITE_BYREF record. This record is used in dedup'ed 2094 * streams to refer to a copy of the data that is already on the 2095 * system because it came in earlier in the stream. This function 2096 * finds the earlier copy of the data, and uses that copy instead of 2097 * data from the stream to fulfill this write. 2098 */ 2099 static int 2100 receive_write_byref(struct receive_writer_arg *rwa, 2101 struct drr_write_byref *drrwbr) 2102 { 2103 dmu_tx_t *tx; 2104 int err; 2105 guid_map_entry_t gmesrch; 2106 guid_map_entry_t *gmep; 2107 avl_index_t where; 2108 objset_t *ref_os = NULL; 2109 dmu_buf_t *dbp; 2110 2111 if (drrwbr->drr_offset + drrwbr->drr_length < drrwbr->drr_offset) 2112 return (SET_ERROR(EINVAL)); 2113 2114 /* 2115 * If the GUID of the referenced dataset is different from the 2116 * GUID of the target dataset, find the referenced dataset. 2117 */ 2118 if (drrwbr->drr_toguid != drrwbr->drr_refguid) { 2119 gmesrch.guid = drrwbr->drr_refguid; 2120 if ((gmep = avl_find(rwa->guid_to_ds_map, &gmesrch, 2121 &where)) == NULL) { 2122 return (SET_ERROR(EINVAL)); 2123 } 2124 if (dmu_objset_from_ds(gmep->gme_ds, &ref_os)) 2125 return (SET_ERROR(EINVAL)); 2126 } else { 2127 ref_os = rwa->os; 2128 } 2129 2130 err = dmu_buf_hold(ref_os, drrwbr->drr_refobject, 2131 drrwbr->drr_refoffset, FTAG, &dbp, DMU_READ_PREFETCH); 2132 if (err != 0) 2133 return (err); 2134 2135 tx = dmu_tx_create(rwa->os); 2136 2137 dmu_tx_hold_write(tx, drrwbr->drr_object, 2138 drrwbr->drr_offset, drrwbr->drr_length); 2139 err = dmu_tx_assign(tx, TXG_WAIT); 2140 if (err != 0) { 2141 dmu_tx_abort(tx); 2142 return (err); 2143 } 2144 dmu_write(rwa->os, drrwbr->drr_object, 2145 drrwbr->drr_offset, drrwbr->drr_length, dbp->db_data, tx); 2146 dmu_buf_rele(dbp, FTAG); 2147 2148 /* See comment in restore_write. */ 2149 save_resume_state(rwa, drrwbr->drr_object, drrwbr->drr_offset, tx); 2150 dmu_tx_commit(tx); 2151 return (0); 2152 } 2153 2154 static int 2155 receive_write_embedded(struct receive_writer_arg *rwa, 2156 struct drr_write_embedded *drrwe, void *data) 2157 { 2158 dmu_tx_t *tx; 2159 int err; 2160 2161 if (drrwe->drr_offset + drrwe->drr_length < drrwe->drr_offset) 2162 return (EINVAL); 2163 2164 if (drrwe->drr_psize > BPE_PAYLOAD_SIZE) 2165 return (EINVAL); 2166 2167 if (drrwe->drr_etype >= NUM_BP_EMBEDDED_TYPES) 2168 return (EINVAL); 2169 if (drrwe->drr_compression >= ZIO_COMPRESS_FUNCTIONS) 2170 return (EINVAL); 2171 2172 tx = dmu_tx_create(rwa->os); 2173 2174 dmu_tx_hold_write(tx, drrwe->drr_object, 2175 drrwe->drr_offset, drrwe->drr_length); 2176 err = dmu_tx_assign(tx, TXG_WAIT); 2177 if (err != 0) { 2178 dmu_tx_abort(tx); 2179 return (err); 2180 } 2181 2182 dmu_write_embedded(rwa->os, drrwe->drr_object, 2183 drrwe->drr_offset, data, drrwe->drr_etype, 2184 drrwe->drr_compression, drrwe->drr_lsize, drrwe->drr_psize, 2185 rwa->byteswap ^ ZFS_HOST_BYTEORDER, tx); 2186 2187 /* See comment in restore_write. */ 2188 save_resume_state(rwa, drrwe->drr_object, drrwe->drr_offset, tx); 2189 dmu_tx_commit(tx); 2190 return (0); 2191 } 2192 2193 static int 2194 receive_spill(struct receive_writer_arg *rwa, struct drr_spill *drrs, 2195 void *data) 2196 { 2197 dmu_tx_t *tx; 2198 dmu_buf_t *db, *db_spill; 2199 int err; 2200 2201 if (drrs->drr_length < SPA_MINBLOCKSIZE || 2202 drrs->drr_length > spa_maxblocksize(dmu_objset_spa(rwa->os))) 2203 return (SET_ERROR(EINVAL)); 2204 2205 if (dmu_object_info(rwa->os, drrs->drr_object, NULL) != 0) 2206 return (SET_ERROR(EINVAL)); 2207 2208 VERIFY0(dmu_bonus_hold(rwa->os, drrs->drr_object, FTAG, &db)); 2209 if ((err = dmu_spill_hold_by_bonus(db, FTAG, &db_spill)) != 0) { 2210 dmu_buf_rele(db, FTAG); 2211 return (err); 2212 } 2213 2214 tx = dmu_tx_create(rwa->os); 2215 2216 dmu_tx_hold_spill(tx, db->db_object); 2217 2218 err = dmu_tx_assign(tx, TXG_WAIT); 2219 if (err != 0) { 2220 dmu_buf_rele(db, FTAG); 2221 dmu_buf_rele(db_spill, FTAG); 2222 dmu_tx_abort(tx); 2223 return (err); 2224 } 2225 dmu_buf_will_dirty(db_spill, tx); 2226 2227 if (db_spill->db_size < drrs->drr_length) 2228 VERIFY(0 == dbuf_spill_set_blksz(db_spill, 2229 drrs->drr_length, tx)); 2230 bcopy(data, db_spill->db_data, drrs->drr_length); 2231 2232 dmu_buf_rele(db, FTAG); 2233 dmu_buf_rele(db_spill, FTAG); 2234 2235 dmu_tx_commit(tx); 2236 return (0); 2237 } 2238 2239 /* ARGSUSED */ 2240 static int 2241 receive_free(struct receive_writer_arg *rwa, struct drr_free *drrf) 2242 { 2243 int err; 2244 2245 if (drrf->drr_length != -1ULL && 2246 drrf->drr_offset + drrf->drr_length < drrf->drr_offset) 2247 return (SET_ERROR(EINVAL)); 2248 2249 if (dmu_object_info(rwa->os, drrf->drr_object, NULL) != 0) 2250 return (SET_ERROR(EINVAL)); 2251 2252 err = dmu_free_long_range(rwa->os, drrf->drr_object, 2253 drrf->drr_offset, drrf->drr_length); 2254 2255 return (err); 2256 } 2257 2258 /* used to destroy the drc_ds on error */ 2259 static void 2260 dmu_recv_cleanup_ds(dmu_recv_cookie_t *drc) 2261 { 2262 if (drc->drc_resumable) { 2263 /* wait for our resume state to be written to disk */ 2264 txg_wait_synced(drc->drc_ds->ds_dir->dd_pool, 0); 2265 dsl_dataset_disown(drc->drc_ds, dmu_recv_tag); 2266 } else { 2267 char name[ZFS_MAX_DATASET_NAME_LEN]; 2268 dsl_dataset_name(drc->drc_ds, name); 2269 dsl_dataset_disown(drc->drc_ds, dmu_recv_tag); 2270 (void) dsl_destroy_head(name); 2271 } 2272 } 2273 2274 static void 2275 receive_cksum(struct receive_arg *ra, int len, void *buf) 2276 { 2277 if (ra->byteswap) { 2278 fletcher_4_incremental_byteswap(buf, len, &ra->cksum); 2279 } else { 2280 fletcher_4_incremental_native(buf, len, &ra->cksum); 2281 } 2282 } 2283 2284 /* 2285 * Read the payload into a buffer of size len, and update the current record's 2286 * payload field. 2287 * Allocate ra->next_rrd and read the next record's header into 2288 * ra->next_rrd->header. 2289 * Verify checksum of payload and next record. 2290 */ 2291 static int 2292 receive_read_payload_and_next_header(struct receive_arg *ra, int len, void *buf) 2293 { 2294 int err; 2295 2296 if (len != 0) { 2297 ASSERT3U(len, <=, SPA_MAXBLOCKSIZE); 2298 err = receive_read(ra, len, buf); 2299 if (err != 0) 2300 return (err); 2301 receive_cksum(ra, len, buf); 2302 2303 /* note: rrd is NULL when reading the begin record's payload */ 2304 if (ra->rrd != NULL) { 2305 ra->rrd->payload = buf; 2306 ra->rrd->payload_size = len; 2307 ra->rrd->bytes_read = ra->bytes_read; 2308 } 2309 } 2310 2311 ra->prev_cksum = ra->cksum; 2312 2313 ra->next_rrd = kmem_zalloc(sizeof (*ra->next_rrd), KM_SLEEP); 2314 err = receive_read(ra, sizeof (ra->next_rrd->header), 2315 &ra->next_rrd->header); 2316 ra->next_rrd->bytes_read = ra->bytes_read; 2317 if (err != 0) { 2318 kmem_free(ra->next_rrd, sizeof (*ra->next_rrd)); 2319 ra->next_rrd = NULL; 2320 return (err); 2321 } 2322 if (ra->next_rrd->header.drr_type == DRR_BEGIN) { 2323 kmem_free(ra->next_rrd, sizeof (*ra->next_rrd)); 2324 ra->next_rrd = NULL; 2325 return (SET_ERROR(EINVAL)); 2326 } 2327 2328 /* 2329 * Note: checksum is of everything up to but not including the 2330 * checksum itself. 2331 */ 2332 ASSERT3U(offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum), 2333 ==, sizeof (dmu_replay_record_t) - sizeof (zio_cksum_t)); 2334 receive_cksum(ra, 2335 offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum), 2336 &ra->next_rrd->header); 2337 2338 zio_cksum_t cksum_orig = 2339 ra->next_rrd->header.drr_u.drr_checksum.drr_checksum; 2340 zio_cksum_t *cksump = 2341 &ra->next_rrd->header.drr_u.drr_checksum.drr_checksum; 2342 2343 if (ra->byteswap) 2344 byteswap_record(&ra->next_rrd->header); 2345 2346 if ((!ZIO_CHECKSUM_IS_ZERO(cksump)) && 2347 !ZIO_CHECKSUM_EQUAL(ra->cksum, *cksump)) { 2348 kmem_free(ra->next_rrd, sizeof (*ra->next_rrd)); 2349 ra->next_rrd = NULL; 2350 return (SET_ERROR(ECKSUM)); 2351 } 2352 2353 receive_cksum(ra, sizeof (cksum_orig), &cksum_orig); 2354 2355 return (0); 2356 } 2357 2358 /* 2359 * Issue the prefetch reads for any necessary indirect blocks. 