xref: /titanic_44/usr/src/uts/common/fs/zfs/dbuf.c (revision 03fc868668dd42b1b163d1fb8af3968f7283a7eb)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
24  * Copyright (c) 2013 by Delphix. All rights reserved.
25  * Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
26  * Copyright (c) 2013, Joyent, Inc. All rights reserved.
27  */
28 
29 #include <sys/zfs_context.h>
30 #include <sys/dmu.h>
31 #include <sys/dmu_send.h>
32 #include <sys/dmu_impl.h>
33 #include <sys/dbuf.h>
34 #include <sys/dmu_objset.h>
35 #include <sys/dsl_dataset.h>
36 #include <sys/dsl_dir.h>
37 #include <sys/dmu_tx.h>
38 #include <sys/spa.h>
39 #include <sys/zio.h>
40 #include <sys/dmu_zfetch.h>
41 #include <sys/sa.h>
42 #include <sys/sa_impl.h>
43 
44 /*
45  * Number of times that zfs_free_range() took the slow path while doing
46  * a zfs receive.  A nonzero value indicates a potential performance problem.
47  */
48 uint64_t zfs_free_range_recv_miss;
49 
50 static void dbuf_destroy(dmu_buf_impl_t *db);
51 static boolean_t dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx);
52 static void dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx);
53 
54 /*
55  * Global data structures and functions for the dbuf cache.
56  */
57 static kmem_cache_t *dbuf_cache;
58 
59 /* ARGSUSED */
60 static int
61 dbuf_cons(void *vdb, void *unused, int kmflag)
62 {
63 	dmu_buf_impl_t *db = vdb;
64 	bzero(db, sizeof (dmu_buf_impl_t));
65 
66 	mutex_init(&db->db_mtx, NULL, MUTEX_DEFAULT, NULL);
67 	cv_init(&db->db_changed, NULL, CV_DEFAULT, NULL);
68 	refcount_create(&db->db_holds);
69 	return (0);
70 }
71 
72 /* ARGSUSED */
73 static void
74 dbuf_dest(void *vdb, void *unused)
75 {
76 	dmu_buf_impl_t *db = vdb;
77 	mutex_destroy(&db->db_mtx);
78 	cv_destroy(&db->db_changed);
79 	refcount_destroy(&db->db_holds);
80 }
81 
82 /*
83  * dbuf hash table routines
84  */
85 static dbuf_hash_table_t dbuf_hash_table;
86 
87 static uint64_t dbuf_hash_count;
88 
89 static uint64_t
90 dbuf_hash(void *os, uint64_t obj, uint8_t lvl, uint64_t blkid)
91 {
92 	uintptr_t osv = (uintptr_t)os;
93 	uint64_t crc = -1ULL;
94 
95 	ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
96 	crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (lvl)) & 0xFF];
97 	crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (osv >> 6)) & 0xFF];
98 	crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (obj >> 0)) & 0xFF];
99 	crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (obj >> 8)) & 0xFF];
100 	crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (blkid >> 0)) & 0xFF];
101 	crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (blkid >> 8)) & 0xFF];
102 
103 	crc ^= (osv>>14) ^ (obj>>16) ^ (blkid>>16);
104 
105 	return (crc);
106 }
107 
108 #define	DBUF_HASH(os, obj, level, blkid) dbuf_hash(os, obj, level, blkid);
109 
110 #define	DBUF_EQUAL(dbuf, os, obj, level, blkid)		\
111 	((dbuf)->db.db_object == (obj) &&		\
112 	(dbuf)->db_objset == (os) &&			\
113 	(dbuf)->db_level == (level) &&			\
114 	(dbuf)->db_blkid == (blkid))
115 
116 dmu_buf_impl_t *
117 dbuf_find(dnode_t *dn, uint8_t level, uint64_t blkid)
118 {
119 	dbuf_hash_table_t *h = &dbuf_hash_table;
120 	objset_t *os = dn->dn_objset;
121 	uint64_t obj = dn->dn_object;
122 	uint64_t hv = DBUF_HASH(os, obj, level, blkid);
123 	uint64_t idx = hv & h->hash_table_mask;
124 	dmu_buf_impl_t *db;
125 
126 	mutex_enter(DBUF_HASH_MUTEX(h, idx));
127 	for (db = h->hash_table[idx]; db != NULL; db = db->db_hash_next) {
128 		if (DBUF_EQUAL(db, os, obj, level, blkid)) {
129 			mutex_enter(&db->db_mtx);
130 			if (db->db_state != DB_EVICTING) {
131 				mutex_exit(DBUF_HASH_MUTEX(h, idx));
132 				return (db);
133 			}
134 			mutex_exit(&db->db_mtx);
135 		}
136 	}
137 	mutex_exit(DBUF_HASH_MUTEX(h, idx));
138 	return (NULL);
139 }
140 
141 /*
142  * Insert an entry into the hash table.  If there is already an element
143  * equal to elem in the hash table, then the already existing element
144  * will be returned and the new element will not be inserted.
145  * Otherwise returns NULL.
146  */
147 static dmu_buf_impl_t *
148 dbuf_hash_insert(dmu_buf_impl_t *db)
149 {
150 	dbuf_hash_table_t *h = &dbuf_hash_table;
151 	objset_t *os = db->db_objset;
152 	uint64_t obj = db->db.db_object;
153 	int level = db->db_level;
154 	uint64_t blkid = db->db_blkid;
155 	uint64_t hv = DBUF_HASH(os, obj, level, blkid);
156 	uint64_t idx = hv & h->hash_table_mask;
157 	dmu_buf_impl_t *dbf;
158 
159 	mutex_enter(DBUF_HASH_MUTEX(h, idx));
160 	for (dbf = h->hash_table[idx]; dbf != NULL; dbf = dbf->db_hash_next) {
161 		if (DBUF_EQUAL(dbf, os, obj, level, blkid)) {
162 			mutex_enter(&dbf->db_mtx);
163 			if (dbf->db_state != DB_EVICTING) {
164 				mutex_exit(DBUF_HASH_MUTEX(h, idx));
165 				return (dbf);
166 			}
167 			mutex_exit(&dbf->db_mtx);
168 		}
169 	}
170 
171 	mutex_enter(&db->db_mtx);
172 	db->db_hash_next = h->hash_table[idx];
173 	h->hash_table[idx] = db;
174 	mutex_exit(DBUF_HASH_MUTEX(h, idx));
175 	atomic_add_64(&dbuf_hash_count, 1);
176 
177 	return (NULL);
178 }
179 
180 /*
181  * Remove an entry from the hash table.  This operation will
182  * fail if there are any existing holds on the db.
183  */
184 static void
185 dbuf_hash_remove(dmu_buf_impl_t *db)
186 {
187 	dbuf_hash_table_t *h = &dbuf_hash_table;
188 	uint64_t hv = DBUF_HASH(db->db_objset, db->db.db_object,
189 	    db->db_level, db->db_blkid);
190 	uint64_t idx = hv & h->hash_table_mask;
191 	dmu_buf_impl_t *dbf, **dbp;
192 
193 	/*
194 	 * We musn't hold db_mtx to maintin lock ordering:
195 	 * DBUF_HASH_MUTEX > db_mtx.
196 	 */
197 	ASSERT(refcount_is_zero(&db->db_holds));
198 	ASSERT(db->db_state == DB_EVICTING);
199 	ASSERT(!MUTEX_HELD(&db->db_mtx));
200 
201 	mutex_enter(DBUF_HASH_MUTEX(h, idx));
202 	dbp = &h->hash_table[idx];
203 	while ((dbf = *dbp) != db) {
204 		dbp = &dbf->db_hash_next;
205 		ASSERT(dbf != NULL);
206 	}
207 	*dbp = db->db_hash_next;
208 	db->db_hash_next = NULL;
209 	mutex_exit(DBUF_HASH_MUTEX(h, idx));
210 	atomic_add_64(&dbuf_hash_count, -1);
211 }
212 
213 static arc_evict_func_t dbuf_do_evict;
214 
215 static void
216 dbuf_evict_user(dmu_buf_impl_t *db)
217 {
218 	ASSERT(MUTEX_HELD(&db->db_mtx));
219 
220 	if (db->db_level != 0 || db->db_evict_func == NULL)
221 		return;
222 
223 	if (db->db_user_data_ptr_ptr)
224 		*db->db_user_data_ptr_ptr = db->db.db_data;
225 	db->db_evict_func(&db->db, db->db_user_ptr);
226 	db->db_user_ptr = NULL;
227 	db->db_user_data_ptr_ptr = NULL;
228 	db->db_evict_func = NULL;
229 }
230 
231 boolean_t
232 dbuf_is_metadata(dmu_buf_impl_t *db)
233 {
234 	if (db->db_level > 0) {
235 		return (B_TRUE);
236 	} else {
237 		boolean_t is_metadata;
238 
239 		DB_DNODE_ENTER(db);
240 		is_metadata = DMU_OT_IS_METADATA(DB_DNODE(db)->dn_type);
241 		DB_DNODE_EXIT(db);
242 
243 		return (is_metadata);
244 	}
245 }
246 
247 void
248 dbuf_evict(dmu_buf_impl_t *db)
249 {
250 	ASSERT(MUTEX_HELD(&db->db_mtx));
251 	ASSERT(db->db_buf == NULL);
252 	ASSERT(db->db_data_pending == NULL);
253 
254 	dbuf_clear(db);
255 	dbuf_destroy(db);
256 }
257 
258 void
259 dbuf_init(void)
260 {
261 	uint64_t hsize = 1ULL << 16;
262 	dbuf_hash_table_t *h = &dbuf_hash_table;
263 	int i;
264 
265 	/*
266 	 * The hash table is big enough to fill all of physical memory
267 	 * with an average 4K block size.  The table will take up
268 	 * totalmem*sizeof(void*)/4K (i.e. 2MB/GB with 8-byte pointers).
269 	 */
270 	while (hsize * 4096 < physmem * PAGESIZE)
271 		hsize <<= 1;
272 
273 retry:
274 	h->hash_table_mask = hsize - 1;
275 	h->hash_table = kmem_zalloc(hsize * sizeof (void *), KM_NOSLEEP);
276 	if (h->hash_table == NULL) {
277 		/* XXX - we should really return an error instead of assert */
278 		ASSERT(hsize > (1ULL << 10));
279 		hsize >>= 1;
280 		goto retry;
281 	}
282 
283 	dbuf_cache = kmem_cache_create("dmu_buf_impl_t",
284 	    sizeof (dmu_buf_impl_t),
285 	    0, dbuf_cons, dbuf_dest, NULL, NULL, NULL, 0);
286 
287 	for (i = 0; i < DBUF_MUTEXES; i++)
288 		mutex_init(&h->hash_mutexes[i], NULL, MUTEX_DEFAULT, NULL);
289 }
290 
291 void
292 dbuf_fini(void)
293 {
294 	dbuf_hash_table_t *h = &dbuf_hash_table;
295 	int i;
296 
297 	for (i = 0; i < DBUF_MUTEXES; i++)
298 		mutex_destroy(&h->hash_mutexes[i]);
299 	kmem_free(h->hash_table, (h->hash_table_mask + 1) * sizeof (void *));
300 	kmem_cache_destroy(dbuf_cache);
301 }
302 
303 /*
304  * Other stuff.
305  */
306 
307 #ifdef ZFS_DEBUG
308 static void
309 dbuf_verify(dmu_buf_impl_t *db)
310 {
311 	dnode_t *dn;
312 	dbuf_dirty_record_t *dr;
313 
314 	ASSERT(MUTEX_HELD(&db->db_mtx));
315 
316 	if (!(zfs_flags & ZFS_DEBUG_DBUF_VERIFY))
317 		return;
318 
319 	ASSERT(db->db_objset != NULL);
320 	DB_DNODE_ENTER(db);
321 	dn = DB_DNODE(db);
322 	if (dn == NULL) {
323 		ASSERT(db->db_parent == NULL);
324 		ASSERT(db->db_blkptr == NULL);
325 	} else {
326 		ASSERT3U(db->db.db_object, ==, dn->dn_object);
327 		ASSERT3P(db->db_objset, ==, dn->dn_objset);
328 		ASSERT3U(db->db_level, <, dn->dn_nlevels);
329 		ASSERT(db->db_blkid == DMU_BONUS_BLKID ||
330 		    db->db_blkid == DMU_SPILL_BLKID ||
331 		    !list_is_empty(&dn->dn_dbufs));
332 	}
333 	if (db->db_blkid == DMU_BONUS_BLKID) {
334 		ASSERT(dn != NULL);
335 		ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen);
336 		ASSERT3U(db->db.db_offset, ==, DMU_BONUS_BLKID);
337 	} else if (db->db_blkid == DMU_SPILL_BLKID) {
338 		ASSERT(dn != NULL);
339 		ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen);
340 		ASSERT0(db->db.db_offset);
341 	} else {
342 		ASSERT3U(db->db.db_offset, ==, db->db_blkid * db->db.db_size);
343 	}
344 
345 	for (dr = db->db_data_pending; dr != NULL; dr = dr->dr_next)
346 		ASSERT(dr->dr_dbuf == db);
347 
348 	for (dr = db->db_last_dirty; dr != NULL; dr = dr->dr_next)
349 		ASSERT(dr->dr_dbuf == db);
350 
351 	/*
352 	 * We can't assert that db_size matches dn_datablksz because it
353 	 * can be momentarily different when another thread is doing
354 	 * dnode_set_blksz().
355 	 */
356 	if (db->db_level == 0 && db->db.db_object == DMU_META_DNODE_OBJECT) {
357 		dr = db->db_data_pending;
358 		/*
359 		 * It should only be modified in syncing context, so
360 		 * make sure we only have one copy of the data.
361 		 */
362 		ASSERT(dr == NULL || dr->dt.dl.dr_data == db->db_buf);
363 	}
364 
365 	/* verify db->db_blkptr */
366 	if (db->db_blkptr) {
367 		if (db->db_parent == dn->dn_dbuf) {
368 			/* db is pointed to by the dnode */
369 			/* ASSERT3U(db->db_blkid, <, dn->dn_nblkptr); */
370 			if (DMU_OBJECT_IS_SPECIAL(db->db.db_object))
371 				ASSERT(db->db_parent == NULL);
372 			else
373 				ASSERT(db->db_parent != NULL);
374 			if (db->db_blkid != DMU_SPILL_BLKID)
375 				ASSERT3P(db->db_blkptr, ==,
376 				    &dn->dn_phys->dn_blkptr[db->db_blkid]);
377 		} else {
378 			/* db is pointed to by an indirect block */
379 			int epb = db->db_parent->db.db_size >> SPA_BLKPTRSHIFT;
380 			ASSERT3U(db->db_parent->db_level, ==, db->db_level+1);
381 			ASSERT3U(db->db_parent->db.db_object, ==,
382 			    db->db.db_object);
383 			/*
384 			 * dnode_grow_indblksz() can make this fail if we don't
385 			 * have the struct_rwlock.  XXX indblksz no longer
386 			 * grows.  safe to do this now?
