xref: /titanic_44/usr/src/uts/common/fs/zfs/arc.c (revision 8ce3a03883b8748c139aa8c412b64dcc7aaee1a1)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2012, Joyent, Inc. All rights reserved.
24  * Copyright (c) 2013 by Delphix. All rights reserved.
25  * Copyright (c) 2014 by Saso Kiselkov. All rights reserved.
26  * Copyright 2013 Nexenta Systems, Inc.  All rights reserved.
27  */
28 
29 /*
30  * DVA-based Adjustable Replacement Cache
31  *
32  * While much of the theory of operation used here is
33  * based on the self-tuning, low overhead replacement cache
34  * presented by Megiddo and Modha at FAST 2003, there are some
35  * significant differences:
36  *
37  * 1. The Megiddo and Modha model assumes any page is evictable.
38  * Pages in its cache cannot be "locked" into memory.  This makes
39  * the eviction algorithm simple: evict the last page in the list.
40  * This also make the performance characteristics easy to reason
41  * about.  Our cache is not so simple.  At any given moment, some
42  * subset of the blocks in the cache are un-evictable because we
43  * have handed out a reference to them.  Blocks are only evictable
44  * when there are no external references active.  This makes
45  * eviction far more problematic:  we choose to evict the evictable
46  * blocks that are the "lowest" in the list.
47  *
48  * There are times when it is not possible to evict the requested
49  * space.  In these circumstances we are unable to adjust the cache
50  * size.  To prevent the cache growing unbounded at these times we
51  * implement a "cache throttle" that slows the flow of new data
52  * into the cache until we can make space available.
53  *
54  * 2. The Megiddo and Modha model assumes a fixed cache size.
55  * Pages are evicted when the cache is full and there is a cache
56  * miss.  Our model has a variable sized cache.  It grows with
57  * high use, but also tries to react to memory pressure from the
58  * operating system: decreasing its size when system memory is
59  * tight.
60  *
61  * 3. The Megiddo and Modha model assumes a fixed page size. All
62  * elements of the cache are therefore exactly the same size.  So
63  * when adjusting the cache size following a cache miss, its simply
64  * a matter of choosing a single page to evict.  In our model, we
65  * have variable sized cache blocks (rangeing from 512 bytes to
66  * 128K bytes).  We therefore choose a set of blocks to evict to make
67  * space for a cache miss that approximates as closely as possible
68  * the space used by the new block.
69  *
70  * See also:  "ARC: A Self-Tuning, Low Overhead Replacement Cache"
71  * by N. Megiddo & D. Modha, FAST 2003
72  */
73 
74 /*
75  * The locking model:
76  *
77  * A new reference to a cache buffer can be obtained in two
78  * ways: 1) via a hash table lookup using the DVA as a key,
79  * or 2) via one of the ARC lists.  The arc_read() interface
80  * uses method 1, while the internal arc algorithms for
81  * adjusting the cache use method 2.  We therefore provide two
82  * types of locks: 1) the hash table lock array, and 2) the
83  * arc list locks.
84  *
85  * Buffers do not have their own mutexes, rather they rely on the
86  * hash table mutexes for the bulk of their protection (i.e. most
87  * fields in the arc_buf_hdr_t are protected by these mutexes).
88  *
89  * buf_hash_find() returns the appropriate mutex (held) when it
90  * locates the requested buffer in the hash table.  It returns
91  * NULL for the mutex if the buffer was not in the table.
92  *
93  * buf_hash_remove() expects the appropriate hash mutex to be
94  * already held before it is invoked.
95  *
96  * Each arc state also has a mutex which is used to protect the
97  * buffer list associated with the state.  When attempting to
98  * obtain a hash table lock while holding an arc list lock you
99  * must use: mutex_tryenter() to avoid deadlock.  Also note that
100  * the active state mutex must be held before the ghost state mutex.
101  *
102  * Arc buffers may have an associated eviction callback function.
103  * This function will be invoked prior to removing the buffer (e.g.
104  * in arc_do_user_evicts()).  Note however that the data associated
105  * with the buffer may be evicted prior to the callback.  The callback
106  * must be made with *no locks held* (to prevent deadlock).  Additionally,
107  * the users of callbacks must ensure that their private data is
108  * protected from simultaneous callbacks from arc_buf_evict()
109  * and arc_do_user_evicts().
110  *
111  * Note that the majority of the performance stats are manipulated
112  * with atomic operations.
113  *
114  * The L2ARC uses the l2arc_buflist_mtx global mutex for the following:
115  *
116  *	- L2ARC buflist creation
117  *	- L2ARC buflist eviction
118  *	- L2ARC write completion, which walks L2ARC buflists
119  *	- ARC header destruction, as it removes from L2ARC buflists
120  *	- ARC header release, as it removes from L2ARC buflists
121  */
122 
123 #include <sys/spa.h>
124 #include <sys/zio.h>
125 #include <sys/zio_compress.h>
126 #include <sys/zfs_context.h>
127 #include <sys/arc.h>
128 #include <sys/refcount.h>
129 #include <sys/vdev.h>
130 #include <sys/vdev_impl.h>
131 #include <sys/dsl_pool.h>
132 #ifdef _KERNEL
133 #include <sys/vmsystm.h>
134 #include <vm/anon.h>
135 #include <sys/fs/swapnode.h>
136 #include <sys/dnlc.h>
137 #endif
138 #include <sys/callb.h>
139 #include <sys/kstat.h>
140 #include <zfs_fletcher.h>
141 
142 #ifndef _KERNEL
143 /* set with ZFS_DEBUG=watch, to enable watchpoints on frozen buffers */
144 boolean_t arc_watch = B_FALSE;
145 int arc_procfd;
146 #endif
147 
148 static kmutex_t		arc_reclaim_thr_lock;
149 static kcondvar_t	arc_reclaim_thr_cv;	/* used to signal reclaim thr */
150 static uint8_t		arc_thread_exit;
151 
152 #define	ARC_REDUCE_DNLC_PERCENT	3
153 uint_t arc_reduce_dnlc_percent = ARC_REDUCE_DNLC_PERCENT;
154 
155 typedef enum arc_reclaim_strategy {
156 	ARC_RECLAIM_AGGR,		/* Aggressive reclaim strategy */
157 	ARC_RECLAIM_CONS		/* Conservative reclaim strategy */
158 } arc_reclaim_strategy_t;
159 
160 /*
161  * The number of iterations through arc_evict_*() before we
162  * drop & reacquire the lock.
163  */
164 int arc_evict_iterations = 100;
165 
166 /* number of seconds before growing cache again */
167 static int		arc_grow_retry = 60;
168 
169 /* shift of arc_c for calculating both min and max arc_p */
170 static int		arc_p_min_shift = 4;
171 
172 /* log2(fraction of arc to reclaim) */
173 static int		arc_shrink_shift = 5;
174 
175 /*
176  * minimum lifespan of a prefetch block in clock ticks
177  * (initialized in arc_init())
178  */
179 static int		arc_min_prefetch_lifespan;
180 
181 /*
182  * If this percent of memory is free, don't throttle.
183  */
184 int arc_lotsfree_percent = 10;
185 
186 static int arc_dead;
187 
188 /*
189  * The arc has filled available memory and has now warmed up.
190  */
191 static boolean_t arc_warm;
192 
193 /*
194  * These tunables are for performance analysis.
195  */
196 uint64_t zfs_arc_max;
197 uint64_t zfs_arc_min;
198 uint64_t zfs_arc_meta_limit = 0;
199 int zfs_arc_grow_retry = 0;
200 int zfs_arc_shrink_shift = 0;
201 int zfs_arc_p_min_shift = 0;
202 int zfs_disable_dup_eviction = 0;
203 
204 /*
205  * Note that buffers can be in one of 6 states:
206  *	ARC_anon	- anonymous (discussed below)
207  *	ARC_mru		- recently used, currently cached
208  *	ARC_mru_ghost	- recentely used, no longer in cache
209  *	ARC_mfu		- frequently used, currently cached
210  *	ARC_mfu_ghost	- frequently used, no longer in cache
211  *	ARC_l2c_only	- exists in L2ARC but not other states
212  * When there are no active references to the buffer, they are
213  * are linked onto a list in one of these arc states.  These are
214  * the only buffers that can be evicted or deleted.  Within each
215  * state there are multiple lists, one for meta-data and one for
216  * non-meta-data.  Meta-data (indirect blocks, blocks of dnodes,
217  * etc.) is tracked separately so that it can be managed more
218  * explicitly: favored over data, limited explicitly.
219  *
220  * Anonymous buffers are buffers that are not associated with
221  * a DVA.  These are buffers that hold dirty block copies
222  * before they are written to stable storage.  By definition,
223  * they are "ref'd" and are considered part of arc_mru
224  * that cannot be freed.  Generally, they will aquire a DVA
225  * as they are written and migrate onto the arc_mru list.
226  *
227  * The ARC_l2c_only state is for buffers that are in the second
228  * level ARC but no longer in any of the ARC_m* lists.  The second
229  * level ARC itself may also contain buffers that are in any of
230  * the ARC_m* states - meaning that a buffer can exist in two
231  * places.  The reason for the ARC_l2c_only state is to keep the
232  * buffer header in the hash table, so that reads that hit the
233  * second level ARC benefit from these fast lookups.
234  */
235 
236 typedef struct arc_state {
237 	list_t	arcs_list[ARC_BUFC_NUMTYPES];	/* list of evictable buffers */
238 	uint64_t arcs_lsize[ARC_BUFC_NUMTYPES];	/* amount of evictable data */
239 	uint64_t arcs_size;	/* total amount of data in this state */
240 	kmutex_t arcs_mtx;
241 } arc_state_t;
242 
243 /* The 6 states: */
244 static arc_state_t ARC_anon;
245 static arc_state_t ARC_mru;
246 static arc_state_t ARC_mru_ghost;
247 static arc_state_t ARC_mfu;
248 static arc_state_t ARC_mfu_ghost;
249 static arc_state_t ARC_l2c_only;
250 
251 typedef struct arc_stats {
252 	kstat_named_t arcstat_hits;
253 	kstat_named_t arcstat_misses;
254 	kstat_named_t arcstat_demand_data_hits;
255 	kstat_named_t arcstat_demand_data_misses;
256 	kstat_named_t arcstat_demand_metadata_hits;
257 	kstat_named_t arcstat_demand_metadata_misses;
258 	kstat_named_t arcstat_prefetch_data_hits;
259 	kstat_named_t arcstat_prefetch_data_misses;
260 	kstat_named_t arcstat_prefetch_metadata_hits;
261 	kstat_named_t arcstat_prefetch_metadata_misses;
262 	kstat_named_t arcstat_mru_hits;
263 	kstat_named_t arcstat_mru_ghost_hits;
264 	kstat_named_t arcstat_mfu_hits;
265 	kstat_named_t arcstat_mfu_ghost_hits;
266 	kstat_named_t arcstat_deleted;
267 	kstat_named_t arcstat_recycle_miss;
268 	/*
269 	 * Number of buffers that could not be evicted because the hash lock
270 	 * was held by another thread.  The lock may not necessarily be held
271 	 * by something using the same buffer, since hash locks are shared
272 	 * by multiple buffers.
273 	 */
274 	kstat_named_t arcstat_mutex_miss;
275 	/*
276 	 * Number of buffers skipped because they have I/O in progress, are
277 	 * indrect prefetch buffers that have not lived long enough, or are
278 	 * not from the spa we're trying to evict from.
279 	 */
280 	kstat_named_t arcstat_evict_skip;
281 	kstat_named_t arcstat_evict_l2_cached;
282 	kstat_named_t arcstat_evict_l2_eligible;
283 	kstat_named_t arcstat_evict_l2_ineligible;
284 	kstat_named_t arcstat_hash_elements;
285 	kstat_named_t arcstat_hash_elements_max;
286 	kstat_named_t arcstat_hash_collisions;
287 	kstat_named_t arcstat_hash_chains;
288 	kstat_named_t arcstat_hash_chain_max;
289 	kstat_named_t arcstat_p;
290 	kstat_named_t arcstat_c;
291 	kstat_named_t arcstat_c_min;
292 	kstat_named_t arcstat_c_max;
293 	kstat_named_t arcstat_size;
294 	kstat_named_t arcstat_hdr_size;
295 	kstat_named_t arcstat_data_size;
296 	kstat_named_t arcstat_other_size;
297 	kstat_named_t arcstat_l2_hits;
298 	kstat_named_t arcstat_l2_misses;
299 	kstat_named_t arcstat_l2_feeds;
300 	kstat_named_t arcstat_l2_rw_clash;
301 	kstat_named_t arcstat_l2_read_bytes;
302 	kstat_named_t arcstat_l2_write_bytes;
303 	kstat_named_t arcstat_l2_writes_sent;
304 	kstat_named_t arcstat_l2_writes_done;
305 	kstat_named_t arcstat_l2_writes_error;
306 	kstat_named_t arcstat_l2_writes_hdr_miss;
307 	kstat_named_t arcstat_l2_evict_lock_retry;
308 	kstat_named_t arcstat_l2_evict_reading;
309 	kstat_named_t arcstat_l2_free_on_write;
310 	kstat_named_t arcstat_l2_abort_lowmem;
311 	kstat_named_t arcstat_l2_cksum_bad;
312 	kstat_named_t arcstat_l2_io_error;
313 	kstat_named_t arcstat_l2_size;
314 	kstat_named_t arcstat_l2_asize;
315 	kstat_named_t arcstat_l2_hdr_size;
316 	kstat_named_t arcstat_l2_compress_successes;
317 	kstat_named_t arcstat_l2_compress_zeros;
318 	kstat_named_t arcstat_l2_compress_failures;
319 	kstat_named_t arcstat_memory_throttle_count;
320 	kstat_named_t arcstat_duplicate_buffers;
321 	kstat_named_t arcstat_duplicate_buffers_size;
322 	kstat_named_t arcstat_duplicate_reads;
323 	kstat_named_t arcstat_meta_used;
324 	kstat_named_t arcstat_meta_limit;
325 	kstat_named_t arcstat_meta_max;
326 } arc_stats_t;
327 
328 static arc_stats_t arc_stats = {
329 	{ "hits",			KSTAT_DATA_UINT64 },
330 	{ "misses",			KSTAT_DATA_UINT64 },
331 	{ "demand_data_hits",		KSTAT_DATA_UINT64 },
332 	{ "demand_data_misses",		KSTAT_DATA_UINT64 },
333 	{ "demand_metadata_hits",	KSTAT_DATA_UINT64 },
334 	{ "demand_metadata_misses",	KSTAT_DATA_UINT64 },
335 	{ "prefetch_data_hits",		KSTAT_DATA_UINT64 },
336 	{ "prefetch_data_misses",	KSTAT_DATA_UINT64 },
337 	{ "prefetch_metadata_hits",	KSTAT_DATA_UINT64 },
338 	{ "prefetch_metadata_misses",	KSTAT_DATA_UINT64 },
339 	{ "mru_hits",			KSTAT_DATA_UINT64 },
340 	{ "mru_ghost_hits",		KSTAT_DATA_UINT64 },
341 	{ "mfu_hits",			KSTAT_DATA_UINT64 },
342 	{ "mfu_ghost_hits",		KSTAT_DATA_UINT64 },
343 	{ "deleted",			KSTAT_DATA_UINT64 },
344 	{ "recycle_miss",		KSTAT_DATA_UINT64 },
345 	{ "mutex_miss",			KSTAT_DATA_UINT64 },
346 	{ "evict_skip",			KSTAT_DATA_UINT64 },
347 	{ "evict_l2_cached",		KSTAT_DATA_UINT64 },
348 	{ "evict_l2_eligible",		KSTAT_DATA_UINT64 },
349 	{ "evict_l2_ineligible",	KSTAT_DATA_UINT64 },
350 	{ "hash_elements",		KSTAT_DATA_UINT64 },
351 	{ "hash_elements_max",		KSTAT_DATA_UINT64 },
352 	{ "hash_collisions",		KSTAT_DATA_UINT64 },
353 	{ "hash_chains",		KSTAT_DATA_UINT64 },
354 	{ "hash_chain_max",		KSTAT_DATA_UINT64 },
355 	{ "p",				KSTAT_DATA_UINT64 },
356 	{ "c",				KSTAT_DATA_UINT64 },
357 	{ "c_min",			KSTAT_DATA_UINT64 },
358 	{ "c_max",			KSTAT_DATA_UINT64 },
359 	{ "size",			KSTAT_DATA_UINT64 },
360 	{ "hdr_size",			KSTAT_DATA_UINT64 },
361 	{ "data_size",			KSTAT_DATA_UINT64 },
362 	{ "other_size",			KSTAT_DATA_UINT64 },
363 	{ "l2_hits",			KSTAT_DATA_UINT64 },
364 	{ "l2_misses",			KSTAT_DATA_UINT64 },
365 	{ "l2_feeds",			KSTAT_DATA_UINT64 },
366 	{ "l2_rw_clash",		KSTAT_DATA_UINT64 },
367 	{ "l2_read_bytes",		KSTAT_DATA_UINT64 },
368 	{ "l2_write_bytes",		KSTAT_DATA_UINT64 },
369 	{ "l2_writes_sent",		KSTAT_DATA_UINT64 },
370 	{ "l2_writes_done",		KSTAT_DATA_UINT64 },
371 	{ "l2_writes_error",		KSTAT_DATA_UINT64 },
372 	{ "l2_writes_hdr_miss",		KSTAT_DATA_UINT64 },
373 	{ "l2_evict_lock_retry",	KSTAT_DATA_UINT64 },
374 	{ "l2_evict_reading",		KSTAT_DATA_UINT64 },
375 	{ "l2_free_on_write",		KSTAT_DATA_UINT64 },
376 	{ "l2_abort_lowmem",		KSTAT_DATA_UINT64 },
377 	{ "l2_cksum_bad",		KSTAT_DATA_UINT64 },
378 	{ "l2_io_error",		KSTAT_DATA_UINT64 },
379 	{ "l2_size",			KSTAT_DATA_UINT64 },
380 	{ "l2_asize",			KSTAT_DATA_UINT64 },
381 	{ "l2_hdr_size",		KSTAT_DATA_UINT64 },
382 	{ "l2_compress_successes",	KSTAT_DATA_UINT64 },
383 	{ "l2_compress_zeros",		KSTAT_DATA_UINT64 },
384 	{ "l2_compress_failures",	KSTAT_DATA_UINT64 },
385 	{ "memory_throttle_count",	KSTAT_DATA_UINT64 },
386 	{ "duplicate_buffers",		KSTAT_DATA_UINT64 },
387 	{ "duplicate_buffers_size",	KSTAT_DATA_UINT64 },
388 	{ "duplicate_reads",		KSTAT_DATA_UINT64 },
389 	{ "arc_meta_used",		KSTAT_DATA_UINT64 },
390 	{ "arc_meta_limit",		KSTAT_DATA_UINT64 },
391 	{ "arc_meta_max",		KSTAT_DATA_UINT64 }
392 };
393 
394 #define	ARCSTAT(stat)	(arc_stats.stat.value.ui64)
395 
396 #define	ARCSTAT_INCR(stat, val) \
397 	atomic_add_64(&arc_stats.stat.value.ui64, (val))
398 
399 #define	ARCSTAT_BUMP(stat)	ARCSTAT_INCR(stat, 1)
400 #define	ARCSTAT_BUMPDOWN(stat)	ARCSTAT_INCR(stat, -1)
401 
402 #define	ARCSTAT_MAX(stat, val) {					\
403 	uint64_t m;							\
404 	while ((val) > (m = arc_stats.stat.value.ui64) &&		\
405 	    (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val))))	\
406 		continue;						\
407 }
408 
409 #define	ARCSTAT_MAXSTAT(stat) \
410 	ARCSTAT_MAX(stat##_max, arc_stats.stat.value.ui64)
411 
412 /*
413  * We define a macro to allow ARC hits/misses to be easily broken down by
414  * two separate conditions, giving a total of four different subtypes for
415  * each of hits and misses (so eight statistics total).
416  */
417 #define	ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \
418 	if (cond1) {							\
419 		if (cond2) {						\
420 			ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \
421 		} else {						\
422 			ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \
423 		}							\
424 	} else {							\
425 		if (cond2) {						\
426 			ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \
427 		} else {						\
428 			ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\
429 		}							\
430 	}
431 
432 kstat_t			*arc_ksp;
433 static arc_state_t	*arc_anon;
434 static arc_state_t	*arc_mru;
435 static arc_state_t	*arc_mru_ghost;
436 static arc_state_t	*arc_mfu;
437 static arc_state_t	*arc_mfu_ghost;
438 static arc_state_t	*arc_l2c_only;
439 
440 /*
441  * There are several ARC variables that are critical to export as kstats --
442  * but we don't want to have to grovel around in the kstat whenever we wish to
443  * manipulate them.  For these variables, we therefore define them to be in
444  * terms of the statistic variable.  This assures that we are not introducing
445  * the possibility of inconsistency by having shadow copies of the variables,
446  * while still allowing the code to be readable.
447  */
448 #define	arc_size	ARCSTAT(arcstat_size)	/* actual total arc size */
449 #define	arc_p		ARCSTAT(arcstat_p)	/* target size of MRU */
450 #define	arc_c		ARCSTAT(arcstat_c)	/* target size of cache */
451 #define	arc_c_min	ARCSTAT(arcstat_c_min)	/* min target cache size */
452 #define	arc_c_max	ARCSTAT(arcstat_c_max)	/* max target cache size */
453 #define	arc_meta_limit	ARCSTAT(arcstat_meta_limit) /* max size for metadata */
454 #define	arc_meta_used	ARCSTAT(arcstat_meta_used) /* size of metadata */
455 #define	arc_meta_max	ARCSTAT(arcstat_meta_max) /* max size of metadata */
456 
457 #define	L2ARC_IS_VALID_COMPRESS(_c_) \
458 	((_c_) == ZIO_COMPRESS_LZ4 || (_c_) == ZIO_COMPRESS_EMPTY)
459 
460 static int		arc_no_grow;	/* Don't try to grow cache size */
461 static uint64_t		arc_tempreserve;
462 static uint64_t		arc_loaned_bytes;
463 
464 typedef struct l2arc_buf_hdr l2arc_buf_hdr_t;
465 
466 typedef struct arc_callback arc_callback_t;
467 
468 struct arc_callback {
469 	void			*acb_private;
470 	arc_done_func_t		*acb_done;
471 	arc_buf_t		*acb_buf;
472 	zio_t			*acb_zio_dummy;
473 	arc_callback_t		*acb_next;
474 };
475 
476 typedef struct arc_write_callback arc_write_callback_t;
477 
478 struct arc_write_callback {
479 	void		*awcb_private;
480 	arc_done_func_t	*awcb_ready;
481 	arc_done_func_t	*awcb_physdone;
482 	arc_done_func_t	*awcb_done;
483 	arc_buf_t	*awcb_buf;
484 };
485 
486 struct arc_buf_hdr {
487 	/* protected by hash lock */
488 	dva_t			b_dva;
489 	uint64_t		b_birth;
490 	uint64_t		b_cksum0;
491 
492 	kmutex_t		b_freeze_lock;
493 	zio_cksum_t		*b_freeze_cksum;
494 	void			*b_thawed;
495 
496 	arc_buf_hdr_t		*b_hash_next;
497 	arc_buf_t		*b_buf;
498 	uint32_t		b_flags;
499 	uint32_t		b_datacnt;
500 
501 	arc_callback_t		*b_acb;
502 	kcondvar_t		b_cv;
503 
504 	/* immutable */
505 	arc_buf_contents_t	b_type;
506 	uint64_t		b_size;
507 	uint64_t		b_spa;
508 
509 	/* protected by arc state mutex */
510 	arc_state_t		*b_state;
511 	list_node_t		b_arc_node;
512 
513 	/* updated atomically */
514 	clock_t			b_arc_access;
515 
516 	/* self protecting */
517 	refcount_t		b_refcnt;
518 
519 	l2arc_buf_hdr_t		*b_l2hdr;
520 	list_node_t		b_l2node;
521 };
522 
523 static arc_buf_t *arc_eviction_list;
524 static kmutex_t arc_eviction_mtx;
525 static arc_buf_hdr_t arc_eviction_hdr;
526 static void arc_get_data_buf(arc_buf_t *buf);
527 static void arc_access(arc_buf_hdr_t *buf, kmutex_t *hash_lock);
528 static int arc_evict_needed(arc_buf_contents_t type);
529 static void arc_evict_ghost(arc_state_t *state, uint64_t spa, int64_t bytes);
530 static void arc_buf_watch(arc_buf_t *buf);
531 
532 static boolean_t l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *ab);
533 
534 #define	GHOST_STATE(state)	\
535 	((state) == arc_mru_ghost || (state) == arc_mfu_ghost ||	\
536 	(state) == arc_l2c_only)
537 
538 /*
539  * Private ARC flags.  These flags are private ARC only flags that will show up
540  * in b_flags in the arc_hdr_buf_t.  Some flags are publicly declared, and can
541  * be passed in as arc_flags in things like arc_read.  However, these flags
542  * should never be passed and should only be set by ARC code.  When adding new
543  * public flags, make sure not to smash the private ones.
544  */
545 
546 #define	ARC_IN_HASH_TABLE	(1 << 9)	/* this buffer is hashed */
547 #define	ARC_IO_IN_PROGRESS	(1 << 10)	/* I/O in progress for buf */
548 #define	ARC_IO_ERROR		(1 << 11)	/* I/O failed for buf */
549 #define	ARC_FREED_IN_READ	(1 << 12)	/* buf freed while in read */
550 #define	ARC_BUF_AVAILABLE	(1 << 13)	/* block not in active use */
551 #define	ARC_INDIRECT		(1 << 14)	/* this is an indirect block */
552 #define	ARC_FREE_IN_PROGRESS	(1 << 15)	/* hdr about to be freed */
553 #define	ARC_L2_WRITING		(1 << 16)	/* L2ARC write in progress */
554 #define	ARC_L2_EVICTED		(1 << 17)	/* evicted during I/O */
555 #define	ARC_L2_WRITE_HEAD	(1 << 18)	/* head of write list */
556 
557 #define	HDR_IN_HASH_TABLE(hdr)	((hdr)->b_flags & ARC_IN_HASH_TABLE)
558 #define	HDR_IO_IN_PROGRESS(hdr)	((hdr)->b_flags & ARC_IO_IN_PROGRESS)
559 #define	HDR_IO_ERROR(hdr)	((hdr)->b_flags & ARC_IO_ERROR)
560 #define	HDR_PREFETCH(hdr)	((hdr)->b_flags & ARC_PREFETCH)
561 #define	HDR_FREED_IN_READ(hdr)	((hdr)->b_flags & ARC_FREED_IN_READ)
562 #define	HDR_BUF_AVAILABLE(hdr)	((hdr)->b_flags & ARC_BUF_AVAILABLE)
563 #define	HDR_FREE_IN_PROGRESS(hdr)	((hdr)->b_flags & ARC_FREE_IN_PROGRESS)
564 #define	HDR_L2CACHE(hdr)	((hdr)->b_flags & ARC_L2CACHE)
565 #define	HDR_L2_READING(hdr)	((hdr)->b_flags & ARC_IO_IN_PROGRESS &&	\
566 				    (hdr)->b_l2hdr != NULL)
567 #define	HDR_L2_WRITING(hdr)	((hdr)->b_flags & ARC_L2_WRITING)
568 #define	HDR_L2_EVICTED(hdr)	((hdr)->b_flags & ARC_L2_EVICTED)
569 #define	HDR_L2_WRITE_HEAD(hdr)	((hdr)->b_flags & ARC_L2_WRITE_HEAD)
570 
571 /*
572  * Other sizes
573  */
574 
575 #define	HDR_SIZE ((int64_t)sizeof (arc_buf_hdr_t))
576 #define	L2HDR_SIZE ((int64_t)sizeof (l2arc_buf_hdr_t))
577 
578 /*
579  * Hash table routines
580  */
581 
582 #define	HT_LOCK_PAD	64
583 
584 struct ht_lock {
585 	kmutex_t	ht_lock;
586 #ifdef _KERNEL
587 	unsigned char	pad[(HT_LOCK_PAD - sizeof (kmutex_t))];
588 #endif
589 };
590 
591 #define	BUF_LOCKS 256
592 typedef struct buf_hash_table {
593 	uint64_t ht_mask;
594 	arc_buf_hdr_t **ht_table;
595 	struct ht_lock ht_locks[BUF_LOCKS];
596 } buf_hash_table_t;
597 
598 static buf_hash_table_t buf_hash_table;
599 
600 #define	BUF_HASH_INDEX(spa, dva, birth) \
601 	(buf_hash(spa, dva, birth) & buf_hash_table.ht_mask)
602 #define	BUF_HASH_LOCK_NTRY(idx) (buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)])
603 #define	BUF_HASH_LOCK(idx)	(&(BUF_HASH_LOCK_NTRY(idx).ht_lock))
604 #define	HDR_LOCK(hdr) \
605 	(BUF_HASH_LOCK(BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth)))
606 
607 uint64_t zfs_crc64_table[256];
608 
609 /*
610  * Level 2 ARC
611  */
612 
613 #define	L2ARC_WRITE_SIZE	(8 * 1024 * 1024)	/* initial write max */
614 #define	L2ARC_HEADROOM		2			/* num of writes */
615 /*
616  * If we discover during ARC scan any buffers to be compressed, we boost
617  * our headroom for the next scanning cycle by this percentage multiple.
