xref: /titanic_44/usr/src/uts/common/fs/zfs/dbuf.c (revision 1daace1d1f6637208174834a98af2c7969517a7b)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
24  * Copyright (c) 2013 by Delphix. All rights reserved.
25  * Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
26  * Copyright (c) 2013, Joyent, Inc. All rights reserved.
27  */
28 
29 #include <sys/zfs_context.h>
30 #include <sys/dmu.h>
31 #include <sys/dmu_send.h>
32 #include <sys/dmu_impl.h>
33 #include <sys/dbuf.h>
34 #include <sys/dmu_objset.h>
35 #include <sys/dsl_dataset.h>
36 #include <sys/dsl_dir.h>
37 #include <sys/dmu_tx.h>
38 #include <sys/spa.h>
39 #include <sys/zio.h>
40 #include <sys/dmu_zfetch.h>
41 #include <sys/sa.h>
42 #include <sys/sa_impl.h>
43 
44 /*
45  * Number of times that zfs_free_range() took the slow path while doing
46  * a zfs receive.  A nonzero value indicates a potential performance problem.
47  */
48 uint64_t zfs_free_range_recv_miss;
49 
50 static void dbuf_destroy(dmu_buf_impl_t *db);
51 static boolean_t dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx);
52 static void dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx);
53 
54 /*
55  * Global data structures and functions for the dbuf cache.
56  */
57 static kmem_cache_t *dbuf_cache;
58 
59 /* ARGSUSED */
60 static int
61 dbuf_cons(void *vdb, void *unused, int kmflag)
62 {
63 	dmu_buf_impl_t *db = vdb;
64 	bzero(db, sizeof (dmu_buf_impl_t));
65 
66 	mutex_init(&db->db_mtx, NULL, MUTEX_DEFAULT, NULL);
67 	cv_init(&db->db_changed, NULL, CV_DEFAULT, NULL);
68 	refcount_create(&db->db_holds);
69 	return (0);
70 }
71 
72 /* ARGSUSED */
73 static void
74 dbuf_dest(void *vdb, void *unused)
75 {
76 	dmu_buf_impl_t *db = vdb;
77 	mutex_destroy(&db->db_mtx);
78 	cv_destroy(&db->db_changed);
79 	refcount_destroy(&db->db_holds);
80 }
81 
82 /*
83  * dbuf hash table routines
84  */
85 static dbuf_hash_table_t dbuf_hash_table;
86 
87 static uint64_t dbuf_hash_count;
88 
89 static uint64_t
90 dbuf_hash(void *os, uint64_t obj, uint8_t lvl, uint64_t blkid)
91 {
92 	uintptr_t osv = (uintptr_t)os;
93 	uint64_t crc = -1ULL;
94 
95 	ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
96 	crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (lvl)) & 0xFF];
97 	crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (osv >> 6)) & 0xFF];
98 	crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (obj >> 0)) & 0xFF];
99 	crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (obj >> 8)) & 0xFF];
100 	crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (blkid >> 0)) & 0xFF];
101 	crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (blkid >> 8)) & 0xFF];
102 
103 	crc ^= (osv>>14) ^ (obj>>16) ^ (blkid>>16);
104 
105 	return (crc);
106 }
107 
108 #define	DBUF_HASH(os, obj, level, blkid) dbuf_hash(os, obj, level, blkid);
109 
110 #define	DBUF_EQUAL(dbuf, os, obj, level, blkid)		\
111 	((dbuf)->db.db_object == (obj) &&		\
112 	(dbuf)->db_objset == (os) &&			\
113 	(dbuf)->db_level == (level) &&			\
114 	(dbuf)->db_blkid == (blkid))
115 
116 dmu_buf_impl_t *
117 dbuf_find(dnode_t *dn, uint8_t level, uint64_t blkid)
118 {
119 	dbuf_hash_table_t *h = &dbuf_hash_table;
120 	objset_t *os = dn->dn_objset;
121 	uint64_t obj = dn->dn_object;
122 	uint64_t hv = DBUF_HASH(os, obj, level, blkid);
123 	uint64_t idx = hv & h->hash_table_mask;
124 	dmu_buf_impl_t *db;
125 
126 	mutex_enter(DBUF_HASH_MUTEX(h, idx));
127 	for (db = h->hash_table[idx]; db != NULL; db = db->db_hash_next) {
128 		if (DBUF_EQUAL(db, os, obj, level, blkid)) {
129 			mutex_enter(&db->db_mtx);
130 			if (db->db_state != DB_EVICTING) {
131 				mutex_exit(DBUF_HASH_MUTEX(h, idx));
132 				return (db);
133 			}
134 			mutex_exit(&db->db_mtx);
135 		}
136 	}
137 	mutex_exit(DBUF_HASH_MUTEX(h, idx));
138 	return (NULL);
139 }
140 
141 /*
142  * Insert an entry into the hash table.  If there is already an element
143  * equal to elem in the hash table, then the already existing element
144  * will be returned and the new element will not be inserted.
145  * Otherwise returns NULL.
146  */
147 static dmu_buf_impl_t *
148 dbuf_hash_insert(dmu_buf_impl_t *db)
149 {
150 	dbuf_hash_table_t *h = &dbuf_hash_table;
151 	objset_t *os = db->db_objset;
152 	uint64_t obj = db->db.db_object;
153 	int level = db->db_level;
154 	uint64_t blkid = db->db_blkid;
155 	uint64_t hv = DBUF_HASH(os, obj, level, blkid);
156 	uint64_t idx = hv & h->hash_table_mask;
157 	dmu_buf_impl_t *dbf;
158 
159 	mutex_enter(DBUF_HASH_MUTEX(h, idx));
160 	for (dbf = h->hash_table[idx]; dbf != NULL; dbf = dbf->db_hash_next) {
161 		if (DBUF_EQUAL(dbf, os, obj, level, blkid)) {
162 			mutex_enter(&dbf->db_mtx);
163 			if (dbf->db_state != DB_EVICTING) {
164 				mutex_exit(DBUF_HASH_MUTEX(h, idx));
165 				return (dbf);
166 			}
167 			mutex_exit(&dbf->db_mtx);
168 		}
169 	}
170 
171 	mutex_enter(&db->db_mtx);
172 	db->db_hash_next = h->hash_table[idx];
173 	h->hash_table[idx] = db;
174 	mutex_exit(DBUF_HASH_MUTEX(h, idx));
175 	atomic_add_64(&dbuf_hash_count, 1);
176 
177 	return (NULL);
178 }
179 
180 /*
181  * Remove an entry from the hash table.  This operation will
182  * fail if there are any existing holds on the db.
183  */
184 static void
185 dbuf_hash_remove(dmu_buf_impl_t *db)
186 {
187 	dbuf_hash_table_t *h = &dbuf_hash_table;
188 	uint64_t hv = DBUF_HASH(db->db_objset, db->db.db_object,
189 	    db->db_level, db->db_blkid);
190 	uint64_t idx = hv & h->hash_table_mask;
191 	dmu_buf_impl_t *dbf, **dbp;
192 
193 	/*
194 	 * We musn't hold db_mtx to maintin lock ordering:
195 	 * DBUF_HASH_MUTEX > db_mtx.
196 	 */
197 	ASSERT(refcount_is_zero(&db->db_holds));
198 	ASSERT(db->db_state == DB_EVICTING);
199 	ASSERT(!MUTEX_HELD(&db->db_mtx));
200 
201 	mutex_enter(DBUF_HASH_MUTEX(h, idx));
202 	dbp = &h->hash_table[idx];
203 	while ((dbf = *dbp) != db) {
204 		dbp = &dbf->db_hash_next;
205 		ASSERT(dbf != NULL);
206 	}
207 	*dbp = db->db_hash_next;
208 	db->db_hash_next = NULL;
209 	mutex_exit(DBUF_HASH_MUTEX(h, idx));
210 	atomic_add_64(&dbuf_hash_count, -1);
211 }
212 
213 static arc_evict_func_t dbuf_do_evict;
214 
215 static void
216 dbuf_evict_user(dmu_buf_impl_t *db)
217 {
218 	ASSERT(MUTEX_HELD(&db->db_mtx));
219 
220 	if (db->db_level != 0 || db->db_evict_func == NULL)
221 		return;
222 
223 	if (db->db_user_data_ptr_ptr)
224 		*db->db_user_data_ptr_ptr = db->db.db_data;
225 	db->db_evict_func(&db->db, db->db_user_ptr);
226 	db->db_user_ptr = NULL;
227 	db->db_user_data_ptr_ptr = NULL;
228 	db->db_evict_func = NULL;
229 }
230 
231 boolean_t
232 dbuf_is_metadata(dmu_buf_impl_t *db)
233 {
234 	if (db->db_level > 0) {
235 		return (B_TRUE);
236 	} else {
237 		boolean_t is_metadata;
238 
239 		DB_DNODE_ENTER(db);
240 		is_metadata = DMU_OT_IS_METADATA(DB_DNODE(db)->dn_type);
241 		DB_DNODE_EXIT(db);
242 
243 		return (is_metadata);
244 	}
245 }
246 
247 void
248 dbuf_evict(dmu_buf_impl_t *db)
249 {
250 	ASSERT(MUTEX_HELD(&db->db_mtx));
251 	ASSERT(db->db_buf == NULL);
252 	ASSERT(db->db_data_pending == NULL);
253 
254 	dbuf_clear(db);
255 	dbuf_destroy(db);
256 }
257 
258 void
259 dbuf_init(void)
260 {
261 	uint64_t hsize = 1ULL << 16;
262 	dbuf_hash_table_t *h = &dbuf_hash_table;
263 	int i;
264 
265 	/*
266 	 * The hash table is big enough to fill all of physical memory
267 	 * with an average 4K block size.  The table will take up
268 	 * totalmem*sizeof(void*)/4K (i.e. 2MB/GB with 8-byte pointers).
269 	 */
270 	while (hsize * 4096 < physmem * PAGESIZE)
271 		hsize <<= 1;
272 
273 retry:
274 	h->hash_table_mask = hsize - 1;
275 	h->hash_table = kmem_zalloc(hsize * sizeof (void *), KM_NOSLEEP);
276 	if (h->hash_table == NULL) {
277 		/* XXX - we should really return an error instead of assert */
278 		ASSERT(hsize > (1ULL << 10));
279 		hsize >>= 1;
280 		goto retry;
281 	}
282 
283 	dbuf_cache = kmem_cache_create("dmu_buf_impl_t",
284 	    sizeof (dmu_buf_impl_t),
285 	    0, dbuf_cons, dbuf_dest, NULL, NULL, NULL, 0);
286 
287 	for (i = 0; i < DBUF_MUTEXES; i++)
288 		mutex_init(&h->hash_mutexes[i], NULL, MUTEX_DEFAULT, NULL);
289 }
290 
291 void
292 dbuf_fini(void)
293 {
294 	dbuf_hash_table_t *h = &dbuf_hash_table;
295 	int i;
296 
297 	for (i = 0; i < DBUF_MUTEXES; i++)
298 		mutex_destroy(&h->hash_mutexes[i]);
299 	kmem_free(h->hash_table, (h->hash_table_mask + 1) * sizeof (void *));
300 	kmem_cache_destroy(dbuf_cache);
301 }
302 
303 /*
304  * Other stuff.
305  */
306 
307 #ifdef ZFS_DEBUG
308 static void
309 dbuf_verify(dmu_buf_impl_t *db)
310 {
311 	dnode_t *dn;
312 	dbuf_dirty_record_t *dr;
313 
314 	ASSERT(MUTEX_HELD(&db->db_mtx));
315 
316 	if (!(zfs_flags & ZFS_DEBUG_DBUF_VERIFY))
317 		return;
318 
319 	ASSERT(db->db_objset != NULL);
320 	DB_DNODE_ENTER(db);
321 	dn = DB_DNODE(db);
322 	if (dn == NULL) {
323 		ASSERT(db->db_parent == NULL);
324 		ASSERT(db->db_blkptr == NULL);
325 	} else {
326 		ASSERT3U(db->db.db_object, ==, dn->dn_object);
327 		ASSERT3P(db->db_objset, ==, dn->dn_objset);
328 		ASSERT3U(db->db_level, <, dn->dn_nlevels);
329 		ASSERT(db->db_blkid == DMU_BONUS_BLKID ||
330 		    db->db_blkid == DMU_SPILL_BLKID ||
331 		    !list_is_empty(&dn->dn_dbufs));
332 	}
333 	if (db->db_blkid == DMU_BONUS_BLKID) {
334 		ASSERT(dn != NULL);
335 		ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen);
336 		ASSERT3U(db->db.db_offset, ==, DMU_BONUS_BLKID);
337 	} else if (db->db_blkid == DMU_SPILL_BLKID) {
338 		ASSERT(dn != NULL);
339 		ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen);
340 		ASSERT0(db->db.db_offset);
341 	} else {
342 		ASSERT3U(db->db.db_offset, ==, db->db_blkid * db->db.db_size);
343 	}
344 
345 	for (dr = db->db_data_pending; dr != NULL; dr = dr->dr_next)
346 		ASSERT(dr->dr_dbuf == db);
347 
348 	for (dr = db->db_last_dirty; dr != NULL; dr = dr->dr_next)
349 		ASSERT(dr->dr_dbuf == db);
350 
351 	/*
352 	 * We can't assert that db_size matches dn_datablksz because it
353 	 * can be momentarily different when another thread is doing
354 	 * dnode_set_blksz().
355 	 */
356 	if (db->db_level == 0 && db->db.db_object == DMU_META_DNODE_OBJECT) {
357 		dr = db->db_data_pending;
358 		/*
359 		 * It should only be modified in syncing context, so
360 		 * make sure we only have one copy of the data.
361 		 */
362 		ASSERT(dr == NULL || dr->dt.dl.dr_data == db->db_buf);
363 	}
364 
365 	/* verify db->db_blkptr */
366 	if (db->db_blkptr) {
367 		if (db->db_parent == dn->dn_dbuf) {
368 			/* db is pointed to by the dnode */
369 			/* ASSERT3U(db->db_blkid, <, dn->dn_nblkptr); */
370 			if (DMU_OBJECT_IS_SPECIAL(db->db.db_object))
371 				ASSERT(db->db_parent == NULL);
372 			else
373 				ASSERT(db->db_parent != NULL);
374 			if (db->db_blkid != DMU_SPILL_BLKID)
375 				ASSERT3P(db->db_blkptr, ==,
376 				    &dn->dn_phys->dn_blkptr[db->db_blkid]);
377 		} else {
378 			/* db is pointed to by an indirect block */
379 			int epb = db->db_parent->db.db_size >> SPA_BLKPTRSHIFT;
380 			ASSERT3U(db->db_parent->db_level, ==, db->db_level+1);
381 			ASSERT3U(db->db_parent->db.db_object, ==,
382 			    db->db.db_object);
383 			/*
384 			 * dnode_grow_indblksz() can make this fail if we don't
385 			 * have the struct_rwlock.  XXX indblksz no longer
386 			 * grows.  safe to do this now?