387 			 */
388 			if (RW_WRITE_HELD(&dn->dn_struct_rwlock)) {
389 				ASSERT3P(db->db_blkptr, ==,
390 				    ((blkptr_t *)db->db_parent->db.db_data +
391 				    db->db_blkid % epb));
392 			}
393 		}
394 	}
395 	if ((db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr)) &&
396 	    (db->db_buf == NULL || db->db_buf->b_data) &&
397 	    db->db.db_data && db->db_blkid != DMU_BONUS_BLKID &&
398 	    db->db_state != DB_FILL && !dn->dn_free_txg) {
399 		/*
400 		 * If the blkptr isn't set but they have nonzero data,
401 		 * it had better be dirty, otherwise we'll lose that
402 		 * data when we evict this buffer.
403 		 */
404 		if (db->db_dirtycnt == 0) {
405 			uint64_t *buf = db->db.db_data;
406 			int i;
407 
408 			for (i = 0; i < db->db.db_size >> 3; i++) {
409 				ASSERT(buf[i] == 0);
410 			}
411 		}
412 	}
413 	DB_DNODE_EXIT(db);
414 }
415 #endif
416 
417 static void
418 dbuf_update_data(dmu_buf_impl_t *db)
419 {
420 	ASSERT(MUTEX_HELD(&db->db_mtx));
421 	if (db->db_level == 0 && db->db_user_data_ptr_ptr) {
422 		ASSERT(!refcount_is_zero(&db->db_holds));
423 		*db->db_user_data_ptr_ptr = db->db.db_data;
424 	}
425 }
426 
427 static void
428 dbuf_set_data(dmu_buf_impl_t *db, arc_buf_t *buf)
429 {
430 	ASSERT(MUTEX_HELD(&db->db_mtx));
431 	ASSERT(db->db_buf == NULL || !arc_has_callback(db->db_buf));
432 	db->db_buf = buf;
433 	if (buf != NULL) {
434 		ASSERT(buf->b_data != NULL);
435 		db->db.db_data = buf->b_data;
436 		if (!arc_released(buf))
437 			arc_set_callback(buf, dbuf_do_evict, db);
438 		dbuf_update_data(db);
439 	} else {
440 		dbuf_evict_user(db);
441 		db->db.db_data = NULL;
442 		if (db->db_state != DB_NOFILL)
443 			db->db_state = DB_UNCACHED;
444 	}
445 }
446 
447 /*
448  * Loan out an arc_buf for read.  Return the loaned arc_buf.
449  */
450 arc_buf_t *
451 dbuf_loan_arcbuf(dmu_buf_impl_t *db)
452 {
453 	arc_buf_t *abuf;
454 
455 	mutex_enter(&db->db_mtx);
456 	if (arc_released(db->db_buf) || refcount_count(&db->db_holds) > 1) {
457 		int blksz = db->db.db_size;
458 		spa_t *spa;
459 
460 		mutex_exit(&db->db_mtx);
461 		DB_GET_SPA(&spa, db);
462 		abuf = arc_loan_buf(spa, blksz);
463 		bcopy(db->db.db_data, abuf->b_data, blksz);
464 	} else {
465 		abuf = db->db_buf;
466 		arc_loan_inuse_buf(abuf, db);
467 		dbuf_set_data(db, NULL);
468 		mutex_exit(&db->db_mtx);
469 	}
470 	return (abuf);
471 }
472 
473 uint64_t
474 dbuf_whichblock(dnode_t *dn, uint64_t offset)
475 {
476 	if (dn->dn_datablkshift) {
477 		return (offset >> dn->dn_datablkshift);
478 	} else {
479 		ASSERT3U(offset, <, dn->dn_datablksz);
480 		return (0);
481 	}
482 }
483 
484 static void
485 dbuf_read_done(zio_t *zio, arc_buf_t *buf, void *vdb)
486 {
487 	dmu_buf_impl_t *db = vdb;
488 
489 	mutex_enter(&db->db_mtx);
490 	ASSERT3U(db->db_state, ==, DB_READ);
491 	/*
492 	 * All reads are synchronous, so we must have a hold on the dbuf
493 	 */
494 	ASSERT(refcount_count(&db->db_holds) > 0);
495 	ASSERT(db->db_buf == NULL);
496 	ASSERT(db->db.db_data == NULL);
497 	if (db->db_level == 0 && db->db_freed_in_flight) {
498 		/* we were freed in flight; disregard any error */
499 		arc_release(buf, db);
500 		bzero(buf->b_data, db->db.db_size);
501 		arc_buf_freeze(buf);
502 		db->db_freed_in_flight = FALSE;
503 		dbuf_set_data(db, buf);
504 		db->db_state = DB_CACHED;
505 	} else if (zio == NULL || zio->io_error == 0) {
506 		dbuf_set_data(db, buf);
507 		db->db_state = DB_CACHED;
508 	} else {
509 		ASSERT(db->db_blkid != DMU_BONUS_BLKID);
510 		ASSERT3P(db->db_buf, ==, NULL);
511 		VERIFY(arc_buf_remove_ref(buf, db));
512 		db->db_state = DB_UNCACHED;
513 	}
514 	cv_broadcast(&db->db_changed);
515 	dbuf_rele_and_unlock(db, NULL);
516 }
517 
518 static void
519 dbuf_read_impl(dmu_buf_impl_t *db, zio_t *zio, uint32_t *flags)
520 {
521 	dnode_t *dn;
522 	spa_t *spa;
523 	zbookmark_t zb;
524 	uint32_t aflags = ARC_NOWAIT;
525 
526 	DB_DNODE_ENTER(db);
527 	dn = DB_DNODE(db);
528 	ASSERT(!refcount_is_zero(&db->db_holds));
529 	/* We need the struct_rwlock to prevent db_blkptr from changing. */
530 	ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
531 	ASSERT(MUTEX_HELD(&db->db_mtx));
532 	ASSERT(db->db_state == DB_UNCACHED);
533 	ASSERT(db->db_buf == NULL);
534 
535 	if (db->db_blkid == DMU_BONUS_BLKID) {
536 		int bonuslen = MIN(dn->dn_bonuslen, dn->dn_phys->dn_bonuslen);
537 
538 		ASSERT3U(bonuslen, <=, db->db.db_size);
539 		db->db.db_data = zio_buf_alloc(DN_MAX_BONUSLEN);
540 		arc_space_consume(DN_MAX_BONUSLEN, ARC_SPACE_OTHER);
541 		if (bonuslen < DN_MAX_BONUSLEN)
542 			bzero(db->db.db_data, DN_MAX_BONUSLEN);
543 		if (bonuslen)
544 			bcopy(DN_BONUS(dn->dn_phys), db->db.db_data, bonuslen);
545 		DB_DNODE_EXIT(db);
546 		dbuf_update_data(db);
547 		db->db_state = DB_CACHED;
548 		mutex_exit(&db->db_mtx);
549 		return;
550 	}
551 
552 	/*
553 	 * Recheck BP_IS_HOLE() after dnode_block_freed() in case dnode_sync()
554 	 * processes the delete record and clears the bp while we are waiting
555 	 * for the dn_mtx (resulting in a "no" from block_freed).
556 	 */
557 	if (db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr) ||
558 	    (db->db_level == 0 && (dnode_block_freed(dn, db->db_blkid) ||
559 	    BP_IS_HOLE(db->db_blkptr)))) {
560 		arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
561 
562 		dbuf_set_data(db, arc_buf_alloc(dn->dn_objset->os_spa,
563 		    db->db.db_size, db, type));
564 		DB_DNODE_EXIT(db);
565 		bzero(db->db.db_data, db->db.db_size);
566 		db->db_state = DB_CACHED;
567 		*flags |= DB_RF_CACHED;
568 		mutex_exit(&db->db_mtx);
569 		return;
570 	}
571 
572 	spa = dn->dn_objset->os_spa;
573 	DB_DNODE_EXIT(db);
574 
575 	db->db_state = DB_READ;
576 	mutex_exit(&db->db_mtx);
577 
578 	if (DBUF_IS_L2CACHEABLE(db))
579 		aflags |= ARC_L2CACHE;
580 	if (DBUF_IS_L2COMPRESSIBLE(db))
581 		aflags |= ARC_L2COMPRESS;
582 
583 	SET_BOOKMARK(&zb, db->db_objset->os_dsl_dataset ?
584 	    db->db_objset->os_dsl_dataset->ds_object : DMU_META_OBJSET,
585 	    db->db.db_object, db->db_level, db->db_blkid);
586 
587 	dbuf_add_ref(db, NULL);
588 
589 	(void) arc_read(zio, spa, db->db_blkptr,
590 	    dbuf_read_done, db, ZIO_PRIORITY_SYNC_READ,
591 	    (*flags & DB_RF_CANFAIL) ? ZIO_FLAG_CANFAIL : ZIO_FLAG_MUSTSUCCEED,
592 	    &aflags, &zb);
593 	if (aflags & ARC_CACHED)
594 		*flags |= DB_RF_CACHED;
595 }
596 
597 int
598 dbuf_read(dmu_buf_impl_t *db, zio_t *zio, uint32_t flags)
599 {
600 	int err = 0;
601 	int havepzio = (zio != NULL);
602 	int prefetch;
603 	dnode_t *dn;
604 
605 	/*
606 	 * We don't have to hold the mutex to check db_state because it
607 	 * can't be freed while we have a hold on the buffer.
608 	 */
609 	ASSERT(!refcount_is_zero(&db->db_holds));
610 
611 	if (db->db_state == DB_NOFILL)
612 		return (SET_ERROR(EIO));
613 
614 	DB_DNODE_ENTER(db);
615 	dn = DB_DNODE(db);
616 	if ((flags & DB_RF_HAVESTRUCT) == 0)
617 		rw_enter(&dn->dn_struct_rwlock, RW_READER);
618 
619 	prefetch = db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
620 	    (flags & DB_RF_NOPREFETCH) == 0 && dn != NULL &&
621 	    DBUF_IS_CACHEABLE(db);
622 
623 	mutex_enter(&db->db_mtx);
624 	if (db->db_state == DB_CACHED) {
625 		mutex_exit(&db->db_mtx);
626 		if (prefetch)
627 			dmu_zfetch(&dn->dn_zfetch, db->db.db_offset,
628 			    db->db.db_size, TRUE);
629 		if ((flags & DB_RF_HAVESTRUCT) == 0)
630 			rw_exit(&dn->dn_struct_rwlock);
631 		DB_DNODE_EXIT(db);
632 	} else if (db->db_state == DB_UNCACHED) {
633 		spa_t *spa = dn->dn_objset->os_spa;
634 
635 		if (zio == NULL)
636 			zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL);
637 		dbuf_read_impl(db, zio, &flags);
638 
639 		/* dbuf_read_impl has dropped db_mtx for us */
640 
641 		if (prefetch)
642 			dmu_zfetch(&dn->dn_zfetch, db->db.db_offset,
643 			    db->db.db_size, flags & DB_RF_CACHED);
644 
645 		if ((flags & DB_RF_HAVESTRUCT) == 0)
646 			rw_exit(&dn->dn_struct_rwlock);
647 		DB_DNODE_EXIT(db);
648 
649 		if (!havepzio)
650 			err = zio_wait(zio);
651 	} else {
652 		/*
653 		 * Another reader came in while the dbuf was in flight
654 		 * between UNCACHED and CACHED.  Either a writer will finish
655 		 * writing the buffer (sending the dbuf to CACHED) or the
656 		 * first reader's request will reach the read_done callback
657 		 * and send the dbuf to CACHED.  Otherwise, a failure
658 		 * occurred and the dbuf went to UNCACHED.
659 		 */
660 		mutex_exit(&db->db_mtx);
661 		if (prefetch)
662 			dmu_zfetch(&dn->dn_zfetch, db->db.db_offset,
663 			    db->db.db_size, TRUE);
664 		if ((flags & DB_RF_HAVESTRUCT) == 0)
665 			rw_exit(&dn->dn_struct_rwlock);
666 		DB_DNODE_EXIT(db);
667 
668 		/* Skip the wait per the caller's request. */
669 		mutex_enter(&db->db_mtx);
670 		if ((flags & DB_RF_NEVERWAIT) == 0) {
671 			while (db->db_state == DB_READ ||
672 			    db->db_state == DB_FILL) {
673 				ASSERT(db->db_state == DB_READ ||
674 				    (flags & DB_RF_HAVESTRUCT) == 0);
675 				cv_wait(&db->db_changed, &db->db_mtx);
676 			}
677 			if (db->db_state == DB_UNCACHED)
678 				err = SET_ERROR(EIO);
679 		}
680 		mutex_exit(&db->db_mtx);
681 	}
682 
683 	ASSERT(err || havepzio || db->db_state == DB_CACHED);
684 	return (err);
685 }
686 
687 static void
688 dbuf_noread(dmu_buf_impl_t *db)
689 {
690 	ASSERT(!refcount_is_zero(&db->db_holds));
691 	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
692 	mutex_enter(&db->db_mtx);
693 	while (db->db_state == DB_READ || db->db_state == DB_FILL)
694 		cv_wait(&db->db_changed, &db->db_mtx);
695 	if (db->db_state == DB_UNCACHED) {
696 		arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
697 		spa_t *spa;
698 
699 		ASSERT(db->db_buf == NULL);
700 		ASSERT(db->db.db_data == NULL);
701 		DB_GET_SPA(&spa, db);
702 		dbuf_set_data(db, arc_buf_alloc(spa, db->db.db_size, db, type));
703 		db->db_state = DB_FILL;
704 	} else if (db->db_state == DB_NOFILL) {
705 		dbuf_set_data(db, NULL);
706 	} else {
707 		ASSERT3U(db->db_state, ==, DB_CACHED);
708 	}
709 	mutex_exit(&db->db_mtx);
710 }
711 
712 /*
713  * This is our just-in-time copy function.  It makes a copy of
714  * buffers, that have been modified in a previous transaction
715  * group, before we modify them in the current active group.
716  *
717  * This function is used in two places: when we are dirtying a
718  * buffer for the first time in a txg, and when we are freeing
719  * a range in a dnode that includes this buffer.
720  *
721  * Note that when we are called from dbuf_free_range() we do
722  * not put a hold on the buffer, we just traverse the active
723  * dbuf list for the dnode.
724  */
725 static void
726 dbuf_fix_old_data(dmu_buf_impl_t *db, uint64_t txg)
727 {
728 	dbuf_dirty_record_t *dr = db->db_last_dirty;
729 
730 	ASSERT(MUTEX_HELD(&db->db_mtx));
731 	ASSERT(db->db.db_data != NULL);
732 	ASSERT(db->db_level == 0);
733 	ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT);
734 
735 	if (dr == NULL ||
736 	    (dr->dt.dl.dr_data !=
737 	    ((db->db_blkid  == DMU_BONUS_BLKID) ? db->db.db_data : db->db_buf)))
738 		return;
739 
740 	/*
741 	 * If the last dirty record for this dbuf has not yet synced
742 	 * and its referencing the dbuf data, either:
743 	 *	reset the reference to point to a new copy,
744 	 * or (if there a no active holders)
745 	 *	just null out the current db_data pointer.