618  */
619 #define	L2ARC_HEADROOM_BOOST	200
620 #define	L2ARC_FEED_SECS		1		/* caching interval secs */
621 #define	L2ARC_FEED_MIN_MS	200		/* min caching interval ms */
622 
623 #define	l2arc_writes_sent	ARCSTAT(arcstat_l2_writes_sent)
624 #define	l2arc_writes_done	ARCSTAT(arcstat_l2_writes_done)
625 
626 /* L2ARC Performance Tunables */
627 uint64_t l2arc_write_max = L2ARC_WRITE_SIZE;	/* default max write size */
628 uint64_t l2arc_write_boost = L2ARC_WRITE_SIZE;	/* extra write during warmup */
629 uint64_t l2arc_headroom = L2ARC_HEADROOM;	/* number of dev writes */
630 uint64_t l2arc_headroom_boost = L2ARC_HEADROOM_BOOST;
631 uint64_t l2arc_feed_secs = L2ARC_FEED_SECS;	/* interval seconds */
632 uint64_t l2arc_feed_min_ms = L2ARC_FEED_MIN_MS;	/* min interval milliseconds */
633 boolean_t l2arc_noprefetch = B_TRUE;		/* don't cache prefetch bufs */
634 boolean_t l2arc_feed_again = B_TRUE;		/* turbo warmup */
635 boolean_t l2arc_norw = B_TRUE;			/* no reads during writes */
636 
637 /*
638  * L2ARC Internals
639  */
640 typedef struct l2arc_dev {
641 	vdev_t			*l2ad_vdev;	/* vdev */
642 	spa_t			*l2ad_spa;	/* spa */
643 	uint64_t		l2ad_hand;	/* next write location */
644 	uint64_t		l2ad_start;	/* first addr on device */
645 	uint64_t		l2ad_end;	/* last addr on device */
646 	uint64_t		l2ad_evict;	/* last addr eviction reached */
647 	boolean_t		l2ad_first;	/* first sweep through */
648 	boolean_t		l2ad_writing;	/* currently writing */
649 	list_t			*l2ad_buflist;	/* buffer list */
650 	list_node_t		l2ad_node;	/* device list node */
651 } l2arc_dev_t;
652 
653 static list_t L2ARC_dev_list;			/* device list */
654 static list_t *l2arc_dev_list;			/* device list pointer */
655 static kmutex_t l2arc_dev_mtx;			/* device list mutex */
656 static l2arc_dev_t *l2arc_dev_last;		/* last device used */
657 static kmutex_t l2arc_buflist_mtx;		/* mutex for all buflists */
658 static list_t L2ARC_free_on_write;		/* free after write buf list */
659 static list_t *l2arc_free_on_write;		/* free after write list ptr */
660 static kmutex_t l2arc_free_on_write_mtx;	/* mutex for list */
661 static uint64_t l2arc_ndev;			/* number of devices */
662 
663 typedef struct l2arc_read_callback {
664 	arc_buf_t		*l2rcb_buf;		/* read buffer */
665 	spa_t			*l2rcb_spa;		/* spa */
666 	blkptr_t		l2rcb_bp;		/* original blkptr */
667 	zbookmark_t		l2rcb_zb;		/* original bookmark */
668 	int			l2rcb_flags;		/* original flags */
669 	enum zio_compress	l2rcb_compress;		/* applied compress */
670 } l2arc_read_callback_t;
671 
672 typedef struct l2arc_write_callback {
673 	l2arc_dev_t	*l2wcb_dev;		/* device info */
674 	arc_buf_hdr_t	*l2wcb_head;		/* head of write buflist */
675 } l2arc_write_callback_t;
676 
677 struct l2arc_buf_hdr {
678 	/* protected by arc_buf_hdr  mutex */
679 	l2arc_dev_t		*b_dev;		/* L2ARC device */
680 	uint64_t		b_daddr;	/* disk address, offset byte */
681 	/* compression applied to buffer data */
682 	enum zio_compress	b_compress;
683 	/* real alloc'd buffer size depending on b_compress applied */
684 	int			b_asize;
685 	/* temporary buffer holder for in-flight compressed data */
686 	void			*b_tmp_cdata;
687 };
688 
689 typedef struct l2arc_data_free {
690 	/* protected by l2arc_free_on_write_mtx */
691 	void		*l2df_data;
692 	size_t		l2df_size;
693 	void		(*l2df_func)(void *, size_t);
694 	list_node_t	l2df_list_node;
695 } l2arc_data_free_t;
696 
697 static kmutex_t l2arc_feed_thr_lock;
698 static kcondvar_t l2arc_feed_thr_cv;
699 static uint8_t l2arc_thread_exit;
700 
701 static void l2arc_read_done(zio_t *zio);
702 static void l2arc_hdr_stat_add(void);
703 static void l2arc_hdr_stat_remove(void);
704 
705 static boolean_t l2arc_compress_buf(l2arc_buf_hdr_t *l2hdr);
706 static void l2arc_decompress_zio(zio_t *zio, arc_buf_hdr_t *hdr,
707     enum zio_compress c);
708 static void l2arc_release_cdata_buf(arc_buf_hdr_t *ab);
709 
710 static uint64_t
711 buf_hash(uint64_t spa, const dva_t *dva, uint64_t birth)
712 {
713 	uint8_t *vdva = (uint8_t *)dva;
714 	uint64_t crc = -1ULL;
715 	int i;
716 
717 	ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
718 
719 	for (i = 0; i < sizeof (dva_t); i++)
720 		crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ vdva[i]) & 0xFF];
721 
722 	crc ^= (spa>>8) ^ birth;
723 
724 	return (crc);
725 }
726 
727 #define	BUF_EMPTY(buf)						\
728 	((buf)->b_dva.dva_word[0] == 0 &&			\
729 	(buf)->b_dva.dva_word[1] == 0 &&			\
730 	(buf)->b_cksum0 == 0)
731 
732 #define	BUF_EQUAL(spa, dva, birth, buf)				\
733 	((buf)->b_dva.dva_word[0] == (dva)->dva_word[0]) &&	\
734 	((buf)->b_dva.dva_word[1] == (dva)->dva_word[1]) &&	\
735 	((buf)->b_birth == birth) && ((buf)->b_spa == spa)
736 
737 static void
738 buf_discard_identity(arc_buf_hdr_t *hdr)
739 {
740 	hdr->b_dva.dva_word[0] = 0;
741 	hdr->b_dva.dva_word[1] = 0;
742 	hdr->b_birth = 0;
743 	hdr->b_cksum0 = 0;
744 }
745 
746 static arc_buf_hdr_t *
747 buf_hash_find(uint64_t spa, const dva_t *dva, uint64_t birth, kmutex_t **lockp)
748 {
749 	uint64_t idx = BUF_HASH_INDEX(spa, dva, birth);
750 	kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
751 	arc_buf_hdr_t *buf;
752 
753 	mutex_enter(hash_lock);
754 	for (buf = buf_hash_table.ht_table[idx]; buf != NULL;
755 	    buf = buf->b_hash_next) {
756 		if (BUF_EQUAL(spa, dva, birth, buf)) {
757 			*lockp = hash_lock;
758 			return (buf);
759 		}
760 	}
761 	mutex_exit(hash_lock);
762 	*lockp = NULL;
763 	return (NULL);
764 }
765 
766 /*
767  * Insert an entry into the hash table.  If there is already an element
768  * equal to elem in the hash table, then the already existing element
769  * will be returned and the new element will not be inserted.
770  * Otherwise returns NULL.
771  */
772 static arc_buf_hdr_t *
773 buf_hash_insert(arc_buf_hdr_t *buf, kmutex_t **lockp)
774 {
775 	uint64_t idx = BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth);
776 	kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
777 	arc_buf_hdr_t *fbuf;
778 	uint32_t i;
779 
780 	ASSERT(!HDR_IN_HASH_TABLE(buf));
781 	*lockp = hash_lock;
782 	mutex_enter(hash_lock);
783 	for (fbuf = buf_hash_table.ht_table[idx], i = 0; fbuf != NULL;
784 	    fbuf = fbuf->b_hash_next, i++) {
785 		if (BUF_EQUAL(buf->b_spa, &buf->b_dva, buf->b_birth, fbuf))
786 			return (fbuf);
787 	}
788 
789 	buf->b_hash_next = buf_hash_table.ht_table[idx];
790 	buf_hash_table.ht_table[idx] = buf;
791 	buf->b_flags |= ARC_IN_HASH_TABLE;
792 
793 	/* collect some hash table performance data */
794 	if (i > 0) {
795 		ARCSTAT_BUMP(arcstat_hash_collisions);
796 		if (i == 1)
797 			ARCSTAT_BUMP(arcstat_hash_chains);
798 
799 		ARCSTAT_MAX(arcstat_hash_chain_max, i);
800 	}
801 
802 	ARCSTAT_BUMP(arcstat_hash_elements);
803 	ARCSTAT_MAXSTAT(arcstat_hash_elements);
804 
805 	return (NULL);
806 }
807 
808 static void
809 buf_hash_remove(arc_buf_hdr_t *buf)
810 {
811 	arc_buf_hdr_t *fbuf, **bufp;
812 	uint64_t idx = BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth);
813 
814 	ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx)));
815 	ASSERT(HDR_IN_HASH_TABLE(buf));
816 
817 	bufp = &buf_hash_table.ht_table[idx];
818 	while ((fbuf = *bufp) != buf) {
819 		ASSERT(fbuf != NULL);
820 		bufp = &fbuf->b_hash_next;
821 	}
822 	*bufp = buf->b_hash_next;
823 	buf->b_hash_next = NULL;
824 	buf->b_flags &= ~ARC_IN_HASH_TABLE;
825 
826 	/* collect some hash table performance data */
827 	ARCSTAT_BUMPDOWN(arcstat_hash_elements);
828 
829 	if (buf_hash_table.ht_table[idx] &&
830 	    buf_hash_table.ht_table[idx]->b_hash_next == NULL)
831 		ARCSTAT_BUMPDOWN(arcstat_hash_chains);
832 }
833 
834 /*
835  * Global data structures and functions for the buf kmem cache.
836  */
837 static kmem_cache_t *hdr_cache;
838 static kmem_cache_t *buf_cache;
839 
840 static void
841 buf_fini(void)
842 {
843 	int i;
844 
845 	kmem_free(buf_hash_table.ht_table,
846 	    (buf_hash_table.ht_mask + 1) * sizeof (void *));
847 	for (i = 0; i < BUF_LOCKS; i++)
848 		mutex_destroy(&buf_hash_table.ht_locks[i].ht_lock);
849 	kmem_cache_destroy(hdr_cache);
850 	kmem_cache_destroy(buf_cache);
851 }
852 
853 /*
854  * Constructor callback - called when the cache is empty
855  * and a new buf is requested.
856  */
857 /* ARGSUSED */
858 static int
859 hdr_cons(void *vbuf, void *unused, int kmflag)
860 {
861 	arc_buf_hdr_t *buf = vbuf;
862 
863 	bzero(buf, sizeof (arc_buf_hdr_t));
864 	refcount_create(&buf->b_refcnt);
865 	cv_init(&buf->b_cv, NULL, CV_DEFAULT, NULL);
866 	mutex_init(&buf->b_freeze_lock, NULL, MUTEX_DEFAULT, NULL);
867 	arc_space_consume(sizeof (arc_buf_hdr_t), ARC_SPACE_HDRS);
868 
869 	return (0);
870 }
871 
872 /* ARGSUSED */
873 static int
874 buf_cons(void *vbuf, void *unused, int kmflag)
875 {
876 	arc_buf_t *buf = vbuf;
877 
878 	bzero(buf, sizeof (arc_buf_t));
879 	mutex_init(&buf->b_evict_lock, NULL, MUTEX_DEFAULT, NULL);
880 	arc_space_consume(sizeof (arc_buf_t), ARC_SPACE_HDRS);
881 
882 	return (0);
883 }
884 
885 /*
886  * Destructor callback - called when a cached buf is
887  * no longer required.
888  */
889 /* ARGSUSED */
890 static void
891 hdr_dest(void *vbuf, void *unused)
892 {
893 	arc_buf_hdr_t *buf = vbuf;
894 
895 	ASSERT(BUF_EMPTY(buf));
896 	refcount_destroy(&buf->b_refcnt);
897 	cv_destroy(&buf->b_cv);
898 	mutex_destroy(&buf->b_freeze_lock);
899 	arc_space_return(sizeof (arc_buf_hdr_t), ARC_SPACE_HDRS);
900 }
901 
902 /* ARGSUSED */
903 static void
904 buf_dest(void *vbuf, void *unused)
905 {
906 	arc_buf_t *buf = vbuf;
907 
908 	mutex_destroy(&buf->b_evict_lock);
909 	arc_space_return(sizeof (arc_buf_t), ARC_SPACE_HDRS);
910 }
911 
912 /*
913  * Reclaim callback -- invoked when memory is low.
914  */
915 /* ARGSUSED */
916 static void
917 hdr_recl(void *unused)
918 {
919 	dprintf("hdr_recl called\n");
920 	/*
921 	 * umem calls the reclaim func when we destroy the buf cache,
922 	 * which is after we do arc_fini().
923 	 */
924 	if (!arc_dead)
925 		cv_signal(&arc_reclaim_thr_cv);
926 }
927 
928 static void
929 buf_init(void)
930 {
931 	uint64_t *ct;
932 	uint64_t hsize = 1ULL << 12;
933 	int i, j;
934 
935 	/*
936 	 * The hash table is big enough to fill all of physical memory
937 	 * with an average 64K block size.  The table will take up
938 	 * totalmem*sizeof(void*)/64K (eg. 128KB/GB with 8-byte pointers).
939 	 */
940 	while (hsize * 65536 < physmem * PAGESIZE)
941 		hsize <<= 1;
942 retry:
943 	buf_hash_table.ht_mask = hsize - 1;
944 	buf_hash_table.ht_table =
945 	    kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP);
946 	if (buf_hash_table.ht_table == NULL) {
947 		ASSERT(hsize > (1ULL << 8));
948 		hsize >>= 1;
949 		goto retry;
950 	}
951 
952 	hdr_cache = kmem_cache_create("arc_buf_hdr_t", sizeof (arc_buf_hdr_t),
953 	    0, hdr_cons, hdr_dest, hdr_recl, NULL, NULL, 0);
954 	buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t),
955 	    0, buf_cons, buf_dest, NULL, NULL, NULL, 0);
956 
957 	for (i = 0; i < 256; i++)
958 		for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--)
959 			*ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY);
960 
961 	for (i = 0; i < BUF_LOCKS; i++) {
962 		mutex_init(&buf_hash_table.ht_locks[i].ht_lock,
963 		    NULL, MUTEX_DEFAULT, NULL);
964 	}
965 }
966 
967 #define	ARC_MINTIME	(hz>>4) /* 62 ms */
968 
969 static void
970 arc_cksum_verify(arc_buf_t *buf)
971 {
972 	zio_cksum_t zc;
973 
974 	if (!(zfs_flags & ZFS_DEBUG_MODIFY))
975 		return;
976 
977 	mutex_enter(&buf->b_hdr->b_freeze_lock);
978 	if (buf->b_hdr->b_freeze_cksum == NULL ||
979 	    (buf->b_hdr->b_flags & ARC_IO_ERROR)) {
980 		mutex_exit(&buf->b_hdr->b_freeze_lock);
981 		return;
982 	}
983 	fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc);
984 	if (!ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc))
985 		panic("buffer modified while frozen!");
986 	mutex_exit(&buf->b_hdr->b_freeze_lock);
987 }
988 
989 static int
990 arc_cksum_equal(arc_buf_t *buf)
991 {
992 	zio_cksum_t zc;
993 	int equal;
994 
995 	mutex_enter(&buf->b_hdr->b_freeze_lock);
996 	fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc);
997 	equal = ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc);
998 	mutex_exit(&buf->b_hdr->b_freeze_lock);
999 
1000 	return (equal);
1001 }
1002 
1003 static void
1004 arc_cksum_compute(arc_buf_t *buf, boolean_t force)
1005 {
1006 	if (!force && !(zfs_flags & ZFS_DEBUG_MODIFY))
1007 		return;
1008 
1009 	mutex_enter(&buf->b_hdr->b_freeze_lock);
1010 	if (buf->b_hdr->b_freeze_cksum != NULL) {
1011 		mutex_exit(&buf->b_hdr->b_freeze_lock);
1012 		return;
1013 	}
1014 	buf->b_hdr->b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t), KM_SLEEP);
1015 	fletcher_2_native(buf->b_data, buf->b_hdr->b_size,
1016 	    buf->b_hdr->b_freeze_cksum);
1017 	mutex_exit(&buf->b_hdr->b_freeze_lock);
1018 	arc_buf_watch(buf);
1019 }
1020 
1021 #ifndef _KERNEL
1022 typedef struct procctl {
1023 	long cmd;
1024 	prwatch_t prwatch;
1025 } procctl_t;
1026 #endif
1027 
1028 /* ARGSUSED */
1029 static void
1030 arc_buf_unwatch(arc_buf_t *buf)
1031 {
1032 #ifndef _KERNEL
1033 	if (arc_watch) {
1034 		int result;
1035 		procctl_t ctl;
1036 		ctl.cmd = PCWATCH;
1037 		ctl.prwatch.pr_vaddr = (uintptr_t)buf->b_data;
1038 		ctl.prwatch.pr_size = 0;
1039 		ctl.prwatch.pr_wflags = 0;
1040 		result = write(arc_procfd, &ctl, sizeof (ctl));
1041 		ASSERT3U(result, ==, sizeof (ctl));
1042 	}
1043 #endif
1044 }
1045 
1046 /* ARGSUSED */
1047 static void
1048 arc_buf_watch(arc_buf_t *buf)
1049 {
1050 #ifndef _KERNEL
1051 	if (arc_watch) {
1052 		int result;
1053 		procctl_t ctl;
1054 		ctl.cmd = PCWATCH;
1055 		ctl.prwatch.pr_vaddr = (uintptr_t)buf->b_data;
1056 		ctl.prwatch.pr_size = buf->b_hdr->b_size;
1057 		ctl.prwatch.pr_wflags = WA_WRITE;
1058 		result = write(arc_procfd, &ctl, sizeof (ctl));
1059 		ASSERT3U(result, ==, sizeof (ctl));
1060 	}
1061 #endif
1062 }
1063 
1064 void
1065 arc_buf_thaw(arc_buf_t *buf)
1066 {
1067 	if (zfs_flags & ZFS_DEBUG_MODIFY) {
1068 		if (buf->b_hdr->b_state != arc_anon)
1069 			panic("modifying non-anon buffer!");
1070 		if (buf->b_hdr->b_flags & ARC_IO_IN_PROGRESS)
1071 			panic("modifying buffer while i/o in progress!");
1072 		arc_cksum_verify(buf);
1073 	}
1074 
1075 	mutex_enter(&buf->b_hdr->b_freeze_lock);
1076 	if (buf->b_hdr->b_freeze_cksum != NULL) {
1077 		kmem_free(buf->b_hdr->b_freeze_cksum, sizeof (zio_cksum_t));
1078 		buf->b_hdr->b_freeze_cksum = NULL;
1079 	}
1080 
1081 	if (zfs_flags & ZFS_DEBUG_MODIFY) {
1082 		if (buf->b_hdr->b_thawed)
1083 			kmem_free(buf->b_hdr->b_thawed, 1);
1084 		buf->b_hdr->b_thawed = kmem_alloc(1, KM_SLEEP);
1085 	}
1086 
1087 	mutex_exit(&buf->b_hdr->b_freeze_lock);
1088 
1089 	arc_buf_unwatch(buf);
1090 }
1091 
1092 void
1093 arc_buf_freeze(arc_buf_t *buf)
1094 {
1095 	kmutex_t *hash_lock;
1096 
1097 	if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1098 		return;
1099 
1100 	hash_lock = HDR_LOCK(buf->b_hdr);
1101 	mutex_enter(hash_lock);
1102 
1103 	ASSERT(buf->b_hdr->b_freeze_cksum != NULL ||
1104 	    buf->b_hdr->b_state == arc_anon);
1105 	arc_cksum_compute(buf, B_FALSE);
1106 	mutex_exit(hash_lock);
1107 
1108 }
1109 
1110 static void
1111 add_reference(arc_buf_hdr_t *ab, kmutex_t *hash_lock, void *tag)
1112 {
1113 	ASSERT(MUTEX_HELD(hash_lock));
1114 
1115 	if ((refcount_add(&ab->b_refcnt, tag) == 1) &&
1116 	    (ab->b_state != arc_anon)) {
1117 		uint64_t delta = ab->b_size * ab->b_datacnt;
1118 		list_t *list = &ab->b_state->arcs_list[ab->b_type];
1119 		uint64_t *size = &ab->b_state->arcs_lsize[ab->b_type];
1120 
1121 		ASSERT(!MUTEX_HELD(&ab->b_state->arcs_mtx));
1122 		mutex_enter(&ab->b_state->arcs_mtx);
1123 		ASSERT(list_link_active(&ab->b_arc_node));
1124 		list_remove(list, ab);
1125 		if (GHOST_STATE(ab->b_state)) {
1126 			ASSERT0(ab->b_datacnt);
1127 			ASSERT3P(ab->b_buf, ==, NULL);
1128 			delta = ab->b_size;
1129 		}
1130 		ASSERT(delta > 0);
1131 		ASSERT3U(*size, >=, delta);
1132 		atomic_add_64(size, -delta);
1133 		mutex_exit(&ab->b_state->arcs_mtx);
1134 		/* remove the prefetch flag if we get a reference */
1135 		if (ab->b_flags & ARC_PREFETCH)
1136 			ab->b_flags &= ~ARC_PREFETCH;
1137 	}
1138 }
1139 
1140 static int
1141 remove_reference(arc_buf_hdr_t *ab, kmutex_t *hash_lock, void *tag)
1142 {
1143 	int cnt;
1144 	arc_state_t *state = ab->b_state;
1145 
1146 	ASSERT(state == arc_anon || MUTEX_HELD(hash_lock));
1147 	ASSERT(!GHOST_STATE(state));
1148 
1149 	if (((cnt = refcount_remove(&ab->b_refcnt, tag)) == 0) &&
1150 	    (state != arc_anon)) {
1151 		uint64_t *size = &state->arcs_lsize[ab->b_type];
1152 
1153 		ASSERT(!MUTEX_HELD(&state->arcs_mtx));
1154 		mutex_enter(&state->arcs_mtx);
1155 		ASSERT(!list_link_active(&ab->b_arc_node));
1156 		list_insert_head(&state->arcs_list[ab->b_type], ab);
1157 		ASSERT(ab->b_datacnt > 0);
1158 		atomic_add_64(size, ab->b_size * ab->b_datacnt);
1159 		mutex_exit(&state->arcs_mtx);
1160 	}
1161 	return (cnt);
1162 }
1163 
1164 /*
1165  * Move the supplied buffer to the indicated state.  The mutex
1166  * for the buffer must be held by the caller.
1167  */
1168 static void
1169 arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *ab, kmutex_t *hash_lock)
1170 {
1171 	arc_state_t *old_state = ab->b_state;
1172 	int64_t refcnt = refcount_count(&ab->b_refcnt);
1173 	uint64_t from_delta, to_delta;
1174 
1175 	ASSERT(MUTEX_HELD(hash_lock));
1176 	ASSERT3P(new_state, !=, old_state);
1177 	ASSERT(refcnt == 0 || ab->b_datacnt > 0);
1178 	ASSERT(ab->b_datacnt == 0 || !GHOST_STATE(new_state));
1179 	ASSERT(ab->b_datacnt <= 1 || old_state != arc_anon);
1180 
1181 	from_delta = to_delta = ab->b_datacnt * ab->b_size;
1182 
1183 	/*
1184 	 * If this buffer is evictable, transfer it from the
1185 	 * old state list to the new state list.
1186 	 */
1187 	if (refcnt == 0) {
1188 		if (old_state != arc_anon) {
1189 			int use_mutex = !MUTEX_HELD(&old_state->arcs_mtx);
1190 			uint64_t *size = &old_state->arcs_lsize[ab->b_type];
1191 
1192 			if (use_mutex)
1193 				mutex_enter(&old_state->arcs_mtx);
1194 
1195 			ASSERT(list_link_active(&ab->b_arc_node));
1196 			list_remove(&old_state->arcs_list[ab->b_type], ab);
1197 
1198 			/*
1199 			 * If prefetching out of the ghost cache,
1200 			 * we will have a non-zero datacnt.
