xref: /titanic_44/usr/src/uts/common/fs/zfs/arc.c (revision ab4f33c9d90dd2fe40a830e0db03f337b4b65b21)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 /*
29  * DVA-based Adjustable Replacement Cache
30  *
31  * While much of the theory of operation used here is
32  * based on the self-tuning, low overhead replacement cache
33  * presented by Megiddo and Modha at FAST 2003, there are some
34  * significant differences:
35  *
36  * 1. The Megiddo and Modha model assumes any page is evictable.
37  * Pages in its cache cannot be "locked" into memory.  This makes
38  * the eviction algorithm simple: evict the last page in the list.
39  * This also make the performance characteristics easy to reason
40  * about.  Our cache is not so simple.  At any given moment, some
41  * subset of the blocks in the cache are un-evictable because we
42  * have handed out a reference to them.  Blocks are only evictable
43  * when there are no external references active.  This makes
44  * eviction far more problematic:  we choose to evict the evictable
45  * blocks that are the "lowest" in the list.
46  *
47  * There are times when it is not possible to evict the requested
48  * space.  In these circumstances we are unable to adjust the cache
49  * size.  To prevent the cache growing unbounded at these times we
50  * implement a "cache throttle" that slows the flow of new data
51  * into the cache until we can make space available.
52  *
53  * 2. The Megiddo and Modha model assumes a fixed cache size.
54  * Pages are evicted when the cache is full and there is a cache
55  * miss.  Our model has a variable sized cache.  It grows with
56  * high use, but also tries to react to memory pressure from the
57  * operating system: decreasing its size when system memory is
58  * tight.
59  *
60  * 3. The Megiddo and Modha model assumes a fixed page size. All
61  * elements of the cache are therefor exactly the same size.  So
62  * when adjusting the cache size following a cache miss, its simply
63  * a matter of choosing a single page to evict.  In our model, we
64  * have variable sized cache blocks (rangeing from 512 bytes to
65  * 128K bytes).  We therefor choose a set of blocks to evict to make
66  * space for a cache miss that approximates as closely as possible
67  * the space used by the new block.
68  *
69  * See also:  "ARC: A Self-Tuning, Low Overhead Replacement Cache"
70  * by N. Megiddo & D. Modha, FAST 2003
71  */
72 
73 /*
74  * The locking model:
75  *
76  * A new reference to a cache buffer can be obtained in two
77  * ways: 1) via a hash table lookup using the DVA as a key,
78  * or 2) via one of the ARC lists.  The arc_read() interface
79  * uses method 1, while the internal arc algorithms for
80  * adjusting the cache use method 2.  We therefor provide two
81  * types of locks: 1) the hash table lock array, and 2) the
82  * arc list locks.
83  *
84  * Buffers do not have their own mutexs, rather they rely on the
85  * hash table mutexs for the bulk of their protection (i.e. most
86  * fields in the arc_buf_hdr_t are protected by these mutexs).
87  *
88  * buf_hash_find() returns the appropriate mutex (held) when it
89  * locates the requested buffer in the hash table.  It returns
90  * NULL for the mutex if the buffer was not in the table.
91  *
92  * buf_hash_remove() expects the appropriate hash mutex to be
93  * already held before it is invoked.
94  *
95  * Each arc state also has a mutex which is used to protect the
96  * buffer list associated with the state.  When attempting to
97  * obtain a hash table lock while holding an arc list lock you
98  * must use: mutex_tryenter() to avoid deadlock.  Also note that
99  * the active state mutex must be held before the ghost state mutex.
100  *
101  * Arc buffers may have an associated eviction callback function.
102  * This function will be invoked prior to removing the buffer (e.g.
103  * in arc_do_user_evicts()).  Note however that the data associated
104  * with the buffer may be evicted prior to the callback.  The callback
105  * must be made with *no locks held* (to prevent deadlock).  Additionally,
106  * the users of callbacks must ensure that their private data is
107  * protected from simultaneous callbacks from arc_buf_evict()
108  * and arc_do_user_evicts().
109  *
110  * Note that the majority of the performance stats are manipulated
111  * with atomic operations.
112  *
113  * The L2ARC uses the l2arc_buflist_mtx global mutex for the following:
114  *
115  *	- L2ARC buflist creation
116  *	- L2ARC buflist eviction
117  *	- L2ARC write completion, which walks L2ARC buflists
118  *	- ARC header destruction, as it removes from L2ARC buflists
119  *	- ARC header release, as it removes from L2ARC buflists
120  */
121 
122 #include <sys/spa.h>
123 #include <sys/zio.h>
124 #include <sys/zio_checksum.h>
125 #include <sys/zfs_context.h>
126 #include <sys/arc.h>
127 #include <sys/refcount.h>
128 #ifdef _KERNEL
129 #include <sys/vmsystm.h>
130 #include <vm/anon.h>
131 #include <sys/fs/swapnode.h>
132 #include <sys/dnlc.h>
133 #endif
134 #include <sys/callb.h>
135 #include <sys/kstat.h>
136 
137 static kmutex_t		arc_reclaim_thr_lock;
138 static kcondvar_t	arc_reclaim_thr_cv;	/* used to signal reclaim thr */
139 static uint8_t		arc_thread_exit;
140 
141 #define	ARC_REDUCE_DNLC_PERCENT	3
142 uint_t arc_reduce_dnlc_percent = ARC_REDUCE_DNLC_PERCENT;
143 
144 typedef enum arc_reclaim_strategy {
145 	ARC_RECLAIM_AGGR,		/* Aggressive reclaim strategy */
146 	ARC_RECLAIM_CONS		/* Conservative reclaim strategy */
147 } arc_reclaim_strategy_t;
148 
149 /* number of seconds before growing cache again */
150 static int		arc_grow_retry = 60;
151 
152 /*
153  * minimum lifespan of a prefetch block in clock ticks
154  * (initialized in arc_init())
155  */
156 static int		arc_min_prefetch_lifespan;
157 
158 static int arc_dead;
159 
160 /*
161  * These tunables are for performance analysis.
162  */
163 uint64_t zfs_arc_max;
164 uint64_t zfs_arc_min;
165 uint64_t zfs_arc_meta_limit = 0;
166 
167 /*
168  * Note that buffers can be in one of 6 states:
169  *	ARC_anon	- anonymous (discussed below)
170  *	ARC_mru		- recently used, currently cached
171  *	ARC_mru_ghost	- recentely used, no longer in cache
172  *	ARC_mfu		- frequently used, currently cached
173  *	ARC_mfu_ghost	- frequently used, no longer in cache
174  *	ARC_l2c_only	- exists in L2ARC but not other states
175  * When there are no active references to the buffer, they are
176  * are linked onto a list in one of these arc states.  These are
177  * the only buffers that can be evicted or deleted.  Within each
178  * state there are multiple lists, one for meta-data and one for
179  * non-meta-data.  Meta-data (indirect blocks, blocks of dnodes,
180  * etc.) is tracked separately so that it can be managed more
181  * explicitly: favored over data, limited explicitly.
182  *
183  * Anonymous buffers are buffers that are not associated with
184  * a DVA.  These are buffers that hold dirty block copies
185  * before they are written to stable storage.  By definition,
186  * they are "ref'd" and are considered part of arc_mru
187  * that cannot be freed.  Generally, they will aquire a DVA
188  * as they are written and migrate onto the arc_mru list.
189  *
190  * The ARC_l2c_only state is for buffers that are in the second
191  * level ARC but no longer in any of the ARC_m* lists.  The second
192  * level ARC itself may also contain buffers that are in any of
193  * the ARC_m* states - meaning that a buffer can exist in two
194  * places.  The reason for the ARC_l2c_only state is to keep the
195  * buffer header in the hash table, so that reads that hit the
196  * second level ARC benefit from these fast lookups.
197  */
198 
199 typedef struct arc_state {
200 	list_t	arcs_list[ARC_BUFC_NUMTYPES];	/* list of evictable buffers */
201 	uint64_t arcs_lsize[ARC_BUFC_NUMTYPES];	/* amount of evictable data */
202 	uint64_t arcs_size;	/* total amount of data in this state */
203 	kmutex_t arcs_mtx;
204 } arc_state_t;
205 
206 /* The 6 states: */
207 static arc_state_t ARC_anon;
208 static arc_state_t ARC_mru;
209 static arc_state_t ARC_mru_ghost;
210 static arc_state_t ARC_mfu;
211 static arc_state_t ARC_mfu_ghost;
212 static arc_state_t ARC_l2c_only;
213 
214 typedef struct arc_stats {
215 	kstat_named_t arcstat_hits;
216 	kstat_named_t arcstat_misses;
217 	kstat_named_t arcstat_demand_data_hits;
218 	kstat_named_t arcstat_demand_data_misses;
219 	kstat_named_t arcstat_demand_metadata_hits;
220 	kstat_named_t arcstat_demand_metadata_misses;
221 	kstat_named_t arcstat_prefetch_data_hits;
222 	kstat_named_t arcstat_prefetch_data_misses;
223 	kstat_named_t arcstat_prefetch_metadata_hits;
224 	kstat_named_t arcstat_prefetch_metadata_misses;
225 	kstat_named_t arcstat_mru_hits;
226 	kstat_named_t arcstat_mru_ghost_hits;
227 	kstat_named_t arcstat_mfu_hits;
228 	kstat_named_t arcstat_mfu_ghost_hits;
229 	kstat_named_t arcstat_deleted;
230 	kstat_named_t arcstat_recycle_miss;
231 	kstat_named_t arcstat_mutex_miss;
232 	kstat_named_t arcstat_evict_skip;
233 	kstat_named_t arcstat_hash_elements;
234 	kstat_named_t arcstat_hash_elements_max;
235 	kstat_named_t arcstat_hash_collisions;
236 	kstat_named_t arcstat_hash_chains;
237 	kstat_named_t arcstat_hash_chain_max;
238 	kstat_named_t arcstat_p;
239 	kstat_named_t arcstat_c;
240 	kstat_named_t arcstat_c_min;
241 	kstat_named_t arcstat_c_max;
242 	kstat_named_t arcstat_size;
243 	kstat_named_t arcstat_hdr_size;
244 	kstat_named_t arcstat_l2_hits;
245 	kstat_named_t arcstat_l2_misses;
246 	kstat_named_t arcstat_l2_feeds;
247 	kstat_named_t arcstat_l2_rw_clash;
248 	kstat_named_t arcstat_l2_writes_sent;
249 	kstat_named_t arcstat_l2_writes_done;
250 	kstat_named_t arcstat_l2_writes_error;
251 	kstat_named_t arcstat_l2_writes_hdr_miss;
252 	kstat_named_t arcstat_l2_evict_lock_retry;
253 	kstat_named_t arcstat_l2_evict_reading;
254 	kstat_named_t arcstat_l2_free_on_write;
255 	kstat_named_t arcstat_l2_abort_lowmem;
256 	kstat_named_t arcstat_l2_cksum_bad;
257 	kstat_named_t arcstat_l2_io_error;
258 	kstat_named_t arcstat_l2_size;
259 	kstat_named_t arcstat_l2_hdr_size;
260 } arc_stats_t;
261 
262 static arc_stats_t arc_stats = {
263 	{ "hits",			KSTAT_DATA_UINT64 },
264 	{ "misses",			KSTAT_DATA_UINT64 },
265 	{ "demand_data_hits",		KSTAT_DATA_UINT64 },
266 	{ "demand_data_misses",		KSTAT_DATA_UINT64 },
267 	{ "demand_metadata_hits",	KSTAT_DATA_UINT64 },
268 	{ "demand_metadata_misses",	KSTAT_DATA_UINT64 },
269 	{ "prefetch_data_hits",		KSTAT_DATA_UINT64 },
270 	{ "prefetch_data_misses",	KSTAT_DATA_UINT64 },
271 	{ "prefetch_metadata_hits",	KSTAT_DATA_UINT64 },
272 	{ "prefetch_metadata_misses",	KSTAT_DATA_UINT64 },
273 	{ "mru_hits",			KSTAT_DATA_UINT64 },
274 	{ "mru_ghost_hits",		KSTAT_DATA_UINT64 },
275 	{ "mfu_hits",			KSTAT_DATA_UINT64 },
276 	{ "mfu_ghost_hits",		KSTAT_DATA_UINT64 },
277 	{ "deleted",			KSTAT_DATA_UINT64 },
278 	{ "recycle_miss",		KSTAT_DATA_UINT64 },
279 	{ "mutex_miss",			KSTAT_DATA_UINT64 },
280 	{ "evict_skip",			KSTAT_DATA_UINT64 },
281 	{ "hash_elements",		KSTAT_DATA_UINT64 },
282 	{ "hash_elements_max",		KSTAT_DATA_UINT64 },
283 	{ "hash_collisions",		KSTAT_DATA_UINT64 },
284 	{ "hash_chains",		KSTAT_DATA_UINT64 },
285 	{ "hash_chain_max",		KSTAT_DATA_UINT64 },
286 	{ "p",				KSTAT_DATA_UINT64 },
287 	{ "c",				KSTAT_DATA_UINT64 },
288 	{ "c_min",			KSTAT_DATA_UINT64 },
289 	{ "c_max",			KSTAT_DATA_UINT64 },
290 	{ "size",			KSTAT_DATA_UINT64 },
291 	{ "hdr_size",			KSTAT_DATA_UINT64 },
292 	{ "l2_hits",			KSTAT_DATA_UINT64 },
293 	{ "l2_misses",			KSTAT_DATA_UINT64 },
294 	{ "l2_feeds",			KSTAT_DATA_UINT64 },
295 	{ "l2_rw_clash",		KSTAT_DATA_UINT64 },
296 	{ "l2_writes_sent",		KSTAT_DATA_UINT64 },
297 	{ "l2_writes_done",		KSTAT_DATA_UINT64 },
298 	{ "l2_writes_error",		KSTAT_DATA_UINT64 },
299 	{ "l2_writes_hdr_miss",		KSTAT_DATA_UINT64 },
300 	{ "l2_evict_lock_retry",	KSTAT_DATA_UINT64 },
301 	{ "l2_evict_reading",		KSTAT_DATA_UINT64 },
302 	{ "l2_free_on_write",		KSTAT_DATA_UINT64 },
303 	{ "l2_abort_lowmem",		KSTAT_DATA_UINT64 },
304 	{ "l2_cksum_bad",		KSTAT_DATA_UINT64 },
305 	{ "l2_io_error",		KSTAT_DATA_UINT64 },
306 	{ "l2_size",			KSTAT_DATA_UINT64 },
307 	{ "l2_hdr_size",		KSTAT_DATA_UINT64 }
308 };
309 
310 #define	ARCSTAT(stat)	(arc_stats.stat.value.ui64)
311 
312 #define	ARCSTAT_INCR(stat, val) \
313 	atomic_add_64(&arc_stats.stat.value.ui64, (val));
314 
315 #define	ARCSTAT_BUMP(stat) 	ARCSTAT_INCR(stat, 1)
316 #define	ARCSTAT_BUMPDOWN(stat)	ARCSTAT_INCR(stat, -1)
317 
318 #define	ARCSTAT_MAX(stat, val) {					\
319 	uint64_t m;							\
320 	while ((val) > (m = arc_stats.stat.value.ui64) &&		\
321 	    (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val))))	\
322 		continue;						\
323 }
324 
325 #define	ARCSTAT_MAXSTAT(stat) \
326 	ARCSTAT_MAX(stat##_max, arc_stats.stat.value.ui64)
327 
328 /*
329  * We define a macro to allow ARC hits/misses to be easily broken down by
330  * two separate conditions, giving a total of four different subtypes for
331  * each of hits and misses (so eight statistics total).
332  */
333 #define	ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \
334 	if (cond1) {							\
335 		if (cond2) {						\
336 			ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \
337 		} else {						\
338 			ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \
339 		}							\
340 	} else {							\
341 		if (cond2) {						\
342 			ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \
343 		} else {						\
344 			ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\
345 		}							\
346 	}
347 
348 kstat_t			*arc_ksp;
349 static arc_state_t 	*arc_anon;
350 static arc_state_t	*arc_mru;
351 static arc_state_t	*arc_mru_ghost;
352 static arc_state_t	*arc_mfu;
353 static arc_state_t	*arc_mfu_ghost;
354 static arc_state_t	*arc_l2c_only;
355 
356 /*
357  * There are several ARC variables that are critical to export as kstats --
358  * but we don't want to have to grovel around in the kstat whenever we wish to
359  * manipulate them.  For these variables, we therefore define them to be in
360  * terms of the statistic variable.  This assures that we are not introducing
361  * the possibility of inconsistency by having shadow copies of the variables,
362  * while still allowing the code to be readable.
363  */
364 #define	arc_size	ARCSTAT(arcstat_size)	/* actual total arc size */
365 #define	arc_p		ARCSTAT(arcstat_p)	/* target size of MRU */
366 #define	arc_c		ARCSTAT(arcstat_c)	/* target size of cache */
367 #define	arc_c_min	ARCSTAT(arcstat_c_min)	/* min target cache size */
368 #define	arc_c_max	ARCSTAT(arcstat_c_max)	/* max target cache size */
369 
370 static int		arc_no_grow;	/* Don't try to grow cache size */
371 static uint64_t		arc_tempreserve;
372 static uint64_t		arc_meta_used;
373 static uint64_t		arc_meta_limit;
374 static uint64_t		arc_meta_max = 0;
375 
376 typedef struct l2arc_buf_hdr l2arc_buf_hdr_t;
377 
378 typedef struct arc_callback arc_callback_t;
379 
380 struct arc_callback {
381 	void			*acb_private;
382 	arc_done_func_t		*acb_done;
383 	arc_byteswap_func_t	*acb_byteswap;
384 	arc_buf_t		*acb_buf;
385 	zio_t			*acb_zio_dummy;
386 	arc_callback_t		*acb_next;
387 };
388 
389 typedef struct arc_write_callback arc_write_callback_t;
390 
391 struct arc_write_callback {
392 	void		*awcb_private;
393 	arc_done_func_t	*awcb_ready;
394 	arc_done_func_t	*awcb_done;
395 	arc_buf_t	*awcb_buf;
396 };
397 
398 struct arc_buf_hdr {
399 	/* protected by hash lock */
400 	dva_t			b_dva;
401 	uint64_t		b_birth;
402 	uint64_t		b_cksum0;
403 
404 	kmutex_t		b_freeze_lock;
405 	zio_cksum_t		*b_freeze_cksum;
406 
407 	arc_buf_hdr_t		*b_hash_next;
408 	arc_buf_t		*b_buf;
409 	uint32_t		b_flags;
410 	uint32_t		b_datacnt;
411 
412 	arc_callback_t		*b_acb;
413 	kcondvar_t		b_cv;
414 
415 	/* immutable */
416 	arc_buf_contents_t	b_type;
417 	uint64_t		b_size;
418 	spa_t			*b_spa;
419 
420 	/* protected by arc state mutex */
421 	arc_state_t		*b_state;
422 	list_node_t		b_arc_node;
423 
424 	/* updated atomically */
425 	clock_t			b_arc_access;
426 
427 	/* self protecting */
428 	refcount_t		b_refcnt;
429 
430 	l2arc_buf_hdr_t		*b_l2hdr;
431 	list_node_t		b_l2node;
432 };
433 
434 static arc_buf_t *arc_eviction_list;
435 static kmutex_t arc_eviction_mtx;
436 static arc_buf_hdr_t arc_eviction_hdr;
437 static void arc_get_data_buf(arc_buf_t *buf);
438 static void arc_access(arc_buf_hdr_t *buf, kmutex_t *hash_lock);
439 static int arc_evict_needed(arc_buf_contents_t type);
440 static void arc_evict_ghost(arc_state_t *state, spa_t *spa, int64_t bytes);
441 
442 #define	GHOST_STATE(state)	\
443 	((state) == arc_mru_ghost || (state) == arc_mfu_ghost ||	\
444 	(state) == arc_l2c_only)
445 
446 /*
447  * Private ARC flags.  These flags are private ARC only flags that will show up
448  * in b_flags in the arc_hdr_buf_t.  Some flags are publicly declared, and can
449  * be passed in as arc_flags in things like arc_read.  However, these flags
450  * should never be passed and should only be set by ARC code.  When adding new
451  * public flags, make sure not to smash the private ones.
