xref: /titanic_44/usr/src/uts/common/fs/zfs/dmu.c (revision 3b2aab18808792cbd248a12f1edf139b89833c13)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2012 by Delphix. All rights reserved.
24  */
25 
26 #include <sys/dmu.h>
27 #include <sys/dmu_impl.h>
28 #include <sys/dmu_tx.h>
29 #include <sys/dbuf.h>
30 #include <sys/dnode.h>
31 #include <sys/zfs_context.h>
32 #include <sys/dmu_objset.h>
33 #include <sys/dmu_traverse.h>
34 #include <sys/dsl_dataset.h>
35 #include <sys/dsl_dir.h>
36 #include <sys/dsl_pool.h>
37 #include <sys/dsl_synctask.h>
38 #include <sys/dsl_prop.h>
39 #include <sys/dmu_zfetch.h>
40 #include <sys/zfs_ioctl.h>
41 #include <sys/zap.h>
42 #include <sys/zio_checksum.h>
43 #include <sys/zio_compress.h>
44 #include <sys/sa.h>
45 #ifdef _KERNEL
46 #include <sys/vmsystm.h>
47 #include <sys/zfs_znode.h>
48 #endif
49 
50 /*
51  * Enable/disable nopwrite feature.
52  */
53 int zfs_nopwrite_enabled = 1;
54 
55 const dmu_object_type_info_t dmu_ot[DMU_OT_NUMTYPES] = {
56 	{	DMU_BSWAP_UINT8,	TRUE,	"unallocated"		},
57 	{	DMU_BSWAP_ZAP,		TRUE,	"object directory"	},
58 	{	DMU_BSWAP_UINT64,	TRUE,	"object array"		},
59 	{	DMU_BSWAP_UINT8,	TRUE,	"packed nvlist"		},
60 	{	DMU_BSWAP_UINT64,	TRUE,	"packed nvlist size"	},
61 	{	DMU_BSWAP_UINT64,	TRUE,	"bpobj"			},
62 	{	DMU_BSWAP_UINT64,	TRUE,	"bpobj header"		},
63 	{	DMU_BSWAP_UINT64,	TRUE,	"SPA space map header"	},
64 	{	DMU_BSWAP_UINT64,	TRUE,	"SPA space map"		},
65 	{	DMU_BSWAP_UINT64,	TRUE,	"ZIL intent log"	},
66 	{	DMU_BSWAP_DNODE,	TRUE,	"DMU dnode"		},
67 	{	DMU_BSWAP_OBJSET,	TRUE,	"DMU objset"		},
68 	{	DMU_BSWAP_UINT64,	TRUE,	"DSL directory"		},
69 	{	DMU_BSWAP_ZAP,		TRUE,	"DSL directory child map"},
70 	{	DMU_BSWAP_ZAP,		TRUE,	"DSL dataset snap map"	},
71 	{	DMU_BSWAP_ZAP,		TRUE,	"DSL props"		},
72 	{	DMU_BSWAP_UINT64,	TRUE,	"DSL dataset"		},
73 	{	DMU_BSWAP_ZNODE,	TRUE,	"ZFS znode"		},
74 	{	DMU_BSWAP_OLDACL,	TRUE,	"ZFS V0 ACL"		},
75 	{	DMU_BSWAP_UINT8,	FALSE,	"ZFS plain file"	},
76 	{	DMU_BSWAP_ZAP,		TRUE,	"ZFS directory"		},
77 	{	DMU_BSWAP_ZAP,		TRUE,	"ZFS master node"	},
78 	{	DMU_BSWAP_ZAP,		TRUE,	"ZFS delete queue"	},
79 	{	DMU_BSWAP_UINT8,	FALSE,	"zvol object"		},
80 	{	DMU_BSWAP_ZAP,		TRUE,	"zvol prop"		},
81 	{	DMU_BSWAP_UINT8,	FALSE,	"other uint8[]"		},
82 	{	DMU_BSWAP_UINT64,	FALSE,	"other uint64[]"	},
83 	{	DMU_BSWAP_ZAP,		TRUE,	"other ZAP"		},
84 	{	DMU_BSWAP_ZAP,		TRUE,	"persistent error log"	},
85 	{	DMU_BSWAP_UINT8,	TRUE,	"SPA history"		},
86 	{	DMU_BSWAP_UINT64,	TRUE,	"SPA history offsets"	},
87 	{	DMU_BSWAP_ZAP,		TRUE,	"Pool properties"	},
88 	{	DMU_BSWAP_ZAP,		TRUE,	"DSL permissions"	},
89 	{	DMU_BSWAP_ACL,		TRUE,	"ZFS ACL"		},
90 	{	DMU_BSWAP_UINT8,	TRUE,	"ZFS SYSACL"		},
91 	{	DMU_BSWAP_UINT8,	TRUE,	"FUID table"		},
92 	{	DMU_BSWAP_UINT64,	TRUE,	"FUID table size"	},
93 	{	DMU_BSWAP_ZAP,		TRUE,	"DSL dataset next clones"},
94 	{	DMU_BSWAP_ZAP,		TRUE,	"scan work queue"	},
95 	{	DMU_BSWAP_ZAP,		TRUE,	"ZFS user/group used"	},
96 	{	DMU_BSWAP_ZAP,		TRUE,	"ZFS user/group quota"	},
97 	{	DMU_BSWAP_ZAP,		TRUE,	"snapshot refcount tags"},
98 	{	DMU_BSWAP_ZAP,		TRUE,	"DDT ZAP algorithm"	},
99 	{	DMU_BSWAP_ZAP,		TRUE,	"DDT statistics"	},
100 	{	DMU_BSWAP_UINT8,	TRUE,	"System attributes"	},
101 	{	DMU_BSWAP_ZAP,		TRUE,	"SA master node"	},
102 	{	DMU_BSWAP_ZAP,		TRUE,	"SA attr registration"	},
103 	{	DMU_BSWAP_ZAP,		TRUE,	"SA attr layouts"	},
104 	{	DMU_BSWAP_ZAP,		TRUE,	"scan translations"	},
105 	{	DMU_BSWAP_UINT8,	FALSE,	"deduplicated block"	},
106 	{	DMU_BSWAP_ZAP,		TRUE,	"DSL deadlist map"	},
107 	{	DMU_BSWAP_UINT64,	TRUE,	"DSL deadlist map hdr"	},
108 	{	DMU_BSWAP_ZAP,		TRUE,	"DSL dir clones"	},
109 	{	DMU_BSWAP_UINT64,	TRUE,	"bpobj subobj"		}
110 };
111 
112 const dmu_object_byteswap_info_t dmu_ot_byteswap[DMU_BSWAP_NUMFUNCS] = {
113 	{	byteswap_uint8_array,	"uint8"		},
114 	{	byteswap_uint16_array,	"uint16"	},
115 	{	byteswap_uint32_array,	"uint32"	},
116 	{	byteswap_uint64_array,	"uint64"	},
117 	{	zap_byteswap,		"zap"		},
118 	{	dnode_buf_byteswap,	"dnode"		},
119 	{	dmu_objset_byteswap,	"objset"	},
120 	{	zfs_znode_byteswap,	"znode"		},
121 	{	zfs_oldacl_byteswap,	"oldacl"	},
122 	{	zfs_acl_byteswap,	"acl"		}
123 };
124 
125 int
126 dmu_buf_hold(objset_t *os, uint64_t object, uint64_t offset,
127     void *tag, dmu_buf_t **dbp, int flags)
128 {
129 	dnode_t *dn;
130 	uint64_t blkid;
131 	dmu_buf_impl_t *db;
132 	int err;
133 	int db_flags = DB_RF_CANFAIL;
134 
135 	if (flags & DMU_READ_NO_PREFETCH)
136 		db_flags |= DB_RF_NOPREFETCH;
137 
138 	err = dnode_hold(os, object, FTAG, &dn);
139 	if (err)
140 		return (err);
141 	blkid = dbuf_whichblock(dn, offset);
142 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
143 	db = dbuf_hold(dn, blkid, tag);
144 	rw_exit(&dn->dn_struct_rwlock);
145 	if (db == NULL) {
146 		err = EIO;
147 	} else {
148 		err = dbuf_read(db, NULL, db_flags);
149 		if (err) {
150 			dbuf_rele(db, tag);
151 			db = NULL;
152 		}
153 	}
154 
155 	dnode_rele(dn, FTAG);
156 	*dbp = &db->db; /* NULL db plus first field offset is NULL */
157 	return (err);
158 }
159 
160 int
161 dmu_bonus_max(void)
162 {
163 	return (DN_MAX_BONUSLEN);
164 }
165 
166 int
167 dmu_set_bonus(dmu_buf_t *db_fake, int newsize, dmu_tx_t *tx)
168 {
169 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
170 	dnode_t *dn;
171 	int error;
172 
173 	DB_DNODE_ENTER(db);
174 	dn = DB_DNODE(db);
175 
176 	if (dn->dn_bonus != db) {
177 		error = EINVAL;
178 	} else if (newsize < 0 || newsize > db_fake->db_size) {
179 		error = EINVAL;
180 	} else {
181 		dnode_setbonuslen(dn, newsize, tx);
182 		error = 0;
183 	}
184 
185 	DB_DNODE_EXIT(db);
186 	return (error);
187 }
188 
189 int
190 dmu_set_bonustype(dmu_buf_t *db_fake, dmu_object_type_t type, dmu_tx_t *tx)
191 {
192 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
193 	dnode_t *dn;
194 	int error;
195 
196 	DB_DNODE_ENTER(db);
197 	dn = DB_DNODE(db);
198 
199 	if (!DMU_OT_IS_VALID(type)) {
200 		error = EINVAL;
201 	} else if (dn->dn_bonus != db) {
202 		error = EINVAL;
203 	} else {
204 		dnode_setbonus_type(dn, type, tx);
205 		error = 0;
206 	}
207 
208 	DB_DNODE_EXIT(db);
209 	return (error);
210 }
211 
212 dmu_object_type_t
213 dmu_get_bonustype(dmu_buf_t *db_fake)
214 {
215 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
216 	dnode_t *dn;
217 	dmu_object_type_t type;
218 
219 	DB_DNODE_ENTER(db);
220 	dn = DB_DNODE(db);
221 	type = dn->dn_bonustype;
222 	DB_DNODE_EXIT(db);
223 
224 	return (type);
225 }
226 
227 int
228 dmu_rm_spill(objset_t *os, uint64_t object, dmu_tx_t *tx)
229 {
230 	dnode_t *dn;
231 	int error;
232 
233 	error = dnode_hold(os, object, FTAG, &dn);
234 	dbuf_rm_spill(dn, tx);
235 	rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
236 	dnode_rm_spill(dn, tx);
237 	rw_exit(&dn->dn_struct_rwlock);
238 	dnode_rele(dn, FTAG);
239 	return (error);
240 }
241 
242 /*
243  * returns ENOENT, EIO, or 0.