1201 			 */
1202 			if (GHOST_STATE(old_state) && ab->b_datacnt == 0) {
1203 				/* ghost elements have a ghost size */
1204 				ASSERT(ab->b_buf == NULL);
1205 				from_delta = ab->b_size;
1206 			}
1207 			ASSERT3U(*size, >=, from_delta);
1208 			atomic_add_64(size, -from_delta);
1209 
1210 			if (use_mutex)
1211 				mutex_exit(&old_state->arcs_mtx);
1212 		}
1213 		if (new_state != arc_anon) {
1214 			int use_mutex = !MUTEX_HELD(&new_state->arcs_mtx);
1215 			uint64_t *size = &new_state->arcs_lsize[ab->b_type];
1216 
1217 			if (use_mutex)
1218 				mutex_enter(&new_state->arcs_mtx);
1219 
1220 			list_insert_head(&new_state->arcs_list[ab->b_type], ab);
1221 
1222 			/* ghost elements have a ghost size */
1223 			if (GHOST_STATE(new_state)) {
1224 				ASSERT(ab->b_datacnt == 0);
1225 				ASSERT(ab->b_buf == NULL);
1226 				to_delta = ab->b_size;
1227 			}
1228 			atomic_add_64(size, to_delta);
1229 
1230 			if (use_mutex)
1231 				mutex_exit(&new_state->arcs_mtx);
1232 		}
1233 	}
1234 
1235 	ASSERT(!BUF_EMPTY(ab));
1236 	if (new_state == arc_anon && HDR_IN_HASH_TABLE(ab))
1237 		buf_hash_remove(ab);
1238 
1239 	/* adjust state sizes */
1240 	if (to_delta)
1241 		atomic_add_64(&new_state->arcs_size, to_delta);
1242 	if (from_delta) {
1243 		ASSERT3U(old_state->arcs_size, >=, from_delta);
1244 		atomic_add_64(&old_state->arcs_size, -from_delta);
1245 	}
1246 	ab->b_state = new_state;
1247 
1248 	/* adjust l2arc hdr stats */
1249 	if (new_state == arc_l2c_only)
1250 		l2arc_hdr_stat_add();
1251 	else if (old_state == arc_l2c_only)
1252 		l2arc_hdr_stat_remove();
1253 }
1254 
1255 void
1256 arc_space_consume(uint64_t space, arc_space_type_t type)
1257 {
1258 	ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
1259 
1260 	switch (type) {
1261 	case ARC_SPACE_DATA:
1262 		ARCSTAT_INCR(arcstat_data_size, space);
1263 		break;
1264 	case ARC_SPACE_OTHER:
1265 		ARCSTAT_INCR(arcstat_other_size, space);
1266 		break;
1267 	case ARC_SPACE_HDRS:
1268 		ARCSTAT_INCR(arcstat_hdr_size, space);
1269 		break;
1270 	case ARC_SPACE_L2HDRS:
1271 		ARCSTAT_INCR(arcstat_l2_hdr_size, space);
1272 		break;
1273 	}
1274 
1275 	ARCSTAT_INCR(arcstat_meta_used, space);
1276 	atomic_add_64(&arc_size, space);
1277 }
1278 
1279 void
1280 arc_space_return(uint64_t space, arc_space_type_t type)
1281 {
1282 	ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
1283 
1284 	switch (type) {
1285 	case ARC_SPACE_DATA:
1286 		ARCSTAT_INCR(arcstat_data_size, -space);
1287 		break;
1288 	case ARC_SPACE_OTHER:
1289 		ARCSTAT_INCR(arcstat_other_size, -space);
1290 		break;
1291 	case ARC_SPACE_HDRS:
1292 		ARCSTAT_INCR(arcstat_hdr_size, -space);
1293 		break;
1294 	case ARC_SPACE_L2HDRS:
1295 		ARCSTAT_INCR(arcstat_l2_hdr_size, -space);
1296 		break;
1297 	}
1298 
1299 	ASSERT(arc_meta_used >= space);
1300 	if (arc_meta_max < arc_meta_used)
1301 		arc_meta_max = arc_meta_used;
1302 	ARCSTAT_INCR(arcstat_meta_used, -space);
1303 	ASSERT(arc_size >= space);
1304 	atomic_add_64(&arc_size, -space);
1305 }
1306 
1307 void *
1308 arc_data_buf_alloc(uint64_t size)
1309 {
1310 	if (arc_evict_needed(ARC_BUFC_DATA))
1311 		cv_signal(&arc_reclaim_thr_cv);
1312 	atomic_add_64(&arc_size, size);
1313 	return (zio_data_buf_alloc(size));
1314 }
1315 
1316 void
1317 arc_data_buf_free(void *buf, uint64_t size)
1318 {
1319 	zio_data_buf_free(buf, size);
1320 	ASSERT(arc_size >= size);
1321 	atomic_add_64(&arc_size, -size);
1322 }
1323 
1324 arc_buf_t *
1325 arc_buf_alloc(spa_t *spa, int size, void *tag, arc_buf_contents_t type)
1326 {
1327 	arc_buf_hdr_t *hdr;
1328 	arc_buf_t *buf;
1329 
1330 	ASSERT3U(size, >, 0);
1331 	hdr = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE);
1332 	ASSERT(BUF_EMPTY(hdr));
1333 	hdr->b_size = size;
1334 	hdr->b_type = type;
1335 	hdr->b_spa = spa_load_guid(spa);
1336 	hdr->b_state = arc_anon;
1337 	hdr->b_arc_access = 0;
1338 	buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
1339 	buf->b_hdr = hdr;
1340 	buf->b_data = NULL;
1341 	buf->b_efunc = NULL;
1342 	buf->b_private = NULL;
1343 	buf->b_next = NULL;
1344 	hdr->b_buf = buf;
1345 	arc_get_data_buf(buf);
1346 	hdr->b_datacnt = 1;
1347 	hdr->b_flags = 0;
1348 	ASSERT(refcount_is_zero(&hdr->b_refcnt));
1349 	(void) refcount_add(&hdr->b_refcnt, tag);
1350 
1351 	return (buf);
1352 }
1353 
1354 static char *arc_onloan_tag = "onloan";
1355 
1356 /*
1357  * Loan out an anonymous arc buffer. Loaned buffers are not counted as in
1358  * flight data by arc_tempreserve_space() until they are "returned". Loaned
1359  * buffers must be returned to the arc before they can be used by the DMU or
1360  * freed.
1361  */
1362 arc_buf_t *
1363 arc_loan_buf(spa_t *spa, int size)
1364 {
1365 	arc_buf_t *buf;
1366 
1367 	buf = arc_buf_alloc(spa, size, arc_onloan_tag, ARC_BUFC_DATA);
1368 
1369 	atomic_add_64(&arc_loaned_bytes, size);
1370 	return (buf);
1371 }
1372 
1373 /*
1374  * Return a loaned arc buffer to the arc.
1375  */
1376 void
1377 arc_return_buf(arc_buf_t *buf, void *tag)
1378 {
1379 	arc_buf_hdr_t *hdr = buf->b_hdr;
1380 
1381 	ASSERT(buf->b_data != NULL);
1382 	(void) refcount_add(&hdr->b_refcnt, tag);
1383 	(void) refcount_remove(&hdr->b_refcnt, arc_onloan_tag);
1384 
1385 	atomic_add_64(&arc_loaned_bytes, -hdr->b_size);
1386 }
1387 
1388 /* Detach an arc_buf from a dbuf (tag) */
1389 void
1390 arc_loan_inuse_buf(arc_buf_t *buf, void *tag)
1391 {
1392 	arc_buf_hdr_t *hdr;
1393 
1394 	ASSERT(buf->b_data != NULL);
1395 	hdr = buf->b_hdr;
1396 	(void) refcount_add(&hdr->b_refcnt, arc_onloan_tag);
1397 	(void) refcount_remove(&hdr->b_refcnt, tag);
1398 	buf->b_efunc = NULL;
1399 	buf->b_private = NULL;
1400 
1401 	atomic_add_64(&arc_loaned_bytes, hdr->b_size);
1402 }
1403 
1404 static arc_buf_t *
1405 arc_buf_clone(arc_buf_t *from)
1406 {
1407 	arc_buf_t *buf;
1408 	arc_buf_hdr_t *hdr = from->b_hdr;
1409 	uint64_t size = hdr->b_size;
1410 
1411 	ASSERT(hdr->b_state != arc_anon);
1412 
1413 	buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
1414 	buf->b_hdr = hdr;
1415 	buf->b_data = NULL;
1416 	buf->b_efunc = NULL;
1417 	buf->b_private = NULL;
1418 	buf->b_next = hdr->b_buf;
1419 	hdr->b_buf = buf;
1420 	arc_get_data_buf(buf);
1421 	bcopy(from->b_data, buf->b_data, size);
1422 
1423 	/*
1424 	 * This buffer already exists in the arc so create a duplicate
1425 	 * copy for the caller.  If the buffer is associated with user data
1426 	 * then track the size and number of duplicates.  These stats will be
1427 	 * updated as duplicate buffers are created and destroyed.
1428 	 */
1429 	if (hdr->b_type == ARC_BUFC_DATA) {
1430 		ARCSTAT_BUMP(arcstat_duplicate_buffers);
1431 		ARCSTAT_INCR(arcstat_duplicate_buffers_size, size);
1432 	}
1433 	hdr->b_datacnt += 1;
1434 	return (buf);
1435 }
1436 
1437 void
1438 arc_buf_add_ref(arc_buf_t *buf, void* tag)
1439 {
1440 	arc_buf_hdr_t *hdr;
1441 	kmutex_t *hash_lock;
1442 
1443 	/*
1444 	 * Check to see if this buffer is evicted.  Callers
1445 	 * must verify b_data != NULL to know if the add_ref
1446 	 * was successful.
1447 	 */
1448 	mutex_enter(&buf->b_evict_lock);
1449 	if (buf->b_data == NULL) {
1450 		mutex_exit(&buf->b_evict_lock);
1451 		return;
1452 	}
1453 	hash_lock = HDR_LOCK(buf->b_hdr);
1454 	mutex_enter(hash_lock);
1455 	hdr = buf->b_hdr;
1456 	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
1457 	mutex_exit(&buf->b_evict_lock);
1458 
1459 	ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu);
1460 	add_reference(hdr, hash_lock, tag);
1461 	DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
1462 	arc_access(hdr, hash_lock);
1463 	mutex_exit(hash_lock);
1464 	ARCSTAT_BUMP(arcstat_hits);
1465 	ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH),
1466 	    demand, prefetch, hdr->b_type != ARC_BUFC_METADATA,
1467 	    data, metadata, hits);
1468 }
1469 
1470 /*
1471  * Free the arc data buffer.  If it is an l2arc write in progress,
1472  * the buffer is placed on l2arc_free_on_write to be freed later.
1473  */
1474 static void
1475 arc_buf_data_free(arc_buf_t *buf, void (*free_func)(void *, size_t))
1476 {
1477 	arc_buf_hdr_t *hdr = buf->b_hdr;
1478 
1479 	if (HDR_L2_WRITING(hdr)) {
1480 		l2arc_data_free_t *df;
1481 		df = kmem_alloc(sizeof (l2arc_data_free_t), KM_SLEEP);
1482 		df->l2df_data = buf->b_data;
1483 		df->l2df_size = hdr->b_size;
1484 		df->l2df_func = free_func;
1485 		mutex_enter(&l2arc_free_on_write_mtx);
1486 		list_insert_head(l2arc_free_on_write, df);
1487 		mutex_exit(&l2arc_free_on_write_mtx);
1488 		ARCSTAT_BUMP(arcstat_l2_free_on_write);
1489 	} else {
1490 		free_func(buf->b_data, hdr->b_size);
1491 	}
1492 }
1493 
1494 static void
1495 arc_buf_destroy(arc_buf_t *buf, boolean_t recycle, boolean_t all)
1496 {
1497 	arc_buf_t **bufp;
1498 
1499 	/* free up data associated with the buf */
1500 	if (buf->b_data) {
1501 		arc_state_t *state = buf->b_hdr->b_state;
1502 		uint64_t size = buf->b_hdr->b_size;
1503 		arc_buf_contents_t type = buf->b_hdr->b_type;
1504 
1505 		arc_cksum_verify(buf);
1506 		arc_buf_unwatch(buf);
1507 
1508 		if (!recycle) {
1509 			if (type == ARC_BUFC_METADATA) {
1510 				arc_buf_data_free(buf, zio_buf_free);
1511 				arc_space_return(size, ARC_SPACE_DATA);
1512 			} else {
1513 				ASSERT(type == ARC_BUFC_DATA);
1514 				arc_buf_data_free(buf, zio_data_buf_free);
1515 				ARCSTAT_INCR(arcstat_data_size, -size);
1516 				atomic_add_64(&arc_size, -size);
1517 			}
1518 		}
1519 		if (list_link_active(&buf->b_hdr->b_arc_node)) {
1520 			uint64_t *cnt = &state->arcs_lsize[type];
1521 
1522 			ASSERT(refcount_is_zero(&buf->b_hdr->b_refcnt));
1523 			ASSERT(state != arc_anon);
1524 
1525 			ASSERT3U(*cnt, >=, size);
1526 			atomic_add_64(cnt, -size);
1527 		}
1528 		ASSERT3U(state->arcs_size, >=, size);
1529 		atomic_add_64(&state->arcs_size, -size);
1530 		buf->b_data = NULL;
1531 
1532 		/*
1533 		 * If we're destroying a duplicate buffer make sure
1534 		 * that the appropriate statistics are updated.
1535 		 */
1536 		if (buf->b_hdr->b_datacnt > 1 &&
1537 		    buf->b_hdr->b_type == ARC_BUFC_DATA) {
1538 			ARCSTAT_BUMPDOWN(arcstat_duplicate_buffers);
1539 			ARCSTAT_INCR(arcstat_duplicate_buffers_size, -size);
1540 		}
1541 		ASSERT(buf->b_hdr->b_datacnt > 0);
1542 		buf->b_hdr->b_datacnt -= 1;
1543 	}
1544 
1545 	/* only remove the buf if requested */
1546 	if (!all)
1547 		return;
1548 
1549 	/* remove the buf from the hdr list */
1550 	for (bufp = &buf->b_hdr->b_buf; *bufp != buf; bufp = &(*bufp)->b_next)
1551 		continue;
1552 	*bufp = buf->b_next;
1553 	buf->b_next = NULL;
1554 
1555 	ASSERT(buf->b_efunc == NULL);
1556 
1557 	/* clean up the buf */
1558 	buf->b_hdr = NULL;
1559 	kmem_cache_free(buf_cache, buf);
1560 }
1561 
1562 static void
1563 arc_hdr_destroy(arc_buf_hdr_t *hdr)
1564 {
1565 	ASSERT(refcount_is_zero(&hdr->b_refcnt));
1566 	ASSERT3P(hdr->b_state, ==, arc_anon);
1567 	ASSERT(!HDR_IO_IN_PROGRESS(hdr));
1568 	l2arc_buf_hdr_t *l2hdr = hdr->b_l2hdr;
1569 
1570 	if (l2hdr != NULL) {
1571 		boolean_t buflist_held = MUTEX_HELD(&l2arc_buflist_mtx);
1572 		/*
1573 		 * To prevent arc_free() and l2arc_evict() from
1574 		 * attempting to free the same buffer at the same time,
1575 		 * a FREE_IN_PROGRESS flag is given to arc_free() to
1576 		 * give it priority.  l2arc_evict() can't destroy this
1577 		 * header while we are waiting on l2arc_buflist_mtx.
1578 		 *
1579 		 * The hdr may be removed from l2ad_buflist before we
1580 		 * grab l2arc_buflist_mtx, so b_l2hdr is rechecked.
1581 		 */
1582 		if (!buflist_held) {
1583 			mutex_enter(&l2arc_buflist_mtx);
1584 			l2hdr = hdr->b_l2hdr;
1585 		}
1586 
1587 		if (l2hdr != NULL) {
1588 			list_remove(l2hdr->b_dev->l2ad_buflist, hdr);
1589 			ARCSTAT_INCR(arcstat_l2_size, -hdr->b_size);
1590 			ARCSTAT_INCR(arcstat_l2_asize, -l2hdr->b_asize);
1591 			kmem_free(l2hdr, sizeof (l2arc_buf_hdr_t));
1592 			if (hdr->b_state == arc_l2c_only)
1593 				l2arc_hdr_stat_remove();
1594 			hdr->b_l2hdr = NULL;
1595 		}
1596 
1597 		if (!buflist_held)
1598 			mutex_exit(&l2arc_buflist_mtx);
1599 	}
1600 
1601 	if (!BUF_EMPTY(hdr)) {
1602 		ASSERT(!HDR_IN_HASH_TABLE(hdr));
1603 		buf_discard_identity(hdr);
1604 	}
1605 	while (hdr->b_buf) {
1606 		arc_buf_t *buf = hdr->b_buf;
1607 
1608 		if (buf->b_efunc) {
1609 			mutex_enter(&arc_eviction_mtx);
1610 			mutex_enter(&buf->b_evict_lock);
1611 			ASSERT(buf->b_hdr != NULL);
1612 			arc_buf_destroy(hdr->b_buf, FALSE, FALSE);
1613 			hdr->b_buf = buf->b_next;
1614 			buf->b_hdr = &arc_eviction_hdr;
1615 			buf->b_next = arc_eviction_list;
1616 			arc_eviction_list = buf;
1617 			mutex_exit(&buf->b_evict_lock);
1618 			mutex_exit(&arc_eviction_mtx);
1619 		} else {
1620 			arc_buf_destroy(hdr->b_buf, FALSE, TRUE);
1621 		}
1622 	}
1623 	if (hdr->b_freeze_cksum != NULL) {
1624 		kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t));
1625 		hdr->b_freeze_cksum = NULL;
1626 	}
1627 	if (hdr->b_thawed) {
1628 		kmem_free(hdr->b_thawed, 1);
1629 		hdr->b_thawed = NULL;
1630 	}
1631 
1632 	ASSERT(!list_link_active(&hdr->b_arc_node));
1633 	ASSERT3P(hdr->b_hash_next, ==, NULL);
1634 	ASSERT3P(hdr->b_acb, ==, NULL);
1635 	kmem_cache_free(hdr_cache, hdr);
1636 }
1637 
1638 void
1639 arc_buf_free(arc_buf_t *buf, void *tag)
1640 {
1641 	arc_buf_hdr_t *hdr = buf->b_hdr;
1642 	int hashed = hdr->b_state != arc_anon;
1643 
1644 	ASSERT(buf->b_efunc == NULL);
1645 	ASSERT(buf->b_data != NULL);
1646 
1647 	if (hashed) {
1648 		kmutex_t *hash_lock = HDR_LOCK(hdr);
1649 
1650 		mutex_enter(hash_lock);
1651 		hdr = buf->b_hdr;
1652 		ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
1653 
1654 		(void) remove_reference(hdr, hash_lock, tag);
1655 		if (hdr->b_datacnt > 1) {
1656 			arc_buf_destroy(buf, FALSE, TRUE);
1657 		} else {
1658 			ASSERT(buf == hdr->b_buf);
1659 			ASSERT(buf->b_efunc == NULL);
1660 			hdr->b_flags |= ARC_BUF_AVAILABLE;
1661 		}
1662 		mutex_exit(hash_lock);
1663 	} else if (HDR_IO_IN_PROGRESS(hdr)) {
1664 		int destroy_hdr;
1665 		/*
1666 		 * We are in the middle of an async write.  Don't destroy
1667 		 * this buffer unless the write completes before we finish
1668 		 * decrementing the reference count.
1669 		 */
1670 		mutex_enter(&arc_eviction_mtx);
1671 		(void) remove_reference(hdr, NULL, tag);
1672 		ASSERT(refcount_is_zero(&hdr->b_refcnt));
1673 		destroy_hdr = !HDR_IO_IN_PROGRESS(hdr);
1674 		mutex_exit(&arc_eviction_mtx);
1675 		if (destroy_hdr)
1676 			arc_hdr_destroy(hdr);
1677 	} else {
1678 		if (remove_reference(hdr, NULL, tag) > 0)
1679 			arc_buf_destroy(buf, FALSE, TRUE);
1680 		else
1681 			arc_hdr_destroy(hdr);
1682 	}
1683 }
1684 
1685 boolean_t
1686 arc_buf_remove_ref(arc_buf_t *buf, void* tag)
1687 {
1688 	arc_buf_hdr_t *hdr = buf->b_hdr;
1689 	kmutex_t *hash_lock = HDR_LOCK(hdr);
1690 	boolean_t no_callback = (buf->b_efunc == NULL);
1691 
1692 	if (hdr->b_state == arc_anon) {
1693 		ASSERT(hdr->b_datacnt == 1);
1694 		arc_buf_free(buf, tag);
1695 		return (no_callback);
1696 	}
1697 
1698 	mutex_enter(hash_lock);
1699 	hdr = buf->b_hdr;
1700 	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
1701 	ASSERT(hdr->b_state != arc_anon);
1702 	ASSERT(buf->b_data != NULL);
1703 
1704 	(void) remove_reference(hdr, hash_lock, tag);
1705 	if (hdr->b_datacnt > 1) {
1706 		if (no_callback)
1707 			arc_buf_destroy(buf, FALSE, TRUE);
1708 	} else if (no_callback) {
1709 		ASSERT(hdr->b_buf == buf && buf->b_next == NULL);
1710 		ASSERT(buf->b_efunc == NULL);
1711 		hdr->b_flags |= ARC_BUF_AVAILABLE;
1712 	}
1713 	ASSERT(no_callback || hdr->b_datacnt > 1 ||
1714 	    refcount_is_zero(&hdr->b_refcnt));
1715 	mutex_exit(hash_lock);
1716 	return (no_callback);
1717 }
1718 
1719 int
1720 arc_buf_size(arc_buf_t *buf)
1721 {
1722 	return (buf->b_hdr->b_size);
1723 }
1724 
1725 /*
1726  * Called from the DMU to determine if the current buffer should be
1727  * evicted. In order to ensure proper locking, the eviction must be initiated
1728  * from the DMU. Return true if the buffer is associated with user data and
1729  * duplicate buffers still exist.
1730  */
1731 boolean_t
1732 arc_buf_eviction_needed(arc_buf_t *buf)
1733 {
1734 	arc_buf_hdr_t *hdr;
1735 	boolean_t evict_needed = B_FALSE;
1736 
1737 	if (zfs_disable_dup_eviction)
1738 		return (B_FALSE);
1739 
1740 	mutex_enter(&buf->b_evict_lock);
1741 	hdr = buf->b_hdr;
1742 	if (hdr == NULL) {
1743 		/*
1744 		 * We are in arc_do_user_evicts(); let that function
1745 		 * perform the eviction.
1746 		 */
1747 		ASSERT(buf->b_data == NULL);
1748 		mutex_exit(&buf->b_evict_lock);
1749 		return (B_FALSE);
1750 	} else if (buf->b_data == NULL) {
1751 		/*
1752 		 * We have already been added to the arc eviction list;
1753 		 * recommend eviction.
1754 		 */
1755 		ASSERT3P(hdr, ==, &arc_eviction_hdr);
1756 		mutex_exit(&buf->b_evict_lock);
1757 		return (B_TRUE);
1758 	}
1759 
1760 	if (hdr->b_datacnt > 1 && hdr->b_type == ARC_BUFC_DATA)
1761 		evict_needed = B_TRUE;
1762 
1763 	mutex_exit(&buf->b_evict_lock);
1764 	return (evict_needed);
1765 }
1766 
1767 /*
1768  * Evict buffers from list until we've removed the specified number of
1769  * bytes.  Move the removed buffers to the appropriate evict state.
1770  * If the recycle flag is set, then attempt to "recycle" a buffer:
1771  * - look for a buffer to evict that is `bytes' long.
1772  * - return the data block from this buffer rather than freeing it.
1773  * This flag is used by callers that are trying to make space for a
1774  * new buffer in a full arc cache.
1775  *
1776  * This function makes a "best effort".  It skips over any buffers
1777  * it can't get a hash_lock on, and so may not catch all candidates.
1778  * It may also return without evicting as much space as requested.
1779  */
1780 static void *
1781 arc_evict(arc_state_t *state, uint64_t spa, int64_t bytes, boolean_t recycle,
1782     arc_buf_contents_t type)
1783 {
1784 	arc_state_t *evicted_state;
1785 	uint64_t bytes_evicted = 0, skipped = 0, missed = 0;
1786 	arc_buf_hdr_t *ab, *ab_prev = NULL;
1787 	list_t *list = &state->arcs_list[type];
1788 	kmutex_t *hash_lock;
1789 	boolean_t have_lock;
1790 	void *stolen = NULL;
1791 	arc_buf_hdr_t marker = { 0 };
1792 	int count = 0;
1793 
1794 	ASSERT(state == arc_mru || state == arc_mfu);
1795 
1796 	evicted_state = (state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost;
1797 
1798 	mutex_enter(&state->arcs_mtx);
1799 	mutex_enter(&evicted_state->arcs_mtx);
1800 
1801 	for (ab = list_tail(list); ab; ab = ab_prev) {
1802 		ab_prev = list_prev(list, ab);
1803 		/* prefetch buffers have a minimum lifespan */
1804 		if (HDR_IO_IN_PROGRESS(ab) ||
1805 		    (spa && ab->b_spa != spa) ||
1806 		    (ab->b_flags & (ARC_PREFETCH|ARC_INDIRECT) &&
1807 		    ddi_get_lbolt() - ab->b_arc_access <
1808 		    arc_min_prefetch_lifespan)) {
1809 			skipped++;
1810 			continue;
1811 		}
1812 		/* "lookahead" for better eviction candidate */
1813 		if (recycle && ab->b_size != bytes &&
1814 		    ab_prev && ab_prev->b_size == bytes)
1815 			continue;
1816 
1817 		/* ignore markers */
1818 		if (ab->b_spa == 0)
1819 			continue;
1820 
1821 		/*
1822 		 * It may take a long time to evict all the bufs requested.
1823 		 * To avoid blocking all arc activity, periodically drop
1824 		 * the arcs_mtx and give other threads a chance to run
1825 		 * before reacquiring the lock.
1826 		 *
1827 		 * If we are looking for a buffer to recycle, we are in
1828 		 * the hot code path, so don't sleep.
1829 		 */
1830 		if (!recycle && count++ > arc_evict_iterations) {
1831 			list_insert_after(list, ab, &marker);
1832 			mutex_exit(&evicted_state->arcs_mtx);
1833 			mutex_exit(&state->arcs_mtx);
1834 			kpreempt(KPREEMPT_SYNC);
1835 			mutex_enter(&state->arcs_mtx);
1836 			mutex_enter(&evicted_state->arcs_mtx);
1837 			ab_prev = list_prev(list, &marker);
1838 			list_remove(list, &marker);
1839 			count = 0;
1840 			continue;
1841 		}
1842 
1843 		hash_lock = HDR_LOCK(ab);
1844 		have_lock = MUTEX_HELD(hash_lock);
1845 		if (have_lock || mutex_tryenter(hash_lock)) {
1846 			ASSERT0(refcount_count(&ab->b_refcnt));
1847 			ASSERT(ab->b_datacnt > 0);
1848 			while (ab->b_buf) {
1849 				arc_buf_t *buf = ab->b_buf;
1850 				if (!mutex_tryenter(&buf->b_evict_lock)) {
1851 					missed += 1;
1852 					break;
1853 				}
1854 				if (buf->b_data) {
1855 					bytes_evicted += ab->b_size;
1856 					if (recycle && ab->b_type == type &&
1857 					    ab->b_size == bytes &&
1858 					    !HDR_L2_WRITING(ab)) {
1859 						stolen = buf->b_data;
1860 						recycle = FALSE;
1861 					}
1862 				}
1863 				if (buf->b_efunc) {
1864 					mutex_enter(&arc_eviction_mtx);
1865 					arc_buf_destroy(buf,
1866 					    buf->b_data == stolen, FALSE);
1867 					ab->b_buf = buf->b_next;
1868 					buf->b_hdr = &arc_eviction_hdr;
1869 					buf->b_next = arc_eviction_list;
1870 					arc_eviction_list = buf;
1871 					mutex_exit(&arc_eviction_mtx);
1872 					mutex_exit(&buf->b_evict_lock);
1873 				} else {
1874 					mutex_exit(&buf->b_evict_lock);
1875 					arc_buf_destroy(buf,
1876 					    buf->b_data == stolen, TRUE);
1877 				}
1878 			}
1879 
1880 			if (ab->b_l2hdr) {
1881 				ARCSTAT_INCR(arcstat_evict_l2_cached,
1882 				    ab->b_size);
1883 			} else {
1884 				if (l2arc_write_eligible(ab->b_spa, ab)) {
1885 					ARCSTAT_INCR(arcstat_evict_l2_eligible,
1886 					    ab->b_size);
1887 				} else {
1888 					ARCSTAT_INCR(
1889 					    arcstat_evict_l2_ineligible,
1890 					    ab->b_size);
1891 				}
1892 			}
1893 
1894 			if (ab->b_datacnt == 0) {
1895 				arc_change_state(evicted_state, ab, hash_lock);
1896 				ASSERT(HDR_IN_HASH_TABLE(ab));
1897 				ab->b_flags |= ARC_IN_HASH_TABLE;
1898 				ab->b_flags &= ~ARC_BUF_AVAILABLE;
1899 				DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, ab);
1900 			}
1901 			if (!have_lock)
1902 				mutex_exit(hash_lock);
1903 			if (bytes >= 0 && bytes_evicted >= bytes)
1904 				break;
1905 		} else {
1906 			missed += 1;
1907 		}
1908 	}
1909 
1910 	mutex_exit(&evicted_state->arcs_mtx);
1911 	mutex_exit(&state->arcs_mtx);
1912 
1913 	if (bytes_evicted < bytes)
1914 		dprintf("only evicted %lld bytes from %x",
1915 		    (longlong_t)bytes_evicted, state);
1916 
1917 	if (skipped)
1918 		ARCSTAT_INCR(arcstat_evict_skip, skipped);
1919 
1920 	if (missed)
1921 		ARCSTAT_INCR(arcstat_mutex_miss, missed);
1922 
1923 	/*
1924 	 * Note: we have just evicted some data into the ghost state,
1925 	 * potentially putting the ghost size over the desired size.  Rather
1926 	 * that evicting from the ghost list in this hot code path, leave
1927 	 * this chore to the arc_reclaim_thread().