387 			 */
388 			if (RW_WRITE_HELD(&dn->dn_struct_rwlock)) {
389 				ASSERT3P(db->db_blkptr, ==,
390 				    ((blkptr_t *)db->db_parent->db.db_data +
391 				    db->db_blkid % epb));
392 			}
393 		}
394 	}
395 	if ((db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr)) &&
396 	    (db->db_buf == NULL || db->db_buf->b_data) &&
397 	    db->db.db_data && db->db_blkid != DMU_BONUS_BLKID &&
398 	    db->db_state != DB_FILL && !dn->dn_free_txg) {
399 		/*
400 		 * If the blkptr isn't set but they have nonzero data,
401 		 * it had better be dirty, otherwise we'll lose that
402 		 * data when we evict this buffer.
403 		 */
404 		if (db->db_dirtycnt == 0) {
405 			uint64_t *buf = db->db.db_data;
406 			int i;
407 
408 			for (i = 0; i < db->db.db_size >> 3; i++) {
409 				ASSERT(buf[i] == 0);
410 			}
411 		}
412 	}
413 	DB_DNODE_EXIT(db);
414 }
415 #endif
416 
417 static void
418 dbuf_update_data(dmu_buf_impl_t *db)
419 {
420 	ASSERT(MUTEX_HELD(&db->db_mtx));
421 	if (db->db_level == 0 && db->db_user_data_ptr_ptr) {
422 		ASSERT(!refcount_is_zero(&db->db_holds));
423 		*db->db_user_data_ptr_ptr = db->db.db_data;
424 	}
425 }
426 
427 static void
428 dbuf_set_data(dmu_buf_impl_t *db, arc_buf_t *buf)
429 {
430 	ASSERT(MUTEX_HELD(&db->db_mtx));
431 	ASSERT(db->db_buf == NULL || !arc_has_callback(db->db_buf));
432 	db->db_buf = buf;
433 	if (buf != NULL) {
434 		ASSERT(buf->b_data != NULL);
435 		db->db.db_data = buf->b_data;
436 		if (!arc_released(buf))
437 			arc_set_callback(buf, dbuf_do_evict, db);
438 		dbuf_update_data(db);
439 	} else {
440 		dbuf_evict_user(db);
441 		db->db.db_data = NULL;
442 		if (db->db_state != DB_NOFILL)
443 			db->db_state = DB_UNCACHED;
444 	}
445 }
446 
447 /*
448  * Loan out an arc_buf for read.  Return the loaned arc_buf.
449  */
450 arc_buf_t *
451 dbuf_loan_arcbuf(dmu_buf_impl_t *db)
452 {
453 	arc_buf_t *abuf;
454 
455 	mutex_enter(&db->db_mtx);
456 	if (arc_released(db->db_buf) || refcount_count(&db->db_holds) > 1) {
457 		int blksz = db->db.db_size;
458 		spa_t *spa;
459 
460 		mutex_exit(&db->db_mtx);
461 		DB_GET_SPA(&spa, db);
462 		abuf = arc_loan_buf(spa, blksz);
463 		bcopy(db->db.db_data, abuf->b_data, blksz);
464 	} else {
465 		abuf = db->db_buf;
466 		arc_loan_inuse_buf(abuf, db);
467 		dbuf_set_data(db, NULL);
468 		mutex_exit(&db->db_mtx);
469 	}
470 	return (abuf);
471 }
472 
473 uint64_t
474 dbuf_whichblock(dnode_t *dn, uint64_t offset)
475 {
476 	if (dn->dn_datablkshift) {
477 		return (offset >> dn->dn_datablkshift);
478 	} else {
479 		ASSERT3U(offset, <, dn->dn_datablksz);
480 		return (0);
481 	}
482 }
483 
484 static void
485 dbuf_read_done(zio_t *zio, arc_buf_t *buf, void *vdb)
486 {
487 	dmu_buf_impl_t *db = vdb;
488 
489 	mutex_enter(&db->db_mtx);
490 	ASSERT3U(db->db_state, ==, DB_READ);
491 	/*
492 	 * All reads are synchronous, so we must have a hold on the dbuf
493 	 */
494 	ASSERT(refcount_count(&db->db_holds) > 0);
495 	ASSERT(db->db_buf == NULL);
496 	ASSERT(db->db.db_data == NULL);
497 	if (db->db_level == 0 && db->db_freed_in_flight) {
498 		/* we were freed in flight; disregard any error */
499 		arc_release(buf, db);
500 		bzero(buf->b_data, db->db.db_size);
501 		arc_buf_freeze(buf);
502 		db->db_freed_in_flight = FALSE;
503 		dbuf_set_data(db, buf);
504 		db->db_state = DB_CACHED;
505 	} else if (zio == NULL || zio->io_error == 0) {
506 		dbuf_set_data(db, buf);
507 		db->db_state = DB_CACHED;
508 	} else {
509 		ASSERT(db->db_blkid != DMU_BONUS_BLKID);
510 		ASSERT3P(db->db_buf, ==, NULL);
511 		VERIFY(arc_buf_remove_ref(buf, db));
512 		db->db_state = DB_UNCACHED;
513 	}
514 	cv_broadcast(&db->db_changed);
515 	dbuf_rele_and_unlock(db, NULL);
516 }
517 
518 static void
519 dbuf_read_impl(dmu_buf_impl_t *db, zio_t *zio, uint32_t *flags)
520 {
521 	dnode_t *dn;
522 	spa_t *spa;
523 	zbookmark_t zb;
524 	uint32_t aflags = ARC_NOWAIT;
525 
526 	DB_DNODE_ENTER(db);
527 	dn = DB_DNODE(db);
528 	ASSERT(!refcount_is_zero(&db->db_holds));
529 	/* We need the struct_rwlock to prevent db_blkptr from changing. */
530 	ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
531 	ASSERT(MUTEX_HELD(&db->db_mtx));
532 	ASSERT(db->db_state == DB_UNCACHED);
533 	ASSERT(db->db_buf == NULL);
534 
535 	if (db->db_blkid == DMU_BONUS_BLKID) {
536 		int bonuslen = MIN(dn->dn_bonuslen, dn->dn_phys->dn_bonuslen);
537 
538 		ASSERT3U(bonuslen, <=, db->db.db_size);
539 		db->db.db_data = zio_buf_alloc(DN_MAX_BONUSLEN);
540 		arc_space_consume(DN_MAX_BONUSLEN, ARC_SPACE_OTHER);
541 		if (bonuslen < DN_MAX_BONUSLEN)
542 			bzero(db->db.db_data, DN_MAX_BONUSLEN);
543 		if (bonuslen)
544 			bcopy(DN_BONUS(dn->dn_phys), db->db.db_data, bonuslen);
545 		DB_DNODE_EXIT(db);
546 		dbuf_update_data(db);
547 		db->db_state = DB_CACHED;
548 		mutex_exit(&db->db_mtx);
549 		return;
550 	}
551 
552 	/*
553 	 * Recheck BP_IS_HOLE() after dnode_block_freed() in case dnode_sync()
554 	 * processes the delete record and clears the bp while we are waiting
555 	 * for the dn_mtx (resulting in a "no" from block_freed).
556 	 */
557 	if (db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr) ||
558 	    (db->db_level == 0 && (dnode_block_freed(dn, db->db_blkid) ||
559 	    BP_IS_HOLE(db->db_blkptr)))) {
560 		arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
561 
562 		dbuf_set_data(db, arc_buf_alloc(dn->dn_objset->os_spa,
563 		    db->db.db_size, db, type));
564 		DB_DNODE_EXIT(db);
565 		bzero(db->db.db_data, db->db.db_size);
566 		db->db_state = DB_CACHED;
567 		*flags |= DB_RF_CACHED;
568 		mutex_exit(&db->db_mtx);
569 		return;
570 	}
571 
572 	spa = dn->dn_objset->os_spa;
573 	DB_DNODE_EXIT(db);
574 
575 	db->db_state = DB_READ;
576 	mutex_exit(&db->db_mtx);
577 
578 	if (DBUF_IS_L2CACHEABLE(db))
579 		aflags |= ARC_L2CACHE;
580 	if (DBUF_IS_L2COMPRESSIBLE(db))
581 		aflags |= ARC_L2COMPRESS;
582 
583 	SET_BOOKMARK(&zb, db->db_objset->os_dsl_dataset ?
584 	    db->db_objset->os_dsl_dataset->ds_object : DMU_META_OBJSET,
585 	    db->db.db_object, db->db_level, db->db_blkid);
586 
587 	dbuf_add_ref(db, NULL);
588 
589 	(void) arc_read(zio, spa, db->db_blkptr,
590 	    dbuf_read_done, db, ZIO_PRIORITY_SYNC_READ,
591 	    (*flags & DB_RF_CANFAIL) ? ZIO_FLAG_CANFAIL : ZIO_FLAG_MUSTSUCCEED,
592 	    &aflags, &zb);
593 	if (aflags & ARC_CACHED)
594 		*flags |= DB_RF_CACHED;
595 }
596 
597 int
598 dbuf_read(dmu_buf_impl_t *db, zio_t *zio, uint32_t flags)
599 {
600 	int err = 0;
601 	int havepzio = (zio != NULL);
602 	int prefetch;
603 	dnode_t *dn;
604 
605 	/*
606 	 * We don't have to hold the mutex to check db_state because it
607 	 * can't be freed while we have a hold on the buffer.
608 	 */
609 	ASSERT(!refcount_is_zero(&db->db_holds));
610 
611 	if (db->db_state == DB_NOFILL)
612 		return (SET_ERROR(EIO));
613 
614 	DB_DNODE_ENTER(db);
615 	dn = DB_DNODE(db);
616 	if ((flags & DB_RF_HAVESTRUCT) == 0)
617 		rw_enter(&dn->dn_struct_rwlock, RW_READER);
618 
619 	prefetch = db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
620 	    (flags & DB_RF_NOPREFETCH) == 0 && dn != NULL &&
621 	    DBUF_IS_CACHEABLE(db);
622 
623 	mutex_enter(&db->db_mtx);
624 	if (db->db_state == DB_CACHED) {
625 		mutex_exit(&db->db_mtx);
626 		if (prefetch)
627 			dmu_zfetch(&dn->dn_zfetch, db->db.db_offset,
628 			    db->db.db_size, TRUE);
629 		if ((flags & DB_RF_HAVESTRUCT) == 0)
630 			rw_exit(&dn->dn_struct_rwlock);
631 		DB_DNODE_EXIT(db);
632 	} else if (db->db_state == DB_UNCACHED) {
633 		spa_t *spa = dn->dn_objset->os_spa;
634 
635 		if (zio == NULL)
636 			zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL);
637 		dbuf_read_impl(db, zio, &flags);
638 
639 		/* dbuf_read_impl has dropped db_mtx for us */
640 
641 		if (prefetch)
642 			dmu_zfetch(&dn->dn_zfetch, db->db.db_offset,
643 			    db->db.db_size, flags & DB_RF_CACHED);
644 
645 		if ((flags & DB_RF_HAVESTRUCT) == 0)
646 			rw_exit(&dn->dn_struct_rwlock);
647 		DB_DNODE_EXIT(db);
648 
649 		if (!havepzio)
650 			err = zio_wait(zio);
651 	} else {
652 		/*
653 		 * Another reader came in while the dbuf was in flight
654 		 * between UNCACHED and CACHED.  Either a writer will finish
655 		 * writing the buffer (sending the dbuf to CACHED) or the
656 		 * first reader's request will reach the read_done callback
657 		 * and send the dbuf to CACHED.  Otherwise, a failure
658 		 * occurred and the dbuf went to UNCACHED.
659 		 */
660 		mutex_exit(&db->db_mtx);
661 		if (prefetch)
662 			dmu_zfetch(&dn->dn_zfetch, db->db.db_offset,
663 			    db->db.db_size, TRUE);
664 		if ((flags & DB_RF_HAVESTRUCT) == 0)
665 			rw_exit(&dn->dn_struct_rwlock);
666 		DB_DNODE_EXIT(db);
667 
668 		/* Skip the wait per the caller's request. */
669 		mutex_enter(&db->db_mtx);
670 		if ((flags & DB_RF_NEVERWAIT) == 0) {
671 			while (db->db_state == DB_READ ||
672 			    db->db_state == DB_FILL) {
673 				ASSERT(db->db_state == DB_READ ||
674 				    (flags & DB_RF_HAVESTRUCT) == 0);
675 				cv_wait(&db->db_changed, &db->db_mtx);
676 			}
677 			if (db->db_state == DB_UNCACHED)
678 				err = SET_ERROR(EIO);
679 		}
680 		mutex_exit(&db->db_mtx);
681 	}
682 
683 	ASSERT(err || havepzio || db->db_state == DB_CACHED);
684 	return (err);
685 }
686 
687 static void
688 dbuf_noread(dmu_buf_impl_t *db)
689 {
690 	ASSERT(!refcount_is_zero(&db->db_holds));
691 	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
692 	mutex_enter(&db->db_mtx);
693 	while (db->db_state == DB_READ || db->db_state == DB_FILL)
694 		cv_wait(&db->db_changed, &db->db_mtx);
695 	if (db->db_state == DB_UNCACHED) {
696 		arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
697 		spa_t *spa;
698 
699 		ASSERT(db->db_buf == NULL);
700 		ASSERT(db->db.db_data == NULL);
701 		DB_GET_SPA(&spa, db);
702 		dbuf_set_data(db, arc_buf_alloc(spa, db->db.db_size, db, type));
703 		db->db_state = DB_FILL;
704 	} else if (db->db_state == DB_NOFILL) {
705 		dbuf_set_data(db, NULL);
706 	} else {
707 		ASSERT3U(db->db_state, ==, DB_CACHED);
708 	}
709 	mutex_exit(&db->db_mtx);
710 }
711 
712 /*
713  * This is our just-in-time copy function.  It makes a copy of
714  * buffers, that have been modified in a previous transaction
715  * group, before we modify them in the current active group.
716  *
717  * This function is used in two places: when we are dirtying a
718  * buffer for the first time in a txg, and when we are freeing
719  * a range in a dnode that includes this buffer.
720  *
721  * Note that when we are called from dbuf_free_range() we do
722  * not put a hold on the buffer, we just traverse the active
723  * dbuf list for the dnode.
724  */
725 static void
726 dbuf_fix_old_data(dmu_buf_impl_t *db, uint64_t txg)
727 {
728 	dbuf_dirty_record_t *dr = db->db_last_dirty;
729 
730 	ASSERT(MUTEX_HELD(&db->db_mtx));
731 	ASSERT(db->db.db_data != NULL);
732 	ASSERT(db->db_level == 0);
733 	ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT);
734 
735 	if (dr == NULL ||
736 	    (dr->dt.dl.dr_data !=
737 	    ((db->db_blkid  == DMU_BONUS_BLKID) ? db->db.db_data : db->db_buf)))
738 		return;
739 
740 	/*
741 	 * If the last dirty record for this dbuf has not yet synced
742 	 * and its referencing the dbuf data, either:
743 	 *	reset the reference to point to a new copy,
744 	 * or (if there a no active holders)
745 	 *	just null out the current db_data pointer.
