1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 /* 29 * DVA-based Adjustable Relpacement Cache 30 * 31 * While much of the theory of operation used here is 32 * based on the self-tuning, low overhead replacement cache 33 * presented by Megiddo and Modha at FAST 2003, there are some 34 * significant differences: 35 * 36 * 1. The Megiddo and Modha model assumes any page is evictable. 37 * Pages in its cache cannot be "locked" into memory. This makes 38 * the eviction algorithm simple: evict the last page in the list. 39 * This also make the performance characteristics easy to reason 40 * about. Our cache is not so simple. At any given moment, some 41 * subset of the blocks in the cache are un-evictable because we 42 * have handed out a reference to them. Blocks are only evictable 43 * when there are no external references active. This makes 44 * eviction far more problematic: we choose to evict the evictable 45 * blocks that are the "lowest" in the list. 46 * 47 * There are times when it is not possible to evict the requested 48 * space. In these circumstances we are unable to adjust the cache 49 * size. To prevent the cache growing unbounded at these times we 50 * implement a "cache throttle" that slowes the flow of new data 51 * into the cache until we can make space avaiable. 52 * 53 * 2. The Megiddo and Modha model assumes a fixed cache size. 54 * Pages are evicted when the cache is full and there is a cache 55 * miss. Our model has a variable sized cache. It grows with 56 * high use, but also tries to react to memory preasure from the 57 * operating system: decreasing its size when system memory is 58 * tight. 59 * 60 * 3. The Megiddo and Modha model assumes a fixed page size. All 61 * elements of the cache are therefor exactly the same size. So 62 * when adjusting the cache size following a cache miss, its simply 63 * a matter of choosing a single page to evict. In our model, we 64 * have variable sized cache blocks (rangeing from 512 bytes to 65 * 128K bytes). We therefor choose a set of blocks to evict to make 66 * space for a cache miss that approximates as closely as possible 67 * the space used by the new block. 68 * 69 * See also: "ARC: A Self-Tuning, Low Overhead Replacement Cache" 70 * by N. Megiddo & D. Modha, FAST 2003 71 */ 72 73 /* 74 * The locking model: 75 * 76 * A new reference to a cache buffer can be obtained in two 77 * ways: 1) via a hash table lookup using the DVA as a key, 78 * or 2) via one of the ARC lists. The arc_read() inerface 79 * uses method 1, while the internal arc algorithms for 80 * adjusting the cache use method 2. We therefor provide two 81 * types of locks: 1) the hash table lock array, and 2) the 82 * arc list locks. 83 * 84 * Buffers do not have their own mutexs, rather they rely on the 85 * hash table mutexs for the bulk of their protection (i.e. most 86 * fields in the arc_buf_hdr_t are protected by these mutexs). 87 * 88 * buf_hash_find() returns the appropriate mutex (held) when it 89 * locates the requested buffer in the hash table. It returns 90 * NULL for the mutex if the buffer was not in the table. 91 * 92 * buf_hash_remove() expects the appropriate hash mutex to be 93 * already held before it is invoked. 94 * 95 * Each arc state also has a mutex which is used to protect the 96 * buffer list associated with the state. When attempting to 97 * obtain a hash table lock while holding an arc list lock you 98 * must use: mutex_tryenter() to avoid deadlock. Also note that 99 * the active state mutex must be held before the ghost state mutex. 100 * 101 * Arc buffers may have an associated eviction callback function. 102 * This function will be invoked prior to removing the buffer (e.g. 103 * in arc_do_user_evicts()). Note however that the data associated 104 * with the buffer may be evicted prior to the callback. The callback 105 * must be made with *no locks held* (to prevent deadlock). Additionally, 106 * the users of callbacks must ensure that their private data is 107 * protected from simultaneous callbacks from arc_buf_evict() 108 * and arc_do_user_evicts(). 109 * 110 * Note that the majority of the performance stats are manipulated 111 * with atomic operations. 112 */ 113 114 #include <sys/spa.h> 115 #include <sys/zio.h> 116 #include <sys/zfs_context.h> 117 #include <sys/arc.h> 118 #include <sys/refcount.h> 119 #ifdef _KERNEL 120 #include <sys/vmsystm.h> 121 #include <vm/anon.h> 122 #include <sys/fs/swapnode.h> 123 #include <sys/dnlc.h> 124 #endif 125 #include <sys/callb.h> 126 127 static kmutex_t arc_reclaim_thr_lock; 128 static kcondvar_t arc_reclaim_thr_cv; /* used to signal reclaim thr */ 129 static uint8_t arc_thread_exit; 130 131 #define ARC_REDUCE_DNLC_PERCENT 3 132 uint_t arc_reduce_dnlc_percent = ARC_REDUCE_DNLC_PERCENT; 133 134 typedef enum arc_reclaim_strategy { 135 ARC_RECLAIM_AGGR, /* Aggressive reclaim strategy */ 136 ARC_RECLAIM_CONS /* Conservative reclaim strategy */ 137 } arc_reclaim_strategy_t; 138 139 /* number of seconds before growing cache again */ 140 static int arc_grow_retry = 60; 141 142 /* 143 * minimum lifespan of a prefetch block in clock ticks 144 * (initialized in arc_init()) 145 */ 146 static int arc_min_prefetch_lifespan; 147 148 static kmutex_t arc_reclaim_lock; 149 static int arc_dead; 150 151 /* 152 * These tunables are for performance analysis. 153 */ 154 uint64_t zfs_arc_max; 155 uint64_t zfs_arc_min; 156 157 /* 158 * Note that buffers can be on one of 5 states: 159 * ARC_anon - anonymous (discussed below) 160 * ARC_mru - recently used, currently cached 161 * ARC_mru_ghost - recentely used, no longer in cache 162 * ARC_mfu - frequently used, currently cached 163 * ARC_mfu_ghost - frequently used, no longer in cache 164 * When there are no active references to the buffer, they 165 * are linked onto one of the lists in arc. These are the 166 * only buffers that can be evicted or deleted. 167 * 168 * Anonymous buffers are buffers that are not associated with 169 * a DVA. These are buffers that hold dirty block copies 170 * before they are written to stable storage. By definition, 171 * they are "ref'd" and are considered part of arc_mru 172 * that cannot be freed. Generally, they will aquire a DVA 173 * as they are written and migrate onto the arc_mru list. 174 */ 175 176 typedef struct arc_state { 177 list_t list; /* linked list of evictable buffer in state */ 178 uint64_t lsize; /* total size of buffers in the linked list */ 179 uint64_t size; /* total size of all buffers in this state */ 180 uint64_t hits; 181 kmutex_t mtx; 182 } arc_state_t; 183 184 /* The 5 states: */ 185 static arc_state_t ARC_anon; 186 static arc_state_t ARC_mru; 187 static arc_state_t ARC_mru_ghost; 188 static arc_state_t ARC_mfu; 189 static arc_state_t ARC_mfu_ghost; 190 191 static struct arc { 192 arc_state_t *anon; 193 arc_state_t *mru; 194 arc_state_t *mru_ghost; 195 arc_state_t *mfu; 196 arc_state_t *mfu_ghost; 197 uint64_t size; /* Actual total arc size */ 198 uint64_t p; /* Target size (in bytes) of mru */ 199 uint64_t c; /* Target size of cache (in bytes) */ 200 uint64_t c_min; /* Minimum target cache size */ 201 uint64_t c_max; /* Maximum target cache size */ 202 203 /* performance stats */ 204 uint64_t hits; 205 uint64_t misses; 206 uint64_t deleted; 207 uint64_t recycle_miss; 208 uint64_t mutex_miss; 209 uint64_t evict_skip; 210 uint64_t hash_elements; 211 uint64_t hash_elements_max; 212 uint64_t hash_collisions; 213 uint64_t hash_chains; 214 uint32_t hash_chain_max; 215 216 int no_grow; /* Don't try to grow cache size */ 217 } arc; 218 219 static uint64_t arc_tempreserve; 220 221 typedef struct arc_callback arc_callback_t; 222 223 struct arc_callback { 224 arc_done_func_t *acb_done; 225 void *acb_private; 226 arc_byteswap_func_t *acb_byteswap; 227 arc_buf_t *acb_buf; 228 zio_t *acb_zio_dummy; 229 arc_callback_t *acb_next; 230 }; 231 232 struct arc_buf_hdr { 233 /* immutable */ 234 uint64_t b_size; 235 spa_t *b_spa; 236 237 /* protected by hash lock */ 238 dva_t b_dva; 239 uint64_t b_birth; 240 uint64_t b_cksum0; 241 242 arc_buf_hdr_t *b_hash_next; 243 arc_buf_t *b_buf; 244 uint32_t b_flags; 245 uint32_t b_datacnt; 246 247 kcondvar_t b_cv; 248 arc_callback_t *b_acb; 249 250 /* protected by arc state mutex */ 251 arc_state_t *b_state; 252 list_node_t b_arc_node; 253 254 /* updated atomically */ 255 clock_t b_arc_access; 256 257 /* self protecting */ 258 refcount_t b_refcnt; 259 }; 260 261 static arc_buf_t *arc_eviction_list; 262 static kmutex_t arc_eviction_mtx; 263 static void arc_get_data_buf(arc_buf_t *buf); 264 static void arc_access(arc_buf_hdr_t *buf, kmutex_t *hash_lock); 265 266 #define GHOST_STATE(state) \ 267 ((state) == arc.mru_ghost || (state) == arc.mfu_ghost) 268 269 /* 270 * Private ARC flags. These flags are private ARC only flags that will show up 271 * in b_flags in the arc_hdr_buf_t. Some flags are publicly declared, and can 272 * be passed in as arc_flags in things like arc_read. However, these flags 273 * should never be passed and should only be set by ARC code. When adding new 274 * public flags, make sure not to smash the private ones. 275 */ 276 277 #define ARC_IN_HASH_TABLE (1 << 9) /* this buffer is hashed */ 278 #define ARC_IO_IN_PROGRESS (1 << 10) /* I/O in progress for buf */ 279 #define ARC_IO_ERROR (1 << 11) /* I/O failed for buf */ 280 #define ARC_FREED_IN_READ (1 << 12) /* buf freed while in read */ 281 #define