1928 	 */
1929 
1930 	return (stolen);
1931 }
1932 
1933 /*
1934  * Remove buffers from list until we've removed the specified number of
1935  * bytes.  Destroy the buffers that are removed.
1936  */
1937 static void
1938 arc_evict_ghost(arc_state_t *state, uint64_t spa, int64_t bytes)
1939 {
1940 	arc_buf_hdr_t *ab, *ab_prev;
1941 	arc_buf_hdr_t marker = { 0 };
1942 	list_t *list = &state->arcs_list[ARC_BUFC_DATA];
1943 	kmutex_t *hash_lock;
1944 	uint64_t bytes_deleted = 0;
1945 	uint64_t bufs_skipped = 0;
1946 	int count = 0;
1947 
1948 	ASSERT(GHOST_STATE(state));
1949 top:
1950 	mutex_enter(&state->arcs_mtx);
1951 	for (ab = list_tail(list); ab; ab = ab_prev) {
1952 		ab_prev = list_prev(list, ab);
1953 		if (ab->b_type > ARC_BUFC_NUMTYPES)
1954 			panic("invalid ab=%p", (void *)ab);
1955 		if (spa && ab->b_spa != spa)
1956 			continue;
1957 
1958 		/* ignore markers */
1959 		if (ab->b_spa == 0)
1960 			continue;
1961 
1962 		hash_lock = HDR_LOCK(ab);
1963 		/* caller may be trying to modify this buffer, skip it */
1964 		if (MUTEX_HELD(hash_lock))
1965 			continue;
1966 
1967 		/*
1968 		 * It may take a long time to evict all the bufs requested.
1969 		 * To avoid blocking all arc activity, periodically drop
1970 		 * the arcs_mtx and give other threads a chance to run
1971 		 * before reacquiring the lock.
1972 		 */
1973 		if (count++ > arc_evict_iterations) {
1974 			list_insert_after(list, ab, &marker);
1975 			mutex_exit(&state->arcs_mtx);
1976 			kpreempt(KPREEMPT_SYNC);
1977 			mutex_enter(&state->arcs_mtx);
1978 			ab_prev = list_prev(list, &marker);
1979 			list_remove(list, &marker);
1980 			count = 0;
1981 			continue;
1982 		}
1983 		if (mutex_tryenter(hash_lock)) {
1984 			ASSERT(!HDR_IO_IN_PROGRESS(ab));
1985 			ASSERT(ab->b_buf == NULL);
1986 			ARCSTAT_BUMP(arcstat_deleted);
1987 			bytes_deleted += ab->b_size;
1988 
1989 			if (ab->b_l2hdr != NULL) {
1990 				/*
1991 				 * This buffer is cached on the 2nd Level ARC;
1992 				 * don't destroy the header.
1993 				 */
1994 				arc_change_state(arc_l2c_only, ab, hash_lock);
1995 				mutex_exit(hash_lock);
1996 			} else {
1997 				arc_change_state(arc_anon, ab, hash_lock);
1998 				mutex_exit(hash_lock);
1999 				arc_hdr_destroy(ab);
2000 			}
2001 
2002 			DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, ab);
2003 			if (bytes >= 0 && bytes_deleted >= bytes)
2004 				break;
2005 		} else if (bytes < 0) {
2006 			/*
2007 			 * Insert a list marker and then wait for the
2008 			 * hash lock to become available. Once its
2009 			 * available, restart from where we left off.
2010 			 */
2011 			list_insert_after(list, ab, &marker);
2012 			mutex_exit(&state->arcs_mtx);
2013 			mutex_enter(hash_lock);
2014 			mutex_exit(hash_lock);
2015 			mutex_enter(&state->arcs_mtx);
2016 			ab_prev = list_prev(list, &marker);
2017 			list_remove(list, &marker);
2018 		} else {
2019 			bufs_skipped += 1;
2020 		}
2021 
2022 	}
2023 	mutex_exit(&state->arcs_mtx);
2024 
2025 	if (list == &state->arcs_list[ARC_BUFC_DATA] &&
2026 	    (bytes < 0 || bytes_deleted < bytes)) {
2027 		list = &state->arcs_list[ARC_BUFC_METADATA];
2028 		goto top;
2029 	}
2030 
2031 	if (bufs_skipped) {
2032 		ARCSTAT_INCR(arcstat_mutex_miss, bufs_skipped);
2033 		ASSERT(bytes >= 0);
2034 	}
2035 
2036 	if (bytes_deleted < bytes)
2037 		dprintf("only deleted %lld bytes from %p",
2038 		    (longlong_t)bytes_deleted, state);
2039 }
2040 
2041 static void
2042 arc_adjust(void)
2043 {
2044 	int64_t adjustment, delta;
2045 
2046 	/*
2047 	 * Adjust MRU size
2048 	 */
2049 
2050 	adjustment = MIN((int64_t)(arc_size - arc_c),
2051 	    (int64_t)(arc_anon->arcs_size + arc_mru->arcs_size + arc_meta_used -
2052 	    arc_p));
2053 
2054 	if (adjustment > 0 && arc_mru->arcs_lsize[ARC_BUFC_DATA] > 0) {
2055 		delta = MIN(arc_mru->arcs_lsize[ARC_BUFC_DATA], adjustment);
2056 		(void) arc_evict(arc_mru, NULL, delta, FALSE, ARC_BUFC_DATA);
2057 		adjustment -= delta;
2058 	}
2059 
2060 	if (adjustment > 0 && arc_mru->arcs_lsize[ARC_BUFC_METADATA] > 0) {
2061 		delta = MIN(arc_mru->arcs_lsize[ARC_BUFC_METADATA], adjustment);
2062 		(void) arc_evict(arc_mru, NULL, delta, FALSE,
2063 		    ARC_BUFC_METADATA);
2064 	}
2065 
2066 	/*
2067 	 * Adjust MFU size
2068 	 */
2069 
2070 	adjustment = arc_size - arc_c;
2071 
2072 	if (adjustment > 0 && arc_mfu->arcs_lsize[ARC_BUFC_DATA] > 0) {
2073 		delta = MIN(adjustment, arc_mfu->arcs_lsize[ARC_BUFC_DATA]);
2074 		(void) arc_evict(arc_mfu, NULL, delta, FALSE, ARC_BUFC_DATA);
2075 		adjustment -= delta;
2076 	}
2077 
2078 	if (adjustment > 0 && arc_mfu->arcs_lsize[ARC_BUFC_METADATA] > 0) {
2079 		int64_t delta = MIN(adjustment,
2080 		    arc_mfu->arcs_lsize[ARC_BUFC_METADATA]);
2081 		(void) arc_evict(arc_mfu, NULL, delta, FALSE,
2082 		    ARC_BUFC_METADATA);
2083 	}
2084 
2085 	/*
2086 	 * Adjust ghost lists
2087 	 */
2088 
2089 	adjustment = arc_mru->arcs_size + arc_mru_ghost->arcs_size - arc_c;
2090 
2091 	if (adjustment > 0 && arc_mru_ghost->arcs_size > 0) {
2092 		delta = MIN(arc_mru_ghost->arcs_size, adjustment);
2093 		arc_evict_ghost(arc_mru_ghost, NULL, delta);
2094 	}
2095 
2096 	adjustment =
2097 	    arc_mru_ghost->arcs_size + arc_mfu_ghost->arcs_size - arc_c;
2098 
2099 	if (adjustment > 0 && arc_mfu_ghost->arcs_size > 0) {
2100 		delta = MIN(arc_mfu_ghost->arcs_size, adjustment);
2101 		arc_evict_ghost(arc_mfu_ghost, NULL, delta);
2102 	}
2103 }
2104 
2105 static void
2106 arc_do_user_evicts(void)
2107 {
2108 	mutex_enter(&arc_eviction_mtx);
2109 	while (arc_eviction_list != NULL) {
2110 		arc_buf_t *buf = arc_eviction_list;
2111 		arc_eviction_list = buf->b_next;
2112 		mutex_enter(&buf->b_evict_lock);
2113 		buf->b_hdr = NULL;
2114 		mutex_exit(&buf->b_evict_lock);
2115 		mutex_exit(&arc_eviction_mtx);
2116 
2117 		if (buf->b_efunc != NULL)
2118 			VERIFY(buf->b_efunc(buf) == 0);
2119 
2120 		buf->b_efunc = NULL;
2121 		buf->b_private = NULL;
2122 		kmem_cache_free(buf_cache, buf);
2123 		mutex_enter(&arc_eviction_mtx);
2124 	}
2125 	mutex_exit(&arc_eviction_mtx);
2126 }
2127 
2128 /*
2129  * Flush all *evictable* data from the cache for the given spa.
2130  * NOTE: this will not touch "active" (i.e. referenced) data.
2131  */
2132 void
2133 arc_flush(spa_t *spa)
2134 {
2135 	uint64_t guid = 0;
2136 
2137 	if (spa)
2138 		guid = spa_load_guid(spa);
2139 
2140 	while (list_head(&arc_mru->arcs_list[ARC_BUFC_DATA])) {
2141 		(void) arc_evict(arc_mru, guid, -1, FALSE, ARC_BUFC_DATA);
2142 		if (spa)
2143 			break;
2144 	}
2145 	while (list_head(&arc_mru->arcs_list[ARC_BUFC_METADATA])) {
2146 		(void) arc_evict(arc_mru, guid, -1, FALSE, ARC_BUFC_METADATA);
2147 		if (spa)
2148 			break;
2149 	}
2150 	while (list_head(&arc_mfu->arcs_list[ARC_BUFC_DATA])) {
2151 		(void) arc_evict(arc_mfu, guid, -1, FALSE, ARC_BUFC_DATA);
2152 		if (spa)
2153 			break;
2154 	}
2155 	while (list_head(&arc_mfu->arcs_list[ARC_BUFC_METADATA])) {
2156 		(void) arc_evict(arc_mfu, guid, -1, FALSE, ARC_BUFC_METADATA);
2157 		if (spa)
2158 			break;
2159 	}
2160 
2161 	arc_evict_ghost(arc_mru_ghost, guid, -1);
2162 	arc_evict_ghost(arc_mfu_ghost, guid, -1);
2163 
2164 	mutex_enter(&arc_reclaim_thr_lock);
2165 	arc_do_user_evicts();
2166 	mutex_exit(&arc_reclaim_thr_lock);
2167 	ASSERT(spa || arc_eviction_list == NULL);
2168 }
2169 
2170 void
2171 arc_shrink(void)
2172 {
2173 	if (arc_c > arc_c_min) {
2174 		uint64_t to_free;
2175 
2176 #ifdef _KERNEL
2177 		to_free = MAX(arc_c >> arc_shrink_shift, ptob(needfree));
2178 #else
2179 		to_free = arc_c >> arc_shrink_shift;
2180 #endif
2181 		if (arc_c > arc_c_min + to_free)
2182 			atomic_add_64(&arc_c, -to_free);
2183 		else
2184 			arc_c = arc_c_min;
2185 
2186 		atomic_add_64(&arc_p, -(arc_p >> arc_shrink_shift));
2187 		if (arc_c > arc_size)
2188 			arc_c = MAX(arc_size, arc_c_min);
2189 		if (arc_p > arc_c)
2190 			arc_p = (arc_c >> 1);
2191 		ASSERT(arc_c >= arc_c_min);
2192 		ASSERT((int64_t)arc_p >= 0);
2193 	}
2194 
2195 	if (arc_size > arc_c)
2196 		arc_adjust();
2197 }
2198 
2199 /*
2200  * Determine if the system is under memory pressure and is asking
2201  * to reclaim memory. A return value of 1 indicates that the system
2202  * is under memory pressure and that the arc should adjust accordingly.
2203  */
2204 static int
2205 arc_reclaim_needed(void)
2206 {
2207 	uint64_t extra;
2208 
2209 #ifdef _KERNEL
2210 
2211 	if (needfree)
2212 		return (1);
2213 
2214 	/*
2215 	 * take 'desfree' extra pages, so we reclaim sooner, rather than later
2216 	 */
2217 	extra = desfree;
2218 
2219 	/*
2220 	 * check that we're out of range of the pageout scanner.  It starts to
2221 	 * schedule paging if freemem is less than lotsfree and needfree.
2222 	 * lotsfree is the high-water mark for pageout, and needfree is the
2223 	 * number of needed free pages.  We add extra pages here to make sure
2224 	 * the scanner doesn't start up while we're freeing memory.
2225 	 */
2226 	if (freemem < lotsfree + needfree + extra)
2227 		return (1);
2228 
2229 	/*
2230 	 * check to make sure that swapfs has enough space so that anon
2231 	 * reservations can still succeed. anon_resvmem() checks that the
2232 	 * availrmem is greater than swapfs_minfree, and the number of reserved
2233 	 * swap pages.  We also add a bit of extra here just to prevent
2234 	 * circumstances from getting really dire.
2235 	 */
2236 	if (availrmem < swapfs_minfree + swapfs_reserve + extra)
2237 		return (1);
2238 
2239 	/*
2240 	 * Check that we have enough availrmem that memory locking (e.g., via
2241 	 * mlock(3C) or memcntl(2)) can still succeed.  (pages_pp_maximum
2242 	 * stores the number of pages that cannot be locked; when availrmem
2243 	 * drops below pages_pp_maximum, page locking mechanisms such as
2244 	 * page_pp_lock() will fail.)
2245 	 */
2246 	if (availrmem <= pages_pp_maximum)
2247 		return (1);
2248 
2249 #if defined(__i386)
2250 	/*
2251 	 * If we're on an i386 platform, it's possible that we'll exhaust the
2252 	 * kernel heap space before we ever run out of available physical
2253 	 * memory.  Most checks of the size of the heap_area compare against
2254 	 * tune.t_minarmem, which is the minimum available real memory that we
2255 	 * can have in the system.  However, this is generally fixed at 25 pages
2256 	 * which is so low that it's useless.  In this comparison, we seek to
2257 	 * calculate the total heap-size, and reclaim if more than 3/4ths of the
2258 	 * heap is allocated.  (Or, in the calculation, if less than 1/4th is
2259 	 * free)
2260 	 */
2261 	if (vmem_size(heap_arena, VMEM_FREE) <
2262 	    (vmem_size(heap_arena, VMEM_FREE | VMEM_ALLOC) >> 2))
2263 		return (1);
2264 #endif
2265 
2266 	/*
2267 	 * If zio data pages are being allocated out of a separate heap segment,
2268 	 * then enforce that the size of available vmem for this arena remains
2269 	 * above about 1/16th free.
2270 	 *
2271 	 * Note: The 1/16th arena free requirement was put in place
2272 	 * to aggressively evict memory from the arc in order to avoid
2273 	 * memory fragmentation issues.
2274 	 */
2275 	if (zio_arena != NULL &&
2276 	    vmem_size(zio_arena, VMEM_FREE) <
2277 	    (vmem_size(zio_arena, VMEM_ALLOC) >> 4))
2278 		return (1);
2279 #else
2280 	if (spa_get_random(100) == 0)
2281 		return (1);
2282 #endif
2283 	return (0);
2284 }
2285 
2286 static void
2287 arc_kmem_reap_now(arc_reclaim_strategy_t strat)
2288 {
2289 	size_t			i;
2290 	kmem_cache_t		*prev_cache = NULL;
2291 	kmem_cache_t		*prev_data_cache = NULL;
2292 	extern kmem_cache_t	*zio_buf_cache[];
2293 	extern kmem_cache_t	*zio_data_buf_cache[];
2294 
2295 #ifdef _KERNEL
2296 	if (arc_meta_used >= arc_meta_limit) {
2297 		/*
2298 		 * We are exceeding our meta-data cache limit.
2299 		 * Purge some DNLC entries to release holds on meta-data.
2300 		 */
2301 		dnlc_reduce_cache((void *)(uintptr_t)arc_reduce_dnlc_percent);
2302 	}
2303 #if defined(__i386)
2304 	/*
2305 	 * Reclaim unused memory from all kmem caches.
2306 	 */
2307 	kmem_reap();
2308 #endif
2309 #endif
2310 
2311 	/*
2312 	 * An aggressive reclamation will shrink the cache size as well as
2313 	 * reap free buffers from the arc kmem caches.
2314 	 */
2315 	if (strat == ARC_RECLAIM_AGGR)
2316 		arc_shrink();
2317 
2318 	for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) {
2319 		if (zio_buf_cache[i] != prev_cache) {
2320 			prev_cache = zio_buf_cache[i];
2321 			kmem_cache_reap_now(zio_buf_cache[i]);
2322 		}
2323 		if (zio_data_buf_cache[i] != prev_data_cache) {
2324 			prev_data_cache = zio_data_buf_cache[i];
2325 			kmem_cache_reap_now(zio_data_buf_cache[i]);
2326 		}
2327 	}
2328 	kmem_cache_reap_now(buf_cache);
2329 	kmem_cache_reap_now(hdr_cache);
2330 
2331 	/*
2332 	 * Ask the vmem areana to reclaim unused memory from its
2333 	 * quantum caches.
2334 	 */
2335 	if (zio_arena != NULL && strat == ARC_RECLAIM_AGGR)
2336 		vmem_qcache_reap(zio_arena);
2337 }
2338 
2339 static void
2340 arc_reclaim_thread(void)
2341 {
2342 	clock_t			growtime = 0;
2343 	arc_reclaim_strategy_t	last_reclaim = ARC_RECLAIM_CONS;
2344 	callb_cpr_t		cpr;
2345 
2346 	CALLB_CPR_INIT(&cpr, &arc_reclaim_thr_lock, callb_generic_cpr, FTAG);
2347 
2348 	mutex_enter(&arc_reclaim_thr_lock);
2349 	while (arc_thread_exit == 0) {
2350 		if (arc_reclaim_needed()) {
2351 
2352 			if (arc_no_grow) {
2353 				if (last_reclaim == ARC_RECLAIM_CONS) {
2354 					last_reclaim = ARC_RECLAIM_AGGR;
2355 				} else {
2356 					last_reclaim = ARC_RECLAIM_CONS;
2357 				}
2358 			} else {
2359 				arc_no_grow = TRUE;
2360 				last_reclaim = ARC_RECLAIM_AGGR;
2361 				membar_producer();
2362 			}
2363 
2364 			/* reset the growth delay for every reclaim */
2365 			growtime = ddi_get_lbolt() + (arc_grow_retry * hz);
2366 
2367 			arc_kmem_reap_now(last_reclaim);
2368 			arc_warm = B_TRUE;
2369 
2370 		} else if (arc_no_grow && ddi_get_lbolt() >= growtime) {
2371 			arc_no_grow = FALSE;
2372 		}
2373 
2374 		arc_adjust();
2375 
2376 		if (arc_eviction_list != NULL)
2377 			arc_do_user_evicts();
2378 
2379 		/* block until needed, or one second, whichever is shorter */
2380 		CALLB_CPR_SAFE_BEGIN(&cpr);
2381 		(void) cv_timedwait(&arc_reclaim_thr_cv,
2382 		    &arc_reclaim_thr_lock, (ddi_get_lbolt() + hz));
2383 		CALLB_CPR_SAFE_END(&cpr, &arc_reclaim_thr_lock);
2384 	}
2385 
2386 	arc_thread_exit = 0;
2387 	cv_broadcast(&arc_reclaim_thr_cv);
2388 	CALLB_CPR_EXIT(&cpr);		/* drops arc_reclaim_thr_lock */
2389 	thread_exit();
2390 }
2391 
2392 /*
2393  * Adapt arc info given the number of bytes we are trying to add and
2394  * the state that we are comming from.  This function is only called
2395  * when we are adding new content to the cache.
2396  */
2397 static void
2398 arc_adapt(int bytes, arc_state_t *state)
2399 {
2400 	int mult;
2401 	uint64_t arc_p_min = (arc_c >> arc_p_min_shift);
2402 
2403 	if (state == arc_l2c_only)
2404 		return;
2405 
2406 	ASSERT(bytes > 0);
2407 	/*
2408 	 * Adapt the target size of the MRU list:
2409 	 *	- if we just hit in the MRU ghost list, then increase
2410 	 *	  the target size of the MRU list.
2411 	 *	- if we just hit in the MFU ghost list, then increase
2412 	 *	  the target size of the MFU list by decreasing the
2413 	 *	  target size of the MRU list.
2414 	 */
2415 	if (state == arc_mru_ghost) {
2416 		mult = ((arc_mru_ghost->arcs_size >= arc_mfu_ghost->arcs_size) ?
2417 		    1 : (arc_mfu_ghost->arcs_size/arc_mru_ghost->arcs_size));
2418 		mult = MIN(mult, 10); /* avoid wild arc_p adjustment */
2419 
2420 		arc_p = MIN(arc_c - arc_p_min, arc_p + bytes * mult);
2421 	} else if (state == arc_mfu_ghost) {
2422 		uint64_t delta;
2423 
2424 		mult = ((arc_mfu_ghost->arcs_size >= arc_mru_ghost->arcs_size) ?
2425 		    1 : (arc_mru_ghost->arcs_size/arc_mfu_ghost->arcs_size));
2426 		mult = MIN(mult, 10);
2427 
2428 		delta = MIN(bytes * mult, arc_p);
2429 		arc_p = MAX(arc_p_min, arc_p - delta);
2430 	}
2431 	ASSERT((int64_t)arc_p >= 0);
2432 
2433 	if (arc_reclaim_needed()) {
2434 		cv_signal(&arc_reclaim_thr_cv);
2435 		return;
2436 	}
2437 
2438 	if (arc_no_grow)
2439 		return;
2440 
2441 	if (arc_c >= arc_c_max)
2442 		return;
2443 
2444 	/*
2445 	 * If we're within (2 * maxblocksize) bytes of the target
2446 	 * cache size, increment the target cache size
2447 	 */
2448 	if (arc_size > arc_c - (2ULL << SPA_MAXBLOCKSHIFT)) {
2449 		atomic_add_64(&arc_c, (int64_t)bytes);
2450 		if (arc_c > arc_c_max)
2451 			arc_c = arc_c_max;
2452 		else if (state == arc_anon)
2453 			atomic_add_64(&arc_p, (int64_t)bytes);
2454 		if (arc_p > arc_c)
2455 			arc_p = arc_c;
2456 	}
2457 	ASSERT((int64_t)arc_p >= 0);
2458 }
2459 
2460 /*
2461  * Check if the cache has reached its limits and eviction is required
2462  * prior to insert.
2463  */
2464 static int
2465 arc_evict_needed(arc_buf_contents_t type)
2466 {
2467 	if (type == ARC_BUFC_METADATA && arc_meta_used >= arc_meta_limit)
2468 		return (1);
2469 
2470 	if (arc_reclaim_needed())
2471 		return (1);
2472 
2473 	return (arc_size > arc_c);
2474 }
2475 
2476 /*
2477  * The buffer, supplied as the first argument, needs a data block.
2478  * So, if we are at cache max, determine which cache should be victimized.
2479  * We have the following cases:
2480  *
2481  * 1. Insert for MRU, p > sizeof(arc_anon + arc_mru) ->
2482  * In this situation if we're out of space, but the resident size of the MFU is
2483  * under the limit, victimize the MFU cache to satisfy this insertion request.
2484  *
2485  * 2. Insert for MRU, p <= sizeof(arc_anon + arc_mru) ->
2486  * Here, we've used up all of the available space for the MRU, so we need to
2487  * evict from our own cache instead.  Evict from the set of resident MRU
2488  * entries.
2489  *
2490  * 3. Insert for MFU (c - p) > sizeof(arc_mfu) ->
2491  * c minus p represents the MFU space in the cache, since p is the size of the
2492  * cache that is dedicated to the MRU.  In this situation there's still space on
2493  * the MFU side, so the MRU side needs to be victimized.
2494  *
2495  * 4. Insert for MFU (c - p) < sizeof(arc_mfu) ->
2496  * MFU's resident set is consuming more space than it has been allotted.  In
2497  * this situation, we must victimize our own cache, the MFU, for this insertion.
2498  */
2499 static void
2500 arc_get_data_buf(arc_buf_t *buf)
2501 {
2502 	arc_state_t		*state = buf->b_hdr->b_state;
2503 	uint64_t		size = buf->b_hdr->b_size;
2504 	arc_buf_contents_t	type = buf->b_hdr->b_type;
2505 
2506 	arc_adapt(size, state);
2507 
2508 	/*
2509 	 * We have not yet reached cache maximum size,
2510 	 * just allocate a new buffer.
2511 	 */
2512 	if (!arc_evict_needed(type)) {
2513 		if (type == ARC_BUFC_METADATA) {
2514 			buf->b_data = zio_buf_alloc(size);
2515 			arc_space_consume(size, ARC_SPACE_DATA);
2516 		} else {
2517 			ASSERT(type == ARC_BUFC_DATA);
2518 			buf->b_data = zio_data_buf_alloc(size);
2519 			ARCSTAT_INCR(arcstat_data_size, size);
2520 			atomic_add_64(&arc_size, size);
2521 		}
2522 		goto out;
2523 	}
2524 
2525 	/*
2526 	 * If we are prefetching from the mfu ghost list, this buffer
2527 	 * will end up on the mru list; so steal space from there.
2528 	 */
2529 	if (state == arc_mfu_ghost)
2530 		state = buf->b_hdr->b_flags & ARC_PREFETCH ? arc_mru : arc_mfu;
2531 	else if (state == arc_mru_ghost)
2532 		state = arc_mru;
2533 
2534 	if (state == arc_mru || state == arc_anon) {
2535 		uint64_t mru_used = arc_anon->arcs_size + arc_mru->arcs_size;
2536 		state = (arc_mfu->arcs_lsize[type] >= size &&
2537 		    arc_p > mru_used) ? arc_mfu : arc_mru;
2538 	} else {
2539 		/* MFU cases */
2540 		uint64_t mfu_space = arc_c - arc_p;
2541 		state =  (arc_mru->arcs_lsize[type] >= size &&
2542 		    mfu_space > arc_mfu->arcs_size) ? arc_mru : arc_mfu;
2543 	}
2544 	if ((buf->b_data = arc_evict(state, NULL, size, TRUE, type)) == NULL) {
2545 		if (type == ARC_BUFC_METADATA) {
2546 			buf->b_data = zio_buf_alloc(size);
2547 			arc_space_consume(size, ARC_SPACE_DATA);
2548 		} else {
2549 			ASSERT(type == ARC_BUFC_DATA);
2550 			buf->b_data = zio_data_buf_alloc(size);
2551 			ARCSTAT_INCR(arcstat_data_size, size);
2552 			atomic_add_64(&arc_size, size);
2553 		}
2554 		ARCSTAT_BUMP(arcstat_recycle_miss);
2555 	}
2556 	ASSERT(buf->b_data != NULL);
2557 out:
2558 	/*
2559 	 * Update the state size.  Note that ghost states have a
2560 	 * "ghost size" and so don't need to be updated.