746 	 */
747 	ASSERT(dr->dr_txg >= txg - 2);
748 	if (db->db_blkid == DMU_BONUS_BLKID) {
749 		/* Note that the data bufs here are zio_bufs */
750 		dr->dt.dl.dr_data = zio_buf_alloc(DN_MAX_BONUSLEN);
751 		arc_space_consume(DN_MAX_BONUSLEN, ARC_SPACE_OTHER);
752 		bcopy(db->db.db_data, dr->dt.dl.dr_data, DN_MAX_BONUSLEN);
753 	} else if (refcount_count(&db->db_holds) > db->db_dirtycnt) {
754 		int size = db->db.db_size;
755 		arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
756 		spa_t *spa;
757 
758 		DB_GET_SPA(&spa, db);
759 		dr->dt.dl.dr_data = arc_buf_alloc(spa, size, db, type);
760 		bcopy(db->db.db_data, dr->dt.dl.dr_data->b_data, size);
761 	} else {
762 		dbuf_set_data(db, NULL);
763 	}
764 }
765 
766 void
767 dbuf_unoverride(dbuf_dirty_record_t *dr)
768 {
769 	dmu_buf_impl_t *db = dr->dr_dbuf;
770 	blkptr_t *bp = &dr->dt.dl.dr_overridden_by;
771 	uint64_t txg = dr->dr_txg;
772 
773 	ASSERT(MUTEX_HELD(&db->db_mtx));
774 	ASSERT(dr->dt.dl.dr_override_state != DR_IN_DMU_SYNC);
775 	ASSERT(db->db_level == 0);
776 
777 	if (db->db_blkid == DMU_BONUS_BLKID ||
778 	    dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN)
779 		return;
780 
781 	ASSERT(db->db_data_pending != dr);
782 
783 	/* free this block */
784 	if (!BP_IS_HOLE(bp) && !dr->dt.dl.dr_nopwrite) {
785 		spa_t *spa;
786 
787 		DB_GET_SPA(&spa, db);
788 		zio_free(spa, txg, bp);
789 	}
790 	dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
791 	dr->dt.dl.dr_nopwrite = B_FALSE;
792 
793 	/*
794 	 * Release the already-written buffer, so we leave it in
795 	 * a consistent dirty state.  Note that all callers are
796 	 * modifying the buffer, so they will immediately do
797 	 * another (redundant) arc_release().  Therefore, leave
798 	 * the buf thawed to save the effort of freezing &
799 	 * immediately re-thawing it.
800 	 */
801 	arc_release(dr->dt.dl.dr_data, db);
802 }
803 
804 /*
805  * Evict (if its unreferenced) or clear (if its referenced) any level-0
806  * data blocks in the free range, so that any future readers will find
807  * empty blocks.  Also, if we happen across any level-1 dbufs in the
808  * range that have not already been marked dirty, mark them dirty so
809  * they stay in memory.
810  *
811  * This is a no-op if the dataset is in the middle of an incremental
812  * receive; see comment below for details.
813  */
814 void
815 dbuf_free_range(dnode_t *dn, uint64_t start, uint64_t end, dmu_tx_t *tx)
816 {
817 	dmu_buf_impl_t *db, *db_next;
818 	uint64_t txg = tx->tx_txg;
819 	int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
820 	uint64_t first_l1 = start >> epbs;
821 	uint64_t last_l1 = end >> epbs;
822 
823 	if (end > dn->dn_maxblkid && (end != DMU_SPILL_BLKID)) {
824 		end = dn->dn_maxblkid;
825 		last_l1 = end >> epbs;
826 	}
827 	dprintf_dnode(dn, "start=%llu end=%llu\n", start, end);
828 
829 	mutex_enter(&dn->dn_dbufs_mtx);
830 	if (start >= dn->dn_unlisted_l0_blkid * dn->dn_datablksz) {
831 		/* There can't be any dbufs in this range; no need to search. */
832 		mutex_exit(&dn->dn_dbufs_mtx);
833 		return;
834 	} else if (dmu_objset_is_receiving(dn->dn_objset)) {
835 		/*
836 		 * If we are receiving, we expect there to be no dbufs in
837 		 * the range to be freed, because receive modifies each
838 		 * block at most once, and in offset order.  If this is
839 		 * not the case, it can lead to performance problems,
840 		 * so note that we unexpectedly took the slow path.
841 		 */
842 		atomic_inc_64(&zfs_free_range_recv_miss);
843 	}
844 
845 	for (db = list_head(&dn->dn_dbufs); db != NULL; db = db_next) {
846 		db_next = list_next(&dn->dn_dbufs, db);
847 		ASSERT(db->db_blkid != DMU_BONUS_BLKID);
848 
849 		if (db->db_level == 1 &&
850 		    db->db_blkid >= first_l1 && db->db_blkid <= last_l1) {
851 			mutex_enter(&db->db_mtx);
852 			if (db->db_last_dirty &&
853 			    db->db_last_dirty->dr_txg < txg) {
854 				dbuf_add_ref(db, FTAG);
855 				mutex_exit(&db->db_mtx);
856 				dbuf_will_dirty(db, tx);
857 				dbuf_rele(db, FTAG);
858 			} else {
859 				mutex_exit(&db->db_mtx);
860 			}
861 		}
862 
863 		if (db->db_level != 0)
864 			continue;
865 		dprintf_dbuf(db, "found buf %s\n", "");
866 		if (db->db_blkid < start || db->db_blkid > end)
867 			continue;
868 
869 		/* found a level 0 buffer in the range */
870 		mutex_enter(&db->db_mtx);
871 		if (dbuf_undirty(db, tx)) {
872 			/* mutex has been dropped and dbuf destroyed */
873 			continue;
874 		}
875 
876 		if (db->db_state == DB_UNCACHED ||
877 		    db->db_state == DB_NOFILL ||
878 		    db->db_state == DB_EVICTING) {
879 			ASSERT(db->db.db_data == NULL);
880 			mutex_exit(&db->db_mtx);
881 			continue;
882 		}
883 		if (db->db_state == DB_READ || db->db_state == DB_FILL) {
884 			/* will be handled in dbuf_read_done or dbuf_rele */
885 			db->db_freed_in_flight = TRUE;
886 			mutex_exit(&db->db_mtx);
887 			continue;
888 		}
889 		if (refcount_count(&db->db_holds) == 0) {
890 			ASSERT(db->db_buf);
891 			dbuf_clear(db);
892 			continue;
893 		}
894 		/* The dbuf is referenced */
895 
896 		if (db->db_last_dirty != NULL) {
897 			dbuf_dirty_record_t *dr = db->db_last_dirty;
898 
899 			if (dr->dr_txg == txg) {
900 				/*
901 				 * This buffer is "in-use", re-adjust the file
902 				 * size to reflect that this buffer may
903 				 * contain new data when we sync.
904 				 */
905 				if (db->db_blkid != DMU_SPILL_BLKID &&
906 				    db->db_blkid > dn->dn_maxblkid)
907 					dn->dn_maxblkid = db->db_blkid;
908 				dbuf_unoverride(dr);
909 			} else {
910 				/*
911 				 * This dbuf is not dirty in the open context.
912 				 * Either uncache it (if its not referenced in
913 				 * the open context) or reset its contents to
914 				 * empty.
915 				 */
916 				dbuf_fix_old_data(db, txg);
917 			}
918 		}
919 		/* clear the contents if its cached */
920 		if (db->db_state == DB_CACHED) {
921 			ASSERT(db->db.db_data != NULL);
922 			arc_release(db->db_buf, db);
923 			bzero(db->db.db_data, db->db.db_size);
924 			arc_buf_freeze(db->db_buf);
925 		}
926 
927 		mutex_exit(&db->db_mtx);
928 	}
929 	mutex_exit(&dn->dn_dbufs_mtx);
930 }
931 
932 static int
933 dbuf_block_freeable(dmu_buf_impl_t *db)
934 {
935 	dsl_dataset_t *ds = db->db_objset->os_dsl_dataset;
936 	uint64_t birth_txg = 0;
937 
938 	/*
939 	 * We don't need any locking to protect db_blkptr:
940 	 * If it's syncing, then db_last_dirty will be set
941 	 * so we'll ignore db_blkptr.
942 	 */
943 	ASSERT(MUTEX_HELD(&db->db_mtx));
944 	if (db->db_last_dirty)
945 		birth_txg = db->db_last_dirty->dr_txg;
946 	else if (db->db_blkptr)
947 		birth_txg = db->db_blkptr->blk_birth;
948 
949 	/*
950 	 * If we don't exist or are in a snapshot, we can't be freed.
951 	 * Don't pass the bp to dsl_dataset_block_freeable() since we
952 	 * are holding the db_mtx lock and might deadlock if we are
953 	 * prefetching a dedup-ed block.
954 	 */
955 	if (birth_txg)
956 		return (ds == NULL ||
957 		    dsl_dataset_block_freeable(ds, NULL, birth_txg));
958 	else
959 		return (FALSE);
960 }
961 
962 void
963 dbuf_new_size(dmu_buf_impl_t *db, int size, dmu_tx_t *tx)
964 {
965 	arc_buf_t *buf, *obuf;
966 	int osize = db->db.db_size;
967 	arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
968 	dnode_t *dn;
969 
970 	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
971 
972 	DB_DNODE_ENTER(db);
973 	dn = DB_DNODE(db);
974 
975 	/* XXX does *this* func really need the lock? */
976 	ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock));
977 
978 	/*
979 	 * This call to dbuf_will_dirty() with the dn_struct_rwlock held
980 	 * is OK, because there can be no other references to the db
981 	 * when we are changing its size, so no concurrent DB_FILL can
982 	 * be happening.
983 	 */
984 	/*
985 	 * XXX we should be doing a dbuf_read, checking the return
986 	 * value and returning that up to our callers
987 	 */
988 	dbuf_will_dirty(db, tx);
989 
990 	/* create the data buffer for the new block */
991 	buf = arc_buf_alloc(dn->dn_objset->os_spa, size, db, type);
992 
993 	/* copy old block data to the new block */
994 	obuf = db->db_buf;
995 	bcopy(obuf->b_data, buf->b_data, MIN(osize, size));
996 	/* zero the remainder */
997 	if (size > osize)
998 		bzero((uint8_t *)buf->b_data + osize, size - osize);
999 
1000 	mutex_enter(&db->db_mtx);
1001 	dbuf_set_data(db, buf);
1002 	VERIFY(arc_buf_remove_ref(obuf, db));
1003 	db->db.db_size = size;
1004 
1005 	if (db->db_level == 0) {
1006 		ASSERT3U(db->db_last_dirty->dr_txg, ==, tx->tx_txg);
1007 		db->db_last_dirty->dt.dl.dr_data = buf;
1008 	}
1009 	mutex_exit(&db->db_mtx);
1010 
1011 	dnode_willuse_space(dn, size-osize, tx);
1012 	DB_DNODE_EXIT(db);
1013 }
1014 
1015 void
1016 dbuf_release_bp(dmu_buf_impl_t *db)
1017 {
1018 	objset_t *os;
1019 
1020 	DB_GET_OBJSET(&os, db);
1021 	ASSERT(dsl_pool_sync_context(dmu_objset_pool(os)));
1022 	ASSERT(arc_released(os->os_phys_buf) ||
1023 	    list_link_active(&os->os_dsl_dataset->ds_synced_link));
1024 	ASSERT(db->db_parent == NULL || arc_released(db->db_parent->db_buf));
1025 
1026 	(void) arc_release(db->db_buf, db);
1027 }
1028 
1029 dbuf_dirty_record_t *
1030 dbuf_dirty(dmu_buf_impl_t *db, dmu_tx_t *tx)
1031 {
1032 	dnode_t *dn;
1033 	objset_t *os;
1034 	dbuf_dirty_record_t **drp, *dr;
1035 	int drop_struct_lock = FALSE;
1036 	boolean_t do_free_accounting = B_FALSE;
1037 	int txgoff = tx->tx_txg & TXG_MASK;
1038 
1039 	ASSERT(tx->tx_txg != 0);
1040 	ASSERT(!refcount_is_zero(&db->db_holds));
1041 	DMU_TX_DIRTY_BUF(tx, db);
1042 
1043 	DB_DNODE_ENTER(db);
1044 	dn = DB_DNODE(db);
1045 	/*
1046 	 * Shouldn't dirty a regular buffer in syncing context.  Private
1047 	 * objects may be dirtied in syncing context, but only if they
1048 	 * were already pre-dirtied in open context.
1049 	 */
1050 	ASSERT(!dmu_tx_is_syncing(tx) ||
1051 	    BP_IS_HOLE(dn->dn_objset->os_rootbp) ||
1052 	    DMU_OBJECT_IS_SPECIAL(dn->dn_object) ||
1053 	    dn->dn_objset->os_dsl_dataset == NULL);
1054 	/*
1055 	 * We make this assert for private objects as well, but after we
1056 	 * check if we're already dirty.  They are allowed to re-dirty
1057 	 * in syncing context.
1058 	 */
1059 	ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT ||
1060 	    dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx ==
1061 	    (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN));
1062 
1063 	mutex_enter(&db->db_mtx);
1064 	/*
1065 	 * XXX make this true for indirects too?  The problem is that
1066 	 * transactions created with dmu_tx_create_assigned() from
1067 	 * syncing context don't bother holding ahead.
1068 	 */
1069 	ASSERT(db->db_level != 0 ||
1070 	    db->db_state == DB_CACHED || db->db_state == DB_FILL ||
1071 	    db->db_state == DB_NOFILL);
1072 
1073 	mutex_enter(&dn->dn_mtx);
1074 	/*
1075 	 * Don't set dirtyctx to SYNC if we're just modifying this as we
1076 	 * initialize the objset.
1077 	 */
1078 	if (dn->dn_dirtyctx == DN_UNDIRTIED &&
1079 	    !BP_IS_HOLE(dn->dn_objset->os_rootbp)) {
1080 		dn->dn_dirtyctx =
1081 		    (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN);
1082 		ASSERT(dn->dn_dirtyctx_firstset == NULL);
1083 		dn->dn_dirtyctx_firstset = kmem_alloc(1, KM_SLEEP);
1084 	}
1085 	mutex_exit(&dn->dn_mtx);
1086 
1087 	if (db->db_blkid == DMU_SPILL_BLKID)
1088 		dn->dn_have_spill = B_TRUE;
1089 
1090 	/*
1091 	 * If this buffer is already dirty, we're done.
