1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 /* 29 * DVA-based Adjustable Replacement Cache 30 * 31 * While much of the theory of operation used here is 32 * based on the self-tuning, low overhead replacement cache 33 * presented by Megiddo and Modha at FAST 2003, there are some 34 * significant differences: 35 * 36 * 1. The Megiddo and Modha model assumes any page is evictable. 37 * Pages in its cache cannot be "locked" into memory. This makes 38 * the eviction algorithm simple: evict the last page in the list. 39 * This also make the performance characteristics easy to reason 40 * about. Our cache is not so simple. At any given moment, some 41 * subset of the blocks in the cache are un-evictable because we 42 * have handed out a reference to them. Blocks are only evictable 43 * when there are no external references active. This makes 44 * eviction far more problematic: we choose to evict the evictable 45 * blocks that are the "lowest" in the list. 46 * 47 * There are times when it is not possible to evict the requested 48 * space. In these circumstances we are unable to adjust the cache 49 * size. To prevent the cache growing unbounded at these times we 50 * implement a "cache throttle" that slows the flow of new data 51 * into the cache until we can make space available. 52 * 53 * 2. The Megiddo and Modha model assumes a fixed cache size. 54 * Pages are evicted when the cache is full and there is a cache 55 * miss. Our model has a variable sized cache. It grows with 56 * high use, but also tries to react to memory pressure from the 57 * operating system: decreasing its size when system memory is 58 * tight. 59 * 60 * 3. The Megiddo and Modha model assumes a fixed page size. All 61 * elements of the cache are therefor exactly the same size. So 62 * when adjusting the cache size following a cache miss, its simply 63 * a matter of choosing a single page to evict. In our model, we 64 * have variable sized cache blocks (rangeing from 512 bytes to 65 * 128K bytes). We therefor choose a set of blocks to evict to make 66 * space for a cache miss that approximates as closely as possible 67 * the space used by the new block. 68 * 69 * See also: "ARC: A Self-Tuning, Low Overhead Replacement Cache" 70 * by N. Megiddo & D. Modha, FAST 2003 71 */ 72 73 /* 74 * The locking model: 75 * 76 * A new reference to a cache buffer can be obtained in two 77 * ways: 1) via a hash table lookup using the DVA as a key, 78 * or 2) via one of the ARC lists. The arc_read() interface 79 * uses method 1, while the internal arc algorithms for 80 * adjusting the cache use method 2. We therefor provide two 81 * types of locks: 1) the hash table lock array, and 2) the 82 * arc list locks. 83 * 84 * Buffers do not have their own mutexs, rather they rely on the 85 * hash table mutexs for the bulk of their protection (i.e. most 86 * fields in the arc_buf_hdr_t are protected by these mutexs). 87 * 88 * buf_hash_find() returns the appropriate mutex (held) when it 89 * locates the requested buffer in the hash table. It returns 90 * NULL for the mutex if the buffer was not in the table. 91 * 92 * buf_hash_remove() expects the appropriate hash mutex to be 93 * already held before it is invoked. 