2561 	 */
2562 	if (!GHOST_STATE(buf->b_hdr->b_state)) {
2563 		arc_buf_hdr_t *hdr = buf->b_hdr;
2564 
2565 		atomic_add_64(&hdr->b_state->arcs_size, size);
2566 		if (list_link_active(&hdr->b_arc_node)) {
2567 			ASSERT(refcount_is_zero(&hdr->b_refcnt));
2568 			atomic_add_64(&hdr->b_state->arcs_lsize[type], size);
2569 		}
2570 		/*
2571 		 * If we are growing the cache, and we are adding anonymous
2572 		 * data, and we have outgrown arc_p, update arc_p
2573 		 */
2574 		if (arc_size < arc_c && hdr->b_state == arc_anon &&
2575 		    arc_anon->arcs_size + arc_mru->arcs_size > arc_p)
2576 			arc_p = MIN(arc_c, arc_p + size);
2577 	}
2578 }
2579 
2580 /*
2581  * This routine is called whenever a buffer is accessed.
2582  * NOTE: the hash lock is dropped in this function.
2583  */
2584 static void
2585 arc_access(arc_buf_hdr_t *buf, kmutex_t *hash_lock)
2586 {
2587 	clock_t now;
2588 
2589 	ASSERT(MUTEX_HELD(hash_lock));
2590 
2591 	if (buf->b_state == arc_anon) {
2592 		/*
2593 		 * This buffer is not in the cache, and does not
2594 		 * appear in our "ghost" list.  Add the new buffer
2595 		 * to the MRU state.
2596 		 */
2597 
2598 		ASSERT(buf->b_arc_access == 0);
2599 		buf->b_arc_access = ddi_get_lbolt();
2600 		DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, buf);
2601 		arc_change_state(arc_mru, buf, hash_lock);
2602 
2603 	} else if (buf->b_state == arc_mru) {
2604 		now = ddi_get_lbolt();
2605 
2606 		/*
2607 		 * If this buffer is here because of a prefetch, then either:
2608 		 * - clear the flag if this is a "referencing" read
2609 		 *   (any subsequent access will bump this into the MFU state).
2610 		 * or
2611 		 * - move the buffer to the head of the list if this is
2612 		 *   another prefetch (to make it less likely to be evicted).
2613 		 */
2614 		if ((buf->b_flags & ARC_PREFETCH) != 0) {
2615 			if (refcount_count(&buf->b_refcnt) == 0) {
2616 				ASSERT(list_link_active(&buf->b_arc_node));
2617 			} else {
2618 				buf->b_flags &= ~ARC_PREFETCH;
2619 				ARCSTAT_BUMP(arcstat_mru_hits);
2620 			}
2621 			buf->b_arc_access = now;
2622 			return;
2623 		}
2624 
2625 		/*
2626 		 * This buffer has been "accessed" only once so far,
2627 		 * but it is still in the cache. Move it to the MFU
2628 		 * state.
2629 		 */
2630 		if (now > buf->b_arc_access + ARC_MINTIME) {
2631 			/*
2632 			 * More than 125ms have passed since we
2633 			 * instantiated this buffer.  Move it to the
2634 			 * most frequently used state.
2635 			 */
2636 			buf->b_arc_access = now;
2637 			DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
2638 			arc_change_state(arc_mfu, buf, hash_lock);
2639 		}
2640 		ARCSTAT_BUMP(arcstat_mru_hits);
2641 	} else if (buf->b_state == arc_mru_ghost) {
2642 		arc_state_t	*new_state;
2643 		/*
2644 		 * This buffer has been "accessed" recently, but
2645 		 * was evicted from the cache.  Move it to the
2646 		 * MFU state.
2647 		 */
2648 
2649 		if (buf->b_flags & ARC_PREFETCH) {
2650 			new_state = arc_mru;
2651 			if (refcount_count(&buf->b_refcnt) > 0)
2652 				buf->b_flags &= ~ARC_PREFETCH;
2653 			DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, buf);
2654 		} else {
2655 			new_state = arc_mfu;
2656 			DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
2657 		}
2658 
2659 		buf->b_arc_access = ddi_get_lbolt();
2660 		arc_change_state(new_state, buf, hash_lock);
2661 
2662 		ARCSTAT_BUMP(arcstat_mru_ghost_hits);
2663 	} else if (buf->b_state == arc_mfu) {
2664 		/*
2665 		 * This buffer has been accessed more than once and is
2666 		 * still in the cache.  Keep it in the MFU state.
2667 		 *
2668 		 * NOTE: an add_reference() that occurred when we did
2669 		 * the arc_read() will have kicked this off the list.
2670 		 * If it was a prefetch, we will explicitly move it to
2671 		 * the head of the list now.
2672 		 */
2673 		if ((buf->b_flags & ARC_PREFETCH) != 0) {
2674 			ASSERT(refcount_count(&buf->b_refcnt) == 0);
2675 			ASSERT(list_link_active(&buf->b_arc_node));
2676 		}
2677 		ARCSTAT_BUMP(arcstat_mfu_hits);
2678 		buf->b_arc_access = ddi_get_lbolt();
2679 	} else if (buf->b_state == arc_mfu_ghost) {
2680 		arc_state_t	*new_state = arc_mfu;
2681 		/*
2682 		 * This buffer has been accessed more than once but has
2683 		 * been evicted from the cache.  Move it back to the
2684 		 * MFU state.
2685 		 */
2686 
2687 		if (buf->b_flags & ARC_PREFETCH) {
2688 			/*
2689 			 * This is a prefetch access...
2690 			 * move this block back to the MRU state.
2691 			 */
2692 			ASSERT0(refcount_count(&buf->b_refcnt));
2693 			new_state = arc_mru;
2694 		}
2695 
2696 		buf->b_arc_access = ddi_get_lbolt();
2697 		DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
2698 		arc_change_state(new_state, buf, hash_lock);
2699 
2700 		ARCSTAT_BUMP(arcstat_mfu_ghost_hits);
2701 	} else if (buf->b_state == arc_l2c_only) {
2702 		/*
2703 		 * This buffer is on the 2nd Level ARC.
2704 		 */
2705 
2706 		buf->b_arc_access = ddi_get_lbolt();
2707 		DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
2708 		arc_change_state(arc_mfu, buf, hash_lock);
2709 	} else {
2710 		ASSERT(!"invalid arc state");
2711 	}
2712 }
2713 
2714 /* a generic arc_done_func_t which you can use */
2715 /* ARGSUSED */
2716 void
2717 arc_bcopy_func(zio_t *zio, arc_buf_t *buf, void *arg)
2718 {
2719 	if (zio == NULL || zio->io_error == 0)
2720 		bcopy(buf->b_data, arg, buf->b_hdr->b_size);
2721 	VERIFY(arc_buf_remove_ref(buf, arg));
2722 }
2723 
2724 /* a generic arc_done_func_t */
2725 void
2726 arc_getbuf_func(zio_t *zio, arc_buf_t *buf, void *arg)
2727 {
2728 	arc_buf_t **bufp = arg;
2729 	if (zio && zio->io_error) {
2730 		VERIFY(arc_buf_remove_ref(buf, arg));
2731 		*bufp = NULL;
2732 	} else {
2733 		*bufp = buf;
2734 		ASSERT(buf->b_data);
2735 	}
2736 }
2737 
2738 static void
2739 arc_read_done(zio_t *zio)
2740 {
2741 	arc_buf_hdr_t	*hdr, *found;
2742 	arc_buf_t	*buf;
2743 	arc_buf_t	*abuf;	/* buffer we're assigning to callback */
2744 	kmutex_t	*hash_lock;
2745 	arc_callback_t	*callback_list, *acb;
2746 	int		freeable = FALSE;
2747 
2748 	buf = zio->io_private;
2749 	hdr = buf->b_hdr;
2750 
2751 	/*
2752 	 * The hdr was inserted into hash-table and removed from lists
2753 	 * prior to starting I/O.  We should find this header, since
2754 	 * it's in the hash table, and it should be legit since it's
2755 	 * not possible to evict it during the I/O.  The only possible
2756 	 * reason for it not to be found is if we were freed during the
2757 	 * read.
2758 	 */
2759 	found = buf_hash_find(hdr->b_spa, &hdr->b_dva, hdr->b_birth,
2760 	    &hash_lock);
2761 
2762 	ASSERT((found == NULL && HDR_FREED_IN_READ(hdr) && hash_lock == NULL) ||
2763 	    (found == hdr && DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))) ||
2764 	    (found == hdr && HDR_L2_READING(hdr)));
2765 
2766 	hdr->b_flags &= ~ARC_L2_EVICTED;
2767 	if (l2arc_noprefetch && (hdr->b_flags & ARC_PREFETCH))
2768 		hdr->b_flags &= ~ARC_L2CACHE;
2769 
2770 	/* byteswap if necessary */
2771 	callback_list = hdr->b_acb;
2772 	ASSERT(callback_list != NULL);
2773 	if (BP_SHOULD_BYTESWAP(zio->io_bp) && zio->io_error == 0) {
2774 		dmu_object_byteswap_t bswap =
2775 		    DMU_OT_BYTESWAP(BP_GET_TYPE(zio->io_bp));
2776 		arc_byteswap_func_t *func = BP_GET_LEVEL(zio->io_bp) > 0 ?
2777 		    byteswap_uint64_array :
2778 		    dmu_ot_byteswap[bswap].ob_func;
2779 		func(buf->b_data, hdr->b_size);
2780 	}
2781 
2782 	arc_cksum_compute(buf, B_FALSE);
2783 	arc_buf_watch(buf);
2784 
2785 	if (hash_lock && zio->io_error == 0 && hdr->b_state == arc_anon) {
2786 		/*
2787 		 * Only call arc_access on anonymous buffers.  This is because
2788 		 * if we've issued an I/O for an evicted buffer, we've already
2789 		 * called arc_access (to prevent any simultaneous readers from
2790 		 * getting confused).
2791 		 */
2792 		arc_access(hdr, hash_lock);
2793 	}
2794 
2795 	/* create copies of the data buffer for the callers */
2796 	abuf = buf;
2797 	for (acb = callback_list; acb; acb = acb->acb_next) {
2798 		if (acb->acb_done) {
2799 			if (abuf == NULL) {
2800 				ARCSTAT_BUMP(arcstat_duplicate_reads);
2801 				abuf = arc_buf_clone(buf);
2802 			}
2803 			acb->acb_buf = abuf;
2804 			abuf = NULL;
2805 		}
2806 	}
2807 	hdr->b_acb = NULL;
2808 	hdr->b_flags &= ~ARC_IO_IN_PROGRESS;
2809 	ASSERT(!HDR_BUF_AVAILABLE(hdr));
2810 	if (abuf == buf) {
2811 		ASSERT(buf->b_efunc == NULL);
2812 		ASSERT(hdr->b_datacnt == 1);
2813 		hdr->b_flags |= ARC_BUF_AVAILABLE;
2814 	}
2815 
2816 	ASSERT(refcount_is_zero(&hdr->b_refcnt) || callback_list != NULL);
2817 
2818 	if (zio->io_error != 0) {
2819 		hdr->b_flags |= ARC_IO_ERROR;
2820 		if (hdr->b_state != arc_anon)
2821 			arc_change_state(arc_anon, hdr, hash_lock);
2822 		if (HDR_IN_HASH_TABLE(hdr))
2823 			buf_hash_remove(hdr);
2824 		freeable = refcount_is_zero(&hdr->b_refcnt);
2825 	}
2826 
2827 	/*
2828 	 * Broadcast before we drop the hash_lock to avoid the possibility
2829 	 * that the hdr (and hence the cv) might be freed before we get to
2830 	 * the cv_broadcast().
2831 	 */
2832 	cv_broadcast(&hdr->b_cv);
2833 
2834 	if (hash_lock) {
2835 		mutex_exit(hash_lock);
2836 	} else {
2837 		/*
2838 		 * This block was freed while we waited for the read to
2839 		 * complete.  It has been removed from the hash table and
2840 		 * moved to the anonymous state (so that it won't show up
2841 		 * in the cache).
2842 		 */
2843 		ASSERT3P(hdr->b_state, ==, arc_anon);
2844 		freeable = refcount_is_zero(&hdr->b_refcnt);
2845 	}
2846 
2847 	/* execute each callback and free its structure */
2848 	while ((acb = callback_list) != NULL) {
2849 		if (acb->acb_done)
2850 			acb->acb_done(zio, acb->acb_buf, acb->acb_private);
2851 
2852 		if (acb->acb_zio_dummy != NULL) {
2853 			acb->acb_zio_dummy->io_error = zio->io_error;
2854 			zio_nowait(acb->acb_zio_dummy);
2855 		}
2856 
2857 		callback_list = acb->acb_next;
2858 		kmem_free(acb, sizeof (arc_callback_t));
2859 	}
2860 
2861 	if (freeable)
2862 		arc_hdr_destroy(hdr);
2863 }
2864 
2865 /*
2866  * "Read" the block at the specified DVA (in bp) via the
2867  * cache.  If the block is found in the cache, invoke the provided
2868  * callback immediately and return.  Note that the `zio' parameter
2869  * in the callback will be NULL in this case, since no IO was
2870  * required.  If the block is not in the cache pass the read request
2871  * on to the spa with a substitute callback function, so that the
2872  * requested block will be added to the cache.
2873  *
2874  * If a read request arrives for a block that has a read in-progress,
2875  * either wait for the in-progress read to complete (and return the
2876  * results); or, if this is a read with a "done" func, add a record
2877  * to the read to invoke the "done" func when the read completes,
2878  * and return; or just return.
2879  *
2880  * arc_read_done() will invoke all the requested "done" functions
2881  * for readers of this block.
2882  */
2883 int
2884 arc_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, arc_done_func_t *done,
2885     void *private, zio_priority_t priority, int zio_flags, uint32_t *arc_flags,
2886     const zbookmark_t *zb)
2887 {
2888 	arc_buf_hdr_t *hdr;
2889 	arc_buf_t *buf = NULL;
2890 	kmutex_t *hash_lock;
2891 	zio_t *rzio;
2892 	uint64_t guid = spa_load_guid(spa);
2893 
2894 top:
2895 	hdr = buf_hash_find(guid, BP_IDENTITY(bp), BP_PHYSICAL_BIRTH(bp),
2896 	    &hash_lock);
2897 	if (hdr && hdr->b_datacnt > 0) {
2898 
2899 		*arc_flags |= ARC_CACHED;
2900 
2901 		if (HDR_IO_IN_PROGRESS(hdr)) {
2902 
2903 			if (*arc_flags & ARC_WAIT) {
2904 				cv_wait(&hdr->b_cv, hash_lock);
2905 				mutex_exit(hash_lock);
2906 				goto top;
2907 			}
2908 			ASSERT(*arc_flags & ARC_NOWAIT);
2909 
2910 			if (done) {
2911 				arc_callback_t	*acb = NULL;
2912 
2913 				acb = kmem_zalloc(sizeof (arc_callback_t),
2914 				    KM_SLEEP);
2915 				acb->acb_done = done;
2916 				acb->acb_private = private;
2917 				if (pio != NULL)
2918 					acb->acb_zio_dummy = zio_null(pio,
2919 					    spa, NULL, NULL, NULL, zio_flags);
2920 
2921 				ASSERT(acb->acb_done != NULL);
2922 				acb->acb_next = hdr->b_acb;
2923 				hdr->b_acb = acb;
2924 				add_reference(hdr, hash_lock, private);
2925 				mutex_exit(hash_lock);
2926 				return (0);
2927 			}
2928 			mutex_exit(hash_lock);
2929 			return (0);
2930 		}
2931 
2932 		ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu);
2933 
2934 		if (done) {
2935 			add_reference(hdr, hash_lock, private);
2936 			/*
2937 			 * If this block is already in use, create a new
2938 			 * copy of the data so that we will be guaranteed
2939 			 * that arc_release() will always succeed.
2940 			 */
2941 			buf = hdr->b_buf;
2942 			ASSERT(buf);
2943 			ASSERT(buf->b_data);
2944 			if (HDR_BUF_AVAILABLE(hdr)) {
2945 				ASSERT(buf->b_efunc == NULL);
2946 				hdr->b_flags &= ~ARC_BUF_AVAILABLE;
2947 			} else {
2948 				buf = arc_buf_clone(buf);
2949 			}
2950 
2951 		} else if (*arc_flags & ARC_PREFETCH &&
2952 		    refcount_count(&hdr->b_refcnt) == 0) {
2953 			hdr->b_flags |= ARC_PREFETCH;
2954 		}
2955 		DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
2956 		arc_access(hdr, hash_lock);
2957 		if (*arc_flags & ARC_L2CACHE)
2958 			hdr->b_flags |= ARC_L2CACHE;
2959 		if (*arc_flags & ARC_L2COMPRESS)
2960 			hdr->b_flags |= ARC_L2COMPRESS;
2961 		mutex_exit(hash_lock);
2962 		ARCSTAT_BUMP(arcstat_hits);
2963 		ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH),
2964 		    demand, prefetch, hdr->b_type != ARC_BUFC_METADATA,
2965 		    data, metadata, hits);
2966 
2967 		if (done)
2968 			done(NULL, buf, private);
2969 	} else {
2970 		uint64_t size = BP_GET_LSIZE(bp);
2971 		arc_callback_t	*acb;
2972 		vdev_t *vd = NULL;
2973 		uint64_t addr = 0;
2974 		boolean_t devw = B_FALSE;
2975 		enum zio_compress b_compress = ZIO_COMPRESS_OFF;
2976 		uint64_t b_asize = 0;
2977 
2978 		if (hdr == NULL) {
2979 			/* this block is not in the cache */
2980 			arc_buf_hdr_t	*exists;
2981 			arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp);
2982 			buf = arc_buf_alloc(spa, size, private, type);
2983 			hdr = buf->b_hdr;
2984 			hdr->b_dva = *BP_IDENTITY(bp);
2985 			hdr->b_birth = BP_PHYSICAL_BIRTH(bp);
2986 			hdr->b_cksum0 = bp->blk_cksum.zc_word[0];
2987 			exists = buf_hash_insert(hdr, &hash_lock);
2988 			if (exists) {
2989 				/* somebody beat us to the hash insert */
2990 				mutex_exit(hash_lock);
2991 				buf_discard_identity(hdr);
2992 				(void) arc_buf_remove_ref(buf, private);
2993 				goto top; /* restart the IO request */
2994 			}
2995 			/* if this is a prefetch, we don't have a reference */
2996 			if (*arc_flags & ARC_PREFETCH) {
2997 				(void) remove_reference(hdr, hash_lock,
2998 				    private);
2999 				hdr->b_flags |= ARC_PREFETCH;
3000 			}
3001 			if (*arc_flags & ARC_L2CACHE)
3002 				hdr->b_flags |= ARC_L2CACHE;
3003 			if (*arc_flags & ARC_L2COMPRESS)
3004 				hdr->b_flags |= ARC_L2COMPRESS;
3005 			if (BP_GET_LEVEL(bp) > 0)
3006 				hdr->b_flags |= ARC_INDIRECT;
3007 		} else {
3008 			/* this block is in the ghost cache */
3009 			ASSERT(GHOST_STATE(hdr->b_state));
3010 			ASSERT(!HDR_IO_IN_PROGRESS(hdr));
3011 			ASSERT0(refcount_count(&hdr->b_refcnt));
3012 			ASSERT(hdr->b_buf == NULL);
3013 
3014 			/* if this is a prefetch, we don't have a reference */
3015 			if (*arc_flags & ARC_PREFETCH)
3016 				hdr->b_flags |= ARC_PREFETCH;
3017 			else
3018 				add_reference(hdr, hash_lock, private);
3019 			if (*arc_flags & ARC_L2CACHE)
3020 				hdr->b_flags |= ARC_L2CACHE;
3021 			if (*arc_flags & ARC_L2COMPRESS)
3022 				hdr->b_flags |= ARC_L2COMPRESS;
3023 			buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
3024 			buf->b_hdr = hdr;
3025 			buf->b_data = NULL;
3026 			buf->b_efunc = NULL;
3027 			buf->b_private = NULL;
3028 			buf->b_next = NULL;
3029 			hdr->b_buf = buf;
3030 			ASSERT(hdr->b_datacnt == 0);
3031 			hdr->b_datacnt = 1;
3032 			arc_get_data_buf(buf);
3033 			arc_access(hdr, hash_lock);
3034 		}
3035 
3036 		ASSERT(!GHOST_STATE(hdr->b_state));
3037 
3038 		acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP);
3039 		acb->acb_done = done;
3040 		acb->acb_private = private;
3041 
3042 		ASSERT(hdr->b_acb == NULL);
3043 		hdr->b_acb = acb;
3044 		hdr->b_flags |= ARC_IO_IN_PROGRESS;
3045 
3046 		if (hdr->b_l2hdr != NULL &&
3047 		    (vd = hdr->b_l2hdr->b_dev->l2ad_vdev) != NULL) {
3048 			devw = hdr->b_l2hdr->b_dev->l2ad_writing;
3049 			addr = hdr->b_l2hdr->b_daddr;
3050 			b_compress = hdr->b_l2hdr->b_compress;
3051 			b_asize = hdr->b_l2hdr->b_asize;
3052 			/*
3053 			 * Lock out device removal.
3054 			 */
3055 			if (vdev_is_dead(vd) ||
3056 			    !spa_config_tryenter(spa, SCL_L2ARC, vd, RW_READER))
3057 				vd = NULL;
3058 		}
3059 
3060 		mutex_exit(hash_lock);
3061 
3062 		/*
3063 		 * At this point, we have a level 1 cache miss.  Try again in
3064 		 * L2ARC if possible.
3065 		 */
3066 		ASSERT3U(hdr->b_size, ==, size);
3067 		DTRACE_PROBE4(arc__miss, arc_buf_hdr_t *, hdr, blkptr_t *, bp,
3068 		    uint64_t, size, zbookmark_t *, zb);
3069 		ARCSTAT_BUMP(arcstat_misses);
3070 		ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH),
3071 		    demand, prefetch, hdr->b_type != ARC_BUFC_METADATA,
3072 		    data, metadata, misses);
3073 
3074 		if (vd != NULL && l2arc_ndev != 0 && !(l2arc_norw && devw)) {
3075 			/*
3076 			 * Read from the L2ARC if the following are true:
3077 			 * 1. The L2ARC vdev was previously cached.
3078 			 * 2. This buffer still has L2ARC metadata.
3079 			 * 3. This buffer isn't currently writing to the L2ARC.
3080 			 * 4. The L2ARC entry wasn't evicted, which may
3081 			 *    also have invalidated the vdev.
3082 			 * 5. This isn't prefetch and l2arc_noprefetch is set.
3083 			 */
3084 			if (hdr->b_l2hdr != NULL &&
3085 			    !HDR_L2_WRITING(hdr) && !HDR_L2_EVICTED(hdr) &&
3086 			    !(l2arc_noprefetch && HDR_PREFETCH(hdr))) {
3087 				l2arc_read_callback_t *cb;
3088 
3089 				DTRACE_PROBE1(l2arc__hit, arc_buf_hdr_t *, hdr);
3090 				ARCSTAT_BUMP(arcstat_l2_hits);
3091 
3092 				cb = kmem_zalloc(sizeof (l2arc_read_callback_t),
3093 				    KM_SLEEP);
3094 				cb->l2rcb_buf = buf;
3095 				cb->l2rcb_spa = spa;
3096 				cb->l2rcb_bp = *bp;
3097 				cb->l2rcb_zb = *zb;
3098 				cb->l2rcb_flags = zio_flags;
3099 				cb->l2rcb_compress = b_compress;
3100 
3101 				ASSERT(addr >= VDEV_LABEL_START_SIZE &&
3102 				    addr + size < vd->vdev_psize -
3103 				    VDEV_LABEL_END_SIZE);
3104 
3105 				/*
3106 				 * l2arc read.  The SCL_L2ARC lock will be
3107 				 * released by l2arc_read_done().
3108 				 * Issue a null zio if the underlying buffer
3109 				 * was squashed to zero size by compression.
3110 				 */
3111 				if (b_compress == ZIO_COMPRESS_EMPTY) {
3112 					rzio = zio_null(pio, spa, vd,
3113 					    l2arc_read_done, cb,
3114 					    zio_flags | ZIO_FLAG_DONT_CACHE |
3115 					    ZIO_FLAG_CANFAIL |
3116 					    ZIO_FLAG_DONT_PROPAGATE |
3117 					    ZIO_FLAG_DONT_RETRY);
3118 				} else {
3119 					rzio = zio_read_phys(pio, vd, addr,
3120 					    b_asize, buf->b_data,
3121 					    ZIO_CHECKSUM_OFF,
3122 					    l2arc_read_done, cb, priority,
3123 					    zio_flags | ZIO_FLAG_DONT_CACHE |
3124 					    ZIO_FLAG_CANFAIL |
3125 					    ZIO_FLAG_DONT_PROPAGATE |
3126 					    ZIO_FLAG_DONT_RETRY, B_FALSE);
3127 				}
3128 				DTRACE_PROBE2(l2arc__read, vdev_t *, vd,
3129 				    zio_t *, rzio);
3130 				ARCSTAT_INCR(arcstat_l2_read_bytes, b_asize);
3131 
3132 				if (*arc_flags & ARC_NOWAIT) {
3133 					zio_nowait(rzio);
3134 					return (0);
3135 				}
3136 
3137 				ASSERT(*arc_flags & ARC_WAIT);
3138 				if (zio_wait(rzio) == 0)
3139 					return (0);
3140 
3141 				/* l2arc read error; goto zio_read() */
3142 			} else {
3143 				DTRACE_PROBE1(l2arc__miss,
3144 				    arc_buf_hdr_t *, hdr);
3145 				ARCSTAT_BUMP(arcstat_l2_misses);
3146 				if (HDR_L2_WRITING(hdr))
3147 					ARCSTAT_BUMP(arcstat_l2_rw_clash);
3148 				spa_config_exit(spa, SCL_L2ARC, vd);
3149 			}
3150 		} else {
3151 			if (vd != NULL)
3152 				spa_config_exit(spa, SCL_L2ARC, vd);
3153 			if (l2arc_ndev != 0) {
3154 				DTRACE_PROBE1(l2arc__miss,
3155 				    arc_buf_hdr_t *, hdr);
3156 				ARCSTAT_BUMP(arcstat_l2_misses);
3157 			}
3158 		}
3159 
3160 		rzio = zio_read(pio, spa, bp, buf->b_data, size,
3161 		    arc_read_done, buf, priority, zio_flags, zb);
3162 
3163 		if (*arc_flags & ARC_WAIT)
3164 			return (zio_wait(rzio));
3165 
3166 		ASSERT(*arc_flags & ARC_NOWAIT);
3167 		zio_nowait(rzio);
3168 	}
3169 	return (0);
3170 }
3171 
3172 void
3173 arc_set_callback(arc_buf_t *buf, arc_evict_func_t *func, void *private)
3174 {
3175 	ASSERT(buf->b_hdr != NULL);
3176 	ASSERT(buf->b_hdr->b_state != arc_anon);
3177 	ASSERT(!refcount_is_zero(&buf->b_hdr->b_refcnt) || func == NULL);
3178 	ASSERT(buf->b_efunc == NULL);
3179 	ASSERT(!HDR_BUF_AVAILABLE(buf->b_hdr));
3180 
3181 	buf->b_efunc = func;
3182 	buf->b_private = private;
3183 }
3184 
3185 /*
3186  * Notify the arc that a block was freed, and thus will never be used again.
3187  */
3188 void
3189 arc_freed(spa_t *spa, const blkptr_t *bp)
3190 {
3191 	arc_buf_hdr_t *hdr;
3192 	kmutex_t *hash_lock;
3193 	uint64_t guid = spa_load_guid(spa);
3194 
3195 	hdr = buf_hash_find(guid, BP_IDENTITY(bp), BP_PHYSICAL_BIRTH(bp),
3196 	    &hash_lock);
3197 	if (hdr == NULL)
3198 		return;
3199 	if (HDR_BUF_AVAILABLE(hdr)) {
3200 		arc_buf_t *buf = hdr->b_buf;
3201 		add_reference(hdr, hash_lock, FTAG);
3202 		hdr->b_flags &= ~ARC_BUF_AVAILABLE;
3203 		mutex_exit(hash_lock);
3204 
3205 		arc_release(buf, FTAG);
3206 		(void) arc_buf_remove_ref(buf, FTAG);
3207 	} else {
3208 		mutex_exit(hash_lock);
3209 	}
3210 
3211 }
3212 
3213 /*
3214  * This is used by the DMU to let the ARC know that a buffer is
3215  * being evicted, so the ARC should clean up.  If this arc buf
3216  * is not yet in the evicted state, it will be put there.
