1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2012 by Delphix. All rights reserved. 24 */ 25 26 #include <sys/dmu.h> 27 #include <sys/dmu_impl.h> 28 #include <sys/dmu_tx.h> 29 #include <sys/dbuf.h> 30 #include <sys/dnode.h> 31 #include <sys/zfs_context.h> 32 #include <sys/dmu_objset.h> 33 #include <sys/dmu_traverse.h> 34 #include <sys/dsl_dataset.h> 35 #include <sys/dsl_dir.h> 36 #include <sys/dsl_pool.h> 37 #include <sys/dsl_synctask.h> 38 #include <sys/dsl_prop.h> 39 #include <sys/dmu_zfetch.h> 40 #include <sys/zfs_ioctl.h> 41 #include <sys/zap.h> 42 #include <sys/zio_checksum.h> 43 #include <sys/zio_compress.h> 44 #include <sys/sa.h> 45 #ifdef _KERNEL 46 #include <sys/vmsystm.h> 47 #include <sys/zfs_znode.h> 48 #endif 49 50 /* 51 * Enable/disable nopwrite feature. 52 */ 53 int zfs_nopwrite_enabled = 1; 54 55 const dmu_object_type_info_t dmu_ot[DMU_OT_NUMTYPES] = { 56 { DMU_BSWAP_UINT8, TRUE, "unallocated" }, 57 { DMU_BSWAP_ZAP, TRUE, "object directory" }, 58 { DMU_BSWAP_UINT64, TRUE, "object array" }, 59 { DMU_BSWAP_UINT8, TRUE, "packed nvlist" }, 60 { DMU_BSWAP_UINT64, TRUE, "packed nvlist size" }, 61 { DMU_BSWAP_UINT64, TRUE, "bpobj" }, 62 { DMU_BSWAP_UINT64, TRUE, "bpobj header" }, 63 { DMU_BSWAP_UINT64, TRUE, "SPA space map header" }, 64 { DMU_BSWAP_UINT64, TRUE, "SPA space map" }, 65 { DMU_BSWAP_UINT64, TRUE, "ZIL intent log" }, 66 { DMU_BSWAP_DNODE, TRUE, "DMU dnode" }, 67 { DMU_BSWAP_OBJSET, TRUE, "DMU objset" }, 68 { DMU_BSWAP_UINT64, TRUE, "DSL directory" }, 69 { DMU_BSWAP_ZAP, TRUE, "DSL directory child map"}, 70 { DMU_BSWAP_ZAP, TRUE, "DSL dataset snap map" }, 71 { DMU_BSWAP_ZAP, TRUE, "DSL props" }, 72 { DMU_BSWAP_UINT64, TRUE, "DSL dataset" }, 73 { DMU_BSWAP_ZNODE, TRUE, "ZFS znode" }, 74 { DMU_BSWAP_OLDACL, TRUE, "ZFS V0 ACL" }, 75 { DMU_BSWAP_UINT8, FALSE, "ZFS plain file" }, 76 { DMU_BSWAP_ZAP, TRUE, "ZFS directory" }, 77 { DMU_BSWAP_ZAP, TRUE, "ZFS master node" }, 78 { DMU_BSWAP_ZAP, TRUE, "ZFS delete queue" }, 79 { DMU_BSWAP_UINT8, FALSE, "zvol object" }, 80 { DMU_BSWAP_ZAP, TRUE, "zvol prop" }, 81 { DMU_BSWAP_UINT8, FALSE, "other uint8[]" }, 82 { DMU_BSWAP_UINT64, FALSE, "other uint64[]" }, 83 { DMU_BSWAP_ZAP, TRUE, "other ZAP" }, 84 { DMU_BSWAP_ZAP, TRUE, "persistent error log" }, 85 { DMU_BSWAP_UINT8, TRUE, "SPA history" }, 86 { DMU_BSWAP_UINT64, TRUE, "SPA history offsets" }, 87 { DMU_BSWAP_ZAP, TRUE, "Pool properties" }, 88 { DMU_BSWAP_ZAP, TRUE, "DSL permissions" }, 89 { DMU_BSWAP_ACL, TRUE, "ZFS ACL" }, 90 { DMU_BSWAP_UINT8, TRUE, "ZFS SYSACL" }, 91 { DMU_BSWAP_UINT8, TRUE, "FUID table" }, 92 { DMU_BSWAP_UINT64, TRUE, "FUID table size" }, 93 { DMU_BSWAP_ZAP, TRUE, "DSL dataset next clones"}, 94 { DMU_BSWAP_ZAP, TRUE, "scan work queue" }, 95 { DMU_BSWAP_ZAP, TRUE, "ZFS user/group used" }, 96 { DMU_BSWAP_ZAP, TRUE, "ZFS user/group quota" }, 97 { DMU_BSWAP_ZAP, TRUE, "snapshot refcount tags"}, 98 { DMU_BSWAP_ZAP, TRUE, "DDT ZAP algorithm" }, 99 { DMU_BSWAP_ZAP, TRUE, "DDT statistics" }, 100 { DMU_BSWAP_UINT8, TRUE, "System attributes" }, 101 { DMU_BSWAP_ZAP, TRUE, "SA master node" }, 102 { DMU_BSWAP_ZAP, TRUE, "SA attr registration" }, 103 { DMU_BSWAP_ZAP, TRUE, "SA attr layouts" }, 104 { DMU_BSWAP_ZAP, TRUE, "scan translations" }, 105 { DMU_BSWAP_UINT8, FALSE, "deduplicated block" }, 106 { DMU_BSWAP_ZAP, TRUE, "DSL deadlist map" }, 107 { DMU_BSWAP_UINT64, TRUE, "DSL deadlist map hdr" }, 108 { DMU_BSWAP_ZAP, TRUE, "DSL dir clones" }, 109 { DMU_BSWAP_UINT64, TRUE, "bpobj subobj" } 110 }; 111 112 const dmu_object_byteswap_info_t dmu_ot_byteswap[DMU_BSWAP_NUMFUNCS] = { 113 { byteswap_uint8_array, "uint8" }, 114 { byteswap_uint16_array, "uint16" }, 115 { byteswap_uint32_array, "uint32" }, 116 { byteswap_uint64_array, "uint64" }, 117 { zap_byteswap, "zap" }, 118 { dnode_buf_byteswap, "dnode" }, 119 { dmu_objset_byteswap, "objset" }, 120 { zfs_znode_byteswap, "znode" }, 121 { zfs_oldacl_byteswap, "oldacl" }, 122 { zfs_acl_byteswap, "acl" } 123 }; 124 125 int 126 dmu_buf_hold(objset_t *os, uint64_t object, uint64_t offset, 127 void *tag, dmu_buf_t **dbp, int flags) 128 { 129 dnode_t *dn; 130 uint64_t blkid; 131 dmu_buf_impl_t *db; 132 int err; 133 int db_flags = DB_RF_CANFAIL; 134 135 if (flags & DMU_READ_NO_PREFETCH) 136 db_flags |= DB_RF_NOPREFETCH; 137 138 err = dnode_hold(os, object, FTAG, &dn); 139 if (err) 140 return (err); 141 blkid = dbuf_whichblock(dn, offset); 142 rw_enter(&dn->dn_struct_rwlock, RW_READER); 143 db = dbuf_hold(dn, blkid, tag); 144 rw_exit(&dn->dn_struct_rwlock); 145 if (db == NULL) { 146 err = EIO; 147 } else { 148 err = dbuf_read(db, NULL, db_flags); 149 if (err) { 150 dbuf_rele(db, tag); 151 db = NULL; 152 } 153 } 154 155 dnode_rele(dn, FTAG); 156 *dbp = &db->db; /* NULL db plus first field offset is NULL */ 157 return (err); 158 } 159 160 int 161 dmu_bonus_max(void) 162 { 163 return (DN_MAX_BONUSLEN); 164 } 165 166 int 167 dmu_set_bonus(dmu_buf_t *db_fake, int newsize, dmu_tx_t *tx) 168 { 169 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 170 dnode_t *dn; 171 int error; 172 173 DB_DNODE_ENTER(db); 174 dn = DB_DNODE(db); 175 176 if (dn->dn_bonus != db) { 177 error = EINVAL; 178 } else if (newsize < 0 || newsize > db_fake->db_size) { 179 error = EINVAL; 180 } else { 181 dnode_setbonuslen(dn, newsize, tx); 182 error = 0; 183 } 184 185 DB_DNODE_EXIT(db); 186 return (error); 187 } 188 189 int 190 dmu_set_bonustype(dmu_buf_t *db_fake, dmu_object_type_t type, dmu_tx_t *tx) 191 { 192 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 193 dnode_t *dn; 194 int error; 195 196 DB_DNODE_ENTER(db); 197 dn = DB_DNODE(db); 198 199 if (!DMU_OT_IS_VALID(type)) { 200 error = EINVAL; 201 } else if (dn->dn_bonus != db) { 202 error = EINVAL; 203 } else { 204 dnode_setbonus_type(dn, type, tx); 205 error = 0; 206 } 207 208 DB_DNODE_EXIT(db); 209 return (error); 210 } 211 212 dmu_object_type_t 213 dmu_get_bonustype(dmu_buf_t *db_fake) 214 { 215 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 216 dnode_t *dn; 217 dmu_object_type_t type; 218 219 DB_DNODE_ENTER(db); 220 dn = DB_DNODE(db); 221 type = dn->dn_bonustype; 222 DB_DNODE_EXIT(db); 223 224 return (type); 225 } 226 227 int 228 dmu_rm_spill(objset_t *os, uint64_t object, dmu_tx_t *tx) 229 { 230 dnode_t *dn; 231 int error; 232 233 error = dnode_hold(os, object, FTAG, &dn); 234 dbuf_rm_spill(dn, tx); 235 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 236 dnode_rm_spill(dn, tx); 237 rw_exit(&dn->dn_struct_rwlock); 238 dnode_rele(dn, FTAG); 239 return (error); 240 } 241 242 /* 243 * returns ENOENT, EIO, or 0. 