1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 24 * Copyright (c) 2013 by Delphix. All rights reserved. 25 * Copyright (c) 2013 by Saso Kiselkov. All rights reserved. 26 */ 27 28 #include <sys/zfs_context.h> 29 #include <sys/dmu.h> 30 #include <sys/dmu_impl.h> 31 #include <sys/dbuf.h> 32 #include <sys/dmu_objset.h> 33 #include <sys/dsl_dataset.h> 34 #include <sys/dsl_dir.h> 35 #include <sys/dmu_tx.h> 36 #include <sys/spa.h> 37 #include <sys/zio.h> 38 #include <sys/dmu_zfetch.h> 39 #include <sys/sa.h> 40 #include <sys/sa_impl.h> 41 42 static void dbuf_destroy(dmu_buf_impl_t *db); 43 static boolean_t dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx); 44 static void dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx); 45 46 /* 47 * Global data structures and functions for the dbuf cache. 48 */ 49 static kmem_cache_t *dbuf_cache; 50 51 /* ARGSUSED */ 52 static int 53 dbuf_cons(void *vdb, void *unused, int kmflag) 54 { 55 dmu_buf_impl_t *db = vdb; 56 bzero(db, sizeof (dmu_buf_impl_t)); 57 58 mutex_init(&db->db_mtx, NULL, MUTEX_DEFAULT, NULL); 59 cv_init(&db->db_changed, NULL, CV_DEFAULT, NULL); 60 refcount_create(&db->db_holds); 61 return (0); 62 } 63 64 /* ARGSUSED */ 65 static void 66 dbuf_dest(void *vdb, void *unused) 67 { 68 dmu_buf_impl_t *db = vdb; 69 mutex_destroy(&db->db_mtx); 70 cv_destroy(&db->db_changed); 71 refcount_destroy(&db->db_holds); 72 } 73 74 /* 75 * dbuf hash table routines 76 */ 77 static dbuf_hash_table_t dbuf_hash_table; 78 79 static uint64_t dbuf_hash_count; 80 81 static uint64_t 82 dbuf_hash(void *os, uint64_t obj, uint8_t lvl, uint64_t blkid) 83 { 84 uintptr_t osv = (uintptr_t)os; 85 uint64_t crc = -1ULL; 86 87 ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY); 88 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (lvl)) & 0xFF]; 89 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (osv >> 6)) & 0xFF]; 90 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (obj >> 0)) & 0xFF]; 91 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (obj >> 8)) & 0xFF]; 92 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (blkid >> 0)) & 0xFF]; 93 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (blkid >> 8)) & 0xFF]; 94 95 crc ^= (osv>>14) ^ (obj>>16) ^ (blkid>>16); 96 97 return (crc); 98 } 99 100 #define DBUF_HASH(os, obj, level, blkid) dbuf_hash(os, obj, level, blkid); 101 102 #define DBUF_EQUAL(dbuf, os, obj, level, blkid) \ 103 ((dbuf)->db.db_object == (obj) && \ 104 (dbuf)->db_objset == (os) && \ 105 (dbuf)->db_level == (level) && \ 106 (dbuf)->db_blkid == (blkid)) 107 108 dmu_buf_impl_t * 109 dbuf_find(dnode_t *dn, uint8_t level, uint64_t blkid) 110 { 111 dbuf_hash_table_t *h = &dbuf_hash_table; 112 objset_t *os = dn->dn_objset; 113 uint64_t obj = dn->dn_object; 114 uint64_t hv = DBUF_HASH(os, obj, level, blkid); 115 uint64_t idx = hv & h->hash_table_mask; 116 dmu_buf_impl_t *db; 117 118 mutex_enter(DBUF_HASH_MUTEX(h, idx)); 119 for (db = h->hash_table[idx]; db != NULL; db = db->db_hash_next) { 120 if (DBUF_EQUAL(db, os, obj, level, blkid)) { 121 mutex_enter(&db->db_mtx); 122 if (db->db_state != DB_EVICTING) { 123 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 124 return (db); 125 } 126 mutex_exit(&db->db_mtx); 127 } 128 } 129 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 130 return (NULL); 131 } 132 133 /* 134 * Insert an entry into the hash table. If there is already an element 135 * equal to elem in the hash table, then the already existing element 136 * will be returned and the new element will not be inserted. 137 * Otherwise returns NULL. 138 */ 139 static dmu_buf_impl_t * 140 dbuf_hash_insert(dmu_buf_impl_t *db) 141 { 142 dbuf_hash_table_t *h = &dbuf_hash_table; 143 objset_t *os = db->db_objset; 144 uint64_t obj = db->db.db_object; 145 int level = db->db_level; 146 uint64_t blkid = db->db_blkid; 147 uint64_t hv = DBUF_HASH(os, obj, level, blkid); 148 uint64_t idx = hv & h->hash_table_mask; 149 dmu_buf_impl_t *dbf; 150 151 mutex_enter(DBUF_HASH_MUTEX(h, idx)); 152 for (dbf = h->hash_table[idx]; dbf != NULL; dbf = dbf->db_hash_next) { 153 if (DBUF_EQUAL(dbf, os, obj, level, blkid)) { 154 mutex_enter(&dbf->db_mtx); 155 if (dbf->db_state != DB_EVICTING) { 156 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 157 return (dbf); 158 } 159 mutex_exit(&dbf->db_mtx); 160 } 161 } 162 163 mutex_enter(&db->db_mtx); 164 db->db_hash_next = h->hash_table[idx]; 165 h->hash_table[idx] = db; 166 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 167 atomic_add_64(&dbuf_hash_count, 1); 168 169 return (NULL); 170 } 171 172 /* 173 * Remove an entry from the hash table. This operation will 174 * fail if there are any existing holds on the db. 175 */ 176 static void 177 dbuf_hash_remove(dmu_buf_impl_t *db) 178 { 179 dbuf_hash_table_t *h = &dbuf_hash_table; 180 uint64_t hv = DBUF_HASH(db->db_objset, db->db.db_object, 181 db->db_level, db->db_blkid); 182 uint64_t idx = hv & h->hash_table_mask; 183 dmu_buf_impl_t *dbf, **dbp; 184 185 /* 186 * We musn't hold db_mtx to maintin lock ordering: 187 * DBUF_HASH_MUTEX > db_mtx. 188 */ 189 ASSERT(refcount_is_zero(&db->db_holds)); 190 ASSERT(db->db_state == DB_EVICTING); 191 ASSERT(!MUTEX_HELD(&db->db_mtx)); 192 193 mutex_enter(DBUF_HASH_MUTEX(h, idx)); 194 dbp = &h->hash_table[idx]; 195 while ((dbf = *dbp) != db) { 196 dbp = &dbf->db_hash_next; 197 ASSERT(dbf != NULL); 198 } 199 *dbp = db->db_hash_next; 200 db->db_hash_next = NULL; 201 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 202 atomic_add_64(&dbuf_hash_count, -1); 203 } 204 205 static arc_evict_func_t dbuf_do_evict; 206 207 static void 208 dbuf_evict_user(dmu_buf_impl_t *db) 209 { 210 ASSERT(MUTEX_HELD(&db->db_mtx)); 211 212 if (db->db_level != 0 || db->db_evict_func == NULL) 213 return; 214 215 if (db->db_user_data_ptr_ptr) 216 *db->db_user_data_ptr_ptr = db->db.db_data; 217 db->db_evict_func(&db->db, db->db_user_ptr); 218 db->db_user_ptr = NULL; 219 db->db_user_data_ptr_ptr = NULL; 220 db->db_evict_func = NULL; 221 } 222 223 boolean_t 224 dbuf_is_metadata(dmu_buf_impl_t *db) 225 { 226 if (db->db_level > 0) { 227 return (B_TRUE); 228 } else { 229 boolean_t is_metadata; 230 231 DB_DNODE_ENTER(db); 232 is_metadata = DMU_OT_IS_METADATA(DB_DNODE(db)->dn_type); 233 DB_DNODE_EXIT(db); 234 235 return (is_metadata); 236 } 237 } 238 239 void 240 dbuf_evict(dmu_buf_impl_t *db) 241 { 242 ASSERT(MUTEX_HELD(&db->db_mtx)); 243 ASSERT(db->db_buf == NULL); 244 ASSERT(db->db_data_pending == NULL); 245 246 dbuf_clear(db); 247 dbuf_destroy(db); 248 } 249 250 void 251 dbuf_init(void) 252 { 253 uint64_t hsize = 1ULL << 16; 254 dbuf_hash_table_t *h = &dbuf_hash_table; 255 int i; 256 257 /* 258 * The hash table is big enough to fill all of physical memory 259 * with an average 4K block size. The table will take up 260 * totalmem*sizeof(void*)/4K (i.e. 2MB/GB with 8-byte pointers). 261 */ 262 while (hsize * 4096 < physmem * PAGESIZE) 263 hsize <<= 1; 264 265 retry: 266 h->hash_table_mask = hsize - 1; 267 h->hash_table = kmem_zalloc(hsize * sizeof (void *), KM_NOSLEEP); 268 if (h->hash_table == NULL) { 269 /* XXX - we should really return an error instead of assert */ 270 ASSERT(hsize > (1ULL << 10)); 271 hsize >>= 1; 272 goto retry; 273 } 274 275 dbuf_cache = kmem_cache_create("dmu_buf_impl_t", 276 sizeof (dmu_buf_impl_t), 277 0, dbuf_cons, dbuf_dest, NULL, NULL, NULL, 0); 278 279 for (i = 0; i < DBUF_MUTEXES; i++) 280 mutex_init(&h->hash_mutexes[i], NULL, MUTEX_DEFAULT, NULL); 281 } 282 283 void 284 dbuf_fini(void) 285 { 286 dbuf_hash_table_t *h = &dbuf_hash_table; 287 int i; 288 289 for (i = 0; i < DBUF_MUTEXES; i++) 290 mutex_destroy(&h->hash_mutexes[i]); 291 kmem_free(h->hash_table, (h->hash_table_mask + 1) * sizeof (void *)); 292 kmem_cache_destroy(dbuf_cache); 293 } 294 295 /* 296 * Other stuff. 297 */ 298 299 #ifdef ZFS_DEBUG 300 static void 301 dbuf_verify(dmu_buf_impl_t *db) 302 { 303 dnode_t *dn; 304 dbuf_dirty_record_t *dr; 305 306 ASSERT(MUTEX_HELD(&db->db_mtx)); 307 308 if (!(zfs_flags & ZFS_DEBUG_DBUF_VERIFY)) 309 return; 310 311 ASSERT(db->db_objset != NULL); 312 DB_DNODE_ENTER(db); 313 dn = DB_DNODE(db); 314 if (dn == NULL) { 315 ASSERT(db->db_parent == NULL); 316 ASSERT(db->db_blkptr == NULL); 317 } else { 318 ASSERT3U(db->db.db_object, ==, dn->dn_object); 319 ASSERT3P(db->db_objset, ==, dn->dn_objset); 320 ASSERT3U(db->db_level, <, dn->dn_nlevels); 321 ASSERT(db->db_blkid == DMU_BONUS_BLKID || 322 db->db_blkid == DMU_SPILL_BLKID || 323 !list_is_empty(&dn->dn_dbufs)); 324 } 325 if (db->db_blkid == DMU_BONUS_BLKID) { 326 ASSERT(dn != NULL); 327 ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen); 328 ASSERT3U(db->db.db_offset, ==, DMU_BONUS_BLKID); 329 } else if (db->db_blkid == DMU_SPILL_BLKID) { 330 ASSERT(dn != NULL); 331 ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen); 332 ASSERT0(db->db.db_offset); 333 } else { 334 ASSERT3U(db->db.db_offset, ==, db->db_blkid * db->db.db_size); 335 } 336 337 for (dr = db->db_data_pending; dr != NULL; dr = dr->dr_next) 338 ASSERT(dr->dr_dbuf == db); 339 340 for (dr = db->db_last_dirty; dr != NULL; dr = dr->dr_next) 341 ASSERT(dr->dr_dbuf == db); 342 343 /* 344 * We can't assert that db_size matches dn_datablksz because it 345 * can be momentarily different when another thread is doing 346 * dnode_set_blksz(). 347 */ 348 if (db->db_level == 0 && db->db.db_object == DMU_META_DNODE_OBJECT) { 349 dr = db->db_data_pending; 350 /* 351 * It should only be modified in syncing context, so 352 * make sure we only have one copy of the data. 353 */ 354 ASSERT(dr == NULL || dr->dt.dl.dr_data == db->db_buf); 355 } 356 357 /* verify db->db_blkptr */ 358 if (db->db_blkptr) { 359 if (db->db_parent == dn->dn_dbuf) { 360 /* db is pointed to by the dnode */ 361 /* ASSERT3U(db->db_blkid, <, dn->dn_nblkptr); */ 362 if (DMU_OBJECT_IS_SPECIAL(db->db.db_object)) 363 ASSERT(db->db_parent == NULL); 364 else 365 ASSERT(db->db_parent != NULL); 366 if (db->db_blkid != DMU_SPILL_BLKID) 367 ASSERT3P(db->db_blkptr, ==, 368 &dn->dn_phys->dn_blkptr[db->db_blkid]); 369 } else { 370 /* db is pointed to by an indirect block */ 371 int epb = db->db_parent->db.db_size >> SPA_BLKPTRSHIFT; 372 ASSERT3U(db->db_parent->db_level, ==, db->db_level+1); 373 ASSERT3U(db->db_parent->db.db_object, ==, 374 db->db.db_object); 375 /* 376 * dnode_grow_indblksz() can make this fail if we don't 377 * have the struct_rwlock. XXX indblksz no longer 378 * grows. safe to do this now? 379 */ 380 if (RW_WRITE_HELD(&dn->dn_struct_rwlock)) { 381 ASSERT3P(db->db_blkptr, ==, 382 ((blkptr_t *)db->db_parent->db.db_data + 383 db->db_blkid % epb)); 384 } 385 } 386 } 387 if ((db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr)) && 388 (db->db_buf == NULL || db->db_buf->b_data) && 389 db->db.db_data && db->db_blkid != DMU_BONUS_BLKID && 390 db->db_state != DB_FILL && !dn->dn_free_txg) { 391 /* 392 * If the blkptr isn't set but they have nonzero data, 393 * it had better be dirty, otherwise we'll lose that 394 * data when we evict this buffer. 