3217  */
3218 int
3219 arc_buf_evict(arc_buf_t *buf)
3220 {
3221 	arc_buf_hdr_t *hdr;
3222 	kmutex_t *hash_lock;
3223 	arc_buf_t **bufp;
3224 
3225 	mutex_enter(&buf->b_evict_lock);
3226 	hdr = buf->b_hdr;
3227 	if (hdr == NULL) {
3228 		/*
3229 		 * We are in arc_do_user_evicts().
3230 		 */
3231 		ASSERT(buf->b_data == NULL);
3232 		mutex_exit(&buf->b_evict_lock);
3233 		return (0);
3234 	} else if (buf->b_data == NULL) {
3235 		arc_buf_t copy = *buf; /* structure assignment */
3236 		/*
3237 		 * We are on the eviction list; process this buffer now
3238 		 * but let arc_do_user_evicts() do the reaping.
3239 		 */
3240 		buf->b_efunc = NULL;
3241 		mutex_exit(&buf->b_evict_lock);
3242 		VERIFY(copy.b_efunc(&copy) == 0);
3243 		return (1);
3244 	}
3245 	hash_lock = HDR_LOCK(hdr);
3246 	mutex_enter(hash_lock);
3247 	hdr = buf->b_hdr;
3248 	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
3249 
3250 	ASSERT3U(refcount_count(&hdr->b_refcnt), <, hdr->b_datacnt);
3251 	ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu);
3252 
3253 	/*
3254 	 * Pull this buffer off of the hdr
3255 	 */
3256 	bufp = &hdr->b_buf;
3257 	while (*bufp != buf)
3258 		bufp = &(*bufp)->b_next;
3259 	*bufp = buf->b_next;
3260 
3261 	ASSERT(buf->b_data != NULL);
3262 	arc_buf_destroy(buf, FALSE, FALSE);
3263 
3264 	if (hdr->b_datacnt == 0) {
3265 		arc_state_t *old_state = hdr->b_state;
3266 		arc_state_t *evicted_state;
3267 
3268 		ASSERT(hdr->b_buf == NULL);
3269 		ASSERT(refcount_is_zero(&hdr->b_refcnt));
3270 
3271 		evicted_state =
3272 		    (old_state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost;
3273 
3274 		mutex_enter(&old_state->arcs_mtx);
3275 		mutex_enter(&evicted_state->arcs_mtx);
3276 
3277 		arc_change_state(evicted_state, hdr, hash_lock);
3278 		ASSERT(HDR_IN_HASH_TABLE(hdr));
3279 		hdr->b_flags |= ARC_IN_HASH_TABLE;
3280 		hdr->b_flags &= ~ARC_BUF_AVAILABLE;
3281 
3282 		mutex_exit(&evicted_state->arcs_mtx);
3283 		mutex_exit(&old_state->arcs_mtx);
3284 	}
3285 	mutex_exit(hash_lock);
3286 	mutex_exit(&buf->b_evict_lock);
3287 
3288 	VERIFY(buf->b_efunc(buf) == 0);
3289 	buf->b_efunc = NULL;
3290 	buf->b_private = NULL;
3291 	buf->b_hdr = NULL;
3292 	buf->b_next = NULL;
3293 	kmem_cache_free(buf_cache, buf);
3294 	return (1);
3295 }
3296 
3297 /*
3298  * Release this buffer from the cache, making it an anonymous buffer.  This
3299  * must be done after a read and prior to modifying the buffer contents.
3300  * If the buffer has more than one reference, we must make
3301  * a new hdr for the buffer.
3302  */
3303 void
3304 arc_release(arc_buf_t *buf, void *tag)
3305 {
3306 	arc_buf_hdr_t *hdr;
3307 	kmutex_t *hash_lock = NULL;
3308 	l2arc_buf_hdr_t *l2hdr;
3309 	uint64_t buf_size;
3310 
3311 	/*
3312 	 * It would be nice to assert that if it's DMU metadata (level >
3313 	 * 0 || it's the dnode file), then it must be syncing context.
3314 	 * But we don't know that information at this level.
3315 	 */
3316 
3317 	mutex_enter(&buf->b_evict_lock);
3318 	hdr = buf->b_hdr;
3319 
3320 	/* this buffer is not on any list */
3321 	ASSERT(refcount_count(&hdr->b_refcnt) > 0);
3322 
3323 	if (hdr->b_state == arc_anon) {
3324 		/* this buffer is already released */
3325 		ASSERT(buf->b_efunc == NULL);
3326 	} else {
3327 		hash_lock = HDR_LOCK(hdr);
3328 		mutex_enter(hash_lock);
3329 		hdr = buf->b_hdr;
3330 		ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
3331 	}
3332 
3333 	l2hdr = hdr->b_l2hdr;
3334 	if (l2hdr) {
3335 		mutex_enter(&l2arc_buflist_mtx);
3336 		hdr->b_l2hdr = NULL;
3337 		list_remove(l2hdr->b_dev->l2ad_buflist, hdr);
3338 	}
3339 	buf_size = hdr->b_size;
3340 
3341 	/*
3342 	 * Do we have more than one buf?
3343 	 */
3344 	if (hdr->b_datacnt > 1) {
3345 		arc_buf_hdr_t *nhdr;
3346 		arc_buf_t **bufp;
3347 		uint64_t blksz = hdr->b_size;
3348 		uint64_t spa = hdr->b_spa;
3349 		arc_buf_contents_t type = hdr->b_type;
3350 		uint32_t flags = hdr->b_flags;
3351 
3352 		ASSERT(hdr->b_buf != buf || buf->b_next != NULL);
3353 		/*
3354 		 * Pull the data off of this hdr and attach it to
3355 		 * a new anonymous hdr.
3356 		 */
3357 		(void) remove_reference(hdr, hash_lock, tag);
3358 		bufp = &hdr->b_buf;
3359 		while (*bufp != buf)
3360 			bufp = &(*bufp)->b_next;
3361 		*bufp = buf->b_next;
3362 		buf->b_next = NULL;
3363 
3364 		ASSERT3U(hdr->b_state->arcs_size, >=, hdr->b_size);
3365 		atomic_add_64(&hdr->b_state->arcs_size, -hdr->b_size);
3366 		if (refcount_is_zero(&hdr->b_refcnt)) {
3367 			uint64_t *size = &hdr->b_state->arcs_lsize[hdr->b_type];
3368 			ASSERT3U(*size, >=, hdr->b_size);
3369 			atomic_add_64(size, -hdr->b_size);
3370 		}
3371 
3372 		/*
3373 		 * We're releasing a duplicate user data buffer, update
3374 		 * our statistics accordingly.
3375 		 */
3376 		if (hdr->b_type == ARC_BUFC_DATA) {
3377 			ARCSTAT_BUMPDOWN(arcstat_duplicate_buffers);
3378 			ARCSTAT_INCR(arcstat_duplicate_buffers_size,
3379 			    -hdr->b_size);
3380 		}
3381 		hdr->b_datacnt -= 1;
3382 		arc_cksum_verify(buf);
3383 		arc_buf_unwatch(buf);
3384 
3385 		mutex_exit(hash_lock);
3386 
3387 		nhdr = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE);
3388 		nhdr->b_size = blksz;
3389 		nhdr->b_spa = spa;
3390 		nhdr->b_type = type;
3391 		nhdr->b_buf = buf;
3392 		nhdr->b_state = arc_anon;
3393 		nhdr->b_arc_access = 0;
3394 		nhdr->b_flags = flags & ARC_L2_WRITING;
3395 		nhdr->b_l2hdr = NULL;
3396 		nhdr->b_datacnt = 1;
3397 		nhdr->b_freeze_cksum = NULL;
3398 		(void) refcount_add(&nhdr->b_refcnt, tag);
3399 		buf->b_hdr = nhdr;
3400 		mutex_exit(&buf->b_evict_lock);
3401 		atomic_add_64(&arc_anon->arcs_size, blksz);
3402 	} else {
3403 		mutex_exit(&buf->b_evict_lock);
3404 		ASSERT(refcount_count(&hdr->b_refcnt) == 1);
3405 		ASSERT(!list_link_active(&hdr->b_arc_node));
3406 		ASSERT(!HDR_IO_IN_PROGRESS(hdr));
3407 		if (hdr->b_state != arc_anon)
3408 			arc_change_state(arc_anon, hdr, hash_lock);
3409 		hdr->b_arc_access = 0;
3410 		if (hash_lock)
3411 			mutex_exit(hash_lock);
3412 
3413 		buf_discard_identity(hdr);
3414 		arc_buf_thaw(buf);
3415 	}
3416 	buf->b_efunc = NULL;
3417 	buf->b_private = NULL;
3418 
3419 	if (l2hdr) {
3420 		ARCSTAT_INCR(arcstat_l2_asize, -l2hdr->b_asize);
3421 		kmem_free(l2hdr, sizeof (l2arc_buf_hdr_t));
3422 		ARCSTAT_INCR(arcstat_l2_size, -buf_size);
3423 		mutex_exit(&l2arc_buflist_mtx);
3424 	}
3425 }
3426 
3427 int
3428 arc_released(arc_buf_t *buf)
3429 {
3430 	int released;
3431 
3432 	mutex_enter(&buf->b_evict_lock);
3433 	released = (buf->b_data != NULL && buf->b_hdr->b_state == arc_anon);
3434 	mutex_exit(&buf->b_evict_lock);
3435 	return (released);
3436 }
3437 
3438 int
3439 arc_has_callback(arc_buf_t *buf)
3440 {
3441 	int callback;
3442 
3443 	mutex_enter(&buf->b_evict_lock);
3444 	callback = (buf->b_efunc != NULL);
3445 	mutex_exit(&buf->b_evict_lock);
3446 	return (callback);
3447 }
3448 
3449 #ifdef ZFS_DEBUG
3450 int
3451 arc_referenced(arc_buf_t *buf)
3452 {
3453 	int referenced;
3454 
3455 	mutex_enter(&buf->b_evict_lock);
3456 	referenced = (refcount_count(&buf->b_hdr->b_refcnt));
3457 	mutex_exit(&buf->b_evict_lock);
3458 	return (referenced);
3459 }
3460 #endif
3461 
3462 static void
3463 arc_write_ready(zio_t *zio)
3464 {
3465 	arc_write_callback_t *callback = zio->io_private;
3466 	arc_buf_t *buf = callback->awcb_buf;
3467 	arc_buf_hdr_t *hdr = buf->b_hdr;
3468 
3469 	ASSERT(!refcount_is_zero(&buf->b_hdr->b_refcnt));
3470 	callback->awcb_ready(zio, buf, callback->awcb_private);
3471 
3472 	/*
3473 	 * If the IO is already in progress, then this is a re-write
3474 	 * attempt, so we need to thaw and re-compute the cksum.
3475 	 * It is the responsibility of the callback to handle the
3476 	 * accounting for any re-write attempt.
3477 	 */
3478 	if (HDR_IO_IN_PROGRESS(hdr)) {
3479 		mutex_enter(&hdr->b_freeze_lock);
3480 		if (hdr->b_freeze_cksum != NULL) {
3481 			kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t));
3482 			hdr->b_freeze_cksum = NULL;
3483 		}
3484 		mutex_exit(&hdr->b_freeze_lock);
3485 	}
3486 	arc_cksum_compute(buf, B_FALSE);
3487 	hdr->b_flags |= ARC_IO_IN_PROGRESS;
3488 }
3489 
3490 /*
3491  * The SPA calls this callback for each physical write that happens on behalf
3492  * of a logical write.  See the comment in dbuf_write_physdone() for details.
3493  */
3494 static void
3495 arc_write_physdone(zio_t *zio)
3496 {
3497 	arc_write_callback_t *cb = zio->io_private;
3498 	if (cb->awcb_physdone != NULL)
3499 		cb->awcb_physdone(zio, cb->awcb_buf, cb->awcb_private);
3500 }
3501 
3502 static void
3503 arc_write_done(zio_t *zio)
3504 {
3505 	arc_write_callback_t *callback = zio->io_private;
3506 	arc_buf_t *buf = callback->awcb_buf;
3507 	arc_buf_hdr_t *hdr = buf->b_hdr;
3508 
3509 	ASSERT(hdr->b_acb == NULL);
3510 
3511 	if (zio->io_error == 0) {
3512 		if (BP_IS_HOLE(zio->io_bp)) {
3513 			buf_discard_identity(hdr);
3514 		} else {
3515 			hdr->b_dva = *BP_IDENTITY(zio->io_bp);
3516 			hdr->b_birth = BP_PHYSICAL_BIRTH(zio->io_bp);
3517 			hdr->b_cksum0 = zio->io_bp->blk_cksum.zc_word[0];
3518 		}
3519 	} else {
3520 		ASSERT(BUF_EMPTY(hdr));
3521 	}
3522 
3523 	/*
3524 	 * If the block to be written was all-zero, we may have
3525 	 * compressed it away.  In this case no write was performed
3526 	 * so there will be no dva/birth/checksum.  The buffer must
3527 	 * therefore remain anonymous (and uncached).
3528 	 */
3529 	if (!BUF_EMPTY(hdr)) {
3530 		arc_buf_hdr_t *exists;
3531 		kmutex_t *hash_lock;
3532 
3533 		ASSERT(zio->io_error == 0);
3534 
3535 		arc_cksum_verify(buf);
3536 
3537 		exists = buf_hash_insert(hdr, &hash_lock);
3538 		if (exists) {
3539 			/*
3540 			 * This can only happen if we overwrite for
3541 			 * sync-to-convergence, because we remove
3542 			 * buffers from the hash table when we arc_free().
3543 			 */
3544 			if (zio->io_flags & ZIO_FLAG_IO_REWRITE) {
3545 				if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
3546 					panic("bad overwrite, hdr=%p exists=%p",
3547 					    (void *)hdr, (void *)exists);
3548 				ASSERT(refcount_is_zero(&exists->b_refcnt));
3549 				arc_change_state(arc_anon, exists, hash_lock);
3550 				mutex_exit(hash_lock);
3551 				arc_hdr_destroy(exists);
3552 				exists = buf_hash_insert(hdr, &hash_lock);
3553 				ASSERT3P(exists, ==, NULL);
3554 			} else if (zio->io_flags & ZIO_FLAG_NOPWRITE) {
3555 				/* nopwrite */
3556 				ASSERT(zio->io_prop.zp_nopwrite);
3557 				if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
3558 					panic("bad nopwrite, hdr=%p exists=%p",
3559 					    (void *)hdr, (void *)exists);
3560 			} else {
3561 				/* Dedup */
3562 				ASSERT(hdr->b_datacnt == 1);
3563 				ASSERT(hdr->b_state == arc_anon);
3564 				ASSERT(BP_GET_DEDUP(zio->io_bp));
3565 				ASSERT(BP_GET_LEVEL(zio->io_bp) == 0);
3566 			}
3567 		}
3568 		hdr->b_flags &= ~ARC_IO_IN_PROGRESS;
3569 		/* if it's not anon, we are doing a scrub */
3570 		if (!exists && hdr->b_state == arc_anon)
3571 			arc_access(hdr, hash_lock);
3572 		mutex_exit(hash_lock);
3573 	} else {
3574 		hdr->b_flags &= ~ARC_IO_IN_PROGRESS;
3575 	}
3576 
3577 	ASSERT(!refcount_is_zero(&hdr->b_refcnt));
3578 	callback->awcb_done(zio, buf, callback->awcb_private);
3579 
3580 	kmem_free(callback, sizeof (arc_write_callback_t));
3581 }
3582 
3583 zio_t *
3584 arc_write(zio_t *pio, spa_t *spa, uint64_t txg,
3585     blkptr_t *bp, arc_buf_t *buf, boolean_t l2arc, boolean_t l2arc_compress,
3586     const zio_prop_t *zp, arc_done_func_t *ready, arc_done_func_t *physdone,
3587     arc_done_func_t *done, void *private, zio_priority_t priority,
3588     int zio_flags, const zbookmark_t *zb)
3589 {
3590 	arc_buf_hdr_t *hdr = buf->b_hdr;
3591 	arc_write_callback_t *callback;
3592 	zio_t *zio;
3593 
3594 	ASSERT(ready != NULL);
3595 	ASSERT(done != NULL);
3596 	ASSERT(!HDR_IO_ERROR(hdr));
3597 	ASSERT((hdr->b_flags & ARC_IO_IN_PROGRESS) == 0);
3598 	ASSERT(hdr->b_acb == NULL);
3599 	if (l2arc)
3600 		hdr->b_flags |= ARC_L2CACHE;
3601 	if (l2arc_compress)
3602 		hdr->b_flags |= ARC_L2COMPRESS;
3603 	callback = kmem_zalloc(sizeof (arc_write_callback_t), KM_SLEEP);
3604 	callback->awcb_ready = ready;
3605 	callback->awcb_physdone = physdone;
3606 	callback->awcb_done = done;
3607 	callback->awcb_private = private;
3608 	callback->awcb_buf = buf;
3609 
3610 	zio = zio_write(pio, spa, txg, bp, buf->b_data, hdr->b_size, zp,
3611 	    arc_write_ready, arc_write_physdone, arc_write_done, callback,
3612 	    priority, zio_flags, zb);
3613 
3614 	return (zio);
3615 }
3616 
3617 static int
3618 arc_memory_throttle(uint64_t reserve, uint64_t txg)
3619 {
3620 #ifdef _KERNEL
3621 	uint64_t available_memory = ptob(freemem);
3622 	static uint64_t page_load = 0;
3623 	static uint64_t last_txg = 0;
3624 
3625 #if defined(__i386)
3626 	available_memory =
3627 	    MIN(available_memory, vmem_size(heap_arena, VMEM_FREE));
3628 #endif
3629 
3630 	if (freemem > physmem * arc_lotsfree_percent / 100)
3631 		return (0);
3632 
3633 	if (txg > last_txg) {
3634 		last_txg = txg;
3635 		page_load = 0;
3636 	}
3637 	/*
3638 	 * If we are in pageout, we know that memory is already tight,
3639 	 * the arc is already going to be evicting, so we just want to
3640 	 * continue to let page writes occur as quickly as possible.
3641 	 */
3642 	if (curproc == proc_pageout) {
3643 		if (page_load > MAX(ptob(minfree), available_memory) / 4)
3644 			return (SET_ERROR(ERESTART));
3645 		/* Note: reserve is inflated, so we deflate */
3646 		page_load += reserve / 8;
3647 		return (0);
3648 	} else if (page_load > 0 && arc_reclaim_needed()) {
3649 		/* memory is low, delay before restarting */
3650 		ARCSTAT_INCR(arcstat_memory_throttle_count, 1);
3651 		return (SET_ERROR(EAGAIN));
3652 	}
3653 	page_load = 0;
3654 #endif
3655 	return (0);
3656 }
3657 
3658 void
3659 arc_tempreserve_clear(uint64_t reserve)
3660 {
3661 	atomic_add_64(&arc_tempreserve, -reserve);
3662 	ASSERT((int64_t)arc_tempreserve >= 0);
3663 }
3664 
3665 int
3666 arc_tempreserve_space(uint64_t reserve, uint64_t txg)
3667 {
3668 	int error;
3669 	uint64_t anon_size;
3670 
3671 	if (reserve > arc_c/4 && !arc_no_grow)
3672 		arc_c = MIN(arc_c_max, reserve * 4);
3673 	if (reserve > arc_c)
3674 		return (SET_ERROR(ENOMEM));
3675 
3676 	/*
3677 	 * Don't count loaned bufs as in flight dirty data to prevent long
3678 	 * network delays from blocking transactions that are ready to be
3679 	 * assigned to a txg.
3680 	 */
3681 	anon_size = MAX((int64_t)(arc_anon->arcs_size - arc_loaned_bytes), 0);
3682 
3683 	/*
3684 	 * Writes will, almost always, require additional memory allocations
3685 	 * in order to compress/encrypt/etc the data.  We therefore need to
3686 	 * make sure that there is sufficient available memory for this.
3687 	 */
3688 	error = arc_memory_throttle(reserve, txg);
3689 	if (error != 0)
3690 		return (error);
3691 
3692 	/*
3693 	 * Throttle writes when the amount of dirty data in the cache
3694 	 * gets too large.  We try to keep the cache less than half full
3695 	 * of dirty blocks so that our sync times don't grow too large.
3696 	 * Note: if two requests come in concurrently, we might let them
3697 	 * both succeed, when one of them should fail.  Not a huge deal.
3698 	 */
3699 
3700 	if (reserve + arc_tempreserve + anon_size > arc_c / 2 &&
3701 	    anon_size > arc_c / 4) {
3702 		dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK "
3703 		    "anon_data=%lluK tempreserve=%lluK arc_c=%lluK\n",
3704 		    arc_tempreserve>>10,
3705 		    arc_anon->arcs_lsize[ARC_BUFC_METADATA]>>10,
3706 		    arc_anon->arcs_lsize[ARC_BUFC_DATA]>>10,
3707 		    reserve>>10, arc_c>>10);
3708 		return (SET_ERROR(ERESTART));
3709 	}
3710 	atomic_add_64(&arc_tempreserve, reserve);
3711 	return (0);
3712 }
3713 
3714 void
3715 arc_init(void)
3716 {
3717 	mutex_init(&arc_reclaim_thr_lock, NULL, MUTEX_DEFAULT, NULL);
3718 	cv_init(&arc_reclaim_thr_cv, NULL, CV_DEFAULT, NULL);
3719 
3720 	/* Convert seconds to clock ticks */
3721 	arc_min_prefetch_lifespan = 1 * hz;
3722 
3723 	/* Start out with 1/8 of all memory */
3724 	arc_c = physmem * PAGESIZE / 8;
3725 
3726 #ifdef _KERNEL
3727 	/*
3728 	 * On architectures where the physical memory can be larger
3729 	 * than the addressable space (intel in 32-bit mode), we may
3730 	 * need to limit the cache to 1/8 of VM size.
3731 	 */
3732 	arc_c = MIN(arc_c, vmem_size(heap_arena, VMEM_ALLOC | VMEM_FREE) / 8);
3733 #endif
3734 
3735 	/* set min cache to 1/32 of all memory, or 64MB, whichever is more */
3736 	arc_c_min = MAX(arc_c / 4, 64<<20);
3737 	/* set max to 3/4 of all memory, or all but 1GB, whichever is more */
3738 	if (arc_c * 8 >= 1<<30)
3739 		arc_c_max = (arc_c * 8) - (1<<30);
3740 	else
3741 		arc_c_max = arc_c_min;
3742 	arc_c_max = MAX(arc_c * 6, arc_c_max);
3743 
3744 	/*
3745 	 * Allow the tunables to override our calculations if they are
3746 	 * reasonable (ie. over 64MB)
3747 	 */
3748 	if (zfs_arc_max > 64<<20 && zfs_arc_max < physmem * PAGESIZE)
3749 		arc_c_max = zfs_arc_max;
3750 	if (zfs_arc_min > 64<<20 && zfs_arc_min <= arc_c_max)
3751 		arc_c_min = zfs_arc_min;
3752 
3753 	arc_c = arc_c_max;
3754 	arc_p = (arc_c >> 1);
3755 
3756 	/* limit meta-data to 1/4 of the arc capacity */
3757 	arc_meta_limit = arc_c_max / 4;
3758 
3759 	/* Allow the tunable to override if it is reasonable */
3760 	if (zfs_arc_meta_limit > 0 && zfs_arc_meta_limit <= arc_c_max)
3761 		arc_meta_limit = zfs_arc_meta_limit;
3762 
3763 	if (arc_c_min < arc_meta_limit / 2 && zfs_arc_min == 0)
3764 		arc_c_min = arc_meta_limit / 2;
3765 
3766 	if (zfs_arc_grow_retry > 0)
3767 		arc_grow_retry = zfs_arc_grow_retry;
3768 
3769 	if (zfs_arc_shrink_shift > 0)
3770 		arc_shrink_shift = zfs_arc_shrink_shift;
3771 
3772 	if (zfs_arc_p_min_shift > 0)
3773 		arc_p_min_shift = zfs_arc_p_min_shift;
3774 
3775 	/* if kmem_flags are set, lets try to use less memory */
3776 	if (kmem_debugging())
3777 		arc_c = arc_c / 2;
3778 	if (arc_c < arc_c_min)
3779 		arc_c = arc_c_min;
3780 
3781 	arc_anon = &ARC_anon;
3782 	arc_mru = &ARC_mru;
3783 	arc_mru_ghost = &ARC_mru_ghost;
3784 	arc_mfu = &ARC_mfu;
3785 	arc_mfu_ghost = &ARC_mfu_ghost;
3786 	arc_l2c_only = &ARC_l2c_only;
3787 	arc_size = 0;
3788 
3789 	mutex_init(&arc_anon->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3790 	mutex_init(&arc_mru->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3791 	mutex_init(&arc_mru_ghost->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3792 	mutex_init(&arc_mfu->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3793 	mutex_init(&arc_mfu_ghost->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3794 	mutex_init(&arc_l2c_only->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3795 
3796 	list_create(&arc_mru->arcs_list[ARC_BUFC_METADATA],
3797 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3798 	list_create(&arc_mru->arcs_list[ARC_BUFC_DATA],
3799 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3800 	list_create(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA],
3801 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3802 	list_create(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA],
3803 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3804 	list_create(&arc_mfu->arcs_list[ARC_BUFC_METADATA],
3805 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3806 	list_create(&arc_mfu->arcs_list[ARC_BUFC_DATA],
3807 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3808 	list_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA],
3809 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3810 	list_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA],
3811 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3812 	list_create(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA],
3813 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3814 	list_create(&arc_l2c_only->arcs_list[ARC_BUFC_DATA],
3815 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3816 
3817 	buf_init();
3818 
3819 	arc_thread_exit = 0;
3820 	arc_eviction_list = NULL;
3821 	mutex_init(&arc_eviction_mtx, NULL, MUTEX_DEFAULT, NULL);
3822 	bzero(&arc_eviction_hdr, sizeof (arc_buf_hdr_t));
3823 
3824 	arc_ksp = kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED,
3825 	    sizeof (arc_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
3826 
3827 	if (arc_ksp != NULL) {
3828 		arc_ksp->ks_data = &arc_stats;
3829 		kstat_install(arc_ksp);
3830 	}
3831 
3832 	(void) thread_create(NULL, 0, arc_reclaim_thread, NULL, 0, &p0,
3833 	    TS_RUN, minclsyspri);
3834 
3835 	arc_dead = FALSE;
3836 	arc_warm = B_FALSE;
3837 
3838 	/*
3839 	 * Calculate maximum amount of dirty data per pool.
3840 	 *
3841 	 * If it has been set by /etc/system, take that.
3842 	 * Otherwise, use a percentage of physical memory defined by
3843 	 * zfs_dirty_data_max_percent (default 10%) with a cap at
3844 	 * zfs_dirty_data_max_max (default 4GB).