94 * 95 * Each arc state also has a mutex which is used to protect the 96 * buffer list associated with the state. When attempting to 97 * obtain a hash table lock while holding an arc list lock you 98 * must use: mutex_tryenter() to avoid deadlock. Also note that 99 * the active state mutex must be held before the ghost state mutex. 100 * 101 * Arc buffers may have an associated eviction callback function. 102 * This function will be invoked prior to removing the buffer (e.g. 103 * in arc_do_user_evicts()). Note however that the data associated 104 * with the buffer may be evicted prior to the callback. The callback 105 * must be made with *no locks held* (to prevent deadlock). Additionally, 106 * the users of callbacks must ensure that their private data is 107 * protected from simultaneous callbacks from arc_buf_evict() 108 * and arc_do_user_evicts(). 109 * 110 * Note that the majority of the performance stats are manipulated 111 * with atomic operations. 112 * 113 * The L2ARC uses the l2arc_buflist_mtx global mutex for the following: 114 * 115 * - L2ARC buflist creation 116 * - L2ARC buflist eviction 117 * - L2ARC write completion, which walks L2ARC buflists 118 * - ARC header destruction, as it removes from L2ARC buflists 119 * - ARC header release, as it removes from L2ARC buflists 120 */ 121 122 #include <sys/spa.h> 123 #include <sys/zio.h> 124 #include <sys/zio_checksum.h> 125 #include <sys/zfs_context.h> 126 #include <sys/arc.h> 127 #include <sys/refcount.h> 128 #ifdef _KERNEL 129 #include <sys/vmsystm.h> 130 #include <vm/anon.h> 131 #include <sys/fs/swapnode.h> 132 #include <sys/dnlc.h> 133 #endif 134 #include <sys/callb.h> 135 #include <sys/kstat.h> 136 137 static kmutex_t arc_reclaim_thr_lock; 138 static kcondvar_t arc_reclaim_thr_cv; /* used to signal reclaim thr */ 139 static uint8_t arc_thread_exit; 140 141 extern int zfs_write_limit_shift; 142 extern uint64_t zfs_write_limit_max; 143 extern uint64_t zfs_write_limit_inflated; 144 145 #define ARC_REDUCE_DNLC_PERCENT 3 146 uint_t arc_reduce_dnlc_percent = ARC_REDUCE_DNLC_PERCENT; 147 148 typedef enum arc_reclaim_strategy { 149 ARC_RECLAIM_AGGR, /* Aggressive reclaim strategy */ 150 ARC_RECLAIM_CONS /* Conservative reclaim strategy */ 151 } arc_reclaim_strategy_t; 152 153 /* number of seconds before growing cache again */ 154 static int arc_grow_retry = 60; 155 156 /* 157 * minimum lifespan of a prefetch block in clock ticks 158 * (initialized in arc_init()) 159 */ 160 static int arc_min_prefetch_lifespan; 161 162 static int arc_dead; 163 164 /* 165 * These tunables are for performance analysis. 166 */ 167 uint64_t zfs_arc_max; 168 uint64_t zfs_arc_min; 169 uint64_t zfs_arc_meta_limit = 0; 170 171 /* 172 * Note that buffers can be in one of 6 states: 173 * ARC_anon - anonymous (discussed below) 174 * ARC_mru - recently used, currently cached 175 * ARC_mru_ghost - recentely used, no longer in cache 176 * ARC_mfu - frequently used, currently cached 177 * ARC_mfu_ghost - frequently used, no longer in cache 178 * ARC_l2c_only - exists in L2ARC but not other states 179 * When there are no active references to the buffer, they are 180 * are linked onto a list in one of these arc states. These are 181 * the only buffers that can be evicted or deleted. Within each 182 * state there are multiple lists, one for meta-data and one for 183 * non-meta-data. Meta-data (indirect blocks, blocks of dnodes, 184 * etc.) is tracked separately so that it can be managed more 185 * explicitly: favored over data, limited explicitly. 