ARC_BUF_AVAILABLE (1 << 13) /* block not in active use */ 282 #define ARC_INDIRECT (1 << 14) /* this is an indirect block */ 283 284 #define HDR_IN_HASH_TABLE(hdr) ((hdr)->b_flags & ARC_IN_HASH_TABLE) 285 #define HDR_IO_IN_PROGRESS(hdr) ((hdr)->b_flags & ARC_IO_IN_PROGRESS) 286 #define HDR_IO_ERROR(hdr) ((hdr)->b_flags & ARC_IO_ERROR) 287 #define HDR_FREED_IN_READ(hdr) ((hdr)->b_flags & ARC_FREED_IN_READ) 288 #define HDR_BUF_AVAILABLE(hdr) ((hdr)->b_flags & ARC_BUF_AVAILABLE) 289 290 /* 291 * Hash table routines 292 */ 293 294 #define HT_LOCK_PAD 64 295 296 struct ht_lock { 297 kmutex_t ht_lock; 298 #ifdef _KERNEL 299 unsigned char pad[(HT_LOCK_PAD - sizeof (kmutex_t))]; 300 #endif 301 }; 302 303 #define BUF_LOCKS 256 304 typedef struct buf_hash_table { 305 uint64_t ht_mask; 306 arc_buf_hdr_t **ht_table; 307 struct ht_lock ht_locks[BUF_LOCKS]; 308 } buf_hash_table_t; 309 310 static buf_hash_table_t buf_hash_table; 311 312 #define BUF_HASH_INDEX(spa, dva, birth) \ 313 (buf_hash(spa, dva, birth) & buf_hash_table.ht_mask) 314 #define BUF_HASH_LOCK_NTRY(idx) (buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)]) 315 #define BUF_HASH_LOCK(idx) (&(BUF_HASH_LOCK_NTRY(idx).ht_lock)) 316 #define HDR_LOCK(buf) \ 317 (BUF_HASH_LOCK(BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth))) 318 319 uint64_t zfs_crc64_table[256]; 320 321 static uint64_t 322 buf_hash(spa_t *spa, dva_t *dva, uint64_t birth) 323 { 324 uintptr_t spav = (uintptr_t)spa; 325 uint8_t *vdva = (uint8_t *)dva; 326 uint64_t crc = -1ULL; 327 int i; 328 329 ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY); 330 331 for (i = 0; i < sizeof (dva_t); i++) 332 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ vdva[i]) & 0xFF]; 333 334 crc ^= (spav>>8) ^ birth; 335 336 return (crc); 337 } 338 339 #define BUF_EMPTY(buf) \ 340 ((buf)->b_dva.dva_word[0] == 0 && \ 341 (buf)->b_dva.dva_word[1] == 0 && \ 342 (buf)->b_birth == 0) 343 344 #define BUF_EQUAL(spa, dva, birth, buf) \ 345 ((buf)->b_dva.dva_word[0] == (dva)->dva_word[0]) && \ 346 ((buf)->b_dva.dva_word[1] == (dva)->dva_word[1]) && \ 347 ((buf)->b_birth == birth) && ((buf)->b_spa == spa) 348 349 static arc_buf_hdr_t * 350 buf_hash_find(spa_t *spa, dva_t *dva, uint64_t birth, kmutex_t **lockp) 351 { 352 uint64_t idx = BUF_HASH_INDEX(spa, dva, birth); 353 kmutex_t *hash_lock = BUF_HASH_LOCK(idx); 354 arc_buf_hdr_t *buf; 355 356 mutex_enter(hash_lock); 357 for (buf = buf_hash_table.ht_table[idx]; buf != NULL; 358 buf = buf->b_hash_next) { 359 if (BUF_EQUAL(spa, dva, birth, buf)) { 360 *lockp = hash_lock; 361 return (buf); 362 } 363 } 364 mutex_exit(hash_lock); 365 *lockp = NULL; 366 return (NULL); 367 } 368 369 /* 370 * Insert an entry into the hash table. If there is already an element 371 * equal to elem in the hash table, then the already existing element 372 * will be returned and the new element will not be inserted. 373 * Otherwise returns NULL. 374 */ 375 static arc_buf_hdr_t * 376 buf_hash_insert(arc_buf_hdr_t *buf, kmutex_t **lockp) 377 { 378 uint64_t idx = BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth); 379 kmutex_t *hash_lock = BUF_HASH_LOCK(idx); 380 arc_buf_hdr_t *fbuf; 381 uint32_t max, i; 382 383 ASSERT(!HDR_IN_HASH_TABLE(buf)); 384 *lockp = hash_lock; 385 mutex_enter(hash_lock); 386 for (fbuf = buf_hash_table.ht_table[idx], i = 0; fbuf != NULL; 387 fbuf = fbuf->b_hash_next, i++) { 388 if (BUF_EQUAL(buf->b_spa, &buf->b_dva, buf->b_birth, fbuf)) 389 return (fbuf); 390 } 391 392 buf->b_hash_next = buf_hash_table.ht_table[idx]; 393 buf_hash_table.ht_table[idx] = buf; 394 buf->b_flags |= ARC_IN_HASH_TABLE; 395 396 /* collect some hash table performance data */ 397 if (i > 0) { 398 atomic_add_64(&arc.hash_collisions, 1); 399 if (i == 1) 400 atomic_add_64(&arc.hash_chains, 1); 401 } 402 while (i > (max = arc.hash_chain_max) && 403 max != atomic_cas_32(&arc.hash_chain_max, max, i)) { 404 continue; 405 } 406 atomic_add_64(&arc.hash_elements, 1); 407 if (arc.hash_elements > arc.hash_elements_max) 408 atomic_add_64(&arc.hash_elements_max, 1); 409 410 return (NULL); 411 } 412 413 static void 414 buf_hash_remove(arc_buf_hdr_t *buf) 415 { 416 arc_buf_hdr_t *fbuf, **bufp; 417 uint64_t idx = BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth); 418 419 ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx))); 420 ASSERT(HDR_IN_HASH_TABLE(buf)); 421 422 bufp = &buf_hash_table.ht_table[idx]; 423 while ((fbuf = *bufp) != buf) { 424 ASSERT(fbuf != NULL); 425 bufp = &fbuf->b_hash_next; 426 } 427 *bufp = buf->b_hash_next; 428 buf->b_hash_next = NULL; 429 buf->b_flags &= ~ARC_IN_HASH_TABLE; 430 431 /* collect some hash table performance data */ 432 atomic_add_64(&arc.hash_elements, -1); 433 if (buf_hash_table.ht_table[idx] && 434 buf_hash_table.ht_table[idx]->b_hash_next == NULL) 435 atomic_add_64(&arc.hash_chains, -1); 436 } 437 438 /* 439 * Global data structures and functions for the buf kmem cache. 440 */ 441 static kmem_cache_t *hdr_cache; 442 static kmem_cache_t *buf_cache; 443 444 static void 445 buf_fini(void) 446 { 447 int i; 448 449 kmem_free(buf_hash_table.ht_table, 450 (buf_hash_table.ht_mask + 1) * sizeof (void *)); 451 for (i = 0; i < BUF_LOCKS; i++) 452 mutex_destroy(&buf_hash_table.ht_locks[i].ht_lock); 453 kmem_cache_destroy(hdr_cache); 454 kmem_cache_destroy(buf_cache); 455 } 456 457 /* 458 * Constructor callback - called when the cache is empty 459 * and a new buf is requested. 460 */ 461 /* ARGSUSED */ 462 static int 463 hdr_cons(void *vbuf, void *unused, int kmflag) 464 { 465 arc_buf_hdr_t *buf = vbuf; 466 467 bzero(buf, sizeof (arc_buf_hdr_t)); 468 refcount_create(&buf->b_refcnt); 469 cv_init(&buf->b_cv, NULL, CV_DEFAULT, NULL); 470 return (0); 471 } 472 473 /* 474 * Destructor callback - called when a cached buf is 475 * no longer required. 476 */ 477 /* ARGSUSED */ 478 static void 479 hdr_dest(void *vbuf, void *unused) 480 { 481 arc_buf_hdr_t *buf = vbuf; 482 483 refcount_destroy(&buf->b_refcnt); 484 cv_destroy(&buf->b_cv); 485 } 486 487 static int arc_reclaim_needed(void); 488 void arc_kmem_reclaim(void); 489 490 /* 491 * Reclaim callback -- invoked when memory is low. 492 */ 493 /* ARGSUSED */ 494 static void 495 hdr_recl(void *unused) 496 { 497 dprintf("hdr_recl called\n"); 498 if (arc_reclaim_needed()) 499 arc_kmem_reclaim(); 500 } 501 502 static void 503 buf_init(void) 504 { 505 uint64_t *ct; 506 uint64_t hsize = 1ULL << 12; 507 int i, j; 508 509 /* 510 * The hash table is big enough to fill all of physical memory 511 * with an average 64K block size. The table will take up 512 * totalmem*sizeof(void*)/64K (eg. 128KB/GB with 8-byte pointers). 513 */ 514 while (hsize * 65536 < physmem * PAGESIZE) 515 hsize <<= 1; 516 retry: 517 buf_hash_table.ht_mask = hsize - 1; 518 buf_hash_table.ht_table = 519 kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP); 520 if (buf_hash_table.ht_table == NULL) { 521 ASSERT(hsize > (1ULL << 8)); 522 hsize >>= 1; 523 goto retry; 524 } 525 526 hdr_cache = kmem_cache_create("arc_buf_hdr_t", sizeof (arc_buf_hdr_t), 527 0, hdr_cons, hdr_dest, hdr_recl, NULL, NULL, 0); 528 buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t), 529 0, NULL, NULL, NULL, NULL, NULL, 0); 530 531 for (i = 0; i < 256; i++) 532 for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--) 533 *ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY); 534 535 for (i = 0; i < BUF_LOCKS; i++) { 536 mutex_init(&buf_hash_table.ht_locks[i].ht_lock, 537 NULL, MUTEX_DEFAULT, NULL); 538 } 539 } 540 541 #define ARC_MINTIME (hz>>4) /* 62 ms */ 542 543 static void 544 add_reference(arc_buf_hdr_t *ab, kmutex_t *hash_lock, void *tag) 545 { 546 ASSERT(MUTEX_HELD(hash_lock)); 547 548 if ((refcount_add(&ab->b_refcnt, tag) == 1) && 549 (ab->b_state != arc.anon)) { 550 int delta = ab->b_size * ab->b_datacnt; 551 552 ASSERT(!MUTEX_HELD(&ab->b_state->mtx)); 553 mutex_enter(&ab->b_state->mtx); 554 ASSERT(list_link_active(&ab->b_arc_node)); 555 list_remove(&ab->b_state->list, ab); 556 if (GHOST_STATE(ab->b_state)) { 557 ASSERT3U(ab->b_datacnt, ==, 0); 558 ASSERT3P(ab->b_buf, ==, NULL); 559 delta = ab->b_size; 560 } 561 ASSERT(delta > 0); 562 ASSERT3U(ab->b_state->lsize, >=, delta); 563 atomic_add_64(&ab->b_state->lsize, -delta); 564 mutex_exit(&ab->b_state->mtx); 565 /* remove the prefetch flag is we get a reference */ 566 if (ab->b_flags & ARC_PREFETCH) 567 ab->b_flags &= ~ARC_PREFETCH; 568 } 569 } 570 571 static int 572 remove_reference(arc_buf_hdr_t *ab, kmutex_t *hash_lock, void *tag) 573 { 574 int cnt; 575 576 ASSERT(ab->b_state == arc.anon || MUTEX_HELD(hash_lock)); 577 ASSERT(!GHOST_STATE(ab->b_state)); 578 579 if (((cnt = refcount_remove(&ab->b_refcnt, tag)) == 0) && 580 (ab->b_state != arc.anon)) { 581 582 ASSERT(!MUTEX_HELD(&ab->b_state->mtx)); 583 mutex_enter(&ab->b_state->mtx); 584 ASSERT(!list_link_active(&ab->b_arc_node)); 585 list_insert_head(&ab->b_state->list, ab); 586 ASSERT(ab->b_datacnt > 0); 587 atomic_add_64(&ab->b_state->lsize, ab->b_size * ab->b_datacnt); 588 ASSERT3U(ab->b_state->size, >=, ab->b_state->lsize); 589 mutex_exit(&ab->b_state->mtx); 590 } 591 return (cnt); 592 } 593 594 /* 595 * Move the supplied buffer to the indicated state. The mutex 596 * for the buffer must be held by the caller. 