244  */
245 int
246 dmu_bonus_hold(objset_t *os, uint64_t object, void *tag, dmu_buf_t **dbp)
247 {
248 	dnode_t *dn;
249 	dmu_buf_impl_t *db;
250 	int error;
251 
252 	error = dnode_hold(os, object, FTAG, &dn);
253 	if (error)
254 		return (error);
255 
256 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
257 	if (dn->dn_bonus == NULL) {
258 		rw_exit(&dn->dn_struct_rwlock);
259 		rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
260 		if (dn->dn_bonus == NULL)
261 			dbuf_create_bonus(dn);
262 	}
263 	db = dn->dn_bonus;
264 
265 	/* as long as the bonus buf is held, the dnode will be held */
266 	if (refcount_add(&db->db_holds, tag) == 1) {
267 		VERIFY(dnode_add_ref(dn, db));
268 		(void) atomic_inc_32_nv(&dn->dn_dbufs_count);
269 	}
270 
271 	/*
272 	 * Wait to drop dn_struct_rwlock until after adding the bonus dbuf's
273 	 * hold and incrementing the dbuf count to ensure that dnode_move() sees
274 	 * a dnode hold for every dbuf.
275 	 */
276 	rw_exit(&dn->dn_struct_rwlock);
277 
278 	dnode_rele(dn, FTAG);
279 
280 	VERIFY(0 == dbuf_read(db, NULL, DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH));
281 
282 	*dbp = &db->db;
283 	return (0);
284 }
285 
286 /*
287  * returns ENOENT, EIO, or 0.
288  *
289  * This interface will allocate a blank spill dbuf when a spill blk
290  * doesn't already exist on the dnode.
291  *
292  * if you only want to find an already existing spill db, then
293  * dmu_spill_hold_existing() should be used.
294  */
295 int
296 dmu_spill_hold_by_dnode(dnode_t *dn, uint32_t flags, void *tag, dmu_buf_t **dbp)
297 {
298 	dmu_buf_impl_t *db = NULL;
299 	int err;
300 
301 	if ((flags & DB_RF_HAVESTRUCT) == 0)
302 		rw_enter(&dn->dn_struct_rwlock, RW_READER);
303 
304 	db = dbuf_hold(dn, DMU_SPILL_BLKID, tag);
305 
306 	if ((flags & DB_RF_HAVESTRUCT) == 0)
307 		rw_exit(&dn->dn_struct_rwlock);
308 
309 	ASSERT(db != NULL);
310 	err = dbuf_read(db, NULL, flags);
311 	if (err == 0)
312 		*dbp = &db->db;
313 	else
314 		dbuf_rele(db, tag);
315 	return (err);
316 }
317 
318 int
319 dmu_spill_hold_existing(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp)
320 {
321 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)bonus;
322 	dnode_t *dn;
323 	int err;
324 
325 	DB_DNODE_ENTER(db);
326 	dn = DB_DNODE(db);
327 
328 	if (spa_version(dn->dn_objset->os_spa) < SPA_VERSION_SA) {
329 		err = EINVAL;
330 	} else {
331 		rw_enter(&dn->dn_struct_rwlock, RW_READER);
332 
333 		if (!dn->dn_have_spill) {
334 			err = ENOENT;
335 		} else {
336 			err = dmu_spill_hold_by_dnode(dn,
337 			    DB_RF_HAVESTRUCT | DB_RF_CANFAIL, tag, dbp);
338 		}
339 
340 		rw_exit(&dn->dn_struct_rwlock);
341 	}
342 
343 	DB_DNODE_EXIT(db);
344 	return (err);
345 }
346 
347 int
348 dmu_spill_hold_by_bonus(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp)
349 {
350 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)bonus;
351 	dnode_t *dn;
352 	int err;
353 
354 	DB_DNODE_ENTER(db);
355 	dn = DB_DNODE(db);
356 	err = dmu_spill_hold_by_dnode(dn, DB_RF_CANFAIL, tag, dbp);
357 	DB_DNODE_EXIT(db);
358 
359 	return (err);
360 }
361 
362 /*
363  * Note: longer-term, we should modify all of the dmu_buf_*() interfaces
364  * to take a held dnode rather than <os, object> -- the lookup is wasteful,
365  * and can induce severe lock contention when writing to several files
366  * whose dnodes are in the same block.