395 */ 396 if (db->db_dirtycnt == 0) { 397 uint64_t *buf = db->db.db_data; 398 int i; 399 400 for (i = 0; i < db->db.db_size >> 3; i++) { 401 ASSERT(buf[i] == 0); 402 } 403 } 404 } 405 DB_DNODE_EXIT(db); 406 } 407 #endif 408 409 static void 410 dbuf_update_data(dmu_buf_impl_t *db) 411 { 412 ASSERT(MUTEX_HELD(&db->db_mtx)); 413 if (db->db_level == 0 && db->db_user_data_ptr_ptr) { 414 ASSERT(!refcount_is_zero(&db->db_holds)); 415 *db->db_user_data_ptr_ptr = db->db.db_data; 416 } 417 } 418 419 static void 420 dbuf_set_data(dmu_buf_impl_t *db, arc_buf_t *buf) 421 { 422 ASSERT(MUTEX_HELD(&db->db_mtx)); 423 ASSERT(db->db_buf == NULL || !arc_has_callback(db->db_buf)); 424 db->db_buf = buf; 425 if (buf != NULL) { 426 ASSERT(buf->b_data != NULL); 427 db->db.db_data = buf->b_data; 428 if (!arc_released(buf)) 429 arc_set_callback(buf, dbuf_do_evict, db); 430 dbuf_update_data(db); 431 } else { 432 dbuf_evict_user(db); 433 db->db.db_data = NULL; 434 if (db->db_state != DB_NOFILL) 435 db->db_state = DB_UNCACHED; 436 } 437 } 438 439 /* 440 * Loan out an arc_buf for read. Return the loaned arc_buf. 441 */ 442 arc_buf_t * 443 dbuf_loan_arcbuf(dmu_buf_impl_t *db) 444 { 445 arc_buf_t *abuf; 446 447 mutex_enter(&db->db_mtx); 448 if (arc_released(db->db_buf) || refcount_count(&db->db_holds) > 1) { 449 int blksz = db->db.db_size; 450 spa_t *spa; 451 452 mutex_exit(&db->db_mtx); 453 DB_GET_SPA(&spa, db); 454 abuf = arc_loan_buf(spa, blksz); 455 bcopy(db->db.db_data, abuf->b_data, blksz); 456 } else { 457 abuf = db->db_buf; 458 arc_loan_inuse_buf(abuf, db); 459 dbuf_set_data(db, NULL); 460 mutex_exit(&db->db_mtx); 461 } 462 return (abuf); 463 } 464 465 uint64_t 466 dbuf_whichblock(dnode_t *dn, uint64_t offset) 467 { 468 if (dn->dn_datablkshift) { 469 return (offset >> dn->dn_datablkshift); 470 } else { 471 ASSERT3U(offset, <, dn->dn_datablksz); 472 return (0); 473 } 474 } 475 476 static void 477 dbuf_read_done(zio_t *zio, arc_buf_t *buf, void *vdb) 478 { 479 dmu_buf_impl_t *db = vdb; 480 481 mutex_enter(&db->db_mtx); 482 ASSERT3U(db->db_state, ==, DB_READ); 483 /* 484 * All reads are synchronous, so we must have a hold on the dbuf 485 */ 486 ASSERT(refcount_count(&db->db_holds) > 0); 487 ASSERT(db->db_buf == NULL); 488 ASSERT(db->db.db_data == NULL); 489 if (db->db_level == 0 && db->db_freed_in_flight) { 490 /* we were freed in flight; disregard any error */ 491 arc_release(buf, db); 492 bzero(buf->b_data, db->db.db_size); 493 arc_buf_freeze(buf); 494 db->db_freed_in_flight = FALSE; 495 dbuf_set_data(db, buf); 496 db->db_state = DB_CACHED; 497 } else if (zio == NULL || zio->io_error == 0) { 498 dbuf_set_data(db, buf); 499 db->db_state = DB_CACHED; 500 } else { 501 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 502 ASSERT3P(db->db_buf, ==, NULL); 503 VERIFY(arc_buf_remove_ref(buf, db)); 504 db->db_state = DB_UNCACHED; 505 } 506 cv_broadcast(&db->db_changed); 507 dbuf_rele_and_unlock(db, NULL); 508 } 509 510 static void 511 dbuf_read_impl(dmu_buf_impl_t *db, zio_t *zio, uint32_t *flags) 512 { 513 dnode_t *dn; 514 spa_t *spa; 515 zbookmark_t zb; 516 uint32_t aflags = ARC_NOWAIT; 517 518 DB_DNODE_ENTER(db); 519 dn = DB_DNODE(db); 520 ASSERT(!refcount_is_zero(&db->db_holds)); 521 /* We need the struct_rwlock to prevent db_blkptr from changing. */ 522 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 523 ASSERT(MUTEX_HELD(&db->db_mtx)); 524 ASSERT(db->db_state == DB_UNCACHED); 525 ASSERT(db->db_buf == NULL); 526 527 if (db->db_blkid == DMU_BONUS_BLKID) { 528 int bonuslen = MIN(dn->dn_bonuslen, dn->dn_phys->dn_bonuslen); 529 530 ASSERT3U(bonuslen, <=, db->db.db_size); 531 db->db.db_data = zio_buf_alloc(DN_MAX_BONUSLEN); 532 arc_space_consume(DN_MAX_BONUSLEN, ARC_SPACE_OTHER); 533 if (bonuslen < DN_MAX_BONUSLEN) 534 bzero(db->db.db_data, DN_MAX_BONUSLEN); 535 if (bonuslen) 536 bcopy(DN_BONUS(dn->dn_phys), db->db.db_data, bonuslen); 537 DB_DNODE_EXIT(db); 538 dbuf_update_data(db); 539 db->db_state = DB_CACHED; 540 mutex_exit(&db->db_mtx); 541 return; 542 } 543 544 /* 545 * Recheck BP_IS_HOLE() after dnode_block_freed() in case dnode_sync() 546 * processes the delete record and clears the bp while we are waiting 547 * for the dn_mtx (resulting in a "no" from block_freed). 548 */ 549 if (db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr) || 550 (db->db_level == 0 && (dnode_block_freed(dn, db->db_blkid) || 551 BP_IS_HOLE(db->db_blkptr)))) { 552 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db); 553 554 dbuf_set_data(db, arc_buf_alloc(dn->dn_objset->os_spa, 555 db->db.db_size, db, type)); 556 DB_DNODE_EXIT(db); 557 bzero(db->db.db_data, db->db.db_size); 558 db->db_state = DB_CACHED; 559 *flags |= DB_RF_CACHED; 560 mutex_exit(&db->db_mtx); 561 return; 562 } 563 564 spa = dn->dn_objset->os_spa; 565 DB_DNODE_EXIT(db); 566 567 db->db_state = DB_READ; 568 mutex_exit(&db->db_mtx); 569 570 if (DBUF_IS_L2CACHEABLE(db)) 571 aflags |= ARC_L2CACHE; 572 if (DBUF_IS_L2COMPRESSIBLE(db)) 573 aflags |= ARC_L2COMPRESS; 574 575 SET_BOOKMARK(&zb, db->db_objset->os_dsl_dataset ? 576 db->db_objset->os_dsl_dataset->ds_object : DMU_META_OBJSET, 577 db->db.db_object, db->db_level, db->db_blkid); 578 579 dbuf_add_ref(db, NULL); 580 581 (void) arc_read(zio, spa, db->db_blkptr, 582 dbuf_read_done, db, ZIO_PRIORITY_SYNC_READ, 583 (*flags & DB_RF_CANFAIL) ? ZIO_FLAG_CANFAIL : ZIO_FLAG_MUSTSUCCEED, 584 &aflags, &zb); 585 if (aflags & ARC_CACHED) 586 *flags |= DB_RF_CACHED; 587 } 588 589 int 590 dbuf_read(dmu_buf_impl_t *db, zio_t *zio, uint32_t flags) 591 { 592 int err = 0; 593 int havepzio = (zio != NULL); 594 int prefetch; 595 dnode_t *dn; 596 597 /* 598 * We don't have to hold the mutex to check db_state because it 599 * can't be freed while we have a hold on the buffer. 600 */ 601 ASSERT(!refcount_is_zero(&db->db_holds)); 602 603 if (db->db_state == DB_NOFILL) 604 return (SET_ERROR(EIO)); 605 606 DB_DNODE_ENTER(db); 607 dn = DB_DNODE(db); 608 if ((flags & DB_RF_HAVESTRUCT) == 0) 609 rw_enter(&dn->dn_struct_rwlock, RW_READER); 610 611 prefetch = db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID && 612 (flags & DB_RF_NOPREFETCH) == 0 && dn != NULL && 613 DBUF_IS_CACHEABLE(db); 614 615 mutex_enter(&db->db_mtx); 616 if (db->db_state == DB_CACHED) { 617 mutex_exit(&db->db_mtx); 618 if (prefetch) 619 dmu_zfetch(&dn->dn_zfetch, db->db.db_offset, 620 db->db.db_size, TRUE); 621 if ((flags & DB_RF_HAVESTRUCT) == 0) 622 rw_exit(&dn->dn_struct_rwlock); 623 DB_DNODE_EXIT(db); 624 } else if (db->db_state == DB_UNCACHED) { 625 spa_t *spa = dn->dn_objset->os_spa; 626 627 if (zio == NULL) 628 zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL); 629 dbuf_read_impl(db, zio, &flags); 630 631 /* dbuf_read_impl has dropped db_mtx for us */ 632 633 if (prefetch) 634 dmu_zfetch(&dn->dn_zfetch, db->db.db_offset, 635 db->db.db_size, flags & DB_RF_CACHED); 636 637 if ((flags & DB_RF_HAVESTRUCT) == 0) 638 rw_exit(&dn->dn_struct_rwlock); 639 DB_DNODE_EXIT(db); 640 641 if (!havepzio) 642 err = zio_wait(zio); 643 } else { 644 /* 645 * Another reader came in while the dbuf was in flight 646 * between UNCACHED and CACHED. Either a writer will finish 647 * writing the buffer (sending the dbuf to CACHED) or the 648 * first reader's request will reach the read_done callback 649 * and send the dbuf to CACHED. Otherwise, a failure 650 * occurred and the dbuf went to UNCACHED. 651 */ 652 mutex_exit(&db->db_mtx); 653 if (prefetch) 654 dmu_zfetch(&dn->dn_zfetch, db->db.db_offset, 655 db->db.db_size, TRUE); 656 if ((flags & DB_RF_HAVESTRUCT) == 0) 657 rw_exit(&dn->dn_struct_rwlock); 658 DB_DNODE_EXIT(db); 659 660 /* Skip the wait per the caller's request. */ 661 mutex_enter(&db->db_mtx); 662 if ((flags & DB_RF_NEVERWAIT) == 0) { 663 while (db->db_state == DB_READ || 664 db->db_state == DB_FILL) { 665 ASSERT(db->db_state == DB_READ || 666 (flags & DB_RF_HAVESTRUCT) == 0); 667 cv_wait(&db->db_changed, &db->db_mtx); 668 } 669 if (db->db_state == DB_UNCACHED) 670 err = SET_ERROR(EIO); 671 } 672 mutex_exit(&db->db_mtx); 673 } 674 675 ASSERT(err || havepzio || db->db_state == DB_CACHED); 676 return (err); 677 } 678 679 static void 680 dbuf_noread(dmu_buf_impl_t *db) 681 { 682 ASSERT(!refcount_is_zero(&db->db_holds)); 683 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 684 mutex_enter(&db->db_mtx); 685 while (db->db_state == DB_READ || db->db_state == DB_FILL) 686 cv_wait(&db->db_changed, &db->db_mtx); 687 if (db->db_state == DB_UNCACHED) { 688 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db); 689 spa_t *spa; 690 691 ASSERT(db->db_buf == NULL); 692 ASSERT(db->db.db_data == NULL); 693 DB_GET_SPA(&spa, db); 694 dbuf_set_data(db, arc_buf_alloc(spa, db->db.db_size, db, type)); 695 db->db_state = DB_FILL; 696 } else if (db->db_state == DB_NOFILL) { 697 dbuf_set_data(db, NULL); 698 } else { 699 ASSERT3U(db->db_state, ==, DB_CACHED); 700 } 701 mutex_exit(&db->db_mtx); 702 } 703 704 /* 705 * This is our just-in-time copy function. It makes a copy of 706 * buffers, that have been modified in a previous transaction 707 * group, before we modify them in the current active group. 708 * 709 * This function is used in two places: when we are dirtying a 710 * buffer for the first time in a txg, and when we are freeing 711 * a range in a dnode that includes this buffer. 712 * 713 * Note that when we are called from dbuf_free_range() we do 714 * not put a hold on the buffer, we just traverse the active 715 * dbuf list for the dnode. 