597 */ 598 static void 599 arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *ab, kmutex_t *hash_lock) 600 { 601 arc_state_t *old_state = ab->b_state; 602 int refcnt = refcount_count(&ab->b_refcnt); 603 int from_delta, to_delta; 604 605 ASSERT(MUTEX_HELD(hash_lock)); 606 ASSERT(new_state != old_state); 607 ASSERT(refcnt == 0 || ab->b_datacnt > 0); 608 ASSERT(ab->b_datacnt == 0 || !GHOST_STATE(new_state)); 609 610 from_delta = to_delta = ab->b_datacnt * ab->b_size; 611 612 /* 613 * If this buffer is evictable, transfer it from the 614 * old state list to the new state list. 615 */ 616 if (refcnt == 0) { 617 if (old_state != arc.anon) { 618 int use_mutex = !MUTEX_HELD(&old_state->mtx); 619 620 if (use_mutex) 621 mutex_enter(&old_state->mtx); 622 623 ASSERT(list_link_active(&ab->b_arc_node)); 624 list_remove(&old_state->list, ab); 625 626 /* 627 * If prefetching out of the ghost cache, 628 * we will have a non-null datacnt. 629 */ 630 if (GHOST_STATE(old_state) && ab->b_datacnt == 0) { 631 /* ghost elements have a ghost size */ 632 ASSERT(ab->b_buf == NULL); 633 from_delta = ab->b_size; 634 } 635 ASSERT3U(old_state->lsize, >=, from_delta); 636 atomic_add_64(&old_state->lsize, -from_delta); 637 638 if (use_mutex) 639 mutex_exit(&old_state->mtx); 640 } 641 if (new_state != arc.anon) { 642 int use_mutex = !MUTEX_HELD(&new_state->mtx); 643 644 if (use_mutex) 645 mutex_enter(&new_state->mtx); 646 647 list_insert_head(&new_state->list, ab); 648 649 /* ghost elements have a ghost size */ 650 if (GHOST_STATE(new_state)) { 651 ASSERT(ab->b_datacnt == 0); 652 ASSERT(ab->b_buf == NULL); 653 to_delta = ab->b_size; 654 } 655 atomic_add_64(&new_state->lsize, to_delta); 656 ASSERT3U(new_state->size + to_delta, >=, 657 new_state->lsize); 658 659 if (use_mutex) 660 mutex_exit(&new_state->mtx); 661 } 662 } 663 664 ASSERT(!BUF_EMPTY(ab)); 665 if (new_state == arc.anon && old_state != arc.anon) { 666 buf_hash_remove(ab); 667 } 668 669 /* adjust state sizes */ 670 if (to_delta) 671 atomic_add_64(&new_state->size, to_delta); 672 if (from_delta) { 673 ASSERT3U(old_state->size, >=, from_delta); 674 atomic_add_64(&old_state->size, -from_delta); 675 } 676 ab->b_state = new_state; 677 } 678 679 arc_buf_t * 680 arc_buf_alloc(spa_t *spa, int size, void *tag) 681 { 682 arc_buf_hdr_t *hdr; 683 arc_buf_t *buf; 684 685 ASSERT3U(size, >, 0); 686 hdr = kmem_cache_alloc(hdr_cache, KM_SLEEP); 687 ASSERT(BUF_EMPTY(hdr)); 688 hdr->b_size = size; 689 hdr->b_spa = spa; 690 hdr->b_state = arc.anon; 691 hdr->b_arc_access = 0; 692 buf = kmem_cache_alloc(buf_cache, KM_SLEEP); 693 buf->b_hdr = hdr; 694 buf->b_data = NULL; 695 buf->b_efunc = NULL; 696 buf->b_private = NULL; 697 buf->b_next = NULL; 698 hdr->b_buf = buf; 699 arc_get_data_buf(buf); 700 hdr->b_datacnt = 1; 701 hdr->b_flags = 0; 702 ASSERT(refcount_is_zero(&hdr->b_refcnt)); 703 (void) refcount_add(&hdr->b_refcnt, tag); 704 705 return (buf); 706 } 707 708 static arc_buf_t * 709 arc_buf_clone(arc_buf_t *from) 710 { 711 arc_buf_t *buf; 712 arc_buf_hdr_t *hdr = from->b_hdr; 713 uint64_t size = hdr->b_size; 714 715 buf = kmem_cache_alloc(buf_cache, KM_SLEEP); 716 buf->b_hdr = hdr; 717 buf->b_data = NULL; 718 buf->b_efunc = NULL; 719 buf->b_private = NULL; 720 buf->b_next = hdr->b_buf; 721 hdr->b_buf = buf; 722 arc_get_data_buf(buf); 723 bcopy(from->b_data, buf->b_data, size); 724 hdr->b_datacnt += 1; 725 return (buf); 726 } 727 728 void 729 arc_buf_add_ref(arc_buf_t *buf, void* tag) 730 { 731 arc_buf_hdr_t *hdr = buf->b_hdr; 732 kmutex_t *hash_lock; 733 734 /* 735 * Check to see if this buffer is currently being evicted via 736 * arc_do_user_evicts(). We can do this without holding any 737 * locks because if we happen to obtain the header before its 738 * cleared, we will find b_data is NULL later. 739 */ 740 if (hdr == NULL) 741 return; 742 743 hash_lock = HDR_LOCK(hdr); 744 mutex_enter(hash_lock); 745 if (buf->b_data == NULL) { 746 /* 747 * This buffer is evicted. 748 */ 749 mutex_exit(hash_lock); 750 return; 751 } 752 753 ASSERT(buf->b_hdr == hdr); 754 ASSERT(hdr->b_state == arc.mru || hdr->b_state == arc.mfu); 755 add_reference(hdr, hash_lock, tag); 756 arc_access(hdr, hash_lock); 757 mutex_exit(hash_lock); 758 atomic_add_64(&arc.hits, 1); 759 } 760 761 static void 762 arc_buf_destroy(arc_buf_t *buf, boolean_t recycle, boolean_t all) 763 { 764 arc_buf_t **bufp; 765 766 /* free up data associated with the buf */ 767 if (buf->b_data) { 768 arc_state_t *state = buf->b_hdr->b_state; 769 uint64_t size = buf->b_hdr->b_size; 770 771 if (!recycle) { 772 zio_buf_free(buf->b_data, size); 773 atomic_add_64(&arc.size, -size); 774 } 775 if (list_link_active(&buf->b_hdr->b_arc_node)) { 776 ASSERT(refcount_is_zero(&buf->b_hdr->b_refcnt)); 777 ASSERT(state != arc.anon); 778 ASSERT3U(state->lsize, >=, size); 779 atomic_add_64(&state->lsize, -size); 780 } 781 ASSERT3U(state->size, >=, size); 782 atomic_add_64(&state->size, -size); 783 buf->b_data = NULL; 784 ASSERT(buf->b_hdr->b_datacnt > 0); 785 buf->b_hdr->b_datacnt -= 1; 786 } 787 788 /* only remove the buf if requested */ 789 if (!all) 790 return; 791 792 /* remove the buf from the hdr list */ 793 for (bufp = &buf->b_hdr->b_buf; *bufp != buf; bufp = &(*bufp)->b_next) 794 continue; 795 *bufp = buf->b_next; 796 797 ASSERT(buf->b_efunc == NULL); 798 799 /* clean up the buf */ 800 buf->b_hdr = NULL; 801 kmem_cache_free(buf_cache, buf); 802 } 803 804 static void 805 arc_hdr_destroy(arc_buf_hdr_t *hdr) 806 { 807 ASSERT(refcount_is_zero(&hdr->b_refcnt)); 808 ASSERT3P(hdr->b_state, ==, arc.anon); 809 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 810 811 if (!BUF_EMPTY(hdr)) { 812 ASSERT(!HDR_IN_HASH_TABLE(hdr)); 813 bzero(&hdr->b_dva, sizeof (dva_t)); 814 hdr->b_birth = 0; 815 hdr->b_cksum0 = 0; 816 } 817 while (hdr->b_buf) { 818 arc_buf_t *buf = hdr->b_buf; 819 820 if (buf->b_efunc) { 821 mutex_enter(&arc_eviction_mtx); 822 ASSERT(buf->b_hdr != NULL); 823 arc_buf_destroy(hdr->b_buf, FALSE, FALSE); 824 hdr->b_buf = buf->b_next; 825 buf->b_next = arc_eviction_list; 826 arc_eviction_list = buf; 827 mutex_exit(&arc_eviction_mtx); 828 } else { 829 arc_buf_destroy(hdr->b_buf, FALSE, TRUE); 830 } 831 } 832 833 ASSERT(!list_link_active(&hdr->b_arc_node)); 834 ASSERT3P(hdr->b_hash_next, ==, NULL); 835 ASSERT3P(hdr->b_acb, ==, NULL); 836 kmem_cache_free(hdr_cache, hdr); 837 } 838 839 void 840 arc_buf_free(arc_buf_t *buf, void *tag) 841 { 842 arc_buf_hdr_t *hdr = buf->b_hdr; 843 int hashed = hdr->b_state != arc.anon; 844 845 ASSERT(buf->b_efunc == NULL); 846 ASSERT(buf->b_data != NULL); 847 848 if (hashed) { 849 kmutex_t *hash_lock = HDR_LOCK(hdr); 850 851 mutex_enter(hash_lock); 852 (void) remove_reference(hdr, hash_lock, tag); 853 if (hdr->b_datacnt > 1) 854 arc_buf_destroy(buf, FALSE, TRUE); 855 else 856 hdr->b_flags |= ARC_BUF_AVAILABLE; 857 mutex_exit(hash_lock); 858 } else if (HDR_IO_IN_PROGRESS(hdr)) { 859 int destroy_hdr; 860 /* 861 * We are in the middle of an async write. Don't destroy 862 * this buffer unless the write completes before we finish 863 * decrementing the reference count. 864 */ 865 mutex_enter(&arc_eviction_mtx); 866 (void) remove_reference(hdr, NULL, tag); 867 ASSERT(refcount_is_zero(&hdr->b_refcnt)); 868 destroy_hdr = !HDR_IO_IN_PROGRESS(hdr); 869 mutex_exit(&arc_eviction_mtx); 870 if (destroy_hdr) 871 arc_hdr_destroy(hdr); 872 } else { 873 if (remove_reference(hdr, NULL, tag) > 0) { 874 ASSERT(HDR_IO_ERROR(hdr)); 875 arc_buf_destroy(buf, FALSE, TRUE); 876 } else { 877 arc_hdr_destroy(hdr); 878 } 879 } 880 } 881 882 int 883 arc_buf_remove_ref(arc_buf_t *buf, void* tag) 884 { 885 arc_buf_hdr_t *hdr = buf->b_hdr; 886 kmutex_t *hash_lock = HDR_LOCK(hdr); 887 int no_callback = (buf->b_efunc == NULL); 888 889 if (hdr->b_state == arc.anon) { 890 arc_buf_free(buf, tag); 891 return (no_callback); 892 } 893 894 mutex_enter(hash_lock); 895 ASSERT(hdr->b_state != arc.anon); 896 ASSERT(buf->b_data != NULL); 897 898 (void) remove_reference(hdr, hash_lock, tag); 899 if (hdr->b_datacnt > 1) { 900 if (no_callback) 901 arc_buf_destroy(buf, FALSE, TRUE); 902 } else if (no_callback) { 903 ASSERT(hdr->b_buf == buf && buf->b_next == NULL); 904 hdr->b_flags |= ARC_BUF_AVAILABLE; 905 } 906 ASSERT(no_callback || hdr->b_datacnt > 1 || 907 refcount_is_zero(&hdr->b_refcnt)); 908 mutex_exit(hash_lock); 909 return (no_callback); 910 } 911 912 int 913 arc_buf_size(arc_buf_t *buf) 914 { 915 return (buf->b_hdr->b_size); 916 } 917 918 /* 919 * Evict buffers from list until we've removed the specified number of 920 * bytes. Move the removed buffers to the appropriate evict state. 921 * If the recycle flag is set, then attempt to "recycle" a buffer: 922 * - look for a buffer to evict that is `bytes' long. 923 * - return the data block from this buffer rather than freeing it. 924 * This flag is used by callers that are trying to make space for a 925 * new buffer in a full arc cache. 