746 	 */
747 	ASSERT(dr->dr_txg >= txg - 2);
748 	if (db->db_blkid == DMU_BONUS_BLKID) {
749 		/* Note that the data bufs here are zio_bufs */
750 		dr->dt.dl.dr_data = zio_buf_alloc(DN_MAX_BONUSLEN);
751 		arc_space_consume(DN_MAX_BONUSLEN, ARC_SPACE_OTHER);
752 		bcopy(db->db.db_data, dr->dt.dl.dr_data, DN_MAX_BONUSLEN);
753 	} else if (refcount_count(&db->db_holds) > db->db_dirtycnt) {
754 		int size = db->db.db_size;
755 		arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
756 		spa_t *spa;
757 
758 		DB_GET_SPA(&spa, db);
759 		dr->dt.dl.dr_data = arc_buf_alloc(spa, size, db, type);
760 		bcopy(db->db.db_data, dr->dt.dl.dr_data->b_data, size);
761 	} else {
762 		dbuf_set_data(db, NULL);
763 	}
764 }
765 
766 void
767 dbuf_unoverride(dbuf_dirty_record_t *dr)
768 {
769 	dmu_buf_impl_t *db = dr->dr_dbuf;
770 	blkptr_t *bp = &dr->dt.dl.dr_overridden_by;
771 	uint64_t txg = dr->dr_txg;
772 
773 	ASSERT(MUTEX_HELD(&db->db_mtx));
774 	ASSERT(dr->dt.dl.dr_override_state != DR_IN_DMU_SYNC);
775 	ASSERT(db->db_level == 0);
776 
777 	if (db->db_blkid == DMU_BONUS_BLKID ||
778 	    dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN)
779 		return;
780 
781 	ASSERT(db->db_data_pending != dr);
782 
783 	/* free this block */
784 	if (!BP_IS_HOLE(bp) && !dr->dt.dl.dr_nopwrite) {
785 		spa_t *spa;
786 
787 		DB_GET_SPA(&spa, db);
788 		zio_free(spa, txg, bp);
789 	}
790 	dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
791 	dr->dt.dl.dr_nopwrite = B_FALSE;
792 
793 	/*
794 	 * Release the already-written buffer, so we leave it in
795 	 * a consistent dirty state.  Note that all callers are
796 	 * modifying the buffer, so they will immediately do
797 	 * another (redundant) arc_release().  Therefore, leave
798 	 * the buf thawed to save the effort of freezing &
799 	 * immediately re-thawing it.
800 	 */
801 	arc_release(dr->dt.dl.dr_data, db);
802 }
803 
804 /*
805  * Evict (if its unreferenced) or clear (if its referenced) any level-0
806  * data blocks in the free range, so that any future readers will find
807  * empty blocks.  Also, if we happen across any level-1 dbufs in the
808  * range that have not already been marked dirty, mark them dirty so
809  * they stay in memory.
810  *
811  * This is a no-op if the dataset is in the middle of an incremental
812  * receive; see comment below for details.
813  */
814 void
815 dbuf_free_range(dnode_t *dn, uint64_t start, uint64_t end, dmu_tx_t *tx)
816 {
817 	dmu_buf_impl_t *db, *db_next;
818 	uint64_t txg = tx->tx_txg;
819 	int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
820 	uint64_t first_l1 = start >> epbs;
821 	uint64_t last_l1 = end >> epbs;
822 
823 	if (end > dn->dn_maxblkid && (end != DMU_SPILL_BLKID)) {
824 		end = dn->dn_maxblkid;
825 		last_l1 = end >> epbs;
826 	}
827 	dprintf_dnode(dn, "start=%llu end=%llu\n", start, end);
828 
829 	mutex_enter(&dn->dn_dbufs_mtx);
830 	if (start >= dn->dn_unlisted_l0_blkid * dn->dn_datablksz) {
831 		/* There can't be any dbufs in this range; no need to search. */
832 		mutex_exit(&dn->dn_dbufs_mtx);
833 		return;
834 	} else if (dmu_objset_is_receiving(dn->dn_objset)) {
835 		/*
836 		 * If we are receiving, we expect there to be no dbufs in
837 		 * the range to be freed, because receive modifies each
838 		 * block at most once, and in offset order.  If this is
839 		 * not the case, it can lead to performance problems,
840 		 * so note that we unexpectedly took the slow path.
841 		 */
842 		atomic_inc_64(&zfs_free_range_recv_miss);
843 	}
844 
845 	for (db = list_head(&dn->dn_dbufs); db != NULL; db = db_next) {
846 		db_next = list_next(&dn->dn_dbufs, db);
847 		ASSERT(db->db_blkid != DMU_BONUS_BLKID);
848 
849 		if (db->db_level == 1 &&
850 		    db->db_blkid >= first_l1 && db->db_blkid <= last_l1) {
851 			mutex_enter(&db->db_mtx);
852 			if (db->db_last_dirty &&
853 			    db->db_last_dirty->dr_txg < txg) {
854 				dbuf_add_ref(db, FTAG);
855 				mutex_exit(&db->db_mtx);
856 				dbuf_will_dirty(db, tx);
857 				dbuf_rele(db, FTAG);
858 			} else {
859 				mutex_exit(&db->db_mtx);
860 			}
861 		}
862 
863 		if (db->db_level != 0)
864 			continue;
865 		dprintf_dbuf(db, "found buf %s\n", "");
866 		if (db->db_blkid < start || db->db_blkid > end)
867 			continue;
868 
869 		/* found a level 0 buffer in the range */
870 		mutex_enter(&db->db_mtx);
871 		if (dbuf_undirty(db, tx)) {
872 			/* mutex has been dropped and dbuf destroyed */
873 			continue;
874 		}
875 
876 		if (db->db_state == DB_UNCACHED ||
877 		    db->db_state == DB_NOFILL ||
878 		    db->db_state == DB_EVICTING) {
879 			ASSERT(db->db.db_data == NULL);
880 			mutex_exit(&db->db_mtx);
881 			continue;
882 		}
883 		if (db->db_state == DB_READ || db->db_state == DB_FILL) {
884 			/* will be handled in dbuf_read_done or dbuf_rele */
885 			db->db_freed_in_flight = TRUE;
886 			mutex_exit(&db->db_mtx);
887 			continue;
888 		}
889 		if (refcount_count(&db->db_holds) == 0) {
890 			ASSERT(db->db_buf);
891 			dbuf_clear(db);
892 			continue;
893 		}
894 		/* The dbuf is referenced */
895 
896 		if (db->db_last_dirty != NULL) {
897 			dbuf_dirty_record_t *dr = db->db_last_dirty;
898 
899 			if (dr->dr_txg == txg) {
900 				/*
901 				 * This buffer is "in-use", re-adjust the file
902 				 * size to reflect that this buffer may
903 				 * contain new data when we sync.
904 				 */
905 				if (db->db_blkid != DMU_SPILL_BLKID &&
906 				    db->db_blkid > dn->dn_maxblkid)
907 					dn->dn_maxblkid = db->db_blkid;
908 				dbuf_unoverride(dr);
909 			} else {
910 				/*
911 				 * This dbuf is not dirty in the open context.
912 				 * Either uncache it (if its not referenced in
913 				 * the open context) or reset its contents to
914 				 * empty.
915 				 */
916 				dbuf_fix_old_data(db, txg);
917 			}
918 		}
919 		/* clear the contents if its cached */
920 		if (db->db_state == DB_CACHED) {
921 			ASSERT(db->db.db_data != NULL);
922 			arc_release(db->db_buf, db);
923 			bzero(db->db.db_data, db->db.db_size);
924 			arc_buf_freeze(db->db_buf);
925 		}
926 
927 		mutex_exit(&db->db_mtx);
928 	}
929 	mutex_exit(&dn->dn_dbufs_mtx);
930 }
931 
932 static int
933 dbuf_block_freeable(dmu_buf_impl_t *db)
934 {
935 	dsl_dataset_t *ds = db->db_objset->os_dsl_dataset;
936 	uint64_t birth_txg = 0;
937 
938 	/*
939 	 * We don't need any locking to protect db_blkptr:
940 	 * If it's syncing, then db_last_dirty will be set
941 	 * so we'll ignore db_blkptr.
942 	 */
943 	ASSERT(MUTEX_HELD(&db->db_mtx));
944 	if (db->db_last_dirty)
945 		birth_txg = db->db_last_dirty->dr_txg;
946 	else if (db->db_blkptr)
947 		birth_txg = db->db_blkptr->blk_birth;
948 
949 	/*
950 	 * If we don't exist or are in a snapshot, we can't be freed.
951 	 * Don't pass the bp to dsl_dataset_block_freeable() since we
952 	 * are holding the db_mtx lock and might deadlock if we are
953 	 * prefetching a dedup-ed block.
954 	 */
955 	if (birth_txg)
956 		return (ds == NULL ||
957 		    dsl_dataset_block_freeable(ds, NULL, birth_txg));
958 	else
959 		return (FALSE);
960 }
961 
962 void
963 dbuf_new_size(dmu_buf_impl_t *db, int size, dmu_tx_t *tx)
964 {
965 	arc_buf_t *buf, *obuf;
966 	int osize = db->db.db_size;
967 	arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
968 	dnode_t *dn;
969 
970 	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
971 
972 	DB_DNODE_ENTER(db);
973 	dn = DB_DNODE(db);
974 
975 	/* XXX does *this* func really need the lock? */
976 	ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock));
977 
978 	/*
979 	 * This call to dbuf_will_dirty() with the dn_struct_rwlock held
980 	 * is OK, because there can be no other references to the db
981 	 * when we are changing its size, so no concurrent DB_FILL can
982 	 * be happening.
983 	 */
984 	/*
985 	 * XXX we should be doing a dbuf_read, checking the return
986 	 * value and returning that up to our callers
987 	 */
988 	dbuf_will_dirty(db, tx);
989 
990 	/* create the data buffer for the new block */
991 	buf = arc_buf_alloc(dn->dn_objset->os_spa, size, db, type);
992 
993 	/* copy old block data to the new block */
994 	obuf = db->db_buf;
995 	bcopy(obuf->b_data, buf->b_data, MIN(osize, size));
996 	/* zero the remainder */
997 	if (size > osize)
998 		bzero((uint8_t *)buf->b_data + osize, size - osize);
999 
1000 	mutex_enter(&db->db_mtx);
1001 	dbuf_set_data(db, buf);
1002 	VERIFY(arc_buf_remove_ref(obuf, db));
1003 	db->db.db_size = size;
1004 
1005 	if (db->db_level == 0) {
1006 		ASSERT3U(db->db_last_dirty->dr_txg, ==, tx->tx_txg);
1007 		db->db_last_dirty->dt.dl.dr_data = buf;
1008 	}
1009 	mutex_exit(&db->db_mtx);
1010 
1011 	dnode_willuse_space(dn, size-osize, tx);
1012 	DB_DNODE_EXIT(db);
1013 }
1014 
1015 void
1016 dbuf_release_bp(dmu_buf_impl_t *db)
1017 {
1018 	objset_t *os;
1019 
1020 	DB_GET_OBJSET(&os, db);
1021 	ASSERT(dsl_pool_sync_context(dmu_objset_pool(os)));
1022 	ASSERT(arc_released(os->os_phys_buf) ||
1023 	    list_link_active(&os->os_dsl_dataset->ds_synced_link));
1024 	ASSERT(db->db_parent == NULL || arc_released(db->db_parent->db_buf));
1025 
1026 	(void) arc_release(db->db_buf, db);
1027 }
1028 
1029 dbuf_dirty_record_t *
1030 dbuf_dirty(dmu_buf_impl_t *db, dmu_tx_t *tx)
1031 {
1032 	dnode_t *dn;
1033 	objset_t *os;
1034 	dbuf_dirty_record_t **drp, *dr;
1035 	int drop_struct_lock = FALSE;
1036 	boolean_t do_free_accounting = B_FALSE;
1037 	int txgoff = tx->tx_txg & TXG_MASK;
1038 
1039 	ASSERT(tx->tx_txg != 0);
1040 	ASSERT(!refcount_is_zero(&db->db_holds));
1041 	DMU_TX_DIRTY_BUF(tx, db);
1042 
1043 	DB_DNODE_ENTER(db);
1044 	dn = DB_DNODE(db);
1045 	/*
1046 	 * Shouldn't dirty a regular buffer in syncing context.  Private
1047 	 * objects may be dirtied in syncing context, but only if they
1048 	 * were already pre-dirtied in open context.
1049 	 */
1050 	ASSERT(!dmu_tx_is_syncing(tx) ||
1051 	    BP_IS_HOLE(dn->dn_objset->os_rootbp) ||
1052 	    DMU_OBJECT_IS_SPECIAL(dn->dn_object) ||
1053 	    dn->dn_objset->os_dsl_dataset == NULL);
1054 	/*
1055 	 * We make this assert for private objects as well, but after we
1056 	 * check if we're already dirty.  They are allowed to re-dirty
1057 	 * in syncing context.
1058 	 */
1059 	ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT ||
1060 	    dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx ==
1061 	    (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN));
1062 
1063 	mutex_enter(&db->db_mtx);
1064 	/*
1065 	 * XXX make this true for indirects too?  The problem is that
1066 	 * transactions created with dmu_tx_create_assigned() from
1067 	 * syncing context don't bother holding ahead.
1068 	 */
1069 	ASSERT(db->db_level != 0 ||
1070 	    db->db_state == DB_CACHED || db->db_state == DB_FILL ||
1071 	    db->db_state == DB_NOFILL);
1072 
1073 	mutex_enter(&dn->dn_mtx);
1074 	/*
1075 	 * Don't set dirtyctx to SYNC if we're just modifying this as we
1076 	 * initialize the objset.
1077 	 */
1078 	if (dn->dn_dirtyctx == DN_UNDIRTIED &&
1079 	    !BP_IS_HOLE(dn->dn_objset->os_rootbp)) {
1080 		dn->dn_dirtyctx =
1081 		    (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN);
1082 		ASSERT(dn->dn_dirtyctx_firstset == NULL);
1083 		dn->dn_dirtyctx_firstset = kmem_alloc(1, KM_SLEEP);
1084 	}
1085 	mutex_exit(&dn->dn_mtx);
1086 
1087 	if (db->db_blkid == DMU_SPILL_BLKID)
1088 		dn->dn_have_spill = B_TRUE;
1089 
1090 	/*
1091 	 * If this buffer is already dirty, we're done.
1092 	 */
1093 	drp = &db->db_last_dirty;
1094 	ASSERT(*drp == NULL || (*drp)->dr_txg <= tx->tx_txg ||
1095 	    db->db.db_object == DMU_META_DNODE_OBJECT);
1096 	while ((dr = *drp) != NULL && dr->dr_txg > tx->tx_txg)
1097 		drp = &dr->dr_next;
1098 	if (dr && dr->dr_txg == tx->tx_txg) {
1099 		DB_DNODE_EXIT(db);
1100 
1101 		if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID) {
1102 			/*
1103 			 * If this buffer has already been written out,
1104 			 * we now need to reset its state.