367  */
368 static int
369 dmu_buf_hold_array_by_dnode(dnode_t *dn, uint64_t offset, uint64_t length,
370     int read, void *tag, int *numbufsp, dmu_buf_t ***dbpp, uint32_t flags)
371 {
372 	dsl_pool_t *dp = NULL;
373 	dmu_buf_t **dbp;
374 	uint64_t blkid, nblks, i;
375 	uint32_t dbuf_flags;
376 	int err;
377 	zio_t *zio;
378 	hrtime_t start;
379 
380 	ASSERT(length <= DMU_MAX_ACCESS);
381 
382 	dbuf_flags = DB_RF_CANFAIL | DB_RF_NEVERWAIT | DB_RF_HAVESTRUCT;
383 	if (flags & DMU_READ_NO_PREFETCH || length > zfetch_array_rd_sz)
384 		dbuf_flags |= DB_RF_NOPREFETCH;
385 
386 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
387 	if (dn->dn_datablkshift) {
388 		int blkshift = dn->dn_datablkshift;
389 		nblks = (P2ROUNDUP(offset+length, 1ULL<<blkshift) -
390 		    P2ALIGN(offset, 1ULL<<blkshift)) >> blkshift;
391 	} else {
392 		if (offset + length > dn->dn_datablksz) {
393 			zfs_panic_recover("zfs: accessing past end of object "
394 			    "%llx/%llx (size=%u access=%llu+%llu)",
395 			    (longlong_t)dn->dn_objset->
396 			    os_dsl_dataset->ds_object,
397 			    (longlong_t)dn->dn_object, dn->dn_datablksz,
398 			    (longlong_t)offset, (longlong_t)length);
399 			rw_exit(&dn->dn_struct_rwlock);
400 			return (EIO);
401 		}
402 		nblks = 1;
403 	}
404 	dbp = kmem_zalloc(sizeof (dmu_buf_t *) * nblks, KM_SLEEP);
405 
406 	if (dn->dn_objset->os_dsl_dataset)
407 		dp = dn->dn_objset->os_dsl_dataset->ds_dir->dd_pool;
408 	start = gethrtime();
409 	zio = zio_root(dn->dn_objset->os_spa, NULL, NULL, ZIO_FLAG_CANFAIL);
410 	blkid = dbuf_whichblock(dn, offset);
411 	for (i = 0; i < nblks; i++) {
412 		dmu_buf_impl_t *db = dbuf_hold(dn, blkid+i, tag);
413 		if (db == NULL) {
414 			rw_exit(&dn->dn_struct_rwlock);
415 			dmu_buf_rele_array(dbp, nblks, tag);
416 			zio_nowait(zio);
417 			return (EIO);
418 		}
419 		/* initiate async i/o */
420 		if (read) {
421 			(void) dbuf_read(db, zio, dbuf_flags);
422 		}
423 		dbp[i] = &db->db;
424 	}
425 	rw_exit(&dn->dn_struct_rwlock);
426 
427 	/* wait for async i/o */
428 	err = zio_wait(zio);
429 	/* track read overhead when we are in sync context */
430 	if (dp && dsl_pool_sync_context(dp))
431 		dp->dp_read_overhead += gethrtime() - start;
432 	if (err) {
433 		dmu_buf_rele_array(dbp, nblks, tag);
434 		return (err);
435 	}
436 
437 	/* wait for other io to complete */
438 	if (read) {
439 		for (i = 0; i < nblks; i++) {
440 			dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbp[i];
441 			mutex_enter(&db->db_mtx);
442 			while (db->db_state == DB_READ ||
443 			    db->db_state == DB_FILL)
444 				cv_wait(&db->db_changed, &db->db_mtx);
445 			if (db->db_state == DB_UNCACHED)
446 				err = EIO;
447 			mutex_exit(&db->db_mtx);
448 			if (err) {
449 				dmu_buf_rele_array(dbp, nblks, tag);
450 				return (err);
451 			}
452 		}
453 	}
454 
455 	*numbufsp = nblks;
456 	*dbpp = dbp;
457 	return (0);
458 }
459 
460 static int
461 dmu_buf_hold_array(objset_t *os, uint64_t object, uint64_t offset,
462     uint64_t length, int read, void *tag, int *numbufsp, dmu_buf_t ***dbpp)
463 {
464 	dnode_t *dn;
465 	int err;
466 
467 	err = dnode_hold(os, object, FTAG, &dn);
468 	if (err)
469 		return (err);
470 
471 	err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag,
472 	    numbufsp, dbpp, DMU_READ_PREFETCH);
473 
474 	dnode_rele(dn, FTAG);
475 
476 	return (err);
477 }
478 
479 int
480 dmu_buf_hold_array_by_bonus(dmu_buf_t *db_fake, uint64_t offset,
481     uint64_t length, int read, void *tag, int *numbufsp, dmu_buf_t ***dbpp)
482 {
483 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
484 	dnode_t *dn;
485 	int err;
486 
487 	DB_DNODE_ENTER(db);
488 	dn = DB_DNODE(db);
489 	err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag,
490 	    numbufsp, dbpp, DMU_READ_PREFETCH);
491 	DB_DNODE_EXIT(db);
492 
493 	return (err);
494 }
495 
496 void
497 dmu_buf_rele_array(dmu_buf_t **dbp_fake, int numbufs, void *tag)
498 {
499 	int i;
500 	dmu_buf_impl_t **dbp = (dmu_buf_impl_t **)dbp_fake;
501 
502 	if (numbufs == 0)
503 		return;
504 
505 	for (i = 0; i < numbufs; i++) {
506 		if (dbp[i])
507 			dbuf_rele(dbp[i], tag);
508 	}
509 
510 	kmem_free(dbp, sizeof (dmu_buf_t *) * numbufs);
511 }
512 
513 void
514 dmu_prefetch(objset_t *os, uint64_t object, uint64_t offset, uint64_t len)
515 {
516 	dnode_t *dn;
517 	uint64_t blkid;
518 	int nblks, i, err;
519 
520 	if (zfs_prefetch_disable)
521 		return;
522 
523 	if (len == 0) {  /* they're interested in the bonus buffer */
524 		dn = DMU_META_DNODE(os);
525 
526 		if (object == 0 || object >= DN_MAX_OBJECT)
527 			return;
528 
529 		rw_enter(&dn->dn_struct_rwlock, RW_READER);
530 		blkid = dbuf_whichblock(dn, object * sizeof (dnode_phys_t));
531 		dbuf_prefetch(dn, blkid);
532 		rw_exit(&dn->dn_struct_rwlock);
533 		return;
534 	}
535 
536 	/*
537 	 * XXX - Note, if the dnode for the requested object is not
538 	 * already cached, we will do a *synchronous* read in the
539 	 * dnode_hold() call.  The same is true for any indirects.
540 	 */
541 	err = dnode_hold(os, object, FTAG, &dn);
542 	if (err != 0)
543 		return;
544 
545 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
546 	if (dn->dn_datablkshift) {
547 		int blkshift = dn->dn_datablkshift;
548 		nblks = (P2ROUNDUP(offset+len, 1<<blkshift) -
549 		    P2ALIGN(offset, 1<<blkshift)) >> blkshift;
550 	} else {
551 		nblks = (offset < dn->dn_datablksz);
552 	}
553 
554 	if (nblks != 0) {
555 		blkid = dbuf_whichblock(dn, offset);
556 		for (i = 0; i < nblks; i++)
557 			dbuf_prefetch(dn, blkid+i);
558 	}
559 
560 	rw_exit(&dn->dn_struct_rwlock);
561 
562 	dnode_rele(dn, FTAG);
563 }
564 
565 /*
566  * Get the next "chunk" of file data to free.  We traverse the file from
567  * the end so that the file gets shorter over time (if we crashes in the
568  * middle, this will leave us in a better state).  We find allocated file
569  * data by simply searching the allocated level 1 indirects.
570  */
571 static int
572 get_next_chunk(dnode_t *dn, uint64_t *start, uint64_t limit)
573 {
574 	uint64_t len = *start - limit;
575 	uint64_t blkcnt = 0;
576 	uint64_t maxblks = DMU_MAX_ACCESS / (1ULL << (dn->dn_indblkshift + 1));
577 	uint64_t iblkrange =
578 	    dn->dn_datablksz * EPB(dn->dn_indblkshift, SPA_BLKPTRSHIFT);
579 
580 	ASSERT(limit <= *start);
581 
582 	if (len <= iblkrange * maxblks) {
583 		*start = limit;
584 		return (0);
585 	}
586 	ASSERT(ISP2(iblkrange));
587 
588 	while (*start > limit && blkcnt < maxblks) {
589 		int err;
590 
591 		/* find next allocated L1 indirect */
592 		err = dnode_next_offset(dn,
593 		    DNODE_FIND_BACKWARDS, start, 2, 1, 0);
594 
595 		/* if there are no more, then we are done */
596 		if (err == ESRCH) {
597 			*start = limit;
598 			return (0);
599 		} else if (err) {
600 			return (err);
601 		}
602 		blkcnt += 1;
603 
604 		/* reset offset to end of "next" block back */
605 		*start = P2ALIGN(*start, iblkrange);
606 		if (*start <= limit)
607 			*start = limit;
608 		else
609 			*start -= 1;
610 	}
611 	return (0);
612 }
613 
614 static int
615 dmu_free_long_range_impl(objset_t *os, dnode_t *dn, uint64_t offset,
616     uint64_t length, boolean_t free_dnode)
617 {
618 	dmu_tx_t *tx;
619 	uint64_t object_size, start, end, len;
620 	boolean_t trunc = (length == DMU_OBJECT_END);
621 	int align, err;
622 
623 	align = 1 << dn->dn_datablkshift;
624 	ASSERT(align > 0);
625 	object_size = align == 1 ? dn->dn_datablksz :
626 	    (dn->dn_maxblkid + 1) << dn->dn_datablkshift;
627 
628 	end = offset + length;
629 	if (trunc || end > object_size)
630 		end = object_size;
631 	if (end <= offset)
632 		return (0);
633 	length = end - offset;
634 
635 	while (length) {
636 		start = end;
637 		/* assert(offset <= start) */
638 		err = get_next_chunk(dn, &start, offset);
639 		if (err)
640 			return (err);
641 		len = trunc ? DMU_OBJECT_END : end - start;
642 
643 		tx = dmu_tx_create(os);
644 		dmu_tx_hold_free(tx, dn->dn_object, start, len);
645 		err = dmu_tx_assign(tx, TXG_WAIT);
646 		if (err) {
647 			dmu_tx_abort(tx);
648 			return (err);
649 		}
650 
651 		dnode_free_range(dn, start, trunc ? -1 : len, tx);
652 
653 		if (start == 0 && free_dnode) {
654 			ASSERT(trunc);
655 			dnode_free(dn, tx);
656 		}
657 
658 		length -= end - start;
659 
660 		dmu_tx_commit(tx);
661 		end = start;
662 	}
663 	return (0);
664 }
665 
666 int
667 dmu_free_long_range(objset_t *os, uint64_t object,
668     uint64_t offset, uint64_t length)
669 {
670 	dnode_t *dn;
671 	int err;
672 
673 	err = dnode_hold(os, object, FTAG, &dn);
674 	if (err != 0)
675 		return (err);
676 	err = dmu_free_long_range_impl(os, dn, offset, length, FALSE);
677 	dnode_rele(dn, FTAG);
678 	return (err);
679 }
680 
681 int
682 dmu_free_object(objset_t *os, uint64_t object)
683 {
684 	dnode_t *dn;
685 	dmu_tx_t *tx;
686 	int err;
687 
688 	err = dnode_hold_impl(os, object, DNODE_MUST_BE_ALLOCATED,
689 	    FTAG, &dn);
690 	if (err != 0)
691 		return (err);
692 	if (dn->dn_nlevels == 1) {
693 		tx = dmu_tx_create(os);
694 		dmu_tx_hold_bonus(tx, object);
695 		dmu_tx_hold_free(tx, dn->dn_object, 0, DMU_OBJECT_END);
696 		err = dmu_tx_assign(tx, TXG_WAIT);
697 		if (err == 0) {
698 			dnode_free_range(dn, 0, DMU_OBJECT_END, tx);
699 			dnode_free(dn, tx);
700 			dmu_tx_commit(tx);
701 		} else {
702 			dmu_tx_abort(tx);
703 		}
704 	} else {
705 		err = dmu_free_long_range_impl(os, dn, 0, DMU_OBJECT_END, TRUE);
706 	}
707 	dnode_rele(dn, FTAG);
708 	return (err);
709 }
710 
711 int
712 dmu_free_range(objset_t *os, uint64_t object, uint64_t offset,
713     uint64_t size, dmu_tx_t *tx)
714 {
715 	dnode_t *dn;
716 	int err = dnode_hold(os, object, FTAG, &dn);
717 	if (err)
718 		return (err);
719 	ASSERT(offset < UINT64_MAX);
720 	ASSERT(size == -1ULL || size <= UINT64_MAX - offset);
721 	dnode_free_range(dn, offset, size, tx);
722 	dnode_rele(dn, FTAG);
723 	return (0);
724 }
725 
726 int
727 dmu_read(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
728     void *buf, uint32_t flags)
729 {
730 	dnode_t *dn;
731 	dmu_buf_t **dbp;
732 	int numbufs, err;
733 
734 	err = dnode_hold(os, object, FTAG, &dn);
735 	if (err)
736 		return (err);
737 
738 	/*
739 	 * Deal with odd block sizes, where there can't be data past the first
740 	 * block.  If we ever do the tail block optimization, we will need to
741 	 * handle that here as well.