926 */ 927 static void * 928 arc_evict(arc_state_t *state, int64_t bytes, boolean_t recycle) 929 { 930 arc_state_t *evicted_state; 931 uint64_t bytes_evicted = 0, skipped = 0, missed = 0; 932 arc_buf_hdr_t *ab, *ab_prev; 933 kmutex_t *hash_lock; 934 boolean_t have_lock; 935 void *steal = NULL; 936 937 ASSERT(state == arc.mru || state == arc.mfu); 938 939 evicted_state = (state == arc.mru) ? arc.mru_ghost : arc.mfu_ghost; 940 941 mutex_enter(&state->mtx); 942 mutex_enter(&evicted_state->mtx); 943 944 for (ab = list_tail(&state->list); ab; ab = ab_prev) { 945 ab_prev = list_prev(&state->list, ab); 946 /* prefetch buffers have a minimum lifespan */ 947 if (HDR_IO_IN_PROGRESS(ab) || 948 (ab->b_flags & (ARC_PREFETCH|ARC_INDIRECT) && 949 lbolt - ab->b_arc_access < arc_min_prefetch_lifespan)) { 950 skipped++; 951 continue; 952 } 953 if (recycle && (ab->b_size != bytes || ab->b_datacnt > 1)) 954 continue; 955 hash_lock = HDR_LOCK(ab); 956 have_lock = MUTEX_HELD(hash_lock); 957 if (have_lock || mutex_tryenter(hash_lock)) { 958 ASSERT3U(refcount_count(&ab->b_refcnt), ==, 0); 959 ASSERT(ab->b_datacnt > 0); 960 while (ab->b_buf) { 961 arc_buf_t *buf = ab->b_buf; 962 if (buf->b_data) { 963 bytes_evicted += ab->b_size; 964 if (recycle) 965 steal = buf->b_data; 966 } 967 if (buf->b_efunc) { 968 mutex_enter(&arc_eviction_mtx); 969 arc_buf_destroy(buf, recycle, FALSE); 970 ab->b_buf = buf->b_next; 971 buf->b_next = arc_eviction_list; 972 arc_eviction_list = buf; 973 mutex_exit(&arc_eviction_mtx); 974 } else { 975 arc_buf_destroy(buf, recycle, TRUE); 976 } 977 } 978 ASSERT(ab->b_datacnt == 0); 979 arc_change_state(evicted_state, ab, hash_lock); 980 ASSERT(HDR_IN_HASH_TABLE(ab)); 981 ab->b_flags = ARC_IN_HASH_TABLE; 982 DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, ab); 983 if (!have_lock) 984 mutex_exit(hash_lock); 985 if (bytes >= 0 && bytes_evicted >= bytes) 986 break; 987 } else { 988 missed += 1; 989 } 990 } 991 mutex_exit(&evicted_state->mtx); 992 mutex_exit(&state->mtx); 993 994 if (bytes_evicted < bytes) 995 dprintf("only evicted %lld bytes from %x", 996 (longlong_t)bytes_evicted, state); 997 998 if (skipped) 999 atomic_add_64(&arc.evict_skip, skipped); 1000 if (missed) 1001 atomic_add_64(&arc.mutex_miss, missed); 1002 return (steal); 1003 } 1004 1005 /* 1006 * Remove buffers from list until we've removed the specified number of 1007 * bytes. Destroy the buffers that are removed. 1008 */ 1009 static void 1010 arc_evict_ghost(arc_state_t *state, int64_t bytes) 1011 { 1012 arc_buf_hdr_t *ab, *ab_prev; 1013 kmutex_t *hash_lock; 1014 uint64_t bytes_deleted = 0; 1015 uint_t bufs_skipped = 0; 1016 1017 ASSERT(GHOST_STATE(state)); 1018 top: 1019 mutex_enter(&state->mtx); 1020 for (ab = list_tail(&state->list); ab; ab = ab_prev) { 1021 ab_prev = list_prev(&state->list, ab); 1022 hash_lock = HDR_LOCK(ab); 1023 if (mutex_tryenter(hash_lock)) { 1024 ASSERT(!HDR_IO_IN_PROGRESS(ab)); 1025 ASSERT(ab->b_buf == NULL); 1026 arc_change_state(arc.anon, ab, hash_lock); 1027 mutex_exit(hash_lock); 1028 atomic_add_64(&arc.deleted, 1); 1029 bytes_deleted += ab->b_size; 1030 arc_hdr_destroy(ab); 1031 DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, ab); 1032 if (bytes >= 0 && bytes_deleted >= bytes) 1033 break; 1034 } else { 1035 if (bytes < 0) { 1036 mutex_exit(&state->mtx); 1037 mutex_enter(hash_lock); 1038 mutex_exit(hash_lock); 1039 goto top; 1040 } 1041 bufs_skipped += 1; 1042 } 1043 } 1044 mutex_exit(&state->mtx); 1045 1046 if (bufs_skipped) { 1047 atomic_add_64(&arc.mutex_miss, bufs_skipped); 1048 ASSERT(bytes >= 0); 1049 } 1050 1051 if (bytes_deleted < bytes) 1052 dprintf("only deleted %lld bytes from %p", 1053 (longlong_t)bytes_deleted, state); 1054 } 1055 1056 static void 1057 arc_adjust(void) 1058 { 1059 int64_t top_sz, mru_over, arc_over; 1060 1061 top_sz = arc.anon->size + arc.mru->size; 1062 1063 if (top_sz > arc.p && arc.mru->lsize > 0) { 1064 int64_t toevict = MIN(arc.mru->lsize, top_sz-arc.p); 1065 (void) arc_evict(arc.mru, toevict, FALSE); 1066 top_sz = arc.anon->size + arc.mru->size; 1067 } 1068 1069 mru_over = top_sz + arc.mru_ghost->size - arc.c; 1070 1071 if (mru_over > 0) { 1072 if (arc.mru_ghost->lsize > 0) { 1073 int64_t todelete = MIN(arc.mru_ghost->lsize, mru_over); 1074 arc_evict_ghost(arc.mru_ghost, todelete); 1075 } 1076 } 1077 1078 if ((arc_over = arc.size - arc.c) > 0) { 1079 int64_t tbl_over; 1080 1081 if (arc.mfu->lsize > 0) { 1082 int64_t toevict = MIN(arc.mfu->lsize, arc_over); 1083 (void) arc_evict(arc.mfu, toevict, FALSE); 1084 } 1085 1086 tbl_over = arc.size + arc.mru_ghost->lsize + 1087 arc.mfu_ghost->lsize - arc.c*2; 1088 1089 if (tbl_over > 0 && arc.mfu_ghost->lsize > 0) { 1090 int64_t todelete = MIN(arc.mfu_ghost->lsize, tbl_over); 1091 arc_evict_ghost(arc.mfu_ghost, todelete); 1092 } 1093 } 1094 } 1095 1096 static void 1097 arc_do_user_evicts(void) 1098 { 1099 mutex_enter(&arc_eviction_mtx); 1100 while (arc_eviction_list != NULL) { 1101 arc_buf_t *buf = arc_eviction_list; 1102 arc_eviction_list = buf->b_next; 1103 buf->b_hdr = NULL; 1104 mutex_exit(&arc_eviction_mtx); 1105 1106 if (buf->b_efunc != NULL) 1107 VERIFY(buf->b_efunc(buf) == 0); 1108 1109 buf->b_efunc = NULL; 1110 buf->b_private = NULL; 1111 kmem_cache_free(buf_cache, buf); 1112 mutex_enter(&arc_eviction_mtx); 1113 } 1114 mutex_exit(&arc_eviction_mtx); 1115 } 1116 1117 /* 1118 * Flush all *evictable* data from the cache. 1119 * NOTE: this will not touch "active" (i.e. referenced) data. 1120 */ 1121 void 1122 arc_flush(void) 1123 { 1124 while (list_head(&arc.mru->list)) 1125 (void) arc_evict(arc.mru, -1, FALSE); 1126 while (list_head(&arc.mfu->list)) 1127 (void) arc_evict(arc.mfu, -1, FALSE); 1128 1129 arc_evict_ghost(arc.mru_ghost, -1); 1130 arc_evict_ghost(arc.mfu_ghost, -1); 1131 1132 mutex_enter(&arc_reclaim_thr_lock); 1133 arc_do_user_evicts(); 1134 mutex_exit(&arc_reclaim_thr_lock); 1135 ASSERT(arc_eviction_list == NULL); 1136 } 1137 1138 int arc_kmem_reclaim_shift = 5; /* log2(fraction of arc to reclaim) */ 1139 1140 void 1141 arc_kmem_reclaim(void) 1142 { 1143 uint64_t to_free; 1144 1145 /* 1146 * We need arc_reclaim_lock because we don't want multiple 1147 * threads trying to reclaim concurrently. 1148 */ 1149 1150 /* 1151 * umem calls the reclaim func when we destroy the buf cache, 1152 * which is after we do arc_fini(). So we set a flag to prevent 1153 * accessing the destroyed mutexes and lists. 1154 */ 1155 if (arc_dead) 1156 return; 1157 1158 if (arc.c <= arc.c_min) 1159 return; 1160 1161 mutex_enter(&arc_reclaim_lock); 1162 1163 #ifdef _KERNEL 1164 to_free = MAX(arc.c >> arc_kmem_reclaim_shift, ptob(needfree)); 1165 #else 1166 to_free = arc.c >> arc_kmem_reclaim_shift; 1167 #endif 1168 if (arc.c > to_free) 1169 atomic_add_64(&arc.c, -to_free); 1170 else 1171 arc.c = arc.c_min; 1172 1173 atomic_add_64(&arc.p, -(arc.p >> arc_kmem_reclaim_shift)); 1174 if (arc.c > arc.size) 1175 arc.c = arc.size; 1176 if (arc.c < arc.c_min) 1177 arc.c = arc.c_min; 1178 if (arc.p > arc.c) 1179 arc.p = (arc.c >> 1); 1180 ASSERT((int64_t)arc.p >= 0); 1181 1182 arc_adjust(); 1183 1184 mutex_exit(&arc_reclaim_lock); 1185 } 1186 1187 static int 1188 arc_reclaim_needed(void) 1189 { 1190 uint64_t extra; 1191 1192 #ifdef _KERNEL 1193 1194 if (needfree) 1195 return (1); 1196 1197 /* 1198 * take 'desfree' extra pages, so we reclaim sooner, rather than later 1199 */ 1200 extra = desfree; 1201 1202 /* 1203 * check that we're out of range of the pageout scanner. It starts to 1204 * schedule paging if freemem is less than lotsfree and needfree. 1205 * lotsfree is the high-water mark for pageout, and needfree is the 1206 * number of needed free pages. We add extra pages here to make sure 1207 * the scanner doesn't start up while we're freeing memory. 1208 */ 1209 if (freemem < lotsfree + needfree + extra) 1210 return (1); 1211 1212 /* 1213 * check to make sure that swapfs has enough space so that anon 1214 * reservations can still succeeed. anon_resvmem() checks that the 1215 * availrmem is greater than swapfs_minfree, and the number of reserved 1216 * swap pages. We also add a bit of extra here just to prevent 1217 * circumstances from getting really dire. 1218 */ 1219 if (availrmem < swapfs_minfree + swapfs_reserve + extra) 1220 return (1); 1221 1222 #if defined(__i386) 1223 /* 1224 * If we're on an i386 platform, it's possible that we'll exhaust the 1225 * kernel heap space before we ever run out of available physical 1226 * memory. Most checks of the size of the heap_area compare against 1227 * tune.t_minarmem, which is the minimum available real memory that we 1228 * can have in the system. However, this is generally fixed at 25 pages 1229 * which is so low that it's useless. In this comparison, we seek to 1230 * calculate the total heap-size, and reclaim if more than 3/4ths of the 1231 * heap is allocated. (Or, in the caclulation, if less than 1/4th is 1232 * free) 1233 */ 1234 if (btop(vmem_size(heap_arena, VMEM_FREE)) < 1235 (btop(vmem_size(heap_arena, VMEM_FREE | VMEM_ALLOC)) >> 2)) 1236 return (1); 1237 #endif 1238 1239 #else 1240 if (spa_get_random(100) == 0) 1241 return (1); 1242 #endif 1243 return (0); 1244 } 1245 1246 static void 1247 arc_kmem_reap_now(arc_reclaim_strategy_t strat) 1248 { 1249 size_t i; 1250 kmem_cache_t *prev_cache = NULL; 1251 extern kmem_cache_t *zio_buf_cache[]; 1252 1253 #ifdef _KERNEL 1254 /* 1255 * First purge some DNLC entries, in case the DNLC is using 1256 * up too much memory. 1257 */ 1258 dnlc_reduce_cache((void *)(uintptr_t)arc_reduce_dnlc_percent); 1259 1260 #if defined(__i386) 1261 /* 1262 * Reclaim unused memory from all kmem caches. 1263 */ 1264 kmem_reap(); 1265 #endif 1266 #endif 1267 1268 /* 1269 * An agressive reclamation will shrink the cache size as well as 1270 * reap free buffers from the arc kmem caches. 