716 */ 717 static void 718 dbuf_fix_old_data(dmu_buf_impl_t *db, uint64_t txg) 719 { 720 dbuf_dirty_record_t *dr = db->db_last_dirty; 721 722 ASSERT(MUTEX_HELD(&db->db_mtx)); 723 ASSERT(db->db.db_data != NULL); 724 ASSERT(db->db_level == 0); 725 ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT); 726 727 if (dr == NULL || 728 (dr->dt.dl.dr_data != 729 ((db->db_blkid == DMU_BONUS_BLKID) ? db->db.db_data : db->db_buf))) 730 return; 731 732 /* 733 * If the last dirty record for this dbuf has not yet synced 734 * and its referencing the dbuf data, either: 735 * reset the reference to point to a new copy, 736 * or (if there a no active holders) 737 * just null out the current db_data pointer. 738 */ 739 ASSERT(dr->dr_txg >= txg - 2); 740 if (db->db_blkid == DMU_BONUS_BLKID) { 741 /* Note that the data bufs here are zio_bufs */ 742 dr->dt.dl.dr_data = zio_buf_alloc(DN_MAX_BONUSLEN); 743 arc_space_consume(DN_MAX_BONUSLEN, ARC_SPACE_OTHER); 744 bcopy(db->db.db_data, dr->dt.dl.dr_data, DN_MAX_BONUSLEN); 745 } else if (refcount_count(&db->db_holds) > db->db_dirtycnt) { 746 int size = db->db.db_size; 747 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db); 748 spa_t *spa; 749 750 DB_GET_SPA(&spa, db); 751 dr->dt.dl.dr_data = arc_buf_alloc(spa, size, db, type); 752 bcopy(db->db.db_data, dr->dt.dl.dr_data->b_data, size); 753 } else { 754 dbuf_set_data(db, NULL); 755 } 756 } 757 758 void 759 dbuf_unoverride(dbuf_dirty_record_t *dr) 760 { 761 dmu_buf_impl_t *db = dr->dr_dbuf; 762 blkptr_t *bp = &dr->dt.dl.dr_overridden_by; 763 uint64_t txg = dr->dr_txg; 764 765 ASSERT(MUTEX_HELD(&db->db_mtx)); 766 ASSERT(dr->dt.dl.dr_override_state != DR_IN_DMU_SYNC); 767 ASSERT(db->db_level == 0); 768 769 if (db->db_blkid == DMU_BONUS_BLKID || 770 dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN) 771 return; 772 773 ASSERT(db->db_data_pending != dr); 774 775 /* free this block */ 776 if (!BP_IS_HOLE(bp) && !dr->dt.dl.dr_nopwrite) { 777 spa_t *spa; 778 779 DB_GET_SPA(&spa, db); 780 zio_free(spa, txg, bp); 781 } 782 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN; 783 dr->dt.dl.dr_nopwrite = B_FALSE; 784 785 /* 786 * Release the already-written buffer, so we leave it in 787 * a consistent dirty state. Note that all callers are 788 * modifying the buffer, so they will immediately do 789 * another (redundant) arc_release(). Therefore, leave 790 * the buf thawed to save the effort of freezing & 791 * immediately re-thawing it. 792 */ 793 arc_release(dr->dt.dl.dr_data, db); 794 } 795 796 /* 797 * Evict (if its unreferenced) or clear (if its referenced) any level-0 798 * data blocks in the free range, so that any future readers will find 799 * empty blocks. Also, if we happen accross any level-1 dbufs in the 800 * range that have not already been marked dirty, mark them dirty so 801 * they stay in memory. 802 */ 803 void 804 dbuf_free_range(dnode_t *dn, uint64_t start, uint64_t end, dmu_tx_t *tx) 805 { 806 dmu_buf_impl_t *db, *db_next; 807 uint64_t txg = tx->tx_txg; 808 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 809 uint64_t first_l1 = start >> epbs; 810 uint64_t last_l1 = end >> epbs; 811 812 if (end > dn->dn_maxblkid && (end != DMU_SPILL_BLKID)) { 813 end = dn->dn_maxblkid; 814 last_l1 = end >> epbs; 815 } 816 dprintf_dnode(dn, "start=%llu end=%llu\n", start, end); 817 mutex_enter(&dn->dn_dbufs_mtx); 818 for (db = list_head(&dn->dn_dbufs); db; db = db_next) { 819 db_next = list_next(&dn->dn_dbufs, db); 820 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 821 822 if (db->db_level == 1 && 823 db->db_blkid >= first_l1 && db->db_blkid <= last_l1) { 824 mutex_enter(&db->db_mtx); 825 if (db->db_last_dirty && 826 db->db_last_dirty->dr_txg < txg) { 827 dbuf_add_ref(db, FTAG); 828 mutex_exit(&db->db_mtx); 829 dbuf_will_dirty(db, tx); 830 dbuf_rele(db, FTAG); 831 } else { 832 mutex_exit(&db->db_mtx); 833 } 834 } 835 836 if (db->db_level != 0) 837 continue; 838 dprintf_dbuf(db, "found buf %s\n", ""); 839 if (db->db_blkid < start || db->db_blkid > end) 840 continue; 841 842 /* found a level 0 buffer in the range */ 843 mutex_enter(&db->db_mtx); 844 if (dbuf_undirty(db, tx)) { 845 /* mutex has been dropped and dbuf destroyed */ 846 continue; 847 } 848 849 if (db->db_state == DB_UNCACHED || 850 db->db_state == DB_NOFILL || 851 db->db_state == DB_EVICTING) { 852 ASSERT(db->db.db_data == NULL); 853 mutex_exit(&db->db_mtx); 854 continue; 855 } 856 if (db->db_state == DB_READ || db->db_state == DB_FILL) { 857 /* will be handled in dbuf_read_done or dbuf_rele */ 858 db->db_freed_in_flight = TRUE; 859 mutex_exit(&db->db_mtx); 860 continue; 861 } 862 if (refcount_count(&db->db_holds) == 0) { 863 ASSERT(db->db_buf); 864 dbuf_clear(db); 865 continue; 866 } 867 /* The dbuf is referenced */ 868 869 if (db->db_last_dirty != NULL) { 870 dbuf_dirty_record_t *dr = db->db_last_dirty; 871 872 if (dr->dr_txg == txg) { 873 /* 874 * This buffer is "in-use", re-adjust the file 875 * size to reflect that this buffer may 876 * contain new data when we sync. 877 */ 878 if (db->db_blkid != DMU_SPILL_BLKID && 879 db->db_blkid > dn->dn_maxblkid) 880 dn->dn_maxblkid = db->db_blkid; 881 dbuf_unoverride(dr); 882 } else { 883 /* 884 * This dbuf is not dirty in the open context. 885 * Either uncache it (if its not referenced in 886 * the open context) or reset its contents to 887 * empty. 888 */ 889 dbuf_fix_old_data(db, txg); 890 } 891 } 892 /* clear the contents if its cached */ 893 if (db->db_state == DB_CACHED) { 894 ASSERT(db->db.db_data != NULL); 895 arc_release(db->db_buf, db); 896 bzero(db->db.db_data, db->db.db_size); 897 arc_buf_freeze(db->db_buf); 898 } 899 900 mutex_exit(&db->db_mtx); 901 } 902 mutex_exit(&dn->dn_dbufs_mtx); 903 } 904 905 static int 906 dbuf_block_freeable(dmu_buf_impl_t *db) 907 { 908 dsl_dataset_t *ds = db->db_objset->os_dsl_dataset; 909 uint64_t birth_txg = 0; 910 911 /* 912 * We don't need any locking to protect db_blkptr: 913 * If it's syncing, then db_last_dirty will be set 914 * so we'll ignore db_blkptr. 915 */ 916 ASSERT(MUTEX_HELD(&db->db_mtx)); 917 if (db->db_last_dirty) 918 birth_txg = db->db_last_dirty->dr_txg; 919 else if (db->db_blkptr) 920 birth_txg = db->db_blkptr->blk_birth; 921 922 /* 923 * If we don't exist or are in a snapshot, we can't be freed. 924 * Don't pass the bp to dsl_dataset_block_freeable() since we 925 * are holding the db_mtx lock and might deadlock if we are 926 * prefetching a dedup-ed block. 927 */ 928 if (birth_txg) 929 return (ds == NULL || 930 dsl_dataset_block_freeable(ds, NULL, birth_txg)); 931 else 932 return (FALSE); 933 } 934 935 void 936 dbuf_new_size(dmu_buf_impl_t *db, int size, dmu_tx_t *tx) 937 { 938 arc_buf_t *buf, *obuf; 939 int osize = db->db.db_size; 940 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db); 941 dnode_t *dn; 942 943 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 944 945 DB_DNODE_ENTER(db); 946 dn = DB_DNODE(db); 947 948 /* XXX does *this* func really need the lock? */ 949 ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock)); 950 951 /* 952 * This call to dbuf_will_dirty() with the dn_struct_rwlock held 953 * is OK, because there can be no other references to the db 954 * when we are changing its size, so no concurrent DB_FILL can 955 * be happening. 956 */ 957 /* 958 * XXX we should be doing a dbuf_read, checking the return 959 * value and returning that up to our callers 960 */ 961 dbuf_will_dirty(db, tx); 962 963 /* create the data buffer for the new block */ 964 buf = arc_buf_alloc(dn->dn_objset->os_spa, size, db, type); 965 966 /* copy old block data to the new block */ 967 obuf = db->db_buf; 968 bcopy(obuf->b_data, buf->b_data, MIN(osize, size)); 969 /* zero the remainder */ 970 if (size > osize) 971 bzero((uint8_t *)buf->b_data + osize, size - osize); 972 973 mutex_enter(&db->db_mtx); 974 dbuf_set_data(db, buf); 975 VERIFY(arc_buf_remove_ref(obuf, db)); 976 db->db.db_size = size; 977 978 if (db->db_level == 0) { 979 ASSERT3U(db->db_last_dirty->dr_txg, ==, tx->tx_txg); 980 db->db_last_dirty->dt.dl.dr_data = buf; 981 } 982 mutex_exit(&db->db_mtx); 983 984 dnode_willuse_space(dn, size-osize, tx); 985 DB_DNODE_EXIT(db); 986 } 987 988 void 989 dbuf_release_bp(dmu_buf_impl_t *db) 990 { 991 objset_t *os; 992 993 DB_GET_OBJSET(&os, db); 994 ASSERT(dsl_pool_sync_context(dmu_objset_pool(os))); 995 ASSERT(arc_released(os->os_phys_buf) || 996 list_link_active(&os->os_dsl_dataset->ds_synced_link)); 997 ASSERT(db->db_parent == NULL || arc_released(db->db_parent->db_buf)); 998 999 (void) arc_release(db->db_buf, db); 1000 } 1001 1002 dbuf_dirty_record_t * 1003 dbuf_dirty(dmu_buf_impl_t *db, dmu_tx_t *tx) 1004 { 1005 dnode_t *dn; 1006 objset_t *os; 1007 dbuf_dirty_record_t **drp, *dr; 1008 int drop_struct_lock = FALSE; 1009 boolean_t do_free_accounting = B_FALSE; 1010 int txgoff = tx->tx_txg & TXG_MASK; 1011 1012 ASSERT(tx->tx_txg != 0); 1013 ASSERT(!refcount_is_zero(&db->db_holds)); 1014 DMU_TX_DIRTY_BUF(tx, db); 1015 1016 DB_DNODE_ENTER(db); 1017 dn = DB_DNODE(db); 1018 /* 1019 * Shouldn't dirty a regular buffer in syncing context. Private 1020 * objects may be dirtied in syncing context, but only if they 1021 * were already pre-dirtied in open context. 1022 */ 1023 ASSERT(!dmu_tx_is_syncing(tx) || 1024 BP_IS_HOLE(dn->dn_objset->os_rootbp) || 1025 DMU_OBJECT_IS_SPECIAL(dn->dn_object) || 1026 dn->dn_objset->os_dsl_dataset == NULL); 1027 /* 1028 * We make this assert for private objects as well, but after we 1029 * check if we're already dirty. They are allowed to re-dirty 1030 * in syncing context. 1031 */ 1032 ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT || 1033 dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx == 1034 (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN)); 1035 1036 mutex_enter(&db->db_mtx); 1037 /* 1038 * XXX make this true for indirects too? The problem is that 1039 * transactions created with dmu_tx_create_assigned() from 1040 * syncing context don't bother holding ahead. 1041 */ 1042 ASSERT(db->db_level != 0 || 1043 db->db_state == DB_CACHED || db->db_state == DB_FILL || 1044 db->db_state == DB_NOFILL); 1045 1046 mutex_enter(&dn->dn_mtx); 1047 /* 1048 * Don't set dirtyctx to SYNC if we're just modifying this as we 1049 * initialize the objset. 