244 */ 245 int 246 dmu_bonus_hold(objset_t *os, uint64_t object, void *tag, dmu_buf_t **dbp) 247 { 248 dnode_t *dn; 249 dmu_buf_impl_t *db; 250 int error; 251 252 error = dnode_hold(os, object, FTAG, &dn); 253 if (error) 254 return (error); 255 256 rw_enter(&dn->dn_struct_rwlock, RW_READER); 257 if (dn->dn_bonus == NULL) { 258 rw_exit(&dn->dn_struct_rwlock); 259 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 260 if (dn->dn_bonus == NULL) 261 dbuf_create_bonus(dn); 262 } 263 db = dn->dn_bonus; 264 265 /* as long as the bonus buf is held, the dnode will be held */ 266 if (refcount_add(&db->db_holds, tag) == 1) { 267 VERIFY(dnode_add_ref(dn, db)); 268 (void) atomic_inc_32_nv(&dn->dn_dbufs_count); 269 } 270 271 /* 272 * Wait to drop dn_struct_rwlock until after adding the bonus dbuf's 273 * hold and incrementing the dbuf count to ensure that dnode_move() sees 274 * a dnode hold for every dbuf. 275 */ 276 rw_exit(&dn->dn_struct_rwlock); 277 278 dnode_rele(dn, FTAG); 279 280 VERIFY(0 == dbuf_read(db, NULL, DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH)); 281 282 *dbp = &db->db; 283 return (0); 284 } 285 286 /* 287 * returns ENOENT, EIO, or 0. 288 * 289 * This interface will allocate a blank spill dbuf when a spill blk 290 * doesn't already exist on the dnode. 291 * 292 * if you only want to find an already existing spill db, then 293 * dmu_spill_hold_existing() should be used. 294 */ 295 int 296 dmu_spill_hold_by_dnode(dnode_t *dn, uint32_t flags, void *tag, dmu_buf_t **dbp) 297 { 298 dmu_buf_impl_t *db = NULL; 299 int err; 300 301 if ((flags & DB_RF_HAVESTRUCT) == 0) 302 rw_enter(&dn->dn_struct_rwlock, RW_READER); 303 304 db = dbuf_hold(dn, DMU_SPILL_BLKID, tag); 305 306 if ((flags & DB_RF_HAVESTRUCT) == 0) 307 rw_exit(&dn->dn_struct_rwlock); 308 309 ASSERT(db != NULL); 310 err = dbuf_read(db, NULL, flags); 311 if (err == 0) 312 *dbp = &db->db; 313 else 314 dbuf_rele(db, tag); 315 return (err); 316 } 317 318 int 319 dmu_spill_hold_existing(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp) 320 { 321 dmu_buf_impl_t *db = (dmu_buf_impl_t *)bonus; 322 dnode_t *dn; 323 int err; 324 325 DB_DNODE_ENTER(db); 326 dn = DB_DNODE(db); 327 328 if (spa_version(dn->dn_objset->os_spa) < SPA_VERSION_SA) { 329 err = EINVAL; 330 } else { 331 rw_enter(&dn->dn_struct_rwlock, RW_READER); 332 333 if (!dn->dn_have_spill) { 334 err = ENOENT; 335 } else { 336 err = dmu_spill_hold_by_dnode(dn, 337 DB_RF_HAVESTRUCT | DB_RF_CANFAIL, tag, dbp); 338 } 339 340 rw_exit(&dn->dn_struct_rwlock); 341 } 342 343 DB_DNODE_EXIT(db); 344 return (err); 345 } 346 347 int 348 dmu_spill_hold_by_bonus(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp) 349 { 350 dmu_buf_impl_t *db = (dmu_buf_impl_t *)bonus; 351 dnode_t *dn; 352 int err; 353 354 DB_DNODE_ENTER(db); 355 dn = DB_DNODE(db); 356 err = dmu_spill_hold_by_dnode(dn, DB_RF_CANFAIL, tag, dbp); 357 DB_DNODE_EXIT(db); 358 359 return (err); 360 } 361 362 /* 363 * Note: longer-term, we should modify all of the dmu_buf_*() interfaces 364 * to take a held dnode rather than <os, object> -- the lookup is wasteful, 365 * and can induce severe lock contention when writing to several files 366 * whose dnodes are in the same block. 367 */ 368 static int 369 dmu_buf_hold_array_by_dnode(dnode_t *dn, uint64_t offset, uint64_t length, 370 int read, void *tag, int *numbufsp, dmu_buf_t ***dbpp, uint32_t flags) 371 { 372 dsl_pool_t *dp = NULL; 373 dmu_buf_t **dbp; 374 uint64_t blkid, nblks, i; 375 uint32_t dbuf_flags; 376 int err; 377 zio_t *zio; 378 hrtime_t start; 379 380 ASSERT(length <= DMU_MAX_ACCESS); 381 382 dbuf_flags = DB_RF_CANFAIL | DB_RF_NEVERWAIT | DB_RF_HAVESTRUCT; 383 if (flags & DMU_READ_NO_PREFETCH || length > zfetch_array_rd_sz) 384 dbuf_flags |= DB_RF_NOPREFETCH; 385 386 rw_enter(&dn->dn_struct_rwlock, RW_READER); 387 if (dn->dn_datablkshift) { 388 int blkshift = dn->dn_datablkshift; 389 nblks = (P2ROUNDUP(offset+length, 1ULL<<blkshift) - 390 P2ALIGN(offset, 1ULL<<blkshift)) >> blkshift; 391 } else { 392 if (offset + length > dn->dn_datablksz) { 393 zfs_panic_recover("zfs: accessing past end of object " 394 "%llx/%llx (size=%u access=%llu+%llu)", 395 (longlong_t)dn->dn_objset-> 396 os_dsl_dataset->ds_object, 397 (longlong_t)dn->dn_object, dn->dn_datablksz, 398 (longlong_t)offset, (longlong_t)length); 399 rw_exit(&dn->dn_struct_rwlock); 400 return (EIO); 401 } 402 nblks = 1; 403 } 404 dbp = kmem_zalloc(sizeof (dmu_buf_t *) * nblks, KM_SLEEP); 405 406 if (dn->dn_objset->os_dsl_dataset) 407 dp = dn->dn_objset->os_dsl_dataset->ds_dir->dd_pool; 408 start = gethrtime(); 409 zio = zio_root(dn->dn_objset->os_spa, NULL, NULL, ZIO_FLAG_CANFAIL); 410 blkid = dbuf_whichblock(dn, offset); 411 for (i = 0; i < nblks; i++) { 412 dmu_buf_impl_t *db = dbuf_hold(dn, blkid+i, tag); 413 if (db == NULL) { 414 rw_exit(&dn->dn_struct_rwlock); 415 dmu_buf_rele_array(dbp, nblks, tag); 416 zio_nowait(zio); 417 return (EIO); 418 } 419 /* initiate async i/o */ 420 if (read) { 421 (void) dbuf_read(db, zio, dbuf_flags); 422 } 423 dbp[i] = &db->db; 424 } 425 rw_exit(&dn->dn_struct_rwlock); 426 427 /* wait for async i/o */ 428 err = zio_wait(zio); 429 /* track read overhead when we are in sync context */ 430 if (dp && dsl_pool_sync_context(dp)) 431 dp->dp_read_overhead += gethrtime() - start; 432 if (err) { 433 dmu_buf_rele_array(dbp, nblks, tag); 434 return (err); 435 } 436 437 /* wait for other io to complete */ 438 if (read) { 439 for (i = 0; i < nblks; i++) { 440 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbp[i]; 441 mutex_enter(&db->db_mtx); 442 while (db->db_state == DB_READ || 443 db->db_state == DB_FILL) 444 cv_wait(&db->db_changed, &db->db_mtx); 445 if (db->db_state == DB_UNCACHED) 446 err = EIO; 447 mutex_exit(&db->db_mtx); 448 if (err) { 449 dmu_buf_rele_array(dbp, nblks, tag); 450 return (err); 451 } 452 } 453 } 454 455 *numbufsp = nblks; 456 *dbpp = dbp; 457 return (0); 458 } 459 460 static int 461 dmu_buf_hold_array(objset_t *os, uint64_t object, uint64_t offset, 462 uint64_t length, int read, void *tag, int *numbufsp, dmu_buf_t ***dbpp) 463 { 464 dnode_t *dn; 465 int err; 466 467 err = dnode_hold(os, object, FTAG, &dn); 468 if (err) 469 return (err); 470 471 err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag, 472 numbufsp, dbpp, DMU_READ_PREFETCH); 473 474 dnode_rele(dn, FTAG); 475 476 return (err); 477 } 478 479 int 480 dmu_buf_hold_array_by_bonus(dmu_buf_t *db_fake, uint64_t offset, 481 uint64_t length, int read, void *tag, int *numbufsp, dmu_buf_t ***dbpp) 482 { 483 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 484 dnode_t *dn; 485 int err; 486 487 DB_DNODE_ENTER(db); 488 dn = DB_DNODE(db); 489 err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag, 490 numbufsp, dbpp, DMU_READ_PREFETCH); 491 DB_DNODE_EXIT(db); 492 493 return (err); 494 } 495 496 void 497 dmu_buf_rele_array(dmu_buf_t **dbp_fake, int numbufs, void *tag) 498 { 499 int i; 500 dmu_buf_impl_t **dbp = (dmu_buf_impl_t **)dbp_fake; 501 502 if (numbufs == 0) 503 return; 504 505 for (i = 0; i < numbufs; i++) { 506 if (dbp[i]) 507 dbuf_rele(dbp[i], tag); 508 } 509 510 kmem_free(dbp, sizeof (dmu_buf_t *) * numbufs); 511 } 512 513 void 514 dmu_prefetch(objset_t *os, uint64_t object, uint64_t offset, uint64_t len) 515 { 516 dnode_t *dn; 517 uint64_t blkid; 518 int nblks, i, err; 519 520 if (zfs_prefetch_disable) 521 return; 522 523 if (len == 0) { /* they're interested in the bonus buffer */ 524 dn = DMU_META_DNODE(os); 525 526 if (object == 0 || object >= DN_MAX_OBJECT) 527 return; 528 529 rw_enter(&dn->dn_struct_rwlock, RW_READER); 530 blkid = dbuf_whichblock(dn, object * sizeof (dnode_phys_t)); 531 dbuf_prefetch(dn, blkid); 532 rw_exit(&dn->dn_struct_rwlock); 533 return; 534 } 535 536 /* 537 * XXX - Note, if the dnode for the requested object is not 538 * already cached, we will do a *synchronous* read in the 539 * dnode_hold() call. The same is true for any indirects. 540 */ 541 err = dnode_hold(os, object, FTAG, &dn); 542 if (err != 0) 543 return; 544 545 rw_enter(&dn->dn_struct_rwlock, RW_READER); 546 if (dn->dn_datablkshift) { 547 int blkshift = dn->dn_datablkshift; 548 nblks = (P2ROUNDUP(offset+len, 1<<blkshift) - 549 P2ALIGN(offset, 1<<blkshift)) >> blkshift; 550 } else { 551 nblks = (offset < dn->dn_datablksz); 552 } 553 554 if (nblks != 0) { 555 blkid = dbuf_whichblock(dn, offset); 556 for (i = 0; i < nblks; i++) 557 dbuf_prefetch(dn, blkid+i); 558 } 559 560 rw_exit(&dn->dn_struct_rwlock); 561 562 dnode_rele(dn, FTAG); 563 } 564 565 /* 566 * Get the next "chunk" of file data to free. We traverse the file from 567 * the end so that the file gets shorter over time (if we crashes in the 568 * middle, this will leave us in a better state). We find allocated file 569 * data by simply searching the allocated level 1 indirects. 570 */ 571 static int 572 get_next_chunk(dnode_t *dn, uint64_t *start, uint64_t limit) 573 { 574 uint64_t len = *start - limit; 575 uint64_t blkcnt = 0; 576 uint64_t maxblks = DMU_MAX_ACCESS / (1ULL << (dn->dn_indblkshift + 1)); 577 uint64_t iblkrange = 578 dn->dn_datablksz * EPB(dn->dn_indblkshift, SPA_BLKPTRSHIFT); 579 580 ASSERT(limit <= *start); 581 582 if (len <= iblkrange * maxblks) { 583 *start = limit; 584 return (0); 585 } 586 ASSERT(ISP2(iblkrange)); 587 588 while (*start > limit && blkcnt < maxblks) { 589 int err; 590 591 /* find next allocated L1 indirect */ 592 err = dnode_next_offset(dn, 593 DNODE_FIND_BACKWARDS, start, 2, 1, 0); 594 595 /* if there are no more, then we are done */ 596 if (err == ESRCH) { 597 *start = limit; 598 return (0); 599 } else if (err) { 600 return (err); 601 } 602 blkcnt += 1; 603 604 /* reset offset to end of "next" block back */ 605 *start = P2ALIGN(*start, iblkrange); 606 if (*start <= limit) 607 *start = limit; 608 else 609 *start -= 1; 610 } 611 return (0); 612 } 613 614 static int 615 dmu_free_long_range_impl(objset_t *os, dnode_t *dn, uint64_t offset, 616 uint64_t length, boolean_t free_dnode) 617 { 618 dmu_tx_t *tx; 619 uint64_t object_size, start, end, len; 620 boolean_t trunc = (length == DMU_OBJECT_END); 621 int align, err; 622 623 align = 1 << dn->dn_datablkshift; 624 ASSERT(align > 0); 625 object_size = align == 1 ? dn->dn_datablksz : 626 (dn->dn_maxblkid + 1) << dn->dn_datablkshift; 627 628 end = offset + length; 629 if (trunc || end > object_size) 630 end = object_size; 631 if (end <= offset) 632 return (0); 633 length = end - offset; 634 635 while (length) { 636 start = end; 637 /* assert(offset <= start) */ 638 err = get_next_chunk(dn, &start, offset); 639 if (err) 640 return (err); 641 len = trunc ? DMU_OBJECT_END : end - start; 642 643 tx = dmu_tx_create(os); 644 dmu_tx_hold_free(tx, dn->dn_object, start, len); 645 err = dmu_tx_assign(tx, TXG_WAIT); 646 if (err) { 647 dmu_tx_abort(tx); 648 return (err); 649 } 650 651 dnode_free_range(dn, start, trunc ? -1 : len, tx); 652 653 if (start == 0 && free_dnode) { 654 ASSERT(trunc); 655 dnode_free(dn, tx); 656 } 657 658 length -= end - start; 659 660 dmu_tx_commit(tx); 661 end = start; 662 } 663 return (0); 664 } 665 666 int 667 dmu_free_long_range(objset_t *os, uint64_t object, 668 uint64_t offset, uint64_t length) 669 { 670 dnode_t *dn; 671 int err; 672 673 err = dnode_hold(os, object, FTAG, &dn); 674 if (err != 0) 675 return (err); 676 err = dmu_free_long_range_impl(os, dn, offset, length, FALSE); 677 dnode_rele(dn, FTAG); 678 return (err); 679 } 680 681 int 682 dmu_free_object(objset_t *os, uint64_t object) 683 { 684 dnode_t *dn; 685 dmu_tx_t *tx; 686 int err; 687 688 err = dnode_hold_impl(os, object, DNODE_MUST_BE_ALLOCATED, 689 FTAG, &dn); 690 if (err != 0) 691 return (err); 692 if (dn->dn_nlevels == 1) { 693 tx = dmu_tx_create(os); 694 dmu_tx_hold_bonus(tx, object); 695 dmu_tx_hold_free(tx, dn->dn_object, 0, DMU_OBJECT_END); 