1271 */ 1272 if (strat == ARC_RECLAIM_AGGR) 1273 arc_kmem_reclaim(); 1274 1275 for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) { 1276 if (zio_buf_cache[i] != prev_cache) { 1277 prev_cache = zio_buf_cache[i]; 1278 kmem_cache_reap_now(zio_buf_cache[i]); 1279 } 1280 } 1281 kmem_cache_reap_now(buf_cache); 1282 kmem_cache_reap_now(hdr_cache); 1283 } 1284 1285 static void 1286 arc_reclaim_thread(void) 1287 { 1288 clock_t growtime = 0; 1289 arc_reclaim_strategy_t last_reclaim = ARC_RECLAIM_CONS; 1290 callb_cpr_t cpr; 1291 1292 CALLB_CPR_INIT(&cpr, &arc_reclaim_thr_lock, callb_generic_cpr, FTAG); 1293 1294 mutex_enter(&arc_reclaim_thr_lock); 1295 while (arc_thread_exit == 0) { 1296 if (arc_reclaim_needed()) { 1297 1298 if (arc.no_grow) { 1299 if (last_reclaim == ARC_RECLAIM_CONS) { 1300 last_reclaim = ARC_RECLAIM_AGGR; 1301 } else { 1302 last_reclaim = ARC_RECLAIM_CONS; 1303 } 1304 } else { 1305 arc.no_grow = TRUE; 1306 last_reclaim = ARC_RECLAIM_AGGR; 1307 membar_producer(); 1308 } 1309 1310 /* reset the growth delay for every reclaim */ 1311 growtime = lbolt + (arc_grow_retry * hz); 1312 ASSERT(growtime > 0); 1313 1314 arc_kmem_reap_now(last_reclaim); 1315 1316 } else if ((growtime > 0) && ((growtime - lbolt) <= 0)) { 1317 arc.no_grow = FALSE; 1318 } 1319 1320 if (arc_eviction_list != NULL) 1321 arc_do_user_evicts(); 1322 1323 /* block until needed, or one second, whichever is shorter */ 1324 CALLB_CPR_SAFE_BEGIN(&cpr); 1325 (void) cv_timedwait(&arc_reclaim_thr_cv, 1326 &arc_reclaim_thr_lock, (lbolt + hz)); 1327 CALLB_CPR_SAFE_END(&cpr, &arc_reclaim_thr_lock); 1328 } 1329 1330 arc_thread_exit = 0; 1331 cv_broadcast(&arc_reclaim_thr_cv); 1332 CALLB_CPR_EXIT(&cpr); /* drops arc_reclaim_thr_lock */ 1333 thread_exit(); 1334 } 1335 1336 /* 1337 * Adapt arc info given the number of bytes we are trying to add and 1338 * the state that we are comming from. This function is only called 1339 * when we are adding new content to the cache. 1340 */ 1341 static void 1342 arc_adapt(int bytes, arc_state_t *state) 1343 { 1344 int mult; 1345 1346 ASSERT(bytes > 0); 1347 /* 1348 * Adapt the target size of the MRU list: 1349 * - if we just hit in the MRU ghost list, then increase 1350 * the target size of the MRU list. 1351 * - if we just hit in the MFU ghost list, then increase 1352 * the target size of the MFU list by decreasing the 1353 * target size of the MRU list. 1354 */ 1355 if (state == arc.mru_ghost) { 1356 mult = ((arc.mru_ghost->size >= arc.mfu_ghost->size) ? 1357 1 : (arc.mfu_ghost->size/arc.mru_ghost->size)); 1358 1359 arc.p = MIN(arc.c, arc.p + bytes * mult); 1360 } else if (state == arc.mfu_ghost) { 1361 mult = ((arc.mfu_ghost->size >= arc.mru_ghost->size) ? 1362 1 : (arc.mru_ghost->size/arc.mfu_ghost->size)); 1363 1364 arc.p = MAX(0, (int64_t)arc.p - bytes * mult); 1365 } 1366 ASSERT((int64_t)arc.p >= 0); 1367 1368 if (arc_reclaim_needed()) { 1369 cv_signal(&arc_reclaim_thr_cv); 1370 return; 1371 } 1372 1373 if (arc.no_grow) 1374 return; 1375 1376 if (arc.c >= arc.c_max) 1377 return; 1378 1379 /* 1380 * If we're within (2 * maxblocksize) bytes of the target 1381 * cache size, increment the target cache size 1382 */ 1383 if (arc.size > arc.c - (2ULL << SPA_MAXBLOCKSHIFT)) { 1384 atomic_add_64(&arc.c, (int64_t)bytes); 1385 if (arc.c > arc.c_max) 1386 arc.c = arc.c_max; 1387 else if (state == arc.anon) 1388 atomic_add_64(&arc.p, (int64_t)bytes); 1389 if (arc.p > arc.c) 1390 arc.p = arc.c; 1391 } 1392 ASSERT((int64_t)arc.p >= 0); 1393 } 1394 1395 /* 1396 * Check if the cache has reached its limits and eviction is required 1397 * prior to insert. 1398 */ 1399 static int 1400 arc_evict_needed() 1401 { 1402 if (arc_reclaim_needed()) 1403 return (1); 1404 1405 return (arc.size > arc.c); 1406 } 1407 1408 /* 1409 * The buffer, supplied as the first argument, needs a data block. 1410 * So, if we are at cache max, determine which cache should be victimized. 1411 * We have the following cases: 1412 * 1413 * 1. Insert for MRU, p > sizeof(arc.anon + arc.mru) -> 1414 * In this situation if we're out of space, but the resident size of the MFU is 1415 * under the limit, victimize the MFU cache to satisfy this insertion request. 1416 * 1417 * 2. Insert for MRU, p <= sizeof(arc.anon + arc.mru) -> 1418 * Here, we've used up all of the available space for the MRU, so we need to 1419 * evict from our own cache instead. Evict from the set of resident MRU 1420 * entries. 1421 * 1422 * 3. Insert for MFU (c - p) > sizeof(arc.mfu) -> 1423 * c minus p represents the MFU space in the cache, since p is the size of the 1424 * cache that is dedicated to the MRU. In this situation there's still space on 1425 * the MFU side, so the MRU side needs to be victimized. 1426 * 1427 * 4. Insert for MFU (c - p) < sizeof(arc.mfu) -> 1428 * MFU's resident set is consuming more space than it has been allotted. In 1429 * this situation, we must victimize our own cache, the MFU, for this insertion. 1430 */ 1431 static void 1432 arc_get_data_buf(arc_buf_t *buf) 1433 { 1434 arc_state_t *state = buf->b_hdr->b_state; 1435 uint64_t size = buf->b_hdr->b_size; 1436 1437 arc_adapt(size, state); 1438 1439 /* 1440 * We have not yet reached cache maximum size, 1441 * just allocate a new buffer. 1442 */ 1443 if (!arc_evict_needed()) { 1444 buf->b_data = zio_buf_alloc(size); 1445 atomic_add_64(&arc.size, size); 1446 goto out; 1447 } 1448 1449 /* 1450 * If we are prefetching from the mfu ghost list, this buffer 1451 * will end up on the mru list; so steal space from there. 1452 */ 1453 if (state == arc.mfu_ghost) 1454 state = buf->b_hdr->b_flags & ARC_PREFETCH ? arc.mru : arc.mfu; 1455 else if (state == arc.mru_ghost) 1456 state = arc.mru; 1457 1458 if (state == arc.mru || state == arc.anon) { 1459 uint64_t mru_used = arc.anon->size + arc.mru->size; 1460 state = (arc.p > mru_used) ? arc.mfu : arc.mru; 1461 } else { 1462 /* MFU cases */ 1463 uint64_t mfu_space = arc.c - arc.p; 1464 state = (mfu_space > arc.mfu->size) ? arc.mru : arc.mfu; 1465 } 1466 if ((buf->b_data = arc_evict(state, size, TRUE)) == NULL) { 1467 (void) arc_evict(state, size, FALSE); 1468 buf->b_data = zio_buf_alloc(size); 1469 atomic_add_64(&arc.size, size); 1470 atomic_add_64(&arc.recycle_miss, 1); 1471 if (arc.size > arc.c) 1472 arc_adjust(); 1473 } 1474 ASSERT(buf->b_data != NULL); 1475 out: 1476 /* 1477 * Update the state size. Note that ghost states have a 1478 * "ghost size" and so don't need to be updated. 1479 */ 1480 if (!GHOST_STATE(buf->b_hdr->b_state)) { 1481 arc_buf_hdr_t *hdr = buf->b_hdr; 1482 1483 atomic_add_64(&hdr->b_state->size, size); 1484 if (list_link_active(&hdr->b_arc_node)) { 1485 ASSERT(refcount_is_zero(&hdr->b_refcnt)); 1486 atomic_add_64(&hdr->b_state->lsize, size); 1487 } 1488 } 1489 } 1490 1491 /* 1492 * This routine is called whenever a buffer is accessed. 1493 * NOTE: the hash lock is dropped in this function. 1494 */ 1495 static void 1496 arc_access(arc_buf_hdr_t *buf, kmutex_t *hash_lock) 1497 { 1498 ASSERT(MUTEX_HELD(hash_lock)); 1499 1500 if (buf->b_state == arc.anon) { 1501 /* 1502 * This buffer is not in the cache, and does not 1503 * appear in our "ghost" list. Add the new buffer 1504 * to the MRU state. 1505 */ 1506 1507 ASSERT(buf->b_arc_access == 0); 1508 buf->b_arc_access = lbolt; 1509 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, buf); 1510 arc_change_state(arc.mru, buf, hash_lock); 1511 1512 } else if (buf->b_state == arc.mru) { 1513 /* 1514 * If this buffer is here because of a prefetch, then either: 1515 * - clear the flag if this is a "referencing" read 1516 * (any subsequent access will bump this into the MFU state). 1517 * or 1518 * - move the buffer to the head of the list if this is 1519 * another prefetch (to make it less likely to be evicted). 1520 */ 1521 if ((buf->b_flags & ARC_PREFETCH) != 0) { 1522 if (refcount_count(&buf->b_refcnt) == 0) { 1523 ASSERT(list_link_active(&buf->b_arc_node)); 1524 mutex_enter(&arc.mru->mtx); 1525 list_remove(&arc.mru->list, buf); 1526 list_insert_head(&arc.mru->list, buf); 1527 mutex_exit(&arc.mru->mtx); 1528 } else { 1529 buf->b_flags &= ~ARC_PREFETCH; 1530 atomic_add_64(&arc.mru->hits, 1); 1531 } 1532 buf->b_arc_access = lbolt; 1533 return; 1534 } 1535 1536 /* 1537 * This buffer has been "accessed" only once so far, 1538 * but it is still in the cache. Move it to the MFU 1539 * state. 1540 */ 1541 if (lbolt > buf->b_arc_access + ARC_MINTIME) { 1542 /* 1543 * More than 125ms have passed since we 1544 * instantiated this buffer. Move it to the 1545 * most frequently used state. 1546 */ 1547 buf->b_arc_access = lbolt; 1548 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf); 1549 arc_change_state(arc.mfu, buf, hash_lock); 1550 } 1551 atomic_add_64(&arc.mru->hits, 1); 1552 } else if (buf->b_state == arc.mru_ghost) { 1553 arc_state_t *new_state; 1554 /* 1555 * This buffer has been "accessed" recently, but 1556 * was evicted from the cache. Move it to the 1557 * MFU state. 1558 */ 1559 1560 if (buf->b_flags & ARC_PREFETCH) { 1561 new_state = arc.mru; 1562 if (refcount_count(&buf->b_refcnt) > 0) 1563 buf->b_flags &= ~ARC_PREFETCH; 1564 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, buf); 1565 } else { 1566 new_state = arc.mfu; 1567 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf); 1568 } 1569 1570 buf->b_arc_access = lbolt; 1571 arc_change_state(new_state, buf, hash_lock); 1572 1573 atomic_add_64(&arc.mru_ghost->hits, 1); 1574 } else if (buf->b_state == arc.mfu) { 1575 /* 1576 * This buffer has been accessed more than once and is 1577 * still in the cache. Keep it in the MFU state. 