1092 	 */
1093 	drp = &db->db_last_dirty;
1094 	ASSERT(*drp == NULL || (*drp)->dr_txg <= tx->tx_txg ||
1095 	    db->db.db_object == DMU_META_DNODE_OBJECT);
1096 	while ((dr = *drp) != NULL && dr->dr_txg > tx->tx_txg)
1097 		drp = &dr->dr_next;
1098 	if (dr && dr->dr_txg == tx->tx_txg) {
1099 		DB_DNODE_EXIT(db);
1100 
1101 		if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID) {
1102 			/*
1103 			 * If this buffer has already been written out,
1104 			 * we now need to reset its state.
1105 			 */
1106 			dbuf_unoverride(dr);
1107 			if (db->db.db_object != DMU_META_DNODE_OBJECT &&
1108 			    db->db_state != DB_NOFILL)
1109 				arc_buf_thaw(db->db_buf);
1110 		}
1111 		mutex_exit(&db->db_mtx);
1112 		return (dr);
1113 	}
1114 
1115 	/*
1116 	 * Only valid if not already dirty.
1117 	 */
1118 	ASSERT(dn->dn_object == 0 ||
1119 	    dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx ==
1120 	    (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN));
1121 
1122 	ASSERT3U(dn->dn_nlevels, >, db->db_level);
1123 	ASSERT((dn->dn_phys->dn_nlevels == 0 && db->db_level == 0) ||
1124 	    dn->dn_phys->dn_nlevels > db->db_level ||
1125 	    dn->dn_next_nlevels[txgoff] > db->db_level ||
1126 	    dn->dn_next_nlevels[(tx->tx_txg-1) & TXG_MASK] > db->db_level ||
1127 	    dn->dn_next_nlevels[(tx->tx_txg-2) & TXG_MASK] > db->db_level);
1128 
1129 	/*
1130 	 * We should only be dirtying in syncing context if it's the
1131 	 * mos or we're initializing the os or it's a special object.
1132 	 * However, we are allowed to dirty in syncing context provided
1133 	 * we already dirtied it in open context.  Hence we must make
1134 	 * this assertion only if we're not already dirty.
1135 	 */
1136 	os = dn->dn_objset;
1137 	ASSERT(!dmu_tx_is_syncing(tx) || DMU_OBJECT_IS_SPECIAL(dn->dn_object) ||
1138 	    os->os_dsl_dataset == NULL || BP_IS_HOLE(os->os_rootbp));
1139 	ASSERT(db->db.db_size != 0);
1140 
1141 	dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size);
1142 
1143 	if (db->db_blkid != DMU_BONUS_BLKID) {
1144 		/*
1145 		 * Update the accounting.
1146 		 * Note: we delay "free accounting" until after we drop
1147 		 * the db_mtx.  This keeps us from grabbing other locks
1148 		 * (and possibly deadlocking) in bp_get_dsize() while
1149 		 * also holding the db_mtx.
1150 		 */
1151 		dnode_willuse_space(dn, db->db.db_size, tx);
1152 		do_free_accounting = dbuf_block_freeable(db);
1153 	}
1154 
1155 	/*
1156 	 * If this buffer is dirty in an old transaction group we need
1157 	 * to make a copy of it so that the changes we make in this
1158 	 * transaction group won't leak out when we sync the older txg.
1159 	 */
1160 	dr = kmem_zalloc(sizeof (dbuf_dirty_record_t), KM_SLEEP);
1161 	if (db->db_level == 0) {
1162 		void *data_old = db->db_buf;
1163 
1164 		if (db->db_state != DB_NOFILL) {
1165 			if (db->db_blkid == DMU_BONUS_BLKID) {
1166 				dbuf_fix_old_data(db, tx->tx_txg);
1167 				data_old = db->db.db_data;
1168 			} else if (db->db.db_object != DMU_META_DNODE_OBJECT) {
1169 				/*
1170 				 * Release the data buffer from the cache so
1171 				 * that we can modify it without impacting
1172 				 * possible other users of this cached data
1173 				 * block.  Note that indirect blocks and
1174 				 * private objects are not released until the
1175 				 * syncing state (since they are only modified
1176 				 * then).
1177 				 */
1178 				arc_release(db->db_buf, db);
1179 				dbuf_fix_old_data(db, tx->tx_txg);
1180 				data_old = db->db_buf;
1181 			}
1182 			ASSERT(data_old != NULL);
1183 		}
1184 		dr->dt.dl.dr_data = data_old;
1185 	} else {
1186 		mutex_init(&dr->dt.di.dr_mtx, NULL, MUTEX_DEFAULT, NULL);
1187 		list_create(&dr->dt.di.dr_children,
1188 		    sizeof (dbuf_dirty_record_t),
1189 		    offsetof(dbuf_dirty_record_t, dr_dirty_node));
1190 	}
1191 	if (db->db_blkid != DMU_BONUS_BLKID && os->os_dsl_dataset != NULL)
1192 		dr->dr_accounted = db->db.db_size;
1193 	dr->dr_dbuf = db;
1194 	dr->dr_txg = tx->tx_txg;
1195 	dr->dr_next = *drp;
1196 	*drp = dr;
1197 
1198 	/*
1199 	 * We could have been freed_in_flight between the dbuf_noread
1200 	 * and dbuf_dirty.  We win, as though the dbuf_noread() had
1201 	 * happened after the free.
1202 	 */
1203 	if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
1204 	    db->db_blkid != DMU_SPILL_BLKID) {
1205 		mutex_enter(&dn->dn_mtx);
1206 		dnode_clear_range(dn, db->db_blkid, 1, tx);
1207 		mutex_exit(&dn->dn_mtx);
1208 		db->db_freed_in_flight = FALSE;
1209 	}
1210 
1211 	/*
1212 	 * This buffer is now part of this txg
1213 	 */
1214 	dbuf_add_ref(db, (void *)(uintptr_t)tx->tx_txg);
1215 	db->db_dirtycnt += 1;
1216 	ASSERT3U(db->db_dirtycnt, <=, 3);
1217 
1218 	mutex_exit(&db->db_mtx);
1219 
1220 	if (db->db_blkid == DMU_BONUS_BLKID ||
1221 	    db->db_blkid == DMU_SPILL_BLKID) {
1222 		mutex_enter(&dn->dn_mtx);
1223 		ASSERT(!list_link_active(&dr->dr_dirty_node));
1224 		list_insert_tail(&dn->dn_dirty_records[txgoff], dr);
1225 		mutex_exit(&dn->dn_mtx);
1226 		dnode_setdirty(dn, tx);
1227 		DB_DNODE_EXIT(db);
1228 		return (dr);
1229 	} else if (do_free_accounting) {
1230 		blkptr_t *bp = db->db_blkptr;
1231 		int64_t willfree = (bp && !BP_IS_HOLE(bp)) ?
1232 		    bp_get_dsize(os->os_spa, bp) : db->db.db_size;
1233 		/*
1234 		 * This is only a guess -- if the dbuf is dirty
1235 		 * in a previous txg, we don't know how much
1236 		 * space it will use on disk yet.  We should
1237 		 * really have the struct_rwlock to access
1238 		 * db_blkptr, but since this is just a guess,
1239 		 * it's OK if we get an odd answer.
1240 		 */
1241 		ddt_prefetch(os->os_spa, bp);
1242 		dnode_willuse_space(dn, -willfree, tx);
1243 	}
1244 
1245 	if (!RW_WRITE_HELD(&dn->dn_struct_rwlock)) {
1246 		rw_enter(&dn->dn_struct_rwlock, RW_READER);
1247 		drop_struct_lock = TRUE;
1248 	}
1249 
1250 	if (db->db_level == 0) {
1251 		dnode_new_blkid(dn, db->db_blkid, tx, drop_struct_lock);
1252 		ASSERT(dn->dn_maxblkid >= db->db_blkid);
1253 	}
1254 
1255 	if (db->db_level+1 < dn->dn_nlevels) {
1256 		dmu_buf_impl_t *parent = db->db_parent;
1257 		dbuf_dirty_record_t *di;
1258 		int parent_held = FALSE;
1259 
1260 		if (db->db_parent == NULL || db->db_parent == dn->dn_dbuf) {
1261 			int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
1262 
1263 			parent = dbuf_hold_level(dn, db->db_level+1,
1264 			    db->db_blkid >> epbs, FTAG);
1265 			ASSERT(parent != NULL);
1266 			parent_held = TRUE;
1267 		}
1268 		if (drop_struct_lock)
1269 			rw_exit(&dn->dn_struct_rwlock);
1270 		ASSERT3U(db->db_level+1, ==, parent->db_level);
1271 		di = dbuf_dirty(parent, tx);
1272 		if (parent_held)
1273 			dbuf_rele(parent, FTAG);
1274 
1275 		mutex_enter(&db->db_mtx);
1276 		/*
1277 		 * Since we've dropped the mutex, it's possible that
1278 		 * dbuf_undirty() might have changed this out from under us.
1279 		 */
1280 		if (db->db_last_dirty == dr ||
1281 		    dn->dn_object == DMU_META_DNODE_OBJECT) {
1282 			mutex_enter(&di->dt.di.dr_mtx);
1283 			ASSERT3U(di->dr_txg, ==, tx->tx_txg);
1284 			ASSERT(!list_link_active(&dr->dr_dirty_node));
1285 			list_insert_tail(&di->dt.di.dr_children, dr);
1286 			mutex_exit(&di->dt.di.dr_mtx);
1287 			dr->dr_parent = di;
1288 		}
1289 		mutex_exit(&db->db_mtx);
1290 	} else {
1291 		ASSERT(db->db_level+1 == dn->dn_nlevels);
1292 		ASSERT(db->db_blkid < dn->dn_nblkptr);
1293 		ASSERT(db->db_parent == NULL || db->db_parent == dn->dn_dbuf);
1294 		mutex_enter(&dn->dn_mtx);
1295 		ASSERT(!list_link_active(&dr->dr_dirty_node));
1296 		list_insert_tail(&dn->dn_dirty_records[txgoff], dr);
1297 		mutex_exit(&dn->dn_mtx);
1298 		if (drop_struct_lock)
1299 			rw_exit(&dn->dn_struct_rwlock);
1300 	}
1301 
1302 	dnode_setdirty(dn, tx);
1303 	DB_DNODE_EXIT(db);
1304 	return (dr);
1305 }
1306 
1307 /*
1308  * Undirty a buffer in the transaction group referenced by the given
1309  * transaction.  Return whether this evicted the dbuf.
1310  */
1311 static boolean_t
1312 dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx)
1313 {
1314 	dnode_t *dn;
1315 	uint64_t txg = tx->tx_txg;
1316 	dbuf_dirty_record_t *dr, **drp;
1317 
1318 	ASSERT(txg != 0);
1319 	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1320 	ASSERT0(db->db_level);
1321 	ASSERT(MUTEX_HELD(&db->db_mtx));
1322 
1323 	/*
1324 	 * If this buffer is not dirty, we're done.
1325 	 */
1326 	for (drp = &db->db_last_dirty; (dr = *drp) != NULL; drp = &dr->dr_next)
1327 		if (dr->dr_txg <= txg)
1328 			break;
1329 	if (dr == NULL || dr->dr_txg < txg)
1330 		return (B_FALSE);
1331 	ASSERT(dr->dr_txg == txg);
1332 	ASSERT(dr->dr_dbuf == db);
1333 
1334 	DB_DNODE_ENTER(db);
1335 	dn = DB_DNODE(db);
1336 
1337 	dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size);
1338 
1339 	ASSERT(db->db.db_size != 0);
1340 
1341 	/*
1342 	 * Any space we accounted for in dp_dirty_* will be cleaned up by
1343 	 * dsl_pool_sync().  This is relatively rare so the discrepancy
1344 	 * is not a big deal.
1345 	 */
1346 
1347 	*drp = dr->dr_next;
1348 
1349 	/*
1350 	 * Note that there are three places in dbuf_dirty()
1351 	 * where this dirty record may be put on a list.
1352 	 * Make sure to do a list_remove corresponding to
1353 	 * every one of those list_insert calls.
1354 	 */
1355 	if (dr->dr_parent) {
1356 		mutex_enter(&dr->dr_parent->dt.di.dr_mtx);
1357 		list_remove(&dr->dr_parent->dt.di.dr_children, dr);
1358 		mutex_exit(&dr->dr_parent->dt.di.dr_mtx);
1359 	} else if (db->db_blkid == DMU_SPILL_BLKID ||
1360 	    db->db_level+1 == dn->dn_nlevels) {
1361 		ASSERT(db->db_blkptr == NULL || db->db_parent == dn->dn_dbuf);
1362 		mutex_enter(&dn->dn_mtx);
1363 		list_remove(&dn->dn_dirty_records[txg & TXG_MASK], dr);
1364 		mutex_exit(&dn->dn_mtx);
1365 	}
1366 	DB_DNODE_EXIT(db);
1367 
1368 	if (db->db_state != DB_NOFILL) {
1369 		dbuf_unoverride(dr);
1370 
1371 		ASSERT(db->db_buf != NULL);
1372 		ASSERT(dr->dt.dl.dr_data != NULL);
1373 		if (dr->dt.dl.dr_data != db->db_buf)
1374 			VERIFY(arc_buf_remove_ref(dr->dt.dl.dr_data, db));
1375 	}
1376 	kmem_free(dr, sizeof (dbuf_dirty_record_t));
1377 
1378 	ASSERT(db->db_dirtycnt > 0);
1379 	db->db_dirtycnt -= 1;
1380 
1381 	if (refcount_remove(&db->db_holds, (void *)(uintptr_t)txg) == 0) {
1382 		arc_buf_t *buf = db->db_buf;
1383 
1384 		ASSERT(db->db_state == DB_NOFILL || arc_released(buf));
1385 		dbuf_set_data(db, NULL);
1386 		VERIFY(arc_buf_remove_ref(buf, db));
1387 		dbuf_evict(db);
1388 		return (B_TRUE);
1389 	}
1390 
1391 	return (B_FALSE);
1392 }
1393 
1394 #pragma weak dmu_buf_will_dirty = dbuf_will_dirty
1395 void
1396 dbuf_will_dirty(dmu_buf_impl_t *db, dmu_tx_t *tx)
1397 {
1398 	int rf = DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH;
1399 
1400 	ASSERT(tx->tx_txg != 0);
1401 	ASSERT(!refcount_is_zero(&db->db_holds));
1402 
1403 	DB_DNODE_ENTER(db);
1404 	if (RW_WRITE_HELD(&DB_DNODE(db)->dn_struct_rwlock))
1405 		rf |= DB_RF_HAVESTRUCT;
1406 	DB_DNODE_EXIT(db);
1407 	(void) dbuf_read(db, NULL, rf);
1408 	(void) dbuf_dirty(db, tx);
1409 }
1410 
1411 void
1412 dmu_buf_will_not_fill(dmu_buf_t *db_fake, dmu_tx_t *tx)
1413 {
1414 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
1415 
1416 	db->db_state = DB_NOFILL;
1417 
1418 	dmu_buf_will_fill(db_fake, tx);
1419 }
1420 
1421 void
1422 dmu_buf_will_fill(dmu_buf_t *db_fake, dmu_tx_t *tx)
1423 {
1424 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
1425 
1426 	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1427 	ASSERT(tx->tx_txg != 0);
1428 	ASSERT(db->db_level == 0);
1429 	ASSERT(!refcount_is_zero(&db->db_holds));
1430 
1431 	ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT ||
1432 	    dmu_tx_private_ok(tx));
1433 
1434 	dbuf_noread(db);
1435 	(void) dbuf_dirty(db, tx);
1436 }
1437 
1438 #pragma weak dmu_buf_fill_done = dbuf_fill_done
1439 /* ARGSUSED */
1440 void
1441 dbuf_fill_done(dmu_buf_impl_t *db, dmu_tx_t *tx)
1442 {
1443 	mutex_enter(&db->db_mtx);
1444 	DBUF_VERIFY(db);
1445 
1446 	if (db->db_state == DB_FILL) {
1447 		if (db->db_level == 0 && db->db_freed_in_flight) {
1448 			ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1449 			/* we were freed while filling */
1450 			/* XXX dbuf_undirty? */
1451 			bzero(db->db.db_data, db->db.db_size);
1452 			db->db_freed_in_flight = FALSE;
1453 		}
1454 		db->db_state = DB_CACHED;
1455 		cv_broadcast(&db->db_changed);
1456 	}
1457 	mutex_exit(&db->db_mtx);
1458 }
1459 
1460 /*
1461  * Directly assign a provided arc buf to a given dbuf if it's not referenced
1462  * by anybody except our caller. Otherwise copy arcbuf's contents to dbuf.