1105 			 */
1106 			dbuf_unoverride(dr);
1107 			if (db->db.db_object != DMU_META_DNODE_OBJECT &&
1108 			    db->db_state != DB_NOFILL)
1109 				arc_buf_thaw(db->db_buf);
1110 		}
1111 		mutex_exit(&db->db_mtx);
1112 		return (dr);
1113 	}
1114 
1115 	/*
1116 	 * Only valid if not already dirty.
1117 	 */
1118 	ASSERT(dn->dn_object == 0 ||
1119 	    dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx ==
1120 	    (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN));
1121 
1122 	ASSERT3U(dn->dn_nlevels, >, db->db_level);
1123 	ASSERT((dn->dn_phys->dn_nlevels == 0 && db->db_level == 0) ||
1124 	    dn->dn_phys->dn_nlevels > db->db_level ||
1125 	    dn->dn_next_nlevels[txgoff] > db->db_level ||
1126 	    dn->dn_next_nlevels[(tx->tx_txg-1) & TXG_MASK] > db->db_level ||
1127 	    dn->dn_next_nlevels[(tx->tx_txg-2) & TXG_MASK] > db->db_level);
1128 
1129 	/*
1130 	 * We should only be dirtying in syncing context if it's the
1131 	 * mos or we're initializing the os or it's a special object.
1132 	 * However, we are allowed to dirty in syncing context provided
1133 	 * we already dirtied it in open context.  Hence we must make
1134 	 * this assertion only if we're not already dirty.
1135 	 */
1136 	os = dn->dn_objset;
1137 	ASSERT(!dmu_tx_is_syncing(tx) || DMU_OBJECT_IS_SPECIAL(dn->dn_object) ||
1138 	    os->os_dsl_dataset == NULL || BP_IS_HOLE(os->os_rootbp));
1139 	ASSERT(db->db.db_size != 0);
1140 
1141 	dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size);
1142 
1143 	if (db->db_blkid != DMU_BONUS_BLKID) {
1144 		/*
1145 		 * Update the accounting.
1146 		 * Note: we delay "free accounting" until after we drop
1147 		 * the db_mtx.  This keeps us from grabbing other locks
1148 		 * (and possibly deadlocking) in bp_get_dsize() while
1149 		 * also holding the db_mtx.
1150 		 */
1151 		dnode_willuse_space(dn, db->db.db_size, tx);
1152 		do_free_accounting = dbuf_block_freeable(db);
1153 	}
1154 
1155 	/*
1156 	 * If this buffer is dirty in an old transaction group we need
1157 	 * to make a copy of it so that the changes we make in this
1158 	 * transaction group won't leak out when we sync the older txg.
1159 	 */
1160 	dr = kmem_zalloc(sizeof (dbuf_dirty_record_t), KM_SLEEP);
1161 	if (db->db_level == 0) {
1162 		void *data_old = db->db_buf;
1163 
1164 		if (db->db_state != DB_NOFILL) {
1165 			if (db->db_blkid == DMU_BONUS_BLKID) {
1166 				dbuf_fix_old_data(db, tx->tx_txg);
1167 				data_old = db->db.db_data;
1168 			} else if (db->db.db_object != DMU_META_DNODE_OBJECT) {
1169 				/*
1170 				 * Release the data buffer from the cache so
1171 				 * that we can modify it without impacting
1172 				 * possible other users of this cached data
1173 				 * block.  Note that indirect blocks and
1174 				 * private objects are not released until the
1175 				 * syncing state (since they are only modified
1176 				 * then).
1177 				 */
1178 				arc_release(db->db_buf, db);
1179 				dbuf_fix_old_data(db, tx->tx_txg);
1180 				data_old = db->db_buf;
1181 			}
1182 			ASSERT(data_old != NULL);
1183 		}
1184 		dr->dt.dl.dr_data = data_old;
1185 	} else {
1186 		mutex_init(&dr->dt.di.dr_mtx, NULL, MUTEX_DEFAULT, NULL);
1187 		list_create(&dr->dt.di.dr_children,
1188 		    sizeof (dbuf_dirty_record_t),
1189 		    offsetof(dbuf_dirty_record_t, dr_dirty_node));
1190 	}
1191 	if (db->db_blkid != DMU_BONUS_BLKID && os->os_dsl_dataset != NULL)
1192 		dr->dr_accounted = db->db.db_size;
1193 	dr->dr_dbuf = db;
1194 	dr->dr_txg = tx->tx_txg;
1195 	dr->dr_next = *drp;
1196 	*drp = dr;
1197 
1198 	/*
1199 	 * We could have been freed_in_flight between the dbuf_noread
1200 	 * and dbuf_dirty.  We win, as though the dbuf_noread() had
1201 	 * happened after the free.
1202 	 */
1203 	if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
1204 	    db->db_blkid != DMU_SPILL_BLKID) {
1205 		mutex_enter(&dn->dn_mtx);
1206 		dnode_clear_range(dn, db->db_blkid, 1, tx);
1207 		mutex_exit(&dn->dn_mtx);
1208 		db->db_freed_in_flight = FALSE;
1209 	}
1210 
1211 	/*
1212 	 * This buffer is now part of this txg
1213 	 */
1214 	dbuf_add_ref(db, (void *)(uintptr_t)tx->tx_txg);
1215 	db->db_dirtycnt += 1;
1216 	ASSERT3U(db->db_dirtycnt, <=, 3);
1217 
1218 	mutex_exit(&db->db_mtx);
1219 
1220 	if (db->db_blkid == DMU_BONUS_BLKID ||
1221 	    db->db_blkid == DMU_SPILL_BLKID) {
1222 		mutex_enter(&dn->dn_mtx);
1223 		ASSERT(!list_link_active(&dr->dr_dirty_node));
1224 		list_insert_tail(&dn->dn_dirty_records[txgoff], dr);
1225 		mutex_exit(&dn->dn_mtx);
1226 		dnode_setdirty(dn, tx);
1227 		DB_DNODE_EXIT(db);
1228 		return (dr);
1229 	} else if (do_free_accounting) {
1230 		blkptr_t *bp = db->db_blkptr;
1231 		int64_t willfree = (bp && !BP_IS_HOLE(bp)) ?
1232 		    bp_get_dsize(os->os_spa, bp) : db->db.db_size;
1233 		/*
1234 		 * This is only a guess -- if the dbuf is dirty
1235 		 * in a previous txg, we don't know how much
1236 		 * space it will use on disk yet.  We should
1237 		 * really have the struct_rwlock to access
1238 		 * db_blkptr, but since this is just a guess,
1239 		 * it's OK if we get an odd answer.
1240 		 */
1241 		ddt_prefetch(os->os_spa, bp);
1242 		dnode_willuse_space(dn, -willfree, tx);
1243 	}
1244 
1245 	if (!RW_WRITE_HELD(&dn->dn_struct_rwlock)) {
1246 		rw_enter(&dn->dn_struct_rwlock, RW_READER);
1247 		drop_struct_lock = TRUE;
1248 	}
1249 
1250 	if (db->db_level == 0) {
1251 		dnode_new_blkid(dn, db->db_blkid, tx, drop_struct_lock);
1252 		ASSERT(dn->dn_maxblkid >= db->db_blkid);
1253 	}
1254 
1255 	if (db->db_level+1 < dn->dn_nlevels) {
1256 		dmu_buf_impl_t *parent = db->db_parent;
1257 		dbuf_dirty_record_t *di;
1258 		int parent_held = FALSE;
1259 
1260 		if (db->db_parent == NULL || db->db_parent == dn->dn_dbuf) {
1261 			int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
1262 
1263 			parent = dbuf_hold_level(dn, db->db_level+1,
1264 			    db->db_blkid >> epbs, FTAG);
1265 			ASSERT(parent != NULL);
1266 			parent_held = TRUE;
1267 		}
1268 		if (drop_struct_lock)
1269 			rw_exit(&dn->dn_struct_rwlock);
1270 		ASSERT3U(db->db_level+1, ==, parent->db_level);
1271 		di = dbuf_dirty(parent, tx);
1272 		if (parent_held)
1273 			dbuf_rele(parent, FTAG);
1274 
1275 		mutex_enter(&db->db_mtx);
1276 		/*
1277 		 * Since we've dropped the mutex, it's possible that
1278 		 * dbuf_undirty() might have changed this out from under us.
1279 		 */
1280 		if (db->db_last_dirty == dr ||
1281 		    dn->dn_object == DMU_META_DNODE_OBJECT) {
1282 			mutex_enter(&di->dt.di.dr_mtx);
1283 			ASSERT3U(di->dr_txg, ==, tx->tx_txg);
1284 			ASSERT(!list_link_active(&dr->dr_dirty_node));
1285 			list_insert_tail(&di->dt.di.dr_children, dr);
1286 			mutex_exit(&di->dt.di.dr_mtx);
1287 			dr->dr_parent = di;
1288 		}
1289 		mutex_exit(&db->db_mtx);
1290 	} else {
1291 		ASSERT(db->db_level+1 == dn->dn_nlevels);
1292 		ASSERT(db->db_blkid < dn->dn_nblkptr);
1293 		ASSERT(db->db_parent == NULL || db->db_parent == dn->dn_dbuf);
1294 		mutex_enter(&dn->dn_mtx);
1295 		ASSERT(!list_link_active(&dr->dr_dirty_node));
1296 		list_insert_tail(&dn->dn_dirty_records[txgoff], dr);
1297 		mutex_exit(&dn->dn_mtx);
1298 		if (drop_struct_lock)
1299 			rw_exit(&dn->dn_struct_rwlock);
1300 	}
1301 
1302 	dnode_setdirty(dn, tx);
1303 	DB_DNODE_EXIT(db);
1304 	return (dr);
1305 }
1306 
1307 /*
1308  * Undirty a buffer in the transaction group referenced by the given
1309  * transaction.  Return whether this evicted the dbuf.
1310  */
1311 static boolean_t
1312 dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx)
1313 {
1314 	dnode_t *dn;
1315 	uint64_t txg = tx->tx_txg;
1316 	dbuf_dirty_record_t *dr, **drp;
1317 
1318 	ASSERT(txg != 0);
1319 	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1320 	ASSERT0(db->db_level);
1321 	ASSERT(MUTEX_HELD(&db->db_mtx));
1322 
1323 	/*
1324 	 * If this buffer is not dirty, we're done.
1325 	 */
1326 	for (drp = &db->db_last_dirty; (dr = *drp) != NULL; drp = &dr->dr_next)
1327 		if (dr->dr_txg <= txg)
1328 			break;
1329 	if (dr == NULL || dr->dr_txg < txg)
1330 		return (B_FALSE);
1331 	ASSERT(dr->dr_txg == txg);
1332 	ASSERT(dr->dr_dbuf == db);
1333 
1334 	DB_DNODE_ENTER(db);
1335 	dn = DB_DNODE(db);
1336 
1337 	/*
1338 	 * Note:  This code will probably work even if there are concurrent
1339 	 * holders, but it is untested in that scenerio, as the ZPL and
1340 	 * ztest have additional locking (the range locks) that prevents
1341 	 * that type of concurrent access.
1342 	 */
1343 	ASSERT3U(refcount_count(&db->db_holds), ==, db->db_dirtycnt);
1344 
1345 	dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size);
1346 
1347 	ASSERT(db->db.db_size != 0);
1348 
1349 	/*
1350 	 * Any space we accounted for in dp_dirty_* will be cleaned up by
1351 	 * dsl_pool_sync().  This is relatively rare so the discrepancy
1352 	 * is not a big deal.
1353 	 */
1354 
1355 	*drp = dr->dr_next;
1356 
1357 	/*
1358 	 * Note that there are three places in dbuf_dirty()
1359 	 * where this dirty record may be put on a list.
1360 	 * Make sure to do a list_remove corresponding to
1361 	 * every one of those list_insert calls.
1362 	 */
1363 	if (dr->dr_parent) {
1364 		mutex_enter(&dr->dr_parent->dt.di.dr_mtx);
1365 		list_remove(&dr->dr_parent->dt.di.dr_children, dr);
1366 		mutex_exit(&dr->dr_parent->dt.di.dr_mtx);
1367 	} else if (db->db_blkid == DMU_SPILL_BLKID ||
1368 	    db->db_level+1 == dn->dn_nlevels) {
1369 		ASSERT(db->db_blkptr == NULL || db->db_parent == dn->dn_dbuf);
1370 		mutex_enter(&dn->dn_mtx);
1371 		list_remove(&dn->dn_dirty_records[txg & TXG_MASK], dr);
1372 		mutex_exit(&dn->dn_mtx);
1373 	}
1374 	DB_DNODE_EXIT(db);
1375 
1376 	if (db->db_state != DB_NOFILL) {
1377 		dbuf_unoverride(dr);
1378 
1379 		ASSERT(db->db_buf != NULL);
1380 		ASSERT(dr->dt.dl.dr_data != NULL);
1381 		if (dr->dt.dl.dr_data != db->db_buf)
1382 			VERIFY(arc_buf_remove_ref(dr->dt.dl.dr_data, db));
1383 	}
1384 	kmem_free(dr, sizeof (dbuf_dirty_record_t));
1385 
1386 	ASSERT(db->db_dirtycnt > 0);
1387 	db->db_dirtycnt -= 1;
1388 
1389 	if (refcount_remove(&db->db_holds, (void *)(uintptr_t)txg) == 0) {
1390 		arc_buf_t *buf = db->db_buf;
1391 
1392 		ASSERT(db->db_state == DB_NOFILL || arc_released(buf));
1393 		dbuf_set_data(db, NULL);
1394 		VERIFY(arc_buf_remove_ref(buf, db));
1395 		dbuf_evict(db);
1396 		return (B_TRUE);
1397 	}
1398 
1399 	return (B_FALSE);
1400 }
1401 
1402 #pragma weak dmu_buf_will_dirty = dbuf_will_dirty
1403 void
1404 dbuf_will_dirty(dmu_buf_impl_t *db, dmu_tx_t *tx)
1405 {
1406 	int rf = DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH;
1407 
1408 	ASSERT(tx->tx_txg != 0);
1409 	ASSERT(!refcount_is_zero(&db->db_holds));
1410 
1411 	DB_DNODE_ENTER(db);
1412 	if (RW_WRITE_HELD(&DB_DNODE(db)->dn_struct_rwlock))
1413 		rf |= DB_RF_HAVESTRUCT;
1414 	DB_DNODE_EXIT(db);
1415 	(void) dbuf_read(db, NULL, rf);
1416 	(void) dbuf_dirty(db, tx);
1417 }
1418 
1419 void
1420 dmu_buf_will_not_fill(dmu_buf_t *db_fake, dmu_tx_t *tx)
1421 {
1422 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
1423 
1424 	db->db_state = DB_NOFILL;
1425 
1426 	dmu_buf_will_fill(db_fake, tx);
1427 }
1428 
1429 void
1430 dmu_buf_will_fill(dmu_buf_t *db_fake, dmu_tx_t *tx)
1431 {
1432 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
1433 
1434 	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1435 	ASSERT(tx->tx_txg != 0);
1436 	ASSERT(db->db_level == 0);
1437 	ASSERT(!refcount_is_zero(&db->db_holds));
1438 
1439 	ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT ||
1440 	    dmu_tx_private_ok(tx));
1441 
1442 	dbuf_noread(db);
1443 	(void) dbuf_dirty(db, tx);
1444 }
1445 
1446 #pragma weak dmu_buf_fill_done = dbuf_fill_done
1447 /* ARGSUSED */
1448 void
1449 dbuf_fill_done(dmu_buf_impl_t *db, dmu_tx_t *tx)
1450 {
1451 	mutex_enter(&db->db_mtx);
1452 	DBUF_VERIFY(db);
1453 
1454 	if (db->db_state == DB_FILL) {
1455 		if (db->db_level == 0 && db->db_freed_in_flight) {
1456 			ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1457 			/* we were freed while filling */
1458 			/* XXX dbuf_undirty? */
1459 			bzero(db->db.db_data, db->db.db_size);
1460 			db->db_freed_in_flight = FALSE;
1461 		}
1462 		db->db_state = DB_CACHED;
1463 		cv_broadcast(&db->db_changed);
1464 	}
1465 	mutex_exit(&db->db_mtx);
1466 }
1467 
1468 /*
1469  * Directly assign a provided arc buf to a given dbuf if it's not referenced
1470  * by anybody except our caller. Otherwise copy arcbuf's contents to dbuf.