1578 * 1579 * NOTE: an add_reference() that occurred when we did 1580 * the arc_read() will have kicked this off the list. 1581 * If it was a prefetch, we will explicitly move it to 1582 * the head of the list now. 1583 */ 1584 if ((buf->b_flags & ARC_PREFETCH) != 0) { 1585 ASSERT(refcount_count(&buf->b_refcnt) == 0); 1586 ASSERT(list_link_active(&buf->b_arc_node)); 1587 mutex_enter(&arc.mfu->mtx); 1588 list_remove(&arc.mfu->list, buf); 1589 list_insert_head(&arc.mfu->list, buf); 1590 mutex_exit(&arc.mfu->mtx); 1591 } 1592 atomic_add_64(&arc.mfu->hits, 1); 1593 buf->b_arc_access = lbolt; 1594 } else if (buf->b_state == arc.mfu_ghost) { 1595 arc_state_t *new_state = arc.mfu; 1596 /* 1597 * This buffer has been accessed more than once but has 1598 * been evicted from the cache. Move it back to the 1599 * MFU state. 1600 */ 1601 1602 if (buf->b_flags & ARC_PREFETCH) { 1603 /* 1604 * This is a prefetch access... 1605 * move this block back to the MRU state. 1606 */ 1607 ASSERT3U(refcount_count(&buf->b_refcnt), ==, 0); 1608 new_state = arc.mru; 1609 } 1610 1611 buf->b_arc_access = lbolt; 1612 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf); 1613 arc_change_state(new_state, buf, hash_lock); 1614 1615 atomic_add_64(&arc.mfu_ghost->hits, 1); 1616 } else { 1617 ASSERT(!"invalid arc state"); 1618 } 1619 } 1620 1621 /* a generic arc_done_func_t which you can use */ 1622 /* ARGSUSED */ 1623 void 1624 arc_bcopy_func(zio_t *zio, arc_buf_t *buf, void *arg) 1625 { 1626 bcopy(buf->b_data, arg, buf->b_hdr->b_size); 1627 VERIFY(arc_buf_remove_ref(buf, arg) == 1); 1628 } 1629 1630 /* a generic arc_done_func_t which you can use */ 1631 void 1632 arc_getbuf_func(zio_t *zio, arc_buf_t *buf, void *arg) 1633 { 1634 arc_buf_t **bufp = arg; 1635 if (zio && zio->io_error) { 1636 VERIFY(arc_buf_remove_ref(buf, arg) == 1); 1637 *bufp = NULL; 1638 } else { 1639 *bufp = buf; 1640 } 1641 } 1642 1643 static void 1644 arc_read_done(zio_t *zio) 1645 { 1646 arc_buf_hdr_t *hdr, *found; 1647 arc_buf_t *buf; 1648 arc_buf_t *abuf; /* buffer we're assigning to callback */ 1649 kmutex_t *hash_lock; 1650 arc_callback_t *callback_list, *acb; 1651 int freeable = FALSE; 1652 1653 buf = zio->io_private; 1654 hdr = buf->b_hdr; 1655 1656 /* 1657 * The hdr was inserted into hash-table and removed from lists 1658 * prior to starting I/O. We should find this header, since 1659 * it's in the hash table, and it should be legit since it's 1660 * not possible to evict it during the I/O. The only possible 1661 * reason for it not to be found is if we were freed during the 1662 * read. 1663 */ 1664 found = buf_hash_find(zio->io_spa, &hdr->b_dva, hdr->b_birth, 1665 &hash_lock); 1666 1667 ASSERT((found == NULL && HDR_FREED_IN_READ(hdr) && hash_lock == NULL) || 1668 (found == hdr && DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp)))); 1669 1670 /* byteswap if necessary */ 1671 callback_list = hdr->b_acb; 1672 ASSERT(callback_list != NULL); 1673 if (BP_SHOULD_BYTESWAP(zio->io_bp) && callback_list->acb_byteswap) 1674 callback_list->acb_byteswap(buf->b_data, hdr->b_size); 1675 1676 /* create copies of the data buffer for the callers */ 1677 abuf = buf; 1678 for (acb = callback_list; acb; acb = acb->acb_next) { 1679 if (acb->acb_done) { 1680 if (abuf == NULL) 1681 abuf = arc_buf_clone(buf); 1682 acb->acb_buf = abuf; 1683 abuf = NULL; 1684 } 1685 } 1686 hdr->b_acb = NULL; 1687 hdr->b_flags &= ~ARC_IO_IN_PROGRESS; 1688 ASSERT(!HDR_BUF_AVAILABLE(hdr)); 1689 if (abuf == buf) 1690 hdr->b_flags |= ARC_BUF_AVAILABLE; 1691 1692 ASSERT(refcount_is_zero(&hdr->b_refcnt) || callback_list != NULL); 1693 1694 if (zio->io_error != 0) { 1695 hdr->b_flags |= ARC_IO_ERROR; 1696 if (hdr->b_state != arc.anon) 1697 arc_change_state(arc.anon, hdr, hash_lock); 1698 if (HDR_IN_HASH_TABLE(hdr)) 1699 buf_hash_remove(hdr); 1700 freeable = refcount_is_zero(&hdr->b_refcnt); 1701 /* convert checksum errors into IO errors */ 1702 if (zio->io_error == ECKSUM) 1703 zio->io_error = EIO; 1704 } 1705 1706 /* 1707 * Broadcast before we drop the hash_lock to avoid the possibility 1708 * that the hdr (and hence the cv) might be freed before we get to 1709 * the cv_broadcast(). 1710 */ 1711 cv_broadcast(&hdr->b_cv); 1712 1713 if (hash_lock) { 1714 /* 1715 * Only call arc_access on anonymous buffers. This is because 1716 * if we've issued an I/O for an evicted buffer, we've already 1717 * called arc_access (to prevent any simultaneous readers from 1718 * getting confused). 1719 */ 1720 if (zio->io_error == 0 && hdr->b_state == arc.anon) 1721 arc_access(hdr, hash_lock); 1722 mutex_exit(hash_lock); 1723 } else { 1724 /* 1725 * This block was freed while we waited for the read to 1726 * complete. It has been removed from the hash table and 1727 * moved to the anonymous state (so that it won't show up 1728 * in the cache). 1729 */ 1730 ASSERT3P(hdr->b_state, ==, arc.anon); 1731 freeable = refcount_is_zero(&hdr->b_refcnt); 1732 } 1733 1734 /* execute each callback and free its structure */ 1735 while ((acb = callback_list) != NULL) { 1736 if (acb->acb_done) 1737 acb->acb_done(zio, acb->acb_buf, acb->acb_private); 1738 1739 if (acb->acb_zio_dummy != NULL) { 1740 acb->acb_zio_dummy->io_error = zio->io_error; 1741 zio_nowait(acb->acb_zio_dummy); 1742 } 1743 1744 callback_list = acb->acb_next; 1745 kmem_free(acb, sizeof (arc_callback_t)); 1746 } 1747 1748 if (freeable) 1749 arc_hdr_destroy(hdr); 1750 } 1751 1752 /* 1753 * "Read" the block block at the specified DVA (in bp) via the 1754 * cache. If the block is found in the cache, invoke the provided 1755 * callback immediately and return. Note that the `zio' parameter 1756 * in the callback will be NULL in this case, since no IO was 1757 * required. If the block is not in the cache pass the read request 1758 * on to the spa with a substitute callback function, so that the 1759 * requested block will be added to the cache. 1760 * 1761 * If a read request arrives for a block that has a read in-progress, 1762 * either wait for the in-progress read to complete (and return the 1763 * results); or, if this is a read with a "done" func, add a record 1764 * to the read to invoke the "done" func when the read completes, 1765 * and return; or just return. 1766 * 1767 * arc_read_done() will invoke all the requested "done" functions 1768 * for readers of this block. 1769 */ 1770 int 1771 arc_read(zio_t *pio, spa_t *spa, blkptr_t *bp, arc_byteswap_func_t *swap, 1772 arc_done_func_t *done, void *private, int priority, int flags, 1773 uint32_t *arc_flags, zbookmark_t *zb) 1774 { 1775 arc_buf_hdr_t *hdr; 1776 arc_buf_t *buf; 1777 kmutex_t *hash_lock; 1778 zio_t *rzio; 1779 1780 top: 1781 hdr = buf_hash_find(spa, BP_IDENTITY(bp), bp->blk_birth, &hash_lock); 1782 if (hdr && hdr->b_datacnt > 0) { 1783 1784 *arc_flags |= ARC_CACHED; 1785 1786 if (HDR_IO_IN_PROGRESS(hdr)) { 1787 1788 if (*arc_flags & ARC_WAIT) { 1789 cv_wait(&hdr->b_cv, hash_lock); 1790 mutex_exit(hash_lock); 1791 goto top; 1792 } 1793 ASSERT(*arc_flags & ARC_NOWAIT); 1794 1795 if (done) { 1796 arc_callback_t *acb = NULL; 1797 1798 acb = kmem_zalloc(sizeof (arc_callback_t), 1799 KM_SLEEP); 1800 acb->acb_done = done; 1801 acb->acb_private = private; 1802 acb->acb_byteswap = swap; 1803 if (pio != NULL) 1804 acb->acb_zio_dummy = zio_null(pio, 1805 spa, NULL, NULL, flags); 1806 1807 ASSERT(acb->acb_done != NULL); 1808 acb->acb_next = hdr->b_acb; 1809 hdr->b_acb = acb; 1810 add_reference(hdr, hash_lock, private); 1811 mutex_exit(hash_lock); 1812 return (0); 1813 } 1814 mutex_exit(hash_lock); 1815 return (0); 1816 } 1817 1818 ASSERT(hdr->b_state == arc.mru || hdr->b_state == arc.mfu); 1819 1820 if (done) { 1821 add_reference(hdr, hash_lock, private); 1822 /* 1823 * If this block is already in use, create a new 1824 * copy of the data so that we will be guaranteed 1825 * that arc_release() will always succeed. 1826 */ 1827 buf = hdr->b_buf; 1828 ASSERT(buf); 1829 ASSERT(buf->b_data); 1830 if (HDR_BUF_AVAILABLE(hdr)) { 1831 ASSERT(buf->b_efunc == NULL); 1832 hdr->b_flags &= ~ARC_BUF_AVAILABLE; 1833 } else { 1834 buf = arc_buf_clone(buf); 1835 } 1836 } else if (*arc_flags & ARC_PREFETCH && 1837 refcount_count(&hdr->b_refcnt) == 0) { 1838 hdr->b_flags |= ARC_PREFETCH; 1839 } 1840 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr); 1841 arc_access(hdr, hash_lock); 1842 mutex_exit(hash_lock); 1843 atomic_add_64(&arc.hits, 1); 1844 if (done) 1845 done(NULL, buf, private); 1846 } else { 1847 uint64_t size = BP_GET_LSIZE(bp); 1848 arc_callback_t *acb; 1849 1850 if (hdr == NULL) { 1851 /* this block is not in the cache */ 1852 arc_buf_hdr_t *exists; 1853 1854 buf = arc_buf_alloc(spa, size, private); 1855 hdr = buf->b_hdr; 1856 hdr->b_dva = *BP_IDENTITY(bp); 1857 hdr->b_birth = bp->blk_birth; 1858 hdr->b_cksum0 = bp->blk_cksum.zc_word[0]; 1859 exists = buf_hash_insert(hdr, &hash_lock); 1860 if (exists) { 1861 /* somebody beat us to the hash insert */ 1862 mutex_exit(hash_lock); 1863 bzero(&hdr->b_dva, sizeof (dva_t)); 1864 hdr->b_birth = 0; 1865 hdr->b_cksum0 = 0; 1866 (void) arc_buf_remove_ref(buf, private); 1867 goto top; /* restart the IO request */ 1868 } 1869 /* if this is a prefetch, we don't have a reference */ 1870 if (*arc_flags & ARC_PREFETCH) { 1871 (void) remove_reference(hdr, hash_lock, 1872 private); 1873 hdr->b_flags |= ARC_PREFETCH; 1874 } 1875 if (BP_GET_LEVEL(bp) > 0) 1876 hdr->b_flags |= ARC_INDIRECT; 1877 } else { 1878 /* this block is in the ghost cache */ 1879 ASSERT(GHOST_STATE(hdr->b_state)); 1880 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 