1050 */ 1051 if (dn->dn_dirtyctx == DN_UNDIRTIED && 1052 !BP_IS_HOLE(dn->dn_objset->os_rootbp)) { 1053 dn->dn_dirtyctx = 1054 (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN); 1055 ASSERT(dn->dn_dirtyctx_firstset == NULL); 1056 dn->dn_dirtyctx_firstset = kmem_alloc(1, KM_SLEEP); 1057 } 1058 mutex_exit(&dn->dn_mtx); 1059 1060 if (db->db_blkid == DMU_SPILL_BLKID) 1061 dn->dn_have_spill = B_TRUE; 1062 1063 /* 1064 * If this buffer is already dirty, we're done. 1065 */ 1066 drp = &db->db_last_dirty; 1067 ASSERT(*drp == NULL || (*drp)->dr_txg <= tx->tx_txg || 1068 db->db.db_object == DMU_META_DNODE_OBJECT); 1069 while ((dr = *drp) != NULL && dr->dr_txg > tx->tx_txg) 1070 drp = &dr->dr_next; 1071 if (dr && dr->dr_txg == tx->tx_txg) { 1072 DB_DNODE_EXIT(db); 1073 1074 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID) { 1075 /* 1076 * If this buffer has already been written out, 1077 * we now need to reset its state. 1078 */ 1079 dbuf_unoverride(dr); 1080 if (db->db.db_object != DMU_META_DNODE_OBJECT && 1081 db->db_state != DB_NOFILL) 1082 arc_buf_thaw(db->db_buf); 1083 } 1084 mutex_exit(&db->db_mtx); 1085 return (dr); 1086 } 1087 1088 /* 1089 * Only valid if not already dirty. 1090 */ 1091 ASSERT(dn->dn_object == 0 || 1092 dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx == 1093 (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN)); 1094 1095 ASSERT3U(dn->dn_nlevels, >, db->db_level); 1096 ASSERT((dn->dn_phys->dn_nlevels == 0 && db->db_level == 0) || 1097 dn->dn_phys->dn_nlevels > db->db_level || 1098 dn->dn_next_nlevels[txgoff] > db->db_level || 1099 dn->dn_next_nlevels[(tx->tx_txg-1) & TXG_MASK] > db->db_level || 1100 dn->dn_next_nlevels[(tx->tx_txg-2) & TXG_MASK] > db->db_level); 1101 1102 /* 1103 * We should only be dirtying in syncing context if it's the 1104 * mos or we're initializing the os or it's a special object. 1105 * However, we are allowed to dirty in syncing context provided 1106 * we already dirtied it in open context. Hence we must make 1107 * this assertion only if we're not already dirty. 1108 */ 1109 os = dn->dn_objset; 1110 ASSERT(!dmu_tx_is_syncing(tx) || DMU_OBJECT_IS_SPECIAL(dn->dn_object) || 1111 os->os_dsl_dataset == NULL || BP_IS_HOLE(os->os_rootbp)); 1112 ASSERT(db->db.db_size != 0); 1113 1114 dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size); 1115 1116 if (db->db_blkid != DMU_BONUS_BLKID) { 1117 /* 1118 * Update the accounting. 1119 * Note: we delay "free accounting" until after we drop 1120 * the db_mtx. This keeps us from grabbing other locks 1121 * (and possibly deadlocking) in bp_get_dsize() while 1122 * also holding the db_mtx. 1123 */ 1124 dnode_willuse_space(dn, db->db.db_size, tx); 1125 do_free_accounting = dbuf_block_freeable(db); 1126 } 1127 1128 /* 1129 * If this buffer is dirty in an old transaction group we need 1130 * to make a copy of it so that the changes we make in this 1131 * transaction group won't leak out when we sync the older txg. 1132 */ 1133 dr = kmem_zalloc(sizeof (dbuf_dirty_record_t), KM_SLEEP); 1134 if (db->db_level == 0) { 1135 void *data_old = db->db_buf; 1136 1137 if (db->db_state != DB_NOFILL) { 1138 if (db->db_blkid == DMU_BONUS_BLKID) { 1139 dbuf_fix_old_data(db, tx->tx_txg); 1140 data_old = db->db.db_data; 1141 } else if (db->db.db_object != DMU_META_DNODE_OBJECT) { 1142 /* 1143 * Release the data buffer from the cache so 1144 * that we can modify it without impacting 1145 * possible other users of this cached data 1146 * block. Note that indirect blocks and 1147 * private objects are not released until the 1148 * syncing state (since they are only modified 1149 * then). 1150 */ 1151 arc_release(db->db_buf, db); 1152 dbuf_fix_old_data(db, tx->tx_txg); 1153 data_old = db->db_buf; 1154 } 1155 ASSERT(data_old != NULL); 1156 } 1157 dr->dt.dl.dr_data = data_old; 1158 } else { 1159 mutex_init(&dr->dt.di.dr_mtx, NULL, MUTEX_DEFAULT, NULL); 1160 list_create(&dr->dt.di.dr_children, 1161 sizeof (dbuf_dirty_record_t), 1162 offsetof(dbuf_dirty_record_t, dr_dirty_node)); 1163 } 1164 dr->dr_dbuf = db; 1165 dr->dr_txg = tx->tx_txg; 1166 dr->dr_next = *drp; 1167 *drp = dr; 1168 1169 /* 1170 * We could have been freed_in_flight between the dbuf_noread 1171 * and dbuf_dirty. We win, as though the dbuf_noread() had 1172 * happened after the free. 1173 */ 1174 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID && 1175 db->db_blkid != DMU_SPILL_BLKID) { 1176 mutex_enter(&dn->dn_mtx); 1177 dnode_clear_range(dn, db->db_blkid, 1, tx); 1178 mutex_exit(&dn->dn_mtx); 1179 db->db_freed_in_flight = FALSE; 1180 } 1181 1182 /* 1183 * This buffer is now part of this txg 1184 */ 1185 dbuf_add_ref(db, (void *)(uintptr_t)tx->tx_txg); 1186 db->db_dirtycnt += 1; 1187 ASSERT3U(db->db_dirtycnt, <=, 3); 1188 1189 mutex_exit(&db->db_mtx); 1190 1191 if (db->db_blkid == DMU_BONUS_BLKID || 1192 db->db_blkid == DMU_SPILL_BLKID) { 1193 mutex_enter(&dn->dn_mtx); 1194 ASSERT(!list_link_active(&dr->dr_dirty_node)); 1195 list_insert_tail(&dn->dn_dirty_records[txgoff], dr); 1196 mutex_exit(&dn->dn_mtx); 1197 dnode_setdirty(dn, tx); 1198 DB_DNODE_EXIT(db); 1199 return (dr); 1200 } else if (do_free_accounting) { 1201 blkptr_t *bp = db->db_blkptr; 1202 int64_t willfree = (bp && !BP_IS_HOLE(bp)) ? 1203 bp_get_dsize(os->os_spa, bp) : db->db.db_size; 1204 /* 1205 * This is only a guess -- if the dbuf is dirty 1206 * in a previous txg, we don't know how much 1207 * space it will use on disk yet. We should 1208 * really have the struct_rwlock to access 1209 * db_blkptr, but since this is just a guess, 1210 * it's OK if we get an odd answer. 1211 */ 1212 ddt_prefetch(os->os_spa, bp); 1213 dnode_willuse_space(dn, -willfree, tx); 1214 } 1215 1216 if (!RW_WRITE_HELD(&dn->dn_struct_rwlock)) { 1217 rw_enter(&dn->dn_struct_rwlock, RW_READER); 1218 drop_struct_lock = TRUE; 1219 } 1220 1221 if (db->db_level == 0) { 1222 dnode_new_blkid(dn, db->db_blkid, tx, drop_struct_lock); 1223 ASSERT(dn->dn_maxblkid >= db->db_blkid); 1224 } 1225 1226 if (db->db_level+1 < dn->dn_nlevels) { 1227 dmu_buf_impl_t *parent = db->db_parent; 1228 dbuf_dirty_record_t *di; 1229 int parent_held = FALSE; 1230 1231 if (db->db_parent == NULL || db->db_parent == dn->dn_dbuf) { 1232 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 1233 1234 parent = dbuf_hold_level(dn, db->db_level+1, 1235 db->db_blkid >> epbs, FTAG); 1236 ASSERT(parent != NULL); 1237 parent_held = TRUE; 1238 } 1239 if (drop_struct_lock) 1240 rw_exit(&dn->dn_struct_rwlock); 1241 ASSERT3U(db->db_level+1, ==, parent->db_level); 1242 di = dbuf_dirty(parent, tx); 1243 if (parent_held) 1244 dbuf_rele(parent, FTAG); 1245 1246 mutex_enter(&db->db_mtx); 1247 /* possible race with dbuf_undirty() */ 1248 if (db->db_last_dirty == dr || 1249 dn->dn_object == DMU_META_DNODE_OBJECT) { 1250 mutex_enter(&di->dt.di.dr_mtx); 1251 ASSERT3U(di->dr_txg, ==, tx->tx_txg); 1252 ASSERT(!list_link_active(&dr->dr_dirty_node)); 1253 list_insert_tail(&di->dt.di.dr_children, dr); 1254 mutex_exit(&di->dt.di.dr_mtx); 1255 dr->dr_parent = di; 1256 } 1257 mutex_exit(&db->db_mtx); 1258 } else { 1259 ASSERT(db->db_level+1 == dn->dn_nlevels); 1260 ASSERT(db->db_blkid < dn->dn_nblkptr); 1261 ASSERT(db->db_parent == NULL || db->db_parent == dn->dn_dbuf); 1262 mutex_enter(&dn->dn_mtx); 1263 ASSERT(!list_link_active(&dr->dr_dirty_node)); 1264 list_insert_tail(&dn->dn_dirty_records[txgoff], dr); 1265 mutex_exit(&dn->dn_mtx); 1266 if (drop_struct_lock) 1267 rw_exit(&dn->dn_struct_rwlock); 1268 } 1269 1270 dnode_setdirty(dn, tx); 1271 DB_DNODE_EXIT(db); 1272 return (dr); 1273 } 1274 1275 /* 1276 * Undirty a buffer in the transaction group referenced by the given 1277 * transaction. Return whether this evicted the dbuf. 1278 */ 1279 static boolean_t 1280 dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx) 1281 { 1282 dnode_t *dn; 1283 uint64_t txg = tx->tx_txg; 1284 dbuf_dirty_record_t *dr, **drp; 1285 1286 ASSERT(txg != 0); 1287 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1288 ASSERT0(db->db_level); 1289 ASSERT(MUTEX_HELD(&db->db_mtx)); 1290 1291 /* 1292 * If this buffer is not dirty, we're done. 1293 */ 1294 for (drp = &db->db_last_dirty; (dr = *drp) != NULL; drp = &dr->dr_next) 1295 if (dr->dr_txg <= txg) 1296 break; 1297 if (dr == NULL || dr->dr_txg < txg) 1298 return (B_FALSE); 1299 ASSERT(dr->dr_txg == txg); 1300 ASSERT(dr->dr_dbuf == db); 1301 1302 DB_DNODE_ENTER(db); 1303 dn = DB_DNODE(db); 1304 1305 /* 1306 * Note: This code will probably work even if there are concurrent 1307 * holders, but it is untested in that scenerio, as the ZPL and 1308 * ztest have additional locking (the range locks) that prevents 1309 * that type of concurrent access. 1310 */ 1311 ASSERT3U(refcount_count(&db->db_holds), ==, db->db_dirtycnt); 1312 1313 dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size); 1314 1315 ASSERT(db->db.db_size != 0); 1316 1317 /* XXX would be nice to fix up dn_towrite_space[] */ 1318 1319 *drp = dr->dr_next; 1320 1321 /* 1322 * Note that there are three places in dbuf_dirty() 1323 * where this dirty record may be put on a list. 1324 * Make sure to do a list_remove corresponding to 1325 * every one of those list_insert calls. 