696 err = dmu_tx_assign(tx, TXG_WAIT); 697 if (err == 0) { 698 dnode_free_range(dn, 0, DMU_OBJECT_END, tx); 699 dnode_free(dn, tx); 700 dmu_tx_commit(tx); 701 } else { 702 dmu_tx_abort(tx); 703 } 704 } else { 705 err = dmu_free_long_range_impl(os, dn, 0, DMU_OBJECT_END, TRUE); 706 } 707 dnode_rele(dn, FTAG); 708 return (err); 709 } 710 711 int 712 dmu_free_range(objset_t *os, uint64_t object, uint64_t offset, 713 uint64_t size, dmu_tx_t *tx) 714 { 715 dnode_t *dn; 716 int err = dnode_hold(os, object, FTAG, &dn); 717 if (err) 718 return (err); 719 ASSERT(offset < UINT64_MAX); 720 ASSERT(size == -1ULL || size <= UINT64_MAX - offset); 721 dnode_free_range(dn, offset, size, tx); 722 dnode_rele(dn, FTAG); 723 return (0); 724 } 725 726 int 727 dmu_read(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, 728 void *buf, uint32_t flags) 729 { 730 dnode_t *dn; 731 dmu_buf_t **dbp; 732 int numbufs, err; 733 734 err = dnode_hold(os, object, FTAG, &dn); 735 if (err) 736 return (err); 737 738 /* 739 * Deal with odd block sizes, where there can't be data past the first 740 * block. If we ever do the tail block optimization, we will need to 741 * handle that here as well. 742 */ 743 if (dn->dn_maxblkid == 0) { 744 int newsz = offset > dn->dn_datablksz ? 0 : 745 MIN(size, dn->dn_datablksz - offset); 746 bzero((char *)buf + newsz, size - newsz); 747 size = newsz; 748 } 749 750 while (size > 0) { 751 uint64_t mylen = MIN(size, DMU_MAX_ACCESS / 2); 752 int i; 753 754 /* 755 * NB: we could do this block-at-a-time, but it's nice 756 * to be reading in parallel. 757 */ 758 err = dmu_buf_hold_array_by_dnode(dn, offset, mylen, 759 TRUE, FTAG, &numbufs, &dbp, flags); 760 if (err) 761 break; 762 763 for (i = 0; i < numbufs; i++) { 764 int tocpy; 765 int bufoff; 766 dmu_buf_t *db = dbp[i]; 767 768 ASSERT(size > 0); 769 770 bufoff = offset - db->db_offset; 771 tocpy = (int)MIN(db->db_size - bufoff, size); 772 773 bcopy((char *)db->db_data + bufoff, buf, tocpy); 774 775 offset += tocpy; 776 size -= tocpy; 777 buf = (char *)buf + tocpy; 778 } 779 dmu_buf_rele_array(dbp, numbufs, FTAG); 780 } 781 dnode_rele(dn, FTAG); 782 return (err); 783 } 784 785 void 786 dmu_write(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, 787 const void *buf, dmu_tx_t *tx) 788 { 789 dmu_buf_t **dbp; 790 int numbufs, i; 791 792 if (size == 0) 793 return; 794 795 VERIFY(0 == dmu_buf_hold_array(os, object, offset, size, 796 FALSE, FTAG, &numbufs, &dbp)); 797 798 for (i = 0; i < numbufs; i++) { 799 int tocpy; 800 int bufoff; 801 dmu_buf_t *db = dbp[i]; 802 803 ASSERT(size > 0); 804 805 bufoff = offset - db->db_offset; 806 tocpy = (int)MIN(db->db_size - bufoff, size); 807 808 ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size); 809 810 if (tocpy == db->db_size) 811 dmu_buf_will_fill(db, tx); 812 else 813 dmu_buf_will_dirty(db, tx); 814 815 bcopy(buf, (char *)db->db_data + bufoff, tocpy); 816 817 if (tocpy == db->db_size) 818 dmu_buf_fill_done(db, tx); 819 820 offset += tocpy; 821 size -= tocpy; 822 buf = (char *)buf + tocpy; 823 } 824 dmu_buf_rele_array(dbp, numbufs, FTAG); 825 } 826 827 void 828 dmu_prealloc(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, 829 dmu_tx_t *tx) 830 { 831 dmu_buf_t **dbp; 832 int numbufs, i; 833 834 if (size == 0) 835 return; 836 837 VERIFY(0 == dmu_buf_hold_array(os, object, offset, size, 838 FALSE, FTAG, &numbufs, &dbp)); 839 840 for (i = 0; i < numbufs; i++) { 841 dmu_buf_t *db = dbp[i]; 842 843 dmu_buf_will_not_fill(db, tx); 844 } 845 dmu_buf_rele_array(dbp, numbufs, FTAG); 846 } 847 848 /* 849 * DMU support for xuio 850 */ 851 kstat_t *xuio_ksp = NULL; 852 853 int 854 dmu_xuio_init(xuio_t *xuio, int nblk) 855 { 856 dmu_xuio_t *priv; 857 uio_t *uio = &xuio->xu_uio; 858 859 uio->uio_iovcnt = nblk; 860 uio->uio_iov = kmem_zalloc(nblk * sizeof (iovec_t), KM_SLEEP); 861 862 priv = kmem_zalloc(sizeof (dmu_xuio_t), KM_SLEEP); 863 priv->cnt = nblk; 864 priv->bufs = kmem_zalloc(nblk * sizeof (arc_buf_t *), KM_SLEEP); 865 priv->iovp = uio->uio_iov; 866 XUIO_XUZC_PRIV(xuio) = priv; 867 868 if (XUIO_XUZC_RW(xuio) == UIO_READ) 869 XUIOSTAT_INCR(xuiostat_onloan_rbuf, nblk); 870 else 871 XUIOSTAT_INCR(xuiostat_onloan_wbuf, nblk); 872 873 return (0); 874 } 875 876 void 877 dmu_xuio_fini(xuio_t *xuio) 878 { 879 dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio); 880 int nblk = priv->cnt; 881 882 kmem_free(priv->iovp, nblk * sizeof (iovec_t)); 883 kmem_free(priv->bufs, nblk * sizeof (arc_buf_t *)); 884 kmem_free(priv, sizeof (dmu_xuio_t)); 885 886 if (XUIO_XUZC_RW(xuio) == UIO_READ) 887 XUIOSTAT_INCR(xuiostat_onloan_rbuf, -nblk); 888 else 889 XUIOSTAT_INCR(xuiostat_onloan_wbuf, -nblk); 890 } 891 892 /* 893 * Initialize iov[priv->next] and priv->bufs[priv->next] with { off, n, abuf } 894 * and increase priv->next by 1. 895 */ 896 int 897 dmu_xuio_add(xuio_t *xuio, arc_buf_t *abuf, offset_t off, size_t n) 898 { 899 struct iovec *iov; 900 uio_t *uio = &xuio->xu_uio; 901 dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio); 902 int i = priv->next++; 903 904 ASSERT(i < priv->cnt); 905 ASSERT(off + n <= arc_buf_size(abuf)); 906 iov = uio->uio_iov + i; 907 iov->iov_base = (char *)abuf->b_data + off; 908 iov->iov_len = n; 909 priv->bufs[i] = abuf; 910 return (0); 911 } 912 913 int 914 dmu_xuio_cnt(xuio_t *xuio) 915 { 916 dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio); 917 return (priv->cnt); 918 } 919 920 arc_buf_t * 921 dmu_xuio_arcbuf(xuio_t *xuio, int i) 922 { 923 dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio); 924 925 ASSERT(i < priv->cnt); 926 return (priv->bufs[i]); 927 } 928 929 void 930 dmu_xuio_clear(xuio_t *xuio, int i) 931 { 932 dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio); 933 934 ASSERT(i < priv->cnt); 935 priv->bufs[i] = NULL; 936 } 937 938 static void 939 xuio_stat_init(void) 940 { 941 xuio_ksp = kstat_create("zfs", 0, "xuio_stats", "misc", 942 KSTAT_TYPE_NAMED, sizeof (xuio_stats) / sizeof (kstat_named_t), 943 KSTAT_FLAG_VIRTUAL); 944 if (xuio_ksp != NULL) { 945 xuio_ksp->ks_data = &xuio_stats; 946 kstat_install(xuio_ksp); 947 } 948 } 949 950 static void 951 xuio_stat_fini(void) 952 { 953 if (xuio_ksp != NULL) { 954 kstat_delete(xuio_ksp); 955 xuio_ksp = NULL; 956 } 957 } 958 959 void 960 xuio_stat_wbuf_copied() 961 { 962 XUIOSTAT_BUMP(xuiostat_wbuf_copied); 963 } 964 965 void 966 xuio_stat_wbuf_nocopy() 967 { 968 XUIOSTAT_BUMP(xuiostat_wbuf_nocopy); 969 } 970 971 #ifdef _KERNEL 972 int 973 dmu_read_uio(objset_t *os, uint64_t object, uio_t *uio, uint64_t size) 974 { 975 dmu_buf_t **dbp; 976 int numbufs, i, err; 977 xuio_t *xuio = NULL; 978 979 /* 980 * NB: we could do this block-at-a-time, but it's nice 981 * to be reading in parallel. 