452  */
453 
454 #define	ARC_IN_HASH_TABLE	(1 << 9)	/* this buffer is hashed */
455 #define	ARC_IO_IN_PROGRESS	(1 << 10)	/* I/O in progress for buf */
456 #define	ARC_IO_ERROR		(1 << 11)	/* I/O failed for buf */
457 #define	ARC_FREED_IN_READ	(1 << 12)	/* buf freed while in read */
458 #define	ARC_BUF_AVAILABLE	(1 << 13)	/* block not in active use */
459 #define	ARC_INDIRECT		(1 << 14)	/* this is an indirect block */
460 #define	ARC_FREE_IN_PROGRESS	(1 << 15)	/* hdr about to be freed */
461 #define	ARC_DONT_L2CACHE	(1 << 16)	/* originated by prefetch */
462 #define	ARC_L2_READING		(1 << 17)	/* L2ARC read in progress */
463 #define	ARC_L2_WRITING		(1 << 18)	/* L2ARC write in progress */
464 #define	ARC_L2_EVICTED		(1 << 19)	/* evicted during I/O */
465 #define	ARC_L2_WRITE_HEAD	(1 << 20)	/* head of write list */
466 
467 #define	HDR_IN_HASH_TABLE(hdr)	((hdr)->b_flags & ARC_IN_HASH_TABLE)
468 #define	HDR_IO_IN_PROGRESS(hdr)	((hdr)->b_flags & ARC_IO_IN_PROGRESS)
469 #define	HDR_IO_ERROR(hdr)	((hdr)->b_flags & ARC_IO_ERROR)
470 #define	HDR_FREED_IN_READ(hdr)	((hdr)->b_flags & ARC_FREED_IN_READ)
471 #define	HDR_BUF_AVAILABLE(hdr)	((hdr)->b_flags & ARC_BUF_AVAILABLE)
472 #define	HDR_FREE_IN_PROGRESS(hdr)	((hdr)->b_flags & ARC_FREE_IN_PROGRESS)
473 #define	HDR_DONT_L2CACHE(hdr)	((hdr)->b_flags & ARC_DONT_L2CACHE)
474 #define	HDR_L2_READING(hdr)	((hdr)->b_flags & ARC_L2_READING)
475 #define	HDR_L2_WRITING(hdr)	((hdr)->b_flags & ARC_L2_WRITING)
476 #define	HDR_L2_EVICTED(hdr)	((hdr)->b_flags & ARC_L2_EVICTED)
477 #define	HDR_L2_WRITE_HEAD(hdr)	((hdr)->b_flags & ARC_L2_WRITE_HEAD)
478 
479 /*
480  * Hash table routines
481  */
482 
483 #define	HT_LOCK_PAD	64
484 
485 struct ht_lock {
486 	kmutex_t	ht_lock;
487 #ifdef _KERNEL
488 	unsigned char	pad[(HT_LOCK_PAD - sizeof (kmutex_t))];
489 #endif
490 };
491 
492 #define	BUF_LOCKS 256
493 typedef struct buf_hash_table {
494 	uint64_t ht_mask;
495 	arc_buf_hdr_t **ht_table;
496 	struct ht_lock ht_locks[BUF_LOCKS];
497 } buf_hash_table_t;
498 
499 static buf_hash_table_t buf_hash_table;
500 
501 #define	BUF_HASH_INDEX(spa, dva, birth) \
502 	(buf_hash(spa, dva, birth) & buf_hash_table.ht_mask)
503 #define	BUF_HASH_LOCK_NTRY(idx) (buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)])
504 #define	BUF_HASH_LOCK(idx)	(&(BUF_HASH_LOCK_NTRY(idx).ht_lock))
505 #define	HDR_LOCK(buf) \
506 	(BUF_HASH_LOCK(BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth)))
507 
508 uint64_t zfs_crc64_table[256];
509 
510 /*
511  * Level 2 ARC
512  */
513 
514 #define	L2ARC_WRITE_SIZE	(8 * 1024 * 1024)	/* initial write max */
515 #define	L2ARC_HEADROOM		4		/* num of writes */
516 #define	L2ARC_FEED_DELAY	180		/* starting grace */
517 #define	L2ARC_FEED_SECS		1		/* caching interval */
518 
519 #define	l2arc_writes_sent	ARCSTAT(arcstat_l2_writes_sent)
520 #define	l2arc_writes_done	ARCSTAT(arcstat_l2_writes_done)
521 
522 /*
523  * L2ARC Performance Tunables
524  */
525 uint64_t l2arc_write_max = L2ARC_WRITE_SIZE;	/* default max write size */
526 uint64_t l2arc_headroom = L2ARC_HEADROOM;	/* number of dev writes */
527 uint64_t l2arc_feed_secs = L2ARC_FEED_SECS;	/* interval seconds */
528 boolean_t l2arc_noprefetch = B_TRUE;		/* don't cache prefetch bufs */
529 
530 /*
531  * L2ARC Internals
532  */
533 typedef struct l2arc_dev {
534 	vdev_t			*l2ad_vdev;	/* vdev */
535 	spa_t			*l2ad_spa;	/* spa */
536 	uint64_t		l2ad_hand;	/* next write location */
537 	uint64_t		l2ad_write;	/* desired write size, bytes */
538 	uint64_t		l2ad_start;	/* first addr on device */
539 	uint64_t		l2ad_end;	/* last addr on device */
540 	uint64_t		l2ad_evict;	/* last addr eviction reached */
541 	boolean_t		l2ad_first;	/* first sweep through */
542 	list_t			*l2ad_buflist;	/* buffer list */
543 	list_node_t		l2ad_node;	/* device list node */
544 } l2arc_dev_t;
545 
546 static list_t L2ARC_dev_list;			/* device list */
547 static list_t *l2arc_dev_list;			/* device list pointer */
548 static kmutex_t l2arc_dev_mtx;			/* device list mutex */
549 static l2arc_dev_t *l2arc_dev_last;		/* last device used */
550 static kmutex_t l2arc_buflist_mtx;		/* mutex for all buflists */
551 static list_t L2ARC_free_on_write;		/* free after write buf list */
552 static list_t *l2arc_free_on_write;		/* free after write list ptr */
553 static kmutex_t l2arc_free_on_write_mtx;	/* mutex for list */
554 static uint64_t l2arc_ndev;			/* number of devices */
555 
556 typedef struct l2arc_read_callback {
557 	arc_buf_t	*l2rcb_buf;		/* read buffer */
558 	spa_t		*l2rcb_spa;		/* spa */
559 	blkptr_t	l2rcb_bp;		/* original blkptr */
560 	zbookmark_t	l2rcb_zb;		/* original bookmark */
561 	int		l2rcb_flags;		/* original flags */
562 } l2arc_read_callback_t;
563 
564 typedef struct l2arc_write_callback {
565 	l2arc_dev_t	*l2wcb_dev;		/* device info */
566 	arc_buf_hdr_t	*l2wcb_head;		/* head of write buflist */
567 } l2arc_write_callback_t;
568 
569 struct l2arc_buf_hdr {
570 	/* protected by arc_buf_hdr  mutex */
571 	l2arc_dev_t	*b_dev;			/* L2ARC device */
572 	daddr_t		b_daddr;		/* disk address, offset byte */
573 };
574 
575 typedef struct l2arc_data_free {
576 	/* protected by l2arc_free_on_write_mtx */
577 	void		*l2df_data;
578 	size_t		l2df_size;
579 	void		(*l2df_func)(void *, size_t);
580 	list_node_t	l2df_list_node;
581 } l2arc_data_free_t;
582 
583 static kmutex_t l2arc_feed_thr_lock;
584 static kcondvar_t l2arc_feed_thr_cv;
585 static uint8_t l2arc_thread_exit;
586 
587 static void l2arc_read_done(zio_t *zio);
588 static void l2arc_hdr_stat_add(void);
589 static void l2arc_hdr_stat_remove(void);
590 
591 static uint64_t
592 buf_hash(spa_t *spa, dva_t *dva, uint64_t birth)
593 {
594 	uintptr_t spav = (uintptr_t)spa;
595 	uint8_t *vdva = (uint8_t *)dva;
596 	uint64_t crc = -1ULL;
597 	int i;
598 
599 	ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
600 
601 	for (i = 0; i < sizeof (dva_t); i++)
602 		crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ vdva[i]) & 0xFF];
603 
604 	crc ^= (spav>>8) ^ birth;
605 
606 	return (crc);
607 }
608 
609 #define	BUF_EMPTY(buf)						\
610 	((buf)->b_dva.dva_word[0] == 0 &&			\
611 	(buf)->b_dva.dva_word[1] == 0 &&			\
612 	(buf)->b_birth == 0)
613 
614 #define	BUF_EQUAL(spa, dva, birth, buf)				\
615 	((buf)->b_dva.dva_word[0] == (dva)->dva_word[0]) &&	\
616 	((buf)->b_dva.dva_word[1] == (dva)->dva_word[1]) &&	\
617 	((buf)->b_birth == birth) && ((buf)->b_spa == spa)
618 
619 static arc_buf_hdr_t *
620 buf_hash_find(spa_t *spa, dva_t *dva, uint64_t birth, kmutex_t **lockp)
621 {
622 	uint64_t idx = BUF_HASH_INDEX(spa, dva, birth);
623 	kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
624 	arc_buf_hdr_t *buf;
625 
626 	mutex_enter(hash_lock);
627 	for (buf = buf_hash_table.ht_table[idx]; buf != NULL;
628 	    buf = buf->b_hash_next) {
629 		if (BUF_EQUAL(spa, dva, birth, buf)) {
630 			*lockp = hash_lock;
631 			return (buf);
632 		}
633 	}
634 	mutex_exit(hash_lock);
635 	*lockp = NULL;
636 	return (NULL);
637 }
638 
639 /*
640  * Insert an entry into the hash table.  If there is already an element
641  * equal to elem in the hash table, then the already existing element
642  * will be returned and the new element will not be inserted.
643  * Otherwise returns NULL.
644  */
645 static arc_buf_hdr_t *
646 buf_hash_insert(arc_buf_hdr_t *buf, kmutex_t **lockp)
647 {
648 	uint64_t idx = BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth);
649 	kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
650 	arc_buf_hdr_t *fbuf;
651 	uint32_t i;
652 
653 	ASSERT(!HDR_IN_HASH_TABLE(buf));
654 	*lockp = hash_lock;
655 	mutex_enter(hash_lock);
656 	for (fbuf = buf_hash_table.ht_table[idx], i = 0; fbuf != NULL;
657 	    fbuf = fbuf->b_hash_next, i++) {
658 		if (BUF_EQUAL(buf->b_spa, &buf->b_dva, buf->b_birth, fbuf))
659 			return (fbuf);
660 	}
661 
662 	buf->b_hash_next = buf_hash_table.ht_table[idx];
663 	buf_hash_table.ht_table[idx] = buf;
664 	buf->b_flags |= ARC_IN_HASH_TABLE;
665 
666 	/* collect some hash table performance data */
667 	if (i > 0) {
668 		ARCSTAT_BUMP(arcstat_hash_collisions);
669 		if (i == 1)
670 			ARCSTAT_BUMP(arcstat_hash_chains);
671 
672 		ARCSTAT_MAX(arcstat_hash_chain_max, i);
673 	}
674 
675 	ARCSTAT_BUMP(arcstat_hash_elements);
676 	ARCSTAT_MAXSTAT(arcstat_hash_elements);
677 
678 	return (NULL);
679 }
680 
681 static void
682 buf_hash_remove(arc_buf_hdr_t *buf)
683 {
684 	arc_buf_hdr_t *fbuf, **bufp;
685 	uint64_t idx = BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth);
686 
687 	ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx)));
688 	ASSERT(HDR_IN_HASH_TABLE(buf));
689 
690 	bufp = &buf_hash_table.ht_table[idx];
691 	while ((fbuf = *bufp) != buf) {
692 		ASSERT(fbuf != NULL);
693 		bufp = &fbuf->b_hash_next;
694 	}
695 	*bufp = buf->b_hash_next;
696 	buf->b_hash_next = NULL;
697 	buf->b_flags &= ~ARC_IN_HASH_TABLE;
698 
699 	/* collect some hash table performance data */
700 	ARCSTAT_BUMPDOWN(arcstat_hash_elements);
701 
702 	if (buf_hash_table.ht_table[idx] &&
703 	    buf_hash_table.ht_table[idx]->b_hash_next == NULL)
704 		ARCSTAT_BUMPDOWN(arcstat_hash_chains);
705 }
706 
707 /*
708  * Global data structures and functions for the buf kmem cache.
709  */
710 static kmem_cache_t *hdr_cache;
711 static kmem_cache_t *buf_cache;
712 
713 static void
714 buf_fini(void)
715 {
716 	int i;
717 
718 	kmem_free(buf_hash_table.ht_table,
719 	    (buf_hash_table.ht_mask + 1) * sizeof (void *));
720 	for (i = 0; i < BUF_LOCKS; i++)
721 		mutex_destroy(&buf_hash_table.ht_locks[i].ht_lock);
722 	kmem_cache_destroy(hdr_cache);
723 	kmem_cache_destroy(buf_cache);
724 }
725 
726 /*
727  * Constructor callback - called when the cache is empty
728  * and a new buf is requested.
729  */
730 /* ARGSUSED */
731 static int
732 hdr_cons(void *vbuf, void *unused, int kmflag)
733 {
734 	arc_buf_hdr_t *buf = vbuf;
735 
736 	bzero(buf, sizeof (arc_buf_hdr_t));
737 	refcount_create(&buf->b_refcnt);
738 	cv_init(&buf->b_cv, NULL, CV_DEFAULT, NULL);
739 	mutex_init(&buf->b_freeze_lock, NULL, MUTEX_DEFAULT, NULL);
740 
741 	ARCSTAT_INCR(arcstat_hdr_size, sizeof (arc_buf_hdr_t));
742 	return (0);
743 }
744 
745 /*
746  * Destructor callback - called when a cached buf is
747  * no longer required.
748  */
749 /* ARGSUSED */
750 static void
751 hdr_dest(void *vbuf, void *unused)
752 {
753 	arc_buf_hdr_t *buf = vbuf;
754 
755 	refcount_destroy(&buf->b_refcnt);
756 	cv_destroy(&buf->b_cv);
757 	mutex_destroy(&buf->b_freeze_lock);
758 
759 	ARCSTAT_INCR(arcstat_hdr_size, -sizeof (arc_buf_hdr_t));
760 }
761 
762 /*
763  * Reclaim callback -- invoked when memory is low.
764  */
765 /* ARGSUSED */
766 static void
767 hdr_recl(void *unused)
768 {
769 	dprintf("hdr_recl called\n");
770 	/*
771 	 * umem calls the reclaim func when we destroy the buf cache,
772 	 * which is after we do arc_fini().
773 	 */
774 	if (!arc_dead)
775 		cv_signal(&arc_reclaim_thr_cv);
776 }
777 
778 static void
779 buf_init(void)
780 {
781 	uint64_t *ct;
782 	uint64_t hsize = 1ULL << 12;
783 	int i, j;
784 
785 	/*
786 	 * The hash table is big enough to fill all of physical memory
787 	 * with an average 64K block size.  The table will take up
788 	 * totalmem*sizeof(void*)/64K (eg. 128KB/GB with 8-byte pointers).
789 	 */
790 	while (hsize * 65536 < physmem * PAGESIZE)
791 		hsize <<= 1;
792 retry:
793 	buf_hash_table.ht_mask = hsize - 1;
794 	buf_hash_table.ht_table =
795 	    kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP);
796 	if (buf_hash_table.ht_table == NULL) {
797 		ASSERT(hsize > (1ULL << 8));
798 		hsize >>= 1;
799 		goto retry;
800 	}
801 
802 	hdr_cache = kmem_cache_create("arc_buf_hdr_t", sizeof (arc_buf_hdr_t),
803 	    0, hdr_cons, hdr_dest, hdr_recl, NULL, NULL, 0);
804 	buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t),
805 	    0, NULL, NULL, NULL, NULL, NULL, 0);
806 
807 	for (i = 0; i < 256; i++)
808 		for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--)
809 			*ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY);
810 
811 	for (i = 0; i < BUF_LOCKS; i++) {
812 		mutex_init(&buf_hash_table.ht_locks[i].ht_lock,
813 		    NULL, MUTEX_DEFAULT, NULL);
814 	}
815 }
816 
817 #define	ARC_MINTIME	(hz>>4) /* 62 ms */
818 
819 static void
820 arc_cksum_verify(arc_buf_t *buf)
821 {
822 	zio_cksum_t zc;
823 
824 	if (!(zfs_flags & ZFS_DEBUG_MODIFY))
825 		return;
826 
827 	mutex_enter(&buf->b_hdr->b_freeze_lock);
828 	if (buf->b_hdr->b_freeze_cksum == NULL ||
829 	    (buf->b_hdr->b_flags & ARC_IO_ERROR)) {
830 		mutex_exit(&buf->b_hdr->b_freeze_lock);
831 		return;
832 	}
833 	fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc);
834 	if (!ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc))
835 		panic("buffer modified while frozen!");
836 	mutex_exit(&buf->b_hdr->b_freeze_lock);
837 }
838 
839 static int
840 arc_cksum_equal(arc_buf_t *buf)
841 {
842 	zio_cksum_t zc;
843 	int equal;
844 
845 	mutex_enter(&buf->b_hdr->b_freeze_lock);
846 	fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc);
847 	equal = ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc);
848 	mutex_exit(&buf->b_hdr->b_freeze_lock);
849 
850 	return (equal);
851 }
852 
853 static void
854 arc_cksum_compute(arc_buf_t *buf, boolean_t force)
855 {
856 	if (!force && !(zfs_flags & ZFS_DEBUG_MODIFY))
857 		return;
858 
859 	mutex_enter(&buf->b_hdr->b_freeze_lock);
860 	if (buf->b_hdr->b_freeze_cksum != NULL) {
861 		mutex_exit(&buf->b_hdr->b_freeze_lock);
862 		return;
863 	}
864 	buf->b_hdr->b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t), KM_SLEEP);
865 	fletcher_2_native(buf->b_data, buf->b_hdr->b_size,
866 	    buf->b_hdr->b_freeze_cksum);
867 	mutex_exit(&buf->b_hdr->b_freeze_lock);
868 }
869 
870 void
871 arc_buf_thaw(arc_buf_t *buf)
872 {
873 	if (zfs_flags & ZFS_DEBUG_MODIFY) {
874 		if (buf->b_hdr->b_state != arc_anon)
875 			panic("modifying non-anon buffer!");
876 		if (buf->b_hdr->b_flags & ARC_IO_IN_PROGRESS)
877 			panic("modifying buffer while i/o in progress!");
878 		arc_cksum_verify(buf);
879 	}
880 
881 	mutex_enter(&buf->b_hdr->b_freeze_lock);
882 	if (buf->b_hdr->b_freeze_cksum != NULL) {
883 		kmem_free(buf->b_hdr->b_freeze_cksum, sizeof (zio_cksum_t));
884 		buf->b_hdr->b_freeze_cksum = NULL;
885 	}
886 	mutex_exit(&buf->b_hdr->b_freeze_lock);
887 }
888 
889 void
890 arc_buf_freeze(arc_buf_t *buf)
891 {
892 	if (!(zfs_flags & ZFS_DEBUG_MODIFY))
893 		return;
894 
895 	ASSERT(buf->b_hdr->b_freeze_cksum != NULL ||
896 	    buf->b_hdr->b_state == arc_anon);
897 	arc_cksum_compute(buf, B_FALSE);
898 }
899 
900 static void
901 add_reference(arc_buf_hdr_t *ab, kmutex_t *hash_lock, void *tag)
902 {
903 	ASSERT(MUTEX_HELD(hash_lock));
904 
905 	if ((refcount_add(&ab->b_refcnt, tag) == 1) &&
906 	    (ab->b_state != arc_anon)) {
907 		uint64_t delta = ab->b_size * ab->b_datacnt;
908 		list_t *list = &ab->b_state->arcs_list[ab->b_type];
909 		uint64_t *size = &ab->b_state->arcs_lsize[ab->b_type];
910 
911 		ASSERT(!MUTEX_HELD(&ab->b_state->arcs_mtx));
912 		mutex_enter(&ab->b_state->arcs_mtx);
913 		ASSERT(list_link_active(&ab->b_arc_node));
914 		list_remove(list, ab);
915 		if (GHOST_STATE(ab->b_state)) {
916 			ASSERT3U(ab->b_datacnt, ==, 0);
917 			ASSERT3P(ab->b_buf, ==, NULL);
918 			delta = ab->b_size;
919 		}
920 		ASSERT(delta > 0);
921 		ASSERT3U(*size, >=, delta);
922 		atomic_add_64(size, -delta);
923 		mutex_exit(&ab->b_state->arcs_mtx);
924 		/* remove the prefetch flag is we get a reference */
925 		if (ab->b_flags & ARC_PREFETCH)
926 			ab->b_flags &= ~ARC_PREFETCH;
927 	}
928 }
929 
930 static int
931 remove_reference(arc_buf_hdr_t *ab, kmutex_t *hash_lock, void *tag)
932 {
933 	int cnt;
934 	arc_state_t *state = ab->b_state;
935 
936 	ASSERT(state == arc_anon || MUTEX_HELD(hash_lock));
937 	ASSERT(!GHOST_STATE(state));
938 
939 	if (((cnt = refcount_remove(&ab->b_refcnt, tag)) == 0) &&
940 	    (state != arc_anon)) {
941 		uint64_t *size = &state->arcs_lsize[ab->b_type];
942 
943 		ASSERT(!MUTEX_HELD(&state->arcs_mtx));
944 		mutex_enter(&state->arcs_mtx);
945 		ASSERT(!list_link_active(&ab->b_arc_node));
946 		list_insert_head(&state->arcs_list[ab->b_type], ab);
947 		ASSERT(ab->b_datacnt > 0);
948 		atomic_add_64(size, ab->b_size * ab->b_datacnt);
949 		mutex_exit(&state->arcs_mtx);
950 	}
951 	return (cnt);
952 }
953 
954 /*
955  * Move the supplied buffer to the indicated state.  The mutex
956  * for the buffer must be held by the caller.
957  */
958 static void
959 arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *ab, kmutex_t *hash_lock)
960 {
961 	arc_state_t *old_state = ab->b_state;
962 	int64_t refcnt = refcount_count(&ab->b_refcnt);
963 	uint64_t from_delta, to_delta;
964 
965 	ASSERT(MUTEX_HELD(hash_lock));
966 	ASSERT(new_state != old_state);
967 	ASSERT(refcnt == 0 || ab->b_datacnt > 0);
968 	ASSERT(ab->b_datacnt == 0 || !GHOST_STATE(new_state));
969 
970 	from_delta = to_delta = ab->b_datacnt * ab->b_size;
971 
972 	/*
973 	 * If this buffer is evictable, transfer it from the
974 	 * old state list to the new state list.
975 	 */
976 	if (refcnt == 0) {
977 		if (old_state != arc_anon) {
978 			int use_mutex = !MUTEX_HELD(&old_state->arcs_mtx);
979 			uint64_t *size = &old_state->arcs_lsize[ab->b_type];
980 
981 			if (use_mutex)
982 				mutex_enter(&old_state->arcs_mtx);
983 
984 			ASSERT(list_link_active(&ab->b_arc_node));
985 			list_remove(&old_state->arcs_list[ab->b_type], ab);
986 
987 			/*
988 			 * If prefetching out of the ghost cache,
989 			 * we will have a non-null datacnt.