1326 */ 1327 if (dr->dr_parent) { 1328 mutex_enter(&dr->dr_parent->dt.di.dr_mtx); 1329 list_remove(&dr->dr_parent->dt.di.dr_children, dr); 1330 mutex_exit(&dr->dr_parent->dt.di.dr_mtx); 1331 } else if (db->db_blkid == DMU_SPILL_BLKID || 1332 db->db_level+1 == dn->dn_nlevels) { 1333 ASSERT(db->db_blkptr == NULL || db->db_parent == dn->dn_dbuf); 1334 mutex_enter(&dn->dn_mtx); 1335 list_remove(&dn->dn_dirty_records[txg & TXG_MASK], dr); 1336 mutex_exit(&dn->dn_mtx); 1337 } 1338 DB_DNODE_EXIT(db); 1339 1340 if (db->db_state != DB_NOFILL) { 1341 dbuf_unoverride(dr); 1342 1343 ASSERT(db->db_buf != NULL); 1344 ASSERT(dr->dt.dl.dr_data != NULL); 1345 if (dr->dt.dl.dr_data != db->db_buf) 1346 VERIFY(arc_buf_remove_ref(dr->dt.dl.dr_data, db)); 1347 } 1348 kmem_free(dr, sizeof (dbuf_dirty_record_t)); 1349 1350 ASSERT(db->db_dirtycnt > 0); 1351 db->db_dirtycnt -= 1; 1352 1353 if (refcount_remove(&db->db_holds, (void *)(uintptr_t)txg) == 0) { 1354 arc_buf_t *buf = db->db_buf; 1355 1356 ASSERT(db->db_state == DB_NOFILL || arc_released(buf)); 1357 dbuf_set_data(db, NULL); 1358 VERIFY(arc_buf_remove_ref(buf, db)); 1359 dbuf_evict(db); 1360 return (B_TRUE); 1361 } 1362 1363 return (B_FALSE); 1364 } 1365 1366 #pragma weak dmu_buf_will_dirty = dbuf_will_dirty 1367 void 1368 dbuf_will_dirty(dmu_buf_impl_t *db, dmu_tx_t *tx) 1369 { 1370 int rf = DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH; 1371 1372 ASSERT(tx->tx_txg != 0); 1373 ASSERT(!refcount_is_zero(&db->db_holds)); 1374 1375 DB_DNODE_ENTER(db); 1376 if (RW_WRITE_HELD(&DB_DNODE(db)->dn_struct_rwlock)) 1377 rf |= DB_RF_HAVESTRUCT; 1378 DB_DNODE_EXIT(db); 1379 (void) dbuf_read(db, NULL, rf); 1380 (void) dbuf_dirty(db, tx); 1381 } 1382 1383 void 1384 dmu_buf_will_not_fill(dmu_buf_t *db_fake, dmu_tx_t *tx) 1385 { 1386 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 1387 1388 db->db_state = DB_NOFILL; 1389 1390 dmu_buf_will_fill(db_fake, tx); 1391 } 1392 1393 void 1394 dmu_buf_will_fill(dmu_buf_t *db_fake, dmu_tx_t *tx) 1395 { 1396 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 1397 1398 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1399 ASSERT(tx->tx_txg != 0); 1400 ASSERT(db->db_level == 0); 1401 ASSERT(!refcount_is_zero(&db->db_holds)); 1402 1403 ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT || 1404 dmu_tx_private_ok(tx)); 1405 1406 dbuf_noread(db); 1407 (void) dbuf_dirty(db, tx); 1408 } 1409 1410 #pragma weak dmu_buf_fill_done = dbuf_fill_done 1411 /* ARGSUSED */ 1412 void 1413 dbuf_fill_done(dmu_buf_impl_t *db, dmu_tx_t *tx) 1414 { 1415 mutex_enter(&db->db_mtx); 1416 DBUF_VERIFY(db); 1417 1418 if (db->db_state == DB_FILL) { 1419 if (db->db_level == 0 && db->db_freed_in_flight) { 1420 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1421 /* we were freed while filling */ 1422 /* XXX dbuf_undirty? */ 1423 bzero(db->db.db_data, db->db.db_size); 1424 db->db_freed_in_flight = FALSE; 1425 } 1426 db->db_state = DB_CACHED; 1427 cv_broadcast(&db->db_changed); 1428 } 1429 mutex_exit(&db->db_mtx); 1430 } 1431 1432 /* 1433 * Directly assign a provided arc buf to a given dbuf if it's not referenced 1434 * by anybody except our caller. Otherwise copy arcbuf's contents to dbuf. 1435 */ 1436 void 1437 dbuf_assign_arcbuf(dmu_buf_impl_t *db, arc_buf_t *buf, dmu_tx_t *tx) 1438 { 1439 ASSERT(!refcount_is_zero(&db->db_holds)); 1440 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1441 ASSERT(db->db_level == 0); 1442 ASSERT(DBUF_GET_BUFC_TYPE(db) == ARC_BUFC_DATA); 1443 ASSERT(buf != NULL); 1444 ASSERT(arc_buf_size(buf) == db->db.db_size); 1445 ASSERT(tx->tx_txg != 0); 1446 1447 arc_return_buf(buf, db); 1448 ASSERT(arc_released(buf)); 1449 1450 mutex_enter(&db->db_mtx); 1451 1452 while (db->db_state == DB_READ || db->db_state == DB_FILL) 1453 cv_wait(&db->db_changed, &db->db_mtx); 1454 1455 ASSERT(db->db_state == DB_CACHED || db->db_state == DB_UNCACHED); 1456 1457 if (db->db_state == DB_CACHED && 1458 refcount_count(&db->db_holds) - 1 > db->db_dirtycnt) { 1459 mutex_exit(&db->db_mtx); 1460 (void) dbuf_dirty(db, tx); 1461 bcopy(buf->b_data, db->db.db_data, db->db.db_size); 1462 VERIFY(arc_buf_remove_ref(buf, db)); 1463 xuio_stat_wbuf_copied(); 1464 return; 1465 } 1466 1467 xuio_stat_wbuf_nocopy(); 1468 if (db->db_state == DB_CACHED) { 1469 dbuf_dirty_record_t *dr = db->db_last_dirty; 1470 1471 ASSERT(db->db_buf != NULL); 1472 if (dr != NULL && dr->dr_txg == tx->tx_txg) { 1473 ASSERT(dr->dt.dl.dr_data == db->db_buf); 1474 if (!arc_released(db->db_buf)) { 1475 ASSERT(dr->dt.dl.dr_override_state == 1476 DR_OVERRIDDEN); 1477 arc_release(db->db_buf, db); 1478 } 1479 dr->dt.dl.dr_data = buf; 1480 VERIFY(arc_buf_remove_ref(db->db_buf, db)); 1481 } else if (dr == NULL || dr->dt.dl.dr_data != db->db_buf) { 1482 arc_release(db->db_buf, db); 1483 VERIFY(arc_buf_remove_ref(db->db_buf, db)); 1484 } 1485 db->db_buf = NULL; 1486 } 1487 ASSERT(db->db_buf == NULL); 1488 dbuf_set_data(db, buf); 1489 db->db_state = DB_FILL; 1490 mutex_exit(&db->db_mtx); 1491 (void) dbuf_dirty(db, tx); 1492 dbuf_fill_done(db, tx); 1493 } 1494 1495 /* 1496 * "Clear" the contents of this dbuf. This will mark the dbuf 1497 * EVICTING and clear *most* of its references. Unfortunetely, 1498 * when we are not holding the dn_dbufs_mtx, we can't clear the 1499 * entry in the dn_dbufs list. We have to wait until dbuf_destroy() 1500 * in this case. For callers from the DMU we will usually see: 1501 * dbuf_clear()->arc_buf_evict()->dbuf_do_evict()->dbuf_destroy() 1502 * For the arc callback, we will usually see: 1503 * dbuf_do_evict()->dbuf_clear();dbuf_destroy() 1504 * Sometimes, though, we will get a mix of these two: 1505 * DMU: dbuf_clear()->arc_buf_evict() 1506 * ARC: dbuf_do_evict()->dbuf_destroy() 1507 */ 1508 void 1509 dbuf_clear(dmu_buf_impl_t *db) 1510 { 1511 dnode_t *dn; 1512 dmu_buf_impl_t *parent = db->db_parent; 1513 dmu_buf_impl_t *dndb; 1514 int dbuf_gone = FALSE; 1515 1516 ASSERT(MUTEX_HELD(&db->db_mtx)); 1517 ASSERT(refcount_is_zero(&db->db_holds)); 1518 1519 dbuf_evict_user(db); 1520 1521 if (db->db_state == DB_CACHED) { 1522 ASSERT(db->db.db_data != NULL); 1523 if (db->db_blkid == DMU_BONUS_BLKID) { 1524 zio_buf_free(db->db.db_data, DN_MAX_BONUSLEN); 1525 arc_space_return(DN_MAX_BONUSLEN, ARC_SPACE_OTHER); 1526 } 1527 db->db.db_data = NULL; 1528 db->db_state = DB_UNCACHED; 1529 } 1530 1531 ASSERT(db->db_state == DB_UNCACHED || db->db_state == DB_NOFILL); 1532 ASSERT(db->db_data_pending == NULL); 1533 1534 db->db_state = DB_EVICTING; 1535 db->db_blkptr = NULL; 1536 1537 DB_DNODE_ENTER(db); 1538 dn = DB_DNODE(db); 1539 dndb = dn->dn_dbuf; 1540 if (db->db_blkid != DMU_BONUS_BLKID && MUTEX_HELD(&dn->dn_dbufs_mtx)) { 1541 list_remove(&dn->dn_dbufs, db); 1542 (void) atomic_dec_32_nv(&dn->dn_dbufs_count); 1543 membar_producer(); 1544 DB_DNODE_EXIT(db); 1545 /* 1546 * Decrementing the dbuf count means that the hold corresponding 1547 * to the removed dbuf is no longer discounted in dnode_move(), 1548 * so the dnode cannot be moved until after we release the hold. 1549 * The membar_producer() ensures visibility of the decremented 1550 * value in dnode_move(), since DB_DNODE_EXIT doesn't actually 1551 * release any lock. 1552 */ 1553 dnode_rele(dn, db); 1554 db->db_dnode_handle = NULL; 1555 } else { 1556 DB_DNODE_EXIT(db); 1557 } 1558 1559 if (db->db_buf) 1560 dbuf_gone = arc_buf_evict(db->db_buf); 1561 1562 if (!dbuf_gone) 1563 mutex_exit(&db->db_mtx); 1564 1565 /* 1566 * If this dbuf is referenced from an indirect dbuf, 1567 * decrement the ref count on the indirect dbuf. 1568 */ 1569 if (parent && parent != dndb) 1570 dbuf_rele(parent, db); 1571 } 1572 1573 static int 1574 dbuf_findbp(dnode_t *dn, int level, uint64_t blkid, int fail_sparse, 1575 dmu_buf_impl_t **parentp, blkptr_t **bpp) 1576 { 1577 int nlevels, epbs; 1578 1579 *parentp = NULL; 1580 *bpp = NULL; 1581 1582 ASSERT(blkid != DMU_BONUS_BLKID); 1583 1584 if (blkid == DMU_SPILL_BLKID) { 1585 mutex_enter(&dn->dn_mtx); 1586 if (dn->dn_have_spill && 1587 (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR)) 1588 *bpp = &dn->dn_phys->dn_spill; 1589 else 1590 *bpp = NULL; 1591 dbuf_add_ref(dn->dn_dbuf, NULL); 1592 *parentp = dn->dn_dbuf; 1593 mutex_exit(&dn->dn_mtx); 1594 return (0); 1595 } 1596 1597 if (dn->dn_phys->dn_nlevels == 0) 1598 nlevels = 1; 1599 else 1600 nlevels = dn->dn_phys->dn_nlevels; 1601 1602 epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 1603 1604 ASSERT3U(level * epbs, <, 64); 1605 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 1606 if (level >= nlevels || 1607 (blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs)))) { 1608 /* the buffer has no parent yet */ 1609 return (SET_ERROR(ENOENT)); 1610 } else if (level < nlevels-1) { 1611 /* this block is referenced from an indirect block */ 1612 int err = dbuf_hold_impl(dn, level+1, 1613 blkid >> epbs, fail_sparse, NULL, parentp); 1614 if (err) 1615 return (err); 1616 err = dbuf_read(*parentp, NULL, 1617 (DB_RF_HAVESTRUCT | DB_RF_NOPREFETCH | DB_RF_CANFAIL)); 1618 if (err) { 1619 dbuf_rele(*parentp, NULL); 1620 *parentp = NULL; 1621 return (err); 1622 } 1623 *bpp = ((blkptr_t *)(*parentp)->db.db_data) + 1624 (blkid & ((1ULL << epbs) - 1)); 1625 return (0); 1626 } else { 1627 /* the block is referenced from the dnode */ 1628 ASSERT3U(level, ==, nlevels-1); 1629 ASSERT(dn->dn_phys->dn_nblkptr == 0 || 1630 blkid < dn->dn_phys->dn_nblkptr); 1631 if (dn->dn_dbuf) { 1632 dbuf_add_ref(dn->dn_dbuf, NULL); 1633 *parentp = dn->dn_dbuf; 1634 } 1635 *bpp = &dn->dn_phys->dn_blkptr[blkid]; 1636 return (0); 1637 } 1638 } 1639 1640 static dmu_buf_impl_t * 1641 dbuf_create(dnode_t *dn, uint8_t level, uint64_t blkid, 1642 dmu_buf_impl_t *parent, blkptr_t *blkptr) 1643 { 1644 objset_t *os = dn->dn_objset; 1645 dmu_buf_impl_t *db, *odb; 1646 1647 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 1648 ASSERT(dn->dn_type != DMU_OT_NONE); 1649 1650 db = kmem_cache_alloc(dbuf_cache, KM_SLEEP); 1651 1652 db->db_objset = os; 1653 db->db.db_object = dn->dn_object; 1654 db->db_level = level; 1655 db->db_blkid = blkid; 1656 db->db_last_dirty = NULL; 1657 db->db_dirtycnt = 0; 1658 db->db_dnode_handle = dn->dn_handle; 1659 db->db_parent = parent; 1660 db->db_blkptr = blkptr; 1661 1662 db->db_user_ptr = NULL; 1663 db->db_user_data_ptr_ptr = NULL; 1664 db->db_evict_func = NULL; 1665 db->db_immediate_evict = 0; 1666 db->db_freed_in_flight = 0; 1667 1668 if (blkid == DMU_BONUS_BLKID) { 1669 ASSERT3P(parent, ==, dn->dn_dbuf); 1670 db->db.db_size = DN_MAX_BONUSLEN - 1671 (dn->dn_nblkptr-1) * sizeof (blkptr_t); 1672 ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen); 1673 db->db.db_offset = DMU_BONUS_BLKID; 1674 db->db_state = DB_UNCACHED; 1675 /* the bonus dbuf is not placed in the hash table */ 1676 arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_OTHER); 1677 return (db); 1678 } else if (blkid == DMU_SPILL_BLKID) { 1679 db->db.db_size = (blkptr != NULL) ? 1680 BP_GET_LSIZE(blkptr) : SPA_MINBLOCKSIZE; 1681 db->db.db_offset = 0; 1682 } else { 1683 int blocksize = 1684 db->db_level ? 