982 */ 983 err = dmu_buf_hold_array(os, object, uio->uio_loffset, size, TRUE, FTAG, 984 &numbufs, &dbp); 985 if (err) 986 return (err); 987 988 if (uio->uio_extflg == UIO_XUIO) 989 xuio = (xuio_t *)uio; 990 991 for (i = 0; i < numbufs; i++) { 992 int tocpy; 993 int bufoff; 994 dmu_buf_t *db = dbp[i]; 995 996 ASSERT(size > 0); 997 998 bufoff = uio->uio_loffset - db->db_offset; 999 tocpy = (int)MIN(db->db_size - bufoff, size); 1000 1001 if (xuio) { 1002 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db; 1003 arc_buf_t *dbuf_abuf = dbi->db_buf; 1004 arc_buf_t *abuf = dbuf_loan_arcbuf(dbi); 1005 err = dmu_xuio_add(xuio, abuf, bufoff, tocpy); 1006 if (!err) { 1007 uio->uio_resid -= tocpy; 1008 uio->uio_loffset += tocpy; 1009 } 1010 1011 if (abuf == dbuf_abuf) 1012 XUIOSTAT_BUMP(xuiostat_rbuf_nocopy); 1013 else 1014 XUIOSTAT_BUMP(xuiostat_rbuf_copied); 1015 } else { 1016 err = uiomove((char *)db->db_data + bufoff, tocpy, 1017 UIO_READ, uio); 1018 } 1019 if (err) 1020 break; 1021 1022 size -= tocpy; 1023 } 1024 dmu_buf_rele_array(dbp, numbufs, FTAG); 1025 1026 return (err); 1027 } 1028 1029 static int 1030 dmu_write_uio_dnode(dnode_t *dn, uio_t *uio, uint64_t size, dmu_tx_t *tx) 1031 { 1032 dmu_buf_t **dbp; 1033 int numbufs; 1034 int err = 0; 1035 int i; 1036 1037 err = dmu_buf_hold_array_by_dnode(dn, uio->uio_loffset, size, 1038 FALSE, FTAG, &numbufs, &dbp, DMU_READ_PREFETCH); 1039 if (err) 1040 return (err); 1041 1042 for (i = 0; i < numbufs; i++) { 1043 int tocpy; 1044 int bufoff; 1045 dmu_buf_t *db = dbp[i]; 1046 1047 ASSERT(size > 0); 1048 1049 bufoff = uio->uio_loffset - db->db_offset; 1050 tocpy = (int)MIN(db->db_size - bufoff, size); 1051 1052 ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size); 1053 1054 if (tocpy == db->db_size) 1055 dmu_buf_will_fill(db, tx); 1056 else 1057 dmu_buf_will_dirty(db, tx); 1058 1059 /* 1060 * XXX uiomove could block forever (eg. nfs-backed 1061 * pages). There needs to be a uiolockdown() function 1062 * to lock the pages in memory, so that uiomove won't 1063 * block. 1064 */ 1065 err = uiomove((char *)db->db_data + bufoff, tocpy, 1066 UIO_WRITE, uio); 1067 1068 if (tocpy == db->db_size) 1069 dmu_buf_fill_done(db, tx); 1070 1071 if (err) 1072 break; 1073 1074 size -= tocpy; 1075 } 1076 1077 dmu_buf_rele_array(dbp, numbufs, FTAG); 1078 return (err); 1079 } 1080 1081 int 1082 dmu_write_uio_dbuf(dmu_buf_t *zdb, uio_t *uio, uint64_t size, 1083 dmu_tx_t *tx) 1084 { 1085 dmu_buf_impl_t *db = (dmu_buf_impl_t *)zdb; 1086 dnode_t *dn; 1087 int err; 1088 1089 if (size == 0) 1090 return (0); 1091 1092 DB_DNODE_ENTER(db); 1093 dn = DB_DNODE(db); 1094 err = dmu_write_uio_dnode(dn, uio, size, tx); 1095 DB_DNODE_EXIT(db); 1096 1097 return (err); 1098 } 1099 1100 int 1101 dmu_write_uio(objset_t *os, uint64_t object, uio_t *uio, uint64_t size, 1102 dmu_tx_t *tx) 1103 { 1104 dnode_t *dn; 1105 int err; 1106 1107 if (size == 0) 1108 return (0); 1109 1110 err = dnode_hold(os, object, FTAG, &dn); 1111 if (err) 1112 return (err); 1113 1114 err = dmu_write_uio_dnode(dn, uio, size, tx); 1115 1116 dnode_rele(dn, FTAG); 1117 1118 return (err); 1119 } 1120 1121 int 1122 dmu_write_pages(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, 1123 page_t *pp, dmu_tx_t *tx) 1124 { 1125 dmu_buf_t **dbp; 1126 int numbufs, i; 1127 int err; 1128 1129 if (size == 0) 1130 return (0); 1131 1132 err = dmu_buf_hold_array(os, object, offset, size, 1133 FALSE, FTAG, &numbufs, &dbp); 1134 if (err) 1135 return (err); 1136 1137 for (i = 0; i < numbufs; i++) { 1138 int tocpy, copied, thiscpy; 1139 int bufoff; 1140 dmu_buf_t *db = dbp[i]; 1141 caddr_t va; 1142 1143 ASSERT(size > 0); 1144 ASSERT3U(db->db_size, >=, PAGESIZE); 1145 1146 bufoff = offset - db->db_offset; 1147 tocpy = (int)MIN(db->db_size - bufoff, size); 1148 1149 ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size); 1150 1151 if (tocpy == db->db_size) 1152 dmu_buf_will_fill(db, tx); 1153 else 1154 dmu_buf_will_dirty(db, tx); 1155 1156 for (copied = 0; copied < tocpy; copied += PAGESIZE) { 1157 ASSERT3U(pp->p_offset, ==, db->db_offset + bufoff); 1158 thiscpy = MIN(PAGESIZE, tocpy - copied); 1159 va = zfs_map_page(pp, S_READ); 1160 bcopy(va, (char *)db->db_data + bufoff, thiscpy); 1161 zfs_unmap_page(pp, va); 1162 pp = pp->p_next; 1163 bufoff += PAGESIZE; 1164 } 1165 1166 if (tocpy == db->db_size) 1167 dmu_buf_fill_done(db, tx); 1168 1169 offset += tocpy; 1170 size -= tocpy; 1171 } 1172 dmu_buf_rele_array(dbp, numbufs, FTAG); 1173 return (err); 1174 } 1175 #endif 1176 1177 /* 1178 * Allocate a loaned anonymous arc buffer. 1179 */ 1180 arc_buf_t * 1181 dmu_request_arcbuf(dmu_buf_t *handle, int size) 1182 { 1183 dmu_buf_impl_t *db = (dmu_buf_impl_t *)handle; 1184 spa_t *spa; 1185 1186 DB_GET_SPA(&spa, db); 1187 return (arc_loan_buf(spa, size)); 1188 } 1189 1190 /* 1191 * Free a loaned arc buffer. 1192 */ 1193 void 1194 dmu_return_arcbuf(arc_buf_t *buf) 1195 { 1196 arc_return_buf(buf, FTAG); 1197 VERIFY(arc_buf_remove_ref(buf, FTAG)); 1198 } 1199 1200 /* 1201 * When possible directly assign passed loaned arc buffer to a dbuf. 1202 * If this is not possible copy the contents of passed arc buf via 1203 * dmu_write(). 