1881 ASSERT3U(refcount_count(&hdr->b_refcnt), ==, 0); 1882 ASSERT(hdr->b_buf == NULL); 1883 1884 /* if this is a prefetch, we don't have a reference */ 1885 if (*arc_flags & ARC_PREFETCH) 1886 hdr->b_flags |= ARC_PREFETCH; 1887 else 1888 add_reference(hdr, hash_lock, private); 1889 buf = kmem_cache_alloc(buf_cache, KM_SLEEP); 1890 buf->b_hdr = hdr; 1891 buf->b_data = NULL; 1892 buf->b_efunc = NULL; 1893 buf->b_private = NULL; 1894 buf->b_next = NULL; 1895 hdr->b_buf = buf; 1896 arc_get_data_buf(buf); 1897 ASSERT(hdr->b_datacnt == 0); 1898 hdr->b_datacnt = 1; 1899 1900 } 1901 1902 acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP); 1903 acb->acb_done = done; 1904 acb->acb_private = private; 1905 acb->acb_byteswap = swap; 1906 1907 ASSERT(hdr->b_acb == NULL); 1908 hdr->b_acb = acb; 1909 hdr->b_flags |= ARC_IO_IN_PROGRESS; 1910 1911 /* 1912 * If the buffer has been evicted, migrate it to a present state 1913 * before issuing the I/O. Once we drop the hash-table lock, 1914 * the header will be marked as I/O in progress and have an 1915 * attached buffer. At this point, anybody who finds this 1916 * buffer ought to notice that it's legit but has a pending I/O. 1917 */ 1918 1919 if (GHOST_STATE(hdr->b_state)) 1920 arc_access(hdr, hash_lock); 1921 mutex_exit(hash_lock); 1922 1923 ASSERT3U(hdr->b_size, ==, size); 1924 DTRACE_PROBE3(arc__miss, blkptr_t *, bp, uint64_t, size, 1925 zbookmark_t *, zb); 1926 atomic_add_64(&arc.misses, 1); 1927 1928 rzio = zio_read(pio, spa, bp, buf->b_data, size, 1929 arc_read_done, buf, priority, flags, zb); 1930 1931 if (*arc_flags & ARC_WAIT) 1932 return (zio_wait(rzio)); 1933 1934 ASSERT(*arc_flags & ARC_NOWAIT); 1935 zio_nowait(rzio); 1936 } 1937 return (0); 1938 } 1939 1940 /* 1941 * arc_read() variant to support pool traversal. If the block is already 1942 * in the ARC, make a copy of it; otherwise, the caller will do the I/O. 1943 * The idea is that we don't want pool traversal filling up memory, but 1944 * if the ARC already has the data anyway, we shouldn't pay for the I/O. 1945 */ 1946 int 1947 arc_tryread(spa_t *spa, blkptr_t *bp, void *data) 1948 { 1949 arc_buf_hdr_t *hdr; 1950 kmutex_t *hash_mtx; 1951 int rc = 0; 1952 1953 hdr = buf_hash_find(spa, BP_IDENTITY(bp), bp->blk_birth, &hash_mtx); 1954 1955 if (hdr && hdr->b_datacnt > 0 && !HDR_IO_IN_PROGRESS(hdr)) { 1956 arc_buf_t *buf = hdr->b_buf; 1957 1958 ASSERT(buf); 1959 while (buf->b_data == NULL) { 1960 buf = buf->b_next; 1961 ASSERT(buf); 1962 } 1963 bcopy(buf->b_data, data, hdr->b_size); 1964 } else { 1965 rc = ENOENT; 1966 } 1967 1968 if (hash_mtx) 1969 mutex_exit(hash_mtx); 1970 1971 return (rc); 1972 } 1973 1974 void 1975 arc_set_callback(arc_buf_t *buf, arc_evict_func_t *func, void *private) 1976 { 1977 ASSERT(buf->b_hdr != NULL); 1978 ASSERT(buf->b_hdr->b_state != arc.anon); 1979 ASSERT(!refcount_is_zero(&buf->b_hdr->b_refcnt) || func == NULL); 1980 buf->b_efunc = func; 1981 buf->b_private = private; 1982 } 1983 1984 /* 1985 * This is used by the DMU to let the ARC know that a buffer is 1986 * being evicted, so the ARC should clean up. If this arc buf 1987 * is not yet in the evicted state, it will be put there. 1988 */ 1989 int 1990 arc_buf_evict(arc_buf_t *buf) 1991 { 1992 arc_buf_hdr_t *hdr = buf->b_hdr; 1993 kmutex_t *hash_lock; 1994 arc_buf_t **bufp; 1995 1996 if (hdr == NULL) { 1997 /* 1998 * We are in arc_do_user_evicts(). 1999 */ 2000 ASSERT(buf->b_data == NULL); 2001 return (0); 2002 } 2003 2004 hash_lock = HDR_LOCK(hdr); 2005 mutex_enter(hash_lock); 2006 2007 if (buf->b_data == NULL) { 2008 /* 2009 * We are on the eviction list. 2010 */ 2011 mutex_exit(hash_lock); 2012 mutex_enter(&arc_eviction_mtx); 2013 if (buf->b_hdr == NULL) { 2014 /* 2015 * We are already in arc_do_user_evicts(). 2016 */ 2017 mutex_exit(&arc_eviction_mtx); 2018 return (0); 2019 } else { 2020 arc_buf_t copy = *buf; /* structure assignment */ 2021 /* 2022 * Process this buffer now 2023 * but let arc_do_user_evicts() do the reaping. 2024 */ 2025 buf->b_efunc = NULL; 2026 mutex_exit(&arc_eviction_mtx); 2027 VERIFY(copy.b_efunc(©) == 0); 2028 return (1); 2029 } 2030 } 2031 2032 ASSERT(buf->b_hdr == hdr); 2033 ASSERT3U(refcount_count(&hdr->b_refcnt), <, hdr->b_datacnt); 2034 ASSERT(hdr->b_state == arc.mru || hdr->b_state == arc.mfu); 2035 2036 /* 2037 * Pull this buffer off of the hdr 2038 */ 2039 bufp = &hdr->b_buf; 2040 while (*bufp != buf) 2041 bufp = &(*bufp)->b_next; 2042 *bufp = buf->b_next; 2043 2044 ASSERT(buf->b_data != NULL); 2045 buf->b_hdr = hdr; 2046 arc_buf_destroy(buf, FALSE, FALSE); 2047 2048 if (hdr->b_datacnt == 0) { 2049 arc_state_t *old_state = hdr->b_state; 2050 arc_state_t *evicted_state; 2051 2052 ASSERT(refcount_is_zero(&hdr->b_refcnt)); 2053 2054 evicted_state = 2055 (old_state == arc.mru) ? arc.mru_ghost : arc.mfu_ghost; 2056 2057 mutex_enter(&old_state->mtx); 2058 mutex_enter(&evicted_state->mtx); 2059 2060 arc_change_state(evicted_state, hdr, hash_lock); 2061 ASSERT(HDR_IN_HASH_TABLE(hdr)); 2062 hdr->b_flags = ARC_IN_HASH_TABLE; 2063 2064 mutex_exit(&evicted_state->mtx); 2065 mutex_exit(&old_state->mtx); 2066 } 2067 mutex_exit(hash_lock); 2068 2069 VERIFY(buf->b_efunc(buf) == 0); 2070 buf->b_efunc = NULL; 2071 buf->b_private = NULL; 2072 buf->b_hdr = NULL; 2073 kmem_cache_free(buf_cache, buf); 2074 return (1); 2075 } 2076 2077 /* 2078 * Release this buffer from the cache. This must be done 2079 * after a read and prior to modifying the buffer contents. 2080 * If the buffer has more than one reference, we must make 2081 * make a new hdr for the buffer. 2082 */ 2083 void 2084 arc_release(arc_buf_t *buf, void *tag) 2085 { 2086 arc_buf_hdr_t *hdr = buf->b_hdr; 2087 kmutex_t *hash_lock = HDR_LOCK(hdr); 2088 2089 /* this buffer is not on any list */ 2090 ASSERT(refcount_count(&hdr->b_refcnt) > 0); 2091 2092 if (hdr->b_state == arc.anon) { 2093 /* this buffer is already released */ 2094 ASSERT3U(refcount_count(&hdr->b_refcnt), ==, 1); 2095 ASSERT(BUF_EMPTY(hdr)); 2096 ASSERT(buf->b_efunc == NULL); 2097 return; 2098 } 2099 2100 mutex_enter(hash_lock); 2101 2102 /* 2103 * Do we have more than one buf? 2104 */ 2105 if (hdr->b_buf != buf || buf->b_next != NULL) { 2106 arc_buf_hdr_t *nhdr; 2107 arc_buf_t **bufp; 2108 uint64_t blksz = hdr->b_size; 2109 spa_t *spa = hdr->b_spa; 2110 2111 ASSERT(hdr->b_datacnt > 1); 2112 /* 2113 * Pull the data off of this buf and attach it to 2114 * a new anonymous buf. 2115 */ 2116 (void) remove_reference(hdr, hash_lock, tag); 2117 bufp = &hdr->b_buf; 2118 while (*bufp != buf) 2119 bufp = &(*bufp)->b_next; 2120 *bufp = (*bufp)->b_next; 2121 2122 ASSERT3U(hdr->b_state->size, >=, hdr->b_size); 2123 atomic_add_64(&hdr->b_state->size, -hdr->b_size); 2124 if (refcount_is_zero(&hdr->b_refcnt)) { 2125 ASSERT3U(hdr->b_state->lsize, >=, hdr->b_size); 2126 atomic_add_64(&hdr->b_state->lsize, -hdr->b_size); 2127 } 2128 hdr->b_datacnt -= 1; 2129 2130 mutex_exit(hash_lock); 2131 2132 nhdr = kmem_cache_alloc(hdr_cache, KM_SLEEP); 2133 nhdr->b_size = blksz; 2134 nhdr->b_spa = spa; 2135 nhdr->b_buf = buf; 2136 nhdr->b_state = arc.anon; 2137 nhdr->b_arc_access = 0; 2138 nhdr->b_flags = 0; 2139 nhdr->b_datacnt = 1; 2140 buf->b_hdr = nhdr; 2141 buf->b_next = NULL; 2142 (void) refcount_add(&nhdr->b_refcnt, tag); 2143 atomic_add_64(&arc.anon->size, blksz); 2144 2145 hdr = nhdr; 2146 } else { 2147 ASSERT(refcount_count(&hdr->b_refcnt) == 1); 2148 ASSERT(!list_link_active(&hdr->b_arc_node)); 2149 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 2150 arc_change_state(arc.anon, hdr, hash_lock); 2151 hdr->b_arc_access = 0; 2152 mutex_exit(hash_lock); 2153 bzero(&hdr->b_dva, sizeof (dva_t)); 2154 hdr->b_birth = 0; 2155 hdr->b_cksum0 = 0; 2156 } 2157 buf->b_efunc = NULL; 2158 buf->b_private = NULL; 2159 } 2160 2161 int 2162 arc_released(arc_buf_t *buf) 2163 { 2164 return (buf->b_data != NULL && buf->b_hdr->b_state == arc.anon); 2165 } 2166 2167 int 2168 arc_has_callback(arc_buf_t *buf) 2169 { 2170 return (buf->b_efunc != NULL); 2171 } 2172 2173 #ifdef ZFS_DEBUG 2174 int 2175 arc_referenced(arc_buf_t *buf) 2176 { 2177 return (refcount_count(&buf->b_hdr->b_refcnt)); 2178 } 2179 #endif 2180 2181 static void 2182 arc_write_done(zio_t *zio) 2183 { 2184 arc_buf_t *buf; 2185 arc_buf_hdr_t *hdr; 2186 arc_callback_t *acb; 2187 2188 buf = zio->io_private; 2189 hdr = buf->b_hdr; 2190 acb = hdr->b_acb; 2191 hdr->b_acb = NULL; 2192 ASSERT(acb != NULL); 2193 2194 /* this buffer is on no lists and is not in the hash table */ 2195 ASSERT3P(hdr->b_state, ==, arc.anon); 2196 2197 hdr->b_dva = *BP_IDENTITY(zio->io_bp); 2198 hdr->b_birth = zio->io_bp->blk_birth; 2199 hdr->b_cksum0 = zio->io_bp->blk_cksum.zc_word[0]; 2200 /* 2201 * If the block to be written was all-zero, we may have 2202 * compressed it away. In this case no write was performed 2203 * so there will be no dva/birth-date/checksum. The buffer 2204 * must therefor remain anonymous (and uncached). 2205 */ 2206 if (!BUF_EMPTY(hdr)) { 2207 arc_buf_hdr_t *exists; 2208 kmutex_t *hash_lock; 2209 2210 exists = buf_hash_insert(hdr, &hash_lock); 2211 if (exists) { 2212 /* 2213 * This can only happen if we overwrite for 2214 * sync-to-convergence, because we remove 2215 * buffers from the hash table when we arc_free(). 