3845 	 */
3846 	if (zfs_dirty_data_max == 0) {
3847 		zfs_dirty_data_max = physmem * PAGESIZE *
3848 		    zfs_dirty_data_max_percent / 100;
3849 		zfs_dirty_data_max = MIN(zfs_dirty_data_max,
3850 		    zfs_dirty_data_max_max);
3851 	}
3852 }
3853 
3854 void
3855 arc_fini(void)
3856 {
3857 	mutex_enter(&arc_reclaim_thr_lock);
3858 	arc_thread_exit = 1;
3859 	while (arc_thread_exit != 0)
3860 		cv_wait(&arc_reclaim_thr_cv, &arc_reclaim_thr_lock);
3861 	mutex_exit(&arc_reclaim_thr_lock);
3862 
3863 	arc_flush(NULL);
3864 
3865 	arc_dead = TRUE;
3866 
3867 	if (arc_ksp != NULL) {
3868 		kstat_delete(arc_ksp);
3869 		arc_ksp = NULL;
3870 	}
3871 
3872 	mutex_destroy(&arc_eviction_mtx);
3873 	mutex_destroy(&arc_reclaim_thr_lock);
3874 	cv_destroy(&arc_reclaim_thr_cv);
3875 
3876 	list_destroy(&arc_mru->arcs_list[ARC_BUFC_METADATA]);
3877 	list_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA]);
3878 	list_destroy(&arc_mfu->arcs_list[ARC_BUFC_METADATA]);
3879 	list_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA]);
3880 	list_destroy(&arc_mru->arcs_list[ARC_BUFC_DATA]);
3881 	list_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA]);
3882 	list_destroy(&arc_mfu->arcs_list[ARC_BUFC_DATA]);
3883 	list_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA]);
3884 
3885 	mutex_destroy(&arc_anon->arcs_mtx);
3886 	mutex_destroy(&arc_mru->arcs_mtx);
3887 	mutex_destroy(&arc_mru_ghost->arcs_mtx);
3888 	mutex_destroy(&arc_mfu->arcs_mtx);
3889 	mutex_destroy(&arc_mfu_ghost->arcs_mtx);
3890 	mutex_destroy(&arc_l2c_only->arcs_mtx);
3891 
3892 	buf_fini();
3893 
3894 	ASSERT(arc_loaned_bytes == 0);
3895 }
3896 
3897 /*
3898  * Level 2 ARC
3899  *
3900  * The level 2 ARC (L2ARC) is a cache layer in-between main memory and disk.
3901  * It uses dedicated storage devices to hold cached data, which are populated
3902  * using large infrequent writes.  The main role of this cache is to boost
3903  * the performance of random read workloads.  The intended L2ARC devices
3904  * include short-stroked disks, solid state disks, and other media with
3905  * substantially faster read latency than disk.
3906  *
3907  *                 +-----------------------+
3908  *                 |         ARC           |
3909  *                 +-----------------------+
3910  *                    |         ^     ^
3911  *                    |         |     |
3912  *      l2arc_feed_thread()    arc_read()
3913  *                    |         |     |
3914  *                    |  l2arc read   |
3915  *                    V         |     |
3916  *               +---------------+    |
3917  *               |     L2ARC     |    |
3918  *               +---------------+    |
3919  *                   |    ^           |
3920  *          l2arc_write() |           |
3921  *                   |    |           |
3922  *                   V    |           |
3923  *                 +-------+      +-------+
3924  *                 | vdev  |      | vdev  |
3925  *                 | cache |      | cache |
3926  *                 +-------+      +-------+
3927  *                 +=========+     .-----.
3928  *                 :  L2ARC  :    |-_____-|
3929  *                 : devices :    | Disks |
3930  *                 +=========+    `-_____-'
3931  *
3932  * Read requests are satisfied from the following sources, in order:
3933  *
3934  *	1) ARC
3935  *	2) vdev cache of L2ARC devices
3936  *	3) L2ARC devices
3937  *	4) vdev cache of disks
3938  *	5) disks
3939  *
3940  * Some L2ARC device types exhibit extremely slow write performance.
3941  * To accommodate for this there are some significant differences between
3942  * the L2ARC and traditional cache design:
3943  *
3944  * 1. There is no eviction path from the ARC to the L2ARC.  Evictions from
3945  * the ARC behave as usual, freeing buffers and placing headers on ghost
3946  * lists.  The ARC does not send buffers to the L2ARC during eviction as
3947  * this would add inflated write latencies for all ARC memory pressure.
3948  *
3949  * 2. The L2ARC attempts to cache data from the ARC before it is evicted.
3950  * It does this by periodically scanning buffers from the eviction-end of
3951  * the MFU and MRU ARC lists, copying them to the L2ARC devices if they are
3952  * not already there. It scans until a headroom of buffers is satisfied,
3953  * which itself is a buffer for ARC eviction. If a compressible buffer is
3954  * found during scanning and selected for writing to an L2ARC device, we
3955  * temporarily boost scanning headroom during the next scan cycle to make
3956  * sure we adapt to compression effects (which might significantly reduce
3957  * the data volume we write to L2ARC). The thread that does this is
3958  * l2arc_feed_thread(), illustrated below; example sizes are included to
3959  * provide a better sense of ratio than this diagram:
3960  *
3961  *	       head -->                        tail
3962  *	        +---------------------+----------+
3963  *	ARC_mfu |:::::#:::::::::::::::|o#o###o###|-->.   # already on L2ARC
3964  *	        +---------------------+----------+   |   o L2ARC eligible
3965  *	ARC_mru |:#:::::::::::::::::::|#o#ooo####|-->|   : ARC buffer
3966  *	        +---------------------+----------+   |
3967  *	             15.9 Gbytes      ^ 32 Mbytes    |
3968  *	                           headroom          |
3969  *	                                      l2arc_feed_thread()
3970  *	                                             |
3971  *	                 l2arc write hand <--[oooo]--'
3972  *	                         |           8 Mbyte
3973  *	                         |          write max
3974  *	                         V
3975  *		  +==============================+
3976  *	L2ARC dev |####|#|###|###|    |####| ... |
3977  *	          +==============================+
3978  *	                     32 Gbytes
3979  *
3980  * 3. If an ARC buffer is copied to the L2ARC but then hit instead of
3981  * evicted, then the L2ARC has cached a buffer much sooner than it probably
3982  * needed to, potentially wasting L2ARC device bandwidth and storage.  It is
3983  * safe to say that this is an uncommon case, since buffers at the end of
3984  * the ARC lists have moved there due to inactivity.
3985  *
3986  * 4. If the ARC evicts faster than the L2ARC can maintain a headroom,
3987  * then the L2ARC simply misses copying some buffers.  This serves as a
3988  * pressure valve to prevent heavy read workloads from both stalling the ARC
3989  * with waits and clogging the L2ARC with writes.  This also helps prevent
3990  * the potential for the L2ARC to churn if it attempts to cache content too
3991  * quickly, such as during backups of the entire pool.
3992  *
3993  * 5. After system boot and before the ARC has filled main memory, there are
3994  * no evictions from the ARC and so the tails of the ARC_mfu and ARC_mru
3995  * lists can remain mostly static.  Instead of searching from tail of these
3996  * lists as pictured, the l2arc_feed_thread() will search from the list heads
3997  * for eligible buffers, greatly increasing its chance of finding them.
3998  *
3999  * The L2ARC device write speed is also boosted during this time so that
4000  * the L2ARC warms up faster.  Since there have been no ARC evictions yet,
4001  * there are no L2ARC reads, and no fear of degrading read performance
4002  * through increased writes.
4003  *
4004  * 6. Writes to the L2ARC devices are grouped and sent in-sequence, so that
4005  * the vdev queue can aggregate them into larger and fewer writes.  Each
4006  * device is written to in a rotor fashion, sweeping writes through
4007  * available space then repeating.
4008  *
4009  * 7. The L2ARC does not store dirty content.  It never needs to flush
4010  * write buffers back to disk based storage.
4011  *
4012  * 8. If an ARC buffer is written (and dirtied) which also exists in the
4013  * L2ARC, the now stale L2ARC buffer is immediately dropped.
4014  *
4015  * The performance of the L2ARC can be tweaked by a number of tunables, which
4016  * may be necessary for different workloads:
4017  *
4018  *	l2arc_write_max		max write bytes per interval
4019  *	l2arc_write_boost	extra write bytes during device warmup
4020  *	l2arc_noprefetch	skip caching prefetched buffers
4021  *	l2arc_headroom		number of max device writes to precache
4022  *	l2arc_headroom_boost	when we find compressed buffers during ARC
4023  *				scanning, we multiply headroom by this
4024  *				percentage factor for the next scan cycle,
4025  *				since more compressed buffers are likely to
4026  *				be present
4027  *	l2arc_feed_secs		seconds between L2ARC writing
4028  *
4029  * Tunables may be removed or added as future performance improvements are
4030  * integrated, and also may become zpool properties.
4031  *
4032  * There are three key functions that control how the L2ARC warms up:
4033  *
4034  *	l2arc_write_eligible()	check if a buffer is eligible to cache
4035  *	l2arc_write_size()	calculate how much to write
4036  *	l2arc_write_interval()	calculate sleep delay between writes
4037  *
4038  * These three functions determine what to write, how much, and how quickly
4039  * to send writes.
4040  */
4041 
4042 static boolean_t
4043 l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *ab)
4044 {
4045 	/*
4046 	 * A buffer is *not* eligible for the L2ARC if it:
4047 	 * 1. belongs to a different spa.
4048 	 * 2. is already cached on the L2ARC.
4049 	 * 3. has an I/O in progress (it may be an incomplete read).
4050 	 * 4. is flagged not eligible (zfs property).
4051 	 */
4052 	if (ab->b_spa != spa_guid || ab->b_l2hdr != NULL ||
4053 	    HDR_IO_IN_PROGRESS(ab) || !HDR_L2CACHE(ab))
4054 		return (B_FALSE);
4055 
4056 	return (B_TRUE);
4057 }
4058 
4059 static uint64_t
4060 l2arc_write_size(void)
4061 {
4062 	uint64_t size;
4063 
4064 	/*
4065 	 * Make sure our globals have meaningful values in case the user
4066 	 * altered them.
4067 	 */
4068 	size = l2arc_write_max;
4069 	if (size == 0) {
4070 		cmn_err(CE_NOTE, "Bad value for l2arc_write_max, value must "
4071 		    "be greater than zero, resetting it to the default (%d)",
4072 		    L2ARC_WRITE_SIZE);
4073 		size = l2arc_write_max = L2ARC_WRITE_SIZE;
4074 	}
4075 
4076 	if (arc_warm == B_FALSE)
4077 		size += l2arc_write_boost;
4078 
4079 	return (size);
4080 
4081 }
4082 
4083 static clock_t
4084 l2arc_write_interval(clock_t began, uint64_t wanted, uint64_t wrote)
4085 {
4086 	clock_t interval, next, now;
4087 
4088 	/*
4089 	 * If the ARC lists are busy, increase our write rate; if the
4090 	 * lists are stale, idle back.  This is achieved by checking
4091 	 * how much we previously wrote - if it was more than half of
4092 	 * what we wanted, schedule the next write much sooner.
4093 	 */
4094 	if (l2arc_feed_again && wrote > (wanted / 2))
4095 		interval = (hz * l2arc_feed_min_ms) / 1000;
4096 	else
4097 		interval = hz * l2arc_feed_secs;
4098 
4099 	now = ddi_get_lbolt();
4100 	next = MAX(now, MIN(now + interval, began + interval));
4101 
4102 	return (next);
4103 }
4104 
4105 static void
4106 l2arc_hdr_stat_add(void)
4107 {
4108 	ARCSTAT_INCR(arcstat_l2_hdr_size, HDR_SIZE + L2HDR_SIZE);
4109 	ARCSTAT_INCR(arcstat_hdr_size, -HDR_SIZE);
4110 }
4111 
4112 static void
4113 l2arc_hdr_stat_remove(void)
4114 {
4115 	ARCSTAT_INCR(arcstat_l2_hdr_size, -(HDR_SIZE + L2HDR_SIZE));
4116 	ARCSTAT_INCR(arcstat_hdr_size, HDR_SIZE);
4117 }
4118 
4119 /*
4120  * Cycle through L2ARC devices.  This is how L2ARC load balances.
4121  * If a device is returned, this also returns holding the spa config lock.
4122  */
4123 static l2arc_dev_t *
4124 l2arc_dev_get_next(void)
4125 {
4126 	l2arc_dev_t *first, *next = NULL;
4127 
4128 	/*
4129 	 * Lock out the removal of spas (spa_namespace_lock), then removal
4130 	 * of cache devices (l2arc_dev_mtx).  Once a device has been selected,
4131 	 * both locks will be dropped and a spa config lock held instead.
4132 	 */
4133 	mutex_enter(&spa_namespace_lock);
4134 	mutex_enter(&l2arc_dev_mtx);
4135 
4136 	/* if there are no vdevs, there is nothing to do */
4137 	if (l2arc_ndev == 0)
4138 		goto out;
4139 
4140 	first = NULL;
4141 	next = l2arc_dev_last;
4142 	do {
4143 		/* loop around the list looking for a non-faulted vdev */
4144 		if (next == NULL) {
4145 			next = list_head(l2arc_dev_list);
4146 		} else {
4147 			next = list_next(l2arc_dev_list, next);
4148 			if (next == NULL)
4149 				next = list_head(l2arc_dev_list);
4150 		}
4151 
4152 		/* if we have come back to the start, bail out */
4153 		if (first == NULL)
4154 			first = next;
4155 		else if (next == first)
4156 			break;
4157 
4158 	} while (vdev_is_dead(next->l2ad_vdev));
4159 
4160 	/* if we were unable to find any usable vdevs, return NULL */
4161 	if (vdev_is_dead(next->l2ad_vdev))
4162 		next = NULL;
4163 
4164 	l2arc_dev_last = next;
4165 
4166 out:
4167 	mutex_exit(&l2arc_dev_mtx);
4168 
4169 	/*
4170 	 * Grab the config lock to prevent the 'next' device from being
4171 	 * removed while we are writing to it.
4172 	 */
4173 	if (next != NULL)
4174 		spa_config_enter(next->l2ad_spa, SCL_L2ARC, next, RW_READER);
4175 	mutex_exit(&spa_namespace_lock);
4176 
4177 	return (next);
4178 }
4179 
4180 /*
4181  * Free buffers that were tagged for destruction.
4182  */
4183 static void
4184 l2arc_do_free_on_write()
4185 {
4186 	list_t *buflist;
4187 	l2arc_data_free_t *df, *df_prev;
4188 
4189 	mutex_enter(&l2arc_free_on_write_mtx);
4190 	buflist = l2arc_free_on_write;
4191 
4192 	for (df = list_tail(buflist); df; df = df_prev) {
4193 		df_prev = list_prev(buflist, df);
4194 		ASSERT(df->l2df_data != NULL);
4195 		ASSERT(df->l2df_func != NULL);
4196 		df->l2df_func(df->l2df_data, df->l2df_size);
4197 		list_remove(buflist, df);
4198 		kmem_free(df, sizeof (l2arc_data_free_t));
4199 	}
4200 
4201 	mutex_exit(&l2arc_free_on_write_mtx);
4202 }
4203 
4204 /*
4205  * A write to a cache device has completed.  Update all headers to allow
4206  * reads from these buffers to begin.
4207  */
4208 static void
4209 l2arc_write_done(zio_t *zio)
4210 {
4211 	l2arc_write_callback_t *cb;
4212 	l2arc_dev_t *dev;
4213 	list_t *buflist;
4214 	arc_buf_hdr_t *head, *ab, *ab_prev;
4215 	l2arc_buf_hdr_t *abl2;
4216 	kmutex_t *hash_lock;
4217 
4218 	cb = zio->io_private;
4219 	ASSERT(cb != NULL);
4220 	dev = cb->l2wcb_dev;
4221 	ASSERT(dev != NULL);
4222 	head = cb->l2wcb_head;
4223 	ASSERT(head != NULL);
4224 	buflist = dev->l2ad_buflist;
4225 	ASSERT(buflist != NULL);
4226 	DTRACE_PROBE2(l2arc__iodone, zio_t *, zio,
4227 	    l2arc_write_callback_t *, cb);
4228 
4229 	if (zio->io_error != 0)
4230 		ARCSTAT_BUMP(arcstat_l2_writes_error);
4231 
4232 	mutex_enter(&l2arc_buflist_mtx);
4233 
4234 	/*
4235 	 * All writes completed, or an error was hit.
4236 	 */
4237 	for (ab = list_prev(buflist, head); ab; ab = ab_prev) {
4238 		ab_prev = list_prev(buflist, ab);
4239 		abl2 = ab->b_l2hdr;
4240 
4241 		/*
4242 		 * Release the temporary compressed buffer as soon as possible.
4243 		 */
4244 		if (abl2->b_compress != ZIO_COMPRESS_OFF)
4245 			l2arc_release_cdata_buf(ab);
4246 
4247 		hash_lock = HDR_LOCK(ab);
4248 		if (!mutex_tryenter(hash_lock)) {
4249 			/*
4250 			 * This buffer misses out.  It may be in a stage
4251 			 * of eviction.  Its ARC_L2_WRITING flag will be
4252 			 * left set, denying reads to this buffer.
4253 			 */
4254 			ARCSTAT_BUMP(arcstat_l2_writes_hdr_miss);
4255 			continue;
4256 		}
4257 
4258 		if (zio->io_error != 0) {
4259 			/*
4260 			 * Error - drop L2ARC entry.
4261 			 */
4262 			list_remove(buflist, ab);
4263 			ARCSTAT_INCR(arcstat_l2_asize, -abl2->b_asize);
4264 			ab->b_l2hdr = NULL;
4265 			kmem_free(abl2, sizeof (l2arc_buf_hdr_t));
4266 			ARCSTAT_INCR(arcstat_l2_size, -ab->b_size);
4267 		}
4268 
4269 		/*
4270 		 * Allow ARC to begin reads to this L2ARC entry.
4271 		 */
4272 		ab->b_flags &= ~ARC_L2_WRITING;
4273 
4274 		mutex_exit(hash_lock);
4275 	}
4276 
4277 	atomic_inc_64(&l2arc_writes_done);
4278 	list_remove(buflist, head);
4279 	kmem_cache_free(hdr_cache, head);
4280 	mutex_exit(&l2arc_buflist_mtx);
4281 
4282 	l2arc_do_free_on_write();
4283 
4284 	kmem_free(cb, sizeof (l2arc_write_callback_t));
4285 }
4286 
4287 /*
4288  * A read to a cache device completed.  Validate buffer contents before
4289  * handing over to the regular ARC routines.
4290  */
4291 static void
4292 l2arc_read_done(zio_t *zio)
4293 {
4294 	l2arc_read_callback_t *cb;
4295 	arc_buf_hdr_t *hdr;
4296 	arc_buf_t *buf;
4297 	kmutex_t *hash_lock;
4298 	int equal;
4299 
4300 	ASSERT(zio->io_vd != NULL);
4301 	ASSERT(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE);
4302 
4303 	spa_config_exit(zio->io_spa, SCL_L2ARC, zio->io_vd);
4304 
4305 	cb = zio->io_private;
4306 	ASSERT(cb != NULL);
4307 	buf = cb->l2rcb_buf;
4308 	ASSERT(buf != NULL);
4309 
4310 	hash_lock = HDR_LOCK(buf->b_hdr);
4311 	mutex_enter(hash_lock);
4312 	hdr = buf->b_hdr;
4313 	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
4314 
4315 	/*
4316 	 * If the buffer was compressed, decompress it first.
4317 	 */
4318 	if (cb->l2rcb_compress != ZIO_COMPRESS_OFF)
4319 		l2arc_decompress_zio(zio, hdr, cb->l2rcb_compress);
4320 	ASSERT(zio->io_data != NULL);
4321 
4322 	/*
4323 	 * Check this survived the L2ARC journey.
4324 	 */
4325 	equal = arc_cksum_equal(buf);
4326 	if (equal && zio->io_error == 0 && !HDR_L2_EVICTED(hdr)) {
4327 		mutex_exit(hash_lock);
4328 		zio->io_private = buf;
4329 		zio->io_bp_copy = cb->l2rcb_bp;	/* XXX fix in L2ARC 2.0	*/
4330 		zio->io_bp = &zio->io_bp_copy;	/* XXX fix in L2ARC 2.0	*/
4331 		arc_read_done(zio);
4332 	} else {
4333 		mutex_exit(hash_lock);
4334 		/*
4335 		 * Buffer didn't survive caching.  Increment stats and
4336 		 * reissue to the original storage device.
4337 		 */
4338 		if (zio->io_error != 0) {
4339 			ARCSTAT_BUMP(arcstat_l2_io_error);
4340 		} else {
4341 			zio->io_error = SET_ERROR(EIO);
4342 		}
4343 		if (!equal)
4344 			ARCSTAT_BUMP(arcstat_l2_cksum_bad);
4345 
4346 		/*
4347 		 * If there's no waiter, issue an async i/o to the primary
4348 		 * storage now.  If there *is* a waiter, the caller must
4349 		 * issue the i/o in a context where it's OK to block.
4350 		 */
4351 		if (zio->io_waiter == NULL) {
4352 			zio_t *pio = zio_unique_parent(zio);
4353 
4354 			ASSERT(!pio || pio->io_child_type == ZIO_CHILD_LOGICAL);
4355 
4356 			zio_nowait(zio_read(pio, cb->l2rcb_spa, &cb->l2rcb_bp,
4357 			    buf->b_data, zio->io_size, arc_read_done, buf,
4358 			    zio->io_priority, cb->l2rcb_flags, &cb->l2rcb_zb));
4359 		}
4360 	}
4361 
4362 	kmem_free(cb, sizeof (l2arc_read_callback_t));
4363 }
4364 
4365 /*
4366  * This is the list priority from which the L2ARC will search for pages to
4367  * cache.  This is used within loops (0..3) to cycle through lists in the
4368  * desired order.  This order can have a significant effect on cache
4369  * performance.
4370  *
4371  * Currently the metadata lists are hit first, MFU then MRU, followed by
4372  * the data lists.  This function returns a locked list, and also returns
4373  * the lock pointer.
4374  */
4375 static list_t *
4376 l2arc_list_locked(int list_num, kmutex_t **lock)
4377 {
4378 	list_t *list = NULL;
4379 
4380 	ASSERT(list_num >= 0 && list_num <= 3);
4381 
4382 	switch (list_num) {
4383 	case 0:
4384 		list = &arc_mfu->arcs_list[ARC_BUFC_METADATA];
4385 		*lock = &arc_mfu->arcs_mtx;
4386 		break;
4387 	case 1:
4388 		list = &arc_mru->arcs_list[ARC_BUFC_METADATA];
4389 		*lock = &arc_mru->arcs_mtx;
4390 		break;
4391 	case 2:
4392 		list = &arc_mfu->arcs_list[ARC_BUFC_DATA];
4393 		*lock = &arc_mfu->arcs_mtx;
4394 		break;
4395 	case 3:
4396 		list = &arc_mru->arcs_list[ARC_BUFC_DATA];
4397 		*lock = &arc_mru->arcs_mtx;
4398 		break;
4399 	}
4400 
4401 	ASSERT(!(MUTEX_HELD(*lock)));
4402 	mutex_enter(*lock);
4403 	return (list);
4404 }
4405 
4406 /*
4407  * Evict buffers from the device write hand to the distance specified in
4408  * bytes.  This distance may span populated buffers, it may span nothing.
4409  * This is clearing a region on the L2ARC device ready for writing.
4410  * If the 'all' boolean is set, every buffer is evicted.
4411  */
4412 static void
4413 l2arc_evict(l2arc_dev_t *dev, uint64_t distance, boolean_t all)
4414 {
4415 	list_t *buflist;
4416 	l2arc_buf_hdr_t *abl2;
4417 	arc_buf_hdr_t *ab, *ab_prev;
4418 	kmutex_t *hash_lock;
4419 	uint64_t taddr;
4420 
4421 	buflist = dev->l2ad_buflist;
4422 
4423 	if (buflist == NULL)
4424 		return;
4425 
4426 	if (!all && dev->l2ad_first) {
4427 		/*
4428 		 * This is the first sweep through the device.  There is
4429 		 * nothing to evict.
4430 		 */
4431 		return;
4432 	}
4433 
4434 	if (dev->l2ad_hand >= (dev->l2ad_end - (2 * distance))) {
4435 		/*
4436 		 * When nearing the end of the device, evict to the end
4437 		 * before the device write hand jumps to the start.
4438 		 */
4439 		taddr = dev->l2ad_end;
4440 	} else {
4441 		taddr = dev->l2ad_hand + distance;
4442 	}
4443 	DTRACE_PROBE4(l2arc__evict, l2arc_dev_t *, dev, list_t *, buflist,
4444 	    uint64_t, taddr, boolean_t, all);
4445 
4446 top:
4447 	mutex_enter(&l2arc_buflist_mtx);
4448 	for (ab = list_tail(buflist); ab; ab = ab_prev) {
4449 		ab_prev = list_prev(buflist, ab);
4450 
4451 		hash_lock = HDR_LOCK(ab);
4452 		if (!mutex_tryenter(hash_lock)) {
4453 			/*
4454 			 * Missed the hash lock.  Retry.
4455 			 */
4456 			ARCSTAT_BUMP(arcstat_l2_evict_lock_retry);
4457 			mutex_exit(&l2arc_buflist_mtx);
4458 			mutex_enter(hash_lock);
4459 			mutex_exit(hash_lock);
4460 			goto top;
4461 		}
4462 
4463 		if (HDR_L2_WRITE_HEAD(ab)) {
4464 			/*
4465 			 * We hit a write head node.  Leave it for
4466 			 * l2arc_write_done().
4467 			 */
4468 			list_remove(buflist, ab);
4469 			mutex_exit(hash_lock);
4470 			continue;
4471 		}
4472 
4473 		if (!all && ab->b_l2hdr != NULL &&
4474 		    (ab->b_l2hdr->b_daddr > taddr ||
4475 		    ab->b_l2hdr->b_daddr < dev->l2ad_hand)) {
4476 			/*
4477 			 * We've evicted to the target address,
4478 			 * or the end of the device.
4479 			 */
4480 			mutex_exit(hash_lock);
4481 			break;
4482 		}
4483 
4484 		if (HDR_FREE_IN_PROGRESS(ab)) {
4485 			/*
4486 			 * Already on the path to destruction.
4487 			 */
4488 			mutex_exit(hash_lock);
4489 			continue;
4490 		}
4491 
4492 		if (ab->b_state == arc_l2c_only) {
4493 			ASSERT(!HDR_L2_READING(ab));
4494 			/*
4495 			 * This doesn't exist in the ARC.  Destroy.
4496 			 * arc_hdr_destroy() will call list_remove()
4497 			 * and decrement arcstat_l2_size.
4498 			 */
4499 			arc_change_state(arc_anon, ab, hash_lock);
4500 			arc_hdr_destroy(ab);
4501 		} else {
4502 			/*
4503 			 * Invalidate issued or about to be issued
4504 			 * reads, since we may be about to write
4505 			 * over this location.
4506 			 */
4507 			if (HDR_L2_READING(ab)) {
4508 				ARCSTAT_BUMP(arcstat_l2_evict_reading);
4509 				ab->b_flags |= ARC_L2_EVICTED;
4510 			}
4511 
4512 			/*
4513 			 * Tell ARC this no longer exists in L2ARC.
4514 			 */
4515 			if (ab->b_l2hdr != NULL) {
4516 				abl2 = ab->b_l2hdr;
4517 				ARCSTAT_INCR(arcstat_l2_asize, -abl2->b_asize);
4518 				ab->b_l2hdr = NULL;
4519 				kmem_free(abl2, sizeof (l2arc_buf_hdr_t));
4520 				ARCSTAT_INCR(arcstat_l2_size, -ab->b_size);
4521 			}
4522 			list_remove(buflist, ab);
4523 
4524 			/*
4525 			 * This may have been leftover after a
4526 			 * failed write.
4527 			 */
4528 			ab->b_flags &= ~ARC_L2_WRITING;
4529 		}
4530 		mutex_exit(hash_lock);
4531 	}
4532 	mutex_exit(&l2arc_buflist_mtx);
4533 
4534 	vdev_space_update(dev->l2ad_vdev, -(taddr - dev->l2ad_evict), 0, 0);
4535 	dev->l2ad_evict = taddr;
4536 }
4537 
4538 /*
4539  * Find and write ARC buffers to the L2ARC device.