1463  */
1464 void
1465 dbuf_assign_arcbuf(dmu_buf_impl_t *db, arc_buf_t *buf, dmu_tx_t *tx)
1466 {
1467 	ASSERT(!refcount_is_zero(&db->db_holds));
1468 	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1469 	ASSERT(db->db_level == 0);
1470 	ASSERT(DBUF_GET_BUFC_TYPE(db) == ARC_BUFC_DATA);
1471 	ASSERT(buf != NULL);
1472 	ASSERT(arc_buf_size(buf) == db->db.db_size);
1473 	ASSERT(tx->tx_txg != 0);
1474 
1475 	arc_return_buf(buf, db);
1476 	ASSERT(arc_released(buf));
1477 
1478 	mutex_enter(&db->db_mtx);
1479 
1480 	while (db->db_state == DB_READ || db->db_state == DB_FILL)
1481 		cv_wait(&db->db_changed, &db->db_mtx);
1482 
1483 	ASSERT(db->db_state == DB_CACHED || db->db_state == DB_UNCACHED);
1484 
1485 	if (db->db_state == DB_CACHED &&
1486 	    refcount_count(&db->db_holds) - 1 > db->db_dirtycnt) {
1487 		mutex_exit(&db->db_mtx);
1488 		(void) dbuf_dirty(db, tx);
1489 		bcopy(buf->b_data, db->db.db_data, db->db.db_size);
1490 		VERIFY(arc_buf_remove_ref(buf, db));
1491 		xuio_stat_wbuf_copied();
1492 		return;
1493 	}
1494 
1495 	xuio_stat_wbuf_nocopy();
1496 	if (db->db_state == DB_CACHED) {
1497 		dbuf_dirty_record_t *dr = db->db_last_dirty;
1498 
1499 		ASSERT(db->db_buf != NULL);
1500 		if (dr != NULL && dr->dr_txg == tx->tx_txg) {
1501 			ASSERT(dr->dt.dl.dr_data == db->db_buf);
1502 			if (!arc_released(db->db_buf)) {
1503 				ASSERT(dr->dt.dl.dr_override_state ==
1504 				    DR_OVERRIDDEN);
1505 				arc_release(db->db_buf, db);
1506 			}
1507 			dr->dt.dl.dr_data = buf;
1508 			VERIFY(arc_buf_remove_ref(db->db_buf, db));
1509 		} else if (dr == NULL || dr->dt.dl.dr_data != db->db_buf) {
1510 			arc_release(db->db_buf, db);
1511 			VERIFY(arc_buf_remove_ref(db->db_buf, db));
1512 		}
1513 		db->db_buf = NULL;
1514 	}
1515 	ASSERT(db->db_buf == NULL);
1516 	dbuf_set_data(db, buf);
1517 	db->db_state = DB_FILL;
1518 	mutex_exit(&db->db_mtx);
1519 	(void) dbuf_dirty(db, tx);
1520 	dbuf_fill_done(db, tx);
1521 }
1522 
1523 /*
1524  * "Clear" the contents of this dbuf.  This will mark the dbuf
1525  * EVICTING and clear *most* of its references.  Unfortunately,
1526  * when we are not holding the dn_dbufs_mtx, we can't clear the
1527  * entry in the dn_dbufs list.  We have to wait until dbuf_destroy()
1528  * in this case.  For callers from the DMU we will usually see:
1529  *	dbuf_clear()->arc_buf_evict()->dbuf_do_evict()->dbuf_destroy()
1530  * For the arc callback, we will usually see:
1531  *	dbuf_do_evict()->dbuf_clear();dbuf_destroy()
1532  * Sometimes, though, we will get a mix of these two:
1533  *	DMU: dbuf_clear()->arc_buf_evict()
1534  *	ARC: dbuf_do_evict()->dbuf_destroy()
1535  */
1536 void
1537 dbuf_clear(dmu_buf_impl_t *db)
1538 {
1539 	dnode_t *dn;
1540 	dmu_buf_impl_t *parent = db->db_parent;
1541 	dmu_buf_impl_t *dndb;
1542 	int dbuf_gone = FALSE;
1543 
1544 	ASSERT(MUTEX_HELD(&db->db_mtx));
1545 	ASSERT(refcount_is_zero(&db->db_holds));
1546 
1547 	dbuf_evict_user(db);
1548 
1549 	if (db->db_state == DB_CACHED) {
1550 		ASSERT(db->db.db_data != NULL);
1551 		if (db->db_blkid == DMU_BONUS_BLKID) {
1552 			zio_buf_free(db->db.db_data, DN_MAX_BONUSLEN);
1553 			arc_space_return(DN_MAX_BONUSLEN, ARC_SPACE_OTHER);
1554 		}
1555 		db->db.db_data = NULL;
1556 		db->db_state = DB_UNCACHED;
1557 	}
1558 
1559 	ASSERT(db->db_state == DB_UNCACHED || db->db_state == DB_NOFILL);
1560 	ASSERT(db->db_data_pending == NULL);
1561 
1562 	db->db_state = DB_EVICTING;
1563 	db->db_blkptr = NULL;
1564 
1565 	DB_DNODE_ENTER(db);
1566 	dn = DB_DNODE(db);
1567 	dndb = dn->dn_dbuf;
1568 	if (db->db_blkid != DMU_BONUS_BLKID && MUTEX_HELD(&dn->dn_dbufs_mtx)) {
1569 		list_remove(&dn->dn_dbufs, db);
1570 		(void) atomic_dec_32_nv(&dn->dn_dbufs_count);
1571 		membar_producer();
1572 		DB_DNODE_EXIT(db);
1573 		/*
1574 		 * Decrementing the dbuf count means that the hold corresponding
1575 		 * to the removed dbuf is no longer discounted in dnode_move(),
1576 		 * so the dnode cannot be moved until after we release the hold.
1577 		 * The membar_producer() ensures visibility of the decremented
1578 		 * value in dnode_move(), since DB_DNODE_EXIT doesn't actually
1579 		 * release any lock.
1580 		 */
1581 		dnode_rele(dn, db);
1582 		db->db_dnode_handle = NULL;
1583 	} else {
1584 		DB_DNODE_EXIT(db);
1585 	}
1586 
1587 	if (db->db_buf)
1588 		dbuf_gone = arc_buf_evict(db->db_buf);
1589 
1590 	if (!dbuf_gone)
1591 		mutex_exit(&db->db_mtx);
1592 
1593 	/*
1594 	 * If this dbuf is referenced from an indirect dbuf,
1595 	 * decrement the ref count on the indirect dbuf.
1596 	 */
1597 	if (parent && parent != dndb)
1598 		dbuf_rele(parent, db);
1599 }
1600 
1601 static int
1602 dbuf_findbp(dnode_t *dn, int level, uint64_t blkid, int fail_sparse,
1603     dmu_buf_impl_t **parentp, blkptr_t **bpp)
1604 {
1605 	int nlevels, epbs;
1606 
1607 	*parentp = NULL;
1608 	*bpp = NULL;
1609 
1610 	ASSERT(blkid != DMU_BONUS_BLKID);
1611 
1612 	if (blkid == DMU_SPILL_BLKID) {
1613 		mutex_enter(&dn->dn_mtx);
1614 		if (dn->dn_have_spill &&
1615 		    (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR))
1616 			*bpp = &dn->dn_phys->dn_spill;
1617 		else
1618 			*bpp = NULL;
1619 		dbuf_add_ref(dn->dn_dbuf, NULL);
1620 		*parentp = dn->dn_dbuf;
1621 		mutex_exit(&dn->dn_mtx);
1622 		return (0);
1623 	}
1624 
1625 	if (dn->dn_phys->dn_nlevels == 0)
1626 		nlevels = 1;
1627 	else
1628 		nlevels = dn->dn_phys->dn_nlevels;
1629 
1630 	epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
1631 
1632 	ASSERT3U(level * epbs, <, 64);
1633 	ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
1634 	if (level >= nlevels ||
1635 	    (blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs)))) {
1636 		/* the buffer has no parent yet */
1637 		return (SET_ERROR(ENOENT));
1638 	} else if (level < nlevels-1) {
1639 		/* this block is referenced from an indirect block */
1640 		int err = dbuf_hold_impl(dn, level+1,
1641 		    blkid >> epbs, fail_sparse, NULL, parentp);
1642 		if (err)
1643 			return (err);
1644 		err = dbuf_read(*parentp, NULL,
1645 		    (DB_RF_HAVESTRUCT | DB_RF_NOPREFETCH | DB_RF_CANFAIL));
1646 		if (err) {
1647 			dbuf_rele(*parentp, NULL);
1648 			*parentp = NULL;
1649 			return (err);
1650 		}
1651 		*bpp = ((blkptr_t *)(*parentp)->db.db_data) +
1652 		    (blkid & ((1ULL << epbs) - 1));
1653 		return (0);
1654 	} else {
1655 		/* the block is referenced from the dnode */
1656 		ASSERT3U(level, ==, nlevels-1);
1657 		ASSERT(dn->dn_phys->dn_nblkptr == 0 ||
1658 		    blkid < dn->dn_phys->dn_nblkptr);
1659 		if (dn->dn_dbuf) {
1660 			dbuf_add_ref(dn->dn_dbuf, NULL);
1661 			*parentp = dn->dn_dbuf;
1662 		}
1663 		*bpp = &dn->dn_phys->dn_blkptr[blkid];
1664 		return (0);
1665 	}
1666 }
1667 
1668 static dmu_buf_impl_t *
1669 dbuf_create(dnode_t *dn, uint8_t level, uint64_t blkid,
1670     dmu_buf_impl_t *parent, blkptr_t *blkptr)
1671 {
1672 	objset_t *os = dn->dn_objset;
1673 	dmu_buf_impl_t *db, *odb;
1674 
1675 	ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
1676 	ASSERT(dn->dn_type != DMU_OT_NONE);
1677 
1678 	db = kmem_cache_alloc(dbuf_cache, KM_SLEEP);
1679 
1680 	db->db_objset = os;
1681 	db->db.db_object = dn->dn_object;
1682 	db->db_level = level;
1683 	db->db_blkid = blkid;
1684 	db->db_last_dirty = NULL;
1685 	db->db_dirtycnt = 0;
1686 	db->db_dnode_handle = dn->dn_handle;
1687 	db->db_parent = parent;
1688 	db->db_blkptr = blkptr;
1689 
1690 	db->db_user_ptr = NULL;
1691 	db->db_user_data_ptr_ptr = NULL;
1692 	db->db_evict_func = NULL;
1693 	db->db_immediate_evict = 0;
1694 	db->db_freed_in_flight = 0;
1695 
1696 	if (blkid == DMU_BONUS_BLKID) {
1697 		ASSERT3P(parent, ==, dn->dn_dbuf);
1698 		db->db.db_size = DN_MAX_BONUSLEN -
1699 		    (dn->dn_nblkptr-1) * sizeof (blkptr_t);
1700 		ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen);
1701 		db->db.db_offset = DMU_BONUS_BLKID;
1702 		db->db_state = DB_UNCACHED;
1703 		/* the bonus dbuf is not placed in the hash table */
1704 		arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_OTHER);
1705 		return (db);
1706 	} else if (blkid == DMU_SPILL_BLKID) {
1707 		db->db.db_size = (blkptr != NULL) ?
1708 		    BP_GET_LSIZE(blkptr) : SPA_MINBLOCKSIZE;
1709 		db->db.db_offset = 0;
1710 	} else {
1711 		int blocksize =
1712 		    db->db_level ? 1 << dn->dn_indblkshift : dn->dn_datablksz;
1713 		db->db.db_size = blocksize;
1714 		db->db.db_offset = db->db_blkid * blocksize;
1715 	}
1716 
1717 	/*
1718 	 * Hold the dn_dbufs_mtx while we get the new dbuf
1719 	 * in the hash table *and* added to the dbufs list.
1720 	 * This prevents a possible deadlock with someone
1721 	 * trying to look up this dbuf before its added to the
1722 	 * dn_dbufs list.
1723 	 */
1724 	mutex_enter(&dn->dn_dbufs_mtx);
1725 	db->db_state = DB_EVICTING;
1726 	if ((odb = dbuf_hash_insert(db)) != NULL) {
1727 		/* someone else inserted it first */
1728 		kmem_cache_free(dbuf_cache, db);
1729 		mutex_exit(&dn->dn_dbufs_mtx);
1730 		return (odb);
1731 	}
1732 	list_insert_head(&dn->dn_dbufs, db);
1733 	if (db->db_level == 0 && db->db_blkid >=
1734 	    dn->dn_unlisted_l0_blkid)
1735 		dn->dn_unlisted_l0_blkid = db->db_blkid + 1;
1736 	db->db_state = DB_UNCACHED;
1737 	mutex_exit(&dn->dn_dbufs_mtx);
1738 	arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_OTHER);
1739 
1740 	if (parent && parent != dn->dn_dbuf)
1741 		dbuf_add_ref(parent, db);
1742 
1743 	ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT ||
1744 	    refcount_count(&dn->dn_holds) > 0);
1745 	(void) refcount_add(&dn->dn_holds, db);
1746 	(void) atomic_inc_32_nv(&dn->dn_dbufs_count);
1747 
1748 	dprintf_dbuf(db, "db=%p\n", db);
1749 
1750 	return (db);
1751 }
1752 
1753 static int
1754 dbuf_do_evict(void *private)
1755 {
1756 	arc_buf_t *buf = private;
1757 	dmu_buf_impl_t *db = buf->b_private;
1758 
1759 	if (!MUTEX_HELD(&db->db_mtx))
1760 		mutex_enter(&db->db_mtx);
1761 
1762 	ASSERT(refcount_is_zero(&db->db_holds));
1763 
1764 	if (db->db_state != DB_EVICTING) {
1765 		ASSERT(db->db_state == DB_CACHED);
1766 		DBUF_VERIFY(db);
1767 		db->db_buf = NULL;
1768 		dbuf_evict(db);
1769 	} else {
1770 		mutex_exit(&db->db_mtx);
1771 		dbuf_destroy(db);
1772 	}
1773 	return (0);
1774 }
1775 
1776 static void
1777 dbuf_destroy(dmu_buf_impl_t *db)
1778 {
1779 	ASSERT(refcount_is_zero(&db->db_holds));
1780 
1781 	if (db->db_blkid != DMU_BONUS_BLKID) {
1782 		/*
1783 		 * If this dbuf is still on the dn_dbufs list,
1784 		 * remove it from that list.