1471  */
1472 void
1473 dbuf_assign_arcbuf(dmu_buf_impl_t *db, arc_buf_t *buf, dmu_tx_t *tx)
1474 {
1475 	ASSERT(!refcount_is_zero(&db->db_holds));
1476 	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1477 	ASSERT(db->db_level == 0);
1478 	ASSERT(DBUF_GET_BUFC_TYPE(db) == ARC_BUFC_DATA);
1479 	ASSERT(buf != NULL);
1480 	ASSERT(arc_buf_size(buf) == db->db.db_size);
1481 	ASSERT(tx->tx_txg != 0);
1482 
1483 	arc_return_buf(buf, db);
1484 	ASSERT(arc_released(buf));
1485 
1486 	mutex_enter(&db->db_mtx);
1487 
1488 	while (db->db_state == DB_READ || db->db_state == DB_FILL)
1489 		cv_wait(&db->db_changed, &db->db_mtx);
1490 
1491 	ASSERT(db->db_state == DB_CACHED || db->db_state == DB_UNCACHED);
1492 
1493 	if (db->db_state == DB_CACHED &&
1494 	    refcount_count(&db->db_holds) - 1 > db->db_dirtycnt) {
1495 		mutex_exit(&db->db_mtx);
1496 		(void) dbuf_dirty(db, tx);
1497 		bcopy(buf->b_data, db->db.db_data, db->db.db_size);
1498 		VERIFY(arc_buf_remove_ref(buf, db));
1499 		xuio_stat_wbuf_copied();
1500 		return;
1501 	}
1502 
1503 	xuio_stat_wbuf_nocopy();
1504 	if (db->db_state == DB_CACHED) {
1505 		dbuf_dirty_record_t *dr = db->db_last_dirty;
1506 
1507 		ASSERT(db->db_buf != NULL);
1508 		if (dr != NULL && dr->dr_txg == tx->tx_txg) {
1509 			ASSERT(dr->dt.dl.dr_data == db->db_buf);
1510 			if (!arc_released(db->db_buf)) {
1511 				ASSERT(dr->dt.dl.dr_override_state ==
1512 				    DR_OVERRIDDEN);
1513 				arc_release(db->db_buf, db);
1514 			}
1515 			dr->dt.dl.dr_data = buf;
1516 			VERIFY(arc_buf_remove_ref(db->db_buf, db));
1517 		} else if (dr == NULL || dr->dt.dl.dr_data != db->db_buf) {
1518 			arc_release(db->db_buf, db);
1519 			VERIFY(arc_buf_remove_ref(db->db_buf, db));
1520 		}
1521 		db->db_buf = NULL;
1522 	}
1523 	ASSERT(db->db_buf == NULL);
1524 	dbuf_set_data(db, buf);
1525 	db->db_state = DB_FILL;
1526 	mutex_exit(&db->db_mtx);
1527 	(void) dbuf_dirty(db, tx);
1528 	dbuf_fill_done(db, tx);
1529 }
1530 
1531 /*
1532  * "Clear" the contents of this dbuf.  This will mark the dbuf
1533  * EVICTING and clear *most* of its references.  Unfortunately,
1534  * when we are not holding the dn_dbufs_mtx, we can't clear the
1535  * entry in the dn_dbufs list.  We have to wait until dbuf_destroy()
1536  * in this case.  For callers from the DMU we will usually see:
1537  *	dbuf_clear()->arc_buf_evict()->dbuf_do_evict()->dbuf_destroy()
1538  * For the arc callback, we will usually see:
1539  *	dbuf_do_evict()->dbuf_clear();dbuf_destroy()
1540  * Sometimes, though, we will get a mix of these two:
1541  *	DMU: dbuf_clear()->arc_buf_evict()
1542  *	ARC: dbuf_do_evict()->dbuf_destroy()
1543  */
1544 void
1545 dbuf_clear(dmu_buf_impl_t *db)
1546 {
1547 	dnode_t *dn;
1548 	dmu_buf_impl_t *parent = db->db_parent;
1549 	dmu_buf_impl_t *dndb;
1550 	int dbuf_gone = FALSE;
1551 
1552 	ASSERT(MUTEX_HELD(&db->db_mtx));
1553 	ASSERT(refcount_is_zero(&db->db_holds));
1554 
1555 	dbuf_evict_user(db);
1556 
1557 	if (db->db_state == DB_CACHED) {
1558 		ASSERT(db->db.db_data != NULL);
1559 		if (db->db_blkid == DMU_BONUS_BLKID) {
1560 			zio_buf_free(db->db.db_data, DN_MAX_BONUSLEN);
1561 			arc_space_return(DN_MAX_BONUSLEN, ARC_SPACE_OTHER);
1562 		}
1563 		db->db.db_data = NULL;
1564 		db->db_state = DB_UNCACHED;
1565 	}
1566 
1567 	ASSERT(db->db_state == DB_UNCACHED || db->db_state == DB_NOFILL);
1568 	ASSERT(db->db_data_pending == NULL);
1569 
1570 	db->db_state = DB_EVICTING;
1571 	db->db_blkptr = NULL;
1572 
1573 	DB_DNODE_ENTER(db);
1574 	dn = DB_DNODE(db);
1575 	dndb = dn->dn_dbuf;
1576 	if (db->db_blkid != DMU_BONUS_BLKID && MUTEX_HELD(&dn->dn_dbufs_mtx)) {
1577 		list_remove(&dn->dn_dbufs, db);
1578 		(void) atomic_dec_32_nv(&dn->dn_dbufs_count);
1579 		membar_producer();
1580 		DB_DNODE_EXIT(db);
1581 		/*
1582 		 * Decrementing the dbuf count means that the hold corresponding
1583 		 * to the removed dbuf is no longer discounted in dnode_move(),
1584 		 * so the dnode cannot be moved until after we release the hold.
1585 		 * The membar_producer() ensures visibility of the decremented
1586 		 * value in dnode_move(), since DB_DNODE_EXIT doesn't actually
1587 		 * release any lock.
1588 		 */
1589 		dnode_rele(dn, db);
1590 		db->db_dnode_handle = NULL;
1591 	} else {
1592 		DB_DNODE_EXIT(db);
1593 	}
1594 
1595 	if (db->db_buf)
1596 		dbuf_gone = arc_buf_evict(db->db_buf);
1597 
1598 	if (!dbuf_gone)
1599 		mutex_exit(&db->db_mtx);
1600 
1601 	/*
1602 	 * If this dbuf is referenced from an indirect dbuf,
1603 	 * decrement the ref count on the indirect dbuf.
1604 	 */
1605 	if (parent && parent != dndb)
1606 		dbuf_rele(parent, db);
1607 }
1608 
1609 static int
1610 dbuf_findbp(dnode_t *dn, int level, uint64_t blkid, int fail_sparse,
1611     dmu_buf_impl_t **parentp, blkptr_t **bpp)
1612 {
1613 	int nlevels, epbs;
1614 
1615 	*parentp = NULL;
1616 	*bpp = NULL;
1617 
1618 	ASSERT(blkid != DMU_BONUS_BLKID);
1619 
1620 	if (blkid == DMU_SPILL_BLKID) {
1621 		mutex_enter(&dn->dn_mtx);
1622 		if (dn->dn_have_spill &&
1623 		    (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR))
1624 			*bpp = &dn->dn_phys->dn_spill;
1625 		else
1626 			*bpp = NULL;
1627 		dbuf_add_ref(dn->dn_dbuf, NULL);
1628 		*parentp = dn->dn_dbuf;
1629 		mutex_exit(&dn->dn_mtx);
1630 		return (0);
1631 	}
1632 
1633 	if (dn->dn_phys->dn_nlevels == 0)
1634 		nlevels = 1;
1635 	else
1636 		nlevels = dn->dn_phys->dn_nlevels;
1637 
1638 	epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
1639 
1640 	ASSERT3U(level * epbs, <, 64);
1641 	ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
1642 	if (level >= nlevels ||
1643 	    (blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs)))) {
1644 		/* the buffer has no parent yet */
1645 		return (SET_ERROR(ENOENT));
1646 	} else if (level < nlevels-1) {
1647 		/* this block is referenced from an indirect block */
1648 		int err = dbuf_hold_impl(dn, level+1,
1649 		    blkid >> epbs, fail_sparse, NULL, parentp);
1650 		if (err)
1651 			return (err);
1652 		err = dbuf_read(*parentp, NULL,
1653 		    (DB_RF_HAVESTRUCT | DB_RF_NOPREFETCH | DB_RF_CANFAIL));
1654 		if (err) {
1655 			dbuf_rele(*parentp, NULL);
1656 			*parentp = NULL;
1657 			return (err);
1658 		}
1659 		*bpp = ((blkptr_t *)(*parentp)->db.db_data) +
1660 		    (blkid & ((1ULL << epbs) - 1));
1661 		return (0);
1662 	} else {
1663 		/* the block is referenced from the dnode */
1664 		ASSERT3U(level, ==, nlevels-1);
1665 		ASSERT(dn->dn_phys->dn_nblkptr == 0 ||
1666 		    blkid < dn->dn_phys->dn_nblkptr);
1667 		if (dn->dn_dbuf) {
1668 			dbuf_add_ref(dn->dn_dbuf, NULL);
1669 			*parentp = dn->dn_dbuf;
1670 		}
1671 		*bpp = &dn->dn_phys->dn_blkptr[blkid];
1672 		return (0);
1673 	}
1674 }
1675 
1676 static dmu_buf_impl_t *
1677 dbuf_create(dnode_t *dn, uint8_t level, uint64_t blkid,
1678     dmu_buf_impl_t *parent, blkptr_t *blkptr)
1679 {
1680 	objset_t *os = dn->dn_objset;
1681 	dmu_buf_impl_t *db, *odb;
1682 
1683 	ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
1684 	ASSERT(dn->dn_type != DMU_OT_NONE);
1685 
1686 	db = kmem_cache_alloc(dbuf_cache, KM_SLEEP);
1687 
1688 	db->db_objset = os;
1689 	db->db.db_object = dn->dn_object;
1690 	db->db_level = level;
1691 	db->db_blkid = blkid;
1692 	db->db_last_dirty = NULL;
1693 	db->db_dirtycnt = 0;
1694 	db->db_dnode_handle = dn->dn_handle;
1695 	db->db_parent = parent;
1696 	db->db_blkptr = blkptr;
1697 
1698 	db->db_user_ptr = NULL;
1699 	db->db_user_data_ptr_ptr = NULL;
1700 	db->db_evict_func = NULL;
1701 	db->db_immediate_evict = 0;
1702 	db->db_freed_in_flight = 0;
1703 
1704 	if (blkid == DMU_BONUS_BLKID) {
1705 		ASSERT3P(parent, ==, dn->dn_dbuf);
1706 		db->db.db_size = DN_MAX_BONUSLEN -
1707 		    (dn->dn_nblkptr-1) * sizeof (blkptr_t);
1708 		ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen);
1709 		db->db.db_offset = DMU_BONUS_BLKID;
1710 		db->db_state = DB_UNCACHED;
1711 		/* the bonus dbuf is not placed in the hash table */
1712 		arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_OTHER);
1713 		return (db);
1714 	} else if (blkid == DMU_SPILL_BLKID) {
1715 		db->db.db_size = (blkptr != NULL) ?
1716 		    BP_GET_LSIZE(blkptr) : SPA_MINBLOCKSIZE;
1717 		db->db.db_offset = 0;
1718 	} else {
1719 		int blocksize =
1720 		    db->db_level ? 1 << dn->dn_indblkshift : dn->dn_datablksz;
1721 		db->db.db_size = blocksize;
1722 		db->db.db_offset = db->db_blkid * blocksize;
1723 	}
1724 
1725 	/*
1726 	 * Hold the dn_dbufs_mtx while we get the new dbuf
1727 	 * in the hash table *and* added to the dbufs list.
1728 	 * This prevents a possible deadlock with someone
1729 	 * trying to look up this dbuf before its added to the
1730 	 * dn_dbufs list.
1731 	 */
1732 	mutex_enter(&dn->dn_dbufs_mtx);
1733 	db->db_state = DB_EVICTING;
1734 	if ((odb = dbuf_hash_insert(db)) != NULL) {
1735 		/* someone else inserted it first */
1736 		kmem_cache_free(dbuf_cache, db);
1737 		mutex_exit(&dn->dn_dbufs_mtx);
1738 		return (odb);
1739 	}
1740 	list_insert_head(&dn->dn_dbufs, db);
1741 	if (db->db_level == 0 && db->db_blkid >=
1742 	    dn->dn_unlisted_l0_blkid)
1743 		dn->dn_unlisted_l0_blkid = db->db_blkid + 1;
1744 	db->db_state = DB_UNCACHED;
1745 	mutex_exit(&dn->dn_dbufs_mtx);
1746 	arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_OTHER);
1747 
1748 	if (parent && parent != dn->dn_dbuf)
1749 		dbuf_add_ref(parent, db);
1750 
1751 	ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT ||
1752 	    refcount_count(&dn->dn_holds) > 0);
1753 	(void) refcount_add(&dn->dn_holds, db);
1754 	(void) atomic_inc_32_nv(&dn->dn_dbufs_count);
1755 
1756 	dprintf_dbuf(db, "db=%p\n", db);
1757 
1758 	return (db);
1759 }
1760 
1761 static int
1762 dbuf_do_evict(void *private)
1763 {
1764 	arc_buf_t *buf = private;
1765 	dmu_buf_impl_t *db = buf->b_private;
1766 
1767 	if (!MUTEX_HELD(&db->db_mtx))
1768 		mutex_enter(&db->db_mtx);
1769 
1770 	ASSERT(refcount_is_zero(&db->db_holds));
1771 
1772 	if (db->db_state != DB_EVICTING) {
1773 		ASSERT(db->db_state == DB_CACHED);
1774 		DBUF_VERIFY(db);
1775 		db->db_buf = NULL;
1776 		dbuf_evict(db);
1777 	} else {
1778 		mutex_exit(&db->db_mtx);
1779 		dbuf_destroy(db);
1780 	}
1781 	return (0);
1782 }
1783 
1784 static void
1785 dbuf_destroy(dmu_buf_impl_t *db)
1786 {
1787 	ASSERT(refcount_is_zero(&db->db_holds));
1788 
1789 	if (db->db_blkid != DMU_BONUS_BLKID) {
1790 		/*
1791 		 * If this dbuf is still on the dn_dbufs list,
1792 		 * remove it from that list.