990 			 */
991 			if (GHOST_STATE(old_state) && ab->b_datacnt == 0) {
992 				/* ghost elements have a ghost size */
993 				ASSERT(ab->b_buf == NULL);
994 				from_delta = ab->b_size;
995 			}
996 			ASSERT3U(*size, >=, from_delta);
997 			atomic_add_64(size, -from_delta);
998 
999 			if (use_mutex)
1000 				mutex_exit(&old_state->arcs_mtx);
1001 		}
1002 		if (new_state != arc_anon) {
1003 			int use_mutex = !MUTEX_HELD(&new_state->arcs_mtx);
1004 			uint64_t *size = &new_state->arcs_lsize[ab->b_type];
1005 
1006 			if (use_mutex)
1007 				mutex_enter(&new_state->arcs_mtx);
1008 
1009 			list_insert_head(&new_state->arcs_list[ab->b_type], ab);
1010 
1011 			/* ghost elements have a ghost size */
1012 			if (GHOST_STATE(new_state)) {
1013 				ASSERT(ab->b_datacnt == 0);
1014 				ASSERT(ab->b_buf == NULL);
1015 				to_delta = ab->b_size;
1016 			}
1017 			atomic_add_64(size, to_delta);
1018 
1019 			if (use_mutex)
1020 				mutex_exit(&new_state->arcs_mtx);
1021 		}
1022 	}
1023 
1024 	ASSERT(!BUF_EMPTY(ab));
1025 	if (new_state == arc_anon) {
1026 		buf_hash_remove(ab);
1027 	}
1028 
1029 	/* adjust state sizes */
1030 	if (to_delta)
1031 		atomic_add_64(&new_state->arcs_size, to_delta);
1032 	if (from_delta) {
1033 		ASSERT3U(old_state->arcs_size, >=, from_delta);
1034 		atomic_add_64(&old_state->arcs_size, -from_delta);
1035 	}
1036 	ab->b_state = new_state;
1037 
1038 	/* adjust l2arc hdr stats */
1039 	if (new_state == arc_l2c_only)
1040 		l2arc_hdr_stat_add();
1041 	else if (old_state == arc_l2c_only)
1042 		l2arc_hdr_stat_remove();
1043 }
1044 
1045 void
1046 arc_space_consume(uint64_t space)
1047 {
1048 	atomic_add_64(&arc_meta_used, space);
1049 	atomic_add_64(&arc_size, space);
1050 }
1051 
1052 void
1053 arc_space_return(uint64_t space)
1054 {
1055 	ASSERT(arc_meta_used >= space);
1056 	if (arc_meta_max < arc_meta_used)
1057 		arc_meta_max = arc_meta_used;
1058 	atomic_add_64(&arc_meta_used, -space);
1059 	ASSERT(arc_size >= space);
1060 	atomic_add_64(&arc_size, -space);
1061 }
1062 
1063 void *
1064 arc_data_buf_alloc(uint64_t size)
1065 {
1066 	if (arc_evict_needed(ARC_BUFC_DATA))
1067 		cv_signal(&arc_reclaim_thr_cv);
1068 	atomic_add_64(&arc_size, size);
1069 	return (zio_data_buf_alloc(size));
1070 }
1071 
1072 void
1073 arc_data_buf_free(void *buf, uint64_t size)
1074 {
1075 	zio_data_buf_free(buf, size);
1076 	ASSERT(arc_size >= size);
1077 	atomic_add_64(&arc_size, -size);
1078 }
1079 
1080 arc_buf_t *
1081 arc_buf_alloc(spa_t *spa, int size, void *tag, arc_buf_contents_t type)
1082 {
1083 	arc_buf_hdr_t *hdr;
1084 	arc_buf_t *buf;
1085 
1086 	ASSERT3U(size, >, 0);
1087 	hdr = kmem_cache_alloc(hdr_cache, KM_SLEEP);
1088 	ASSERT(BUF_EMPTY(hdr));
1089 	hdr->b_size = size;
1090 	hdr->b_type = type;
1091 	hdr->b_spa = spa;
1092 	hdr->b_state = arc_anon;
1093 	hdr->b_arc_access = 0;
1094 	buf = kmem_cache_alloc(buf_cache, KM_SLEEP);
1095 	buf->b_hdr = hdr;
1096 	buf->b_data = NULL;
1097 	buf->b_efunc = NULL;
1098 	buf->b_private = NULL;
1099 	buf->b_next = NULL;
1100 	hdr->b_buf = buf;
1101 	arc_get_data_buf(buf);
1102 	hdr->b_datacnt = 1;
1103 	hdr->b_flags = 0;
1104 	ASSERT(refcount_is_zero(&hdr->b_refcnt));
1105 	(void) refcount_add(&hdr->b_refcnt, tag);
1106 
1107 	return (buf);
1108 }
1109 
1110 static arc_buf_t *
1111 arc_buf_clone(arc_buf_t *from)
1112 {
1113 	arc_buf_t *buf;
1114 	arc_buf_hdr_t *hdr = from->b_hdr;
1115 	uint64_t size = hdr->b_size;
1116 
1117 	buf = kmem_cache_alloc(buf_cache, KM_SLEEP);
1118 	buf->b_hdr = hdr;
1119 	buf->b_data = NULL;
1120 	buf->b_efunc = NULL;
1121 	buf->b_private = NULL;
1122 	buf->b_next = hdr->b_buf;
1123 	hdr->b_buf = buf;
1124 	arc_get_data_buf(buf);
1125 	bcopy(from->b_data, buf->b_data, size);
1126 	hdr->b_datacnt += 1;
1127 	return (buf);
1128 }
1129 
1130 void
1131 arc_buf_add_ref(arc_buf_t *buf, void* tag)
1132 {
1133 	arc_buf_hdr_t *hdr;
1134 	kmutex_t *hash_lock;
1135 
1136 	/*
1137 	 * Check to see if this buffer is currently being evicted via
1138 	 * arc_do_user_evicts().
1139 	 */
1140 	mutex_enter(&arc_eviction_mtx);
1141 	hdr = buf->b_hdr;
1142 	if (hdr == NULL) {
1143 		mutex_exit(&arc_eviction_mtx);
1144 		return;
1145 	}
1146 	hash_lock = HDR_LOCK(hdr);
1147 	mutex_exit(&arc_eviction_mtx);
1148 
1149 	mutex_enter(hash_lock);
1150 	if (buf->b_data == NULL) {
1151 		/*
1152 		 * This buffer is evicted.
1153 		 */
1154 		mutex_exit(hash_lock);
1155 		return;
1156 	}
1157 
1158 	ASSERT(buf->b_hdr == hdr);
1159 	ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu);
1160 	add_reference(hdr, hash_lock, tag);
1161 	arc_access(hdr, hash_lock);
1162 	mutex_exit(hash_lock);
1163 	ARCSTAT_BUMP(arcstat_hits);
1164 	ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH),
1165 	    demand, prefetch, hdr->b_type != ARC_BUFC_METADATA,
1166 	    data, metadata, hits);
1167 }
1168 
1169 /*
1170  * Free the arc data buffer.  If it is an l2arc write in progress,
1171  * the buffer is placed on l2arc_free_on_write to be freed later.
1172  */
1173 static void
1174 arc_buf_data_free(arc_buf_hdr_t *hdr, void (*free_func)(void *, size_t),
1175     void *data, size_t size)
1176 {
1177 	if (HDR_L2_WRITING(hdr)) {
1178 		l2arc_data_free_t *df;
1179 		df = kmem_alloc(sizeof (l2arc_data_free_t), KM_SLEEP);
1180 		df->l2df_data = data;
1181 		df->l2df_size = size;
1182 		df->l2df_func = free_func;
1183 		mutex_enter(&l2arc_free_on_write_mtx);
1184 		list_insert_head(l2arc_free_on_write, df);
1185 		mutex_exit(&l2arc_free_on_write_mtx);
1186 		ARCSTAT_BUMP(arcstat_l2_free_on_write);
1187 	} else {
1188 		free_func(data, size);
1189 	}
1190 }
1191 
1192 static void
1193 arc_buf_destroy(arc_buf_t *buf, boolean_t recycle, boolean_t all)
1194 {
1195 	arc_buf_t **bufp;
1196 
1197 	/* free up data associated with the buf */
1198 	if (buf->b_data) {
1199 		arc_state_t *state = buf->b_hdr->b_state;
1200 		uint64_t size = buf->b_hdr->b_size;
1201 		arc_buf_contents_t type = buf->b_hdr->b_type;
1202 
1203 		arc_cksum_verify(buf);
1204 		if (!recycle) {
1205 			if (type == ARC_BUFC_METADATA) {
1206 				arc_buf_data_free(buf->b_hdr, zio_buf_free,
1207 				    buf->b_data, size);
1208 				arc_space_return(size);
1209 			} else {
1210 				ASSERT(type == ARC_BUFC_DATA);
1211 				arc_buf_data_free(buf->b_hdr,
1212 				    zio_data_buf_free, buf->b_data, size);
1213 				atomic_add_64(&arc_size, -size);
1214 			}
1215 		}
1216 		if (list_link_active(&buf->b_hdr->b_arc_node)) {
1217 			uint64_t *cnt = &state->arcs_lsize[type];
1218 
1219 			ASSERT(refcount_is_zero(&buf->b_hdr->b_refcnt));
1220 			ASSERT(state != arc_anon);
1221 
1222 			ASSERT3U(*cnt, >=, size);
1223 			atomic_add_64(cnt, -size);
1224 		}
1225 		ASSERT3U(state->arcs_size, >=, size);
1226 		atomic_add_64(&state->arcs_size, -size);
1227 		buf->b_data = NULL;
1228 		ASSERT(buf->b_hdr->b_datacnt > 0);
1229 		buf->b_hdr->b_datacnt -= 1;
1230 	}
1231 
1232 	/* only remove the buf if requested */
1233 	if (!all)
1234 		return;
1235 
1236 	/* remove the buf from the hdr list */
1237 	for (bufp = &buf->b_hdr->b_buf; *bufp != buf; bufp = &(*bufp)->b_next)
1238 		continue;
1239 	*bufp = buf->b_next;
1240 
1241 	ASSERT(buf->b_efunc == NULL);
1242 
1243 	/* clean up the buf */
1244 	buf->b_hdr = NULL;
1245 	kmem_cache_free(buf_cache, buf);
1246 }
1247 
1248 static void
1249 arc_hdr_destroy(arc_buf_hdr_t *hdr)
1250 {
1251 	ASSERT(refcount_is_zero(&hdr->b_refcnt));
1252 	ASSERT3P(hdr->b_state, ==, arc_anon);
1253 	ASSERT(!HDR_IO_IN_PROGRESS(hdr));
1254 
1255 	if (hdr->b_l2hdr != NULL) {
1256 		if (!MUTEX_HELD(&l2arc_buflist_mtx)) {
1257 			/*
1258 			 * To prevent arc_free() and l2arc_evict() from
1259 			 * attempting to free the same buffer at the same time,
1260 			 * a FREE_IN_PROGRESS flag is given to arc_free() to
1261 			 * give it priority.  l2arc_evict() can't destroy this
1262 			 * header while we are waiting on l2arc_buflist_mtx.
1263 			 */
1264 			mutex_enter(&l2arc_buflist_mtx);
1265 			ASSERT(hdr->b_l2hdr != NULL);
1266 
1267 			list_remove(hdr->b_l2hdr->b_dev->l2ad_buflist, hdr);
1268 			mutex_exit(&l2arc_buflist_mtx);
1269 		} else {
1270 			list_remove(hdr->b_l2hdr->b_dev->l2ad_buflist, hdr);
1271 		}
1272 		ARCSTAT_INCR(arcstat_l2_size, -hdr->b_size);
1273 		kmem_free(hdr->b_l2hdr, sizeof (l2arc_buf_hdr_t));
1274 		if (hdr->b_state == arc_l2c_only)
1275 			l2arc_hdr_stat_remove();
1276 		hdr->b_l2hdr = NULL;
1277 	}
1278 
1279 	if (!BUF_EMPTY(hdr)) {
1280 		ASSERT(!HDR_IN_HASH_TABLE(hdr));
1281 		bzero(&hdr->b_dva, sizeof (dva_t));
1282 		hdr->b_birth = 0;
1283 		hdr->b_cksum0 = 0;
1284 	}
1285 	while (hdr->b_buf) {
1286 		arc_buf_t *buf = hdr->b_buf;
1287 
1288 		if (buf->b_efunc) {
1289 			mutex_enter(&arc_eviction_mtx);
1290 			ASSERT(buf->b_hdr != NULL);
1291 			arc_buf_destroy(hdr->b_buf, FALSE, FALSE);
1292 			hdr->b_buf = buf->b_next;
1293 			buf->b_hdr = &arc_eviction_hdr;
1294 			buf->b_next = arc_eviction_list;
1295 			arc_eviction_list = buf;
1296 			mutex_exit(&arc_eviction_mtx);
1297 		} else {
1298 			arc_buf_destroy(hdr->b_buf, FALSE, TRUE);
1299 		}
1300 	}
1301 	if (hdr->b_freeze_cksum != NULL) {
1302 		kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t));
1303 		hdr->b_freeze_cksum = NULL;
1304 	}
1305 
1306 	ASSERT(!list_link_active(&hdr->b_arc_node));
1307 	ASSERT3P(hdr->b_hash_next, ==, NULL);
1308 	ASSERT3P(hdr->b_acb, ==, NULL);
1309 	kmem_cache_free(hdr_cache, hdr);
1310 }
1311 
1312 void
1313 arc_buf_free(arc_buf_t *buf, void *tag)
1314 {
1315 	arc_buf_hdr_t *hdr = buf->b_hdr;
1316 	int hashed = hdr->b_state != arc_anon;
1317 
1318 	ASSERT(buf->b_efunc == NULL);
1319 	ASSERT(buf->b_data != NULL);
1320 
1321 	if (hashed) {
1322 		kmutex_t *hash_lock = HDR_LOCK(hdr);
1323 
1324 		mutex_enter(hash_lock);
1325 		(void) remove_reference(hdr, hash_lock, tag);
1326 		if (hdr->b_datacnt > 1)
1327 			arc_buf_destroy(buf, FALSE, TRUE);
1328 		else
1329 			hdr->b_flags |= ARC_BUF_AVAILABLE;
1330 		mutex_exit(hash_lock);
1331 	} else if (HDR_IO_IN_PROGRESS(hdr)) {
1332 		int destroy_hdr;
1333 		/*
1334 		 * We are in the middle of an async write.  Don't destroy
1335 		 * this buffer unless the write completes before we finish
1336 		 * decrementing the reference count.
1337 		 */
1338 		mutex_enter(&arc_eviction_mtx);
1339 		(void) remove_reference(hdr, NULL, tag);
1340 		ASSERT(refcount_is_zero(&hdr->b_refcnt));
1341 		destroy_hdr = !HDR_IO_IN_PROGRESS(hdr);
1342 		mutex_exit(&arc_eviction_mtx);
1343 		if (destroy_hdr)
1344 			arc_hdr_destroy(hdr);
1345 	} else {
1346 		if (remove_reference(hdr, NULL, tag) > 0) {
1347 			ASSERT(HDR_IO_ERROR(hdr));
1348 			arc_buf_destroy(buf, FALSE, TRUE);
1349 		} else {
1350 			arc_hdr_destroy(hdr);
1351 		}
1352 	}
1353 }
1354 
1355 int
1356 arc_buf_remove_ref(arc_buf_t *buf, void* tag)
1357 {
1358 	arc_buf_hdr_t *hdr = buf->b_hdr;
1359 	kmutex_t *hash_lock = HDR_LOCK(hdr);
1360 	int no_callback = (buf->b_efunc == NULL);
1361 
1362 	if (hdr->b_state == arc_anon) {
1363 		arc_buf_free(buf, tag);
1364 		return (no_callback);
1365 	}
1366 
1367 	mutex_enter(hash_lock);
1368 	ASSERT(hdr->b_state != arc_anon);
1369 	ASSERT(buf->b_data != NULL);
1370 
1371 	(void) remove_reference(hdr, hash_lock, tag);
1372 	if (hdr->b_datacnt > 1) {
1373 		if (no_callback)
1374 			arc_buf_destroy(buf, FALSE, TRUE);
1375 	} else if (no_callback) {
1376 		ASSERT(hdr->b_buf == buf && buf->b_next == NULL);
1377 		hdr->b_flags |= ARC_BUF_AVAILABLE;
1378 	}
1379 	ASSERT(no_callback || hdr->b_datacnt > 1 ||
1380 	    refcount_is_zero(&hdr->b_refcnt));
1381 	mutex_exit(hash_lock);
1382 	return (no_callback);
1383 }
1384 
1385 int
1386 arc_buf_size(arc_buf_t *buf)
1387 {
1388 	return (buf->b_hdr->b_size);
1389 }
1390 
1391 /*
1392  * Evict buffers from list until we've removed the specified number of
1393  * bytes.  Move the removed buffers to the appropriate evict state.
1394  * If the recycle flag is set, then attempt to "recycle" a buffer:
1395  * - look for a buffer to evict that is `bytes' long.
1396  * - return the data block from this buffer rather than freeing it.
1397  * This flag is used by callers that are trying to make space for a
1398  * new buffer in a full arc cache.
1399  *
1400  * This function makes a "best effort".  It skips over any buffers
1401  * it can't get a hash_lock on, and so may not catch all candidates.
1402  * It may also return without evicting as much space as requested.
1403  */
1404 static void *
1405 arc_evict(arc_state_t *state, spa_t *spa, int64_t bytes, boolean_t recycle,
1406     arc_buf_contents_t type)
1407 {
1408 	arc_state_t *evicted_state;
1409 	uint64_t bytes_evicted = 0, skipped = 0, missed = 0;
1410 	arc_buf_hdr_t *ab, *ab_prev = NULL;
1411 	list_t *list = &state->arcs_list[type];
1412 	kmutex_t *hash_lock;
1413 	boolean_t have_lock;
1414 	void *stolen = NULL;
1415 
1416 	ASSERT(state == arc_mru || state == arc_mfu);
1417 
1418 	evicted_state = (state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost;
1419 
1420 	mutex_enter(&state->arcs_mtx);
1421 	mutex_enter(&evicted_state->arcs_mtx);
1422 
1423 	for (ab = list_tail(list); ab; ab = ab_prev) {
1424 		ab_prev = list_prev(list, ab);
1425 		/* prefetch buffers have a minimum lifespan */
1426 		if (HDR_IO_IN_PROGRESS(ab) ||
1427 		    (spa && ab->b_spa != spa) ||
1428 		    (ab->b_flags & (ARC_PREFETCH|ARC_INDIRECT) &&
1429 		    lbolt - ab->b_arc_access < arc_min_prefetch_lifespan)) {
1430 			skipped++;
1431 			continue;
1432 		}
1433 		/* "lookahead" for better eviction candidate */
1434 		if (recycle && ab->b_size != bytes &&
1435 		    ab_prev && ab_prev->b_size == bytes)
1436 			continue;
1437 		hash_lock = HDR_LOCK(ab);
1438 		have_lock = MUTEX_HELD(hash_lock);
1439 		if (have_lock || mutex_tryenter(hash_lock)) {
1440 			ASSERT3U(refcount_count(&ab->b_refcnt), ==, 0);
1441 			ASSERT(ab->b_datacnt > 0);
1442 			while (ab->b_buf) {
1443 				arc_buf_t *buf = ab->b_buf;
1444 				if (buf->b_data) {
1445 					bytes_evicted += ab->b_size;
1446 					if (recycle && ab->b_type == type &&
1447 					    ab->b_size == bytes &&
1448 					    !HDR_L2_WRITING(ab)) {
1449 						stolen = buf->b_data;
1450 						recycle = FALSE;
1451 					}
1452 				}
1453 				if (buf->b_efunc) {
1454 					mutex_enter(&arc_eviction_mtx);
1455 					arc_buf_destroy(buf,
1456 					    buf->b_data == stolen, FALSE);
1457 					ab->b_buf = buf->b_next;
1458 					buf->b_hdr = &arc_eviction_hdr;
1459 					buf->b_next = arc_eviction_list;
1460 					arc_eviction_list = buf;
1461 					mutex_exit(&arc_eviction_mtx);
1462 				} else {
1463 					arc_buf_destroy(buf,
1464 					    buf->b_data == stolen, TRUE);
1465 				}
1466 			}
1467 			ASSERT(ab->b_datacnt == 0);
1468 			arc_change_state(evicted_state, ab, hash_lock);
1469 			ASSERT(HDR_IN_HASH_TABLE(ab));
1470 			ab->b_flags |= ARC_IN_HASH_TABLE;
1471 			ab->b_flags &= ~ARC_BUF_AVAILABLE;
1472 			DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, ab);
1473 			if (!have_lock)
1474 				mutex_exit(hash_lock);
1475 			if (bytes >= 0 && bytes_evicted >= bytes)
1476 				break;
1477 		} else {
1478 			missed += 1;
1479 		}
1480 	}
1481 
1482 	mutex_exit(&evicted_state->arcs_mtx);
1483 	mutex_exit(&state->arcs_mtx);
1484 
1485 	if (bytes_evicted < bytes)
1486 		dprintf("only evicted %lld bytes from %x",
1487 		    (longlong_t)bytes_evicted, state);
1488 
1489 	if (skipped)
1490 		ARCSTAT_INCR(arcstat_evict_skip, skipped);
1491 
1492 	if (missed)
1493 		ARCSTAT_INCR(arcstat_mutex_miss, missed);
1494 
1495 	/*
1496 	 * We have just evicted some date into the ghost state, make
1497 	 * sure we also adjust the ghost state size if necessary.
1498 	 */
1499 	if (arc_no_grow &&
1500 	    arc_mru_ghost->arcs_size + arc_mfu_ghost->arcs_size > arc_c) {
1501 		int64_t mru_over = arc_anon->arcs_size + arc_mru->arcs_size +
1502 		    arc_mru_ghost->arcs_size - arc_c;
1503 
1504 		if (mru_over > 0 && arc_mru_ghost->arcs_lsize[type] > 0) {
1505 			int64_t todelete =
1506 			    MIN(arc_mru_ghost->arcs_lsize[type], mru_over);
1507 			arc_evict_ghost(arc_mru_ghost, NULL, todelete);
1508 		} else if (arc_mfu_ghost->arcs_lsize[type] > 0) {
1509 			int64_t todelete = MIN(arc_mfu_ghost->arcs_lsize[type],
1510 			    arc_mru_ghost->arcs_size +
1511 			    arc_mfu_ghost->arcs_size - arc_c);
1512 			arc_evict_ghost(arc_mfu_ghost, NULL, todelete);
1513 		}
1514 	}
1515 
1516 	return (stolen);
1517 }
1518 
1519 /*
1520  * Remove buffers from list until we've removed the specified number of
1521  * bytes.  Destroy the buffers that are removed.