1<<dn->dn_indblkshift : dn->dn_datablksz; 1685 db->db.db_size = blocksize; 1686 db->db.db_offset = db->db_blkid * blocksize; 1687 } 1688 1689 /* 1690 * Hold the dn_dbufs_mtx while we get the new dbuf 1691 * in the hash table *and* added to the dbufs list. 1692 * This prevents a possible deadlock with someone 1693 * trying to look up this dbuf before its added to the 1694 * dn_dbufs list. 1695 */ 1696 mutex_enter(&dn->dn_dbufs_mtx); 1697 db->db_state = DB_EVICTING; 1698 if ((odb = dbuf_hash_insert(db)) != NULL) { 1699 /* someone else inserted it first */ 1700 kmem_cache_free(dbuf_cache, db); 1701 mutex_exit(&dn->dn_dbufs_mtx); 1702 return (odb); 1703 } 1704 list_insert_head(&dn->dn_dbufs, db); 1705 db->db_state = DB_UNCACHED; 1706 mutex_exit(&dn->dn_dbufs_mtx); 1707 arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_OTHER); 1708 1709 if (parent && parent != dn->dn_dbuf) 1710 dbuf_add_ref(parent, db); 1711 1712 ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT || 1713 refcount_count(&dn->dn_holds) > 0); 1714 (void) refcount_add(&dn->dn_holds, db); 1715 (void) atomic_inc_32_nv(&dn->dn_dbufs_count); 1716 1717 dprintf_dbuf(db, "db=%p\n", db); 1718 1719 return (db); 1720 } 1721 1722 static int 1723 dbuf_do_evict(void *private) 1724 { 1725 arc_buf_t *buf = private; 1726 dmu_buf_impl_t *db = buf->b_private; 1727 1728 if (!MUTEX_HELD(&db->db_mtx)) 1729 mutex_enter(&db->db_mtx); 1730 1731 ASSERT(refcount_is_zero(&db->db_holds)); 1732 1733 if (db->db_state != DB_EVICTING) { 1734 ASSERT(db->db_state == DB_CACHED); 1735 DBUF_VERIFY(db); 1736 db->db_buf = NULL; 1737 dbuf_evict(db); 1738 } else { 1739 mutex_exit(&db->db_mtx); 1740 dbuf_destroy(db); 1741 } 1742 return (0); 1743 } 1744 1745 static void 1746 dbuf_destroy(dmu_buf_impl_t *db) 1747 { 1748 ASSERT(refcount_is_zero(&db->db_holds)); 1749 1750 if (db->db_blkid != DMU_BONUS_BLKID) { 1751 /* 1752 * If this dbuf is still on the dn_dbufs list, 1753 * remove it from that list. 1754 */ 1755 if (db->db_dnode_handle != NULL) { 1756 dnode_t *dn; 1757 1758 DB_DNODE_ENTER(db); 1759 dn = DB_DNODE(db); 1760 mutex_enter(&dn->dn_dbufs_mtx); 1761 list_remove(&dn->dn_dbufs, db); 1762 (void) atomic_dec_32_nv(&dn->dn_dbufs_count); 1763 mutex_exit(&dn->dn_dbufs_mtx); 1764 DB_DNODE_EXIT(db); 1765 /* 1766 * Decrementing the dbuf count means that the hold 1767 * corresponding to the removed dbuf is no longer 1768 * discounted in dnode_move(), so the dnode cannot be 1769 * moved until after we release the hold. 1770 */ 1771 dnode_rele(dn, db); 1772 db->db_dnode_handle = NULL; 1773 } 1774 dbuf_hash_remove(db); 1775 } 1776 db->db_parent = NULL; 1777 db->db_buf = NULL; 1778 1779 ASSERT(!list_link_active(&db->db_link)); 1780 ASSERT(db->db.db_data == NULL); 1781 ASSERT(db->db_hash_next == NULL); 1782 ASSERT(db->db_blkptr == NULL); 1783 ASSERT(db->db_data_pending == NULL); 1784 1785 kmem_cache_free(dbuf_cache, db); 1786 arc_space_return(sizeof (dmu_buf_impl_t), ARC_SPACE_OTHER); 1787 } 1788 1789 void 1790 dbuf_prefetch(dnode_t *dn, uint64_t blkid) 1791 { 1792 dmu_buf_impl_t *db = NULL; 1793 blkptr_t *bp = NULL; 1794 1795 ASSERT(blkid != DMU_BONUS_BLKID); 1796 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 1797 1798 if (dnode_block_freed(dn, blkid)) 1799 return; 1800 1801 /* dbuf_find() returns with db_mtx held */ 1802 if (db = dbuf_find(dn, 0, blkid)) { 1803 /* 1804 * This dbuf is already in the cache. We assume that 1805 * it is already CACHED, or else about to be either 1806 * read or filled. 1807 */ 1808 mutex_exit(&db->db_mtx); 1809 return; 1810 } 1811 1812 if (dbuf_findbp(dn, 0, blkid, TRUE, &db, &bp) == 0) { 1813 if (bp && !BP_IS_HOLE(bp)) { 1814 int priority = dn->dn_type == DMU_OT_DDT_ZAP ? 1815 ZIO_PRIORITY_DDT_PREFETCH : ZIO_PRIORITY_ASYNC_READ; 1816 dsl_dataset_t *ds = dn->dn_objset->os_dsl_dataset; 1817 uint32_t aflags = ARC_NOWAIT | ARC_PREFETCH; 1818 zbookmark_t zb; 1819 1820 SET_BOOKMARK(&zb, ds ? ds->ds_object : DMU_META_OBJSET, 1821 dn->dn_object, 0, blkid); 1822 1823 (void) arc_read(NULL, dn->dn_objset->os_spa, 1824 bp, NULL, NULL, priority, 1825 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE, 1826 &aflags, &zb); 1827 } 1828 if (db) 1829 dbuf_rele(db, NULL); 1830 } 1831 } 1832 1833 /* 1834 * Returns with db_holds incremented, and db_mtx not held. 1835 * Note: dn_struct_rwlock must be held. 1836 */ 1837 int 1838 dbuf_hold_impl(dnode_t *dn, uint8_t level, uint64_t blkid, int fail_sparse, 1839 void *tag, dmu_buf_impl_t **dbp) 1840 { 1841 dmu_buf_impl_t *db, *parent = NULL; 1842 1843 ASSERT(blkid != DMU_BONUS_BLKID); 1844 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 1845 ASSERT3U(dn->dn_nlevels, >, level); 1846 1847 *dbp = NULL; 1848 top: 1849 /* dbuf_find() returns with db_mtx held */ 1850 db = dbuf_find(dn, level, blkid); 1851 1852 if (db == NULL) { 1853 blkptr_t *bp = NULL; 1854 int err; 1855 1856 ASSERT3P(parent, ==, NULL); 1857 err = dbuf_findbp(dn, level, blkid, fail_sparse, &parent, &bp); 1858 if (fail_sparse) { 1859 if (err == 0 && bp && BP_IS_HOLE(bp)) 1860 err = SET_ERROR(ENOENT); 1861 if (err) { 1862 if (parent) 1863 dbuf_rele(parent, NULL); 1864 return (err); 1865 } 1866 } 1867 if (err && err != ENOENT) 1868 return (err); 1869 db = dbuf_create(dn, level, blkid, parent, bp); 1870 } 1871 1872 if (db->db_buf && refcount_is_zero(&db->db_holds)) { 1873 arc_buf_add_ref(db->db_buf, db); 1874 if (db->db_buf->b_data == NULL) { 1875 dbuf_clear(db); 1876 if (parent) { 1877 dbuf_rele(parent, NULL); 1878 parent = NULL; 1879 } 1880 goto top; 1881 } 1882 ASSERT3P(db->db.db_data, ==, db->db_buf->b_data); 1883 } 1884 1885 ASSERT(db->db_buf == NULL || arc_referenced(db->db_buf)); 1886 1887 /* 1888 * If this buffer is currently syncing out, and we are are 1889 * still referencing it from db_data, we need to make a copy 1890 * of it in case we decide we want to dirty it again in this txg. 1891 */ 1892 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID && 1893 dn->dn_object != DMU_META_DNODE_OBJECT && 1894 db->db_state == DB_CACHED && db->db_data_pending) { 1895 dbuf_dirty_record_t *dr = db->db_data_pending; 1896 1897 if (dr->dt.dl.dr_data == db->db_buf) { 1898 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db); 1899 1900 dbuf_set_data(db, 1901 arc_buf_alloc(dn->dn_objset->os_spa, 1902 db->db.db_size, db, type)); 1903 bcopy(dr->dt.dl.dr_data->b_data, db->db.db_data, 1904 db->db.db_size); 1905 } 1906 } 1907 1908 (void) refcount_add(&db->db_holds, tag); 1909 dbuf_update_data(db); 1910 DBUF_VERIFY(db); 1911 mutex_exit(&db->db_mtx); 1912 1913 /* NOTE: we can't rele the parent until after we drop the db_mtx */ 1914 if (parent) 1915 dbuf_rele(parent, NULL); 1916 1917 ASSERT3P(DB_DNODE(db), ==, dn); 1918 ASSERT3U(db->db_blkid, ==, blkid); 1919 ASSERT3U(db->db_level, ==, level); 1920 *dbp = db; 1921 1922 return (0); 1923 } 1924 1925 dmu_buf_impl_t * 1926 dbuf_hold(dnode_t *dn, uint64_t blkid, void *tag) 1927 { 1928 dmu_buf_impl_t *db; 1929 int err = dbuf_hold_impl(dn, 0, blkid, FALSE, tag, &db); 1930 return (err ? NULL : db); 1931 } 1932 1933 dmu_buf_impl_t * 1934 dbuf_hold_level(dnode_t *dn, int level, uint64_t blkid, void *tag) 1935 { 1936 dmu_buf_impl_t *db; 1937 int err = dbuf_hold_impl(dn, level, blkid, FALSE, tag, &db); 1938 return (err ? NULL : db); 1939 } 1940 1941 void 1942 dbuf_create_bonus(dnode_t *dn) 1943 { 1944 ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock)); 1945 1946 ASSERT(dn->dn_bonus == NULL); 1947 dn->dn_bonus = dbuf_create(dn, 0, DMU_BONUS_BLKID, dn->dn_dbuf, NULL); 1948 } 1949 1950 int 1951 dbuf_spill_set_blksz(dmu_buf_t *db_fake, uint64_t blksz, dmu_tx_t *tx) 1952 { 1953 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 1954 dnode_t *dn; 1955 1956 if (db->db_blkid != DMU_SPILL_BLKID) 1957 return (SET_ERROR(ENOTSUP)); 1958 if (blksz == 0) 1959 blksz = SPA_MINBLOCKSIZE; 1960 if (blksz > SPA_MAXBLOCKSIZE) 1961 blksz = SPA_MAXBLOCKSIZE; 1962 else 1963 blksz = P2ROUNDUP(blksz, SPA_MINBLOCKSIZE); 1964 1965 DB_DNODE_ENTER(db); 1966 dn = DB_DNODE(db); 1967 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 1968 dbuf_new_size(db, blksz, tx); 1969 rw_exit(&dn->dn_struct_rwlock); 1970 DB_DNODE_EXIT(db); 1971 1972 return (0); 1973 } 1974 1975 void 1976 dbuf_rm_spill(dnode_t *dn, dmu_tx_t *tx) 1977 { 1978 dbuf_free_range(dn, DMU_SPILL_BLKID, DMU_SPILL_BLKID, tx); 1979 } 1980 1981 #pragma weak dmu_buf_add_ref = dbuf_add_ref 1982 void 1983 dbuf_add_ref(dmu_buf_impl_t *db, void *tag) 1984 { 1985 int64_t holds = refcount_add(&db->db_holds, tag); 1986 ASSERT(holds > 1); 1987 } 1988 1989 /* 1990 * If you call dbuf_rele() you had better not be referencing the dnode handle 1991 * unless you have some other direct or indirect hold on the dnode. (An indirect 1992 * hold is a hold on one of the dnode's dbufs, including the bonus buffer.) 1993 * Without that, the dbuf_rele() could lead to a dnode_rele() followed by the 1994 * dnode's parent dbuf evicting its dnode handles. 1995 */ 1996 #pragma weak dmu_buf_rele = dbuf_rele 1997 void 1998 dbuf_rele(dmu_buf_impl_t *db, void *tag) 1999 { 2000 mutex_enter(&db->db_mtx); 2001 dbuf_rele_and_unlock(db, tag); 2002 } 2003 2004 /* 2005 * dbuf_rele() for an already-locked dbuf. This is necessary to allow 2006 * db_dirtycnt and db_holds to be updated atomically. 2007 */ 2008 void 2009 dbuf_rele_and_unlock(dmu_buf_impl_t *db, void *tag) 2010 { 2011 int64_t holds; 2012 2013 ASSERT(MUTEX_HELD(&db->db_mtx)); 2014 DBUF_VERIFY(db); 2015 2016 /* 2017 * Remove the reference to the dbuf before removing its hold on the 2018 * dnode so we can guarantee in dnode_move() that a referenced bonus 2019 * buffer has a corresponding dnode hold. 2020 */ 2021 holds = refcount_remove(&db->db_holds, tag); 2022 ASSERT(holds >= 0); 2023 2024 /* 2025 * We can't freeze indirects if there is a possibility that they 2026 * may be modified in the current syncing context. 2027 */ 2028 if (db->db_buf && holds == (db->db_level == 0 ? db->db_dirtycnt : 0)) 2029 arc_buf_freeze(db->db_buf); 2030 2031 if (holds == db->db_dirtycnt && 2032 db->db_level == 0 && db->db_immediate_evict) 2033 dbuf_evict_user(db); 2034 2035 if (holds == 0) { 2036 if (db->db_blkid == DMU_BONUS_BLKID) { 2037 mutex_exit(&db->db_mtx); 2038 2039 /* 2040 * If the dnode moves here, we cannot cross this barrier 2041 * until the move completes. 2042 */ 2043 DB_DNODE_ENTER(db); 2044 (void) atomic_dec_32_nv(&DB_DNODE(db)->dn_dbufs_count); 2045 DB_DNODE_EXIT(db); 2046 /* 2047 * The bonus buffer's dnode hold is no longer discounted 2048 * in dnode_move(). The dnode cannot move until after 2049 * the dnode_rele(). 