1204 */ 1205 void 1206 dmu_assign_arcbuf(dmu_buf_t *handle, uint64_t offset, arc_buf_t *buf, 1207 dmu_tx_t *tx) 1208 { 1209 dmu_buf_impl_t *dbuf = (dmu_buf_impl_t *)handle; 1210 dnode_t *dn; 1211 dmu_buf_impl_t *db; 1212 uint32_t blksz = (uint32_t)arc_buf_size(buf); 1213 uint64_t blkid; 1214 1215 DB_DNODE_ENTER(dbuf); 1216 dn = DB_DNODE(dbuf); 1217 rw_enter(&dn->dn_struct_rwlock, RW_READER); 1218 blkid = dbuf_whichblock(dn, offset); 1219 VERIFY((db = dbuf_hold(dn, blkid, FTAG)) != NULL); 1220 rw_exit(&dn->dn_struct_rwlock); 1221 DB_DNODE_EXIT(dbuf); 1222 1223 if (offset == db->db.db_offset && blksz == db->db.db_size) { 1224 dbuf_assign_arcbuf(db, buf, tx); 1225 dbuf_rele(db, FTAG); 1226 } else { 1227 objset_t *os; 1228 uint64_t object; 1229 1230 DB_DNODE_ENTER(dbuf); 1231 dn = DB_DNODE(dbuf); 1232 os = dn->dn_objset; 1233 object = dn->dn_object; 1234 DB_DNODE_EXIT(dbuf); 1235 1236 dbuf_rele(db, FTAG); 1237 dmu_write(os, object, offset, blksz, buf->b_data, tx); 1238 dmu_return_arcbuf(buf); 1239 XUIOSTAT_BUMP(xuiostat_wbuf_copied); 1240 } 1241 } 1242 1243 typedef struct { 1244 dbuf_dirty_record_t *dsa_dr; 1245 dmu_sync_cb_t *dsa_done; 1246 zgd_t *dsa_zgd; 1247 dmu_tx_t *dsa_tx; 1248 } dmu_sync_arg_t; 1249 1250 /* ARGSUSED */ 1251 static void 1252 dmu_sync_ready(zio_t *zio, arc_buf_t *buf, void *varg) 1253 { 1254 dmu_sync_arg_t *dsa = varg; 1255 dmu_buf_t *db = dsa->dsa_zgd->zgd_db; 1256 blkptr_t *bp = zio->io_bp; 1257 1258 if (zio->io_error == 0) { 1259 if (BP_IS_HOLE(bp)) { 1260 /* 1261 * A block of zeros may compress to a hole, but the 1262 * block size still needs to be known for replay. 1263 */ 1264 BP_SET_LSIZE(bp, db->db_size); 1265 } else { 1266 ASSERT(BP_GET_LEVEL(bp) == 0); 1267 bp->blk_fill = 1; 1268 } 1269 } 1270 } 1271 1272 static void 1273 dmu_sync_late_arrival_ready(zio_t *zio) 1274 { 1275 dmu_sync_ready(zio, NULL, zio->io_private); 1276 } 1277 1278 /* ARGSUSED */ 1279 static void 1280 dmu_sync_done(zio_t *zio, arc_buf_t *buf, void *varg) 1281 { 1282 dmu_sync_arg_t *dsa = varg; 1283 dbuf_dirty_record_t *dr = dsa->dsa_dr; 1284 dmu_buf_impl_t *db = dr->dr_dbuf; 1285 1286 mutex_enter(&db->db_mtx); 1287 ASSERT(dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC); 1288 if (zio->io_error == 0) { 1289 dr->dt.dl.dr_nopwrite = !!(zio->io_flags & ZIO_FLAG_NOPWRITE); 1290 if (dr->dt.dl.dr_nopwrite) { 1291 blkptr_t *bp = zio->io_bp; 1292 blkptr_t *bp_orig = &zio->io_bp_orig; 1293 uint8_t chksum = BP_GET_CHECKSUM(bp_orig); 1294 1295 ASSERT(BP_EQUAL(bp, bp_orig)); 1296 ASSERT(zio->io_prop.zp_compress != ZIO_COMPRESS_OFF); 1297 ASSERT(zio_checksum_table[chksum].ci_dedup); 1298 } 1299 dr->dt.dl.dr_overridden_by = *zio->io_bp; 1300 dr->dt.dl.dr_override_state = DR_OVERRIDDEN; 1301 dr->dt.dl.dr_copies = zio->io_prop.zp_copies; 1302 if (BP_IS_HOLE(&dr->dt.dl.dr_overridden_by)) 1303 BP_ZERO(&dr->dt.dl.dr_overridden_by); 1304 } else { 1305 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN; 1306 } 1307 cv_broadcast(&db->db_changed); 1308 mutex_exit(&db->db_mtx); 1309 1310 dsa->dsa_done(dsa->dsa_zgd, zio->io_error); 1311 1312 kmem_free(dsa, sizeof (*dsa)); 1313 } 1314 1315 static void 1316 dmu_sync_late_arrival_done(zio_t *zio) 1317 { 1318 blkptr_t *bp = zio->io_bp; 1319 dmu_sync_arg_t *dsa = zio->io_private; 1320 blkptr_t *bp_orig = &zio->io_bp_orig; 1321 1322 if (zio->io_error == 0 && !BP_IS_HOLE(bp)) { 1323 /* 1324 * If we didn't allocate a new block (i.e. ZIO_FLAG_NOPWRITE) 1325 * then there is nothing to do here. Otherwise, free the 1326 * newly allocated block in this txg. 1327 */ 1328 if (zio->io_flags & ZIO_FLAG_NOPWRITE) { 1329 ASSERT(BP_EQUAL(bp, bp_orig)); 1330 } else { 1331 ASSERT(BP_IS_HOLE(bp_orig) || !BP_EQUAL(bp, bp_orig)); 1332 ASSERT(zio->io_bp->blk_birth == zio->io_txg); 1333 ASSERT(zio->io_txg > spa_syncing_txg(zio->io_spa)); 1334 zio_free(zio->io_spa, zio->io_txg, zio->io_bp); 1335 } 1336 } 1337 1338 dmu_tx_commit(dsa->dsa_tx); 1339 1340 dsa->dsa_done(dsa->dsa_zgd, zio->io_error); 1341 1342 kmem_free(dsa, sizeof (*dsa)); 1343 } 1344 1345 static int 1346 dmu_sync_late_arrival(zio_t *pio, objset_t *os, dmu_sync_cb_t *done, zgd_t *zgd, 1347 zio_prop_t *zp, zbookmark_t *zb) 1348 { 1349 dmu_sync_arg_t *dsa; 1350 dmu_tx_t *tx; 1351 1352 tx = dmu_tx_create(os); 1353 dmu_tx_hold_space(tx, zgd->zgd_db->db_size); 1354 if (dmu_tx_assign(tx, TXG_WAIT) != 0) { 1355 dmu_tx_abort(tx); 1356 return (EIO); /* Make zl_get_data do txg_waited_synced() */ 1357 } 1358 1359 dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP); 1360 dsa->dsa_dr = NULL; 1361 dsa->dsa_done = done; 1362 dsa->dsa_zgd = zgd; 1363 dsa->dsa_tx = tx; 1364 1365 zio_nowait(zio_write(pio, os->os_spa, dmu_tx_get_txg(tx), zgd->zgd_bp, 1366 zgd->zgd_db->db_data, zgd->zgd_db->db_size, zp, 1367 dmu_sync_late_arrival_ready, dmu_sync_late_arrival_done, dsa, 1368 ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CANFAIL, zb)); 1369 1370 return (0); 1371 } 1372 1373 /* 1374 * Intent log support: sync the block associated with db to disk. 1375 * N.B. and XXX: the caller is responsible for making sure that the 1376 * data isn't changing while dmu_sync() is writing it. 1377 * 1378 * Return values: 1379 * 1380 * EEXIST: this txg has already been synced, so there's nothing to do. 1381 * The caller should not log the write. 1382 * 1383 * ENOENT: the block was dbuf_free_range()'d, so there's nothing to do. 1384 * The caller should not log the write. 1385 * 1386 * EALREADY: this block is already in the process of being synced. 1387 * The caller should track its progress (somehow). 1388 * 1389 * EIO: could not do the I/O. 1390 * The caller should do a txg_wait_synced(). 1391 * 1392 * 0: the I/O has been initiated. 1393 * The caller should log this blkptr in the done callback. 1394 * It is possible that the I/O will fail, in which case 1395 * the error will be reported to the done callback and 1396 * propagated to pio from zio_done(). 