742 	 */
743 	if (dn->dn_maxblkid == 0) {
744 		int newsz = offset > dn->dn_datablksz ? 0 :
745 		    MIN(size, dn->dn_datablksz - offset);
746 		bzero((char *)buf + newsz, size - newsz);
747 		size = newsz;
748 	}
749 
750 	while (size > 0) {
751 		uint64_t mylen = MIN(size, DMU_MAX_ACCESS / 2);
752 		int i;
753 
754 		/*
755 		 * NB: we could do this block-at-a-time, but it's nice
756 		 * to be reading in parallel.
757 		 */
758 		err = dmu_buf_hold_array_by_dnode(dn, offset, mylen,
759 		    TRUE, FTAG, &numbufs, &dbp, flags);
760 		if (err)
761 			break;
762 
763 		for (i = 0; i < numbufs; i++) {
764 			int tocpy;
765 			int bufoff;
766 			dmu_buf_t *db = dbp[i];
767 
768 			ASSERT(size > 0);
769 
770 			bufoff = offset - db->db_offset;
771 			tocpy = (int)MIN(db->db_size - bufoff, size);
772 
773 			bcopy((char *)db->db_data + bufoff, buf, tocpy);
774 
775 			offset += tocpy;
776 			size -= tocpy;
777 			buf = (char *)buf + tocpy;
778 		}
779 		dmu_buf_rele_array(dbp, numbufs, FTAG);
780 	}
781 	dnode_rele(dn, FTAG);
782 	return (err);
783 }
784 
785 void
786 dmu_write(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
787     const void *buf, dmu_tx_t *tx)
788 {
789 	dmu_buf_t **dbp;
790 	int numbufs, i;
791 
792 	if (size == 0)
793 		return;
794 
795 	VERIFY(0 == dmu_buf_hold_array(os, object, offset, size,
796 	    FALSE, FTAG, &numbufs, &dbp));
797 
798 	for (i = 0; i < numbufs; i++) {
799 		int tocpy;
800 		int bufoff;
801 		dmu_buf_t *db = dbp[i];
802 
803 		ASSERT(size > 0);
804 
805 		bufoff = offset - db->db_offset;
806 		tocpy = (int)MIN(db->db_size - bufoff, size);
807 
808 		ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size);
809 
810 		if (tocpy == db->db_size)
811 			dmu_buf_will_fill(db, tx);
812 		else
813 			dmu_buf_will_dirty(db, tx);
814 
815 		bcopy(buf, (char *)db->db_data + bufoff, tocpy);
816 
817 		if (tocpy == db->db_size)
818 			dmu_buf_fill_done(db, tx);
819 
820 		offset += tocpy;
821 		size -= tocpy;
822 		buf = (char *)buf + tocpy;
823 	}
824 	dmu_buf_rele_array(dbp, numbufs, FTAG);
825 }
826 
827 void
828 dmu_prealloc(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
829     dmu_tx_t *tx)
830 {
831 	dmu_buf_t **dbp;
832 	int numbufs, i;
833 
834 	if (size == 0)
835 		return;
836 
837 	VERIFY(0 == dmu_buf_hold_array(os, object, offset, size,
838 	    FALSE, FTAG, &numbufs, &dbp));
839 
840 	for (i = 0; i < numbufs; i++) {
841 		dmu_buf_t *db = dbp[i];
842 
843 		dmu_buf_will_not_fill(db, tx);
844 	}
845 	dmu_buf_rele_array(dbp, numbufs, FTAG);
846 }
847 
848 /*
849  * DMU support for xuio
850  */
851 kstat_t *xuio_ksp = NULL;
852 
853 int
854 dmu_xuio_init(xuio_t *xuio, int nblk)
855 {
856 	dmu_xuio_t *priv;
857 	uio_t *uio = &xuio->xu_uio;
858 
859 	uio->uio_iovcnt = nblk;
860 	uio->uio_iov = kmem_zalloc(nblk * sizeof (iovec_t), KM_SLEEP);
861 
862 	priv = kmem_zalloc(sizeof (dmu_xuio_t), KM_SLEEP);
863 	priv->cnt = nblk;
864 	priv->bufs = kmem_zalloc(nblk * sizeof (arc_buf_t *), KM_SLEEP);
865 	priv->iovp = uio->uio_iov;
866 	XUIO_XUZC_PRIV(xuio) = priv;
867 
868 	if (XUIO_XUZC_RW(xuio) == UIO_READ)
869 		XUIOSTAT_INCR(xuiostat_onloan_rbuf, nblk);
870 	else
871 		XUIOSTAT_INCR(xuiostat_onloan_wbuf, nblk);
872 
873 	return (0);
874 }
875 
876 void
877 dmu_xuio_fini(xuio_t *xuio)
878 {
879 	dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
880 	int nblk = priv->cnt;
881 
882 	kmem_free(priv->iovp, nblk * sizeof (iovec_t));
883 	kmem_free(priv->bufs, nblk * sizeof (arc_buf_t *));
884 	kmem_free(priv, sizeof (dmu_xuio_t));
885 
886 	if (XUIO_XUZC_RW(xuio) == UIO_READ)
887 		XUIOSTAT_INCR(xuiostat_onloan_rbuf, -nblk);
888 	else
889 		XUIOSTAT_INCR(xuiostat_onloan_wbuf, -nblk);
890 }
891 
892 /*
893  * Initialize iov[priv->next] and priv->bufs[priv->next] with { off, n, abuf }
894  * and increase priv->next by 1.
895  */
896 int
897 dmu_xuio_add(xuio_t *xuio, arc_buf_t *abuf, offset_t off, size_t n)
898 {
899 	struct iovec *iov;
900 	uio_t *uio = &xuio->xu_uio;
901 	dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
902 	int i = priv->next++;
903 
904 	ASSERT(i < priv->cnt);
905 	ASSERT(off + n <= arc_buf_size(abuf));
906 	iov = uio->uio_iov + i;
907 	iov->iov_base = (char *)abuf->b_data + off;
908 	iov->iov_len = n;
909 	priv->bufs[i] = abuf;
910 	return (0);
911 }
912 
913 int
914 dmu_xuio_cnt(xuio_t *xuio)
915 {
916 	dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
917 	return (priv->cnt);
918 }
919 
920 arc_buf_t *
921 dmu_xuio_arcbuf(xuio_t *xuio, int i)
922 {
923 	dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
924 
925 	ASSERT(i < priv->cnt);
926 	return (priv->bufs[i]);
927 }
928 
929 void
930 dmu_xuio_clear(xuio_t *xuio, int i)
931 {
932 	dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
933 
934 	ASSERT(i < priv->cnt);
935 	priv->bufs[i] = NULL;
936 }
937 
938 static void
939 xuio_stat_init(void)
940 {
941 	xuio_ksp = kstat_create("zfs", 0, "xuio_stats", "misc",
942 	    KSTAT_TYPE_NAMED, sizeof (xuio_stats) / sizeof (kstat_named_t),
943 	    KSTAT_FLAG_VIRTUAL);
944 	if (xuio_ksp != NULL) {
945 		xuio_ksp->ks_data = &xuio_stats;
946 		kstat_install(xuio_ksp);
947 	}
948 }
949 
950 static void
951 xuio_stat_fini(void)
952 {
953 	if (xuio_ksp != NULL) {
954 		kstat_delete(xuio_ksp);
955 		xuio_ksp = NULL;
956 	}
957 }
958 
959 void
960 xuio_stat_wbuf_copied()
961 {
962 	XUIOSTAT_BUMP(xuiostat_wbuf_copied);
963 }
964 
965 void
966 xuio_stat_wbuf_nocopy()
967 {
968 	XUIOSTAT_BUMP(xuiostat_wbuf_nocopy);
969 }
970 
971 #ifdef _KERNEL
972 int
973 dmu_read_uio(objset_t *os, uint64_t object, uio_t *uio, uint64_t size)
974 {
975 	dmu_buf_t **dbp;
976 	int numbufs, i, err;
977 	xuio_t *xuio = NULL;
978 
979 	/*
980 	 * NB: we could do this block-at-a-time, but it's nice
981 	 * to be reading in parallel.