1785 		 */
1786 		if (db->db_dnode_handle != NULL) {
1787 			dnode_t *dn;
1788 
1789 			DB_DNODE_ENTER(db);
1790 			dn = DB_DNODE(db);
1791 			mutex_enter(&dn->dn_dbufs_mtx);
1792 			list_remove(&dn->dn_dbufs, db);
1793 			(void) atomic_dec_32_nv(&dn->dn_dbufs_count);
1794 			mutex_exit(&dn->dn_dbufs_mtx);
1795 			DB_DNODE_EXIT(db);
1796 			/*
1797 			 * Decrementing the dbuf count means that the hold
1798 			 * corresponding to the removed dbuf is no longer
1799 			 * discounted in dnode_move(), so the dnode cannot be
1800 			 * moved until after we release the hold.
1801 			 */
1802 			dnode_rele(dn, db);
1803 			db->db_dnode_handle = NULL;
1804 		}
1805 		dbuf_hash_remove(db);
1806 	}
1807 	db->db_parent = NULL;
1808 	db->db_buf = NULL;
1809 
1810 	ASSERT(!list_link_active(&db->db_link));
1811 	ASSERT(db->db.db_data == NULL);
1812 	ASSERT(db->db_hash_next == NULL);
1813 	ASSERT(db->db_blkptr == NULL);
1814 	ASSERT(db->db_data_pending == NULL);
1815 
1816 	kmem_cache_free(dbuf_cache, db);
1817 	arc_space_return(sizeof (dmu_buf_impl_t), ARC_SPACE_OTHER);
1818 }
1819 
1820 void
1821 dbuf_prefetch(dnode_t *dn, uint64_t blkid, zio_priority_t prio)
1822 {
1823 	dmu_buf_impl_t *db = NULL;
1824 	blkptr_t *bp = NULL;
1825 
1826 	ASSERT(blkid != DMU_BONUS_BLKID);
1827 	ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
1828 
1829 	if (dnode_block_freed(dn, blkid))
1830 		return;
1831 
1832 	/* dbuf_find() returns with db_mtx held */
1833 	if (db = dbuf_find(dn, 0, blkid)) {
1834 		/*
1835 		 * This dbuf is already in the cache.  We assume that
1836 		 * it is already CACHED, or else about to be either
1837 		 * read or filled.
1838 		 */
1839 		mutex_exit(&db->db_mtx);
1840 		return;
1841 	}
1842 
1843 	if (dbuf_findbp(dn, 0, blkid, TRUE, &db, &bp) == 0) {
1844 		if (bp && !BP_IS_HOLE(bp)) {
1845 			dsl_dataset_t *ds = dn->dn_objset->os_dsl_dataset;
1846 			uint32_t aflags = ARC_NOWAIT | ARC_PREFETCH;
1847 			zbookmark_t zb;
1848 
1849 			SET_BOOKMARK(&zb, ds ? ds->ds_object : DMU_META_OBJSET,
1850 			    dn->dn_object, 0, blkid);
1851 
1852 			(void) arc_read(NULL, dn->dn_objset->os_spa,
1853 			    bp, NULL, NULL, prio,
1854 			    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
1855 			    &aflags, &zb);
1856 		}
1857 		if (db)
1858 			dbuf_rele(db, NULL);
1859 	}
1860 }
1861 
1862 /*
1863  * Returns with db_holds incremented, and db_mtx not held.
1864  * Note: dn_struct_rwlock must be held.
1865  */
1866 int
1867 dbuf_hold_impl(dnode_t *dn, uint8_t level, uint64_t blkid, int fail_sparse,
1868     void *tag, dmu_buf_impl_t **dbp)
1869 {
1870 	dmu_buf_impl_t *db, *parent = NULL;
1871 
1872 	ASSERT(blkid != DMU_BONUS_BLKID);
1873 	ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
1874 	ASSERT3U(dn->dn_nlevels, >, level);
1875 
1876 	*dbp = NULL;
1877 top:
1878 	/* dbuf_find() returns with db_mtx held */
1879 	db = dbuf_find(dn, level, blkid);
1880 
1881 	if (db == NULL) {
1882 		blkptr_t *bp = NULL;
1883 		int err;
1884 
1885 		ASSERT3P(parent, ==, NULL);
1886 		err = dbuf_findbp(dn, level, blkid, fail_sparse, &parent, &bp);
1887 		if (fail_sparse) {
1888 			if (err == 0 && bp && BP_IS_HOLE(bp))
1889 				err = SET_ERROR(ENOENT);
1890 			if (err) {
1891 				if (parent)
1892 					dbuf_rele(parent, NULL);
1893 				return (err);
1894 			}
1895 		}
1896 		if (err && err != ENOENT)
1897 			return (err);
1898 		db = dbuf_create(dn, level, blkid, parent, bp);
1899 	}
1900 
1901 	if (db->db_buf && refcount_is_zero(&db->db_holds)) {
1902 		arc_buf_add_ref(db->db_buf, db);
1903 		if (db->db_buf->b_data == NULL) {
1904 			dbuf_clear(db);
1905 			if (parent) {
1906 				dbuf_rele(parent, NULL);
1907 				parent = NULL;
1908 			}
1909 			goto top;
1910 		}
1911 		ASSERT3P(db->db.db_data, ==, db->db_buf->b_data);
1912 	}
1913 
1914 	ASSERT(db->db_buf == NULL || arc_referenced(db->db_buf));
1915 
1916 	/*
1917 	 * If this buffer is currently syncing out, and we are are
1918 	 * still referencing it from db_data, we need to make a copy
1919 	 * of it in case we decide we want to dirty it again in this txg.
1920 	 */
1921 	if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
1922 	    dn->dn_object != DMU_META_DNODE_OBJECT &&
1923 	    db->db_state == DB_CACHED && db->db_data_pending) {
1924 		dbuf_dirty_record_t *dr = db->db_data_pending;
1925 
1926 		if (dr->dt.dl.dr_data == db->db_buf) {
1927 			arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
1928 
1929 			dbuf_set_data(db,
1930 			    arc_buf_alloc(dn->dn_objset->os_spa,
1931 			    db->db.db_size, db, type));
1932 			bcopy(dr->dt.dl.dr_data->b_data, db->db.db_data,
1933 			    db->db.db_size);
1934 		}
1935 	}
1936 
1937 	(void) refcount_add(&db->db_holds, tag);
1938 	dbuf_update_data(db);
1939 	DBUF_VERIFY(db);
1940 	mutex_exit(&db->db_mtx);
1941 
1942 	/* NOTE: we can't rele the parent until after we drop the db_mtx */
1943 	if (parent)
1944 		dbuf_rele(parent, NULL);
1945 
1946 	ASSERT3P(DB_DNODE(db), ==, dn);
1947 	ASSERT3U(db->db_blkid, ==, blkid);
1948 	ASSERT3U(db->db_level, ==, level);
1949 	*dbp = db;
1950 
1951 	return (0);
1952 }
1953 
1954 dmu_buf_impl_t *
1955 dbuf_hold(dnode_t *dn, uint64_t blkid, void *tag)
1956 {
1957 	dmu_buf_impl_t *db;
1958 	int err = dbuf_hold_impl(dn, 0, blkid, FALSE, tag, &db);
1959 	return (err ? NULL : db);
1960 }
1961 
1962 dmu_buf_impl_t *
1963 dbuf_hold_level(dnode_t *dn, int level, uint64_t blkid, void *tag)
1964 {
1965 	dmu_buf_impl_t *db;
1966 	int err = dbuf_hold_impl(dn, level, blkid, FALSE, tag, &db);
1967 	return (err ? NULL : db);
1968 }
1969 
1970 void
1971 dbuf_create_bonus(dnode_t *dn)
1972 {
1973 	ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock));
1974 
1975 	ASSERT(dn->dn_bonus == NULL);
1976 	dn->dn_bonus = dbuf_create(dn, 0, DMU_BONUS_BLKID, dn->dn_dbuf, NULL);
1977 }
1978 
1979 int
1980 dbuf_spill_set_blksz(dmu_buf_t *db_fake, uint64_t blksz, dmu_tx_t *tx)
1981 {
1982 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
1983 	dnode_t *dn;
1984 
1985 	if (db->db_blkid != DMU_SPILL_BLKID)
1986 		return (SET_ERROR(ENOTSUP));
1987 	if (blksz == 0)
1988 		blksz = SPA_MINBLOCKSIZE;
1989 	if (blksz > SPA_MAXBLOCKSIZE)
1990 		blksz = SPA_MAXBLOCKSIZE;
1991 	else
1992 		blksz = P2ROUNDUP(blksz, SPA_MINBLOCKSIZE);
1993 
1994 	DB_DNODE_ENTER(db);
1995 	dn = DB_DNODE(db);
1996 	rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
1997 	dbuf_new_size(db, blksz, tx);
1998 	rw_exit(&dn->dn_struct_rwlock);
1999 	DB_DNODE_EXIT(db);
2000 
2001 	return (0);
2002 }
2003 
2004 void
2005 dbuf_rm_spill(dnode_t *dn, dmu_tx_t *tx)
2006 {
2007 	dbuf_free_range(dn, DMU_SPILL_BLKID, DMU_SPILL_BLKID, tx);
2008 }
2009 
2010 #pragma weak dmu_buf_add_ref = dbuf_add_ref
2011 void
2012 dbuf_add_ref(dmu_buf_impl_t *db, void *tag)
2013 {
2014 	int64_t holds = refcount_add(&db->db_holds, tag);
2015 	ASSERT(holds > 1);
2016 }
2017 
2018 /*
2019  * If you call dbuf_rele() you had better not be referencing the dnode handle
2020  * unless you have some other direct or indirect hold on the dnode. (An indirect
2021  * hold is a hold on one of the dnode's dbufs, including the bonus buffer.)
2022  * Without that, the dbuf_rele() could lead to a dnode_rele() followed by the
2023  * dnode's parent dbuf evicting its dnode handles.
2024  */
2025 #pragma weak dmu_buf_rele = dbuf_rele
2026 void
2027 dbuf_rele(dmu_buf_impl_t *db, void *tag)
2028 {
2029 	mutex_enter(&db->db_mtx);
2030 	dbuf_rele_and_unlock(db, tag);
2031 }
2032 
2033 /*
2034  * dbuf_rele() for an already-locked dbuf.  This is necessary to allow
2035  * db_dirtycnt and db_holds to be updated atomically.
2036  */
2037 void
2038 dbuf_rele_and_unlock(dmu_buf_impl_t *db, void *tag)
2039 {
2040 	int64_t holds;
2041 
2042 	ASSERT(MUTEX_HELD(&db->db_mtx));
2043 	DBUF_VERIFY(db);
2044 
2045 	/*
2046 	 * Remove the reference to the dbuf before removing its hold on the
2047 	 * dnode so we can guarantee in dnode_move() that a referenced bonus
2048 	 * buffer has a corresponding dnode hold.
2049 	 */
2050 	holds = refcount_remove(&db->db_holds, tag);
2051 	ASSERT(holds >= 0);
2052 
2053 	/*
2054 	 * We can't freeze indirects if there is a possibility that they
2055 	 * may be modified in the current syncing context.
2056 	 */
2057 	if (db->db_buf && holds == (db->db_level == 0 ? db->db_dirtycnt : 0))
2058 		arc_buf_freeze(db->db_buf);
2059 
2060 	if (holds == db->db_dirtycnt &&
2061 	    db->db_level == 0 && db->db_immediate_evict)
2062 		dbuf_evict_user(db);
2063 
2064 	if (holds == 0) {
2065 		if (db->db_blkid == DMU_BONUS_BLKID) {
2066 			mutex_exit(&db->db_mtx);
2067 
2068 			/*
2069 			 * If the dnode moves here, we cannot cross this barrier
2070 			 * until the move completes.
2071 			 */
2072 			DB_DNODE_ENTER(db);
2073 			(void) atomic_dec_32_nv(&DB_DNODE(db)->dn_dbufs_count);
2074 			DB_DNODE_EXIT(db);
2075 			/*
2076 			 * The bonus buffer's dnode hold is no longer discounted
2077 			 * in dnode_move(). The dnode cannot move until after
2078 			 * the dnode_rele().
2079 			 */
2080 			dnode_rele(DB_DNODE(db), db);
2081 		} else if (db->db_buf == NULL) {
2082 			/*
2083 			 * This is a special case: we never associated this
2084 			 * dbuf with any data allocated from the ARC.
2085 			 */
2086 			ASSERT(db->db_state == DB_UNCACHED ||
2087 			    db->db_state == DB_NOFILL);
2088 			dbuf_evict(db);
2089 		} else if (arc_released(db->db_buf)) {
2090 			arc_buf_t *buf = db->db_buf;
2091 			/*
2092 			 * This dbuf has anonymous data associated with it.
2093 			 */
2094 			dbuf_set_data(db, NULL);
2095 			VERIFY(arc_buf_remove_ref(buf, db));
2096 			dbuf_evict(db);
2097 		} else {
2098 			VERIFY(!arc_buf_remove_ref(db->db_buf, db));
2099 
2100 			/*
2101 			 * A dbuf will be eligible for eviction if either the
2102 			 * 'primarycache' property is set or a duplicate
2103 			 * copy of this buffer is already cached in the arc.
2104 			 *
2105 			 * In the case of the 'primarycache' a buffer
2106 			 * is considered for eviction if it matches the
2107 			 * criteria set in the property.
2108 			 *
2109 			 * To decide if our buffer is considered a
2110 			 * duplicate, we must call into the arc to determine
2111 			 * if multiple buffers are referencing the same
2112 			 * block on-disk. If so, then we simply evict
2113 			 * ourselves.