1397 */ 1398 int 1399 dmu_sync(zio_t *pio, uint64_t txg, dmu_sync_cb_t *done, zgd_t *zgd) 1400 { 1401 blkptr_t *bp = zgd->zgd_bp; 1402 dmu_buf_impl_t *db = (dmu_buf_impl_t *)zgd->zgd_db; 1403 objset_t *os = db->db_objset; 1404 dsl_dataset_t *ds = os->os_dsl_dataset; 1405 dbuf_dirty_record_t *dr; 1406 dmu_sync_arg_t *dsa; 1407 zbookmark_t zb; 1408 zio_prop_t zp; 1409 dnode_t *dn; 1410 1411 ASSERT(pio != NULL); 1412 ASSERT(txg != 0); 1413 1414 SET_BOOKMARK(&zb, ds->ds_object, 1415 db->db.db_object, db->db_level, db->db_blkid); 1416 1417 DB_DNODE_ENTER(db); 1418 dn = DB_DNODE(db); 1419 dmu_write_policy(os, dn, db->db_level, WP_DMU_SYNC, &zp); 1420 DB_DNODE_EXIT(db); 1421 1422 /* 1423 * If we're frozen (running ziltest), we always need to generate a bp. 1424 */ 1425 if (txg > spa_freeze_txg(os->os_spa)) 1426 return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb)); 1427 1428 /* 1429 * Grabbing db_mtx now provides a barrier between dbuf_sync_leaf() 1430 * and us. If we determine that this txg is not yet syncing, 1431 * but it begins to sync a moment later, that's OK because the 1432 * sync thread will block in dbuf_sync_leaf() until we drop db_mtx. 1433 */ 1434 mutex_enter(&db->db_mtx); 1435 1436 if (txg <= spa_last_synced_txg(os->os_spa)) { 1437 /* 1438 * This txg has already synced. There's nothing to do. 1439 */ 1440 mutex_exit(&db->db_mtx); 1441 return (EEXIST); 1442 } 1443 1444 if (txg <= spa_syncing_txg(os->os_spa)) { 1445 /* 1446 * This txg is currently syncing, so we can't mess with 1447 * the dirty record anymore; just write a new log block. 1448 */ 1449 mutex_exit(&db->db_mtx); 1450 return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb)); 1451 } 1452 1453 dr = db->db_last_dirty; 1454 while (dr && dr->dr_txg != txg) 1455 dr = dr->dr_next; 1456 1457 if (dr == NULL) { 1458 /* 1459 * There's no dr for this dbuf, so it must have been freed. 1460 * There's no need to log writes to freed blocks, so we're done. 1461 */ 1462 mutex_exit(&db->db_mtx); 1463 return (ENOENT); 1464 } 1465 1466 ASSERT(dr->dr_next == NULL || dr->dr_next->dr_txg < txg); 1467 1468 /* 1469 * Assume the on-disk data is X, the current syncing data is Y, 1470 * and the current in-memory data is Z (currently in dmu_sync). 1471 * X and Z are identical but Y is has been modified. Normally, 1472 * when X and Z are the same we will perform a nopwrite but if Y 1473 * is different we must disable nopwrite since the resulting write 1474 * of Y to disk can free the block containing X. If we allowed a 1475 * nopwrite to occur the block pointing to Z would reference a freed 1476 * block. Since this is a rare case we simplify this by disabling 1477 * nopwrite if the current dmu_sync-ing dbuf has been modified in 1478 * a previous transaction. 1479 */ 1480 if (dr->dr_next) 1481 zp.zp_nopwrite = B_FALSE; 1482 1483 ASSERT(dr->dr_txg == txg); 1484 if (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC || 1485 dr->dt.dl.dr_override_state == DR_OVERRIDDEN) { 1486 /* 1487 * We have already issued a sync write for this buffer, 1488 * or this buffer has already been synced. It could not 1489 * have been dirtied since, or we would have cleared the state. 1490 */ 1491 mutex_exit(&db->db_mtx); 1492 return (EALREADY); 1493 } 1494 1495 ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN); 1496 dr->dt.dl.dr_override_state = DR_IN_DMU_SYNC; 1497 mutex_exit(&db->db_mtx); 1498 1499 dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP); 1500 dsa->dsa_dr = dr; 1501 dsa->dsa_done = done; 1502 dsa->dsa_zgd = zgd; 1503 dsa->dsa_tx = NULL; 1504 1505 zio_nowait(arc_write(pio, os->os_spa, txg, 1506 bp, dr->dt.dl.dr_data, DBUF_IS_L2CACHEABLE(db), &zp, 1507 dmu_sync_ready, dmu_sync_done, dsa, 1508 ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CANFAIL, &zb)); 1509 1510 return (0); 1511 } 1512 1513 int 1514 dmu_object_set_blocksize(objset_t *os, uint64_t object, uint64_t size, int ibs, 1515 dmu_tx_t *tx) 1516 { 1517 dnode_t *dn; 1518 int err; 1519 1520 err = dnode_hold(os, object, FTAG, &dn); 1521 if (err) 1522 return (err); 1523 err = dnode_set_blksz(dn, size, ibs, tx); 1524 dnode_rele(dn, FTAG); 1525 return (err); 1526 } 1527 1528 void 1529 dmu_object_set_checksum(objset_t *os, uint64_t object, uint8_t checksum, 1530 dmu_tx_t *tx) 1531 { 1532 dnode_t *dn; 1533 1534 /* XXX assumes dnode_hold will not get an i/o error */ 1535 (void) dnode_hold(os, object, FTAG, &dn); 1536 ASSERT(checksum < ZIO_CHECKSUM_FUNCTIONS); 1537 dn->dn_checksum = checksum; 1538 dnode_setdirty(dn, tx); 1539 dnode_rele(dn, FTAG); 1540 } 1541 1542 void 1543 dmu_object_set_compress(objset_t *os, uint64_t object, uint8_t compress, 1544 dmu_tx_t *tx) 1545 { 1546 dnode_t *dn; 1547 1548 /* XXX assumes dnode_hold will not get an i/o error */ 1549 (void) dnode_hold(os, object, FTAG, &dn); 1550 ASSERT(compress < ZIO_COMPRESS_FUNCTIONS); 1551 dn->dn_compress = compress; 1552 dnode_setdirty(dn, tx); 1553 dnode_rele(dn, FTAG); 1554 } 1555 1556 int zfs_mdcomp_disable = 0; 1557 1558 void 1559 dmu_write_policy(objset_t *os, dnode_t *dn, int level, int wp, zio_prop_t *zp) 1560 { 1561 dmu_object_type_t type = dn ? dn->dn_type : DMU_OT_OBJSET; 1562 boolean_t ismd = (level > 0 || DMU_OT_IS_METADATA(type) || 1563 (wp & WP_SPILL)); 1564 enum zio_checksum checksum = os->os_checksum; 1565 enum zio_compress compress = os->os_compress; 1566 enum zio_checksum dedup_checksum = os->os_dedup_checksum; 1567 boolean_t dedup = B_FALSE; 1568 boolean_t nopwrite = B_FALSE; 1569 boolean_t dedup_verify = os->os_dedup_verify; 1570 int copies = os->os_copies; 1571 1572 /* 1573 * We maintain different write policies for each of the following 1574 * types of data: 1575 * 1. metadata 1576 * 2. preallocated blocks (i.e. level-0 blocks of a dump device) 1577 * 3. all other level 0 blocks 1578 */ 1579 if (ismd) { 1580 /* 1581 * XXX -- we should design a compression algorithm 1582 * that specializes in arrays of bps. 1583 */ 1584 compress = zfs_mdcomp_disable ? ZIO_COMPRESS_EMPTY : 1585 ZIO_COMPRESS_LZJB; 1586 1587 /* 1588 * Metadata always gets checksummed. If the data 1589 * checksum is multi-bit correctable, and it's not a 1590 * ZBT-style checksum, then it's suitable for metadata 1591 * as well. Otherwise, the metadata checksum defaults 1592 * to fletcher4. 1593 */ 1594 if (zio_checksum_table[checksum].ci_correctable < 1 || 1595 zio_checksum_table[checksum].ci_eck) 1596 checksum = ZIO_CHECKSUM_FLETCHER_4; 1597 } else if (wp & WP_NOFILL) { 1598 ASSERT(level == 0); 1599 1600 /* 1601 * If we're writing preallocated blocks, we aren't actually 1602 * writing them so don't set any policy properties. These 1603 * blocks are currently only used by an external subsystem 1604 * outside of zfs (i.e. dump) and not written by the zio 1605 * pipeline. 