1522  */
1523 static void
1524 arc_evict_ghost(arc_state_t *state, spa_t *spa, int64_t bytes)
1525 {
1526 	arc_buf_hdr_t *ab, *ab_prev;
1527 	list_t *list = &state->arcs_list[ARC_BUFC_DATA];
1528 	kmutex_t *hash_lock;
1529 	uint64_t bytes_deleted = 0;
1530 	uint64_t bufs_skipped = 0;
1531 
1532 	ASSERT(GHOST_STATE(state));
1533 top:
1534 	mutex_enter(&state->arcs_mtx);
1535 	for (ab = list_tail(list); ab; ab = ab_prev) {
1536 		ab_prev = list_prev(list, ab);
1537 		if (spa && ab->b_spa != spa)
1538 			continue;
1539 		hash_lock = HDR_LOCK(ab);
1540 		if (mutex_tryenter(hash_lock)) {
1541 			ASSERT(!HDR_IO_IN_PROGRESS(ab));
1542 			ASSERT(ab->b_buf == NULL);
1543 			ARCSTAT_BUMP(arcstat_deleted);
1544 			bytes_deleted += ab->b_size;
1545 
1546 			if (ab->b_l2hdr != NULL) {
1547 				/*
1548 				 * This buffer is cached on the 2nd Level ARC;
1549 				 * don't destroy the header.
1550 				 */
1551 				arc_change_state(arc_l2c_only, ab, hash_lock);
1552 				mutex_exit(hash_lock);
1553 			} else {
1554 				arc_change_state(arc_anon, ab, hash_lock);
1555 				mutex_exit(hash_lock);
1556 				arc_hdr_destroy(ab);
1557 			}
1558 
1559 			DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, ab);
1560 			if (bytes >= 0 && bytes_deleted >= bytes)
1561 				break;
1562 		} else {
1563 			if (bytes < 0) {
1564 				mutex_exit(&state->arcs_mtx);
1565 				mutex_enter(hash_lock);
1566 				mutex_exit(hash_lock);
1567 				goto top;
1568 			}
1569 			bufs_skipped += 1;
1570 		}
1571 	}
1572 	mutex_exit(&state->arcs_mtx);
1573 
1574 	if (list == &state->arcs_list[ARC_BUFC_DATA] &&
1575 	    (bytes < 0 || bytes_deleted < bytes)) {
1576 		list = &state->arcs_list[ARC_BUFC_METADATA];
1577 		goto top;
1578 	}
1579 
1580 	if (bufs_skipped) {
1581 		ARCSTAT_INCR(arcstat_mutex_miss, bufs_skipped);
1582 		ASSERT(bytes >= 0);
1583 	}
1584 
1585 	if (bytes_deleted < bytes)
1586 		dprintf("only deleted %lld bytes from %p",
1587 		    (longlong_t)bytes_deleted, state);
1588 }
1589 
1590 static void
1591 arc_adjust(void)
1592 {
1593 	int64_t top_sz, mru_over, arc_over, todelete;
1594 
1595 	top_sz = arc_anon->arcs_size + arc_mru->arcs_size + arc_meta_used;
1596 
1597 	if (top_sz > arc_p && arc_mru->arcs_lsize[ARC_BUFC_DATA] > 0) {
1598 		int64_t toevict =
1599 		    MIN(arc_mru->arcs_lsize[ARC_BUFC_DATA], top_sz - arc_p);
1600 		(void) arc_evict(arc_mru, NULL, toevict, FALSE, ARC_BUFC_DATA);
1601 		top_sz = arc_anon->arcs_size + arc_mru->arcs_size;
1602 	}
1603 
1604 	if (top_sz > arc_p && arc_mru->arcs_lsize[ARC_BUFC_METADATA] > 0) {
1605 		int64_t toevict =
1606 		    MIN(arc_mru->arcs_lsize[ARC_BUFC_METADATA], top_sz - arc_p);
1607 		(void) arc_evict(arc_mru, NULL, toevict, FALSE,
1608 		    ARC_BUFC_METADATA);
1609 		top_sz = arc_anon->arcs_size + arc_mru->arcs_size;
1610 	}
1611 
1612 	mru_over = top_sz + arc_mru_ghost->arcs_size - arc_c;
1613 
1614 	if (mru_over > 0) {
1615 		if (arc_mru_ghost->arcs_size > 0) {
1616 			todelete = MIN(arc_mru_ghost->arcs_size, mru_over);
1617 			arc_evict_ghost(arc_mru_ghost, NULL, todelete);
1618 		}
1619 	}
1620 
1621 	if ((arc_over = arc_size - arc_c) > 0) {
1622 		int64_t tbl_over;
1623 
1624 		if (arc_mfu->arcs_lsize[ARC_BUFC_DATA] > 0) {
1625 			int64_t toevict =
1626 			    MIN(arc_mfu->arcs_lsize[ARC_BUFC_DATA], arc_over);
1627 			(void) arc_evict(arc_mfu, NULL, toevict, FALSE,
1628 			    ARC_BUFC_DATA);
1629 			arc_over = arc_size - arc_c;
1630 		}
1631 
1632 		if (arc_over > 0 &&
1633 		    arc_mfu->arcs_lsize[ARC_BUFC_METADATA] > 0) {
1634 			int64_t toevict =
1635 			    MIN(arc_mfu->arcs_lsize[ARC_BUFC_METADATA],
1636 			    arc_over);
1637 			(void) arc_evict(arc_mfu, NULL, toevict, FALSE,
1638 			    ARC_BUFC_METADATA);
1639 		}
1640 
1641 		tbl_over = arc_size + arc_mru_ghost->arcs_size +
1642 		    arc_mfu_ghost->arcs_size - arc_c * 2;
1643 
1644 		if (tbl_over > 0 && arc_mfu_ghost->arcs_size > 0) {
1645 			todelete = MIN(arc_mfu_ghost->arcs_size, tbl_over);
1646 			arc_evict_ghost(arc_mfu_ghost, NULL, todelete);
1647 		}
1648 	}
1649 }
1650 
1651 static void
1652 arc_do_user_evicts(void)
1653 {
1654 	mutex_enter(&arc_eviction_mtx);
1655 	while (arc_eviction_list != NULL) {
1656 		arc_buf_t *buf = arc_eviction_list;
1657 		arc_eviction_list = buf->b_next;
1658 		buf->b_hdr = NULL;
1659 		mutex_exit(&arc_eviction_mtx);
1660 
1661 		if (buf->b_efunc != NULL)
1662 			VERIFY(buf->b_efunc(buf) == 0);
1663 
1664 		buf->b_efunc = NULL;
1665 		buf->b_private = NULL;
1666 		kmem_cache_free(buf_cache, buf);
1667 		mutex_enter(&arc_eviction_mtx);
1668 	}
1669 	mutex_exit(&arc_eviction_mtx);
1670 }
1671 
1672 /*
1673  * Flush all *evictable* data from the cache for the given spa.
1674  * NOTE: this will not touch "active" (i.e. referenced) data.
1675  */
1676 void
1677 arc_flush(spa_t *spa)
1678 {
1679 	while (list_head(&arc_mru->arcs_list[ARC_BUFC_DATA])) {
1680 		(void) arc_evict(arc_mru, spa, -1, FALSE, ARC_BUFC_DATA);
1681 		if (spa)
1682 			break;
1683 	}
1684 	while (list_head(&arc_mru->arcs_list[ARC_BUFC_METADATA])) {
1685 		(void) arc_evict(arc_mru, spa, -1, FALSE, ARC_BUFC_METADATA);
1686 		if (spa)
1687 			break;
1688 	}
1689 	while (list_head(&arc_mfu->arcs_list[ARC_BUFC_DATA])) {
1690 		(void) arc_evict(arc_mfu, spa, -1, FALSE, ARC_BUFC_DATA);
1691 		if (spa)
1692 			break;
1693 	}
1694 	while (list_head(&arc_mfu->arcs_list[ARC_BUFC_METADATA])) {
1695 		(void) arc_evict(arc_mfu, spa, -1, FALSE, ARC_BUFC_METADATA);
1696 		if (spa)
1697 			break;
1698 	}
1699 
1700 	arc_evict_ghost(arc_mru_ghost, spa, -1);
1701 	arc_evict_ghost(arc_mfu_ghost, spa, -1);
1702 
1703 	mutex_enter(&arc_reclaim_thr_lock);
1704 	arc_do_user_evicts();
1705 	mutex_exit(&arc_reclaim_thr_lock);
1706 	ASSERT(spa || arc_eviction_list == NULL);
1707 }
1708 
1709 int arc_shrink_shift = 5;		/* log2(fraction of arc to reclaim) */
1710 
1711 void
1712 arc_shrink(void)
1713 {
1714 	if (arc_c > arc_c_min) {
1715 		uint64_t to_free;
1716 
1717 #ifdef _KERNEL
1718 		to_free = MAX(arc_c >> arc_shrink_shift, ptob(needfree));
1719 #else
1720 		to_free = arc_c >> arc_shrink_shift;
1721 #endif
1722 		if (arc_c > arc_c_min + to_free)
1723 			atomic_add_64(&arc_c, -to_free);
1724 		else
1725 			arc_c = arc_c_min;
1726 
1727 		atomic_add_64(&arc_p, -(arc_p >> arc_shrink_shift));
1728 		if (arc_c > arc_size)
1729 			arc_c = MAX(arc_size, arc_c_min);
1730 		if (arc_p > arc_c)
1731 			arc_p = (arc_c >> 1);
1732 		ASSERT(arc_c >= arc_c_min);
1733 		ASSERT((int64_t)arc_p >= 0);
1734 	}
1735 
1736 	if (arc_size > arc_c)
1737 		arc_adjust();
1738 }
1739 
1740 static int
1741 arc_reclaim_needed(void)
1742 {
1743 	uint64_t extra;
1744 
1745 #ifdef _KERNEL
1746 
1747 	if (needfree)
1748 		return (1);
1749 
1750 	/*
1751 	 * take 'desfree' extra pages, so we reclaim sooner, rather than later
1752 	 */
1753 	extra = desfree;
1754 
1755 	/*
1756 	 * check that we're out of range of the pageout scanner.  It starts to
1757 	 * schedule paging if freemem is less than lotsfree and needfree.
1758 	 * lotsfree is the high-water mark for pageout, and needfree is the
1759 	 * number of needed free pages.  We add extra pages here to make sure
1760 	 * the scanner doesn't start up while we're freeing memory.
1761 	 */
1762 	if (freemem < lotsfree + needfree + extra)
1763 		return (1);
1764 
1765 	/*
1766 	 * check to make sure that swapfs has enough space so that anon
1767 	 * reservations can still succeed. anon_resvmem() checks that the
1768 	 * availrmem is greater than swapfs_minfree, and the number of reserved
1769 	 * swap pages.  We also add a bit of extra here just to prevent
1770 	 * circumstances from getting really dire.
1771 	 */
1772 	if (availrmem < swapfs_minfree + swapfs_reserve + extra)
1773 		return (1);
1774 
1775 #if defined(__i386)
1776 	/*
1777 	 * If we're on an i386 platform, it's possible that we'll exhaust the
1778 	 * kernel heap space before we ever run out of available physical
1779 	 * memory.  Most checks of the size of the heap_area compare against
1780 	 * tune.t_minarmem, which is the minimum available real memory that we
1781 	 * can have in the system.  However, this is generally fixed at 25 pages
1782 	 * which is so low that it's useless.  In this comparison, we seek to
1783 	 * calculate the total heap-size, and reclaim if more than 3/4ths of the
1784 	 * heap is allocated.  (Or, in the calculation, if less than 1/4th is
1785 	 * free)
1786 	 */
1787 	if (btop(vmem_size(heap_arena, VMEM_FREE)) <
1788 	    (btop(vmem_size(heap_arena, VMEM_FREE | VMEM_ALLOC)) >> 2))
1789 		return (1);
1790 #endif
1791 
1792 #else
1793 	if (spa_get_random(100) == 0)
1794 		return (1);
1795 #endif
1796 	return (0);
1797 }
1798 
1799 static void
1800 arc_kmem_reap_now(arc_reclaim_strategy_t strat)
1801 {
1802 	size_t			i;
1803 	kmem_cache_t		*prev_cache = NULL;
1804 	kmem_cache_t		*prev_data_cache = NULL;
1805 	extern kmem_cache_t	*zio_buf_cache[];
1806 	extern kmem_cache_t	*zio_data_buf_cache[];
1807 
1808 #ifdef _KERNEL
1809 	if (arc_meta_used >= arc_meta_limit) {
1810 		/*
1811 		 * We are exceeding our meta-data cache limit.
1812 		 * Purge some DNLC entries to release holds on meta-data.
1813 		 */
1814 		dnlc_reduce_cache((void *)(uintptr_t)arc_reduce_dnlc_percent);
1815 	}
1816 #if defined(__i386)
1817 	/*
1818 	 * Reclaim unused memory from all kmem caches.
1819 	 */
1820 	kmem_reap();
1821 #endif
1822 #endif
1823 
1824 	/*
1825 	 * An aggressive reclamation will shrink the cache size as well as
1826 	 * reap free buffers from the arc kmem caches.
1827 	 */
1828 	if (strat == ARC_RECLAIM_AGGR)
1829 		arc_shrink();
1830 
1831 	for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) {
1832 		if (zio_buf_cache[i] != prev_cache) {
1833 			prev_cache = zio_buf_cache[i];
1834 			kmem_cache_reap_now(zio_buf_cache[i]);
1835 		}
1836 		if (zio_data_buf_cache[i] != prev_data_cache) {
1837 			prev_data_cache = zio_data_buf_cache[i];
1838 			kmem_cache_reap_now(zio_data_buf_cache[i]);
1839 		}
1840 	}
1841 	kmem_cache_reap_now(buf_cache);
1842 	kmem_cache_reap_now(hdr_cache);
1843 }
1844 
1845 static void
1846 arc_reclaim_thread(void)
1847 {
1848 	clock_t			growtime = 0;
1849 	arc_reclaim_strategy_t	last_reclaim = ARC_RECLAIM_CONS;
1850 	callb_cpr_t		cpr;
1851 
1852 	CALLB_CPR_INIT(&cpr, &arc_reclaim_thr_lock, callb_generic_cpr, FTAG);
1853 
1854 	mutex_enter(&arc_reclaim_thr_lock);
1855 	while (arc_thread_exit == 0) {
1856 		if (arc_reclaim_needed()) {
1857 
1858 			if (arc_no_grow) {
1859 				if (last_reclaim == ARC_RECLAIM_CONS) {
1860 					last_reclaim = ARC_RECLAIM_AGGR;
1861 				} else {
1862 					last_reclaim = ARC_RECLAIM_CONS;
1863 				}
1864 			} else {
1865 				arc_no_grow = TRUE;
1866 				last_reclaim = ARC_RECLAIM_AGGR;
1867 				membar_producer();
1868 			}
1869 
1870 			/* reset the growth delay for every reclaim */
1871 			growtime = lbolt + (arc_grow_retry * hz);
1872 
1873 			arc_kmem_reap_now(last_reclaim);
1874 
1875 		} else if (arc_no_grow && lbolt >= growtime) {
1876 			arc_no_grow = FALSE;
1877 		}
1878 
1879 		if (2 * arc_c < arc_size +
1880 		    arc_mru_ghost->arcs_size + arc_mfu_ghost->arcs_size)
1881 			arc_adjust();
1882 
1883 		if (arc_eviction_list != NULL)
1884 			arc_do_user_evicts();
1885 
1886 		/* block until needed, or one second, whichever is shorter */
1887 		CALLB_CPR_SAFE_BEGIN(&cpr);
1888 		(void) cv_timedwait(&arc_reclaim_thr_cv,
1889 		    &arc_reclaim_thr_lock, (lbolt + hz));
1890 		CALLB_CPR_SAFE_END(&cpr, &arc_reclaim_thr_lock);
1891 	}
1892 
1893 	arc_thread_exit = 0;
1894 	cv_broadcast(&arc_reclaim_thr_cv);
1895 	CALLB_CPR_EXIT(&cpr);		/* drops arc_reclaim_thr_lock */
1896 	thread_exit();
1897 }
1898 
1899 /*
1900  * Adapt arc info given the number of bytes we are trying to add and
1901  * the state that we are comming from.  This function is only called
1902  * when we are adding new content to the cache.
1903  */
1904 static void
1905 arc_adapt(int bytes, arc_state_t *state)
1906 {
1907 	int mult;
1908 
1909 	if (state == arc_l2c_only)
1910 		return;
1911 
1912 	ASSERT(bytes > 0);
1913 	/*
1914 	 * Adapt the target size of the MRU list:
1915 	 *	- if we just hit in the MRU ghost list, then increase
1916 	 *	  the target size of the MRU list.
1917 	 *	- if we just hit in the MFU ghost list, then increase
1918 	 *	  the target size of the MFU list by decreasing the
1919 	 *	  target size of the MRU list.
1920 	 */
1921 	if (state == arc_mru_ghost) {
1922 		mult = ((arc_mru_ghost->arcs_size >= arc_mfu_ghost->arcs_size) ?
1923 		    1 : (arc_mfu_ghost->arcs_size/arc_mru_ghost->arcs_size));
1924 
1925 		arc_p = MIN(arc_c, arc_p + bytes * mult);
1926 	} else if (state == arc_mfu_ghost) {
1927 		mult = ((arc_mfu_ghost->arcs_size >= arc_mru_ghost->arcs_size) ?
1928 		    1 : (arc_mru_ghost->arcs_size/arc_mfu_ghost->arcs_size));
1929 
1930 		arc_p = MAX(0, (int64_t)arc_p - bytes * mult);
1931 	}
1932 	ASSERT((int64_t)arc_p >= 0);
1933 
1934 	if (arc_reclaim_needed()) {
1935 		cv_signal(&arc_reclaim_thr_cv);
1936 		return;
1937 	}
1938 
1939 	if (arc_no_grow)
1940 		return;
1941 
1942 	if (arc_c >= arc_c_max)
1943 		return;
1944 
1945 	/*
1946 	 * If we're within (2 * maxblocksize) bytes of the target
1947 	 * cache size, increment the target cache size
1948 	 */
1949 	if (arc_size > arc_c - (2ULL << SPA_MAXBLOCKSHIFT)) {
1950 		atomic_add_64(&arc_c, (int64_t)bytes);
1951 		if (arc_c > arc_c_max)
1952 			arc_c = arc_c_max;
1953 		else if (state == arc_anon)
1954 			atomic_add_64(&arc_p, (int64_t)bytes);
1955 		if (arc_p > arc_c)
1956 			arc_p = arc_c;
1957 	}
1958 	ASSERT((int64_t)arc_p >= 0);
1959 }
1960 
1961 /*
1962  * Check if the cache has reached its limits and eviction is required
1963  * prior to insert.
1964  */
1965 static int
1966 arc_evict_needed(arc_buf_contents_t type)
1967 {
1968 	if (type == ARC_BUFC_METADATA && arc_meta_used >= arc_meta_limit)
1969 		return (1);
1970 
1971 #ifdef _KERNEL
1972 	/*
1973 	 * If zio data pages are being allocated out of a separate heap segment,
1974 	 * then enforce that the size of available vmem for this area remains
1975 	 * above about 1/32nd free.
1976 	 */
1977 	if (type == ARC_BUFC_DATA && zio_arena != NULL &&
1978 	    vmem_size(zio_arena, VMEM_FREE) <
1979 	    (vmem_size(zio_arena, VMEM_ALLOC) >> 5))
1980 		return (1);
1981 #endif
1982 
1983 	if (arc_reclaim_needed())
1984 		return (1);
1985 
1986 	return (arc_size > arc_c);
1987 }
1988 
1989 /*
1990  * The buffer, supplied as the first argument, needs a data block.
1991  * So, if we are at cache max, determine which cache should be victimized.
1992  * We have the following cases:
1993  *
1994  * 1. Insert for MRU, p > sizeof(arc_anon + arc_mru) ->
1995  * In this situation if we're out of space, but the resident size of the MFU is
1996  * under the limit, victimize the MFU cache to satisfy this insertion request.
1997  *
1998  * 2. Insert for MRU, p <= sizeof(arc_anon + arc_mru) ->
1999  * Here, we've used up all of the available space for the MRU, so we need to
2000  * evict from our own cache instead.  Evict from the set of resident MRU
2001  * entries.
2002  *
2003  * 3. Insert for MFU (c - p) > sizeof(arc_mfu) ->
2004  * c minus p represents the MFU space in the cache, since p is the size of the
2005  * cache that is dedicated to the MRU.  In this situation there's still space on
2006  * the MFU side, so the MRU side needs to be victimized.
2007  *
2008  * 4. Insert for MFU (c - p) < sizeof(arc_mfu) ->
2009  * MFU's resident set is consuming more space than it has been allotted.  In
2010  * this situation, we must victimize our own cache, the MFU, for this insertion.
2011  */
2012 static void
2013 arc_get_data_buf(arc_buf_t *buf)
2014 {
2015 	arc_state_t		*state = buf->b_hdr->b_state;
2016 	uint64_t		size = buf->b_hdr->b_size;
2017 	arc_buf_contents_t	type = buf->b_hdr->b_type;
2018 
2019 	arc_adapt(size, state);
2020 
2021 	/*
2022 	 * We have not yet reached cache maximum size,
2023 	 * just allocate a new buffer.
2024 	 */
2025 	if (!arc_evict_needed(type)) {
2026 		if (type == ARC_BUFC_METADATA) {
2027 			buf->b_data = zio_buf_alloc(size);
2028 			arc_space_consume(size);
2029 		} else {
2030 			ASSERT(type == ARC_BUFC_DATA);
2031 			buf->b_data = zio_data_buf_alloc(size);
2032 			atomic_add_64(&arc_size, size);
2033 		}
2034 		goto out;
2035 	}
2036 
2037 	/*
2038 	 * If we are prefetching from the mfu ghost list, this buffer
2039 	 * will end up on the mru list; so steal space from there.