982 	 */
983 	err = dmu_buf_hold_array(os, object, uio->uio_loffset, size, TRUE, FTAG,
984 	    &numbufs, &dbp);
985 	if (err)
986 		return (err);
987 
988 	if (uio->uio_extflg == UIO_XUIO)
989 		xuio = (xuio_t *)uio;
990 
991 	for (i = 0; i < numbufs; i++) {
992 		int tocpy;
993 		int bufoff;
994 		dmu_buf_t *db = dbp[i];
995 
996 		ASSERT(size > 0);
997 
998 		bufoff = uio->uio_loffset - db->db_offset;
999 		tocpy = (int)MIN(db->db_size - bufoff, size);
1000 
1001 		if (xuio) {
1002 			dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
1003 			arc_buf_t *dbuf_abuf = dbi->db_buf;
1004 			arc_buf_t *abuf = dbuf_loan_arcbuf(dbi);
1005 			err = dmu_xuio_add(xuio, abuf, bufoff, tocpy);
1006 			if (!err) {
1007 				uio->uio_resid -= tocpy;
1008 				uio->uio_loffset += tocpy;
1009 			}
1010 
1011 			if (abuf == dbuf_abuf)
1012 				XUIOSTAT_BUMP(xuiostat_rbuf_nocopy);
1013 			else
1014 				XUIOSTAT_BUMP(xuiostat_rbuf_copied);
1015 		} else {
1016 			err = uiomove((char *)db->db_data + bufoff, tocpy,
1017 			    UIO_READ, uio);
1018 		}
1019 		if (err)
1020 			break;
1021 
1022 		size -= tocpy;
1023 	}
1024 	dmu_buf_rele_array(dbp, numbufs, FTAG);
1025 
1026 	return (err);
1027 }
1028 
1029 static int
1030 dmu_write_uio_dnode(dnode_t *dn, uio_t *uio, uint64_t size, dmu_tx_t *tx)
1031 {
1032 	dmu_buf_t **dbp;
1033 	int numbufs;
1034 	int err = 0;
1035 	int i;
1036 
1037 	err = dmu_buf_hold_array_by_dnode(dn, uio->uio_loffset, size,
1038 	    FALSE, FTAG, &numbufs, &dbp, DMU_READ_PREFETCH);
1039 	if (err)
1040 		return (err);
1041 
1042 	for (i = 0; i < numbufs; i++) {
1043 		int tocpy;
1044 		int bufoff;
1045 		dmu_buf_t *db = dbp[i];
1046 
1047 		ASSERT(size > 0);
1048 
1049 		bufoff = uio->uio_loffset - db->db_offset;
1050 		tocpy = (int)MIN(db->db_size - bufoff, size);
1051 
1052 		ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size);
1053 
1054 		if (tocpy == db->db_size)
1055 			dmu_buf_will_fill(db, tx);
1056 		else
1057 			dmu_buf_will_dirty(db, tx);
1058 
1059 		/*
1060 		 * XXX uiomove could block forever (eg. nfs-backed
1061 		 * pages).  There needs to be a uiolockdown() function
1062 		 * to lock the pages in memory, so that uiomove won't
1063 		 * block.
1064 		 */
1065 		err = uiomove((char *)db->db_data + bufoff, tocpy,
1066 		    UIO_WRITE, uio);
1067 
1068 		if (tocpy == db->db_size)
1069 			dmu_buf_fill_done(db, tx);
1070 
1071 		if (err)
1072 			break;
1073 
1074 		size -= tocpy;
1075 	}
1076 
1077 	dmu_buf_rele_array(dbp, numbufs, FTAG);
1078 	return (err);
1079 }
1080 
1081 int
1082 dmu_write_uio_dbuf(dmu_buf_t *zdb, uio_t *uio, uint64_t size,
1083     dmu_tx_t *tx)
1084 {
1085 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)zdb;
1086 	dnode_t *dn;
1087 	int err;
1088 
1089 	if (size == 0)
1090 		return (0);
1091 
1092 	DB_DNODE_ENTER(db);
1093 	dn = DB_DNODE(db);
1094 	err = dmu_write_uio_dnode(dn, uio, size, tx);
1095 	DB_DNODE_EXIT(db);
1096 
1097 	return (err);
1098 }
1099 
1100 int
1101 dmu_write_uio(objset_t *os, uint64_t object, uio_t *uio, uint64_t size,
1102     dmu_tx_t *tx)
1103 {
1104 	dnode_t *dn;
1105 	int err;
1106 
1107 	if (size == 0)
1108 		return (0);
1109 
1110 	err = dnode_hold(os, object, FTAG, &dn);
1111 	if (err)
1112 		return (err);
1113 
1114 	err = dmu_write_uio_dnode(dn, uio, size, tx);
1115 
1116 	dnode_rele(dn, FTAG);
1117 
1118 	return (err);
1119 }
1120 
1121 int
1122 dmu_write_pages(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
1123     page_t *pp, dmu_tx_t *tx)
1124 {
1125 	dmu_buf_t **dbp;
1126 	int numbufs, i;
1127 	int err;
1128 
1129 	if (size == 0)
1130 		return (0);
1131 
1132 	err = dmu_buf_hold_array(os, object, offset, size,
1133 	    FALSE, FTAG, &numbufs, &dbp);
1134 	if (err)
1135 		return (err);
1136 
1137 	for (i = 0; i < numbufs; i++) {
1138 		int tocpy, copied, thiscpy;
1139 		int bufoff;
1140 		dmu_buf_t *db = dbp[i];
1141 		caddr_t va;
1142 
1143 		ASSERT(size > 0);
1144 		ASSERT3U(db->db_size, >=, PAGESIZE);
1145 
1146 		bufoff = offset - db->db_offset;
1147 		tocpy = (int)MIN(db->db_size - bufoff, size);
1148 
1149 		ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size);
1150 
1151 		if (tocpy == db->db_size)
1152 			dmu_buf_will_fill(db, tx);
1153 		else
1154 			dmu_buf_will_dirty(db, tx);
1155 
1156 		for (copied = 0; copied < tocpy; copied += PAGESIZE) {
1157 			ASSERT3U(pp->p_offset, ==, db->db_offset + bufoff);
1158 			thiscpy = MIN(PAGESIZE, tocpy - copied);
1159 			va = zfs_map_page(pp, S_READ);
1160 			bcopy(va, (char *)db->db_data + bufoff, thiscpy);
1161 			zfs_unmap_page(pp, va);
1162 			pp = pp->p_next;
1163 			bufoff += PAGESIZE;
1164 		}
1165 
1166 		if (tocpy == db->db_size)
1167 			dmu_buf_fill_done(db, tx);
1168 
1169 		offset += tocpy;
1170 		size -= tocpy;
1171 	}
1172 	dmu_buf_rele_array(dbp, numbufs, FTAG);
1173 	return (err);
1174 }
1175 #endif
1176 
1177 /*
1178  * Allocate a loaned anonymous arc buffer.
1179  */
1180 arc_buf_t *
1181 dmu_request_arcbuf(dmu_buf_t *handle, int size)
1182 {
1183 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)handle;
1184 	spa_t *spa;
1185 
1186 	DB_GET_SPA(&spa, db);
1187 	return (arc_loan_buf(spa, size));
1188 }
1189 
1190 /*
1191  * Free a loaned arc buffer.
1192  */
1193 void
1194 dmu_return_arcbuf(arc_buf_t *buf)
1195 {
1196 	arc_return_buf(buf, FTAG);
1197 	VERIFY(arc_buf_remove_ref(buf, FTAG));
1198 }
1199 
1200 /*
1201  * When possible directly assign passed loaned arc buffer to a dbuf.