2360 * 2361 * We use the object ignore list to tell us whether or not to issue prefetches 2362 * for a given object. We do this for both correctness (in case the blocksize 2363 * of an object has changed) and performance (if the object doesn't exist, don't 2364 * needlessly try to issue prefetches). We also trim the list as we go through 2365 * the stream to prevent it from growing to an unbounded size. 2366 * 2367 * The object numbers within will always be in sorted order, and any write 2368 * records we see will also be in sorted order, but they're not sorted with 2369 * respect to each other (i.e. we can get several object records before 2370 * receiving each object's write records). As a result, once we've reached a 2371 * given object number, we can safely remove any reference to lower object 2372 * numbers in the ignore list. In practice, we receive up to 32 object records 2373 * before receiving write records, so the list can have up to 32 nodes in it. 2374 */ 2375 /* ARGSUSED */ 2376 static void 2377 receive_read_prefetch(struct receive_arg *ra, 2378 uint64_t object, uint64_t offset, uint64_t length) 2379 { 2380 struct receive_ign_obj_node *node = list_head(&ra->ignore_obj_list); 2381 while (node != NULL && node->object < object) { 2382 VERIFY3P(node, ==, list_remove_head(&ra->ignore_obj_list)); 2383 kmem_free(node, sizeof (*node)); 2384 node = list_head(&ra->ignore_obj_list); 2385 } 2386 if (node == NULL || node->object > object) { 2387 dmu_prefetch(ra->os, object, 1, offset, length, 2388 ZIO_PRIORITY_SYNC_READ); 2389 } 2390 } 2391 2392 /* 2393 * Read records off the stream, issuing any necessary prefetches. 2394 */ 2395 static int 2396 receive_read_record(struct receive_arg *ra) 2397 { 2398 int err; 2399 2400 switch (ra->rrd->header.drr_type) { 2401 case DRR_OBJECT: 2402 { 2403 struct drr_object *drro = &ra->rrd->header.drr_u.drr_object; 2404 uint32_t size = P2ROUNDUP(drro->drr_bonuslen, 8); 2405 void *buf = kmem_zalloc(size, KM_SLEEP); 2406 dmu_object_info_t doi; 2407 err = receive_read_payload_and_next_header(ra, size, buf); 2408 if (err != 0) { 2409 kmem_free(buf, size); 2410 return (err); 2411 } 2412 err = dmu_object_info(ra->os, drro->drr_object, &doi); 2413 /* 2414 * See receive_read_prefetch for an explanation why we're 2415 * storing this object in the ignore_obj_list. 2416 */ 2417 if (err == ENOENT || 2418 (err == 0 && doi.doi_data_block_size != drro->drr_blksz)) { 2419 struct receive_ign_obj_node *node = 2420 kmem_zalloc(sizeof (*node), 2421 KM_SLEEP); 2422 node->object = drro->drr_object; 2423 #ifdef ZFS_DEBUG 2424 struct receive_ign_obj_node *last_object = 2425 list_tail(&ra->ignore_obj_list); 2426 uint64_t last_objnum = (last_object != NULL ? 2427 last_object->object : 0); 2428 ASSERT3U(node->object, >, last_objnum); 2429 #endif 2430 list_insert_tail(&ra->ignore_obj_list, node); 2431 err = 0; 2432 } 2433 return (err); 2434 } 2435 case DRR_FREEOBJECTS: 2436 { 2437 err = receive_read_payload_and_next_header(ra, 0, NULL); 2438 return (err); 2439 } 2440 case DRR_WRITE: 2441 { 2442 struct drr_write *drrw = &ra->rrd->header.drr_u.drr_write; 2443 arc_buf_t *abuf = arc_loan_buf(dmu_objset_spa(ra->os), 2444 drrw->drr_length); 2445 2446 err = receive_read_payload_and_next_header(ra, 2447 drrw->drr_length, abuf->b_data); 2448 if (err != 0) { 2449 dmu_return_arcbuf(abuf); 2450 return (err); 2451 } 2452 ra->rrd->write_buf = abuf; 2453 receive_read_prefetch(ra, drrw->drr_object, drrw->drr_offset, 2454 drrw->drr_length); 2455 return (err); 2456 } 2457 case DRR_WRITE_BYREF: 2458 { 2459 struct drr_write_byref *drrwb = 2460 &ra->rrd->header.drr_u.drr_write_byref; 2461 err = receive_read_payload_and_next_header(ra, 0, NULL); 2462 receive_read_prefetch(ra, drrwb->drr_object, drrwb->drr_offset, 2463 drrwb->drr_length); 2464 return (err); 2465 } 2466 case DRR_WRITE_EMBEDDED: 2467 { 