2040 	 */
2041 	if (state == arc_mfu_ghost)
2042 		state = buf->b_hdr->b_flags & ARC_PREFETCH ? arc_mru : arc_mfu;
2043 	else if (state == arc_mru_ghost)
2044 		state = arc_mru;
2045 
2046 	if (state == arc_mru || state == arc_anon) {
2047 		uint64_t mru_used = arc_anon->arcs_size + arc_mru->arcs_size;
2048 		state = (arc_mfu->arcs_lsize[type] > 0 &&
2049 		    arc_p > mru_used) ? arc_mfu : arc_mru;
2050 	} else {
2051 		/* MFU cases */
2052 		uint64_t mfu_space = arc_c - arc_p;
2053 		state =  (arc_mru->arcs_lsize[type] > 0 &&
2054 		    mfu_space > arc_mfu->arcs_size) ? arc_mru : arc_mfu;
2055 	}
2056 	if ((buf->b_data = arc_evict(state, NULL, size, TRUE, type)) == NULL) {
2057 		if (type == ARC_BUFC_METADATA) {
2058 			buf->b_data = zio_buf_alloc(size);
2059 			arc_space_consume(size);
2060 		} else {
2061 			ASSERT(type == ARC_BUFC_DATA);
2062 			buf->b_data = zio_data_buf_alloc(size);
2063 			atomic_add_64(&arc_size, size);
2064 		}
2065 		ARCSTAT_BUMP(arcstat_recycle_miss);
2066 	}
2067 	ASSERT(buf->b_data != NULL);
2068 out:
2069 	/*
2070 	 * Update the state size.  Note that ghost states have a
2071 	 * "ghost size" and so don't need to be updated.
2072 	 */
2073 	if (!GHOST_STATE(buf->b_hdr->b_state)) {
2074 		arc_buf_hdr_t *hdr = buf->b_hdr;
2075 
2076 		atomic_add_64(&hdr->b_state->arcs_size, size);
2077 		if (list_link_active(&hdr->b_arc_node)) {
2078 			ASSERT(refcount_is_zero(&hdr->b_refcnt));
2079 			atomic_add_64(&hdr->b_state->arcs_lsize[type], size);
2080 		}
2081 		/*
2082 		 * If we are growing the cache, and we are adding anonymous
2083 		 * data, and we have outgrown arc_p, update arc_p
2084 		 */
2085 		if (arc_size < arc_c && hdr->b_state == arc_anon &&
2086 		    arc_anon->arcs_size + arc_mru->arcs_size > arc_p)
2087 			arc_p = MIN(arc_c, arc_p + size);
2088 	}
2089 }
2090 
2091 /*
2092  * This routine is called whenever a buffer is accessed.
2093  * NOTE: the hash lock is dropped in this function.
2094  */
2095 static void
2096 arc_access(arc_buf_hdr_t *buf, kmutex_t *hash_lock)
2097 {
2098 	ASSERT(MUTEX_HELD(hash_lock));
2099 
2100 	if (buf->b_state == arc_anon) {
2101 		/*
2102 		 * This buffer is not in the cache, and does not
2103 		 * appear in our "ghost" list.  Add the new buffer
2104 		 * to the MRU state.
2105 		 */
2106 
2107 		ASSERT(buf->b_arc_access == 0);
2108 		buf->b_arc_access = lbolt;
2109 		DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, buf);
2110 		arc_change_state(arc_mru, buf, hash_lock);
2111 
2112 	} else if (buf->b_state == arc_mru) {
2113 		/*
2114 		 * If this buffer is here because of a prefetch, then either:
2115 		 * - clear the flag if this is a "referencing" read
2116 		 *   (any subsequent access will bump this into the MFU state).
2117 		 * or
2118 		 * - move the buffer to the head of the list if this is
2119 		 *   another prefetch (to make it less likely to be evicted).
2120 		 */
2121 		if ((buf->b_flags & ARC_PREFETCH) != 0) {
2122 			if (refcount_count(&buf->b_refcnt) == 0) {
2123 				ASSERT(list_link_active(&buf->b_arc_node));
2124 			} else {
2125 				buf->b_flags &= ~ARC_PREFETCH;
2126 				ARCSTAT_BUMP(arcstat_mru_hits);
2127 			}
2128 			buf->b_arc_access = lbolt;
2129 			return;
2130 		}
2131 
2132 		/*
2133 		 * This buffer has been "accessed" only once so far,
2134 		 * but it is still in the cache. Move it to the MFU
2135 		 * state.
2136 		 */
2137 		if (lbolt > buf->b_arc_access + ARC_MINTIME) {
2138 			/*
2139 			 * More than 125ms have passed since we
2140 			 * instantiated this buffer.  Move it to the
2141 			 * most frequently used state.
2142 			 */
2143 			buf->b_arc_access = lbolt;
2144 			DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
2145 			arc_change_state(arc_mfu, buf, hash_lock);
2146 		}
2147 		ARCSTAT_BUMP(arcstat_mru_hits);
2148 	} else if (buf->b_state == arc_mru_ghost) {
2149 		arc_state_t	*new_state;
2150 		/*
2151 		 * This buffer has been "accessed" recently, but
2152 		 * was evicted from the cache.  Move it to the
2153 		 * MFU state.
2154 		 */
2155 
2156 		if (buf->b_flags & ARC_PREFETCH) {
2157 			new_state = arc_mru;
2158 			if (refcount_count(&buf->b_refcnt) > 0)
2159 				buf->b_flags &= ~ARC_PREFETCH;
2160 			DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, buf);
2161 		} else {
2162 			new_state = arc_mfu;
2163 			DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
2164 		}
2165 
2166 		buf->b_arc_access = lbolt;
2167 		arc_change_state(new_state, buf, hash_lock);
2168 
2169 		ARCSTAT_BUMP(arcstat_mru_ghost_hits);
2170 	} else if (buf->b_state == arc_mfu) {
2171 		/*
2172 		 * This buffer has been accessed more than once and is
2173 		 * still in the cache.  Keep it in the MFU state.
2174 		 *
2175 		 * NOTE: an add_reference() that occurred when we did
2176 		 * the arc_read() will have kicked this off the list.
2177 		 * If it was a prefetch, we will explicitly move it to
2178 		 * the head of the list now.
2179 		 */
2180 		if ((buf->b_flags & ARC_PREFETCH) != 0) {
2181 			ASSERT(refcount_count(&buf->b_refcnt) == 0);
2182 			ASSERT(list_link_active(&buf->b_arc_node));
2183 		}
2184 		ARCSTAT_BUMP(arcstat_mfu_hits);
2185 		buf->b_arc_access = lbolt;
2186 	} else if (buf->b_state == arc_mfu_ghost) {
2187 		arc_state_t	*new_state = arc_mfu;
2188 		/*
2189 		 * This buffer has been accessed more than once but has
2190 		 * been evicted from the cache.  Move it back to the
2191 		 * MFU state.
2192 		 */
2193 
2194 		if (buf->b_flags & ARC_PREFETCH) {
2195 			/*
2196 			 * This is a prefetch access...
2197 			 * move this block back to the MRU state.
2198 			 */
2199 			ASSERT3U(refcount_count(&buf->b_refcnt), ==, 0);
2200 			new_state = arc_mru;
2201 		}
2202 
2203 		buf->b_arc_access = lbolt;
2204 		DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
2205 		arc_change_state(new_state, buf, hash_lock);
2206 
2207 		ARCSTAT_BUMP(arcstat_mfu_ghost_hits);
2208 	} else if (buf->b_state == arc_l2c_only) {
2209 		/*
2210 		 * This buffer is on the 2nd Level ARC.
2211 		 */
2212 
2213 		buf->b_arc_access = lbolt;
2214 		DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
2215 		arc_change_state(arc_mfu, buf, hash_lock);
2216 	} else {
2217 		ASSERT(!"invalid arc state");
2218 	}
2219 }
2220 
2221 /* a generic arc_done_func_t which you can use */
2222 /* ARGSUSED */
2223 void
2224 arc_bcopy_func(zio_t *zio, arc_buf_t *buf, void *arg)
2225 {
2226 	bcopy(buf->b_data, arg, buf->b_hdr->b_size);
2227 	VERIFY(arc_buf_remove_ref(buf, arg) == 1);
2228 }
2229 
2230 /* a generic arc_done_func_t */
2231 void
2232 arc_getbuf_func(zio_t *zio, arc_buf_t *buf, void *arg)
2233 {
2234 	arc_buf_t **bufp = arg;
2235 	if (zio && zio->io_error) {
2236 		VERIFY(arc_buf_remove_ref(buf, arg) == 1);
2237 		*bufp = NULL;
2238 	} else {
2239 		*bufp = buf;
2240 	}
2241 }
2242 
2243 static void
2244 arc_read_done(zio_t *zio)
2245 {
2246 	arc_buf_hdr_t	*hdr, *found;
2247 	arc_buf_t	*buf;
2248 	arc_buf_t	*abuf;	/* buffer we're assigning to callback */
2249 	kmutex_t	*hash_lock;
2250 	arc_callback_t	*callback_list, *acb;
2251 	int		freeable = FALSE;
2252 
2253 	buf = zio->io_private;
2254 	hdr = buf->b_hdr;
2255 
2256 	/*
2257 	 * The hdr was inserted into hash-table and removed from lists
2258 	 * prior to starting I/O.  We should find this header, since
2259 	 * it's in the hash table, and it should be legit since it's
2260 	 * not possible to evict it during the I/O.  The only possible
2261 	 * reason for it not to be found is if we were freed during the
2262 	 * read.
2263 	 */
2264 	found = buf_hash_find(zio->io_spa, &hdr->b_dva, hdr->b_birth,
2265 	    &hash_lock);
2266 
2267 	ASSERT((found == NULL && HDR_FREED_IN_READ(hdr) && hash_lock == NULL) ||
2268 	    (found == hdr && DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))) ||
2269 	    (found == hdr && HDR_L2_READING(hdr)));
2270 
2271 	hdr->b_flags &= ~(ARC_L2_READING|ARC_L2_EVICTED);
2272 	if (l2arc_noprefetch && (hdr->b_flags & ARC_PREFETCH))
2273 		hdr->b_flags |= ARC_DONT_L2CACHE;
2274 
2275 	/* byteswap if necessary */
2276 	callback_list = hdr->b_acb;
2277 	ASSERT(callback_list != NULL);
2278 	if (BP_SHOULD_BYTESWAP(zio->io_bp) && callback_list->acb_byteswap)
2279 		callback_list->acb_byteswap(buf->b_data, hdr->b_size);
2280 
2281 	arc_cksum_compute(buf, B_FALSE);
2282 
2283 	/* create copies of the data buffer for the callers */
2284 	abuf = buf;
2285 	for (acb = callback_list; acb; acb = acb->acb_next) {
2286 		if (acb->acb_done) {
2287 			if (abuf == NULL)
2288 				abuf = arc_buf_clone(buf);
2289 			acb->acb_buf = abuf;
2290 			abuf = NULL;
2291 		}
2292 	}
2293 	hdr->b_acb = NULL;
2294 	hdr->b_flags &= ~ARC_IO_IN_PROGRESS;
2295 	ASSERT(!HDR_BUF_AVAILABLE(hdr));
2296 	if (abuf == buf)
2297 		hdr->b_flags |= ARC_BUF_AVAILABLE;
2298 
2299 	ASSERT(refcount_is_zero(&hdr->b_refcnt) || callback_list != NULL);
2300 
2301 	if (zio->io_error != 0) {
2302 		hdr->b_flags |= ARC_IO_ERROR;
2303 		if (hdr->b_state != arc_anon)
2304 			arc_change_state(arc_anon, hdr, hash_lock);
2305 		if (HDR_IN_HASH_TABLE(hdr))
2306 			buf_hash_remove(hdr);
2307 		freeable = refcount_is_zero(&hdr->b_refcnt);
2308 		/* convert checksum errors into IO errors */
2309 		if (zio->io_error == ECKSUM)
2310 			zio->io_error = EIO;
2311 	}
2312 
2313 	/*
2314 	 * Broadcast before we drop the hash_lock to avoid the possibility
2315 	 * that the hdr (and hence the cv) might be freed before we get to
2316 	 * the cv_broadcast().
2317 	 */
2318 	cv_broadcast(&hdr->b_cv);
2319 
2320 	if (hash_lock) {
2321 		/*
2322 		 * Only call arc_access on anonymous buffers.  This is because
2323 		 * if we've issued an I/O for an evicted buffer, we've already
2324 		 * called arc_access (to prevent any simultaneous readers from
2325 		 * getting confused).
2326 		 */
2327 		if (zio->io_error == 0 && hdr->b_state == arc_anon)
2328 			arc_access(hdr, hash_lock);
2329 		mutex_exit(hash_lock);
2330 	} else {
2331 		/*
2332 		 * This block was freed while we waited for the read to
2333 		 * complete.  It has been removed from the hash table and
2334 		 * moved to the anonymous state (so that it won't show up
2335 		 * in the cache).
2336 		 */
2337 		ASSERT3P(hdr->b_state, ==, arc_anon);
2338 		freeable = refcount_is_zero(&hdr->b_refcnt);
2339 	}
2340 
2341 	/* execute each callback and free its structure */
2342 	while ((acb = callback_list) != NULL) {
2343 		if (acb->acb_done)
2344 			acb->acb_done(zio, acb->acb_buf, acb->acb_private);
2345 
2346 		if (acb->acb_zio_dummy != NULL) {
2347 			acb->acb_zio_dummy->io_error = zio->io_error;
2348 			zio_nowait(acb->acb_zio_dummy);
2349 		}
2350 
2351 		callback_list = acb->acb_next;
2352 		kmem_free(acb, sizeof (arc_callback_t));
2353 	}
2354 
2355 	if (freeable)
2356 		arc_hdr_destroy(hdr);
2357 }
2358 
2359 /*
2360  * "Read" the block block at the specified DVA (in bp) via the
2361  * cache.  If the block is found in the cache, invoke the provided
2362  * callback immediately and return.  Note that the `zio' parameter
2363  * in the callback will be NULL in this case, since no IO was
2364  * required.  If the block is not in the cache pass the read request
2365  * on to the spa with a substitute callback function, so that the
2366  * requested block will be added to the cache.
2367  *
2368  * If a read request arrives for a block that has a read in-progress,
2369  * either wait for the in-progress read to complete (and return the
2370  * results); or, if this is a read with a "done" func, add a record
2371  * to the read to invoke the "done" func when the read completes,
2372  * and return; or just return.
2373  *
2374  * arc_read_done() will invoke all the requested "done" functions
2375  * for readers of this block.
2376  */
2377 int
2378 arc_read(zio_t *pio, spa_t *spa, blkptr_t *bp, arc_byteswap_func_t *swap,
2379     arc_done_func_t *done, void *private, int priority, int flags,
2380     uint32_t *arc_flags, zbookmark_t *zb)
2381 {
2382 	arc_buf_hdr_t *hdr;
2383 	arc_buf_t *buf;
2384 	kmutex_t *hash_lock;
2385 	zio_t *rzio;
2386 
2387 top:
2388 	hdr = buf_hash_find(spa, BP_IDENTITY(bp), bp->blk_birth, &hash_lock);
2389 	if (hdr && hdr->b_datacnt > 0) {
2390 
2391 		*arc_flags |= ARC_CACHED;
2392 
2393 		if (HDR_IO_IN_PROGRESS(hdr)) {
2394 
2395 			if (*arc_flags & ARC_WAIT) {
2396 				cv_wait(&hdr->b_cv, hash_lock);
2397 				mutex_exit(hash_lock);
2398 				goto top;
2399 			}
2400 			ASSERT(*arc_flags & ARC_NOWAIT);
2401 
2402 			if (done) {
2403 				arc_callback_t	*acb = NULL;
2404 
2405 				acb = kmem_zalloc(sizeof (arc_callback_t),
2406 				    KM_SLEEP);
2407 				acb->acb_done = done;
2408 				acb->acb_private = private;
2409 				acb->acb_byteswap = swap;
2410 				if (pio != NULL)
2411 					acb->acb_zio_dummy = zio_null(pio,
2412 					    spa, NULL, NULL, flags);
2413 
2414 				ASSERT(acb->acb_done != NULL);
2415 				acb->acb_next = hdr->b_acb;
2416 				hdr->b_acb = acb;
2417 				add_reference(hdr, hash_lock, private);
2418 				mutex_exit(hash_lock);
2419 				return (0);
2420 			}
2421 			mutex_exit(hash_lock);
2422 			return (0);
2423 		}
2424 
2425 		ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu);
2426 
2427 		if (done) {
2428 			add_reference(hdr, hash_lock, private);
2429 			/*
2430 			 * If this block is already in use, create a new
2431 			 * copy of the data so that we will be guaranteed
2432 			 * that arc_release() will always succeed.
2433 			 */
2434 			buf = hdr->b_buf;
2435 			ASSERT(buf);
2436 			ASSERT(buf->b_data);
2437 			if (HDR_BUF_AVAILABLE(hdr)) {
2438 				ASSERT(buf->b_efunc == NULL);
2439 				hdr->b_flags &= ~ARC_BUF_AVAILABLE;
2440 			} else {
2441 				buf = arc_buf_clone(buf);
2442 			}
2443 		} else if (*arc_flags & ARC_PREFETCH &&
2444 		    refcount_count(&hdr->b_refcnt) == 0) {
2445 			hdr->b_flags |= ARC_PREFETCH;
2446 		}
2447 		DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
2448 		arc_access(hdr, hash_lock);
2449 		mutex_exit(hash_lock);
2450 		ARCSTAT_BUMP(arcstat_hits);
2451 		ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH),
2452 		    demand, prefetch, hdr->b_type != ARC_BUFC_METADATA,
2453 		    data, metadata, hits);
2454 
2455 		if (done)
2456 			done(NULL, buf, private);
2457 	} else {
2458 		uint64_t size = BP_GET_LSIZE(bp);
2459 		arc_callback_t	*acb;
2460 
2461 		if (hdr == NULL) {
2462 			/* this block is not in the cache */
2463 			arc_buf_hdr_t	*exists;
2464 			arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp);
2465 			buf = arc_buf_alloc(spa, size, private, type);
2466 			hdr = buf->b_hdr;
2467 			hdr->b_dva = *BP_IDENTITY(bp);
2468 			hdr->b_birth = bp->blk_birth;
2469 			hdr->b_cksum0 = bp->blk_cksum.zc_word[0];
2470 			exists = buf_hash_insert(hdr, &hash_lock);
2471 			if (exists) {
2472 				/* somebody beat us to the hash insert */
2473 				mutex_exit(hash_lock);
2474 				bzero(&hdr->b_dva, sizeof (dva_t));
2475 				hdr->b_birth = 0;
2476 				hdr->b_cksum0 = 0;
2477 				(void) arc_buf_remove_ref(buf, private);
2478 				goto top; /* restart the IO request */
2479 			}
2480 			/* if this is a prefetch, we don't have a reference */
2481 			if (*arc_flags & ARC_PREFETCH) {
2482 				(void) remove_reference(hdr, hash_lock,
2483 				    private);
2484 				hdr->b_flags |= ARC_PREFETCH;
2485 			}
2486 			if (BP_GET_LEVEL(bp) > 0)
2487 				hdr->b_flags |= ARC_INDIRECT;
2488 		} else {
2489 			/* this block is in the ghost cache */
2490 			ASSERT(GHOST_STATE(hdr->b_state));
2491 			ASSERT(!HDR_IO_IN_PROGRESS(hdr));
2492 			ASSERT3U(refcount_count(&hdr->b_refcnt), ==, 0);
2493 			ASSERT(hdr->b_buf == NULL);
2494 
2495 			/* if this is a prefetch, we don't have a reference */
2496 			if (*arc_flags & ARC_PREFETCH)
2497 				hdr->b_flags |= ARC_PREFETCH;
2498 			else
2499 				add_reference(hdr, hash_lock, private);
2500 			buf = kmem_cache_alloc(buf_cache, KM_SLEEP);
2501 			buf->b_hdr = hdr;
2502 			buf->b_data = NULL;
2503 			buf->b_efunc = NULL;
2504 			buf->b_private = NULL;
2505 			buf->b_next = NULL;
2506 			hdr->b_buf = buf;
2507 			arc_get_data_buf(buf);
2508 			ASSERT(hdr->b_datacnt == 0);
2509 			hdr->b_datacnt = 1;
2510 
2511 		}
2512 
2513 		acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP);
2514 		acb->acb_done = done;
2515 		acb->acb_private = private;
2516 		acb->acb_byteswap = swap;
2517 
2518 		ASSERT(hdr->b_acb == NULL);
2519 		hdr->b_acb = acb;
2520 		hdr->b_flags |= ARC_IO_IN_PROGRESS;
2521 
2522 		/*
2523 		 * If the buffer has been evicted, migrate it to a present state
2524 		 * before issuing the I/O.  Once we drop the hash-table lock,
2525 		 * the header will be marked as I/O in progress and have an
2526 		 * attached buffer.  At this point, anybody who finds this
2527 		 * buffer ought to notice that it's legit but has a pending I/O.
2528 		 */
2529 
2530 		if (GHOST_STATE(hdr->b_state))
2531 			arc_access(hdr, hash_lock);
2532 
2533 		ASSERT3U(hdr->b_size, ==, size);
2534 		DTRACE_PROBE3(arc__miss, blkptr_t *, bp, uint64_t, size,
2535 		    zbookmark_t *, zb);
2536 		ARCSTAT_BUMP(arcstat_misses);
2537 		ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH),
2538 		    demand, prefetch, hdr->b_type != ARC_BUFC_METADATA,
2539 		    data, metadata, misses);
2540 
2541 		if (l2arc_ndev != 0) {
2542 			/*
2543 			 * Read from the L2ARC if the following are true:
2544 			 * 1. This buffer has L2ARC metadata.
2545 			 * 2. This buffer isn't currently writing to the L2ARC.
2546 			 */
2547 			if (hdr->b_l2hdr != NULL && !HDR_L2_WRITING(hdr)) {
2548 				vdev_t *vd = hdr->b_l2hdr->b_dev->l2ad_vdev;
2549 				daddr_t addr = hdr->b_l2hdr->b_daddr;
2550 				l2arc_read_callback_t *cb;
2551 
2552 				DTRACE_PROBE1(l2arc__hit, arc_buf_hdr_t *, hdr);
2553 				ARCSTAT_BUMP(arcstat_l2_hits);
2554 
2555 				hdr->b_flags |= ARC_L2_READING;
2556 				mutex_exit(hash_lock);
2557 
2558 				cb = kmem_zalloc(sizeof (l2arc_read_callback_t),
2559 				    KM_SLEEP);
2560 				cb->l2rcb_buf = buf;
2561 				cb->l2rcb_spa = spa;
2562 				cb->l2rcb_bp = *bp;
2563 				cb->l2rcb_zb = *zb;
2564 				cb->l2rcb_flags = flags;
2565 
2566 				/*
2567 				 * l2arc read.