2050 */ 2051 dnode_rele(DB_DNODE(db), db); 2052 } else if (db->db_buf == NULL) { 2053 /* 2054 * This is a special case: we never associated this 2055 * dbuf with any data allocated from the ARC. 2056 */ 2057 ASSERT(db->db_state == DB_UNCACHED || 2058 db->db_state == DB_NOFILL); 2059 dbuf_evict(db); 2060 } else if (arc_released(db->db_buf)) { 2061 arc_buf_t *buf = db->db_buf; 2062 /* 2063 * This dbuf has anonymous data associated with it. 2064 */ 2065 dbuf_set_data(db, NULL); 2066 VERIFY(arc_buf_remove_ref(buf, db)); 2067 dbuf_evict(db); 2068 } else { 2069 VERIFY(!arc_buf_remove_ref(db->db_buf, db)); 2070 2071 /* 2072 * A dbuf will be eligible for eviction if either the 2073 * 'primarycache' property is set or a duplicate 2074 * copy of this buffer is already cached in the arc. 2075 * 2076 * In the case of the 'primarycache' a buffer 2077 * is considered for eviction if it matches the 2078 * criteria set in the property. 2079 * 2080 * To decide if our buffer is considered a 2081 * duplicate, we must call into the arc to determine 2082 * if multiple buffers are referencing the same 2083 * block on-disk. If so, then we simply evict 2084 * ourselves. 2085 */ 2086 if (!DBUF_IS_CACHEABLE(db) || 2087 arc_buf_eviction_needed(db->db_buf)) 2088 dbuf_clear(db); 2089 else 2090 mutex_exit(&db->db_mtx); 2091 } 2092 } else { 2093 mutex_exit(&db->db_mtx); 2094 } 2095 } 2096 2097 #pragma weak dmu_buf_refcount = dbuf_refcount 2098 uint64_t 2099 dbuf_refcount(dmu_buf_impl_t *db) 2100 { 2101 return (refcount_count(&db->db_holds)); 2102 } 2103 2104 void * 2105 dmu_buf_set_user(dmu_buf_t *db_fake, void *user_ptr, void *user_data_ptr_ptr, 2106 dmu_buf_evict_func_t *evict_func) 2107 { 2108 return (dmu_buf_update_user(db_fake, NULL, user_ptr, 2109 user_data_ptr_ptr, evict_func)); 2110 } 2111 2112 void * 2113 dmu_buf_set_user_ie(dmu_buf_t *db_fake, void *user_ptr, void *user_data_ptr_ptr, 2114 dmu_buf_evict_func_t *evict_func) 2115 { 2116 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2117 2118 db->db_immediate_evict = TRUE; 2119 return (dmu_buf_update_user(db_fake, NULL, user_ptr, 2120 user_data_ptr_ptr, evict_func)); 2121 } 2122 2123 void * 2124 dmu_buf_update_user(dmu_buf_t *db_fake, void *old_user_ptr, void *user_ptr, 2125 void *user_data_ptr_ptr, dmu_buf_evict_func_t *evict_func) 2126 { 2127 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2128 ASSERT(db->db_level == 0); 2129 2130 ASSERT((user_ptr == NULL) == (evict_func == NULL)); 2131 2132 mutex_enter(&db->db_mtx); 2133 2134 if (db->db_user_ptr == old_user_ptr) { 2135 db->db_user_ptr = user_ptr; 2136 db->db_user_data_ptr_ptr = user_data_ptr_ptr; 2137 db->db_evict_func = evict_func; 2138 2139 dbuf_update_data(db); 2140 } else { 2141 old_user_ptr = db->db_user_ptr; 2142 } 2143 2144 mutex_exit(&db->db_mtx); 2145 return (old_user_ptr); 2146 } 2147 2148 void * 2149 dmu_buf_get_user(dmu_buf_t *db_fake) 2150 { 2151 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2152 ASSERT(!refcount_is_zero(&db->db_holds)); 2153 2154 return (db->db_user_ptr); 2155 } 2156 2157 boolean_t 2158 dmu_buf_freeable(dmu_buf_t *dbuf) 2159 { 2160 boolean_t res = B_FALSE; 2161 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf; 2162 2163 if (db->db_blkptr) 2164 res = dsl_dataset_block_freeable(db->db_objset->os_dsl_dataset, 2165 db->db_blkptr, db->db_blkptr->blk_birth); 2166 2167 return (res); 2168 } 2169 2170 blkptr_t * 2171 dmu_buf_get_blkptr(dmu_buf_t *db) 2172 { 2173 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db; 2174 return (dbi->db_blkptr); 2175 } 2176 2177 static void 2178 dbuf_check_blkptr(dnode_t *dn, dmu_buf_impl_t *db) 2179 { 2180 /* ASSERT(dmu_tx_is_syncing(tx) */ 2181 ASSERT(MUTEX_HELD(&db->db_mtx)); 2182 2183 if (db->db_blkptr != NULL) 2184 return; 2185 2186 if (db->db_blkid == DMU_SPILL_BLKID) { 2187 db->db_blkptr = &dn->dn_phys->dn_spill; 2188 BP_ZERO(db->db_blkptr); 2189 return; 2190 } 2191 if (db->db_level == dn->dn_phys->dn_nlevels-1) { 2192 /* 2193 * This buffer was allocated at a time when there was 2194 * no available blkptrs from the dnode, or it was 2195 * inappropriate to hook it in (i.e., nlevels mis-match). 2196 */ 2197 ASSERT(db->db_blkid < dn->dn_phys->dn_nblkptr); 2198 ASSERT(db->db_parent == NULL); 2199 db->db_parent = dn->dn_dbuf; 2200 db->db_blkptr = &dn->dn_phys->dn_blkptr[db->db_blkid]; 2201 DBUF_VERIFY(db); 2202 } else { 2203 dmu_buf_impl_t *parent = db->db_parent; 2204 int epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT; 2205 2206 ASSERT(dn->dn_phys->dn_nlevels > 1); 2207 if (parent == NULL) { 2208 mutex_exit(&db->db_mtx); 2209 rw_enter(&dn->dn_struct_rwlock, RW_READER); 2210 (void) dbuf_hold_impl(dn, db->db_level+1, 2211 db->db_blkid >> epbs, FALSE, db, &parent); 2212 rw_exit(&dn->dn_struct_rwlock); 2213 mutex_enter(&db->db_mtx); 2214 db->db_parent = parent; 2215 } 2216 db->db_blkptr = (blkptr_t *)parent->db.db_data + 2217 (db->db_blkid & ((1ULL << epbs) - 1)); 2218 DBUF_VERIFY(db); 2219 } 2220 } 2221 2222 static void 2223 dbuf_sync_indirect(dbuf_dirty_record_t *dr, dmu_tx_t *tx) 2224 { 2225 dmu_buf_impl_t *db = dr->dr_dbuf; 2226 dnode_t *dn; 2227 zio_t *zio; 2228 2229 ASSERT(dmu_tx_is_syncing(tx)); 2230 2231 dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr); 2232 2233 mutex_enter(&db->db_mtx); 2234 2235 ASSERT(db->db_level > 0); 2236 DBUF_VERIFY(db); 2237 2238 /* Read the block if it hasn't been read yet. */ 2239 if (db->db_buf == NULL) { 2240 mutex_exit(&db->db_mtx); 2241 (void) dbuf_read(db, NULL, DB_RF_MUST_SUCCEED); 2242 mutex_enter(&db->db_mtx); 2243 } 2244 ASSERT3U(db->db_state, ==, DB_CACHED); 2245 ASSERT(db->db_buf != NULL); 2246 2247 DB_DNODE_ENTER(db); 2248 dn = DB_DNODE(db); 2249 /* Indirect block size must match what the dnode thinks it is. */ 2250 ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift); 2251 dbuf_check_blkptr(dn, db); 2252 DB_DNODE_EXIT(db); 2253 2254 /* Provide the pending dirty record to child dbufs */ 2255 db->db_data_pending = dr; 2256 2257 mutex_exit(&db->db_mtx); 2258 dbuf_write(dr, db->db_buf, tx); 2259 2260 zio = dr->dr_zio; 2261 mutex_enter(&dr->dt.di.dr_mtx); 2262 dbuf_sync_list(&dr->dt.di.dr_children, tx); 2263 ASSERT(list_head(&dr->dt.di.dr_children) == NULL); 2264 mutex_exit(&dr->dt.di.dr_mtx); 2265 zio_nowait(zio); 2266 } 2267 2268 static void 2269 dbuf_sync_leaf(dbuf_dirty_record_t *dr, dmu_tx_t *tx) 2270 { 2271 arc_buf_t **datap = &dr->dt.dl.dr_data; 2272 dmu_buf_impl_t *db = dr->dr_dbuf; 2273 dnode_t *dn; 2274 objset_t *os; 2275 uint64_t txg = tx->tx_txg; 2276 2277 ASSERT(dmu_tx_is_syncing(tx)); 2278 2279 dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr); 2280 2281 mutex_enter(&db->db_mtx); 2282 /* 2283 * To be synced, we must be dirtied. But we 2284 * might have been freed after the dirty. 2285 */ 2286 if (db->db_state == DB_UNCACHED) { 2287 /* This buffer has been freed since it was dirtied */ 2288 ASSERT(db->db.db_data == NULL); 2289 } else if (db->db_state == DB_FILL) { 2290 /* This buffer was freed and is now being re-filled */ 2291 ASSERT(db->db.db_data != dr->dt.dl.dr_data); 2292 } else { 2293 ASSERT(db->db_state == DB_CACHED || db->db_state == DB_NOFILL); 2294 } 2295 DBUF_VERIFY(db); 2296 2297 DB_DNODE_ENTER(db); 2298 dn = DB_DNODE(db); 2299 2300 if (db->db_blkid == DMU_SPILL_BLKID) { 2301 mutex_enter(&dn->dn_mtx); 2302 dn->dn_phys->dn_flags |= DNODE_FLAG_SPILL_BLKPTR; 2303 mutex_exit(&dn->dn_mtx); 2304 } 2305 2306 /* 2307 * If this is a bonus buffer, simply copy the bonus data into the 2308 * dnode. It will be written out when the dnode is synced (and it 2309 * will be synced, since it must have been dirty for dbuf_sync to 2310 * be called). 2311 */ 2312 if (db->db_blkid == DMU_BONUS_BLKID) { 2313 dbuf_dirty_record_t **drp; 2314 2315 ASSERT(*datap != NULL); 2316 ASSERT0(db->db_level); 2317 ASSERT3U(dn->dn_phys->dn_bonuslen, <=, DN_MAX_BONUSLEN); 2318 bcopy(*datap, DN_BONUS(dn->dn_phys), dn->dn_phys->dn_bonuslen); 2319 DB_DNODE_EXIT(db); 2320 2321 if (*datap != db->db.db_data) { 2322 zio_buf_free(*datap, DN_MAX_BONUSLEN); 2323 arc_space_return(DN_MAX_BONUSLEN, ARC_SPACE_OTHER); 2324 } 2325 db->db_data_pending = NULL; 2326 drp = &db->db_last_dirty; 2327 while (*drp != dr) 2328 drp = &(*drp)->dr_next; 2329 ASSERT(dr->dr_next == NULL); 2330 ASSERT(dr->dr_dbuf == db); 2331 *drp = dr->dr_next; 2332 kmem_free(dr, sizeof (dbuf_dirty_record_t)); 2333 ASSERT(db->db_dirtycnt > 0); 2334 db->db_dirtycnt -= 1; 2335 dbuf_rele_and_unlock(db, (void *)(uintptr_t)txg); 2336 return; 2337 } 2338 2339 os = dn->dn_objset; 2340 2341 /* 2342 * This function may have dropped the db_mtx lock allowing a dmu_sync 2343 * operation to sneak in. As a result, we need to ensure that we 2344 * don't check the dr_override_state until we have returned from 2345 * dbuf_check_blkptr. 2346 */ 2347 dbuf_check_blkptr(dn, db); 2348 2349 /* 2350 * If this buffer is in the middle of an immediate write, 2351 * wait for the synchronous IO to complete. 2352 */ 2353 while (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC) { 2354 ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT); 2355 cv_wait(&db->db_changed, &db->db_mtx); 2356 ASSERT(dr->dt.dl.dr_override_state != DR_NOT_OVERRIDDEN); 2357 } 2358 2359 if (db->db_state != DB_NOFILL && 2360 dn->dn_object != DMU_META_DNODE_OBJECT && 2361 refcount_count(&db->db_holds) > 1 && 2362 dr->dt.dl.dr_override_state != DR_OVERRIDDEN && 2363 *datap == db->db_buf) { 2364 /* 2365 * If this buffer is currently "in use" (i.e., there 2366 * are active holds and db_data still references it), 2367 * then make a copy before we start the write so that 2368 * any modifications from the open txg will not leak 2369 * into this write. 2370 * 2371 * NOTE: this copy does not need to be made for 2372 * objects only modified in the syncing context (e.g. 2373 * DNONE_DNODE blocks). 2374 */ 2375 int blksz = arc_buf_size(*datap); 2376 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db); 2377 *datap = arc_buf_alloc(os->os_spa, blksz, db, type); 2378 bcopy(db->db.db_data, (*datap)->b_data, blksz); 2379 } 2380 db->db_data_pending = dr; 2381 2382 mutex_exit(&db->db_mtx); 2383 2384 dbuf_write(dr, *datap, tx); 2385 2386 ASSERT(!list_link_active(&dr->dr_dirty_node)); 2387 if (dn->dn_object == DMU_META_DNODE_OBJECT) { 2388 list_insert_tail(&dn->dn_dirty_records[txg&TXG_MASK], dr); 2389 DB_DNODE_EXIT(db); 2390 } else { 2391 /* 2392 * Although zio_nowait() does not "wait for an IO", it does 2393 * initiate the IO. If this is an empty write it seems plausible 2394 * that the IO could actually be completed before the nowait 2395 * returns. We need to DB_DNODE_EXIT() first in case 2396 * zio_nowait() invalidates the dbuf. 2397 */ 2398 DB_DNODE_EXIT(db); 2399 zio_nowait(dr->dr_zio); 2400 } 2401 } 2402 2403 void 2404 dbuf_sync_list(list_t *list, dmu_tx_t *tx) 2405 { 2406 dbuf_dirty_record_t *dr; 2407 2408 while (dr = list_head(list)) { 2409 if (dr->dr_zio != NULL) { 2410 /* 2411 * If we find an already initialized zio then we 2412 * are processing the meta-dnode, and we have finished. 