1793 		 */
1794 		if (db->db_dnode_handle != NULL) {
1795 			dnode_t *dn;
1796 
1797 			DB_DNODE_ENTER(db);
1798 			dn = DB_DNODE(db);
1799 			mutex_enter(&dn->dn_dbufs_mtx);
1800 			list_remove(&dn->dn_dbufs, db);
1801 			(void) atomic_dec_32_nv(&dn->dn_dbufs_count);
1802 			mutex_exit(&dn->dn_dbufs_mtx);
1803 			DB_DNODE_EXIT(db);
1804 			/*
1805 			 * Decrementing the dbuf count means that the hold
1806 			 * corresponding to the removed dbuf is no longer
1807 			 * discounted in dnode_move(), so the dnode cannot be
1808 			 * moved until after we release the hold.
1809 			 */
1810 			dnode_rele(dn, db);
1811 			db->db_dnode_handle = NULL;
1812 		}
1813 		dbuf_hash_remove(db);
1814 	}
1815 	db->db_parent = NULL;
1816 	db->db_buf = NULL;
1817 
1818 	ASSERT(!list_link_active(&db->db_link));
1819 	ASSERT(db->db.db_data == NULL);
1820 	ASSERT(db->db_hash_next == NULL);
1821 	ASSERT(db->db_blkptr == NULL);
1822 	ASSERT(db->db_data_pending == NULL);
1823 
1824 	kmem_cache_free(dbuf_cache, db);
1825 	arc_space_return(sizeof (dmu_buf_impl_t), ARC_SPACE_OTHER);
1826 }
1827 
1828 void
1829 dbuf_prefetch(dnode_t *dn, uint64_t blkid, zio_priority_t prio)
1830 {
1831 	dmu_buf_impl_t *db = NULL;
1832 	blkptr_t *bp = NULL;
1833 
1834 	ASSERT(blkid != DMU_BONUS_BLKID);
1835 	ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
1836 
1837 	if (dnode_block_freed(dn, blkid))
1838 		return;
1839 
1840 	/* dbuf_find() returns with db_mtx held */
1841 	if (db = dbuf_find(dn, 0, blkid)) {
1842 		/*
1843 		 * This dbuf is already in the cache.  We assume that
1844 		 * it is already CACHED, or else about to be either
1845 		 * read or filled.
1846 		 */
1847 		mutex_exit(&db->db_mtx);
1848 		return;
1849 	}
1850 
1851 	if (dbuf_findbp(dn, 0, blkid, TRUE, &db, &bp) == 0) {
1852 		if (bp && !BP_IS_HOLE(bp)) {
1853 			dsl_dataset_t *ds = dn->dn_objset->os_dsl_dataset;
1854 			uint32_t aflags = ARC_NOWAIT | ARC_PREFETCH;
1855 			zbookmark_t zb;
1856 
1857 			SET_BOOKMARK(&zb, ds ? ds->ds_object : DMU_META_OBJSET,
1858 			    dn->dn_object, 0, blkid);
1859 
1860 			(void) arc_read(NULL, dn->dn_objset->os_spa,
1861 			    bp, NULL, NULL, prio,
1862 			    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
1863 			    &aflags, &zb);
1864 		}
1865 		if (db)
1866 			dbuf_rele(db, NULL);
1867 	}
1868 }
1869 
1870 /*
1871  * Returns with db_holds incremented, and db_mtx not held.
1872  * Note: dn_struct_rwlock must be held.
1873  */
1874 int
1875 dbuf_hold_impl(dnode_t *dn, uint8_t level, uint64_t blkid, int fail_sparse,
1876     void *tag, dmu_buf_impl_t **dbp)
1877 {
1878 	dmu_buf_impl_t *db, *parent = NULL;
1879 
1880 	ASSERT(blkid != DMU_BONUS_BLKID);
1881 	ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
1882 	ASSERT3U(dn->dn_nlevels, >, level);
1883 
1884 	*dbp = NULL;
1885 top:
1886 	/* dbuf_find() returns with db_mtx held */
1887 	db = dbuf_find(dn, level, blkid);
1888 
1889 	if (db == NULL) {
1890 		blkptr_t *bp = NULL;
1891 		int err;
1892 
1893 		ASSERT3P(parent, ==, NULL);
1894 		err = dbuf_findbp(dn, level, blkid, fail_sparse, &parent, &bp);
1895 		if (fail_sparse) {
1896 			if (err == 0 && bp && BP_IS_HOLE(bp))
1897 				err = SET_ERROR(ENOENT);
1898 			if (err) {
1899 				if (parent)
1900 					dbuf_rele(parent, NULL);
1901 				return (err);
1902 			}
1903 		}
1904 		if (err && err != ENOENT)
1905 			return (err);
1906 		db = dbuf_create(dn, level, blkid, parent, bp);
1907 	}
1908 
1909 	if (db->db_buf && refcount_is_zero(&db->db_holds)) {
1910 		arc_buf_add_ref(db->db_buf, db);
1911 		if (db->db_buf->b_data == NULL) {
1912 			dbuf_clear(db);
1913 			if (parent) {
1914 				dbuf_rele(parent, NULL);
1915 				parent = NULL;
1916 			}
1917 			goto top;
1918 		}
1919 		ASSERT3P(db->db.db_data, ==, db->db_buf->b_data);
1920 	}
1921 
1922 	ASSERT(db->db_buf == NULL || arc_referenced(db->db_buf));
1923 
1924 	/*
1925 	 * If this buffer is currently syncing out, and we are are
1926 	 * still referencing it from db_data, we need to make a copy
1927 	 * of it in case we decide we want to dirty it again in this txg.
1928 	 */
1929 	if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
1930 	    dn->dn_object != DMU_META_DNODE_OBJECT &&
1931 	    db->db_state == DB_CACHED && db->db_data_pending) {
1932 		dbuf_dirty_record_t *dr = db->db_data_pending;
1933 
1934 		if (dr->dt.dl.dr_data == db->db_buf) {
1935 			arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
1936 
1937 			dbuf_set_data(db,
1938 			    arc_buf_alloc(dn->dn_objset->os_spa,
1939 			    db->db.db_size, db, type));
1940 			bcopy(dr->dt.dl.dr_data->b_data, db->db.db_data,
1941 			    db->db.db_size);
1942 		}
1943 	}
1944 
1945 	(void) refcount_add(&db->db_holds, tag);
1946 	dbuf_update_data(db);
1947 	DBUF_VERIFY(db);
1948 	mutex_exit(&db->db_mtx);
1949 
1950 	/* NOTE: we can't rele the parent until after we drop the db_mtx */
1951 	if (parent)
1952 		dbuf_rele(parent, NULL);
1953 
1954 	ASSERT3P(DB_DNODE(db), ==, dn);
1955 	ASSERT3U(db->db_blkid, ==, blkid);
1956 	ASSERT3U(db->db_level, ==, level);
1957 	*dbp = db;
1958 
1959 	return (0);
1960 }
1961 
1962 dmu_buf_impl_t *
1963 dbuf_hold(dnode_t *dn, uint64_t blkid, void *tag)
1964 {
1965 	dmu_buf_impl_t *db;
1966 	int err = dbuf_hold_impl(dn, 0, blkid, FALSE, tag, &db);
1967 	return (err ? NULL : db);
1968 }
1969 
1970 dmu_buf_impl_t *
1971 dbuf_hold_level(dnode_t *dn, int level, uint64_t blkid, void *tag)
1972 {
1973 	dmu_buf_impl_t *db;
1974 	int err = dbuf_hold_impl(dn, level, blkid, FALSE, tag, &db);
1975 	return (err ? NULL : db);
1976 }
1977 
1978 void
1979 dbuf_create_bonus(dnode_t *dn)
1980 {
1981 	ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock));
1982 
1983 	ASSERT(dn->dn_bonus == NULL);
1984 	dn->dn_bonus = dbuf_create(dn, 0, DMU_BONUS_BLKID, dn->dn_dbuf, NULL);
1985 }
1986 
1987 int
1988 dbuf_spill_set_blksz(dmu_buf_t *db_fake, uint64_t blksz, dmu_tx_t *tx)
1989 {
1990 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
1991 	dnode_t *dn;
1992 
1993 	if (db->db_blkid != DMU_SPILL_BLKID)
1994 		return (SET_ERROR(ENOTSUP));
1995 	if (blksz == 0)
1996 		blksz = SPA_MINBLOCKSIZE;
1997 	if (blksz > SPA_MAXBLOCKSIZE)
1998 		blksz = SPA_MAXBLOCKSIZE;
1999 	else
2000 		blksz = P2ROUNDUP(blksz, SPA_MINBLOCKSIZE);
2001 
2002 	DB_DNODE_ENTER(db);
2003 	dn = DB_DNODE(db);
2004 	rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
2005 	dbuf_new_size(db, blksz, tx);
2006 	rw_exit(&dn->dn_struct_rwlock);
2007 	DB_DNODE_EXIT(db);
2008 
2009 	return (0);
2010 }
2011 
2012 void
2013 dbuf_rm_spill(dnode_t *dn, dmu_tx_t *tx)
2014 {
2015 	dbuf_free_range(dn, DMU_SPILL_BLKID, DMU_SPILL_BLKID, tx);
2016 }
2017 
2018 #pragma weak dmu_buf_add_ref = dbuf_add_ref
2019 void
2020 dbuf_add_ref(dmu_buf_impl_t *db, void *tag)
2021 {
2022 	int64_t holds = refcount_add(&db->db_holds, tag);
2023 	ASSERT(holds > 1);
2024 }
2025 
2026 /*
2027  * If you call dbuf_rele() you had better not be referencing the dnode handle
2028  * unless you have some other direct or indirect hold on the dnode. (An indirect
2029  * hold is a hold on one of the dnode's dbufs, including the bonus buffer.)
2030  * Without that, the dbuf_rele() could lead to a dnode_rele() followed by the
2031  * dnode's parent dbuf evicting its dnode handles.
2032  */
2033 #pragma weak dmu_buf_rele = dbuf_rele
2034 void
2035 dbuf_rele(dmu_buf_impl_t *db, void *tag)
2036 {
2037 	mutex_enter(&db->db_mtx);
2038 	dbuf_rele_and_unlock(db, tag);
2039 }
2040 
2041 /*
2042  * dbuf_rele() for an already-locked dbuf.  This is necessary to allow
2043  * db_dirtycnt and db_holds to be updated atomically.
2044  */
2045 void
2046 dbuf_rele_and_unlock(dmu_buf_impl_t *db, void *tag)
2047 {
2048 	int64_t holds;
2049 
2050 	ASSERT(MUTEX_HELD(&db->db_mtx));
2051 	DBUF_VERIFY(db);
2052 
2053 	/*
2054 	 * Remove the reference to the dbuf before removing its hold on the
2055 	 * dnode so we can guarantee in dnode_move() that a referenced bonus
2056 	 * buffer has a corresponding dnode hold.
2057 	 */
2058 	holds = refcount_remove(&db->db_holds, tag);
2059 	ASSERT(holds >= 0);
2060 
2061 	/*
2062 	 * We can't freeze indirects if there is a possibility that they
2063 	 * may be modified in the current syncing context.
2064 	 */
2065 	if (db->db_buf && holds == (db->db_level == 0 ? db->db_dirtycnt : 0))
2066 		arc_buf_freeze(db->db_buf);
2067 
2068 	if (holds == db->db_dirtycnt &&
2069 	    db->db_level == 0 && db->db_immediate_evict)
2070 		dbuf_evict_user(db);
2071 
2072 	if (holds == 0) {
2073 		if (db->db_blkid == DMU_BONUS_BLKID) {
2074 			mutex_exit(&db->db_mtx);
2075 
2076 			/*
2077 			 * If the dnode moves here, we cannot cross this barrier
2078 			 * until the move completes.
2079 			 */
2080 			DB_DNODE_ENTER(db);
2081 			(void) atomic_dec_32_nv(&DB_DNODE(db)->dn_dbufs_count);
2082 			DB_DNODE_EXIT(db);
2083 			/*
2084 			 * The bonus buffer's dnode hold is no longer discounted
2085 			 * in dnode_move(). The dnode cannot move until after
2086 			 * the dnode_rele().
2087 			 */
2088 			dnode_rele(DB_DNODE(db), db);
2089 		} else if (db->db_buf == NULL) {
2090 			/*
2091 			 * This is a special case: we never associated this
2092 			 * dbuf with any data allocated from the ARC.
2093 			 */
2094 			ASSERT(db->db_state == DB_UNCACHED ||
2095 			    db->db_state == DB_NOFILL);
2096 			dbuf_evict(db);
2097 		} else if (arc_released(db->db_buf)) {
2098 			arc_buf_t *buf = db->db_buf;
2099 			/*
2100 			 * This dbuf has anonymous data associated with it.
2101 			 */
2102 			dbuf_set_data(db, NULL);
2103 			VERIFY(arc_buf_remove_ref(buf, db));
2104 			dbuf_evict(db);
2105 		} else {
2106 			VERIFY(!arc_buf_remove_ref(db->db_buf, db));
2107 
2108 			/*
2109 			 * A dbuf will be eligible for eviction if either the
2110 			 * 'primarycache' property is set or a duplicate
2111 			 * copy of this buffer is already cached in the arc.
2112 			 *
2113 			 * In the case of the 'primarycache' a buffer
2114 			 * is considered for eviction if it matches the
2115 			 * criteria set in the property.
2116 			 *
2117 			 * To decide if our buffer is considered a
2118 			 * duplicate, we must call into the arc to determine
2119 			 * if multiple buffers are referencing the same
2120 			 * block on-disk. If so, then we simply evict
2121 			 * ourselves.