1202  * If this is not possible copy the contents of passed arc buf via
1203  * dmu_write().
1204  */
1205 void
1206 dmu_assign_arcbuf(dmu_buf_t *handle, uint64_t offset, arc_buf_t *buf,
1207     dmu_tx_t *tx)
1208 {
1209 	dmu_buf_impl_t *dbuf = (dmu_buf_impl_t *)handle;
1210 	dnode_t *dn;
1211 	dmu_buf_impl_t *db;
1212 	uint32_t blksz = (uint32_t)arc_buf_size(buf);
1213 	uint64_t blkid;
1214 
1215 	DB_DNODE_ENTER(dbuf);
1216 	dn = DB_DNODE(dbuf);
1217 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
1218 	blkid = dbuf_whichblock(dn, offset);
1219 	VERIFY((db = dbuf_hold(dn, blkid, FTAG)) != NULL);
1220 	rw_exit(&dn->dn_struct_rwlock);
1221 	DB_DNODE_EXIT(dbuf);
1222 
1223 	if (offset == db->db.db_offset && blksz == db->db.db_size) {
1224 		dbuf_assign_arcbuf(db, buf, tx);
1225 		dbuf_rele(db, FTAG);
1226 	} else {
1227 		objset_t *os;
1228 		uint64_t object;
1229 
1230 		DB_DNODE_ENTER(dbuf);
1231 		dn = DB_DNODE(dbuf);
1232 		os = dn->dn_objset;
1233 		object = dn->dn_object;
1234 		DB_DNODE_EXIT(dbuf);
1235 
1236 		dbuf_rele(db, FTAG);
1237 		dmu_write(os, object, offset, blksz, buf->b_data, tx);
1238 		dmu_return_arcbuf(buf);
1239 		XUIOSTAT_BUMP(xuiostat_wbuf_copied);
1240 	}
1241 }
1242 
1243 typedef struct {
1244 	dbuf_dirty_record_t	*dsa_dr;
1245 	dmu_sync_cb_t		*dsa_done;
1246 	zgd_t			*dsa_zgd;
1247 	dmu_tx_t		*dsa_tx;
1248 } dmu_sync_arg_t;
1249 
1250 /* ARGSUSED */
1251 static void
1252 dmu_sync_ready(zio_t *zio, arc_buf_t *buf, void *varg)
1253 {
1254 	dmu_sync_arg_t *dsa = varg;
1255 	dmu_buf_t *db = dsa->dsa_zgd->zgd_db;
1256 	blkptr_t *bp = zio->io_bp;
1257 
1258 	if (zio->io_error == 0) {
1259 		if (BP_IS_HOLE(bp)) {
1260 			/*
1261 			 * A block of zeros may compress to a hole, but the
1262 			 * block size still needs to be known for replay.
1263 			 */
1264 			BP_SET_LSIZE(bp, db->db_size);
1265 		} else {
1266 			ASSERT(BP_GET_LEVEL(bp) == 0);
1267 			bp->blk_fill = 1;
1268 		}
1269 	}
1270 }
1271 
1272 static void
1273 dmu_sync_late_arrival_ready(zio_t *zio)
1274 {
1275 	dmu_sync_ready(zio, NULL, zio->io_private);
1276 }
1277 
1278 /* ARGSUSED */
1279 static void
1280 dmu_sync_done(zio_t *zio, arc_buf_t *buf, void *varg)
1281 {
1282 	dmu_sync_arg_t *dsa = varg;
1283 	dbuf_dirty_record_t *dr = dsa->dsa_dr;
1284 	dmu_buf_impl_t *db = dr->dr_dbuf;
1285 
1286 	mutex_enter(&db->db_mtx);
1287 	ASSERT(dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC);
1288 	if (zio->io_error == 0) {
1289 		dr->dt.dl.dr_nopwrite = !!(zio->io_flags & ZIO_FLAG_NOPWRITE);
1290 		if (dr->dt.dl.dr_nopwrite) {
1291 			blkptr_t *bp = zio->io_bp;
1292 			blkptr_t *bp_orig = &zio->io_bp_orig;
1293 			uint8_t chksum = BP_GET_CHECKSUM(bp_orig);
1294 
1295 			ASSERT(BP_EQUAL(bp, bp_orig));
1296 			ASSERT(zio->io_prop.zp_compress != ZIO_COMPRESS_OFF);
1297 			ASSERT(zio_checksum_table[chksum].ci_dedup);
1298 		}
1299 		dr->dt.dl.dr_overridden_by = *zio->io_bp;
1300 		dr->dt.dl.dr_override_state = DR_OVERRIDDEN;
1301 		dr->dt.dl.dr_copies = zio->io_prop.zp_copies;
1302 		if (BP_IS_HOLE(&dr->dt.dl.dr_overridden_by))
1303 			BP_ZERO(&dr->dt.dl.dr_overridden_by);
1304 	} else {
1305 		dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
1306 	}
1307 	cv_broadcast(&db->db_changed);
1308 	mutex_exit(&db->db_mtx);
1309 
1310 	dsa->dsa_done(dsa->dsa_zgd, zio->io_error);
1311 
1312 	kmem_free(dsa, sizeof (*dsa));
1313 }
1314 
1315 static void
1316 dmu_sync_late_arrival_done(zio_t *zio)
1317 {
1318 	blkptr_t *bp = zio->io_bp;
1319 	dmu_sync_arg_t *dsa = zio->io_private;
1320 	blkptr_t *bp_orig = &zio->io_bp_orig;
1321 
1322 	if (zio->io_error == 0 && !BP_IS_HOLE(bp)) {
1323 		/*
1324 		 * If we didn't allocate a new block (i.e. ZIO_FLAG_NOPWRITE)
1325 		 * then there is nothing to do here. Otherwise, free the
1326 		 * newly allocated block in this txg.
1327 		 */
1328 		if (zio->io_flags & ZIO_FLAG_NOPWRITE) {
1329 			ASSERT(BP_EQUAL(bp, bp_orig));
1330 		} else {
1331 			ASSERT(BP_IS_HOLE(bp_orig) || !BP_EQUAL(bp, bp_orig));
1332 			ASSERT(zio->io_bp->blk_birth == zio->io_txg);
1333 			ASSERT(zio->io_txg > spa_syncing_txg(zio->io_spa));
1334 			zio_free(zio->io_spa, zio->io_txg, zio->io_bp);
1335 		}
1336 	}
1337 
1338 	dmu_tx_commit(dsa->dsa_tx);
1339 
1340 	dsa->dsa_done(dsa->dsa_zgd, zio->io_error);
1341 
1342 	kmem_free(dsa, sizeof (*dsa));
1343 }
1344 
1345 static int
1346 dmu_sync_late_arrival(zio_t *pio, objset_t *os, dmu_sync_cb_t *done, zgd_t *zgd,
1347     zio_prop_t *zp, zbookmark_t *zb)
1348 {
1349 	dmu_sync_arg_t *dsa;
1350 	dmu_tx_t *tx;
1351 
1352 	tx = dmu_tx_create(os);
1353 	dmu_tx_hold_space(tx, zgd->zgd_db->db_size);
1354 	if (dmu_tx_assign(tx, TXG_WAIT) != 0) {
1355 		dmu_tx_abort(tx);
1356 		return (EIO);	/* Make zl_get_data do txg_waited_synced() */
1357 	}
1358 
1359 	dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP);
1360 	dsa->dsa_dr = NULL;
1361 	dsa->dsa_done = done;
1362 	dsa->dsa_zgd = zgd;
1363 	dsa->dsa_tx = tx;
1364 
1365 	zio_nowait(zio_write(pio, os->os_spa, dmu_tx_get_txg(tx), zgd->zgd_bp,
1366 	    zgd->zgd_db->db_data, zgd->zgd_db->db_size, zp,
1367 	    dmu_sync_late_arrival_ready, dmu_sync_late_arrival_done, dsa,
1368 	    ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CANFAIL, zb));
1369 
1370 	return (0);
1371 }
1372 
1373 /*
1374  * Intent log support: sync the block associated with db to disk.
1375  * N.B. and XXX: the caller is responsible for making sure that the
1376  * data isn't changing while dmu_sync() is writing it.
1377  *
1378  * Return values:
1379  *
1380  *	EEXIST: this txg has already been synced, so there's nothing to do.
1381  *		The caller should not log the write.
1382  *
1383  *	ENOENT: the block was dbuf_free_range()'d, so there's nothing to do.
1384  *		The caller should not log the write.
1385  *
1386  *	EALREADY: this block is already in the process of being synced.
1387  *		The caller should track its progress (somehow).
1388  *
1389  *	EIO: could not do the I/O.
1390  *		The caller should do a txg_wait_synced().
1391  *
1392  *	0: the I/O has been initiated.
1393  *		The caller should log this blkptr in the done callback.
1394  *		It is possible that the I/O will fail, in which case
1395  *		the error will be reported to the done callback and
1396  *		propagated to pio from zio_done().