186 * 187 * Anonymous buffers are buffers that are not associated with 188 * a DVA. These are buffers that hold dirty block copies 189 * before they are written to stable storage. By definition, 190 * they are "ref'd" and are considered part of arc_mru 191 * that cannot be freed. Generally, they will aquire a DVA 192 * as they are written and migrate onto the arc_mru list. 193 * 194 * The ARC_l2c_only state is for buffers that are in the second 195 * level ARC but no longer in any of the ARC_m* lists. The second 196 * level ARC itself may also contain buffers that are in any of 197 * the ARC_m* states - meaning that a buffer can exist in two 198 * places. The reason for the ARC_l2c_only state is to keep the 199 * buffer header in the hash table, so that reads that hit the 200 * second level ARC benefit from these fast lookups. 201 */ 202 203 typedef struct arc_state { 204 list_t arcs_list[ARC_BUFC_NUMTYPES]; /* list of evictable buffers */ 205 uint64_t arcs_lsize[ARC_BUFC_NUMTYPES]; /* amount of evictable data */ 206 uint64_t arcs_size; /* total amount of data in this state */ 207 kmutex_t arcs_mtx; 208 } arc_state_t; 209 210 /* The 6 states: */ 211 static arc_state_t ARC_anon; 212 static arc_state_t ARC_mru; 213 static arc_state_t ARC_mru_ghost; 214 static arc_state_t ARC_mfu; 215 static arc_state_t ARC_mfu_ghost; 216 static arc_state_t ARC_l2c_only; 217 218 typedef struct arc_stats { 219 kstat_named_t arcstat_hits; 220 kstat_named_t arcstat_misses; 221 kstat_named_t arcstat_demand_data_hits; 222 kstat_named_t arcstat_demand_data_misses; 223 kstat_named_t arcstat_demand_metadata_hits; 224 kstat_named_t arcstat_demand_metadata_misses; 225 kstat_named_t arcstat_prefetch_data_hits; 226 kstat_named_t arcstat_prefetch_data_misses; 227 kstat_named_t arcstat_prefetch_metadata_hits; 228 kstat_named_t arcstat_prefetch_metadata_misses; 229 kstat_named_t arcstat_mru_hits; 230 kstat_named_t arcstat_mru_ghost_hits; 231 kstat_named_t arcstat_mfu_hits; 232 kstat_named_t arcstat_mfu_ghost_hits; 233 kstat_named_t arcstat_deleted; 234 kstat_named_t arcstat_recycle_miss; 235 kstat_named_t arcstat_mutex_miss; 236 kstat_named_t arcstat_evict_skip; 237 kstat_named_t arcstat_hash_elements; 238 kstat_named_t arcstat_hash_elements_max; 239 kstat_named_t arcstat_hash_collisions; 240 kstat_named_t arcstat_hash_chains; 241 kstat_named_t arcstat_hash_chain_max; 242 kstat_named_t arcstat_p; 243 kstat_named_t arcstat_c; 244 kstat_named_t arcstat_c_min; 245 kstat_named_t arcstat_c_max; 246 kstat_named_t arcstat_size; 247 kstat_named_t arcstat_hdr_size; 248 kstat_named_t arcstat_l2_hits; 249 kstat_named_t arcstat_l2_misses; 250 kstat_named_t arcstat_l2_feeds; 251 kstat_named_t arcstat_l2_rw_clash; 252 kstat_named_t arcstat_l2_writes_sent; 253 kstat_named_t arcstat_l2_writes_done; 254 kstat_named_t arcstat_l2_writes_error; 255 kstat_named_t arcstat_l2_writes_hdr_miss; 256 kstat_named_t arcstat_l2_evict_lock_retry; 257 kstat_named_t arcstat_l2_evict_reading; 258 kstat_named_t arcstat_l2_free_on_write; 259 kstat_named_t arcstat_l2_abort_lowmem; 260 kstat_named_t arcstat_l2_cksum_bad; 261 kstat_named_t arcstat_l2_io_error; 262 kstat_named_t arcstat_l2_size; 263 kstat_named_t arcstat_l2_hdr_size; 264 kstat_named_t arcstat_memory_throttle_count; 265 } arc_stats_t; 266 267 static arc_stats_t arc_stats = { 268 { "hits", KSTAT_DATA_UINT64 }, 269 { "misses", KSTAT_DATA_UINT64 }, 270 { "demand_data_hits", KSTAT_DATA_UINT64 }, 271 { "demand_data_misses", KSTAT_DATA_UINT64 }, 272 { "demand_metadata_hits", KSTAT_DATA_UINT64 }, 273 { "demand_metadata_misses", KSTAT_DATA_UINT64 }, 274 { "prefetch_data_hits", KSTAT_DATA_UINT64 }, 275 { "prefetch_data_misses", KSTAT_DATA_UINT64 }, 276 { "prefetch_metadata_hits", KSTAT_DATA_UINT64 }, 277 { "prefetch_metadata_misses", KSTAT_DATA_UINT64 }, 278 { "mru_hits", KSTAT_DATA_UINT64 }, 279 { "mru_ghost_hits", KSTAT_DATA_UINT64 }, 280 { "mfu_hits", KSTAT_DATA_UINT64 }, 281 { "mfu_ghost_hits", KSTAT_DATA_UINT64 }, 282 { "deleted", KSTAT_DATA_UINT64 }, 283 { "recycle_miss", KSTAT_DATA_UINT64 }, 284 { "mutex_miss", KSTAT_DATA_UINT64 }, 285 { "evict_skip", KSTAT_DATA_UINT64 }, 286 { "hash_elements", KSTAT_DATA_UINT64 }, 287 { "hash_elements_max", KSTAT_DATA_UINT64 }, 288 { "hash_collisions", KSTAT_DATA_UINT64 }, 289 { "hash_chains", KSTAT_DATA_UINT64 }, 290 { "hash_chain_max", KSTAT_DATA_UINT64 }, 291 { "p", KSTAT_DATA_UINT64 }, 292 { "c", KSTAT_DATA_UINT64 }, 293 { "c_min", KSTAT_DATA_UINT64 }, 294 { "c_max", KSTAT_DATA_UINT64 }, 295 { "size", KSTAT_DATA_UINT64 }, 296 { "hdr_size", KSTAT_DATA_UINT64 }, 297 { "l2_hits", KSTAT_DATA_UINT64 }, 298 { "l2_misses", KSTAT_DATA_UINT64 }, 299 { "l2_feeds", KSTAT_DATA_UINT64 }, 300 { "l2_rw_clash", KSTAT_DATA_UINT64 }, 301 { "l2_writes_sent", KSTAT_DATA_UINT64 }, 302 { "l2_writes_done", KSTAT_DATA_UINT64 }, 303 { "l2_writes_error", KSTAT_DATA_UINT64 }, 304 { "l2_writes_hdr_miss", KSTAT_DATA_UINT64 }, 305 { "l2_evict_lock_retry", KSTAT_DATA_UINT64 }, 306 { "l2_evict_reading", KSTAT_DATA_UINT64 }, 307 { "l2_free_on_write", KSTAT_DATA_UINT64 }, 308 { "l2_abort_lowmem", KSTAT_DATA_UINT64 }, 309 { "l2_cksum_bad", KSTAT_DATA_UINT64 }, 310 { "l2_io_error", KSTAT_DATA_UINT64 }, 311 { "l2_size", KSTAT_DATA_UINT64 }, 312 { "l2_hdr_size", KSTAT_DATA_UINT64 }, 313 { "memory_throttle_count", KSTAT_DATA_UINT64 } 314 }; 315 316 #define ARCSTAT(stat) (arc_stats.stat.value.ui64) 317 318 #define ARCSTAT_INCR(stat, val) \ 319 atomic_add_64(&arc_stats.stat.value.ui64, (val)); 320 321 #define ARCSTAT_BUMP(stat) ARCSTAT_INCR(stat, 1) 322 #define ARCSTAT_BUMPDOWN(stat) ARCSTAT_INCR(stat, -1) 323 324 #define ARCSTAT_MAX(stat, val) { \ 325 uint64_t m; \ 326 while ((val) > (m = arc_stats.stat.value.ui64) && \ 327 (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val)))) \ 328 continue; \ 329 } 330 331 #define ARCSTAT_MAXSTAT(stat) \ 332 ARCSTAT_MAX(stat##_max, arc_stats.stat.value.ui64) 333 334 /* 335 * We define a macro to allow ARC hits/misses to be easily broken down by 336 * two separate conditions, giving a total of four different subtypes for 337 * each of hits and misses (so eight statistics total). 338 */ 339 #define ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \ 340 if (cond1) { \ 341 if (cond2) { \ 342 ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \ 343 } else { \ 344 ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \ 345 } \ 346 } else { \ 347 if (cond2) { \ 348 ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \ 349 } else { \ 350 ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\ 351 } \ 352 } 353 354 kstat_t *arc_ksp; 355 static arc_state_t *arc_anon; 356 static arc_state_t *arc_mru; 357 static arc_state_t *arc_mru_ghost; 358 static arc_state_t *arc_mfu; 359 static arc_state_t *arc_mfu_ghost; 360 static arc_state_t *arc_l2c_only; 361 362 /* 363 * There are several ARC variables that are critical to export as kstats -- 364 * but we don't want to have to grovel around in the kstat whenever we wish to 365 * manipulate them. For these variables, we therefore define them to be in 366 * terms of the statistic variable. This assures that we are not introducing 367 * the possibility of inconsistency by having shadow copies of the variables, 368 * while still allowing the code to be readable. 