2413 * The dbufs for all dnodes are put back on the list 2414 * during processing, so that we can zio_wait() 2415 * these IOs after initiating all child IOs. 2416 */ 2417 ASSERT3U(dr->dr_dbuf->db.db_object, ==, 2418 DMU_META_DNODE_OBJECT); 2419 break; 2420 } 2421 list_remove(list, dr); 2422 if (dr->dr_dbuf->db_level > 0) 2423 dbuf_sync_indirect(dr, tx); 2424 else 2425 dbuf_sync_leaf(dr, tx); 2426 } 2427 } 2428 2429 /* ARGSUSED */ 2430 static void 2431 dbuf_write_ready(zio_t *zio, arc_buf_t *buf, void *vdb) 2432 { 2433 dmu_buf_impl_t *db = vdb; 2434 dnode_t *dn; 2435 blkptr_t *bp = zio->io_bp; 2436 blkptr_t *bp_orig = &zio->io_bp_orig; 2437 spa_t *spa = zio->io_spa; 2438 int64_t delta; 2439 uint64_t fill = 0; 2440 int i; 2441 2442 ASSERT(db->db_blkptr == bp); 2443 2444 DB_DNODE_ENTER(db); 2445 dn = DB_DNODE(db); 2446 delta = bp_get_dsize_sync(spa, bp) - bp_get_dsize_sync(spa, bp_orig); 2447 dnode_diduse_space(dn, delta - zio->io_prev_space_delta); 2448 zio->io_prev_space_delta = delta; 2449 2450 if (BP_IS_HOLE(bp)) { 2451 ASSERT(bp->blk_fill == 0); 2452 DB_DNODE_EXIT(db); 2453 return; 2454 } 2455 2456 ASSERT((db->db_blkid != DMU_SPILL_BLKID && 2457 BP_GET_TYPE(bp) == dn->dn_type) || 2458 (db->db_blkid == DMU_SPILL_BLKID && 2459 BP_GET_TYPE(bp) == dn->dn_bonustype)); 2460 ASSERT(BP_GET_LEVEL(bp) == db->db_level); 2461 2462 mutex_enter(&db->db_mtx); 2463 2464 #ifdef ZFS_DEBUG 2465 if (db->db_blkid == DMU_SPILL_BLKID) { 2466 ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR); 2467 ASSERT(!(BP_IS_HOLE(db->db_blkptr)) && 2468 db->db_blkptr == &dn->dn_phys->dn_spill); 2469 } 2470 #endif 2471 2472 if (db->db_level == 0) { 2473 mutex_enter(&dn->dn_mtx); 2474 if (db->db_blkid > dn->dn_phys->dn_maxblkid && 2475 db->db_blkid != DMU_SPILL_BLKID) 2476 dn->dn_phys->dn_maxblkid = db->db_blkid; 2477 mutex_exit(&dn->dn_mtx); 2478 2479 if (dn->dn_type == DMU_OT_DNODE) { 2480 dnode_phys_t *dnp = db->db.db_data; 2481 for (i = db->db.db_size >> DNODE_SHIFT; i > 0; 2482 i--, dnp++) { 2483 if (dnp->dn_type != DMU_OT_NONE) 2484 fill++; 2485 } 2486 } else { 2487 fill = 1; 2488 } 2489 } else { 2490 blkptr_t *ibp = db->db.db_data; 2491 ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift); 2492 for (i = db->db.db_size >> SPA_BLKPTRSHIFT; i > 0; i--, ibp++) { 2493 if (BP_IS_HOLE(ibp)) 2494 continue; 2495 fill += ibp->blk_fill; 2496 } 2497 } 2498 DB_DNODE_EXIT(db); 2499 2500 bp->blk_fill = fill; 2501 2502 mutex_exit(&db->db_mtx); 2503 } 2504 2505 /* ARGSUSED */ 2506 static void 2507 dbuf_write_done(zio_t *zio, arc_buf_t *buf, void *vdb) 2508 { 2509 dmu_buf_impl_t *db = vdb; 2510 blkptr_t *bp = zio->io_bp; 2511 blkptr_t *bp_orig = &zio->io_bp_orig; 2512 uint64_t txg = zio->io_txg; 2513 dbuf_dirty_record_t **drp, *dr; 2514 2515 ASSERT0(zio->io_error); 2516 ASSERT(db->db_blkptr == bp); 2517 2518 /* 2519 * For nopwrites and rewrites we ensure that the bp matches our 2520 * original and bypass all the accounting. 2521 */ 2522 if (zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)) { 2523 ASSERT(BP_EQUAL(bp, bp_orig)); 2524 } else { 2525 objset_t *os; 2526 dsl_dataset_t *ds; 2527 dmu_tx_t *tx; 2528 2529 DB_GET_OBJSET(&os, db); 2530 ds = os->os_dsl_dataset; 2531 tx = os->os_synctx; 2532 2533 (void) dsl_dataset_block_kill(ds, bp_orig, tx, B_TRUE); 2534 dsl_dataset_block_born(ds, bp, tx); 2535 } 2536 2537 mutex_enter(&db->db_mtx); 2538 2539 DBUF_VERIFY(db); 2540 2541 drp = &db->db_last_dirty; 2542 while ((dr = *drp) != db->db_data_pending) 2543 drp = &dr->dr_next; 2544 ASSERT(!list_link_active(&dr->dr_dirty_node)); 2545 ASSERT(dr->dr_txg == txg); 2546 ASSERT(dr->dr_dbuf == db); 2547 ASSERT(dr->dr_next == NULL); 2548 *drp = dr->dr_next; 2549 2550 #ifdef ZFS_DEBUG 2551 if (db->db_blkid == DMU_SPILL_BLKID) { 2552 dnode_t *dn; 2553 2554 DB_DNODE_ENTER(db); 2555 dn = DB_DNODE(db); 2556 ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR); 2557 ASSERT(!(BP_IS_HOLE(db->db_blkptr)) && 2558 db->db_blkptr == &dn->dn_phys->dn_spill); 2559 DB_DNODE_EXIT(db); 2560 } 2561 #endif 2562 2563 if (db->db_level == 0) { 2564 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 2565 ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN); 2566 if (db->db_state != DB_NOFILL) { 2567 if (dr->dt.dl.dr_data != db->db_buf) 2568 VERIFY(arc_buf_remove_ref(dr->dt.dl.dr_data, 2569 db)); 2570 else if (!arc_released(db->db_buf)) 2571 arc_set_callback(db->db_buf, dbuf_do_evict, db); 2572 } 2573 } else { 2574 dnode_t *dn; 2575 2576 DB_DNODE_ENTER(db); 2577 dn = DB_DNODE(db); 2578 ASSERT(list_head(&dr->dt.di.dr_children) == NULL); 2579 ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift); 2580 if (!BP_IS_HOLE(db->db_blkptr)) { 2581 int epbs = 2582 dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT; 2583 ASSERT3U(BP_GET_LSIZE(db->db_blkptr), ==, 2584 db->db.db_size); 2585 ASSERT3U(dn->dn_phys->dn_maxblkid 2586 >> (db->db_level * epbs), >=, db->db_blkid); 2587 arc_set_callback(db->db_buf, dbuf_do_evict, db); 2588 } 2589 DB_DNODE_EXIT(db); 2590 mutex_destroy(&dr->dt.di.dr_mtx); 2591 list_destroy(&dr->dt.di.dr_children); 2592 } 2593 kmem_free(dr, sizeof (dbuf_dirty_record_t)); 2594 2595 cv_broadcast(&db->db_changed); 2596 ASSERT(db->db_dirtycnt > 0); 2597 db->db_dirtycnt -= 1; 2598 db->db_data_pending = NULL; 2599 dbuf_rele_and_unlock(db, (void *)(uintptr_t)txg); 2600 } 2601 2602 static void 2603 dbuf_write_nofill_ready(zio_t *zio) 2604 { 2605 dbuf_write_ready(zio, NULL, zio->io_private); 2606 } 2607 2608 static void 2609 dbuf_write_nofill_done(zio_t *zio) 2610 { 2611 dbuf_write_done(zio, NULL, zio->io_private); 2612 } 2613 2614 static void 2615 dbuf_write_override_ready(zio_t *zio) 2616 { 2617 dbuf_dirty_record_t *dr = zio->io_private; 2618 dmu_buf_impl_t *db = dr->dr_dbuf; 2619 2620 dbuf_write_ready(zio, NULL, db); 2621 } 2622 2623 static void 2624 dbuf_write_override_done(zio_t *zio) 2625 { 2626 dbuf_dirty_record_t *dr = zio->io_private; 2627 dmu_buf_impl_t *db = dr->dr_dbuf; 2628 blkptr_t *obp = &dr->dt.dl.dr_overridden_by; 2629 2630 mutex_enter(&db->db_mtx); 2631 if (!BP_EQUAL(zio->io_bp, obp)) { 2632 if (!BP_IS_HOLE(obp)) 2633 dsl_free(spa_get_dsl(zio->io_spa), zio->io_txg, obp); 2634 arc_release(dr->dt.dl.dr_data, db); 2635 } 2636 mutex_exit(&db->db_mtx); 2637 2638 dbuf_write_done(zio, NULL, db); 2639 } 2640 2641 /* Issue I/O to commit a dirty buffer to disk. */ 2642 static void 2643 dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx) 2644 { 2645 dmu_buf_impl_t *db = dr->dr_dbuf; 2646 dnode_t *dn; 2647 objset_t *os; 2648 dmu_buf_impl_t *parent = db->db_parent; 2649 uint64_t txg = tx->tx_txg; 2650 zbookmark_t zb; 2651 zio_prop_t zp; 2652 zio_t *zio; 2653 int wp_flag = 0; 2654 2655 DB_DNODE_ENTER(db); 2656 dn = DB_DNODE(db); 2657 os = dn->dn_objset; 2658 2659 if (db->db_state != DB_NOFILL) { 2660 if (db->db_level > 0 || dn->dn_type == DMU_OT_DNODE) { 2661 /* 2662 * Private object buffers are released here rather 2663 * than in dbuf_dirty() since they are only modified 2664 * in the syncing context and we don't want the 2665 * overhead of making multiple copies of the data. 2666 */ 2667 if (BP_IS_HOLE(db->db_blkptr)) { 2668 arc_buf_thaw(data); 2669 } else { 2670 dbuf_release_bp(db); 2671 } 2672 } 2673 } 2674 2675 if (parent != dn->dn_dbuf) { 2676 /* Our parent is an indirect block. */ 2677 /* We have a dirty parent that has been scheduled for write. */ 2678 ASSERT(parent && parent->db_data_pending); 2679 /* Our parent's buffer is one level closer to the dnode. */ 2680 ASSERT(db->db_level == parent->db_level-1); 2681 /* 2682 * We're about to modify our parent's db_data by modifying 2683 * our block pointer, so the parent must be released. 2684 */ 2685 ASSERT(arc_released(parent->db_buf)); 2686 zio = parent->db_data_pending->dr_zio; 2687 } else { 2688 /* Our parent is the dnode itself. */ 2689 ASSERT((db->db_level == dn->dn_phys->dn_nlevels-1 && 2690 db->db_blkid != DMU_SPILL_BLKID) || 2691 (db->db_blkid == DMU_SPILL_BLKID && db->db_level == 0)); 2692 if (db->db_blkid != DMU_SPILL_BLKID) 2693 ASSERT3P(db->db_blkptr, ==, 2694 &dn->dn_phys->dn_blkptr[db->db_blkid]); 2695 zio = dn->dn_zio; 2696 } 2697 2698 ASSERT(db->db_level == 0 || data == db->db_buf); 2699 ASSERT3U(db->db_blkptr->blk_birth, <=, txg); 2700 ASSERT(zio); 2701 2702 SET_BOOKMARK(&zb, os->os_dsl_dataset ? 2703 os->os_dsl_dataset->ds_object : DMU_META_OBJSET, 2704 db->db.db_object, db->db_level, db->db_blkid); 2705 2706 if (db->db_blkid == DMU_SPILL_BLKID) 2707 wp_flag = WP_SPILL; 2708 wp_flag |= (db->db_state == DB_NOFILL) ? WP_NOFILL : 0; 2709 2710 dmu_write_policy(os, dn, db->db_level, wp_flag, &zp); 2711 DB_DNODE_EXIT(db); 2712 2713 if (db->db_level == 0 && dr->dt.dl.dr_override_state == DR_OVERRIDDEN) { 2714 ASSERT(db->db_state != DB_NOFILL); 2715 dr->dr_zio = zio_write(zio, os->os_spa, txg, 2716 db->db_blkptr, data->b_data, arc_buf_size(data), &zp, 2717 dbuf_write_override_ready, dbuf_write_override_done, dr, 2718 ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb); 2719 mutex_enter(&db->db_mtx); 2720 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN; 2721 zio_write_override(dr->dr_zio, &dr->dt.dl.dr_overridden_by, 2722 dr->dt.dl.dr_copies, dr->dt.dl.dr_nopwrite); 2723 mutex_exit(&db->db_mtx); 2724 } else if (db->db_state == DB_NOFILL) { 2725 ASSERT(zp.zp_checksum == ZIO_CHECKSUM_OFF); 2726 dr->dr_zio = zio_write(zio, os->os_spa, txg, 2727 db->db_blkptr, NULL, db->db.db_size, &zp, 2728 dbuf_write_nofill_ready, dbuf_write_nofill_done, db, 2729 ZIO_PRIORITY_ASYNC_WRITE, 2730 ZIO_FLAG_MUSTSUCCEED | ZIO_FLAG_NODATA, &zb); 2731 } else { 2732 ASSERT(arc_released(data)); 2733 dr->dr_zio = arc_write(zio, os->os_spa, txg, 2734 db->db_blkptr, data, DBUF_IS_L2CACHEABLE(db), 2735 DBUF_IS_L2COMPRESSIBLE(db), &zp, dbuf_write_ready, 2736 dbuf_write_done, db, ZIO_PRIORITY_ASYNC_WRITE, 2737 ZIO_FLAG_MUSTSUCCEED, &zb); 2738 } 2739 } 2740