2122 			 */
2123 			if (!DBUF_IS_CACHEABLE(db) ||
2124 			    arc_buf_eviction_needed(db->db_buf))
2125 				dbuf_clear(db);
2126 			else
2127 				mutex_exit(&db->db_mtx);
2128 		}
2129 	} else {
2130 		mutex_exit(&db->db_mtx);
2131 	}
2132 }
2133 
2134 #pragma weak dmu_buf_refcount = dbuf_refcount
2135 uint64_t
2136 dbuf_refcount(dmu_buf_impl_t *db)
2137 {
2138 	return (refcount_count(&db->db_holds));
2139 }
2140 
2141 void *
2142 dmu_buf_set_user(dmu_buf_t *db_fake, void *user_ptr, void *user_data_ptr_ptr,
2143     dmu_buf_evict_func_t *evict_func)
2144 {
2145 	return (dmu_buf_update_user(db_fake, NULL, user_ptr,
2146 	    user_data_ptr_ptr, evict_func));
2147 }
2148 
2149 void *
2150 dmu_buf_set_user_ie(dmu_buf_t *db_fake, void *user_ptr, void *user_data_ptr_ptr,
2151     dmu_buf_evict_func_t *evict_func)
2152 {
2153 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2154 
2155 	db->db_immediate_evict = TRUE;
2156 	return (dmu_buf_update_user(db_fake, NULL, user_ptr,
2157 	    user_data_ptr_ptr, evict_func));
2158 }
2159 
2160 void *
2161 dmu_buf_update_user(dmu_buf_t *db_fake, void *old_user_ptr, void *user_ptr,
2162     void *user_data_ptr_ptr, dmu_buf_evict_func_t *evict_func)
2163 {
2164 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2165 	ASSERT(db->db_level == 0);
2166 
2167 	ASSERT((user_ptr == NULL) == (evict_func == NULL));
2168 
2169 	mutex_enter(&db->db_mtx);
2170 
2171 	if (db->db_user_ptr == old_user_ptr) {
2172 		db->db_user_ptr = user_ptr;
2173 		db->db_user_data_ptr_ptr = user_data_ptr_ptr;
2174 		db->db_evict_func = evict_func;
2175 
2176 		dbuf_update_data(db);
2177 	} else {
2178 		old_user_ptr = db->db_user_ptr;
2179 	}
2180 
2181 	mutex_exit(&db->db_mtx);
2182 	return (old_user_ptr);
2183 }
2184 
2185 void *
2186 dmu_buf_get_user(dmu_buf_t *db_fake)
2187 {
2188 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2189 	ASSERT(!refcount_is_zero(&db->db_holds));
2190 
2191 	return (db->db_user_ptr);
2192 }
2193 
2194 boolean_t
2195 dmu_buf_freeable(dmu_buf_t *dbuf)
2196 {
2197 	boolean_t res = B_FALSE;
2198 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf;
2199 
2200 	if (db->db_blkptr)
2201 		res = dsl_dataset_block_freeable(db->db_objset->os_dsl_dataset,
2202 		    db->db_blkptr, db->db_blkptr->blk_birth);
2203 
2204 	return (res);
2205 }
2206 
2207 blkptr_t *
2208 dmu_buf_get_blkptr(dmu_buf_t *db)
2209 {
2210 	dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
2211 	return (dbi->db_blkptr);
2212 }
2213 
2214 static void
2215 dbuf_check_blkptr(dnode_t *dn, dmu_buf_impl_t *db)
2216 {
2217 	/* ASSERT(dmu_tx_is_syncing(tx) */
2218 	ASSERT(MUTEX_HELD(&db->db_mtx));
2219 
2220 	if (db->db_blkptr != NULL)
2221 		return;
2222 
2223 	if (db->db_blkid == DMU_SPILL_BLKID) {
2224 		db->db_blkptr = &dn->dn_phys->dn_spill;
2225 		BP_ZERO(db->db_blkptr);
2226 		return;
2227 	}
2228 	if (db->db_level == dn->dn_phys->dn_nlevels-1) {
2229 		/*
2230 		 * This buffer was allocated at a time when there was
2231 		 * no available blkptrs from the dnode, or it was
2232 		 * inappropriate to hook it in (i.e., nlevels mis-match).
2233 		 */
2234 		ASSERT(db->db_blkid < dn->dn_phys->dn_nblkptr);
2235 		ASSERT(db->db_parent == NULL);
2236 		db->db_parent = dn->dn_dbuf;
2237 		db->db_blkptr = &dn->dn_phys->dn_blkptr[db->db_blkid];
2238 		DBUF_VERIFY(db);
2239 	} else {
2240 		dmu_buf_impl_t *parent = db->db_parent;
2241 		int epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
2242 
2243 		ASSERT(dn->dn_phys->dn_nlevels > 1);
2244 		if (parent == NULL) {
2245 			mutex_exit(&db->db_mtx);
2246 			rw_enter(&dn->dn_struct_rwlock, RW_READER);
2247 			(void) dbuf_hold_impl(dn, db->db_level+1,
2248 			    db->db_blkid >> epbs, FALSE, db, &parent);
2249 			rw_exit(&dn->dn_struct_rwlock);
2250 			mutex_enter(&db->db_mtx);
2251 			db->db_parent = parent;
2252 		}
2253 		db->db_blkptr = (blkptr_t *)parent->db.db_data +
2254 		    (db->db_blkid & ((1ULL << epbs) - 1));
2255 		DBUF_VERIFY(db);
2256 	}
2257 }
2258 
2259 static void
2260 dbuf_sync_indirect(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
2261 {
2262 	dmu_buf_impl_t *db = dr->dr_dbuf;
2263 	dnode_t *dn;
2264 	zio_t *zio;
2265 
2266 	ASSERT(dmu_tx_is_syncing(tx));
2267 
2268 	dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr);
2269 
2270 	mutex_enter(&db->db_mtx);
2271 
2272 	ASSERT(db->db_level > 0);
2273 	DBUF_VERIFY(db);
2274 
2275 	/* Read the block if it hasn't been read yet. */
2276 	if (db->db_buf == NULL) {
2277 		mutex_exit(&db->db_mtx);
2278 		(void) dbuf_read(db, NULL, DB_RF_MUST_SUCCEED);
2279 		mutex_enter(&db->db_mtx);
2280 	}
2281 	ASSERT3U(db->db_state, ==, DB_CACHED);
2282 	ASSERT(db->db_buf != NULL);
2283 
2284 	DB_DNODE_ENTER(db);
2285 	dn = DB_DNODE(db);
2286 	/* Indirect block size must match what the dnode thinks it is. */
2287 	ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift);
2288 	dbuf_check_blkptr(dn, db);
2289 	DB_DNODE_EXIT(db);
2290 
2291 	/* Provide the pending dirty record to child dbufs */
2292 	db->db_data_pending = dr;
2293 
2294 	mutex_exit(&db->db_mtx);
2295 	dbuf_write(dr, db->db_buf, tx);
2296 
2297 	zio = dr->dr_zio;
2298 	mutex_enter(&dr->dt.di.dr_mtx);
2299 	dbuf_sync_list(&dr->dt.di.dr_children, tx);
2300 	ASSERT(list_head(&dr->dt.di.dr_children) == NULL);
2301 	mutex_exit(&dr->dt.di.dr_mtx);
2302 	zio_nowait(zio);
2303 }
2304 
2305 static void
2306 dbuf_sync_leaf(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
2307 {
2308 	arc_buf_t **datap = &dr->dt.dl.dr_data;
2309 	dmu_buf_impl_t *db = dr->dr_dbuf;
2310 	dnode_t *dn;
2311 	objset_t *os;
2312 	uint64_t txg = tx->tx_txg;
2313 
2314 	ASSERT(dmu_tx_is_syncing(tx));
2315 
2316 	dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr);
2317 
2318 	mutex_enter(&db->db_mtx);
2319 	/*
2320 	 * To be synced, we must be dirtied.  But we
2321 	 * might have been freed after the dirty.
2322 	 */
2323 	if (db->db_state == DB_UNCACHED) {
2324 		/* This buffer has been freed since it was dirtied */
2325 		ASSERT(db->db.db_data == NULL);
2326 	} else if (db->db_state == DB_FILL) {
2327 		/* This buffer was freed and is now being re-filled */
2328 		ASSERT(db->db.db_data != dr->dt.dl.dr_data);
2329 	} else {
2330 		ASSERT(db->db_state == DB_CACHED || db->db_state == DB_NOFILL);
2331 	}
2332 	DBUF_VERIFY(db);
2333 
2334 	DB_DNODE_ENTER(db);
2335 	dn = DB_DNODE(db);
2336 
2337 	if (db->db_blkid == DMU_SPILL_BLKID) {
2338 		mutex_enter(&dn->dn_mtx);
2339 		dn->dn_phys->dn_flags |= DNODE_FLAG_SPILL_BLKPTR;
2340 		mutex_exit(&dn->dn_mtx);
2341 	}
2342 
2343 	/*
2344 	 * If this is a bonus buffer, simply copy the bonus data into the
2345 	 * dnode.  It will be written out when the dnode is synced (and it
2346 	 * will be synced, since it must have been dirty for dbuf_sync to
2347 	 * be called).
2348 	 */
2349 	if (db->db_blkid == DMU_BONUS_BLKID) {
2350 		dbuf_dirty_record_t **drp;
2351 
2352 		ASSERT(*datap != NULL);
2353 		ASSERT0(db->db_level);
2354 		ASSERT3U(dn->dn_phys->dn_bonuslen, <=, DN_MAX_BONUSLEN);
2355 		bcopy(*datap, DN_BONUS(dn->dn_phys), dn->dn_phys->dn_bonuslen);
2356 		DB_DNODE_EXIT(db);
2357 
2358 		if (*datap != db->db.db_data) {
2359 			zio_buf_free(*datap, DN_MAX_BONUSLEN);
2360 			arc_space_return(DN_MAX_BONUSLEN, ARC_SPACE_OTHER);
2361 		}
2362 		db->db_data_pending = NULL;
2363 		drp = &db->db_last_dirty;
2364 		while (*drp != dr)
2365 			drp = &(*drp)->dr_next;
2366 		ASSERT(dr->dr_next == NULL);
2367 		ASSERT(dr->dr_dbuf == db);
2368 		*drp = dr->dr_next;
2369 		kmem_free(dr, sizeof (dbuf_dirty_record_t));
2370 		ASSERT(db->db_dirtycnt > 0);
2371 		db->db_dirtycnt -= 1;
2372 		dbuf_rele_and_unlock(db, (void *)(uintptr_t)txg);
2373 		return;
2374 	}
2375 
2376 	os = dn->dn_objset;
2377 
2378 	/*
2379 	 * This function may have dropped the db_mtx lock allowing a dmu_sync
2380 	 * operation to sneak in. As a result, we need to ensure that we
2381 	 * don't check the dr_override_state until we have returned from
2382 	 * dbuf_check_blkptr.
2383 	 */
2384 	dbuf_check_blkptr(dn, db);
2385 
2386 	/*
2387 	 * If this buffer is in the middle of an immediate write,
2388 	 * wait for the synchronous IO to complete.
2389 	 */
2390 	while (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC) {
2391 		ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT);
2392 		cv_wait(&db->db_changed, &db->db_mtx);
2393 		ASSERT(dr->dt.dl.dr_override_state != DR_NOT_OVERRIDDEN);
2394 	}
2395 
2396 	if (db->db_state != DB_NOFILL &&
2397 	    dn->dn_object != DMU_META_DNODE_OBJECT &&
2398 	    refcount_count(&db->db_holds) > 1 &&
2399 	    dr->dt.dl.dr_override_state != DR_OVERRIDDEN &&
2400 	    *datap == db->db_buf) {
2401 		/*
2402 		 * If this buffer is currently "in use" (i.e., there
2403 		 * are active holds and db_data still references it),
2404 		 * then make a copy before we start the write so that
2405 		 * any modifications from the open txg will not leak
2406 		 * into this write.
2407 		 *
2408 		 * NOTE: this copy does not need to be made for
2409 		 * objects only modified in the syncing context (e.g.
2410 		 * DNONE_DNODE blocks).
2411 		 */
2412 		int blksz = arc_buf_size(*datap);
2413 		arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
2414 		*datap = arc_buf_alloc(os->os_spa, blksz, db, type);
2415 		bcopy(db->db.db_data, (*datap)->b_data, blksz);
2416 	}
2417 	db->db_data_pending = dr;
2418 
2419 	mutex_exit(&db->db_mtx);
2420 
2421 	dbuf_write(dr, *datap, tx);
2422 
2423 	ASSERT(!list_link_active(&dr->dr_dirty_node));
2424 	if (dn->dn_object == DMU_META_DNODE_OBJECT) {
2425 		list_insert_tail(&dn->dn_dirty_records[txg&TXG_MASK], dr);
2426 		DB_DNODE_EXIT(db);
2427 	} else {
2428 		/*
2429 		 * Although zio_nowait() does not "wait for an IO", it does
2430 		 * initiate the IO. If this is an empty write it seems plausible
2431 		 * that the IO could actually be completed before the nowait
2432 		 * returns. We need to DB_DNODE_EXIT() first in case
2433 		 * zio_nowait() invalidates the dbuf.
2434 		 */
2435 		DB_DNODE_EXIT(db);
2436 		zio_nowait(dr->dr_zio);
2437 	}
2438 }
2439 
2440 void
2441 dbuf_sync_list(list_t *list, dmu_tx_t *tx)
2442 {
2443 	dbuf_dirty_record_t *dr;
2444 
2445 	while (dr = list_head(list)) {
2446 		if (dr->dr_zio != NULL) {
2447 			/*
2448 			 * If we find an already initialized zio then we
2449 			 * are processing the meta-dnode, and we have finished.
2450 			 * The dbufs for all dnodes are put back on the list
2451 			 * during processing, so that we can zio_wait()
2452 			 * these IOs after initiating all child IOs.