1397  */
1398 int
1399 dmu_sync(zio_t *pio, uint64_t txg, dmu_sync_cb_t *done, zgd_t *zgd)
1400 {
1401 	blkptr_t *bp = zgd->zgd_bp;
1402 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)zgd->zgd_db;
1403 	objset_t *os = db->db_objset;
1404 	dsl_dataset_t *ds = os->os_dsl_dataset;
1405 	dbuf_dirty_record_t *dr;
1406 	dmu_sync_arg_t *dsa;
1407 	zbookmark_t zb;
1408 	zio_prop_t zp;
1409 	dnode_t *dn;
1410 
1411 	ASSERT(pio != NULL);
1412 	ASSERT(txg != 0);
1413 
1414 	SET_BOOKMARK(&zb, ds->ds_object,
1415 	    db->db.db_object, db->db_level, db->db_blkid);
1416 
1417 	DB_DNODE_ENTER(db);
1418 	dn = DB_DNODE(db);
1419 	dmu_write_policy(os, dn, db->db_level, WP_DMU_SYNC, &zp);
1420 	DB_DNODE_EXIT(db);
1421 
1422 	/*
1423 	 * If we're frozen (running ziltest), we always need to generate a bp.
1424 	 */
1425 	if (txg > spa_freeze_txg(os->os_spa))
1426 		return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb));
1427 
1428 	/*
1429 	 * Grabbing db_mtx now provides a barrier between dbuf_sync_leaf()
1430 	 * and us.  If we determine that this txg is not yet syncing,
1431 	 * but it begins to sync a moment later, that's OK because the
1432 	 * sync thread will block in dbuf_sync_leaf() until we drop db_mtx.
1433 	 */
1434 	mutex_enter(&db->db_mtx);
1435 
1436 	if (txg <= spa_last_synced_txg(os->os_spa)) {
1437 		/*
1438 		 * This txg has already synced.  There's nothing to do.
1439 		 */
1440 		mutex_exit(&db->db_mtx);
1441 		return (EEXIST);
1442 	}
1443 
1444 	if (txg <= spa_syncing_txg(os->os_spa)) {
1445 		/*
1446 		 * This txg is currently syncing, so we can't mess with
1447 		 * the dirty record anymore; just write a new log block.
1448 		 */
1449 		mutex_exit(&db->db_mtx);
1450 		return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb));
1451 	}
1452 
1453 	dr = db->db_last_dirty;
1454 	while (dr && dr->dr_txg != txg)
1455 		dr = dr->dr_next;
1456 
1457 	if (dr == NULL) {
1458 		/*
1459 		 * There's no dr for this dbuf, so it must have been freed.
1460 		 * There's no need to log writes to freed blocks, so we're done.
1461 		 */
1462 		mutex_exit(&db->db_mtx);
1463 		return (ENOENT);
1464 	}
1465 
1466 	ASSERT(dr->dr_next == NULL || dr->dr_next->dr_txg < txg);
1467 
1468 	/*
1469 	 * Assume the on-disk data is X, the current syncing data is Y,
1470 	 * and the current in-memory data is Z (currently in dmu_sync).
1471 	 * X and Z are identical but Y is has been modified. Normally,
1472 	 * when X and Z are the same we will perform a nopwrite but if Y
1473 	 * is different we must disable nopwrite since the resulting write
1474 	 * of Y to disk can free the block containing X. If we allowed a
1475 	 * nopwrite to occur the block pointing to Z would reference a freed
1476 	 * block. Since this is a rare case we simplify this by disabling
1477 	 * nopwrite if the current dmu_sync-ing dbuf has been modified in
1478 	 * a previous transaction.
1479 	 */
1480 	if (dr->dr_next)
1481 		zp.zp_nopwrite = B_FALSE;
1482 
1483 	ASSERT(dr->dr_txg == txg);
1484 	if (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC ||
1485 	    dr->dt.dl.dr_override_state == DR_OVERRIDDEN) {
1486 		/*
1487 		 * We have already issued a sync write for this buffer,
1488 		 * or this buffer has already been synced.  It could not
1489 		 * have been dirtied since, or we would have cleared the state.
1490 		 */
1491 		mutex_exit(&db->db_mtx);
1492 		return (EALREADY);
1493 	}
1494 
1495 	ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN);
1496 	dr->dt.dl.dr_override_state = DR_IN_DMU_SYNC;
1497 	mutex_exit(&db->db_mtx);
1498 
1499 	dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP);
1500 	dsa->dsa_dr = dr;
1501 	dsa->dsa_done = done;
1502 	dsa->dsa_zgd = zgd;
1503 	dsa->dsa_tx = NULL;
1504 
1505 	zio_nowait(arc_write(pio, os->os_spa, txg,
1506 	    bp, dr->dt.dl.dr_data, DBUF_IS_L2CACHEABLE(db), &zp,
1507 	    dmu_sync_ready, dmu_sync_done, dsa,
1508 	    ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CANFAIL, &zb));
1509 
1510 	return (0);
1511 }
1512 
1513 int
1514 dmu_object_set_blocksize(objset_t *os, uint64_t object, uint64_t size, int ibs,
1515 	dmu_tx_t *tx)
1516 {
1517 	dnode_t *dn;
1518 	int err;
1519 
1520 	err = dnode_hold(os, object, FTAG, &dn);
1521 	if (err)
1522 		return (err);
1523 	err = dnode_set_blksz(dn, size, ibs, tx);
1524 	dnode_rele(dn, FTAG);
1525 	return (err);
1526 }
1527 
1528 void
1529 dmu_object_set_checksum(objset_t *os, uint64_t object, uint8_t checksum,
1530 	dmu_tx_t *tx)
1531 {
1532 	dnode_t *dn;
1533 
1534 	/* XXX assumes dnode_hold will not get an i/o error */
1535 	(void) dnode_hold(os, object, FTAG, &dn);
1536 	ASSERT(checksum < ZIO_CHECKSUM_FUNCTIONS);
1537 	dn->dn_checksum = checksum;
1538 	dnode_setdirty(dn, tx);
1539 	dnode_rele(dn, FTAG);
1540 }
1541 
1542 void
1543 dmu_object_set_compress(objset_t *os, uint64_t object, uint8_t compress,
1544 	dmu_tx_t *tx)
1545 {
1546 	dnode_t *dn;
1547 
1548 	/* XXX assumes dnode_hold will not get an i/o error */
1549 	(void) dnode_hold(os, object, FTAG, &dn);
1550 	ASSERT(compress < ZIO_COMPRESS_FUNCTIONS);
1551 	dn->dn_compress = compress;
1552 	dnode_setdirty(dn, tx);
1553 	dnode_rele(dn, FTAG);
1554 }
1555 
1556 int zfs_mdcomp_disable = 0;
1557 
1558 void
1559 dmu_write_policy(objset_t *os, dnode_t *dn, int level, int wp, zio_prop_t *zp)
1560 {
1561 	dmu_object_type_t type = dn ? dn->dn_type : DMU_OT_OBJSET;
1562 	boolean_t ismd = (level > 0 || DMU_OT_IS_METADATA(type) ||
1563 	    (wp & WP_SPILL));
1564 	enum zio_checksum checksum = os->os_checksum;
1565 	enum zio_compress compress = os->os_compress;
1566 	enum zio_checksum dedup_checksum = os->os_dedup_checksum;
1567 	boolean_t dedup = B_FALSE;
1568 	boolean_t nopwrite = B_FALSE;
1569 	boolean_t dedup_verify = os->os_dedup_verify;
1570 	int copies = os->os_copies;
1571 
1572 	/*
1573 	 * We maintain different write policies for each of the following
1574 	 * types of data:
1575 	 *	 1. metadata
1576 	 *	 2. preallocated blocks (i.e. level-0 blocks of a dump device)
1577 	 *	 3. all other level 0 blocks
1578 	 */
1579 	if (ismd) {
1580 		/*
1581 		 * XXX -- we should design a compression algorithm
1582 		 * that specializes in arrays of bps.
1583 		 */
1584 		compress = zfs_mdcomp_disable ? ZIO_COMPRESS_EMPTY :
1585 		    ZIO_COMPRESS_LZJB;
1586 
1587 		/*
1588 		 * Metadata always gets checksummed.  If the data
1589 		 * checksum is multi-bit correctable, and it's not a
1590 		 * ZBT-style checksum, then it's suitable for metadata
1591 		 * as well.  Otherwise, the metadata checksum defaults
1592 		 * to fletcher4.
1593 		 */
1594 		if (zio_checksum_table[checksum].ci_correctable < 1 ||
1595 		    zio_checksum_table[checksum].ci_eck)
1596 			checksum = ZIO_CHECKSUM_FLETCHER_4;
1597 	} else if (wp & WP_NOFILL) {
1598 		ASSERT(level == 0);
1599 
1600 		/*
1601 		 * If we're writing preallocated blocks, we aren't actually
1602 		 * writing them so don't set any policy properties.  These
1603 		 * blocks are currently only used by an external subsystem
1604 		 * outside of zfs (i.e. dump) and not written by the zio
1605 		 * pipeline.