2568 				 */
2569 				rzio = zio_read_phys(pio, vd, addr, size,
2570 				    buf->b_data, ZIO_CHECKSUM_OFF,
2571 				    l2arc_read_done, cb, priority,
2572 				    flags | ZIO_FLAG_DONT_CACHE, B_FALSE);
2573 				DTRACE_PROBE2(l2arc__read, vdev_t *, vd,
2574 				    zio_t *, rzio);
2575 
2576 				if (*arc_flags & ARC_WAIT)
2577 					return (zio_wait(rzio));
2578 
2579 				ASSERT(*arc_flags & ARC_NOWAIT);
2580 				zio_nowait(rzio);
2581 				return (0);
2582 			} else {
2583 				DTRACE_PROBE1(l2arc__miss,
2584 				    arc_buf_hdr_t *, hdr);
2585 				ARCSTAT_BUMP(arcstat_l2_misses);
2586 				if (HDR_L2_WRITING(hdr))
2587 					ARCSTAT_BUMP(arcstat_l2_rw_clash);
2588 			}
2589 		}
2590 		mutex_exit(hash_lock);
2591 
2592 		rzio = zio_read(pio, spa, bp, buf->b_data, size,
2593 		    arc_read_done, buf, priority, flags, zb);
2594 
2595 		if (*arc_flags & ARC_WAIT)
2596 			return (zio_wait(rzio));
2597 
2598 		ASSERT(*arc_flags & ARC_NOWAIT);
2599 		zio_nowait(rzio);
2600 	}
2601 	return (0);
2602 }
2603 
2604 /*
2605  * arc_read() variant to support pool traversal.  If the block is already
2606  * in the ARC, make a copy of it; otherwise, the caller will do the I/O.
2607  * The idea is that we don't want pool traversal filling up memory, but
2608  * if the ARC already has the data anyway, we shouldn't pay for the I/O.
2609  */
2610 int
2611 arc_tryread(spa_t *spa, blkptr_t *bp, void *data)
2612 {
2613 	arc_buf_hdr_t *hdr;
2614 	kmutex_t *hash_mtx;
2615 	int rc = 0;
2616 
2617 	hdr = buf_hash_find(spa, BP_IDENTITY(bp), bp->blk_birth, &hash_mtx);
2618 
2619 	if (hdr && hdr->b_datacnt > 0 && !HDR_IO_IN_PROGRESS(hdr)) {
2620 		arc_buf_t *buf = hdr->b_buf;
2621 
2622 		ASSERT(buf);
2623 		while (buf->b_data == NULL) {
2624 			buf = buf->b_next;
2625 			ASSERT(buf);
2626 		}
2627 		bcopy(buf->b_data, data, hdr->b_size);
2628 	} else {
2629 		rc = ENOENT;
2630 	}
2631 
2632 	if (hash_mtx)
2633 		mutex_exit(hash_mtx);
2634 
2635 	return (rc);
2636 }
2637 
2638 void
2639 arc_set_callback(arc_buf_t *buf, arc_evict_func_t *func, void *private)
2640 {
2641 	ASSERT(buf->b_hdr != NULL);
2642 	ASSERT(buf->b_hdr->b_state != arc_anon);
2643 	ASSERT(!refcount_is_zero(&buf->b_hdr->b_refcnt) || func == NULL);
2644 	buf->b_efunc = func;
2645 	buf->b_private = private;
2646 }
2647 
2648 /*
2649  * This is used by the DMU to let the ARC know that a buffer is
2650  * being evicted, so the ARC should clean up.  If this arc buf
2651  * is not yet in the evicted state, it will be put there.
2652  */
2653 int
2654 arc_buf_evict(arc_buf_t *buf)
2655 {
2656 	arc_buf_hdr_t *hdr;
2657 	kmutex_t *hash_lock;
2658 	arc_buf_t **bufp;
2659 
2660 	mutex_enter(&arc_eviction_mtx);
2661 	hdr = buf->b_hdr;
2662 	if (hdr == NULL) {
2663 		/*
2664 		 * We are in arc_do_user_evicts().
2665 		 */
2666 		ASSERT(buf->b_data == NULL);
2667 		mutex_exit(&arc_eviction_mtx);
2668 		return (0);
2669 	}
2670 	hash_lock = HDR_LOCK(hdr);
2671 	mutex_exit(&arc_eviction_mtx);
2672 
2673 	mutex_enter(hash_lock);
2674 
2675 	if (buf->b_data == NULL) {
2676 		/*
2677 		 * We are on the eviction list.
2678 		 */
2679 		mutex_exit(hash_lock);
2680 		mutex_enter(&arc_eviction_mtx);
2681 		if (buf->b_hdr == NULL) {
2682 			/*
2683 			 * We are already in arc_do_user_evicts().
2684 			 */
2685 			mutex_exit(&arc_eviction_mtx);
2686 			return (0);
2687 		} else {
2688 			arc_buf_t copy = *buf; /* structure assignment */
2689 			/*
2690 			 * Process this buffer now
2691 			 * but let arc_do_user_evicts() do the reaping.
2692 			 */
2693 			buf->b_efunc = NULL;
2694 			mutex_exit(&arc_eviction_mtx);
2695 			VERIFY(copy.b_efunc(&copy) == 0);
2696 			return (1);
2697 		}
2698 	}
2699 
2700 	ASSERT(buf->b_hdr == hdr);
2701 	ASSERT3U(refcount_count(&hdr->b_refcnt), <, hdr->b_datacnt);
2702 	ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu);
2703 
2704 	/*
2705 	 * Pull this buffer off of the hdr
2706 	 */
2707 	bufp = &hdr->b_buf;
2708 	while (*bufp != buf)
2709 		bufp = &(*bufp)->b_next;
2710 	*bufp = buf->b_next;
2711 
2712 	ASSERT(buf->b_data != NULL);
2713 	arc_buf_destroy(buf, FALSE, FALSE);
2714 
2715 	if (hdr->b_datacnt == 0) {
2716 		arc_state_t *old_state = hdr->b_state;
2717 		arc_state_t *evicted_state;
2718 
2719 		ASSERT(refcount_is_zero(&hdr->b_refcnt));
2720 
2721 		evicted_state =
2722 		    (old_state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost;
2723 
2724 		mutex_enter(&old_state->arcs_mtx);
2725 		mutex_enter(&evicted_state->arcs_mtx);
2726 
2727 		arc_change_state(evicted_state, hdr, hash_lock);
2728 		ASSERT(HDR_IN_HASH_TABLE(hdr));
2729 		hdr->b_flags |= ARC_IN_HASH_TABLE;
2730 		hdr->b_flags &= ~ARC_BUF_AVAILABLE;
2731 
2732 		mutex_exit(&evicted_state->arcs_mtx);
2733 		mutex_exit(&old_state->arcs_mtx);
2734 	}
2735 	mutex_exit(hash_lock);
2736 
2737 	VERIFY(buf->b_efunc(buf) == 0);
2738 	buf->b_efunc = NULL;
2739 	buf->b_private = NULL;
2740 	buf->b_hdr = NULL;
2741 	kmem_cache_free(buf_cache, buf);
2742 	return (1);
2743 }
2744 
2745 /*
2746  * Release this buffer from the cache.  This must be done
2747  * after a read and prior to modifying the buffer contents.
2748  * If the buffer has more than one reference, we must make
2749  * make a new hdr for the buffer.
2750  */
2751 void
2752 arc_release(arc_buf_t *buf, void *tag)
2753 {
2754 	arc_buf_hdr_t *hdr = buf->b_hdr;
2755 	kmutex_t *hash_lock = HDR_LOCK(hdr);
2756 	l2arc_buf_hdr_t *l2hdr = NULL;
2757 	uint64_t buf_size;
2758 
2759 	/* this buffer is not on any list */
2760 	ASSERT(refcount_count(&hdr->b_refcnt) > 0);
2761 
2762 	if (hdr->b_state == arc_anon) {
2763 		/* this buffer is already released */
2764 		ASSERT3U(refcount_count(&hdr->b_refcnt), ==, 1);
2765 		ASSERT(BUF_EMPTY(hdr));
2766 		ASSERT(buf->b_efunc == NULL);
2767 		arc_buf_thaw(buf);
2768 		return;
2769 	}
2770 
2771 	mutex_enter(hash_lock);
2772 
2773 	/*
2774 	 * Do we have more than one buf?
2775 	 */
2776 	if (hdr->b_buf != buf || buf->b_next != NULL) {
2777 		arc_buf_hdr_t *nhdr;
2778 		arc_buf_t **bufp;
2779 		uint64_t blksz = hdr->b_size;
2780 		spa_t *spa = hdr->b_spa;
2781 		arc_buf_contents_t type = hdr->b_type;
2782 		uint32_t flags = hdr->b_flags;
2783 
2784 		ASSERT(hdr->b_datacnt > 1);
2785 		/*
2786 		 * Pull the data off of this buf and attach it to
2787 		 * a new anonymous buf.
2788 		 */
2789 		(void) remove_reference(hdr, hash_lock, tag);
2790 		bufp = &hdr->b_buf;
2791 		while (*bufp != buf)
2792 			bufp = &(*bufp)->b_next;
2793 		*bufp = (*bufp)->b_next;
2794 		buf->b_next = NULL;
2795 
2796 		ASSERT3U(hdr->b_state->arcs_size, >=, hdr->b_size);
2797 		atomic_add_64(&hdr->b_state->arcs_size, -hdr->b_size);
2798 		if (refcount_is_zero(&hdr->b_refcnt)) {
2799 			uint64_t *size = &hdr->b_state->arcs_lsize[hdr->b_type];
2800 			ASSERT3U(*size, >=, hdr->b_size);
2801 			atomic_add_64(size, -hdr->b_size);
2802 		}
2803 		hdr->b_datacnt -= 1;
2804 		if (hdr->b_l2hdr != NULL) {
2805 			mutex_enter(&l2arc_buflist_mtx);
2806 			l2hdr = hdr->b_l2hdr;
2807 			hdr->b_l2hdr = NULL;
2808 			buf_size = hdr->b_size;
2809 		}
2810 		arc_cksum_verify(buf);
2811 
2812 		mutex_exit(hash_lock);
2813 
2814 		nhdr = kmem_cache_alloc(hdr_cache, KM_SLEEP);
2815 		nhdr->b_size = blksz;
2816 		nhdr->b_spa = spa;
2817 		nhdr->b_type = type;
2818 		nhdr->b_buf = buf;
2819 		nhdr->b_state = arc_anon;
2820 		nhdr->b_arc_access = 0;
2821 		nhdr->b_flags = flags & ARC_L2_WRITING;
2822 		nhdr->b_l2hdr = NULL;
2823 		nhdr->b_datacnt = 1;
2824 		nhdr->b_freeze_cksum = NULL;
2825 		(void) refcount_add(&nhdr->b_refcnt, tag);
2826 		buf->b_hdr = nhdr;
2827 		atomic_add_64(&arc_anon->arcs_size, blksz);
2828 	} else {
2829 		ASSERT(refcount_count(&hdr->b_refcnt) == 1);
2830 		ASSERT(!list_link_active(&hdr->b_arc_node));
2831 		ASSERT(!HDR_IO_IN_PROGRESS(hdr));
2832 		arc_change_state(arc_anon, hdr, hash_lock);
2833 		hdr->b_arc_access = 0;
2834 		if (hdr->b_l2hdr != NULL) {
2835 			mutex_enter(&l2arc_buflist_mtx);
2836 			l2hdr = hdr->b_l2hdr;
2837 			hdr->b_l2hdr = NULL;
2838 			buf_size = hdr->b_size;
2839 		}
2840 		mutex_exit(hash_lock);
2841 
2842 		bzero(&hdr->b_dva, sizeof (dva_t));
2843 		hdr->b_birth = 0;
2844 		hdr->b_cksum0 = 0;
2845 		arc_buf_thaw(buf);
2846 	}
2847 	buf->b_efunc = NULL;
2848 	buf->b_private = NULL;
2849 
2850 	if (l2hdr) {
2851 		list_remove(l2hdr->b_dev->l2ad_buflist, hdr);
2852 		kmem_free(l2hdr, sizeof (l2arc_buf_hdr_t));
2853 		ARCSTAT_INCR(arcstat_l2_size, -buf_size);
2854 	}
2855 	if (MUTEX_HELD(&l2arc_buflist_mtx))
2856 		mutex_exit(&l2arc_buflist_mtx);
2857 }
2858 
2859 int
2860 arc_released(arc_buf_t *buf)
2861 {
2862 	return (buf->b_data != NULL && buf->b_hdr->b_state == arc_anon);
2863 }
2864 
2865 int
2866 arc_has_callback(arc_buf_t *buf)
2867 {
2868 	return (buf->b_efunc != NULL);
2869 }
2870 
2871 #ifdef ZFS_DEBUG
2872 int
2873 arc_referenced(arc_buf_t *buf)
2874 {
2875 	return (refcount_count(&buf->b_hdr->b_refcnt));
2876 }
2877 #endif
2878 
2879 static void
2880 arc_write_ready(zio_t *zio)
2881 {
2882 	arc_write_callback_t *callback = zio->io_private;
2883 	arc_buf_t *buf = callback->awcb_buf;
2884 	arc_buf_hdr_t *hdr = buf->b_hdr;
2885 
2886 	if (zio->io_error == 0 && callback->awcb_ready) {
2887 		ASSERT(!refcount_is_zero(&buf->b_hdr->b_refcnt));
2888 		callback->awcb_ready(zio, buf, callback->awcb_private);
2889 	}
2890 	/*
2891 	 * If the IO is already in progress, then this is a re-write
2892 	 * attempt, so we need to thaw and re-compute the cksum. It is
2893 	 * the responsibility of the callback to handle the freeing
2894 	 * and accounting for any re-write attempt. If we don't have a
2895 	 * callback registered then simply free the block here.
2896 	 */
2897 	if (HDR_IO_IN_PROGRESS(hdr)) {
2898 		if (!BP_IS_HOLE(&zio->io_bp_orig) &&
2899 		    callback->awcb_ready == NULL) {
2900 			zio_nowait(zio_free(zio, zio->io_spa, zio->io_txg,
2901 			    &zio->io_bp_orig, NULL, NULL));
2902 		}
2903 		mutex_enter(&hdr->b_freeze_lock);
2904 		if (hdr->b_freeze_cksum != NULL) {
2905 			kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t));
2906 			hdr->b_freeze_cksum = NULL;
2907 		}
2908 		mutex_exit(&hdr->b_freeze_lock);
2909 	}
2910 	arc_cksum_compute(buf, B_FALSE);
2911 	hdr->b_flags |= ARC_IO_IN_PROGRESS;
2912 }
2913 
2914 static void
2915 arc_write_done(zio_t *zio)
2916 {
2917 	arc_write_callback_t *callback = zio->io_private;
2918 	arc_buf_t *buf = callback->awcb_buf;
2919 	arc_buf_hdr_t *hdr = buf->b_hdr;
2920 
2921 	hdr->b_acb = NULL;
2922 
2923 	/* this buffer is on no lists and is not in the hash table */
2924 	ASSERT3P(hdr->b_state, ==, arc_anon);
2925 
2926 	hdr->b_dva = *BP_IDENTITY(zio->io_bp);
2927 	hdr->b_birth = zio->io_bp->blk_birth;
2928 	hdr->b_cksum0 = zio->io_bp->blk_cksum.zc_word[0];
2929 	/*
2930 	 * If the block to be written was all-zero, we may have
2931 	 * compressed it away.  In this case no write was performed
2932 	 * so there will be no dva/birth-date/checksum.  The buffer
2933 	 * must therefor remain anonymous (and uncached).
2934 	 */
2935 	if (!BUF_EMPTY(hdr)) {
2936 		arc_buf_hdr_t *exists;
2937 		kmutex_t *hash_lock;
2938 
2939 		arc_cksum_verify(buf);
2940 
2941 		exists = buf_hash_insert(hdr, &hash_lock);
2942 		if (exists) {
2943 			/*
2944 			 * This can only happen if we overwrite for
2945 			 * sync-to-convergence, because we remove
2946 			 * buffers from the hash table when we arc_free().
2947 			 */
2948 			ASSERT(DVA_EQUAL(BP_IDENTITY(&zio->io_bp_orig),
2949 			    BP_IDENTITY(zio->io_bp)));
2950 			ASSERT3U(zio->io_bp_orig.blk_birth, ==,
2951 			    zio->io_bp->blk_birth);
2952 
2953 			ASSERT(refcount_is_zero(&exists->b_refcnt));
2954 			arc_change_state(arc_anon, exists, hash_lock);
2955 			mutex_exit(hash_lock);
2956 			arc_hdr_destroy(exists);
2957 			exists = buf_hash_insert(hdr, &hash_lock);
2958 			ASSERT3P(exists, ==, NULL);
2959 		}
2960 		hdr->b_flags &= ~ARC_IO_IN_PROGRESS;
2961 		arc_access(hdr, hash_lock);
2962 		mutex_exit(hash_lock);
2963 	} else if (callback->awcb_done == NULL) {
2964 		int destroy_hdr;
2965 		/*
2966 		 * This is an anonymous buffer with no user callback,
2967 		 * destroy it if there are no active references.
2968 		 */
2969 		mutex_enter(&arc_eviction_mtx);
2970 		destroy_hdr = refcount_is_zero(&hdr->b_refcnt);
2971 		hdr->b_flags &= ~ARC_IO_IN_PROGRESS;
2972 		mutex_exit(&arc_eviction_mtx);
2973 		if (destroy_hdr)
2974 			arc_hdr_destroy(hdr);
2975 	} else {
2976 		hdr->b_flags &= ~ARC_IO_IN_PROGRESS;
2977 	}
2978 
2979 	if (callback->awcb_done) {
2980 		ASSERT(!refcount_is_zero(&hdr->b_refcnt));
2981 		callback->awcb_done(zio, buf, callback->awcb_private);
2982 	}
2983 
2984 	kmem_free(callback, sizeof (arc_write_callback_t));
2985 }
2986 
2987 zio_t *
2988 arc_write(zio_t *pio, spa_t *spa, int checksum, int compress, int ncopies,
2989     uint64_t txg, blkptr_t *bp, arc_buf_t *buf,
2990     arc_done_func_t *ready, arc_done_func_t *done, void *private, int priority,
2991     int flags, zbookmark_t *zb)
2992 {
2993 	arc_buf_hdr_t *hdr = buf->b_hdr;
2994 	arc_write_callback_t *callback;
2995 	zio_t	*zio;
2996 
2997 	/* this is a private buffer - no locking required */
2998 	ASSERT3P(hdr->b_state, ==, arc_anon);
2999 	ASSERT(BUF_EMPTY(hdr));
3000 	ASSERT(!HDR_IO_ERROR(hdr));
3001 	ASSERT((hdr->b_flags & ARC_IO_IN_PROGRESS) == 0);
3002 	ASSERT(hdr->b_acb == 0);
3003 	callback = kmem_zalloc(sizeof (arc_write_callback_t), KM_SLEEP);
3004 	callback->awcb_ready = ready;
3005 	callback->awcb_done = done;
3006 	callback->awcb_private = private;
3007 	callback->awcb_buf = buf;
3008 	zio = zio_write(pio, spa, checksum, compress, ncopies, txg, bp,
3009 	    buf->b_data, hdr->b_size, arc_write_ready, arc_write_done, callback,
3010 	    priority, flags, zb);
3011 
3012 	return (zio);
3013 }
3014 
3015 int
3016 arc_free(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp,
3017     zio_done_func_t *done, void *private, uint32_t arc_flags)
3018 {
3019 	arc_buf_hdr_t *ab;
3020 	kmutex_t *hash_lock;
3021 	zio_t	*zio;
3022 
3023 	/*
3024 	 * If this buffer is in the cache, release it, so it
3025 	 * can be re-used.
3026 	 */
3027 	ab = buf_hash_find(spa, BP_IDENTITY(bp), bp->blk_birth, &hash_lock);
3028 	if (ab != NULL) {
3029 		/*
3030 		 * The checksum of blocks to free is not always
3031 		 * preserved (eg. on the deadlist).  However, if it is
3032 		 * nonzero, it should match what we have in the cache.
3033 		 */
3034 		ASSERT(bp->blk_cksum.zc_word[0] == 0 ||
3035 		    ab->b_cksum0 == bp->blk_cksum.zc_word[0]);
3036 		if (ab->b_state != arc_anon)
3037 			arc_change_state(arc_anon, ab, hash_lock);
3038 		if (HDR_IO_IN_PROGRESS(ab)) {
3039 			/*
3040 			 * This should only happen when we prefetch.
3041 			 */
3042 			ASSERT(ab->b_flags & ARC_PREFETCH);
3043 			ASSERT3U(ab->b_datacnt, ==, 1);
3044 			ab->b_flags |= ARC_FREED_IN_READ;
3045 			if (HDR_IN_HASH_TABLE(ab))
3046 				buf_hash_remove(ab);
3047 			ab->b_arc_access = 0;
3048 			bzero(&ab->b_dva, sizeof (dva_t));
3049 			ab->b_birth = 0;
3050 			ab->b_cksum0 = 0;
3051 			ab->b_buf->b_efunc = NULL;
3052 			ab->b_buf->b_private = NULL;
3053 			mutex_exit(hash_lock);
3054 		} else if (refcount_is_zero(&ab->b_refcnt)) {
3055 			ab->b_flags |= ARC_FREE_IN_PROGRESS;
3056 			mutex_exit(hash_lock);
3057 			arc_hdr_destroy(ab);
3058 			ARCSTAT_BUMP(arcstat_deleted);
3059 		} else {
3060 			/*
3061 			 * We still have an active reference on this
3062 			 * buffer.  This can happen, e.g., from
3063 			 * dbuf_unoverride().