2468 struct drr_write_embedded *drrwe = 2469 &ra->rrd->header.drr_u.drr_write_embedded; 2470 uint32_t size = P2ROUNDUP(drrwe->drr_psize, 8); 2471 void *buf = kmem_zalloc(size, KM_SLEEP); 2472 2473 err = receive_read_payload_and_next_header(ra, size, buf); 2474 if (err != 0) { 2475 kmem_free(buf, size); 2476 return (err); 2477 } 2478 2479 receive_read_prefetch(ra, drrwe->drr_object, drrwe->drr_offset, 2480 drrwe->drr_length); 2481 return (err); 2482 } 2483 case DRR_FREE: 2484 { 2485 /* 2486 * It might be beneficial to prefetch indirect blocks here, but 2487 * we don't really have the data to decide for sure. 2488 */ 2489 err = receive_read_payload_and_next_header(ra, 0, NULL); 2490 return (err); 2491 } 2492 case DRR_END: 2493 { 2494 struct drr_end *drre = &ra->rrd->header.drr_u.drr_end; 2495 if (!ZIO_CHECKSUM_EQUAL(ra->prev_cksum, drre->drr_checksum)) 2496 return (SET_ERROR(ECKSUM)); 2497 return (0); 2498 } 2499 case DRR_SPILL: 2500 { 2501 struct drr_spill *drrs = &ra->rrd->header.drr_u.drr_spill; 2502 void *buf = kmem_zalloc(drrs->drr_length, KM_SLEEP); 2503 err = receive_read_payload_and_next_header(ra, drrs->drr_length, 2504 buf); 2505 if (err != 0) 2506 kmem_free(buf, drrs->drr_length); 2507 return (err); 2508 } 2509 default: 2510 return (SET_ERROR(EINVAL)); 2511 } 2512 } 2513 2514 /* 2515 * Commit the records to the pool. 2516 */ 2517 static int 2518 receive_process_record(struct receive_writer_arg *rwa, 2519 struct receive_record_arg *rrd) 2520 { 2521 int err; 2522 2523 /* Processing in order, therefore bytes_read should be increasing. */ 2524 ASSERT3U(rrd->bytes_read, >=, rwa->bytes_read); 2525 rwa->bytes_read = rrd->bytes_read; 2526 2527 switch (rrd->header.drr_type) { 2528 case DRR_OBJECT: 2529 { 2530 struct drr_object *drro = &rrd->header.drr_u.drr_object; 2531 err = receive_object(rwa, drro, rrd->payload); 2532 kmem_free(rrd->payload, rrd->payload_size); 2533 rrd->payload = NULL; 2534 return (err); 2535 } 2536 case DRR_FREEOBJECTS: 2537 { 2538 struct drr_freeobjects *drrfo = 2539 &rrd->header.drr_u.drr_freeobjects; 2540 return (receive_freeobjects(rwa, drrfo)); 2541 } 2542 case DRR_WRITE: 2543 { 2544 struct drr_write *drrw = &rrd->header.drr_u.drr_write; 2545 err = receive_write(rwa, drrw, rrd->write_buf); 2546 /* if receive_write() is successful, it consumes the arc_buf */ 2547 if (err != 0) 2548 dmu_return_arcbuf(rrd->write_buf); 2549 rrd->write_buf = NULL; 2550 rrd->payload = NULL; 2551 return (err); 2552 } 2553 case DRR_WRITE_BYREF: 2554 { 2555 struct drr_write_byref *drrwbr = 2556 &rrd->header.drr_u.drr_write_byref; 2557 return (receive_write_byref(rwa, drrwbr)); 2558 } 2559 case DRR_WRITE_EMBEDDED: 2560 { 2561 struct drr_write_embedded *drrwe = 2562 &rrd->header.drr_u.drr_write_embedded; 2563 err = receive_write_embedded(rwa, drrwe, rrd->payload); 2564 kmem_free(rrd->payload, rrd->payload_size); 2565 rrd->payload = NULL; 2566 return (err); 2567 } 2568 case DRR_FREE: 2569 { 2570 struct drr_free *drrf = &rrd->header.drr_u.drr_free; 2571 return (receive_free(rwa, drrf)); 2572 } 2573 case DRR_SPILL: 2574 { 2575 struct drr_spill *drrs = &rrd->header.drr_u.drr_spill; 2576 err = receive_spill(rwa, drrs, rrd->payload); 2577 kmem_free(rrd->payload, rrd->payload_size); 2578 rrd->payload = NULL; 2579 return (err); 2580 } 2581 default: 2582 return (SET_ERROR(EINVAL)); 2583 } 2584 } 2585 2586 /* 2587 * dmu_recv_stream's worker thread; pull records off the queue, and then call 2588 * receive_process_record When we're done, signal the main thread and exit. 2589 */ 2590 static void 2591 receive_writer_thread(void *arg) 2592 { 2593 struct receive_writer_arg *rwa = arg; 2594 struct receive_record_arg *rrd; 2595 for (rrd = bqueue_dequeue(&rwa->q); !rrd->eos_marker; 2596 rrd = bqueue_dequeue(&rwa->q)) { 2597 /* 2598 * If there's an error, the main thread will stop putting things 2599 * on the queue, but we need to clear everything in it before we 2600 * can exit. 2601 */ 2602 if (rwa->err == 0) { 2603 rwa->err = receive_process_record(rwa, rrd); 2604 } else if (rrd->write_buf != NULL) { 2605 dmu_return_arcbuf(rrd->write_buf); 2606 rrd->write_buf = NULL; 2607 rrd->payload = NULL; 2608 } else if (rrd->payload != NULL) { 2609 kmem_free(rrd->payload, rrd->payload_size); 2610 rrd->payload = NULL; 2611 } 2612 kmem_free(rrd, sizeof (*rrd)); 2613 } 2614 kmem_free(rrd, sizeof (*rrd)); 2615 mutex_enter(&rwa->mutex); 2616 rwa->done = B_TRUE; 2617 cv_signal(&rwa->cv); 2618 mutex_exit(&rwa->mutex); 2619 } 2620 2621 static int 2622 resume_check(struct receive_arg *ra, nvlist_t *begin_nvl) 2623 { 2624 uint64_t val; 2625 objset_t *mos = dmu_objset_pool(ra->os)->dp_meta_objset; 2626 uint64_t dsobj = dmu_objset_id(ra->os); 2627 uint64_t resume_obj, resume_off; 2628 2629 if (nvlist_lookup_uint64(begin_nvl, 2630 "resume_object", &resume_obj) != 0 || 2631 nvlist_lookup_uint64(begin_nvl, 2632 "resume_offset", &resume_off) != 0) { 2633 return (SET_ERROR(EINVAL)); 2634 } 2635 VERIFY0(zap_lookup(mos, dsobj, 2636 DS_FIELD_RESUME_OBJECT, sizeof (val), 1, &val)); 2637 if (resume_obj != val) 2638 return (SET_ERROR(EINVAL)); 2639 VERIFY0(zap_lookup(mos, dsobj, 2640 DS_FIELD_RESUME_OFFSET, sizeof (val), 1, &val)); 2641 if (resume_off != val) 2642 return (SET_ERROR(EINVAL)); 2643 2644 return (0); 2645 } 2646 2647 2648 /* 2649 * Read in the stream's records, one by one, and apply them to the pool. There 2650 * are two threads involved; the thread that calls this function will spin up a 2651 * worker thread, read the records off the stream one by one, and issue 2652 * prefetches for any necessary indirect blocks. It will then push the records 2653 * onto an internal blocking queue. The worker thread will pull the records off 2654 * the queue, and actually write the data into the DMU. This way, the worker 2655 * thread doesn't have to wait for reads to complete, since everything it needs 2656 * (the indirect blocks) will be prefetched. 2657 * 2658 * NB: callers *must* call dmu_recv_end() if this succeeds. 2659 */ 2660 int 2661 dmu_recv_stream(dmu_recv_cookie_t *drc, vnode_t *vp, offset_t *voffp, 2662 int cleanup_fd, uint64_t *action_handlep) 2663 { 2664 int err = 0; 2665 struct receive_arg ra = { 0 }; 2666 struct receive_writer_arg rwa = { 0 }; 2667 int featureflags; 2668 nvlist_t *begin_nvl = NULL; 2669 2670 ra.byteswap = drc->drc_byteswap; 2671 ra.cksum = drc->drc_cksum; 2672 ra.vp = vp; 2673 ra.voff = *voffp; 2674 2675 if (dsl_dataset_is_zapified(drc->drc_ds)) { 2676 (void) zap_lookup(drc->drc_ds->ds_dir->dd_pool->dp_meta_objset, 2677 drc->drc_ds->ds_object, DS_FIELD_RESUME_BYTES, 2678 sizeof (ra.bytes_read), 1, &ra.bytes_read); 2679 } 2680 2681 list_create(&ra.ignore_obj_list, sizeof (struct receive_ign_obj_node), 2682 offsetof(struct receive_ign_obj_node, node)); 2683 2684 /* these were verified in dmu_recv_begin */ 2685 ASSERT3U(DMU_GET_STREAM_HDRTYPE(drc->drc_drrb->drr_versioninfo), ==, 2686 DMU_SUBSTREAM); 2687 ASSERT3U(drc->drc_drrb->drr_type, <, DMU_OST_NUMTYPES); 2688 2689 /* 2690 * Open the objset we are modifying. 2691 */ 2692 VERIFY0(dmu_objset_from_ds(drc->drc_ds, &ra.os)); 2693 2694 ASSERT(dsl_dataset_phys(drc->drc_ds)->ds_flags & DS_FLAG_INCONSISTENT); 2695 2696 featureflags = DMU_GET_FEATUREFLAGS(drc->drc_drrb->drr_versioninfo); 2697 2698 /* if this stream is dedup'ed, set up the avl tree for guid mapping */ 2699 if (featureflags & DMU_BACKUP_FEATURE_DEDUP) { 2700 minor_t minor; 2701 2702 if (cleanup_fd == -1) { 2703 ra.err = SET_ERROR(EBADF); 2704 goto out; 2705 } 2706 ra.err = zfs_onexit_fd_hold(cleanup_fd, &minor); 2707 if (ra.err != 0) { 2708 cleanup_fd = -1; 2709 goto out; 2710 } 2711 2712 if (*action_handlep == 0) { 2713 rwa.guid_to_ds_map = 2714 kmem_alloc(sizeof (avl_tree_t), KM_SLEEP); 2715 avl_create(rwa.guid_to_ds_map, guid_compare, 2716 sizeof (guid_map_entry_t), 2717 offsetof(guid_map_entry_t, avlnode)); 2718 err = zfs_onexit_add_cb(minor, 