2216 */ 2217 ASSERT(DVA_EQUAL(BP_IDENTITY(&zio->io_bp_orig), 2218 BP_IDENTITY(zio->io_bp))); 2219 ASSERT3U(zio->io_bp_orig.blk_birth, ==, 2220 zio->io_bp->blk_birth); 2221 2222 ASSERT(refcount_is_zero(&exists->b_refcnt)); 2223 arc_change_state(arc.anon, exists, hash_lock); 2224 mutex_exit(hash_lock); 2225 arc_hdr_destroy(exists); 2226 exists = buf_hash_insert(hdr, &hash_lock); 2227 ASSERT3P(exists, ==, NULL); 2228 } 2229 hdr->b_flags &= ~ARC_IO_IN_PROGRESS; 2230 arc_access(hdr, hash_lock); 2231 mutex_exit(hash_lock); 2232 } else if (acb->acb_done == NULL) { 2233 int destroy_hdr; 2234 /* 2235 * This is an anonymous buffer with no user callback, 2236 * destroy it if there are no active references. 2237 */ 2238 mutex_enter(&arc_eviction_mtx); 2239 destroy_hdr = refcount_is_zero(&hdr->b_refcnt); 2240 hdr->b_flags &= ~ARC_IO_IN_PROGRESS; 2241 mutex_exit(&arc_eviction_mtx); 2242 if (destroy_hdr) 2243 arc_hdr_destroy(hdr); 2244 } else { 2245 hdr->b_flags &= ~ARC_IO_IN_PROGRESS; 2246 } 2247 2248 if (acb->acb_done) { 2249 ASSERT(!refcount_is_zero(&hdr->b_refcnt)); 2250 acb->acb_done(zio, buf, acb->acb_private); 2251 } 2252 2253 kmem_free(acb, sizeof (arc_callback_t)); 2254 } 2255 2256 int 2257 arc_write(zio_t *pio, spa_t *spa, int checksum, int compress, int ncopies, 2258 uint64_t txg, blkptr_t *bp, arc_buf_t *buf, 2259 arc_done_func_t *done, void *private, int priority, int flags, 2260 uint32_t arc_flags, zbookmark_t *zb) 2261 { 2262 arc_buf_hdr_t *hdr = buf->b_hdr; 2263 arc_callback_t *acb; 2264 zio_t *rzio; 2265 2266 /* this is a private buffer - no locking required */ 2267 ASSERT3P(hdr->b_state, ==, arc.anon); 2268 ASSERT(BUF_EMPTY(hdr)); 2269 ASSERT(!HDR_IO_ERROR(hdr)); 2270 ASSERT((hdr->b_flags & ARC_IO_IN_PROGRESS) == 0); 2271 ASSERT(hdr->b_acb == 0); 2272 acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP); 2273 acb->acb_done = done; 2274 acb->acb_private = private; 2275 acb->acb_byteswap = (arc_byteswap_func_t *)-1; 2276 hdr->b_acb = acb; 2277 hdr->b_flags |= ARC_IO_IN_PROGRESS; 2278 rzio = zio_write(pio, spa, checksum, compress, ncopies, txg, bp, 2279 buf->b_data, hdr->b_size, arc_write_done, buf, priority, flags, zb); 2280 2281 if (arc_flags & ARC_WAIT) 2282 return (zio_wait(rzio)); 2283 2284 ASSERT(arc_flags & ARC_NOWAIT); 2285 zio_nowait(rzio); 2286 2287 return (0); 2288 } 2289 2290 int 2291 arc_free(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, 2292 zio_done_func_t *done, void *private, uint32_t arc_flags) 2293 { 2294 arc_buf_hdr_t *ab; 2295 kmutex_t *hash_lock; 2296 zio_t *zio; 2297 2298 /* 2299 * If this buffer is in the cache, release it, so it 2300 * can be re-used. 2301 */ 2302 ab = buf_hash_find(spa, BP_IDENTITY(bp), bp->blk_birth, &hash_lock); 2303 if (ab != NULL) { 2304 /* 2305 * The checksum of blocks to free is not always 2306 * preserved (eg. on the deadlist). However, if it is 2307 * nonzero, it should match what we have in the cache. 2308 */ 2309 ASSERT(bp->blk_cksum.zc_word[0] == 0 || 2310 ab->b_cksum0 == bp->blk_cksum.zc_word[0]); 2311 if (ab->b_state != arc.anon) 2312 arc_change_state(arc.anon, ab, hash_lock); 2313 if (HDR_IO_IN_PROGRESS(ab)) { 2314 /* 2315 * This should only happen when we prefetch. 2316 */ 2317 ASSERT(ab->b_flags & ARC_PREFETCH); 2318 ASSERT3U(ab->b_datacnt, ==, 1); 2319 ab->b_flags |= ARC_FREED_IN_READ; 2320 if (HDR_IN_HASH_TABLE(ab)) 2321 buf_hash_remove(ab); 2322 ab->b_arc_access = 0; 2323 bzero(&ab->b_dva, sizeof (dva_t)); 2324 ab->b_birth = 0; 2325 ab->b_cksum0 = 0; 2326 ab->b_buf->b_efunc = NULL; 2327 ab->b_buf->b_private = NULL; 2328 mutex_exit(hash_lock); 2329 } else if (refcount_is_zero(&ab->b_refcnt)) { 2330 mutex_exit(hash_lock); 2331 arc_hdr_destroy(ab); 2332 atomic_add_64(&arc.deleted, 1); 2333 } else { 2334 /* 2335 * We still have an active reference on this 2336 * buffer. This can happen, e.g., from 2337 * dbuf_unoverride(). 2338 */ 2339 ASSERT(!HDR_IN_HASH_TABLE(ab)); 2340 ab->b_arc_access = 0; 2341 bzero(&ab->b_dva, sizeof (dva_t)); 2342 ab->b_birth = 0; 2343 ab->b_cksum0 = 0; 2344 ab->b_buf->b_efunc = NULL; 2345 ab->b_buf->b_private = NULL; 2346 mutex_exit(hash_lock); 2347 } 2348 } 2349 2350 zio = zio_free(pio, spa, txg, bp, done, private); 2351 2352 if (arc_flags & ARC_WAIT) 2353 return (zio_wait(zio)); 2354 2355 ASSERT(arc_flags & ARC_NOWAIT); 2356 zio_nowait(zio); 2357 2358 return (0); 2359 } 2360 2361 void 2362 arc_tempreserve_clear(uint64_t tempreserve) 2363 { 2364 atomic_add_64(&arc_tempreserve, -tempreserve); 2365 ASSERT((int64_t)arc_tempreserve >= 0); 2366 } 2367 2368 int 2369 arc_tempreserve_space(uint64_t tempreserve) 2370 { 2371 #ifdef ZFS_DEBUG 2372 /* 2373 * Once in a while, fail for no reason. Everything should cope. 2374 */ 2375 if (spa_get_random(10000) == 0) { 2376 dprintf("forcing random failure\n"); 2377 return (ERESTART); 2378 } 2379 #endif 2380 if (tempreserve > arc.c/4 && !arc.no_grow) 2381 arc.c = MIN(arc.c_max, tempreserve * 4); 2382 if (tempreserve > arc.c) 2383 return (ENOMEM); 2384 2385 /* 2386 * Throttle writes when the amount of dirty data in the cache 2387 * gets too large. We try to keep the cache less than half full 2388 * of dirty blocks so that our sync times don't grow too large. 2389 * Note: if two requests come in concurrently, we might let them 2390 * both succeed, when one of them should fail. Not a huge deal. 2391 * 2392 * XXX The limit should be adjusted dynamically to keep the time 2393 * to sync a dataset fixed (around 1-5 seconds?). 2394 */ 2395 2396 if (tempreserve + arc_tempreserve + arc.anon->size > arc.c / 2 && 2397 arc_tempreserve + arc.anon->size > arc.c / 4) { 2398 dprintf("failing, arc_tempreserve=%lluK anon=%lluK " 2399 "tempreserve=%lluK arc.c=%lluK\n", 2400 arc_tempreserve>>10, arc.anon->lsize>>10, 2401 tempreserve>>10, arc.c>>10); 2402 return (ERESTART); 2403 } 2404 atomic_add_64(&arc_tempreserve, tempreserve); 2405 return (0); 2406 } 2407 2408 void 2409 arc_init(void) 2410 { 2411 mutex_init(&arc_reclaim_lock, NULL, MUTEX_DEFAULT, NULL); 2412 mutex_init(&arc_reclaim_thr_lock, NULL, MUTEX_DEFAULT, NULL); 2413 cv_init(&arc_reclaim_thr_cv, NULL, CV_DEFAULT, NULL); 2414 2415 /* Convert seconds to clock ticks */ 2416 arc_min_prefetch_lifespan = 1 * hz; 2417 2418 /* Start out with 1/8 of all memory */ 2419 arc.c = physmem * PAGESIZE / 8; 2420 2421 #ifdef _KERNEL 2422 /* 2423 * On architectures where the physical memory can be larger 2424 * than the addressable space (intel in 32-bit mode), we may 2425 * need to limit the cache to 1/8 of VM size. 2426 */ 2427 arc.c = MIN(arc.c, vmem_size(heap_arena, VMEM_ALLOC | VMEM_FREE) / 8); 2428 #endif 2429 2430 /* set min cache to 1/32 of all memory, or 64MB, whichever is more */ 2431 arc.c_min = MAX(arc.c / 4, 64<<20); 2432 /* set max to 3/4 of all memory, or all but 1GB, whichever is more */ 2433 if (arc.c * 8 >= 1<<30) 2434 arc.c_max = (arc.c * 8) - (1<<30); 2435 else 2436 arc.c_max = arc.c_min; 2437 arc.c_max = MAX(arc.c * 6, arc.c_max); 2438 2439 /* 2440 * Allow the tunables to override our calculations if they are 2441 * reasonable (ie. over 64MB) 2442 */ 2443 if (zfs_arc_max > 64<<20 && zfs_arc_max < physmem * PAGESIZE) 2444 arc.c_max = zfs_arc_max; 2445 if (zfs_arc_min > 64<<20 && zfs_arc_min <= arc.c_max) 2446 arc.c_min = zfs_arc_min; 2447 2448 arc.c = arc.c_max; 2449 arc.p = (arc.c >> 1); 2450 2451 /* if kmem_flags are set, lets try to use less memory */ 2452 if (kmem_debugging()) 2453 arc.c = arc.c / 2; 2454 if (arc.c < arc.c_min) 2455 arc.c = arc.c_min; 2456 2457 arc.anon = &ARC_anon; 2458 arc.mru = &ARC_mru; 2459 arc.mru_ghost = &ARC_mru_ghost; 2460 arc.mfu = &ARC_mfu; 2461 arc.mfu_ghost = &ARC_mfu_ghost; 2462 arc.size = 0; 2463 2464 arc.hits = 0; 2465 arc.recycle_miss = 0; 2466 arc.evict_skip = 0; 2467 arc.mutex_miss = 0; 2468 2469 mutex_init(&arc.anon->mtx, NULL, MUTEX_DEFAULT, NULL); 2470 mutex_init(&arc.mru->mtx, NULL, MUTEX_DEFAULT, NULL); 2471 mutex_init(&arc.mru_ghost->mtx, NULL, MUTEX_DEFAULT, NULL); 2472 mutex_init(&arc.mfu->mtx, NULL, MUTEX_DEFAULT, NULL); 2473 mutex_init(&arc.mfu_ghost->mtx, NULL, MUTEX_DEFAULT, NULL); 2474 2475 list_create(&arc.mru->list, sizeof (arc_buf_hdr_t), 2476 offsetof(arc_buf_hdr_t, b_arc_node)); 2477 list_create(&arc.mru_ghost->list, sizeof (arc_buf_hdr_t), 2478 offsetof(arc_buf_hdr_t, b_arc_node)); 2479 list_create(&arc.mfu->list, sizeof (arc_buf_hdr_t), 2480 offsetof(arc_buf_hdr_t, b_arc_node)); 2481 list_create(&arc.mfu_ghost->list, sizeof (arc_buf_hdr_t), 2482 offsetof(arc_buf_hdr_t, b_arc_node)); 2483 2484 buf_init(); 2485 2486 arc_thread_exit = 0; 2487 arc_eviction_list = NULL; 2488 mutex_init(&arc_eviction_mtx, NULL, MUTEX_DEFAULT, NULL); 2489 2490 (void) thread_create(NULL, 0, arc_reclaim_thread, NULL, 0, &p0, 2491 TS_RUN, minclsyspri); 2492 } 2493 2494 void 2495 arc_fini(void) 2496 { 2497 mutex_enter(&arc_reclaim_thr_lock); 2498 arc_thread_exit = 1; 2499 while (arc_thread_exit != 0) 2500 cv_wait(&arc_reclaim_thr_cv, &arc_reclaim_thr_lock); 2501 mutex_exit(&arc_reclaim_thr_lock); 2502 2503 arc_flush(); 2504 2505 arc_dead = TRUE; 2506 2507 mutex_destroy(&arc_eviction_mtx); 2508 mutex_destroy(&arc_reclaim_lock); 2509 mutex_destroy(&arc_reclaim_thr_lock); 2510 cv_destroy(&arc_reclaim_thr_cv); 2511 2512 list_destroy(&arc.mru->list); 2513 list_destroy(&arc.mru_ghost->list); 2514 list_destroy(&arc.mfu->list); 2515 list_destroy(&arc.mfu_ghost->list); 2516 2517 mutex_destroy(&arc.anon->mtx); 2518 mutex_destroy(&arc.mru->mtx); 2519 mutex_destroy(&arc.mru_ghost->mtx); 2520 mutex_destroy(&arc.mfu->mtx); 2521 mutex_destroy(&arc.mfu_ghost->mtx); 2522 2523 buf_fini(); 2524 } 2525