3064 			 */
3065 			ASSERT(!HDR_IN_HASH_TABLE(ab));
3066 			ab->b_arc_access = 0;
3067 			bzero(&ab->b_dva, sizeof (dva_t));
3068 			ab->b_birth = 0;
3069 			ab->b_cksum0 = 0;
3070 			ab->b_buf->b_efunc = NULL;
3071 			ab->b_buf->b_private = NULL;
3072 			mutex_exit(hash_lock);
3073 		}
3074 	}
3075 
3076 	zio = zio_free(pio, spa, txg, bp, done, private);
3077 
3078 	if (arc_flags & ARC_WAIT)
3079 		return (zio_wait(zio));
3080 
3081 	ASSERT(arc_flags & ARC_NOWAIT);
3082 	zio_nowait(zio);
3083 
3084 	return (0);
3085 }
3086 
3087 void
3088 arc_tempreserve_clear(uint64_t tempreserve)
3089 {
3090 	atomic_add_64(&arc_tempreserve, -tempreserve);
3091 	ASSERT((int64_t)arc_tempreserve >= 0);
3092 }
3093 
3094 int
3095 arc_tempreserve_space(uint64_t tempreserve)
3096 {
3097 #ifdef ZFS_DEBUG
3098 	/*
3099 	 * Once in a while, fail for no reason.  Everything should cope.
3100 	 */
3101 	if (spa_get_random(10000) == 0) {
3102 		dprintf("forcing random failure\n");
3103 		return (ERESTART);
3104 	}
3105 #endif
3106 	if (tempreserve > arc_c/4 && !arc_no_grow)
3107 		arc_c = MIN(arc_c_max, tempreserve * 4);
3108 	if (tempreserve > arc_c)
3109 		return (ENOMEM);
3110 
3111 	/*
3112 	 * Throttle writes when the amount of dirty data in the cache
3113 	 * gets too large.  We try to keep the cache less than half full
3114 	 * of dirty blocks so that our sync times don't grow too large.
3115 	 * Note: if two requests come in concurrently, we might let them
3116 	 * both succeed, when one of them should fail.  Not a huge deal.
3117 	 *
3118 	 * XXX The limit should be adjusted dynamically to keep the time
3119 	 * to sync a dataset fixed (around 1-5 seconds?).
3120 	 */
3121 
3122 	if (tempreserve + arc_tempreserve + arc_anon->arcs_size > arc_c / 2 &&
3123 	    arc_tempreserve + arc_anon->arcs_size > arc_c / 4) {
3124 		dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK "
3125 		    "anon_data=%lluK tempreserve=%lluK arc_c=%lluK\n",
3126 		    arc_tempreserve>>10,
3127 		    arc_anon->arcs_lsize[ARC_BUFC_METADATA]>>10,
3128 		    arc_anon->arcs_lsize[ARC_BUFC_DATA]>>10,
3129 		    tempreserve>>10, arc_c>>10);
3130 		return (ERESTART);
3131 	}
3132 	atomic_add_64(&arc_tempreserve, tempreserve);
3133 	return (0);
3134 }
3135 
3136 void
3137 arc_init(void)
3138 {
3139 	mutex_init(&arc_reclaim_thr_lock, NULL, MUTEX_DEFAULT, NULL);
3140 	cv_init(&arc_reclaim_thr_cv, NULL, CV_DEFAULT, NULL);
3141 
3142 	/* Convert seconds to clock ticks */
3143 	arc_min_prefetch_lifespan = 1 * hz;
3144 
3145 	/* Start out with 1/8 of all memory */
3146 	arc_c = physmem * PAGESIZE / 8;
3147 
3148 #ifdef _KERNEL
3149 	/*
3150 	 * On architectures where the physical memory can be larger
3151 	 * than the addressable space (intel in 32-bit mode), we may
3152 	 * need to limit the cache to 1/8 of VM size.
3153 	 */
3154 	arc_c = MIN(arc_c, vmem_size(heap_arena, VMEM_ALLOC | VMEM_FREE) / 8);
3155 #endif
3156 
3157 	/* set min cache to 1/32 of all memory, or 64MB, whichever is more */
3158 	arc_c_min = MAX(arc_c / 4, 64<<20);
3159 	/* set max to 3/4 of all memory, or all but 1GB, whichever is more */
3160 	if (arc_c * 8 >= 1<<30)
3161 		arc_c_max = (arc_c * 8) - (1<<30);
3162 	else
3163 		arc_c_max = arc_c_min;
3164 	arc_c_max = MAX(arc_c * 6, arc_c_max);
3165 
3166 	/*
3167 	 * Allow the tunables to override our calculations if they are
3168 	 * reasonable (ie. over 64MB)
3169 	 */
3170 	if (zfs_arc_max > 64<<20 && zfs_arc_max < physmem * PAGESIZE)
3171 		arc_c_max = zfs_arc_max;
3172 	if (zfs_arc_min > 64<<20 && zfs_arc_min <= arc_c_max)
3173 		arc_c_min = zfs_arc_min;
3174 
3175 	arc_c = arc_c_max;
3176 	arc_p = (arc_c >> 1);
3177 
3178 	/* limit meta-data to 1/4 of the arc capacity */
3179 	arc_meta_limit = arc_c_max / 4;
3180 
3181 	/* Allow the tunable to override if it is reasonable */
3182 	if (zfs_arc_meta_limit > 0 && zfs_arc_meta_limit <= arc_c_max)
3183 		arc_meta_limit = zfs_arc_meta_limit;
3184 
3185 	if (arc_c_min < arc_meta_limit / 2 && zfs_arc_min == 0)
3186 		arc_c_min = arc_meta_limit / 2;
3187 
3188 	/* if kmem_flags are set, lets try to use less memory */
3189 	if (kmem_debugging())
3190 		arc_c = arc_c / 2;
3191 	if (arc_c < arc_c_min)
3192 		arc_c = arc_c_min;
3193 
3194 	arc_anon = &ARC_anon;
3195 	arc_mru = &ARC_mru;
3196 	arc_mru_ghost = &ARC_mru_ghost;
3197 	arc_mfu = &ARC_mfu;
3198 	arc_mfu_ghost = &ARC_mfu_ghost;
3199 	arc_l2c_only = &ARC_l2c_only;
3200 	arc_size = 0;
3201 
3202 	mutex_init(&arc_anon->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3203 	mutex_init(&arc_mru->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3204 	mutex_init(&arc_mru_ghost->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3205 	mutex_init(&arc_mfu->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3206 	mutex_init(&arc_mfu_ghost->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3207 	mutex_init(&arc_l2c_only->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3208 
3209 	list_create(&arc_mru->arcs_list[ARC_BUFC_METADATA],
3210 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3211 	list_create(&arc_mru->arcs_list[ARC_BUFC_DATA],
3212 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3213 	list_create(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA],
3214 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3215 	list_create(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA],
3216 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3217 	list_create(&arc_mfu->arcs_list[ARC_BUFC_METADATA],
3218 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3219 	list_create(&arc_mfu->arcs_list[ARC_BUFC_DATA],
3220 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3221 	list_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA],
3222 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3223 	list_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA],
3224 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3225 	list_create(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA],
3226 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3227 	list_create(&arc_l2c_only->arcs_list[ARC_BUFC_DATA],
3228 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3229 
3230 	buf_init();
3231 
3232 	arc_thread_exit = 0;
3233 	arc_eviction_list = NULL;
3234 	mutex_init(&arc_eviction_mtx, NULL, MUTEX_DEFAULT, NULL);
3235 	bzero(&arc_eviction_hdr, sizeof (arc_buf_hdr_t));
3236 
3237 	arc_ksp = kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED,
3238 	    sizeof (arc_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
3239 
3240 	if (arc_ksp != NULL) {
3241 		arc_ksp->ks_data = &arc_stats;
3242 		kstat_install(arc_ksp);
3243 	}
3244 
3245 	(void) thread_create(NULL, 0, arc_reclaim_thread, NULL, 0, &p0,
3246 	    TS_RUN, minclsyspri);
3247 
3248 	arc_dead = FALSE;
3249 }
3250 
3251 void
3252 arc_fini(void)
3253 {
3254 	mutex_enter(&arc_reclaim_thr_lock);
3255 	arc_thread_exit = 1;
3256 	while (arc_thread_exit != 0)
3257 		cv_wait(&arc_reclaim_thr_cv, &arc_reclaim_thr_lock);
3258 	mutex_exit(&arc_reclaim_thr_lock);
3259 
3260 	arc_flush(NULL);
3261 
3262 	arc_dead = TRUE;
3263 
3264 	if (arc_ksp != NULL) {
3265 		kstat_delete(arc_ksp);
3266 		arc_ksp = NULL;
3267 	}
3268 
3269 	mutex_destroy(&arc_eviction_mtx);
3270 	mutex_destroy(&arc_reclaim_thr_lock);
3271 	cv_destroy(&arc_reclaim_thr_cv);
3272 
3273 	list_destroy(&arc_mru->arcs_list[ARC_BUFC_METADATA]);
3274 	list_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA]);
3275 	list_destroy(&arc_mfu->arcs_list[ARC_BUFC_METADATA]);
3276 	list_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA]);
3277 	list_destroy(&arc_mru->arcs_list[ARC_BUFC_DATA]);
3278 	list_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA]);
3279 	list_destroy(&arc_mfu->arcs_list[ARC_BUFC_DATA]);
3280 	list_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA]);
3281 
3282 	mutex_destroy(&arc_anon->arcs_mtx);
3283 	mutex_destroy(&arc_mru->arcs_mtx);
3284 	mutex_destroy(&arc_mru_ghost->arcs_mtx);
3285 	mutex_destroy(&arc_mfu->arcs_mtx);
3286 	mutex_destroy(&arc_mfu_ghost->arcs_mtx);
3287 
3288 	buf_fini();
3289 }
3290 
3291 /*
3292  * Level 2 ARC
3293  *
3294  * The level 2 ARC (L2ARC) is a cache layer in-between main memory and disk.
3295  * It uses dedicated storage devices to hold cached data, which are populated
3296  * using large infrequent writes.  The main role of this cache is to boost
3297  * the performance of random read workloads.  The intended L2ARC devices
3298  * include short-stroked disks, solid state disks, and other media with
3299  * substantially faster read latency than disk.
3300  *
3301  *                 +-----------------------+
3302  *                 |         ARC           |
3303  *                 +-----------------------+
3304  *                    |         ^     ^
3305  *                    |         |     |
3306  *      l2arc_feed_thread()    arc_read()
3307  *                    |         |     |
3308  *                    |  l2arc read   |
3309  *                    V         |     |
3310  *               +---------------+    |
3311  *               |     L2ARC     |    |
3312  *               +---------------+    |
3313  *                   |    ^           |
3314  *          l2arc_write() |           |
3315  *                   |    |           |
3316  *                   V    |           |
3317  *                 +-------+      +-------+
3318  *                 | vdev  |      | vdev  |
3319  *                 | cache |      | cache |
3320  *                 +-------+      +-------+
3321  *                 +=========+     .-----.
3322  *                 :  L2ARC  :    |-_____-|
3323  *                 : devices :    | Disks |
3324  *                 +=========+    `-_____-'
3325  *
3326  * Read requests are satisfied from the following sources, in order:
3327  *
3328  *	1) ARC
3329  *	2) vdev cache of L2ARC devices
3330  *	3) L2ARC devices
3331  *	4) vdev cache of disks
3332  *	5) disks
3333  *
3334  * Some L2ARC device types exhibit extremely slow write performance.
3335  * To accommodate for this there are some significant differences between
3336  * the L2ARC and traditional cache design:
3337  *
3338  * 1. There is no eviction path from the ARC to the L2ARC.  Evictions from
3339  * the ARC behave as usual, freeing buffers and placing headers on ghost
3340  * lists.  The ARC does not send buffers to the L2ARC during eviction as
3341  * this would add inflated write latencies for all ARC memory pressure.
3342  *
3343  * 2. The L2ARC attempts to cache data from the ARC before it is evicted.
3344  * It does this by periodically scanning buffers from the eviction-end of
3345  * the MFU and MRU ARC lists, copying them to the L2ARC devices if they are
3346  * not already there.  It scans until a headroom of buffers is satisfied,
3347  * which itself is a buffer for ARC eviction.  The thread that does this is
3348  * l2arc_feed_thread(), illustrated below; example sizes are included to
3349  * provide a better sense of ratio than this diagram:
3350  *
3351  *	       head -->                        tail
3352  *	        +---------------------+----------+
3353  *	ARC_mfu |:::::#:::::::::::::::|o#o###o###|-->.   # already on L2ARC
3354  *	        +---------------------+----------+   |   o L2ARC eligible
3355  *	ARC_mru |:#:::::::::::::::::::|#o#ooo####|-->|   : ARC buffer
3356  *	        +---------------------+----------+   |
3357  *	             15.9 Gbytes      ^ 32 Mbytes    |
3358  *	                           headroom          |
3359  *	                                      l2arc_feed_thread()
3360  *	                                             |
3361  *	                 l2arc write hand <--[oooo]--'
3362  *	                         |           8 Mbyte
3363  *	                         |          write max
3364  *	                         V
3365  *		  +==============================+
3366  *	L2ARC dev |####|#|###|###|    |####| ... |
3367  *	          +==============================+
3368  *	                     32 Gbytes
3369  *
3370  * 3. If an ARC buffer is copied to the L2ARC but then hit instead of
3371  * evicted, then the L2ARC has cached a buffer much sooner than it probably
3372  * needed to, potentially wasting L2ARC device bandwidth and storage.  It is
3373  * safe to say that this is an uncommon case, since buffers at the end of
3374  * the ARC lists have moved there due to inactivity.
3375  *
3376  * 4. If the ARC evicts faster than the L2ARC can maintain a headroom,
3377  * then the L2ARC simply misses copying some buffers.  This serves as a
3378  * pressure valve to prevent heavy read workloads from both stalling the ARC
3379  * with waits and clogging the L2ARC with writes.  This also helps prevent
3380  * the potential for the L2ARC to churn if it attempts to cache content too
3381  * quickly, such as during backups of the entire pool.
3382  *
3383  * 5. Writes to the L2ARC devices are grouped and sent in-sequence, so that
3384  * the vdev queue can aggregate them into larger and fewer writes.  Each
3385  * device is written to in a rotor fashion, sweeping writes through
3386  * available space then repeating.
3387  *
3388  * 6. The L2ARC does not store dirty content.  It never needs to flush
3389  * write buffers back to disk based storage.
3390  *
3391  * 7. If an ARC buffer is written (and dirtied) which also exists in the
3392  * L2ARC, the now stale L2ARC buffer is immediately dropped.
3393  *
3394  * The performance of the L2ARC can be tweaked by a number of tunables, which
3395  * may be necessary for different workloads:
3396  *
3397  *	l2arc_write_max		max write bytes per interval
3398  *	l2arc_noprefetch	skip caching prefetched buffers
3399  *	l2arc_headroom		number of max device writes to precache
3400  *	l2arc_feed_secs		seconds between L2ARC writing
3401  *
3402  * Tunables may be removed or added as future performance improvements are
3403  * integrated, and also may become zpool properties.
3404  */
3405 
3406 static void
3407 l2arc_hdr_stat_add(void)
3408 {
3409 	ARCSTAT_INCR(arcstat_l2_hdr_size, sizeof (arc_buf_hdr_t) +
3410 	    sizeof (l2arc_buf_hdr_t));
3411 	ARCSTAT_INCR(arcstat_hdr_size, -sizeof (arc_buf_hdr_t));
3412 }
3413 
3414 static void
3415 l2arc_hdr_stat_remove(void)
3416 {
3417 	ARCSTAT_INCR(arcstat_l2_hdr_size, -sizeof (arc_buf_hdr_t) -
3418 	    sizeof (l2arc_buf_hdr_t));
3419 	ARCSTAT_INCR(arcstat_hdr_size, sizeof (arc_buf_hdr_t));
3420 }
3421 
3422 /*
3423  * Cycle through L2ARC devices.  This is how L2ARC load balances.
3424  * This is called with l2arc_dev_mtx held, which also locks out spa removal.
3425  */
3426 static l2arc_dev_t *
3427 l2arc_dev_get_next(void)
3428 {
3429 	l2arc_dev_t *next;
3430 
3431 	if (l2arc_dev_last == NULL) {
3432 		next = list_head(l2arc_dev_list);
3433 	} else {
3434 		next = list_next(l2arc_dev_list, l2arc_dev_last);
3435 		if (next == NULL)
3436 			next = list_head(l2arc_dev_list);
3437 	}
3438 
3439 	l2arc_dev_last = next;
3440 
3441 	return (next);
3442 }
3443 
3444 /*
3445  * A write to a cache device has completed.  Update all headers to allow
3446  * reads from these buffers to begin.
3447  */
3448 static void
3449 l2arc_write_done(zio_t *zio)
3450 {
3451 	l2arc_write_callback_t *cb;
3452 	l2arc_dev_t *dev;
3453 	list_t *buflist;
3454 	l2arc_data_free_t *df, *df_prev;
3455 	arc_buf_hdr_t *head, *ab, *ab_prev;
3456 	kmutex_t *hash_lock;
3457 
3458 	cb = zio->io_private;
3459 	ASSERT(cb != NULL);
3460 	dev = cb->l2wcb_dev;
3461 	ASSERT(dev != NULL);
3462 	head = cb->l2wcb_head;
3463 	ASSERT(head != NULL);
3464 	buflist = dev->l2ad_buflist;
3465 	ASSERT(buflist != NULL);
3466 	DTRACE_PROBE2(l2arc__iodone, zio_t *, zio,
3467 	    l2arc_write_callback_t *, cb);
3468 
3469 	if (zio->io_error != 0)
3470 		ARCSTAT_BUMP(arcstat_l2_writes_error);
3471 
3472 	mutex_enter(&l2arc_buflist_mtx);
3473 
3474 	/*
3475 	 * All writes completed, or an error was hit.
3476 	 */
3477 	for (ab = list_prev(buflist, head); ab; ab = ab_prev) {
3478 		ab_prev = list_prev(buflist, ab);
3479 
3480 		hash_lock = HDR_LOCK(ab);
3481 		if (!mutex_tryenter(hash_lock)) {
3482 			/*
3483 			 * This buffer misses out.  It may be in a stage
3484 			 * of eviction.  Its ARC_L2_WRITING flag will be
3485 			 * left set, denying reads to this buffer.
3486 			 */
3487 			ARCSTAT_BUMP(arcstat_l2_writes_hdr_miss);
3488 			continue;
3489 		}
3490 
3491 		if (zio->io_error != 0) {
3492 			/*
3493 			 * Error - invalidate L2ARC entry.
3494 			 */
3495 			ab->b_l2hdr = NULL;
3496 		}
3497 
3498 		/*
3499 		 * Allow ARC to begin reads to this L2ARC entry.
3500 		 */
3501 		ab->b_flags &= ~ARC_L2_WRITING;
3502 
3503 		mutex_exit(hash_lock);
3504 	}
3505 
3506 	atomic_inc_64(&l2arc_writes_done);
3507 	list_remove(buflist, head);
3508 	kmem_cache_free(hdr_cache, head);
3509 	mutex_exit(&l2arc_buflist_mtx);
3510 
3511 	/*
3512 	 * Free buffers that were tagged for destruction.
3513 	 */
3514 	mutex_enter(&l2arc_free_on_write_mtx);
3515 	buflist = l2arc_free_on_write;
3516 	for (df = list_tail(buflist); df; df = df_prev) {
3517 		df_prev = list_prev(buflist, df);
3518 		ASSERT(df->l2df_data != NULL);
3519 		ASSERT(df->l2df_func != NULL);
3520 		df->l2df_func(df->l2df_data, df->l2df_size);
3521 		list_remove(buflist, df);
3522 		kmem_free(df, sizeof (l2arc_data_free_t));
3523 	}
3524 	mutex_exit(&l2arc_free_on_write_mtx);
3525 
3526 	kmem_free(cb, sizeof (l2arc_write_callback_t));
3527 }
3528 
3529 /*
3530  * A read to a cache device completed.  Validate buffer contents before
3531  * handing over to the regular ARC routines.
3532  */
3533 static void
3534 l2arc_read_done(zio_t *zio)
3535 {
3536 	l2arc_read_callback_t *cb;
3537 	arc_buf_hdr_t *hdr;
3538 	arc_buf_t *buf;
3539 	zio_t *rzio;
3540 	kmutex_t *hash_lock;
3541 	int equal, err = 0;
3542 
3543 	cb = zio->io_private;
3544 	ASSERT(cb != NULL);
3545 	buf = cb->l2rcb_buf;
3546 	ASSERT(buf != NULL);
3547 	hdr = buf->b_hdr;
3548 	ASSERT(hdr != NULL);
3549 
3550 	hash_lock = HDR_LOCK(hdr);
3551 	mutex_enter(hash_lock);
3552 
3553 	/*
3554 	 * Check this survived the L2ARC journey.
3555 	 */
3556 	equal = arc_cksum_equal(buf);
3557 	if (equal && zio->io_error == 0 && !HDR_L2_EVICTED(hdr)) {
3558 		mutex_exit(hash_lock);
3559 		zio->io_private = buf;
3560 		arc_read_done(zio);
3561 	} else {
3562 		mutex_exit(hash_lock);
3563 		/*
3564 		 * Buffer didn't survive caching.  Increment stats and
3565 		 * reissue to the original storage device.
3566 		 */
3567 		if (zio->io_error != 0)
3568 			ARCSTAT_BUMP(arcstat_l2_io_error);
3569 		if (!equal)
3570 			ARCSTAT_BUMP(arcstat_l2_cksum_bad);
3571 
3572 		zio->io_flags &= ~ZIO_FLAG_DONT_CACHE;
3573 		rzio = zio_read(NULL, cb->l2rcb_spa, &cb->l2rcb_bp,
3574 		    buf->b_data, zio->io_size, arc_read_done, buf,
3575 		    zio->io_priority, cb->l2rcb_flags, &cb->l2rcb_zb);
3576 
3577 		/*
3578 		 * Since this is a seperate thread, we can wait on this
3579 		 * I/O whether there is an io_waiter or not.
3580 		 */
3581 		err = zio_wait(rzio);
3582 
3583 		/*
3584 		 * Let the resent I/O call arc_read_done() instead.
3585 		 * io_error is set to the reissued I/O error status.
3586 		 */
3587 		zio->io_done = NULL;
3588 		zio->io_waiter = NULL;
3589 		zio->io_error = err;
3590 	}
3591 
3592 	kmem_free(cb, sizeof (l2arc_read_callback_t));
3593 }
3594 
3595 /*
3596  * This is the list priority from which the L2ARC will search for pages to
3597  * cache.  This is used within loops (0..3) to cycle through lists in the
3598  * desired order.  This order can have a significant effect on cache
3599  * performance.
3600  *
3601  * Currently the metadata lists are hit first, MFU then MRU, followed by
3602  * the data lists.  This function returns a locked list, and also returns
3603  * the lock pointer.