1606 */ 1607 compress = ZIO_COMPRESS_OFF; 1608 checksum = ZIO_CHECKSUM_OFF; 1609 } else { 1610 compress = zio_compress_select(dn->dn_compress, compress); 1611 1612 checksum = (dedup_checksum == ZIO_CHECKSUM_OFF) ? 1613 zio_checksum_select(dn->dn_checksum, checksum) : 1614 dedup_checksum; 1615 1616 /* 1617 * Determine dedup setting. If we are in dmu_sync(), 1618 * we won't actually dedup now because that's all 1619 * done in syncing context; but we do want to use the 1620 * dedup checkum. If the checksum is not strong 1621 * enough to ensure unique signatures, force 1622 * dedup_verify. 1623 */ 1624 if (dedup_checksum != ZIO_CHECKSUM_OFF) { 1625 dedup = (wp & WP_DMU_SYNC) ? B_FALSE : B_TRUE; 1626 if (!zio_checksum_table[checksum].ci_dedup) 1627 dedup_verify = B_TRUE; 1628 } 1629 1630 /* 1631 * Enable nopwrite if we have a cryptographically secure 1632 * checksum that has no known collisions (i.e. SHA-256) 1633 * and compression is enabled. We don't enable nopwrite if 1634 * dedup is enabled as the two features are mutually exclusive. 1635 */ 1636 nopwrite = (!dedup && zio_checksum_table[checksum].ci_dedup && 1637 compress != ZIO_COMPRESS_OFF && zfs_nopwrite_enabled); 1638 } 1639 1640 zp->zp_checksum = checksum; 1641 zp->zp_compress = compress; 1642 zp->zp_type = (wp & WP_SPILL) ? dn->dn_bonustype : type; 1643 zp->zp_level = level; 1644 zp->zp_copies = MIN(copies + ismd, spa_max_replication(os->os_spa)); 1645 zp->zp_dedup = dedup; 1646 zp->zp_dedup_verify = dedup && dedup_verify; 1647 zp->zp_nopwrite = nopwrite; 1648 } 1649 1650 int 1651 dmu_offset_next(objset_t *os, uint64_t object, boolean_t hole, uint64_t *off) 1652 { 1653 dnode_t *dn; 1654 int i, err; 1655 1656 err = dnode_hold(os, object, FTAG, &dn); 1657 if (err) 1658 return (err); 1659 /* 1660 * Sync any current changes before 1661 * we go trundling through the block pointers. 1662 */ 1663 for (i = 0; i < TXG_SIZE; i++) { 1664 if (list_link_active(&dn->dn_dirty_link[i])) 1665 break; 1666 } 1667 if (i != TXG_SIZE) { 1668 dnode_rele(dn, FTAG); 1669 txg_wait_synced(dmu_objset_pool(os), 0); 1670 err = dnode_hold(os, object, FTAG, &dn); 1671 if (err) 1672 return (err); 1673 } 1674 1675 err = dnode_next_offset(dn, (hole ? DNODE_FIND_HOLE : 0), off, 1, 1, 0); 1676 dnode_rele(dn, FTAG); 1677 1678 return (err); 1679 } 1680 1681 void 1682 dmu_object_info_from_dnode(dnode_t *dn, dmu_object_info_t *doi) 1683 { 1684 dnode_phys_t *dnp; 1685 1686 rw_enter(&dn->dn_struct_rwlock, RW_READER); 1687 mutex_enter(&dn->dn_mtx); 1688 1689 dnp = dn->dn_phys; 1690 1691 doi->doi_data_block_size = dn->dn_datablksz; 1692 doi->doi_metadata_block_size = dn->dn_indblkshift ? 1693 1ULL << dn->dn_indblkshift : 0; 1694 doi->doi_type = dn->dn_type; 1695 doi->doi_bonus_type = dn->dn_bonustype; 1696 doi->doi_bonus_size = dn->dn_bonuslen; 1697 doi->doi_indirection = dn->dn_nlevels; 1698 doi->doi_checksum = dn->dn_checksum; 1699 doi->doi_compress = dn->dn_compress; 1700 doi->doi_physical_blocks_512 = (DN_USED_BYTES(dnp) + 256) >> 9; 1701 doi->doi_max_offset = (dnp->dn_maxblkid + 1) * dn->dn_datablksz; 1702 doi->doi_fill_count = 0; 1703 for (int i = 0; i < dnp->dn_nblkptr; i++) 1704 doi->doi_fill_count += dnp->dn_blkptr[i].blk_fill; 1705 1706 mutex_exit(&dn->dn_mtx); 1707 rw_exit(&dn->dn_struct_rwlock); 1708 } 1709 1710 /* 1711 * Get information on a DMU object. 1712 * If doi is NULL, just indicates whether the object exists. 1713 */ 1714 int 1715 dmu_object_info(objset_t *os, uint64_t object, dmu_object_info_t *doi) 1716 { 1717 dnode_t *dn; 1718 int err = dnode_hold(os, object, FTAG, &dn); 1719 1720 if (err) 1721 return (err); 1722 1723 if (doi != NULL) 1724 dmu_object_info_from_dnode(dn, doi); 1725 1726 dnode_rele(dn, FTAG); 1727 return (0); 1728 } 1729 1730 /* 1731 * As above, but faster; can be used when you have a held dbuf in hand. 1732 */ 1733 void 1734 dmu_object_info_from_db(dmu_buf_t *db_fake, dmu_object_info_t *doi) 1735 { 1736 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 1737 1738 DB_DNODE_ENTER(db); 1739 dmu_object_info_from_dnode(DB_DNODE(db), doi); 1740 DB_DNODE_EXIT(db); 1741 } 1742 1743 /* 1744 * Faster still when you only care about the size. 1745 * This is specifically optimized for zfs_getattr(). 1746 */ 1747 void 1748 dmu_object_size_from_db(dmu_buf_t *db_fake, uint32_t *blksize, 1749 u_longlong_t *nblk512) 1750 { 1751 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 1752 dnode_t *dn; 1753 1754 DB_DNODE_ENTER(db); 1755 dn = DB_DNODE(db); 1756 1757 *blksize = dn->dn_datablksz; 1758 /* add 1 for dnode space */ 1759 *nblk512 = ((DN_USED_BYTES(dn->dn_phys) + SPA_MINBLOCKSIZE/2) >> 1760 SPA_MINBLOCKSHIFT) + 1; 1761 DB_DNODE_EXIT(db); 1762 } 1763 1764 void 1765 byteswap_uint64_array(void *vbuf, size_t size) 1766 { 1767 uint64_t *buf = vbuf; 1768 size_t count = size >> 3; 1769 int i; 1770 1771 ASSERT((size & 7) == 0); 1772 1773 for (i = 0; i < count; i++) 1774 buf[i] = BSWAP_64(buf[i]); 1775 } 1776 1777 void 1778 byteswap_uint32_array(void *vbuf, size_t size) 1779 { 1780 uint32_t *buf = vbuf; 1781 size_t count = size >> 2; 1782 int i; 1783 1784 ASSERT((size & 3) == 0); 1785 1786 for (i = 0; i < count; i++) 1787 buf[i] = BSWAP_32(buf[i]); 1788 } 1789 1790 void 1791 byteswap_uint16_array(void *vbuf, size_t size) 1792 { 1793 uint16_t *buf = vbuf; 1794 size_t count = size >> 1; 1795 int i; 1796 1797 ASSERT((size & 1) == 0); 1798 1799 for (i = 0; i < count; i++) 1800 buf[i] = BSWAP_16(buf[i]); 1801 } 1802 1803 /* ARGSUSED */ 1804 void 1805 byteswap_uint8_array(void *vbuf, size_t size) 1806 { 1807 } 1808 1809 void 1810 dmu_init(void) 1811 { 1812 zfs_dbgmsg_init(); 1813 sa_cache_init(); 1814 xuio_stat_init(); 1815 dmu_objset_init(); 1816 dnode_init(); 1817 dbuf_init(); 1818 zfetch_init(); 1819 l2arc_init(); 1820 arc_init(); 1821 } 1822 1823 void 1824 dmu_fini(void) 1825 { 1826 arc_fini(); 1827 l2arc_fini(); 1828 zfetch_fini(); 1829 dbuf_fini(); 1830 dnode_fini(); 1831 dmu_objset_fini(); 1832 xuio_stat_fini(); 1833 sa_cache_fini(); 1834 zfs_dbgmsg_fini(); 1835 } 1836