1606 		 */
1607 		compress = ZIO_COMPRESS_OFF;
1608 		checksum = ZIO_CHECKSUM_OFF;
1609 	} else {
1610 		compress = zio_compress_select(dn->dn_compress, compress);
1611 
1612 		checksum = (dedup_checksum == ZIO_CHECKSUM_OFF) ?
1613 		    zio_checksum_select(dn->dn_checksum, checksum) :
1614 		    dedup_checksum;
1615 
1616 		/*
1617 		 * Determine dedup setting.  If we are in dmu_sync(),
1618 		 * we won't actually dedup now because that's all
1619 		 * done in syncing context; but we do want to use the
1620 		 * dedup checkum.  If the checksum is not strong
1621 		 * enough to ensure unique signatures, force
1622 		 * dedup_verify.
1623 		 */
1624 		if (dedup_checksum != ZIO_CHECKSUM_OFF) {
1625 			dedup = (wp & WP_DMU_SYNC) ? B_FALSE : B_TRUE;
1626 			if (!zio_checksum_table[checksum].ci_dedup)
1627 				dedup_verify = B_TRUE;
1628 		}
1629 
1630 		/*
1631 		 * Enable nopwrite if we have a cryptographically secure
1632 		 * checksum that has no known collisions (i.e. SHA-256)
1633 		 * and compression is enabled.  We don't enable nopwrite if
1634 		 * dedup is enabled as the two features are mutually exclusive.
1635 		 */
1636 		nopwrite = (!dedup && zio_checksum_table[checksum].ci_dedup &&
1637 		    compress != ZIO_COMPRESS_OFF && zfs_nopwrite_enabled);
1638 	}
1639 
1640 	zp->zp_checksum = checksum;
1641 	zp->zp_compress = compress;
1642 	zp->zp_type = (wp & WP_SPILL) ? dn->dn_bonustype : type;
1643 	zp->zp_level = level;
1644 	zp->zp_copies = MIN(copies + ismd, spa_max_replication(os->os_spa));
1645 	zp->zp_dedup = dedup;
1646 	zp->zp_dedup_verify = dedup && dedup_verify;
1647 	zp->zp_nopwrite = nopwrite;
1648 }
1649 
1650 int
1651 dmu_offset_next(objset_t *os, uint64_t object, boolean_t hole, uint64_t *off)
1652 {
1653 	dnode_t *dn;
1654 	int i, err;
1655 
1656 	err = dnode_hold(os, object, FTAG, &dn);
1657 	if (err)
1658 		return (err);
1659 	/*
1660 	 * Sync any current changes before
1661 	 * we go trundling through the block pointers.
1662 	 */
1663 	for (i = 0; i < TXG_SIZE; i++) {
1664 		if (list_link_active(&dn->dn_dirty_link[i]))
1665 			break;
1666 	}
1667 	if (i != TXG_SIZE) {
1668 		dnode_rele(dn, FTAG);
1669 		txg_wait_synced(dmu_objset_pool(os), 0);
1670 		err = dnode_hold(os, object, FTAG, &dn);
1671 		if (err)
1672 			return (err);
1673 	}
1674 
1675 	err = dnode_next_offset(dn, (hole ? DNODE_FIND_HOLE : 0), off, 1, 1, 0);
1676 	dnode_rele(dn, FTAG);
1677 
1678 	return (err);
1679 }
1680 
1681 void
1682 dmu_object_info_from_dnode(dnode_t *dn, dmu_object_info_t *doi)
1683 {
1684 	dnode_phys_t *dnp;
1685 
1686 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
1687 	mutex_enter(&dn->dn_mtx);
1688 
1689 	dnp = dn->dn_phys;
1690 
1691 	doi->doi_data_block_size = dn->dn_datablksz;
1692 	doi->doi_metadata_block_size = dn->dn_indblkshift ?
1693 	    1ULL << dn->dn_indblkshift : 0;
1694 	doi->doi_type = dn->dn_type;
1695 	doi->doi_bonus_type = dn->dn_bonustype;
1696 	doi->doi_bonus_size = dn->dn_bonuslen;
1697 	doi->doi_indirection = dn->dn_nlevels;
1698 	doi->doi_checksum = dn->dn_checksum;
1699 	doi->doi_compress = dn->dn_compress;
1700 	doi->doi_physical_blocks_512 = (DN_USED_BYTES(dnp) + 256) >> 9;
1701 	doi->doi_max_offset = (dnp->dn_maxblkid + 1) * dn->dn_datablksz;
1702 	doi->doi_fill_count = 0;
1703 	for (int i = 0; i < dnp->dn_nblkptr; i++)
1704 		doi->doi_fill_count += dnp->dn_blkptr[i].blk_fill;
1705 
1706 	mutex_exit(&dn->dn_mtx);
1707 	rw_exit(&dn->dn_struct_rwlock);
1708 }
1709 
1710 /*
1711  * Get information on a DMU object.
1712  * If doi is NULL, just indicates whether the object exists.
1713  */
1714 int
1715 dmu_object_info(objset_t *os, uint64_t object, dmu_object_info_t *doi)
1716 {
1717 	dnode_t *dn;
1718 	int err = dnode_hold(os, object, FTAG, &dn);
1719 
1720 	if (err)
1721 		return (err);
1722 
1723 	if (doi != NULL)
1724 		dmu_object_info_from_dnode(dn, doi);
1725 
1726 	dnode_rele(dn, FTAG);
1727 	return (0);
1728 }
1729 
1730 /*
1731  * As above, but faster; can be used when you have a held dbuf in hand.
1732  */
1733 void
1734 dmu_object_info_from_db(dmu_buf_t *db_fake, dmu_object_info_t *doi)
1735 {
1736 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
1737 
1738 	DB_DNODE_ENTER(db);
1739 	dmu_object_info_from_dnode(DB_DNODE(db), doi);
1740 	DB_DNODE_EXIT(db);
1741 }
1742 
1743 /*
1744  * Faster still when you only care about the size.
1745  * This is specifically optimized for zfs_getattr().
1746  */
1747 void
1748 dmu_object_size_from_db(dmu_buf_t *db_fake, uint32_t *blksize,
1749     u_longlong_t *nblk512)
1750 {
1751 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
1752 	dnode_t *dn;
1753 
1754 	DB_DNODE_ENTER(db);
1755 	dn = DB_DNODE(db);
1756 
1757 	*blksize = dn->dn_datablksz;
1758 	/* add 1 for dnode space */
1759 	*nblk512 = ((DN_USED_BYTES(dn->dn_phys) + SPA_MINBLOCKSIZE/2) >>
1760 	    SPA_MINBLOCKSHIFT) + 1;
1761 	DB_DNODE_EXIT(db);
1762 }
1763 
1764 void
1765 byteswap_uint64_array(void *vbuf, size_t size)
1766 {
1767 	uint64_t *buf = vbuf;
1768 	size_t count = size >> 3;
1769 	int i;
1770 
1771 	ASSERT((size & 7) == 0);
1772 
1773 	for (i = 0; i < count; i++)
1774 		buf[i] = BSWAP_64(buf[i]);
1775 }
1776 
1777 void
1778 byteswap_uint32_array(void *vbuf, size_t size)
1779 {
1780 	uint32_t *buf = vbuf;
1781 	size_t count = size >> 2;
1782 	int i;
1783 
1784 	ASSERT((size & 3) == 0);
1785 
1786 	for (i = 0; i < count; i++)
1787 		buf[i] = BSWAP_32(buf[i]);
1788 }
1789 
1790 void
1791 byteswap_uint16_array(void *vbuf, size_t size)
1792 {
1793 	uint16_t *buf = vbuf;
1794 	size_t count = size >> 1;
1795 	int i;
1796 
1797 	ASSERT((size & 1) == 0);
1798 
1799 	for (i = 0; i < count; i++)
1800 		buf[i] = BSWAP_16(buf[i]);
1801 }
1802 
1803 /* ARGSUSED */
1804 void
1805 byteswap_uint8_array(void *vbuf, size_t size)
1806 {
1807 }
1808 
1809 void
1810 dmu_init(void)
1811 {
1812 	zfs_dbgmsg_init();
1813 	sa_cache_init();
1814 	xuio_stat_init();
1815 	dmu_objset_init();
1816 	dnode_init();
1817 	dbuf_init();
1818 	zfetch_init();
1819 	l2arc_init();
1820 	arc_init();
1821 }
1822 
1823 void
1824 dmu_fini(void)
1825 {
1826 	arc_fini();
1827 	l2arc_fini();
1828 	zfetch_fini();
1829 	dbuf_fini();
1830 	dnode_fini();
1831 	dmu_objset_fini();
1832 	xuio_stat_fini();
1833 	sa_cache_fini();
1834 	zfs_dbgmsg_fini();
1835 }
1836