4540  *
4541  * An ARC_L2_WRITING flag is set so that the L2ARC buffers are not valid
4542  * for reading until they have completed writing.
4543  * The headroom_boost is an in-out parameter used to maintain headroom boost
4544  * state between calls to this function.
4545  *
4546  * Returns the number of bytes actually written (which may be smaller than
4547  * the delta by which the device hand has changed due to alignment).
4548  */
4549 static uint64_t
4550 l2arc_write_buffers(spa_t *spa, l2arc_dev_t *dev, uint64_t target_sz,
4551     boolean_t *headroom_boost)
4552 {
4553 	arc_buf_hdr_t *ab, *ab_prev, *head;
4554 	list_t *list;
4555 	uint64_t write_asize, write_psize, write_sz, headroom,
4556 	    buf_compress_minsz;
4557 	void *buf_data;
4558 	kmutex_t *list_lock;
4559 	boolean_t full;
4560 	l2arc_write_callback_t *cb;
4561 	zio_t *pio, *wzio;
4562 	uint64_t guid = spa_load_guid(spa);
4563 	const boolean_t do_headroom_boost = *headroom_boost;
4564 
4565 	ASSERT(dev->l2ad_vdev != NULL);
4566 
4567 	/* Lower the flag now, we might want to raise it again later. */
4568 	*headroom_boost = B_FALSE;
4569 
4570 	pio = NULL;
4571 	write_sz = write_asize = write_psize = 0;
4572 	full = B_FALSE;
4573 	head = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE);
4574 	head->b_flags |= ARC_L2_WRITE_HEAD;
4575 
4576 	/*
4577 	 * We will want to try to compress buffers that are at least 2x the
4578 	 * device sector size.
4579 	 */
4580 	buf_compress_minsz = 2 << dev->l2ad_vdev->vdev_ashift;
4581 
4582 	/*
4583 	 * Copy buffers for L2ARC writing.
4584 	 */
4585 	mutex_enter(&l2arc_buflist_mtx);
4586 	for (int try = 0; try <= 3; try++) {
4587 		uint64_t passed_sz = 0;
4588 
4589 		list = l2arc_list_locked(try, &list_lock);
4590 
4591 		/*
4592 		 * L2ARC fast warmup.
4593 		 *
4594 		 * Until the ARC is warm and starts to evict, read from the
4595 		 * head of the ARC lists rather than the tail.
4596 		 */
4597 		if (arc_warm == B_FALSE)
4598 			ab = list_head(list);
4599 		else
4600 			ab = list_tail(list);
4601 
4602 		headroom = target_sz * l2arc_headroom;
4603 		if (do_headroom_boost)
4604 			headroom = (headroom * l2arc_headroom_boost) / 100;
4605 
4606 		for (; ab; ab = ab_prev) {
4607 			l2arc_buf_hdr_t *l2hdr;
4608 			kmutex_t *hash_lock;
4609 			uint64_t buf_sz;
4610 
4611 			if (arc_warm == B_FALSE)
4612 				ab_prev = list_next(list, ab);
4613 			else
4614 				ab_prev = list_prev(list, ab);
4615 
4616 			hash_lock = HDR_LOCK(ab);
4617 			if (!mutex_tryenter(hash_lock)) {
4618 				/*
4619 				 * Skip this buffer rather than waiting.
4620 				 */
4621 				continue;
4622 			}
4623 
4624 			passed_sz += ab->b_size;
4625 			if (passed_sz > headroom) {
4626 				/*
4627 				 * Searched too far.
4628 				 */
4629 				mutex_exit(hash_lock);
4630 				break;
4631 			}
4632 
4633 			if (!l2arc_write_eligible(guid, ab)) {
4634 				mutex_exit(hash_lock);
4635 				continue;
4636 			}
4637 
4638 			if ((write_sz + ab->b_size) > target_sz) {
4639 				full = B_TRUE;
4640 				mutex_exit(hash_lock);
4641 				break;
4642 			}
4643 
4644 			if (pio == NULL) {
4645 				/*
4646 				 * Insert a dummy header on the buflist so
4647 				 * l2arc_write_done() can find where the
4648 				 * write buffers begin without searching.
4649 				 */
4650 				list_insert_head(dev->l2ad_buflist, head);
4651 
4652 				cb = kmem_alloc(
4653 				    sizeof (l2arc_write_callback_t), KM_SLEEP);
4654 				cb->l2wcb_dev = dev;
4655 				cb->l2wcb_head = head;
4656 				pio = zio_root(spa, l2arc_write_done, cb,
4657 				    ZIO_FLAG_CANFAIL);
4658 			}
4659 
4660 			/*
4661 			 * Create and add a new L2ARC header.
4662 			 */
4663 			l2hdr = kmem_zalloc(sizeof (l2arc_buf_hdr_t), KM_SLEEP);
4664 			l2hdr->b_dev = dev;
4665 			ab->b_flags |= ARC_L2_WRITING;
4666 
4667 			/*
4668 			 * Temporarily stash the data buffer in b_tmp_cdata.
4669 			 * The subsequent write step will pick it up from
4670 			 * there. This is because can't access ab->b_buf
4671 			 * without holding the hash_lock, which we in turn
4672 			 * can't access without holding the ARC list locks
4673 			 * (which we want to avoid during compression/writing).
4674 			 */
4675 			l2hdr->b_compress = ZIO_COMPRESS_OFF;
4676 			l2hdr->b_asize = ab->b_size;
4677 			l2hdr->b_tmp_cdata = ab->b_buf->b_data;
4678 
4679 			buf_sz = ab->b_size;
4680 			ab->b_l2hdr = l2hdr;
4681 
4682 			list_insert_head(dev->l2ad_buflist, ab);
4683 
4684 			/*
4685 			 * Compute and store the buffer cksum before
4686 			 * writing.  On debug the cksum is verified first.
4687 			 */
4688 			arc_cksum_verify(ab->b_buf);
4689 			arc_cksum_compute(ab->b_buf, B_TRUE);
4690 
4691 			mutex_exit(hash_lock);
4692 
4693 			write_sz += buf_sz;
4694 		}
4695 
4696 		mutex_exit(list_lock);
4697 
4698 		if (full == B_TRUE)
4699 			break;
4700 	}
4701 
4702 	/* No buffers selected for writing? */
4703 	if (pio == NULL) {
4704 		ASSERT0(write_sz);
4705 		mutex_exit(&l2arc_buflist_mtx);
4706 		kmem_cache_free(hdr_cache, head);
4707 		return (0);
4708 	}
4709 
4710 	/*
4711 	 * Now start writing the buffers. We're starting at the write head
4712 	 * and work backwards, retracing the course of the buffer selector
4713 	 * loop above.
4714 	 */
4715 	for (ab = list_prev(dev->l2ad_buflist, head); ab;
4716 	    ab = list_prev(dev->l2ad_buflist, ab)) {
4717 		l2arc_buf_hdr_t *l2hdr;
4718 		uint64_t buf_sz;
4719 
4720 		/*
4721 		 * We shouldn't need to lock the buffer here, since we flagged
4722 		 * it as ARC_L2_WRITING in the previous step, but we must take
4723 		 * care to only access its L2 cache parameters. In particular,
4724 		 * ab->b_buf may be invalid by now due to ARC eviction.
4725 		 */
4726 		l2hdr = ab->b_l2hdr;
4727 		l2hdr->b_daddr = dev->l2ad_hand;
4728 
4729 		if ((ab->b_flags & ARC_L2COMPRESS) &&
4730 		    l2hdr->b_asize >= buf_compress_minsz) {
4731 			if (l2arc_compress_buf(l2hdr)) {
4732 				/*
4733 				 * If compression succeeded, enable headroom
4734 				 * boost on the next scan cycle.
4735 				 */
4736 				*headroom_boost = B_TRUE;
4737 			}
4738 		}
4739 
4740 		/*
4741 		 * Pick up the buffer data we had previously stashed away
4742 		 * (and now potentially also compressed).
4743 		 */
4744 		buf_data = l2hdr->b_tmp_cdata;
4745 		buf_sz = l2hdr->b_asize;
4746 
4747 		/* Compression may have squashed the buffer to zero length. */
4748 		if (buf_sz != 0) {
4749 			uint64_t buf_p_sz;
4750 
4751 			wzio = zio_write_phys(pio, dev->l2ad_vdev,
4752 			    dev->l2ad_hand, buf_sz, buf_data, ZIO_CHECKSUM_OFF,
4753 			    NULL, NULL, ZIO_PRIORITY_ASYNC_WRITE,
4754 			    ZIO_FLAG_CANFAIL, B_FALSE);
4755 
4756 			DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev,
4757 			    zio_t *, wzio);
4758 			(void) zio_nowait(wzio);
4759 
4760 			write_asize += buf_sz;
4761 			/*
4762 			 * Keep the clock hand suitably device-aligned.
4763 			 */
4764 			buf_p_sz = vdev_psize_to_asize(dev->l2ad_vdev, buf_sz);
4765 			write_psize += buf_p_sz;
4766 			dev->l2ad_hand += buf_p_sz;
4767 		}
4768 	}
4769 
4770 	mutex_exit(&l2arc_buflist_mtx);
4771 
4772 	ASSERT3U(write_asize, <=, target_sz);
4773 	ARCSTAT_BUMP(arcstat_l2_writes_sent);
4774 	ARCSTAT_INCR(arcstat_l2_write_bytes, write_asize);
4775 	ARCSTAT_INCR(arcstat_l2_size, write_sz);
4776 	ARCSTAT_INCR(arcstat_l2_asize, write_asize);
4777 	vdev_space_update(dev->l2ad_vdev, write_psize, 0, 0);
4778 
4779 	/*
4780 	 * Bump device hand to the device start if it is approaching the end.
4781 	 * l2arc_evict() will already have evicted ahead for this case.
4782 	 */
4783 	if (dev->l2ad_hand >= (dev->l2ad_end - target_sz)) {
4784 		vdev_space_update(dev->l2ad_vdev,
4785 		    dev->l2ad_end - dev->l2ad_hand, 0, 0);
4786 		dev->l2ad_hand = dev->l2ad_start;
4787 		dev->l2ad_evict = dev->l2ad_start;
4788 		dev->l2ad_first = B_FALSE;
4789 	}
4790 
4791 	dev->l2ad_writing = B_TRUE;
4792 	(void) zio_wait(pio);
4793 	dev->l2ad_writing = B_FALSE;
4794 
4795 	return (write_asize);
4796 }
4797 
4798 /*
4799  * Compresses an L2ARC buffer.
4800  * The data to be compressed must be prefilled in l2hdr->b_tmp_cdata and its
4801  * size in l2hdr->b_asize. This routine tries to compress the data and
4802  * depending on the compression result there are three possible outcomes:
4803  * *) The buffer was incompressible. The original l2hdr contents were left
4804  *    untouched and are ready for writing to an L2 device.
4805  * *) The buffer was all-zeros, so there is no need to write it to an L2
4806  *    device. To indicate this situation b_tmp_cdata is NULL'ed, b_asize is
4807  *    set to zero and b_compress is set to ZIO_COMPRESS_EMPTY.
4808  * *) Compression succeeded and b_tmp_cdata was replaced with a temporary
4809  *    data buffer which holds the compressed data to be written, and b_asize
4810  *    tells us how much data there is. b_compress is set to the appropriate
4811  *    compression algorithm. Once writing is done, invoke
4812  *    l2arc_release_cdata_buf on this l2hdr to free this temporary buffer.
4813  *
4814  * Returns B_TRUE if compression succeeded, or B_FALSE if it didn't (the
4815  * buffer was incompressible).
4816  */
4817 static boolean_t
4818 l2arc_compress_buf(l2arc_buf_hdr_t *l2hdr)
4819 {
4820 	void *cdata;
4821 	size_t csize, len;
4822 
4823 	ASSERT(l2hdr->b_compress == ZIO_COMPRESS_OFF);
4824 	ASSERT(l2hdr->b_tmp_cdata != NULL);
4825 
4826 	len = l2hdr->b_asize;
4827 	cdata = zio_data_buf_alloc(len);
4828 	csize = zio_compress_data(ZIO_COMPRESS_LZ4, l2hdr->b_tmp_cdata,
4829 	    cdata, l2hdr->b_asize);
4830 
4831 	if (csize == 0) {
4832 		/* zero block, indicate that there's nothing to write */
4833 		zio_data_buf_free(cdata, len);
4834 		l2hdr->b_compress = ZIO_COMPRESS_EMPTY;
4835 		l2hdr->b_asize = 0;
4836 		l2hdr->b_tmp_cdata = NULL;
4837 		ARCSTAT_BUMP(arcstat_l2_compress_zeros);
4838 		return (B_TRUE);
4839 	} else if (csize > 0 && csize < len) {
4840 		/*
4841 		 * Compression succeeded, we'll keep the cdata around for
4842 		 * writing and release it afterwards.
4843 		 */
4844 		l2hdr->b_compress = ZIO_COMPRESS_LZ4;
4845 		l2hdr->b_asize = csize;
4846 		l2hdr->b_tmp_cdata = cdata;
4847 		ARCSTAT_BUMP(arcstat_l2_compress_successes);
4848 		return (B_TRUE);
4849 	} else {
4850 		/*
4851 		 * Compression failed, release the compressed buffer.
4852 		 * l2hdr will be left unmodified.
4853 		 */
4854 		zio_data_buf_free(cdata, len);
4855 		ARCSTAT_BUMP(arcstat_l2_compress_failures);
4856 		return (B_FALSE);
4857 	}
4858 }
4859 
4860 /*
4861  * Decompresses a zio read back from an l2arc device. On success, the
4862  * underlying zio's io_data buffer is overwritten by the uncompressed
4863  * version. On decompression error (corrupt compressed stream), the
4864  * zio->io_error value is set to signal an I/O error.
4865  *
4866  * Please note that the compressed data stream is not checksummed, so
4867  * if the underlying device is experiencing data corruption, we may feed
4868  * corrupt data to the decompressor, so the decompressor needs to be
4869  * able to handle this situation (LZ4 does).
4870  */
4871 static void
4872 l2arc_decompress_zio(zio_t *zio, arc_buf_hdr_t *hdr, enum zio_compress c)
4873 {
4874 	ASSERT(L2ARC_IS_VALID_COMPRESS(c));
4875 
4876 	if (zio->io_error != 0) {
4877 		/*
4878 		 * An io error has occured, just restore the original io
4879 		 * size in preparation for a main pool read.
4880 		 */
4881 		zio->io_orig_size = zio->io_size = hdr->b_size;
4882 		return;
4883 	}
4884 
4885 	if (c == ZIO_COMPRESS_EMPTY) {
4886 		/*
4887 		 * An empty buffer results in a null zio, which means we
4888 		 * need to fill its io_data after we're done restoring the
4889 		 * buffer's contents.
4890 		 */
4891 		ASSERT(hdr->b_buf != NULL);
4892 		bzero(hdr->b_buf->b_data, hdr->b_size);
4893 		zio->io_data = zio->io_orig_data = hdr->b_buf->b_data;
4894 	} else {
4895 		ASSERT(zio->io_data != NULL);
4896 		/*
4897 		 * We copy the compressed data from the start of the arc buffer
4898 		 * (the zio_read will have pulled in only what we need, the
4899 		 * rest is garbage which we will overwrite at decompression)
4900 		 * and then decompress back to the ARC data buffer. This way we
4901 		 * can minimize copying by simply decompressing back over the
4902 		 * original compressed data (rather than decompressing to an
4903 		 * aux buffer and then copying back the uncompressed buffer,
4904 		 * which is likely to be much larger).
4905 		 */
4906 		uint64_t csize;
4907 		void *cdata;
4908 
4909 		csize = zio->io_size;
4910 		cdata = zio_data_buf_alloc(csize);
4911 		bcopy(zio->io_data, cdata, csize);
4912 		if (zio_decompress_data(c, cdata, zio->io_data, csize,
4913 		    hdr->b_size) != 0)
4914 			zio->io_error = EIO;
4915 		zio_data_buf_free(cdata, csize);
4916 	}
4917 
4918 	/* Restore the expected uncompressed IO size. */
4919 	zio->io_orig_size = zio->io_size = hdr->b_size;
4920 }
4921 
4922 /*
4923  * Releases the temporary b_tmp_cdata buffer in an l2arc header structure.
4924  * This buffer serves as a temporary holder of compressed data while
4925  * the buffer entry is being written to an l2arc device. Once that is
4926  * done, we can dispose of it.
4927  */
4928 static void
4929 l2arc_release_cdata_buf(arc_buf_hdr_t *ab)
4930 {
4931 	l2arc_buf_hdr_t *l2hdr = ab->b_l2hdr;
4932 
4933 	if (l2hdr->b_compress == ZIO_COMPRESS_LZ4) {
4934 		/*
4935 		 * If the data was compressed, then we've allocated a
4936 		 * temporary buffer for it, so now we need to release it.
4937 		 */
4938 		ASSERT(l2hdr->b_tmp_cdata != NULL);
4939 		zio_data_buf_free(l2hdr->b_tmp_cdata, ab->b_size);
4940 	}
4941 	l2hdr->b_tmp_cdata = NULL;
4942 }
4943 
4944 /*
4945  * This thread feeds the L2ARC at regular intervals.  This is the beating
4946  * heart of the L2ARC.
4947  */
4948 static void
4949 l2arc_feed_thread(void)
4950 {
4951 	callb_cpr_t cpr;
4952 	l2arc_dev_t *dev;
4953 	spa_t *spa;
4954 	uint64_t size, wrote;
4955 	clock_t begin, next = ddi_get_lbolt();
4956 	boolean_t headroom_boost = B_FALSE;
4957 
4958 	CALLB_CPR_INIT(&cpr, &l2arc_feed_thr_lock, callb_generic_cpr, FTAG);
4959 
4960 	mutex_enter(&l2arc_feed_thr_lock);
4961 
4962 	while (l2arc_thread_exit == 0) {
4963 		CALLB_CPR_SAFE_BEGIN(&cpr);
4964 		(void) cv_timedwait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock,
4965 		    next);
4966 		CALLB_CPR_SAFE_END(&cpr, &l2arc_feed_thr_lock);
4967 		next = ddi_get_lbolt() + hz;
4968 
4969 		/*
4970 		 * Quick check for L2ARC devices.
4971 		 */
4972 		mutex_enter(&l2arc_dev_mtx);
4973 		if (l2arc_ndev == 0) {
4974 			mutex_exit(&l2arc_dev_mtx);
4975 			continue;
4976 		}
4977 		mutex_exit(&l2arc_dev_mtx);
4978 		begin = ddi_get_lbolt();
4979 
4980 		/*
4981 		 * This selects the next l2arc device to write to, and in
4982 		 * doing so the next spa to feed from: dev->l2ad_spa.   This
4983 		 * will return NULL if there are now no l2arc devices or if
4984 		 * they are all faulted.
4985 		 *
4986 		 * If a device is returned, its spa's config lock is also
4987 		 * held to prevent device removal.  l2arc_dev_get_next()
4988 		 * will grab and release l2arc_dev_mtx.
4989 		 */
4990 		if ((dev = l2arc_dev_get_next()) == NULL)
4991 			continue;
4992 
4993 		spa = dev->l2ad_spa;
4994 		ASSERT(spa != NULL);
4995 
4996 		/*
4997 		 * If the pool is read-only then force the feed thread to
4998 		 * sleep a little longer.
4999 		 */
5000 		if (!spa_writeable(spa)) {
5001 			next = ddi_get_lbolt() + 5 * l2arc_feed_secs * hz;
5002 			spa_config_exit(spa, SCL_L2ARC, dev);
5003 			continue;
5004 		}
5005 
5006 		/*
5007 		 * Avoid contributing to memory pressure.
5008 		 */
5009 		if (arc_reclaim_needed()) {
5010 			ARCSTAT_BUMP(arcstat_l2_abort_lowmem);
5011 			spa_config_exit(spa, SCL_L2ARC, dev);
5012 			continue;
5013 		}
5014 
5015 		ARCSTAT_BUMP(arcstat_l2_feeds);
5016 
5017 		size = l2arc_write_size();
5018 
5019 		/*
5020 		 * Evict L2ARC buffers that will be overwritten.
5021 		 */
5022 		l2arc_evict(dev, size, B_FALSE);
5023 
5024 		/*
5025 		 * Write ARC buffers.
5026 		 */
5027 		wrote = l2arc_write_buffers(spa, dev, size, &headroom_boost);
5028 
5029 		/*
5030 		 * Calculate interval between writes.
5031 		 */
5032 		next = l2arc_write_interval(begin, size, wrote);
5033 		spa_config_exit(spa, SCL_L2ARC, dev);
5034 	}
5035 
5036 	l2arc_thread_exit = 0;
5037 	cv_broadcast(&l2arc_feed_thr_cv);
5038 	CALLB_CPR_EXIT(&cpr);		/* drops l2arc_feed_thr_lock */
5039 	thread_exit();
5040 }
5041 
5042 boolean_t
5043 l2arc_vdev_present(vdev_t *vd)
5044 {
5045 	l2arc_dev_t *dev;
5046 
5047 	mutex_enter(&l2arc_dev_mtx);
5048 	for (dev = list_head(l2arc_dev_list); dev != NULL;
5049 	    dev = list_next(l2arc_dev_list, dev)) {
5050 		if (dev->l2ad_vdev == vd)
5051 			break;
5052 	}
5053 	mutex_exit(&l2arc_dev_mtx);
5054 
5055 	return (dev != NULL);
5056 }
5057 
5058 /*
5059  * Add a vdev for use by the L2ARC.  By this point the spa has already
5060  * validated the vdev and opened it.
5061  */
5062 void
5063 l2arc_add_vdev(spa_t *spa, vdev_t *vd)
5064 {
5065 	l2arc_dev_t *adddev;
5066 
5067 	ASSERT(!l2arc_vdev_present(vd));
5068 
5069 	/*
5070 	 * Create a new l2arc device entry.
5071 	 */
5072 	adddev = kmem_zalloc(sizeof (l2arc_dev_t), KM_SLEEP);
5073 	adddev->l2ad_spa = spa;
5074 	adddev->l2ad_vdev = vd;
5075 	adddev->l2ad_start = VDEV_LABEL_START_SIZE;
5076 	adddev->l2ad_end = VDEV_LABEL_START_SIZE + vdev_get_min_asize(vd);
5077 	adddev->l2ad_hand = adddev->l2ad_start;
5078 	adddev->l2ad_evict = adddev->l2ad_start;
5079 	adddev->l2ad_first = B_TRUE;
5080 	adddev->l2ad_writing = B_FALSE;
5081 
5082 	/*
5083 	 * This is a list of all ARC buffers that are still valid on the
5084 	 * device.
5085 	 */
5086 	adddev->l2ad_buflist = kmem_zalloc(sizeof (list_t), KM_SLEEP);
5087 	list_create(adddev->l2ad_buflist, sizeof (arc_buf_hdr_t),
5088 	    offsetof(arc_buf_hdr_t, b_l2node));
5089 
5090 	vdev_space_update(vd, 0, 0, adddev->l2ad_end - adddev->l2ad_hand);
5091 
5092 	/*
5093 	 * Add device to global list
5094 	 */
5095 	mutex_enter(&l2arc_dev_mtx);
5096 	list_insert_head(l2arc_dev_list, adddev);
5097 	atomic_inc_64(&l2arc_ndev);
5098 	mutex_exit(&l2arc_dev_mtx);
5099 }
5100 
5101 /*
5102  * Remove a vdev from the L2ARC.
5103  */
5104 void
5105 l2arc_remove_vdev(vdev_t *vd)
5106 {
5107 	l2arc_dev_t *dev, *nextdev, *remdev = NULL;
5108 
5109 	/*
5110 	 * Find the device by vdev
5111 	 */
5112 	mutex_enter(&l2arc_dev_mtx);
5113 	for (dev = list_head(l2arc_dev_list); dev; dev = nextdev) {
5114 		nextdev = list_next(l2arc_dev_list, dev);
5115 		if (vd == dev->l2ad_vdev) {
5116 			remdev = dev;
5117 			break;
5118 		}
5119 	}
5120 	ASSERT(remdev != NULL);
5121 
5122 	/*
5123 	 * Remove device from global list
5124 	 */
5125 	list_remove(l2arc_dev_list, remdev);
5126 	l2arc_dev_last = NULL;		/* may have been invalidated */
5127 	atomic_dec_64(&l2arc_ndev);
5128 	mutex_exit(&l2arc_dev_mtx);
5129 
5130 	/*
5131 	 * Clear all buflists and ARC references.  L2ARC device flush.
5132 	 */
5133 	l2arc_evict(remdev, 0, B_TRUE);
5134 	list_destroy(remdev->l2ad_buflist);
5135 	kmem_free(remdev->l2ad_buflist, sizeof (list_t));
5136 	kmem_free(remdev, sizeof (l2arc_dev_t));
5137 }
5138 
5139 void
5140 l2arc_init(void)
5141 {
5142 	l2arc_thread_exit = 0;
5143 	l2arc_ndev = 0;
5144 	l2arc_writes_sent = 0;
5145 	l2arc_writes_done = 0;
5146 
5147 	mutex_init(&l2arc_feed_thr_lock, NULL, MUTEX_DEFAULT, NULL);
5148 	cv_init(&l2arc_feed_thr_cv, NULL, CV_DEFAULT, NULL);
5149 	mutex_init(&l2arc_dev_mtx, NULL, MUTEX_DEFAULT, NULL);
5150 	mutex_init(&l2arc_buflist_mtx, NULL, MUTEX_DEFAULT, NULL);
5151 	mutex_init(&l2arc_free_on_write_mtx, NULL, MUTEX_DEFAULT, NULL);
5152 
5153 	l2arc_dev_list = &L2ARC_dev_list;
5154 	l2arc_free_on_write = &L2ARC_free_on_write;
5155 	list_create(l2arc_dev_list, sizeof (l2arc_dev_t),
5156 	    offsetof(l2arc_dev_t, l2ad_node));
5157 	list_create(l2arc_free_on_write, sizeof (l2arc_data_free_t),
5158 	    offsetof(l2arc_data_free_t, l2df_list_node));
5159 }
5160 
5161 void
5162 l2arc_fini(void)
5163 {
5164 	/*
5165 	 * This is called from dmu_fini(), which is called from spa_fini();
5166 	 * Because of this, we can assume that all l2arc devices have
5167 	 * already been removed when the pools themselves were removed.
5168 	 */
5169 
5170 	l2arc_do_free_on_write();
5171 
5172 	mutex_destroy(&l2arc_feed_thr_lock);
5173 	cv_destroy(&l2arc_feed_thr_cv);
5174 	mutex_destroy(&l2arc_dev_mtx);
5175 	mutex_destroy(&l2arc_buflist_mtx);
5176 	mutex_destroy(&l2arc_free_on_write_mtx);
5177 
5178 	list_destroy(l2arc_dev_list);
5179 	list_destroy(l2arc_free_on_write);
5180 }
5181 
5182 void
5183 l2arc_start(void)
5184 {
5185 	if (!(spa_mode_global & FWRITE))
5186 		return;
5187 
5188 	(void) thread_create(NULL, 0, l2arc_feed_thread, NULL, 0, &p0,
5189 	    TS_RUN, minclsyspri);
5190 }
5191 
5192 void
5193 l2arc_stop(void)
5194 {
5195 	if (!(spa_mode_global & FWRITE))
5196 		return;
5197 
5198 	mutex_enter(&l2arc_feed_thr_lock);
5199 	cv_signal(&l2arc_feed_thr_cv);	/* kick thread out of startup */
5200 	l2arc_thread_exit = 1;
5201 	while (l2arc_thread_exit != 0)
5202 		cv_wait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock);
5203 	mutex_exit(&l2arc_feed_thr_lock);
5204 }
5205