2719 free_guid_map_onexit, rwa.guid_to_ds_map, 2720 action_handlep); 2721 if (ra.err != 0) 2722 goto out; 2723 } else { 2724 err = zfs_onexit_cb_data(minor, *action_handlep, 2725 (void **)&rwa.guid_to_ds_map); 2726 if (ra.err != 0) 2727 goto out; 2728 } 2729 2730 drc->drc_guid_to_ds_map = rwa.guid_to_ds_map; 2731 } 2732 2733 uint32_t payloadlen = drc->drc_drr_begin->drr_payloadlen; 2734 void *payload = NULL; 2735 if (payloadlen != 0) 2736 payload = kmem_alloc(payloadlen, KM_SLEEP); 2737 2738 err = receive_read_payload_and_next_header(&ra, payloadlen, payload); 2739 if (err != 0) { 2740 if (payloadlen != 0) 2741 kmem_free(payload, payloadlen); 2742 goto out; 2743 } 2744 if (payloadlen != 0) { 2745 err = nvlist_unpack(payload, payloadlen, &begin_nvl, KM_SLEEP); 2746 kmem_free(payload, payloadlen); 2747 if (err != 0) 2748 goto out; 2749 } 2750 2751 if (featureflags & DMU_BACKUP_FEATURE_RESUMING) { 2752 err = resume_check(&ra, begin_nvl); 2753 if (err != 0) 2754 goto out; 2755 } 2756 2757 (void) bqueue_init(&rwa.q, zfs_recv_queue_length, 2758 offsetof(struct receive_record_arg, node)); 2759 cv_init(&rwa.cv, NULL, CV_DEFAULT, NULL); 2760 mutex_init(&rwa.mutex, NULL, MUTEX_DEFAULT, NULL); 2761 rwa.os = ra.os; 2762 rwa.byteswap = drc->drc_byteswap; 2763 rwa.resumable = drc->drc_resumable; 2764 2765 (void) thread_create(NULL, 0, receive_writer_thread, &rwa, 0, curproc, 2766 TS_RUN, minclsyspri); 2767 /* 2768 * We're reading rwa.err without locks, which is safe since we are the 2769 * only reader, and the worker thread is the only writer. It's ok if we 2770 * miss a write for an iteration or two of the loop, since the writer 2771 * thread will keep freeing records we send it until we send it an eos 2772 * marker. 2773 * 2774 * We can leave this loop in 3 ways: First, if rwa.err is 2775 * non-zero. In that case, the writer thread will free the rrd we just 2776 * pushed. Second, if we're interrupted; in that case, either it's the 2777 * first loop and ra.rrd was never allocated, or it's later, and ra.rrd 2778 * has been handed off to the writer thread who will free it. Finally, 2779 * if receive_read_record fails or we're at the end of the stream, then 2780 * we free ra.rrd and exit. 2781 */ 2782 while (rwa.err == 0) { 2783 if (issig(JUSTLOOKING) && issig(FORREAL)) { 2784 err = SET_ERROR(EINTR); 2785 break; 2786 } 2787 2788 ASSERT3P(ra.rrd, ==, NULL); 2789 ra.rrd = ra.next_rrd; 2790 ra.next_rrd = NULL; 2791 /* Allocates and loads header into ra.next_rrd */ 2792 err = receive_read_record(&ra); 2793 2794 if (ra.rrd->header.drr_type == DRR_END || err != 0) { 2795 kmem_free(ra.rrd, sizeof (*ra.rrd)); 2796 ra.rrd = NULL; 2797 break; 2798 } 2799 2800 bqueue_enqueue(&rwa.q, ra.rrd, 2801 sizeof (struct receive_record_arg) + ra.rrd->payload_size); 2802 ra.rrd = NULL; 2803 } 2804 if (ra.next_rrd == NULL) 2805 ra.next_rrd = kmem_zalloc(sizeof (*ra.next_rrd), KM_SLEEP); 2806 ra.next_rrd->eos_marker = B_TRUE; 2807 bqueue_enqueue(&rwa.q, ra.next_rrd, 1); 2808 2809 mutex_enter(&rwa.mutex); 2810 while (!rwa.done) { 2811 cv_wait(&rwa.cv, &rwa.mutex); 2812 } 2813 mutex_exit(&rwa.mutex); 2814 2815 cv_destroy(&rwa.cv); 2816 mutex_destroy(&rwa.mutex); 2817 bqueue_destroy(&rwa.q); 2818 if (err == 0) 2819 err = rwa.err; 2820 2821 out: 2822 nvlist_free(begin_nvl); 2823 if ((featureflags & DMU_BACKUP_FEATURE_DEDUP) && (cleanup_fd != -1)) 2824 zfs_onexit_fd_rele(cleanup_fd); 2825 2826 if (err != 0) { 2827 /* 2828 * Clean up references. If receive is not resumable, 2829 * destroy what we created, so we don't leave it in 2830 * the inconsistent state. 