369 */ 370 #define arc_size ARCSTAT(arcstat_size) /* actual total arc size */ 371 #define arc_p ARCSTAT(arcstat_p) /* target size of MRU */ 372 #define arc_c ARCSTAT(arcstat_c) /* target size of cache */ 373 #define arc_c_min ARCSTAT(arcstat_c_min) /* min target cache size */ 374 #define arc_c_max ARCSTAT(arcstat_c_max) /* max target cache size */ 375 376 static int arc_no_grow; /* Don't try to grow cache size */ 377 static uint64_t arc_tempreserve; 378 static uint64_t arc_meta_used; 379 static uint64_t arc_meta_limit; 380 static uint64_t arc_meta_max = 0; 381 382 typedef struct l2arc_buf_hdr l2arc_buf_hdr_t; 383 384 typedef struct arc_callback arc_callback_t; 385 386 struct arc_callback { 387 void *acb_private; 388 arc_done_func_t *acb_done; 389 arc_byteswap_func_t *acb_byteswap; 390 arc_buf_t *acb_buf; 391 zio_t *acb_zio_dummy; 392 arc_callback_t *acb_next; 393 }; 394 395 typedef struct arc_write_callback arc_write_callback_t; 396 397 struct arc_write_callback { 398 void *awcb_private; 399 arc_done_func_t *awcb_ready; 400 arc_done_func_t *awcb_done; 401 arc_buf_t *awcb_buf; 402 }; 403 404 struct arc_buf_hdr { 405 /* protected by hash lock */ 406 dva_t b_dva; 407 uint64_t b_birth; 408 uint64_t b_cksum0; 409 410 kmutex_t b_freeze_lock; 411 zio_cksum_t *b_freeze_cksum; 412 413 arc_buf_hdr_t *b_hash_next; 414 arc_buf_t *b_buf; 415 uint32_t b_flags; 416 uint32_t b_datacnt; 417 418 arc_callback_t *b_acb; 419 kcondvar_t b_cv; 420 421 /* immutable */ 422 arc_buf_contents_t b_type; 423 uint64_t b_size; 424 spa_t *b_spa; 425 426 /* protected by arc state mutex */ 427 arc_state_t *b_state; 428 list_node_t b_arc_node; 429 430 /* updated atomically */ 431 clock_t b_arc_access; 432 433 /* self protecting */ 434 refcount_t b_refcnt; 435 436 l2arc_buf_hdr_t *b_l2hdr; 437 list_node_t b_l2node; 438 }; 439 440 static arc_buf_t *arc_eviction_list; 441 static kmutex_t arc_eviction_mtx; 442 static arc_buf_hdr_t arc_eviction_hdr; 443 static void arc_get_data_buf(arc_buf_t *buf); 444 static void arc_access(arc_buf_hdr_t *buf, kmutex_t *hash_lock); 445 static int arc_evict_needed(arc_buf_contents_t type); 446 static void arc_evict_ghost(arc_state_t *state, spa_t *spa, int64_t bytes); 447 448 #define GHOST_STATE(state) \ 449 ((state) == arc_mru_ghost || (state) == arc_mfu_ghost || \ 450 (state) == arc_l2c_only) 451 452 /* 453 * Private ARC flags. These flags are private ARC only flags that will show up 454 * in b_flags in the arc_hdr_buf_t. Some flags are publicly declared, and can 455 * be passed in as arc_flags in things like arc_read. However, these flags 456 * should never be passed and should only be set by ARC code. When adding new 457 * public flags, make sure not to smash the private ones. 458 */ 459 460 #define ARC_IN_HASH_TABLE (1 << 9) /* this buffer is hashed */ 461 #define ARC_IO_IN_PROGRESS (1 << 10) /* I/O in progress for buf */ 462 #define ARC_IO_ERROR (1 << 11) /* I/O failed for buf */ 463 #define ARC_FREED_IN_READ (1 << 12) /* buf freed while in read */ 464 #define ARC_BUF_AVAILABLE (1 << 13) /* block not in active use */ 465 #define ARC_INDIRECT (1 << 14) /* this is an indirect block */ 466 #define ARC_FREE_IN_PROGRESS (1 << 15) /* hdr about to be freed */ 467 #define ARC_DONT_L2CACHE (1 << 16) /* originated by prefetch */ 468 #define ARC_L2_READING (1 << 17) /* L2ARC read in progress */ 469 #define ARC_L2_WRITING (1 << 18) /* L2ARC write in progress */ 470 #define ARC_L2_EVICTED (1 << 19) /* evicted during I/O */ 471 #define ARC_L2_WRITE_HEAD (1 << 20) /* head of write list */ 472 473 #define HDR_IN_HASH_TABLE(hdr) ((hdr)->b_flags & ARC_IN_HASH_TABLE) 474 #define HDR_IO_IN_PROGRESS(hdr) ((hdr)->b_flags & ARC_IO_IN_PROGRESS) 475 #define HDR_IO_ERROR(hdr) ((hdr)->b_flags & ARC_IO_ERROR) 476 #define HDR_FREED_IN_READ(hdr) ((hdr)->b_flags & ARC_FREED_IN_READ) 477 #define HDR_BUF_AVAILABLE(hdr) ((hdr)->b_flags & ARC_BUF_AVAILABLE) 478 #define HDR_FREE_IN_PROGRESS(hdr) ((hdr)->b_flags & ARC_FREE_IN_PROGRESS) 479 #define HDR_DONT_L2CACHE(hdr) ((hdr)->b_flags & ARC_DONT_L2CACHE) 480 #define HDR_L2_READING(hdr) ((hdr)->b_flags & ARC_L2_READING) 481 #define HDR_L2_WRITING(hdr) ((hdr)->b_flags & ARC_L2_WRITING) 482 #define HDR_L2_EVICTED(hdr) ((hdr)->b_flags & ARC_L2_EVICTED) 483 #define HDR_L2_WRITE_HEAD(hdr) ((hdr)->b_flags & ARC_L2_WRITE_HEAD) 484 485 /* 486 * Other sizes 487 */ 488 489 #define HDR_SIZE ((int64_t)sizeof (arc_buf_hdr_t)) 490 #define L2HDR_SIZE ((int64_t)sizeof (l2arc_buf_hdr_t)) 491 492 /* 493 * Hash table routines 494 */ 495 496 #define HT_LOCK_PAD 64 497 498 struct ht_lock { 499 kmutex_t ht_lock; 500 #ifdef _KERNEL 501 unsigned char pad[(HT_LOCK_PAD - sizeof (kmutex_t))]; 502 #endif 503 }; 504 505 #define BUF_LOCKS 256 506 typedef struct buf_hash_table { 507 uint64_t ht_mask; 508 arc_buf_hdr_t **ht_table; 509 struct ht_lock ht_locks[BUF_LOCKS]; 510 } buf_hash_table_t; 511 512 static buf_hash_table_t buf_hash_table; 513 514 #define BUF_HASH_INDEX(spa, dva, birth) \ 515 (buf_hash(spa, dva, birth) & buf_hash_table.ht_mask) 516 #define BUF_HASH_LOCK_NTRY(idx) (buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)]) 517 #define BUF_HASH_LOCK(idx) (&(BUF_HASH_LOCK_NTRY(idx).ht_lock)) 518 #define HDR_LOCK(buf) \ 519 (BUF_HASH_LOCK(BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth))) 520 521 uint64_t zfs_crc64_table[256]; 522 523 /* 524 * Level 2 ARC 525 */ 526 527 #define L2ARC_WRITE_SIZE (8 * 1024 * 1024) /* initial write max */ 528 #define L2ARC_HEADROOM 4 /* num of writes */ 529 #define L2ARC_FEED_DELAY 180 /* starting grace */ 530 #define L2ARC_FEED_SECS 1 /* caching interval */ 531 532 #define l2arc_writes_sent ARCSTAT(arcstat_l2_writes_sent) 533 #define l2arc_writes_done ARCSTAT(arcstat_l2_writes_done) 534 535 /* 536 * L2ARC Performance Tunables 537 */ 538 uint64_t l2arc_write_max = L2ARC_WRITE_SIZE; /* default max write size */ 539 uint64_t l2arc_headroom = L2ARC_HEADROOM; /* number of dev writes */ 540 uint64_t l2arc_feed_secs = L2ARC_FEED_SECS; /* interval seconds */ 541 boolean_t l2arc_noprefetch = B_TRUE; /* don't cache prefetch bufs */ 542 543 /* 544 * L2ARC Internals 545 */ 546 typedef struct l2arc_dev { 547 vdev_t *l2ad_vdev; /* vdev */ 548 spa_t *l2ad_spa; /* spa */ 549 uint64_t l2ad_hand; /* next write location */ 550 uint64_t l2ad_write; /* desired write size, bytes */ 551 uint64_t l2ad_start; /* first addr on device */ 552 uint64_t l2ad_end; /* last addr on device */ 553 uint64_t l2ad_evict; /* last addr eviction reached */ 554 boolean_t l2ad_first; /* first sweep through */ 555 list_t *l2ad_buflist; /* buffer list */ 556 list_node_t l2ad_node; /* device list node */ 557 } l2arc_dev_t; 558 559 static list_t L2ARC_dev_list; /* device list */ 560 static list_t *l2arc_dev_list; /* device list pointer */ 561 static kmutex_t l2arc_dev_mtx; /* device list mutex */ 562 static l2arc_dev_t *l2arc_dev_last; /* last device used */ 563 static kmutex_t l2arc_buflist_mtx; /* mutex for all buflists */ 564 static list_t L2ARC_free_on_write; /* free after write buf list */ 565 static list_t *l2arc_free_on_write; /* free after write list ptr */ 566 static kmutex_t l2arc_free_on_write_mtx; /* mutex for list */ 567 static uint64_t l2arc_ndev; /* number of devices */ 568 569 typedef struct l2arc_read_callback { 570 arc_buf_t *l2rcb_buf; /* read buffer */ 571 spa_t *l2rcb_spa; /* spa */ 572 blkptr_t l2rcb_bp; /* original blkptr */ 573 zbookmark_t l2rcb_zb; /* original bookmark */ 574 int l2rcb_flags; /* original flags */ 575 } l2arc_read_callback_t; 576 577 typedef struct l2arc_write_callback { 578 l2arc_dev_t *l2wcb_dev; /* device info */ 579 arc_buf_hdr_t *l2wcb_head; /* head of write buflist */ 580 } l2arc_write_callback_t; 581 582 struct l2arc_buf_hdr { 583 /* protected by arc_buf_hdr mutex */ 584 l2arc_dev_t *b_dev; /* L2ARC device */ 585 daddr_t b_daddr; /* disk address, offset byte */ 586 }; 587 588 typedef struct l2arc_data_free { 589 /* protected by l2arc_free_on_write_mtx */ 590 void *l2df_data; 591 size_t l2df_size; 592 void (*l2df_func)(void *, size_t); 593 list_node_t l2df_list_node; 594 } l2arc_data_free_t; 595 596 static kmutex_t l2arc_feed_thr_lock; 597 static kcondvar_t l2arc_feed_thr_cv; 598 static uint8_t l2arc_thread_exit; 599 600 static void l2arc_read_done(zio_t *zio); 601 static void l2arc_hdr_stat_add(void); 602 static void l2arc_hdr_stat_remove(void); 603 604 static uint64_t 605 buf_hash(spa_t *spa, dva_t *dva, uint64_t birth) 606 { 607 uintptr_t spav = (uintptr_t)spa; 608 uint8_t *vdva = (uint8_t *)dva; 609 uint64_t crc = -1ULL; 610 int i; 611 612 ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY); 613 614 for (i = 0; i < sizeof (dva_t); i++) 615 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ vdva[i]) & 0xFF]; 616 617 crc ^= (spav>>8) ^ birth; 618 619 return (crc); 620 } 621 622 #define BUF_EMPTY(buf) \ 623 ((buf)->b_dva.dva_word[0] == 0 && \ 624 (buf)->b_dva.dva_word[1] == 0 && \ 625 (buf)->b_birth == 0) 626 627 #define BUF_EQUAL(spa, dva, birth, buf) \ 628 ((buf)->b_dva.dva_word[0] == (dva)->dva_word[0]) && \ 629 ((buf)->b_dva.dva_word[1] == (dva)->dva_word[1]) && \ 630 ((buf)->b_birth == birth) && ((buf)->b_spa == spa) 631 632 static arc_buf_hdr_t * 633 buf_hash_find(spa_t *spa, dva_t *dva, uint64_t birth, kmutex_t **lockp) 634 { 635 uint64_t idx = BUF_HASH_INDEX(spa, dva, birth); 636 kmutex_t *hash_lock = BUF_HASH_LOCK(idx); 637 arc_buf_hdr_t *buf; 638 639 mutex_enter(hash_lock); 640 for (buf = buf_hash_table.ht_table[idx]; buf != NULL; 641 buf = buf->b_hash_next) { 642 if (BUF_EQUAL(spa, dva, birth, buf)) { 643 *lockp = hash_lock; 644 return (buf); 645 } 646 } 647 mutex_exit(hash_lock); 648 *lockp = NULL; 649 return (NULL); 650 } 651 652 /* 653 * Insert an entry into the hash table. If there is already an element 654 * equal to elem in the hash table, then the already existing element 655 * will be returned and the new element will not be inserted. 