2114 			 */
2115 			if (!DBUF_IS_CACHEABLE(db) ||
2116 			    arc_buf_eviction_needed(db->db_buf))
2117 				dbuf_clear(db);
2118 			else
2119 				mutex_exit(&db->db_mtx);
2120 		}
2121 	} else {
2122 		mutex_exit(&db->db_mtx);
2123 	}
2124 }
2125 
2126 #pragma weak dmu_buf_refcount = dbuf_refcount
2127 uint64_t
2128 dbuf_refcount(dmu_buf_impl_t *db)
2129 {
2130 	return (refcount_count(&db->db_holds));
2131 }
2132 
2133 void *
2134 dmu_buf_set_user(dmu_buf_t *db_fake, void *user_ptr, void *user_data_ptr_ptr,
2135     dmu_buf_evict_func_t *evict_func)
2136 {
2137 	return (dmu_buf_update_user(db_fake, NULL, user_ptr,
2138 	    user_data_ptr_ptr, evict_func));
2139 }
2140 
2141 void *
2142 dmu_buf_set_user_ie(dmu_buf_t *db_fake, void *user_ptr, void *user_data_ptr_ptr,
2143     dmu_buf_evict_func_t *evict_func)
2144 {
2145 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2146 
2147 	db->db_immediate_evict = TRUE;
2148 	return (dmu_buf_update_user(db_fake, NULL, user_ptr,
2149 	    user_data_ptr_ptr, evict_func));
2150 }
2151 
2152 void *
2153 dmu_buf_update_user(dmu_buf_t *db_fake, void *old_user_ptr, void *user_ptr,
2154     void *user_data_ptr_ptr, dmu_buf_evict_func_t *evict_func)
2155 {
2156 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2157 	ASSERT(db->db_level == 0);
2158 
2159 	ASSERT((user_ptr == NULL) == (evict_func == NULL));
2160 
2161 	mutex_enter(&db->db_mtx);
2162 
2163 	if (db->db_user_ptr == old_user_ptr) {
2164 		db->db_user_ptr = user_ptr;
2165 		db->db_user_data_ptr_ptr = user_data_ptr_ptr;
2166 		db->db_evict_func = evict_func;
2167 
2168 		dbuf_update_data(db);
2169 	} else {
2170 		old_user_ptr = db->db_user_ptr;
2171 	}
2172 
2173 	mutex_exit(&db->db_mtx);
2174 	return (old_user_ptr);
2175 }
2176 
2177 void *
2178 dmu_buf_get_user(dmu_buf_t *db_fake)
2179 {
2180 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2181 	ASSERT(!refcount_is_zero(&db->db_holds));
2182 
2183 	return (db->db_user_ptr);
2184 }
2185 
2186 boolean_t
2187 dmu_buf_freeable(dmu_buf_t *dbuf)
2188 {
2189 	boolean_t res = B_FALSE;
2190 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf;
2191 
2192 	if (db->db_blkptr)
2193 		res = dsl_dataset_block_freeable(db->db_objset->os_dsl_dataset,
2194 		    db->db_blkptr, db->db_blkptr->blk_birth);
2195 
2196 	return (res);
2197 }
2198 
2199 blkptr_t *
2200 dmu_buf_get_blkptr(dmu_buf_t *db)
2201 {
2202 	dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
2203 	return (dbi->db_blkptr);
2204 }
2205 
2206 static void
2207 dbuf_check_blkptr(dnode_t *dn, dmu_buf_impl_t *db)
2208 {
2209 	/* ASSERT(dmu_tx_is_syncing(tx) */
2210 	ASSERT(MUTEX_HELD(&db->db_mtx));
2211 
2212 	if (db->db_blkptr != NULL)
2213 		return;
2214 
2215 	if (db->db_blkid == DMU_SPILL_BLKID) {
2216 		db->db_blkptr = &dn->dn_phys->dn_spill;
2217 		BP_ZERO(db->db_blkptr);
2218 		return;
2219 	}
2220 	if (db->db_level == dn->dn_phys->dn_nlevels-1) {
2221 		/*
2222 		 * This buffer was allocated at a time when there was
2223 		 * no available blkptrs from the dnode, or it was
2224 		 * inappropriate to hook it in (i.e., nlevels mis-match).
2225 		 */
2226 		ASSERT(db->db_blkid < dn->dn_phys->dn_nblkptr);
2227 		ASSERT(db->db_parent == NULL);
2228 		db->db_parent = dn->dn_dbuf;
2229 		db->db_blkptr = &dn->dn_phys->dn_blkptr[db->db_blkid];
2230 		DBUF_VERIFY(db);
2231 	} else {
2232 		dmu_buf_impl_t *parent = db->db_parent;
2233 		int epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
2234 
2235 		ASSERT(dn->dn_phys->dn_nlevels > 1);
2236 		if (parent == NULL) {
2237 			mutex_exit(&db->db_mtx);
2238 			rw_enter(&dn->dn_struct_rwlock, RW_READER);
2239 			(void) dbuf_hold_impl(dn, db->db_level+1,
2240 			    db->db_blkid >> epbs, FALSE, db, &parent);
2241 			rw_exit(&dn->dn_struct_rwlock);
2242 			mutex_enter(&db->db_mtx);
2243 			db->db_parent = parent;
2244 		}
2245 		db->db_blkptr = (blkptr_t *)parent->db.db_data +
2246 		    (db->db_blkid & ((1ULL << epbs) - 1));
2247 		DBUF_VERIFY(db);
2248 	}
2249 }
2250 
2251 static void
2252 dbuf_sync_indirect(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
2253 {
2254 	dmu_buf_impl_t *db = dr->dr_dbuf;
2255 	dnode_t *dn;
2256 	zio_t *zio;
2257 
2258 	ASSERT(dmu_tx_is_syncing(tx));
2259 
2260 	dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr);
2261 
2262 	mutex_enter(&db->db_mtx);
2263 
2264 	ASSERT(db->db_level > 0);
2265 	DBUF_VERIFY(db);
2266 
2267 	/* Read the block if it hasn't been read yet. */
2268 	if (db->db_buf == NULL) {
2269 		mutex_exit(&db->db_mtx);
2270 		(void) dbuf_read(db, NULL, DB_RF_MUST_SUCCEED);
2271 		mutex_enter(&db->db_mtx);
2272 	}
2273 	ASSERT3U(db->db_state, ==, DB_CACHED);
2274 	ASSERT(db->db_buf != NULL);
2275 
2276 	DB_DNODE_ENTER(db);
2277 	dn = DB_DNODE(db);
2278 	/* Indirect block size must match what the dnode thinks it is. */
2279 	ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift);
2280 	dbuf_check_blkptr(dn, db);
2281 	DB_DNODE_EXIT(db);
2282 
2283 	/* Provide the pending dirty record to child dbufs */
2284 	db->db_data_pending = dr;
2285 
2286 	mutex_exit(&db->db_mtx);
2287 	dbuf_write(dr, db->db_buf, tx);
2288 
2289 	zio = dr->dr_zio;
2290 	mutex_enter(&dr->dt.di.dr_mtx);
2291 	dbuf_sync_list(&dr->dt.di.dr_children, tx);
2292 	ASSERT(list_head(&dr->dt.di.dr_children) == NULL);
2293 	mutex_exit(&dr->dt.di.dr_mtx);
2294 	zio_nowait(zio);
2295 }
2296 
2297 static void
2298 dbuf_sync_leaf(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
2299 {
2300 	arc_buf_t **datap = &dr->dt.dl.dr_data;
2301 	dmu_buf_impl_t *db = dr->dr_dbuf;
2302 	dnode_t *dn;
2303 	objset_t *os;
2304 	uint64_t txg = tx->tx_txg;
2305 
2306 	ASSERT(dmu_tx_is_syncing(tx));
2307 
2308 	dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr);
2309 
2310 	mutex_enter(&db->db_mtx);
2311 	/*
2312 	 * To be synced, we must be dirtied.  But we
2313 	 * might have been freed after the dirty.
2314 	 */
2315 	if (db->db_state == DB_UNCACHED) {
2316 		/* This buffer has been freed since it was dirtied */
2317 		ASSERT(db->db.db_data == NULL);
2318 	} else if (db->db_state == DB_FILL) {
2319 		/* This buffer was freed and is now being re-filled */
2320 		ASSERT(db->db.db_data != dr->dt.dl.dr_data);
2321 	} else {
2322 		ASSERT(db->db_state == DB_CACHED || db->db_state == DB_NOFILL);
2323 	}
2324 	DBUF_VERIFY(db);
2325 
2326 	DB_DNODE_ENTER(db);
2327 	dn = DB_DNODE(db);
2328 
2329 	if (db->db_blkid == DMU_SPILL_BLKID) {
2330 		mutex_enter(&dn->dn_mtx);
2331 		dn->dn_phys->dn_flags |= DNODE_FLAG_SPILL_BLKPTR;
2332 		mutex_exit(&dn->dn_mtx);
2333 	}
2334 
2335 	/*
2336 	 * If this is a bonus buffer, simply copy the bonus data into the
2337 	 * dnode.  It will be written out when the dnode is synced (and it
2338 	 * will be synced, since it must have been dirty for dbuf_sync to
2339 	 * be called).
2340 	 */
2341 	if (db->db_blkid == DMU_BONUS_BLKID) {
2342 		dbuf_dirty_record_t **drp;
2343 
2344 		ASSERT(*datap != NULL);
2345 		ASSERT0(db->db_level);
2346 		ASSERT3U(dn->dn_phys->dn_bonuslen, <=, DN_MAX_BONUSLEN);
2347 		bcopy(*datap, DN_BONUS(dn->dn_phys), dn->dn_phys->dn_bonuslen);
2348 		DB_DNODE_EXIT(db);
2349 
2350 		if (*datap != db->db.db_data) {
2351 			zio_buf_free(*datap, DN_MAX_BONUSLEN);
2352 			arc_space_return(DN_MAX_BONUSLEN, ARC_SPACE_OTHER);
2353 		}
2354 		db->db_data_pending = NULL;
2355 		drp = &db->db_last_dirty;
2356 		while (*drp != dr)
2357 			drp = &(*drp)->dr_next;
2358 		ASSERT(dr->dr_next == NULL);
2359 		ASSERT(dr->dr_dbuf == db);
2360 		*drp = dr->dr_next;
2361 		kmem_free(dr, sizeof (dbuf_dirty_record_t));
2362 		ASSERT(db->db_dirtycnt > 0);
2363 		db->db_dirtycnt -= 1;
2364 		dbuf_rele_and_unlock(db, (void *)(uintptr_t)txg);
2365 		return;
2366 	}
2367 
2368 	os = dn->dn_objset;
2369 
2370 	/*
2371 	 * This function may have dropped the db_mtx lock allowing a dmu_sync
2372 	 * operation to sneak in. As a result, we need to ensure that we
2373 	 * don't check the dr_override_state until we have returned from
2374 	 * dbuf_check_blkptr.
2375 	 */
2376 	dbuf_check_blkptr(dn, db);
2377 
2378 	/*
2379 	 * If this buffer is in the middle of an immediate write,
2380 	 * wait for the synchronous IO to complete.
2381 	 */
2382 	while (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC) {
2383 		ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT);
2384 		cv_wait(&db->db_changed, &db->db_mtx);
2385 		ASSERT(dr->dt.dl.dr_override_state != DR_NOT_OVERRIDDEN);
2386 	}
2387 
2388 	if (db->db_state != DB_NOFILL &&
2389 	    dn->dn_object != DMU_META_DNODE_OBJECT &&
2390 	    refcount_count(&db->db_holds) > 1 &&
2391 	    dr->dt.dl.dr_override_state != DR_OVERRIDDEN &&
2392 	    *datap == db->db_buf) {
2393 		/*
2394 		 * If this buffer is currently "in use" (i.e., there
2395 		 * are active holds and db_data still references it),
2396 		 * then make a copy before we start the write so that
2397 		 * any modifications from the open txg will not leak
2398 		 * into this write.
2399 		 *
2400 		 * NOTE: this copy does not need to be made for
2401 		 * objects only modified in the syncing context (e.g.
2402 		 * DNONE_DNODE blocks).
2403 		 */
2404 		int blksz = arc_buf_size(*datap);
2405 		arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
2406 		*datap = arc_buf_alloc(os->os_spa, blksz, db, type);
2407 		bcopy(db->db.db_data, (*datap)->b_data, blksz);
2408 	}
2409 	db->db_data_pending = dr;
2410 
2411 	mutex_exit(&db->db_mtx);
2412 
2413 	dbuf_write(dr, *datap, tx);
2414 
2415 	ASSERT(!list_link_active(&dr->dr_dirty_node));
2416 	if (dn->dn_object == DMU_META_DNODE_OBJECT) {
2417 		list_insert_tail(&dn->dn_dirty_records[txg&TXG_MASK], dr);
2418 		DB_DNODE_EXIT(db);
2419 	} else {
2420 		/*
2421 		 * Although zio_nowait() does not "wait for an IO", it does
2422 		 * initiate the IO. If this is an empty write it seems plausible
2423 		 * that the IO could actually be completed before the nowait
2424 		 * returns. We need to DB_DNODE_EXIT() first in case
2425 		 * zio_nowait() invalidates the dbuf.
2426 		 */
2427 		DB_DNODE_EXIT(db);
2428 		zio_nowait(dr->dr_zio);
2429 	}
2430 }
2431 
2432 void
2433 dbuf_sync_list(list_t *list, dmu_tx_t *tx)
2434 {
2435 	dbuf_dirty_record_t *dr;
2436 
2437 	while (dr = list_head(list)) {
2438 		if (dr->dr_zio != NULL) {
2439 			/*
2440 			 * If we find an already initialized zio then we
2441 			 * are processing the meta-dnode, and we have finished.
2442 			 * The dbufs for all dnodes are put back on the list
2443 			 * during processing, so that we can zio_wait()
2444 			 * these IOs after initiating all child IOs.