3604  */
3605 static list_t *
3606 l2arc_list_locked(int list_num, kmutex_t **lock)
3607 {
3608 	list_t *list;
3609 
3610 	ASSERT(list_num >= 0 && list_num <= 3);
3611 
3612 	switch (list_num) {
3613 	case 0:
3614 		list = &arc_mfu->arcs_list[ARC_BUFC_METADATA];
3615 		*lock = &arc_mfu->arcs_mtx;
3616 		break;
3617 	case 1:
3618 		list = &arc_mru->arcs_list[ARC_BUFC_METADATA];
3619 		*lock = &arc_mru->arcs_mtx;
3620 		break;
3621 	case 2:
3622 		list = &arc_mfu->arcs_list[ARC_BUFC_DATA];
3623 		*lock = &arc_mfu->arcs_mtx;
3624 		break;
3625 	case 3:
3626 		list = &arc_mru->arcs_list[ARC_BUFC_DATA];
3627 		*lock = &arc_mru->arcs_mtx;
3628 		break;
3629 	}
3630 
3631 	ASSERT(!(MUTEX_HELD(*lock)));
3632 	mutex_enter(*lock);
3633 	return (list);
3634 }
3635 
3636 /*
3637  * Evict buffers from the device write hand to the distance specified in
3638  * bytes.  This distance may span populated buffers, it may span nothing.
3639  * This is clearing a region on the L2ARC device ready for writing.
3640  * If the 'all' boolean is set, every buffer is evicted.
3641  */
3642 static void
3643 l2arc_evict(l2arc_dev_t *dev, uint64_t distance, boolean_t all)
3644 {
3645 	list_t *buflist;
3646 	l2arc_buf_hdr_t *abl2;
3647 	arc_buf_hdr_t *ab, *ab_prev;
3648 	kmutex_t *hash_lock;
3649 	uint64_t taddr;
3650 
3651 	ASSERT(MUTEX_HELD(&l2arc_dev_mtx));
3652 
3653 	buflist = dev->l2ad_buflist;
3654 
3655 	if (buflist == NULL)
3656 		return;
3657 
3658 	if (!all && dev->l2ad_first) {
3659 		/*
3660 		 * This is the first sweep through the device.  There is
3661 		 * nothing to evict.
3662 		 */
3663 		return;
3664 	}
3665 
3666 	if (dev->l2ad_hand >= (dev->l2ad_end - (2 * dev->l2ad_write))) {
3667 		/*
3668 		 * When nearing the end of the device, evict to the end
3669 		 * before the device write hand jumps to the start.
3670 		 */
3671 		taddr = dev->l2ad_end;
3672 	} else {
3673 		taddr = dev->l2ad_hand + distance;
3674 	}
3675 	DTRACE_PROBE4(l2arc__evict, l2arc_dev_t *, dev, list_t *, buflist,
3676 	    uint64_t, taddr, boolean_t, all);
3677 
3678 top:
3679 	mutex_enter(&l2arc_buflist_mtx);
3680 	for (ab = list_tail(buflist); ab; ab = ab_prev) {
3681 		ab_prev = list_prev(buflist, ab);
3682 
3683 		hash_lock = HDR_LOCK(ab);
3684 		if (!mutex_tryenter(hash_lock)) {
3685 			/*
3686 			 * Missed the hash lock.  Retry.
3687 			 */
3688 			ARCSTAT_BUMP(arcstat_l2_evict_lock_retry);
3689 			mutex_exit(&l2arc_buflist_mtx);
3690 			mutex_enter(hash_lock);
3691 			mutex_exit(hash_lock);
3692 			goto top;
3693 		}
3694 
3695 		if (HDR_L2_WRITE_HEAD(ab)) {
3696 			/*
3697 			 * We hit a write head node.  Leave it for
3698 			 * l2arc_write_done().
3699 			 */
3700 			list_remove(buflist, ab);
3701 			mutex_exit(hash_lock);
3702 			continue;
3703 		}
3704 
3705 		if (!all && ab->b_l2hdr != NULL &&
3706 		    (ab->b_l2hdr->b_daddr > taddr ||
3707 		    ab->b_l2hdr->b_daddr < dev->l2ad_hand)) {
3708 			/*
3709 			 * We've evicted to the target address,
3710 			 * or the end of the device.
3711 			 */
3712 			mutex_exit(hash_lock);
3713 			break;
3714 		}
3715 
3716 		if (HDR_FREE_IN_PROGRESS(ab)) {
3717 			/*
3718 			 * Already on the path to destruction.
3719 			 */
3720 			mutex_exit(hash_lock);
3721 			continue;
3722 		}
3723 
3724 		if (ab->b_state == arc_l2c_only) {
3725 			ASSERT(!HDR_L2_READING(ab));
3726 			/*
3727 			 * This doesn't exist in the ARC.  Destroy.
3728 			 * arc_hdr_destroy() will call list_remove()
3729 			 * and decrement arcstat_l2_size.
3730 			 */
3731 			arc_change_state(arc_anon, ab, hash_lock);
3732 			arc_hdr_destroy(ab);
3733 		} else {
3734 			/*
3735 			 * Tell ARC this no longer exists in L2ARC.
3736 			 */
3737 			if (ab->b_l2hdr != NULL) {
3738 				abl2 = ab->b_l2hdr;
3739 				ab->b_l2hdr = NULL;
3740 				kmem_free(abl2, sizeof (l2arc_buf_hdr_t));
3741 				ARCSTAT_INCR(arcstat_l2_size, -ab->b_size);
3742 			}
3743 			list_remove(buflist, ab);
3744 
3745 			/*
3746 			 * This may have been leftover after a
3747 			 * failed write.
3748 			 */
3749 			ab->b_flags &= ~ARC_L2_WRITING;
3750 
3751 			/*
3752 			 * Invalidate issued or about to be issued
3753 			 * reads, since we may be about to write
3754 			 * over this location.
3755 			 */
3756 			if (HDR_L2_READING(ab)) {
3757 				ARCSTAT_BUMP(arcstat_l2_evict_reading);
3758 				ab->b_flags |= ARC_L2_EVICTED;
3759 			}
3760 		}
3761 		mutex_exit(hash_lock);
3762 	}
3763 	mutex_exit(&l2arc_buflist_mtx);
3764 
3765 	spa_l2cache_space_update(dev->l2ad_vdev, 0, -(taddr - dev->l2ad_evict));
3766 	dev->l2ad_evict = taddr;
3767 }
3768 
3769 /*
3770  * Find and write ARC buffers to the L2ARC device.
3771  *
3772  * An ARC_L2_WRITING flag is set so that the L2ARC buffers are not valid
3773  * for reading until they have completed writing.
3774  */
3775 static void
3776 l2arc_write_buffers(spa_t *spa, l2arc_dev_t *dev)
3777 {
3778 	arc_buf_hdr_t *ab, *ab_prev, *head;
3779 	l2arc_buf_hdr_t *hdrl2;
3780 	list_t *list;
3781 	uint64_t passed_sz, write_sz, buf_sz;
3782 	uint64_t target_sz = dev->l2ad_write;
3783 	uint64_t headroom = dev->l2ad_write * l2arc_headroom;
3784 	void *buf_data;
3785 	kmutex_t *hash_lock, *list_lock;
3786 	boolean_t have_lock, full;
3787 	l2arc_write_callback_t *cb;
3788 	zio_t *pio, *wzio;
3789 
3790 	ASSERT(MUTEX_HELD(&l2arc_dev_mtx));
3791 	ASSERT(dev->l2ad_vdev != NULL);
3792 
3793 	pio = NULL;
3794 	write_sz = 0;
3795 	full = B_FALSE;
3796 	head = kmem_cache_alloc(hdr_cache, KM_SLEEP);
3797 	head->b_flags |= ARC_L2_WRITE_HEAD;
3798 
3799 	/*
3800 	 * Copy buffers for L2ARC writing.
3801 	 */
3802 	mutex_enter(&l2arc_buflist_mtx);
3803 	for (int try = 0; try <= 3; try++) {
3804 		list = l2arc_list_locked(try, &list_lock);
3805 		passed_sz = 0;
3806 
3807 		for (ab = list_tail(list); ab; ab = ab_prev) {
3808 			ab_prev = list_prev(list, ab);
3809 
3810 			hash_lock = HDR_LOCK(ab);
3811 			have_lock = MUTEX_HELD(hash_lock);
3812 			if (!have_lock && !mutex_tryenter(hash_lock)) {
3813 				/*
3814 				 * Skip this buffer rather than waiting.
3815 				 */
3816 				continue;
3817 			}
3818 
3819 			passed_sz += ab->b_size;
3820 			if (passed_sz > headroom) {
3821 				/*
3822 				 * Searched too far.
3823 				 */
3824 				mutex_exit(hash_lock);
3825 				break;
3826 			}
3827 
3828 			if (ab->b_spa != spa) {
3829 				mutex_exit(hash_lock);
3830 				continue;
3831 			}
3832 
3833 			if (ab->b_l2hdr != NULL) {
3834 				/*
3835 				 * Already in L2ARC.
3836 				 */
3837 				mutex_exit(hash_lock);
3838 				continue;
3839 			}
3840 
3841 			if (HDR_IO_IN_PROGRESS(ab) || HDR_DONT_L2CACHE(ab)) {
3842 				mutex_exit(hash_lock);
3843 				continue;
3844 			}
3845 
3846 			if ((write_sz + ab->b_size) > target_sz) {
3847 				full = B_TRUE;
3848 				mutex_exit(hash_lock);
3849 				break;
3850 			}
3851 
3852 			if (ab->b_buf == NULL) {
3853 				DTRACE_PROBE1(l2arc__buf__null, void *, ab);
3854 				mutex_exit(hash_lock);
3855 				continue;
3856 			}
3857 
3858 			if (pio == NULL) {
3859 				/*
3860 				 * Insert a dummy header on the buflist so
3861 				 * l2arc_write_done() can find where the
3862 				 * write buffers begin without searching.
3863 				 */
3864 				list_insert_head(dev->l2ad_buflist, head);
3865 
3866 				cb = kmem_alloc(
3867 				    sizeof (l2arc_write_callback_t), KM_SLEEP);
3868 				cb->l2wcb_dev = dev;
3869 				cb->l2wcb_head = head;
3870 				pio = zio_root(spa, l2arc_write_done, cb,
3871 				    ZIO_FLAG_CANFAIL);
3872 			}
3873 
3874 			/*
3875 			 * Create and add a new L2ARC header.
3876 			 */
3877 			hdrl2 = kmem_zalloc(sizeof (l2arc_buf_hdr_t), KM_SLEEP);
3878 			hdrl2->b_dev = dev;
3879 			hdrl2->b_daddr = dev->l2ad_hand;
3880 
3881 			ab->b_flags |= ARC_L2_WRITING;
3882 			ab->b_l2hdr = hdrl2;
3883 			list_insert_head(dev->l2ad_buflist, ab);
3884 			buf_data = ab->b_buf->b_data;
3885 			buf_sz = ab->b_size;
3886 
3887 			/*
3888 			 * Compute and store the buffer cksum before
3889 			 * writing.  On debug the cksum is verified first.
3890 			 */
3891 			arc_cksum_verify(ab->b_buf);
3892 			arc_cksum_compute(ab->b_buf, B_TRUE);
3893 
3894 			mutex_exit(hash_lock);
3895 
3896 			wzio = zio_write_phys(pio, dev->l2ad_vdev,
3897 			    dev->l2ad_hand, buf_sz, buf_data, ZIO_CHECKSUM_OFF,
3898 			    NULL, NULL, ZIO_PRIORITY_ASYNC_WRITE,
3899 			    ZIO_FLAG_CANFAIL, B_FALSE);
3900 
3901 			DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev,
3902 			    zio_t *, wzio);
3903 			(void) zio_nowait(wzio);
3904 
3905 			write_sz += buf_sz;
3906 			dev->l2ad_hand += buf_sz;
3907 		}
3908 
3909 		mutex_exit(list_lock);
3910 
3911 		if (full == B_TRUE)
3912 			break;
3913 	}
3914 	mutex_exit(&l2arc_buflist_mtx);
3915 
3916 	if (pio == NULL) {
3917 		ASSERT3U(write_sz, ==, 0);
3918 		kmem_cache_free(hdr_cache, head);
3919 		return;
3920 	}
3921 
3922 	ASSERT3U(write_sz, <=, target_sz);
3923 	ARCSTAT_BUMP(arcstat_l2_writes_sent);
3924 	ARCSTAT_INCR(arcstat_l2_size, write_sz);
3925 	spa_l2cache_space_update(dev->l2ad_vdev, 0, write_sz);
3926 
3927 	/*
3928 	 * Bump device hand to the device start if it is approaching the end.
3929 	 * l2arc_evict() will already have evicted ahead for this case.
3930 	 */
3931 	if (dev->l2ad_hand >= (dev->l2ad_end - dev->l2ad_write)) {
3932 		spa_l2cache_space_update(dev->l2ad_vdev, 0,
3933 		    dev->l2ad_end - dev->l2ad_hand);
3934 		dev->l2ad_hand = dev->l2ad_start;
3935 		dev->l2ad_evict = dev->l2ad_start;
3936 		dev->l2ad_first = B_FALSE;
3937 	}
3938 
3939 	(void) zio_wait(pio);
3940 }
3941 
3942 /*
3943  * This thread feeds the L2ARC at regular intervals.  This is the beating
3944  * heart of the L2ARC.
3945  */
3946 static void
3947 l2arc_feed_thread(void)
3948 {
3949 	callb_cpr_t cpr;
3950 	l2arc_dev_t *dev;
3951 	spa_t *spa;
3952 	int interval;
3953 	boolean_t startup = B_TRUE;
3954 
3955 	CALLB_CPR_INIT(&cpr, &l2arc_feed_thr_lock, callb_generic_cpr, FTAG);
3956 
3957 	mutex_enter(&l2arc_feed_thr_lock);
3958 
3959 	while (l2arc_thread_exit == 0) {
3960 		/*
3961 		 * Initially pause for L2ARC_FEED_DELAY seconds as a grace
3962 		 * interval during boot, followed by l2arc_feed_secs seconds
3963 		 * thereafter.
3964 		 */
3965 		CALLB_CPR_SAFE_BEGIN(&cpr);
3966 		if (startup) {
3967 			interval = L2ARC_FEED_DELAY;
3968 			startup = B_FALSE;
3969 		} else {
3970 			interval = l2arc_feed_secs;
3971 		}
3972 		(void) cv_timedwait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock,
3973 		    lbolt + (hz * interval));
3974 		CALLB_CPR_SAFE_END(&cpr, &l2arc_feed_thr_lock);
3975 
3976 		/*
3977 		 * Do nothing until L2ARC devices exist.
3978 		 */
3979 		mutex_enter(&l2arc_dev_mtx);
3980 		if (l2arc_ndev == 0) {
3981 			mutex_exit(&l2arc_dev_mtx);
3982 			continue;
3983 		}
3984 
3985 		/*
3986 		 * Avoid contributing to memory pressure.
3987 		 */
3988 		if (arc_reclaim_needed()) {
3989 			ARCSTAT_BUMP(arcstat_l2_abort_lowmem);
3990 			mutex_exit(&l2arc_dev_mtx);
3991 			continue;
3992 		}
3993 
3994 		/*
3995 		 * This selects the next l2arc device to write to, and in
3996 		 * doing so the next spa to feed from: dev->l2ad_spa.
3997 		 */
3998 		if ((dev = l2arc_dev_get_next()) == NULL) {
3999 			mutex_exit(&l2arc_dev_mtx);
4000 			continue;
4001 		}
4002 		spa = dev->l2ad_spa;
4003 		ASSERT(spa != NULL);
4004 		ARCSTAT_BUMP(arcstat_l2_feeds);
4005 
4006 		/*
4007 		 * Evict L2ARC buffers that will be overwritten.
4008 		 */
4009 		l2arc_evict(dev, dev->l2ad_write, B_FALSE);
4010 
4011 		/*
4012 		 * Write ARC buffers.
4013 		 */
4014 		l2arc_write_buffers(spa, dev);
4015 		mutex_exit(&l2arc_dev_mtx);
4016 	}
4017 
4018 	l2arc_thread_exit = 0;
4019 	cv_broadcast(&l2arc_feed_thr_cv);
4020 	CALLB_CPR_EXIT(&cpr);		/* drops l2arc_feed_thr_lock */
4021 	thread_exit();
4022 }
4023 
4024 /*
4025  * Add a vdev for use by the L2ARC.  By this point the spa has already
4026  * validated the vdev and opened it.
4027  */
4028 void
4029 l2arc_add_vdev(spa_t *spa, vdev_t *vd, uint64_t start, uint64_t end)
4030 {
4031 	l2arc_dev_t *adddev;
4032 
4033 	/*
4034 	 * Create a new l2arc device entry.
4035 	 */
4036 	adddev = kmem_zalloc(sizeof (l2arc_dev_t), KM_SLEEP);
4037 	adddev->l2ad_spa = spa;
4038 	adddev->l2ad_vdev = vd;
4039 	adddev->l2ad_write = l2arc_write_max;
4040 	adddev->l2ad_start = start;
4041 	adddev->l2ad_end = end;
4042 	adddev->l2ad_hand = adddev->l2ad_start;
4043 	adddev->l2ad_evict = adddev->l2ad_start;
4044 	adddev->l2ad_first = B_TRUE;
4045 	ASSERT3U(adddev->l2ad_write, >, 0);
4046 
4047 	/*
4048 	 * This is a list of all ARC buffers that are still valid on the
4049 	 * device.
4050 	 */
4051 	adddev->l2ad_buflist = kmem_zalloc(sizeof (list_t), KM_SLEEP);
4052 	list_create(adddev->l2ad_buflist, sizeof (arc_buf_hdr_t),
4053 	    offsetof(arc_buf_hdr_t, b_l2node));
4054 
4055 	spa_l2cache_space_update(vd, adddev->l2ad_end - adddev->l2ad_hand, 0);
4056 
4057 	/*
4058 	 * Add device to global list
4059 	 */
4060 	mutex_enter(&l2arc_dev_mtx);
4061 	list_insert_head(l2arc_dev_list, adddev);
4062 	atomic_inc_64(&l2arc_ndev);
4063 	mutex_exit(&l2arc_dev_mtx);
4064 }
4065 
4066 /*
4067  * Remove a vdev from the L2ARC.
4068  */
4069 void
4070 l2arc_remove_vdev(vdev_t *vd)
4071 {
4072 	l2arc_dev_t *dev, *nextdev, *remdev = NULL;
4073 
4074 	/*
4075 	 * We can only grab the spa config lock when cache device writes
4076 	 * complete.
4077 	 */
4078 	ASSERT3U(l2arc_writes_sent, ==, l2arc_writes_done);
4079 
4080 	/*
4081 	 * Find the device by vdev
4082 	 */
4083 	mutex_enter(&l2arc_dev_mtx);
4084 	for (dev = list_head(l2arc_dev_list); dev; dev = nextdev) {
4085 		nextdev = list_next(l2arc_dev_list, dev);
4086 		if (vd == dev->l2ad_vdev) {
4087 			remdev = dev;
4088 			break;
4089 		}
4090 	}
4091 	ASSERT(remdev != NULL);
4092 
4093 	/*
4094 	 * Remove device from global list
4095 	 */
4096 	list_remove(l2arc_dev_list, remdev);
4097 	l2arc_dev_last = NULL;		/* may have been invalidated */
4098 
4099 	/*
4100 	 * Clear all buflists and ARC references.  L2ARC device flush.
4101 	 */
4102 	l2arc_evict(remdev, 0, B_TRUE);
4103 	list_destroy(remdev->l2ad_buflist);
4104 	kmem_free(remdev->l2ad_buflist, sizeof (list_t));
4105 	kmem_free(remdev, sizeof (l2arc_dev_t));
4106 
4107 	atomic_dec_64(&l2arc_ndev);
4108 	mutex_exit(&l2arc_dev_mtx);
4109 }
4110 
4111 void
4112 l2arc_init()
4113 {
4114 	l2arc_thread_exit = 0;
4115 	l2arc_ndev = 0;
4116 	l2arc_writes_sent = 0;
4117 	l2arc_writes_done = 0;
4118 
4119 	mutex_init(&l2arc_feed_thr_lock, NULL, MUTEX_DEFAULT, NULL);
4120 	cv_init(&l2arc_feed_thr_cv, NULL, CV_DEFAULT, NULL);
4121 	mutex_init(&l2arc_dev_mtx, NULL, MUTEX_DEFAULT, NULL);
4122 	mutex_init(&l2arc_buflist_mtx, NULL, MUTEX_DEFAULT, NULL);
4123 	mutex_init(&l2arc_free_on_write_mtx, NULL, MUTEX_DEFAULT, NULL);
4124 
4125 	l2arc_dev_list = &L2ARC_dev_list;
4126 	l2arc_free_on_write = &L2ARC_free_on_write;
4127 	list_create(l2arc_dev_list, sizeof (l2arc_dev_t),
4128 	    offsetof(l2arc_dev_t, l2ad_node));
4129 	list_create(l2arc_free_on_write, sizeof (l2arc_data_free_t),
4130 	    offsetof(l2arc_data_free_t, l2df_list_node));
4131 
4132 	(void) thread_create(NULL, 0, l2arc_feed_thread, NULL, 0, &p0,
4133 	    TS_RUN, minclsyspri);
4134 }
4135 
4136 void
4137 l2arc_fini()
4138 {
4139 	mutex_enter(&l2arc_feed_thr_lock);
4140 	cv_signal(&l2arc_feed_thr_cv);	/* kick thread out of startup */
4141 	l2arc_thread_exit = 1;
4142 	while (l2arc_thread_exit != 0)
4143 		cv_wait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock);
4144 	mutex_exit(&l2arc_feed_thr_lock);
4145 
4146 	mutex_destroy(&l2arc_feed_thr_lock);
4147 	cv_destroy(&l2arc_feed_thr_cv);
4148 	mutex_destroy(&l2arc_dev_mtx);
4149 	mutex_destroy(&l2arc_buflist_mtx);
4150 	mutex_destroy(&l2arc_free_on_write_mtx);
4151 
4152 	list_destroy(l2arc_dev_list);
4153 	list_destroy(l2arc_free_on_write);
4154 }
4155