2453 			 */
2454 			ASSERT3U(dr->dr_dbuf->db.db_object, ==,
2455 			    DMU_META_DNODE_OBJECT);
2456 			break;
2457 		}
2458 		list_remove(list, dr);
2459 		if (dr->dr_dbuf->db_level > 0)
2460 			dbuf_sync_indirect(dr, tx);
2461 		else
2462 			dbuf_sync_leaf(dr, tx);
2463 	}
2464 }
2465 
2466 /* ARGSUSED */
2467 static void
2468 dbuf_write_ready(zio_t *zio, arc_buf_t *buf, void *vdb)
2469 {
2470 	dmu_buf_impl_t *db = vdb;
2471 	dnode_t *dn;
2472 	blkptr_t *bp = zio->io_bp;
2473 	blkptr_t *bp_orig = &zio->io_bp_orig;
2474 	spa_t *spa = zio->io_spa;
2475 	int64_t delta;
2476 	uint64_t fill = 0;
2477 	int i;
2478 
2479 	ASSERT(db->db_blkptr == bp);
2480 
2481 	DB_DNODE_ENTER(db);
2482 	dn = DB_DNODE(db);
2483 	delta = bp_get_dsize_sync(spa, bp) - bp_get_dsize_sync(spa, bp_orig);
2484 	dnode_diduse_space(dn, delta - zio->io_prev_space_delta);
2485 	zio->io_prev_space_delta = delta;
2486 
2487 	if (BP_IS_HOLE(bp)) {
2488 		ASSERT(bp->blk_fill == 0);
2489 		DB_DNODE_EXIT(db);
2490 		return;
2491 	}
2492 
2493 	ASSERT((db->db_blkid != DMU_SPILL_BLKID &&
2494 	    BP_GET_TYPE(bp) == dn->dn_type) ||
2495 	    (db->db_blkid == DMU_SPILL_BLKID &&
2496 	    BP_GET_TYPE(bp) == dn->dn_bonustype));
2497 	ASSERT(BP_GET_LEVEL(bp) == db->db_level);
2498 
2499 	mutex_enter(&db->db_mtx);
2500 
2501 #ifdef ZFS_DEBUG
2502 	if (db->db_blkid == DMU_SPILL_BLKID) {
2503 		ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR);
2504 		ASSERT(!(BP_IS_HOLE(db->db_blkptr)) &&
2505 		    db->db_blkptr == &dn->dn_phys->dn_spill);
2506 	}
2507 #endif
2508 
2509 	if (db->db_level == 0) {
2510 		mutex_enter(&dn->dn_mtx);
2511 		if (db->db_blkid > dn->dn_phys->dn_maxblkid &&
2512 		    db->db_blkid != DMU_SPILL_BLKID)
2513 			dn->dn_phys->dn_maxblkid = db->db_blkid;
2514 		mutex_exit(&dn->dn_mtx);
2515 
2516 		if (dn->dn_type == DMU_OT_DNODE) {
2517 			dnode_phys_t *dnp = db->db.db_data;
2518 			for (i = db->db.db_size >> DNODE_SHIFT; i > 0;
2519 			    i--, dnp++) {
2520 				if (dnp->dn_type != DMU_OT_NONE)
2521 					fill++;
2522 			}
2523 		} else {
2524 			fill = 1;
2525 		}
2526 	} else {
2527 		blkptr_t *ibp = db->db.db_data;
2528 		ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift);
2529 		for (i = db->db.db_size >> SPA_BLKPTRSHIFT; i > 0; i--, ibp++) {
2530 			if (BP_IS_HOLE(ibp))
2531 				continue;
2532 			fill += ibp->blk_fill;
2533 		}
2534 	}
2535 	DB_DNODE_EXIT(db);
2536 
2537 	bp->blk_fill = fill;
2538 
2539 	mutex_exit(&db->db_mtx);
2540 }
2541 
2542 /*
2543  * The SPA will call this callback several times for each zio - once
2544  * for every physical child i/o (zio->io_phys_children times).  This
2545  * allows the DMU to monitor the progress of each logical i/o.  For example,
2546  * there may be 2 copies of an indirect block, or many fragments of a RAID-Z
2547  * block.  There may be a long delay before all copies/fragments are completed,
2548  * so this callback allows us to retire dirty space gradually, as the physical
2549  * i/os complete.
2550  */
2551 /* ARGSUSED */
2552 static void
2553 dbuf_write_physdone(zio_t *zio, arc_buf_t *buf, void *arg)
2554 {
2555 	dmu_buf_impl_t *db = arg;
2556 	objset_t *os = db->db_objset;
2557 	dsl_pool_t *dp = dmu_objset_pool(os);
2558 	dbuf_dirty_record_t *dr;
2559 	int delta = 0;
2560 
2561 	dr = db->db_data_pending;
2562 	ASSERT3U(dr->dr_txg, ==, zio->io_txg);
2563 
2564 	/*
2565 	 * The callback will be called io_phys_children times.  Retire one
2566 	 * portion of our dirty space each time we are called.  Any rounding
2567 	 * error will be cleaned up by dsl_pool_sync()'s call to
2568 	 * dsl_pool_undirty_space().
2569 	 */
2570 	delta = dr->dr_accounted / zio->io_phys_children;
2571 	dsl_pool_undirty_space(dp, delta, zio->io_txg);
2572 }
2573 
2574 /* ARGSUSED */
2575 static void
2576 dbuf_write_done(zio_t *zio, arc_buf_t *buf, void *vdb)
2577 {
2578 	dmu_buf_impl_t *db = vdb;
2579 	blkptr_t *bp = zio->io_bp;
2580 	blkptr_t *bp_orig = &zio->io_bp_orig;
2581 	uint64_t txg = zio->io_txg;
2582 	dbuf_dirty_record_t **drp, *dr;
2583 
2584 	ASSERT0(zio->io_error);
2585 	ASSERT(db->db_blkptr == bp);
2586 
2587 	/*
2588 	 * For nopwrites and rewrites we ensure that the bp matches our
2589 	 * original and bypass all the accounting.
2590 	 */
2591 	if (zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)) {
2592 		ASSERT(BP_EQUAL(bp, bp_orig));
2593 	} else {
2594 		objset_t *os;
2595 		dsl_dataset_t *ds;
2596 		dmu_tx_t *tx;
2597 
2598 		DB_GET_OBJSET(&os, db);
2599 		ds = os->os_dsl_dataset;
2600 		tx = os->os_synctx;
2601 
2602 		(void) dsl_dataset_block_kill(ds, bp_orig, tx, B_TRUE);
2603 		dsl_dataset_block_born(ds, bp, tx);
2604 	}
2605 
2606 	mutex_enter(&db->db_mtx);
2607 
2608 	DBUF_VERIFY(db);
2609 
2610 	drp = &db->db_last_dirty;
2611 	while ((dr = *drp) != db->db_data_pending)
2612 		drp = &dr->dr_next;
2613 	ASSERT(!list_link_active(&dr->dr_dirty_node));
2614 	ASSERT(dr->dr_txg == txg);
2615 	ASSERT(dr->dr_dbuf == db);
2616 	ASSERT(dr->dr_next == NULL);
2617 	*drp = dr->dr_next;
2618 
2619 #ifdef ZFS_DEBUG
2620 	if (db->db_blkid == DMU_SPILL_BLKID) {
2621 		dnode_t *dn;
2622 
2623 		DB_DNODE_ENTER(db);
2624 		dn = DB_DNODE(db);
2625 		ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR);
2626 		ASSERT(!(BP_IS_HOLE(db->db_blkptr)) &&
2627 		    db->db_blkptr == &dn->dn_phys->dn_spill);
2628 		DB_DNODE_EXIT(db);
2629 	}
2630 #endif
2631 
2632 	if (db->db_level == 0) {
2633 		ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2634 		ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN);
2635 		if (db->db_state != DB_NOFILL) {
2636 			if (dr->dt.dl.dr_data != db->db_buf)
2637 				VERIFY(arc_buf_remove_ref(dr->dt.dl.dr_data,
2638 				    db));
2639 			else if (!arc_released(db->db_buf))
2640 				arc_set_callback(db->db_buf, dbuf_do_evict, db);
2641 		}
2642 	} else {
2643 		dnode_t *dn;
2644 
2645 		DB_DNODE_ENTER(db);
2646 		dn = DB_DNODE(db);
2647 		ASSERT(list_head(&dr->dt.di.dr_children) == NULL);
2648 		ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift);
2649 		if (!BP_IS_HOLE(db->db_blkptr)) {
2650 			int epbs =
2651 			    dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
2652 			ASSERT3U(BP_GET_LSIZE(db->db_blkptr), ==,
2653 			    db->db.db_size);
2654 			ASSERT3U(dn->dn_phys->dn_maxblkid
2655 			    >> (db->db_level * epbs), >=, db->db_blkid);
2656 			arc_set_callback(db->db_buf, dbuf_do_evict, db);
2657 		}
2658 		DB_DNODE_EXIT(db);
2659 		mutex_destroy(&dr->dt.di.dr_mtx);
2660 		list_destroy(&dr->dt.di.dr_children);
2661 	}
2662 	kmem_free(dr, sizeof (dbuf_dirty_record_t));
2663 
2664 	cv_broadcast(&db->db_changed);
2665 	ASSERT(db->db_dirtycnt > 0);
2666 	db->db_dirtycnt -= 1;
2667 	db->db_data_pending = NULL;
2668 
2669 	dbuf_rele_and_unlock(db, (void *)(uintptr_t)txg);
2670 }
2671 
2672 static void
2673 dbuf_write_nofill_ready(zio_t *zio)
2674 {
2675 	dbuf_write_ready(zio, NULL, zio->io_private);
2676 }
2677 
2678 static void
2679 dbuf_write_nofill_done(zio_t *zio)
2680 {
2681 	dbuf_write_done(zio, NULL, zio->io_private);
2682 }
2683 
2684 static void
2685 dbuf_write_override_ready(zio_t *zio)
2686 {
2687 	dbuf_dirty_record_t *dr = zio->io_private;
2688 	dmu_buf_impl_t *db = dr->dr_dbuf;
2689 
2690 	dbuf_write_ready(zio, NULL, db);
2691 }
2692 
2693 static void
2694 dbuf_write_override_done(zio_t *zio)
2695 {
2696 	dbuf_dirty_record_t *dr = zio->io_private;
2697 	dmu_buf_impl_t *db = dr->dr_dbuf;
2698 	blkptr_t *obp = &dr->dt.dl.dr_overridden_by;
2699 
2700 	mutex_enter(&db->db_mtx);
2701 	if (!BP_EQUAL(zio->io_bp, obp)) {
2702 		if (!BP_IS_HOLE(obp))
2703 			dsl_free(spa_get_dsl(zio->io_spa), zio->io_txg, obp);
2704 		arc_release(dr->dt.dl.dr_data, db);
2705 	}
2706 	mutex_exit(&db->db_mtx);
2707 
2708 	dbuf_write_done(zio, NULL, db);
2709 }
2710 
2711 /* Issue I/O to commit a dirty buffer to disk. */
2712 static void
2713 dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx)
2714 {
2715 	dmu_buf_impl_t *db = dr->dr_dbuf;
2716 	dnode_t *dn;
2717 	objset_t *os;
2718 	dmu_buf_impl_t *parent = db->db_parent;
2719 	uint64_t txg = tx->tx_txg;
2720 	zbookmark_t zb;
2721 	zio_prop_t zp;
2722 	zio_t *zio;
2723 	int wp_flag = 0;
2724 
2725 	DB_DNODE_ENTER(db);
2726 	dn = DB_DNODE(db);
2727 	os = dn->dn_objset;
2728 
2729 	if (db->db_state != DB_NOFILL) {
2730 		if (db->db_level > 0 || dn->dn_type == DMU_OT_DNODE) {
2731 			/*
2732 			 * Private object buffers are released here rather
2733 			 * than in dbuf_dirty() since they are only modified
2734 			 * in the syncing context and we don't want the
2735 			 * overhead of making multiple copies of the data.
2736 			 */
2737 			if (BP_IS_HOLE(db->db_blkptr)) {
2738 				arc_buf_thaw(data);
2739 			} else {
2740 				dbuf_release_bp(db);
2741 			}
2742 		}
2743 	}
2744 
2745 	if (parent != dn->dn_dbuf) {
2746 		/* Our parent is an indirect block. */
2747 		/* We have a dirty parent that has been scheduled for write. */
2748 		ASSERT(parent && parent->db_data_pending);
2749 		/* Our parent's buffer is one level closer to the dnode. */
2750 		ASSERT(db->db_level == parent->db_level-1);
2751 		/*
2752 		 * We're about to modify our parent's db_data by modifying
2753 		 * our block pointer, so the parent must be released.
2754 		 */
2755 		ASSERT(arc_released(parent->db_buf));
2756 		zio = parent->db_data_pending->dr_zio;
2757 	} else {
2758 		/* Our parent is the dnode itself. */
2759 		ASSERT((db->db_level == dn->dn_phys->dn_nlevels-1 &&
2760 		    db->db_blkid != DMU_SPILL_BLKID) ||
2761 		    (db->db_blkid == DMU_SPILL_BLKID && db->db_level == 0));
2762 		if (db->db_blkid != DMU_SPILL_BLKID)
2763 			ASSERT3P(db->db_blkptr, ==,
2764 			    &dn->dn_phys->dn_blkptr[db->db_blkid]);
2765 		zio = dn->dn_zio;
2766 	}
2767 
2768 	ASSERT(db->db_level == 0 || data == db->db_buf);
2769 	ASSERT3U(db->db_blkptr->blk_birth, <=, txg);
2770 	ASSERT(zio);
2771 
2772 	SET_BOOKMARK(&zb, os->os_dsl_dataset ?
2773 	    os->os_dsl_dataset->ds_object : DMU_META_OBJSET,
2774 	    db->db.db_object, db->db_level, db->db_blkid);
2775 
2776 	if (db->db_blkid == DMU_SPILL_BLKID)
2777 		wp_flag = WP_SPILL;
2778 	wp_flag |= (db->db_state == DB_NOFILL) ? WP_NOFILL : 0;
2779 
2780 	dmu_write_policy(os, dn, db->db_level, wp_flag, &zp);
2781 	DB_DNODE_EXIT(db);
2782 
2783 	if (db->db_level == 0 && dr->dt.dl.dr_override_state == DR_OVERRIDDEN) {
2784 		ASSERT(db->db_state != DB_NOFILL);
2785 		dr->dr_zio = zio_write(zio, os->os_spa, txg,
2786 		    db->db_blkptr, data->b_data, arc_buf_size(data), &zp,
2787 		    dbuf_write_override_ready, NULL, dbuf_write_override_done,
2788 		    dr, ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb);
2789 		mutex_enter(&db->db_mtx);
2790 		dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
2791 		zio_write_override(dr->dr_zio, &dr->dt.dl.dr_overridden_by,
2792 		    dr->dt.dl.dr_copies, dr->dt.dl.dr_nopwrite);
2793 		mutex_exit(&db->db_mtx);
2794 	} else if (db->db_state == DB_NOFILL) {
2795 		ASSERT(zp.zp_checksum == ZIO_CHECKSUM_OFF ||
2796 		    zp.zp_checksum == ZIO_CHECKSUM_NOPARITY);
2797 		dr->dr_zio = zio_write(zio, os->os_spa, txg,
2798 		    db->db_blkptr, NULL, db->db.db_size, &zp,
2799 		    dbuf_write_nofill_ready, NULL, dbuf_write_nofill_done, db,
2800 		    ZIO_PRIORITY_ASYNC_WRITE,
2801 		    ZIO_FLAG_MUSTSUCCEED | ZIO_FLAG_NODATA, &zb);
2802 	} else {
2803 		ASSERT(arc_released(data));
2804 		dr->dr_zio = arc_write(zio, os->os_spa, txg,
2805 		    db->db_blkptr, data, DBUF_IS_L2CACHEABLE(db),
2806 		    DBUF_IS_L2COMPRESSIBLE(db), &zp, dbuf_write_ready,
2807 		    dbuf_write_physdone, dbuf_write_done, db,
2808 		    ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb);
2809 	}
2810 }
2811