2831 */ 2832 dmu_recv_cleanup_ds(drc); 2833 } 2834 2835 *voffp = ra.voff; 2836 for (struct receive_ign_obj_node *n = 2837 list_remove_head(&ra.ignore_obj_list); n != NULL; 2838 n = list_remove_head(&ra.ignore_obj_list)) { 2839 kmem_free(n, sizeof (*n)); 2840 } 2841 list_destroy(&ra.ignore_obj_list); 2842 return (err); 2843 } 2844 2845 static int 2846 dmu_recv_end_check(void *arg, dmu_tx_t *tx) 2847 { 2848 dmu_recv_cookie_t *drc = arg; 2849 dsl_pool_t *dp = dmu_tx_pool(tx); 2850 int error; 2851 2852 ASSERT3P(drc->drc_ds->ds_owner, ==, dmu_recv_tag); 2853 2854 if (!drc->drc_newfs) { 2855 dsl_dataset_t *origin_head; 2856 2857 error = dsl_dataset_hold(dp, drc->drc_tofs, FTAG, &origin_head); 2858 if (error != 0) 2859 return (error); 2860 if (drc->drc_force) { 2861 /* 2862 * We will destroy any snapshots in tofs (i.e. before 2863 * origin_head) that are after the origin (which is 2864 * the snap before drc_ds, because drc_ds can not 2865 * have any snaps of its own). 2866 */ 2867 uint64_t obj; 2868 2869 obj = dsl_dataset_phys(origin_head)->ds_prev_snap_obj; 2870 while (obj != 2871 dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj) { 2872 dsl_dataset_t *snap; 2873 error = dsl_dataset_hold_obj(dp, obj, FTAG, 2874 &snap); 2875 if (error != 0) 2876 break; 2877 if (snap->ds_dir != origin_head->ds_dir) 2878 error = SET_ERROR(EINVAL); 2879 if (error == 0) { 2880 error = dsl_destroy_snapshot_check_impl( 2881 snap, B_FALSE); 2882 } 2883 obj = dsl_dataset_phys(snap)->ds_prev_snap_obj; 2884 dsl_dataset_rele(snap, FTAG); 2885 if (error != 0) 2886 break; 2887 } 2888 if (error != 0) { 2889 dsl_dataset_rele(origin_head, FTAG); 2890 return (error); 2891 } 2892 } 2893 error = dsl_dataset_clone_swap_check_impl(drc->drc_ds, 2894 origin_head, drc->drc_force, drc->drc_owner, tx); 2895 if (error != 0) { 2896 dsl_dataset_rele(origin_head, FTAG); 2897 return (error); 2898 } 2899 error = dsl_dataset_snapshot_check_impl(origin_head, 2900 drc->drc_tosnap, tx, B_TRUE, 1, drc->drc_cred); 2901 dsl_dataset_rele(origin_head, FTAG); 2902 if (error != 0) 2903 return (error); 2904 2905 error = dsl_destroy_head_check_impl(drc->drc_ds, 1); 2906 } else { 2907 error = dsl_dataset_snapshot_check_impl(drc->drc_ds, 2908 drc->drc_tosnap, tx, B_TRUE, 1, drc->drc_cred); 2909 } 2910 return (error); 2911 } 2912 2913 static void 2914 dmu_recv_end_sync(void *arg, dmu_tx_t *tx) 2915 { 2916 dmu_recv_cookie_t *drc = arg; 2917 dsl_pool_t *dp = dmu_tx_pool(tx); 2918 2919 spa_history_log_internal_ds(drc->drc_ds, "finish receiving", 2920 tx, "snap=%s", drc->drc_tosnap); 2921 2922 if (!drc->drc_newfs) { 2923 dsl_dataset_t *origin_head; 2924 2925 VERIFY0(dsl_dataset_hold(dp, drc->drc_tofs, FTAG, 2926 &origin_head)); 2927 2928 if (drc->drc_force) { 2929 /* 2930 * Destroy any snapshots of drc_tofs (origin_head) 2931 * after the origin (the snap before drc_ds). 2932 */ 2933 uint64_t obj; 2934 2935 obj = dsl_dataset_phys(origin_head)->ds_prev_snap_obj; 2936 while (obj != 2937 dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj) { 2938 dsl_dataset_t *snap; 2939 VERIFY0(dsl_dataset_hold_obj(dp, obj, FTAG, 2940 &snap)); 2941 ASSERT3P(snap->ds_dir, ==, origin_head->ds_dir); 2942 obj = dsl_dataset_phys(snap)->ds_prev_snap_obj; 2943 dsl_destroy_snapshot_sync_impl(snap, 2944 B_FALSE, tx); 2945 dsl_dataset_rele(snap, FTAG); 2946 } 2947 } 2948 VERIFY3P(drc->drc_ds->ds_prev, ==, 2949 origin_head->ds_prev); 2950 2951 dsl_dataset_clone_swap_sync_impl(drc->drc_ds, 2952 origin_head, tx); 2953 dsl_dataset_snapshot_sync_impl(origin_head, 2954 drc->drc_tosnap, tx); 2955 2956 /* set snapshot's creation time and guid */ 2957 dmu_buf_will_dirty(origin_head->ds_prev->ds_dbuf, tx); 2958 dsl_dataset_phys(origin_head->ds_prev)->ds_creation_time = 2959 drc->drc_drrb->drr_creation_time; 2960 dsl_dataset_phys(origin_head->ds_prev)->ds_guid = 2961 drc->drc_drrb->drr_toguid; 2962 dsl_dataset_phys(origin_head->ds_prev)->ds_flags &= 2963 ~DS_FLAG_INCONSISTENT; 2964 2965 dmu_buf_will_dirty(origin_head->ds_dbuf, tx); 2966 dsl_dataset_phys(origin_head)->ds_flags &= 2967 ~DS_FLAG_INCONSISTENT; 2968 2969 dsl_dataset_rele(origin_head, FTAG); 2970 dsl_destroy_head_sync_impl(drc->drc_ds, tx); 2971 2972 if (drc->drc_owner != NULL) 2973 VERIFY3P(origin_head->ds_owner, ==, drc->drc_owner); 2974 } else { 2975 dsl_dataset_t *ds = drc->drc_ds; 2976 2977 dsl_dataset_snapshot_sync_impl(ds, drc->drc_tosnap, tx); 2978 2979 /* set snapshot's creation time and guid */ 2980 dmu_buf_will_dirty(ds->ds_prev->ds_dbuf, tx); 2981 dsl_dataset_phys(ds->ds_prev)->ds_creation_time = 2982 drc->drc_drrb->drr_creation_time; 2983 dsl_dataset_phys(ds->ds_prev)->ds_guid = 2984 drc->drc_drrb->drr_toguid; 2985 dsl_dataset_phys(ds->ds_prev)->ds_flags &= 2986 ~DS_FLAG_INCONSISTENT; 2987 2988 dmu_buf_will_dirty(ds->ds_dbuf, tx); 2989 dsl_dataset_phys(ds)->ds_flags &= ~DS_FLAG_INCONSISTENT; 2990 if (dsl_dataset_has_resume_receive_state(ds)) { 2991 (void) zap_remove(dp->dp_meta_objset, ds->ds_object, 2992 DS_FIELD_RESUME_FROMGUID, tx); 2993 (void) zap_remove(dp->dp_meta_objset, ds->ds_object, 2994 DS_FIELD_RESUME_OBJECT, tx); 2995 (void) zap_remove(dp->dp_meta_objset, ds->ds_object, 2996 DS_FIELD_RESUME_OFFSET, tx); 2997 (void) zap_remove(dp->dp_meta_objset, ds->ds_object, 2998 DS_FIELD_RESUME_BYTES, tx); 2999 (void) zap_remove(dp->dp_meta_objset, ds->ds_object, 3000 DS_FIELD_RESUME_TOGUID, tx); 3001 (void) zap_remove(dp->dp_meta_objset, ds->ds_object, 3002 DS_FIELD_RESUME_TONAME, tx); 3003 } 3004 } 3005 drc->drc_newsnapobj = dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj; 3006 /* 3007 * Release the hold from dmu_recv_begin. This must be done before 3008 * we return to open context, so that when we free the dataset's dnode, 3009 * we can evict its bonus buffer. 3010 */ 3011 dsl_dataset_disown(drc->drc_ds, dmu_recv_tag); 3012 drc->drc_ds = NULL; 3013 } 3014 3015 static int 3016 add_ds_to_guidmap(const char *name, avl_tree_t *guid_map, uint64_t snapobj) 3017 { 3018 dsl_pool_t *dp; 3019 dsl_dataset_t *snapds; 3020 guid_map_entry_t *gmep; 3021 int err; 3022 3023 ASSERT(guid_map != NULL); 3024 3025 err = dsl_pool_hold(name, FTAG, &dp); 3026 if (err != 0) 3027 return (err); 3028 gmep = kmem_alloc(sizeof (*gmep), KM_SLEEP); 3029 err = dsl_dataset_hold_obj(dp, snapobj, gmep, &snapds); 3030 if (err == 0) { 3031 gmep->guid = dsl_dataset_phys(snapds)->ds_guid; 3032 gmep->gme_ds = snapds; 3033 avl_add(guid_map, gmep); 3034 dsl_dataset_long_hold(snapds, gmep); 3035 } else { 3036 kmem_free(gmep, sizeof (*gmep)); 3037 } 3038 3039 dsl_pool_rele(dp, FTAG); 3040 return (err); 3041 } 3042 3043 static int dmu_recv_end_modified_blocks = 3; 3044 3045 static int 3046 dmu_recv_existing_end(dmu_recv_cookie_t *drc) 3047 { 3048 int error; 3049 3050 #ifdef _KERNEL 3051 /* 3052 * We will be destroying the ds; make sure its origin is unmounted if 3053 * necessary. 3054 */ 3055 char name[ZFS_MAX_DATASET_NAME_LEN]; 3056 dsl_dataset_name(drc->drc_ds, name); 3057 zfs_destroy_unmount_origin(name); 3058 #endif 3059 3060 error = dsl_sync_task(drc->drc_tofs, 3061 dmu_recv_end_check, dmu_recv_end_sync, drc, 3062 dmu_recv_end_modified_blocks, ZFS_SPACE_CHECK_NORMAL); 3063 3064 if (error != 0) 3065 dmu_recv_cleanup_ds(drc); 3066 return (error); 3067 } 3068 3069 static int 3070 dmu_recv_new_end(dmu_recv_cookie_t *drc) 3071 { 3072 int error; 3073 3074 error = dsl_sync_task(drc->drc_tofs, 3075 dmu_recv_end_check, dmu_recv_end_sync, drc, 3076 dmu_recv_end_modified_blocks, ZFS_SPACE_CHECK_NORMAL); 3077 3078 if (error != 0) { 3079 dmu_recv_cleanup_ds(drc); 3080 } else if (drc->drc_guid_to_ds_map != NULL) { 3081 (void) add_ds_to_guidmap(drc->drc_tofs, 3082 drc->drc_guid_to_ds_map, 3083 drc->drc_newsnapobj); 3084 } 3085 return (error); 3086 } 3087 3088 int 3089 dmu_recv_end(dmu_recv_cookie_t *drc, void *owner) 3090 { 3091 drc->drc_owner = owner; 3092 3093 if (drc->drc_newfs) 3094 return (dmu_recv_new_end(drc)); 3095 else 3096 return (dmu_recv_existing_end(drc)); 3097 } 3098 3099 /* 3100 * Return TRUE if this objset is currently being received into. 3101 */ 3102 boolean_t 3103 dmu_objset_is_receiving(objset_t *os) 3104 { 3105 return (os->os_dsl_dataset != NULL && 3106 os->os_dsl_dataset->ds_owner == dmu_recv_tag); 3107 } 3108