2445 			 */
2446 			ASSERT3U(dr->dr_dbuf->db.db_object, ==,
2447 			    DMU_META_DNODE_OBJECT);
2448 			break;
2449 		}
2450 		list_remove(list, dr);
2451 		if (dr->dr_dbuf->db_level > 0)
2452 			dbuf_sync_indirect(dr, tx);
2453 		else
2454 			dbuf_sync_leaf(dr, tx);
2455 	}
2456 }
2457 
2458 /* ARGSUSED */
2459 static void
2460 dbuf_write_ready(zio_t *zio, arc_buf_t *buf, void *vdb)
2461 {
2462 	dmu_buf_impl_t *db = vdb;
2463 	dnode_t *dn;
2464 	blkptr_t *bp = zio->io_bp;
2465 	blkptr_t *bp_orig = &zio->io_bp_orig;
2466 	spa_t *spa = zio->io_spa;
2467 	int64_t delta;
2468 	uint64_t fill = 0;
2469 	int i;
2470 
2471 	ASSERT(db->db_blkptr == bp);
2472 
2473 	DB_DNODE_ENTER(db);
2474 	dn = DB_DNODE(db);
2475 	delta = bp_get_dsize_sync(spa, bp) - bp_get_dsize_sync(spa, bp_orig);
2476 	dnode_diduse_space(dn, delta - zio->io_prev_space_delta);
2477 	zio->io_prev_space_delta = delta;
2478 
2479 	if (BP_IS_HOLE(bp)) {
2480 		ASSERT(bp->blk_fill == 0);
2481 		DB_DNODE_EXIT(db);
2482 		return;
2483 	}
2484 
2485 	ASSERT((db->db_blkid != DMU_SPILL_BLKID &&
2486 	    BP_GET_TYPE(bp) == dn->dn_type) ||
2487 	    (db->db_blkid == DMU_SPILL_BLKID &&
2488 	    BP_GET_TYPE(bp) == dn->dn_bonustype));
2489 	ASSERT(BP_GET_LEVEL(bp) == db->db_level);
2490 
2491 	mutex_enter(&db->db_mtx);
2492 
2493 #ifdef ZFS_DEBUG
2494 	if (db->db_blkid == DMU_SPILL_BLKID) {
2495 		ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR);
2496 		ASSERT(!(BP_IS_HOLE(db->db_blkptr)) &&
2497 		    db->db_blkptr == &dn->dn_phys->dn_spill);
2498 	}
2499 #endif
2500 
2501 	if (db->db_level == 0) {
2502 		mutex_enter(&dn->dn_mtx);
2503 		if (db->db_blkid > dn->dn_phys->dn_maxblkid &&
2504 		    db->db_blkid != DMU_SPILL_BLKID)
2505 			dn->dn_phys->dn_maxblkid = db->db_blkid;
2506 		mutex_exit(&dn->dn_mtx);
2507 
2508 		if (dn->dn_type == DMU_OT_DNODE) {
2509 			dnode_phys_t *dnp = db->db.db_data;
2510 			for (i = db->db.db_size >> DNODE_SHIFT; i > 0;
2511 			    i--, dnp++) {
2512 				if (dnp->dn_type != DMU_OT_NONE)
2513 					fill++;
2514 			}
2515 		} else {
2516 			fill = 1;
2517 		}
2518 	} else {
2519 		blkptr_t *ibp = db->db.db_data;
2520 		ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift);
2521 		for (i = db->db.db_size >> SPA_BLKPTRSHIFT; i > 0; i--, ibp++) {
2522 			if (BP_IS_HOLE(ibp))
2523 				continue;
2524 			fill += ibp->blk_fill;
2525 		}
2526 	}
2527 	DB_DNODE_EXIT(db);
2528 
2529 	bp->blk_fill = fill;
2530 
2531 	mutex_exit(&db->db_mtx);
2532 }
2533 
2534 /*
2535  * The SPA will call this callback several times for each zio - once
2536  * for every physical child i/o (zio->io_phys_children times).  This
2537  * allows the DMU to monitor the progress of each logical i/o.  For example,
2538  * there may be 2 copies of an indirect block, or many fragments of a RAID-Z
2539  * block.  There may be a long delay before all copies/fragments are completed,
2540  * so this callback allows us to retire dirty space gradually, as the physical
2541  * i/os complete.
2542  */
2543 /* ARGSUSED */
2544 static void
2545 dbuf_write_physdone(zio_t *zio, arc_buf_t *buf, void *arg)
2546 {
2547 	dmu_buf_impl_t *db = arg;
2548 	objset_t *os = db->db_objset;
2549 	dsl_pool_t *dp = dmu_objset_pool(os);
2550 	dbuf_dirty_record_t *dr;
2551 	int delta = 0;
2552 
2553 	dr = db->db_data_pending;
2554 	ASSERT3U(dr->dr_txg, ==, zio->io_txg);
2555 
2556 	/*
2557 	 * The callback will be called io_phys_children times.  Retire one
2558 	 * portion of our dirty space each time we are called.  Any rounding
2559 	 * error will be cleaned up by dsl_pool_sync()'s call to
2560 	 * dsl_pool_undirty_space().
2561 	 */
2562 	delta = dr->dr_accounted / zio->io_phys_children;
2563 	dsl_pool_undirty_space(dp, delta, zio->io_txg);
2564 }
2565 
2566 /* ARGSUSED */
2567 static void
2568 dbuf_write_done(zio_t *zio, arc_buf_t *buf, void *vdb)
2569 {
2570 	dmu_buf_impl_t *db = vdb;
2571 	blkptr_t *bp = zio->io_bp;
2572 	blkptr_t *bp_orig = &zio->io_bp_orig;
2573 	uint64_t txg = zio->io_txg;
2574 	dbuf_dirty_record_t **drp, *dr;
2575 
2576 	ASSERT0(zio->io_error);
2577 	ASSERT(db->db_blkptr == bp);
2578 
2579 	/*
2580 	 * For nopwrites and rewrites we ensure that the bp matches our
2581 	 * original and bypass all the accounting.
2582 	 */
2583 	if (zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)) {
2584 		ASSERT(BP_EQUAL(bp, bp_orig));
2585 	} else {
2586 		objset_t *os;
2587 		dsl_dataset_t *ds;
2588 		dmu_tx_t *tx;
2589 
2590 		DB_GET_OBJSET(&os, db);
2591 		ds = os->os_dsl_dataset;
2592 		tx = os->os_synctx;
2593 
2594 		(void) dsl_dataset_block_kill(ds, bp_orig, tx, B_TRUE);
2595 		dsl_dataset_block_born(ds, bp, tx);
2596 	}
2597 
2598 	mutex_enter(&db->db_mtx);
2599 
2600 	DBUF_VERIFY(db);
2601 
2602 	drp = &db->db_last_dirty;
2603 	while ((dr = *drp) != db->db_data_pending)
2604 		drp = &dr->dr_next;
2605 	ASSERT(!list_link_active(&dr->dr_dirty_node));
2606 	ASSERT(dr->dr_txg == txg);
2607 	ASSERT(dr->dr_dbuf == db);
2608 	ASSERT(dr->dr_next == NULL);
2609 	*drp = dr->dr_next;
2610 
2611 #ifdef ZFS_DEBUG
2612 	if (db->db_blkid == DMU_SPILL_BLKID) {
2613 		dnode_t *dn;
2614 
2615 		DB_DNODE_ENTER(db);
2616 		dn = DB_DNODE(db);
2617 		ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR);
2618 		ASSERT(!(BP_IS_HOLE(db->db_blkptr)) &&
2619 		    db->db_blkptr == &dn->dn_phys->dn_spill);
2620 		DB_DNODE_EXIT(db);
2621 	}
2622 #endif
2623 
2624 	if (db->db_level == 0) {
2625 		ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2626 		ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN);
2627 		if (db->db_state != DB_NOFILL) {
2628 			if (dr->dt.dl.dr_data != db->db_buf)
2629 				VERIFY(arc_buf_remove_ref(dr->dt.dl.dr_data,
2630 				    db));
2631 			else if (!arc_released(db->db_buf))
2632 				arc_set_callback(db->db_buf, dbuf_do_evict, db);
2633 		}
2634 	} else {
2635 		dnode_t *dn;
2636 
2637 		DB_DNODE_ENTER(db);
2638 		dn = DB_DNODE(db);
2639 		ASSERT(list_head(&dr->dt.di.dr_children) == NULL);
2640 		ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift);
2641 		if (!BP_IS_HOLE(db->db_blkptr)) {
2642 			int epbs =
2643 			    dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
2644 			ASSERT3U(BP_GET_LSIZE(db->db_blkptr), ==,
2645 			    db->db.db_size);
2646 			ASSERT3U(dn->dn_phys->dn_maxblkid
2647 			    >> (db->db_level * epbs), >=, db->db_blkid);
2648 			arc_set_callback(db->db_buf, dbuf_do_evict, db);
2649 		}
2650 		DB_DNODE_EXIT(db);
2651 		mutex_destroy(&dr->dt.di.dr_mtx);
2652 		list_destroy(&dr->dt.di.dr_children);
2653 	}
2654 	kmem_free(dr, sizeof (dbuf_dirty_record_t));
2655 
2656 	cv_broadcast(&db->db_changed);
2657 	ASSERT(db->db_dirtycnt > 0);
2658 	db->db_dirtycnt -= 1;
2659 	db->db_data_pending = NULL;
2660 
2661 	dbuf_rele_and_unlock(db, (void *)(uintptr_t)txg);
2662 }
2663 
2664 static void
2665 dbuf_write_nofill_ready(zio_t *zio)
2666 {
2667 	dbuf_write_ready(zio, NULL, zio->io_private);
2668 }
2669 
2670 static void
2671 dbuf_write_nofill_done(zio_t *zio)
2672 {
2673 	dbuf_write_done(zio, NULL, zio->io_private);
2674 }
2675 
2676 static void
2677 dbuf_write_override_ready(zio_t *zio)
2678 {
2679 	dbuf_dirty_record_t *dr = zio->io_private;
2680 	dmu_buf_impl_t *db = dr->dr_dbuf;
2681 
2682 	dbuf_write_ready(zio, NULL, db);
2683 }
2684 
2685 static void
2686 dbuf_write_override_done(zio_t *zio)
2687 {
2688 	dbuf_dirty_record_t *dr = zio->io_private;
2689 	dmu_buf_impl_t *db = dr->dr_dbuf;
2690 	blkptr_t *obp = &dr->dt.dl.dr_overridden_by;
2691 
2692 	mutex_enter(&db->db_mtx);
2693 	if (!BP_EQUAL(zio->io_bp, obp)) {
2694 		if (!BP_IS_HOLE(obp))
2695 			dsl_free(spa_get_dsl(zio->io_spa), zio->io_txg, obp);
2696 		arc_release(dr->dt.dl.dr_data, db);
2697 	}
2698 	mutex_exit(&db->db_mtx);
2699 
2700 	dbuf_write_done(zio, NULL, db);
2701 }
2702 
2703 /* Issue I/O to commit a dirty buffer to disk. */
2704 static void
2705 dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx)
2706 {
2707 	dmu_buf_impl_t *db = dr->dr_dbuf;
2708 	dnode_t *dn;
2709 	objset_t *os;
2710 	dmu_buf_impl_t *parent = db->db_parent;
2711 	uint64_t txg = tx->tx_txg;
2712 	zbookmark_t zb;
2713 	zio_prop_t zp;
2714 	zio_t *zio;
2715 	int wp_flag = 0;
2716 
2717 	DB_DNODE_ENTER(db);
2718 	dn = DB_DNODE(db);
2719 	os = dn->dn_objset;
2720 
2721 	if (db->db_state != DB_NOFILL) {
2722 		if (db->db_level > 0 || dn->dn_type == DMU_OT_DNODE) {
2723 			/*
2724 			 * Private object buffers are released here rather
2725 			 * than in dbuf_dirty() since they are only modified
2726 			 * in the syncing context and we don't want the
2727 			 * overhead of making multiple copies of the data.
2728 			 */
2729 			if (BP_IS_HOLE(db->db_blkptr)) {
2730 				arc_buf_thaw(data);
2731 			} else {
2732 				dbuf_release_bp(db);
2733 			}
2734 		}
2735 	}
2736 
2737 	if (parent != dn->dn_dbuf) {
2738 		/* Our parent is an indirect block. */
2739 		/* We have a dirty parent that has been scheduled for write. */
2740 		ASSERT(parent && parent->db_data_pending);
2741 		/* Our parent's buffer is one level closer to the dnode. */
2742 		ASSERT(db->db_level == parent->db_level-1);
2743 		/*
2744 		 * We're about to modify our parent's db_data by modifying
2745 		 * our block pointer, so the parent must be released.
2746 		 */
2747 		ASSERT(arc_released(parent->db_buf));
2748 		zio = parent->db_data_pending->dr_zio;
2749 	} else {
2750 		/* Our parent is the dnode itself. */
2751 		ASSERT((db->db_level == dn->dn_phys->dn_nlevels-1 &&
2752 		    db->db_blkid != DMU_SPILL_BLKID) ||
2753 		    (db->db_blkid == DMU_SPILL_BLKID && db->db_level == 0));
2754 		if (db->db_blkid != DMU_SPILL_BLKID)
2755 			ASSERT3P(db->db_blkptr, ==,
2756 			    &dn->dn_phys->dn_blkptr[db->db_blkid]);
2757 		zio = dn->dn_zio;
2758 	}
2759 
2760 	ASSERT(db->db_level == 0 || data == db->db_buf);
2761 	ASSERT3U(db->db_blkptr->blk_birth, <=, txg);
2762 	ASSERT(zio);
2763 
2764 	SET_BOOKMARK(&zb, os->os_dsl_dataset ?
2765 	    os->os_dsl_dataset->ds_object : DMU_META_OBJSET,
2766 	    db->db.db_object, db->db_level, db->db_blkid);
2767 
2768 	if (db->db_blkid == DMU_SPILL_BLKID)
2769 		wp_flag = WP_SPILL;
2770 	wp_flag |= (db->db_state == DB_NOFILL) ? WP_NOFILL : 0;
2771 
2772 	dmu_write_policy(os, dn, db->db_level, wp_flag, &zp);
2773 	DB_DNODE_EXIT(db);
2774 
2775 	if (db->db_level == 0 && dr->dt.dl.dr_override_state == DR_OVERRIDDEN) {
2776 		ASSERT(db->db_state != DB_NOFILL);
2777 		dr->dr_zio = zio_write(zio, os->os_spa, txg,
2778 		    db->db_blkptr, data->b_data, arc_buf_size(data), &zp,
2779 		    dbuf_write_override_ready, NULL, dbuf_write_override_done,
2780 		    dr, ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb);
2781 		mutex_enter(&db->db_mtx);
2782 		dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
2783 		zio_write_override(dr->dr_zio, &dr->dt.dl.dr_overridden_by,
2784 		    dr->dt.dl.dr_copies, dr->dt.dl.dr_nopwrite);
2785 		mutex_exit(&db->db_mtx);
2786 	} else if (db->db_state == DB_NOFILL) {
2787 		ASSERT(zp.zp_checksum == ZIO_CHECKSUM_OFF ||
2788 		    zp.zp_checksum == ZIO_CHECKSUM_NOPARITY);
2789 		dr->dr_zio = zio_write(zio, os->os_spa, txg,
2790 		    db->db_blkptr, NULL, db->db.db_size, &zp,
2791 		    dbuf_write_nofill_ready, NULL, dbuf_write_nofill_done, db,
2792 		    ZIO_PRIORITY_ASYNC_WRITE,
2793 		    ZIO_FLAG_MUSTSUCCEED | ZIO_FLAG_NODATA, &zb);
2794 	} else {
2795 		ASSERT(arc_released(data));
2796 		dr->dr_zio = arc_write(zio, os->os_spa, txg,
2797 		    db->db_blkptr, data, DBUF_IS_L2CACHEABLE(db),
2798 		    DBUF_IS_L2COMPRESSIBLE(db), &zp, dbuf_write_ready,
2799 		    dbuf_write_physdone, dbuf_write_done, db,
2800 		    ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb);
2801 	}
2802 }
2803