656 * Otherwise returns NULL. 657 */ 658 static arc_buf_hdr_t * 659 buf_hash_insert(arc_buf_hdr_t *buf, kmutex_t **lockp) 660 { 661 uint64_t idx = BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth); 662 kmutex_t *hash_lock = BUF_HASH_LOCK(idx); 663 arc_buf_hdr_t *fbuf; 664 uint32_t i; 665 666 ASSERT(!HDR_IN_HASH_TABLE(buf)); 667 *lockp = hash_lock; 668 mutex_enter(hash_lock); 669 for (fbuf = buf_hash_table.ht_table[idx], i = 0; fbuf != NULL; 670 fbuf = fbuf->b_hash_next, i++) { 671 if (BUF_EQUAL(buf->b_spa, &buf->b_dva, buf->b_birth, fbuf)) 672 return (fbuf); 673 } 674 675 buf->b_hash_next = buf_hash_table.ht_table[idx]; 676 buf_hash_table.ht_table[idx] = buf; 677 buf->b_flags |= ARC_IN_HASH_TABLE; 678 679 /* collect some hash table performance data */ 680 if (i > 0) { 681 ARCSTAT_BUMP(arcstat_hash_collisions); 682 if (i == 1) 683 ARCSTAT_BUMP(arcstat_hash_chains); 684 685 ARCSTAT_MAX(arcstat_hash_chain_max, i); 686 } 687 688 ARCSTAT_BUMP(arcstat_hash_elements); 689 ARCSTAT_MAXSTAT(arcstat_hash_elements); 690 691 return (NULL); 692 } 693 694 static void 695 buf_hash_remove(arc_buf_hdr_t *buf) 696 { 697 arc_buf_hdr_t *fbuf, **bufp; 698 uint64_t idx = BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth); 699 700 ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx))); 701 ASSERT(HDR_IN_HASH_TABLE(buf)); 702 703 bufp = &buf_hash_table.ht_table[idx]; 704 while ((fbuf = *bufp) != buf) { 705 ASSERT(fbuf != NULL); 706 bufp = &fbuf->b_hash_next; 707 } 708 *bufp = buf->b_hash_next; 709 buf->b_hash_next = NULL; 710 buf->b_flags &= ~ARC_IN_HASH_TABLE; 711 712 /* collect some hash table performance data */ 713 ARCSTAT_BUMPDOWN(arcstat_hash_elements); 714 715 if (buf_hash_table.ht_table[idx] && 716 buf_hash_table.ht_table[idx]->b_hash_next == NULL) 717 ARCSTAT_BUMPDOWN(arcstat_hash_chains); 718 } 719 720 /* 721 * Global data structures and functions for the buf kmem cache. 722 */ 723 static kmem_cache_t *hdr_cache; 724 static kmem_cache_t *buf_cache; 725 726 static void 727 buf_fini(void) 728 { 729 int i; 730 731 kmem_free(buf_hash_table.ht_table, 732 (buf_hash_table.ht_mask + 1) * sizeof (void *)); 733 for (i = 0; i < BUF_LOCKS; i++) 734 mutex_destroy(&buf_hash_table.ht_locks[i].ht_lock); 735 kmem_cache_destroy(hdr_cache); 736 kmem_cache_destroy(buf_cache); 737 } 738 739 /* 740 * Constructor callback - called when the cache is empty 741 * and a new buf is requested. 742 */ 743 /* ARGSUSED */ 744 static int 745 hdr_cons(void *vbuf, void *unused, int kmflag) 746 { 747 arc_buf_hdr_t *buf = vbuf; 748 749 bzero(buf, sizeof (arc_buf_hdr_t)); 750 refcount_create(&buf->b_refcnt); 751 cv_init(&buf->b_cv, NULL, CV_DEFAULT, NULL); 752 mutex_init(&buf->b_freeze_lock, NULL, MUTEX_DEFAULT, NULL); 753 754 ARCSTAT_INCR(arcstat_hdr_size, HDR_SIZE); 755 return (0); 756 } 757 758 /* 759 * Destructor callback - called when a cached buf is 760 * no longer required. 761 */ 762 /* ARGSUSED */ 763 static void 764 hdr_dest(void *vbuf, void *unused) 765 { 766 arc_buf_hdr_t *buf = vbuf; 767 768 refcount_destroy(&buf->b_refcnt); 769 cv_destroy(&buf->b_cv); 770 mutex_destroy(&buf->b_freeze_lock); 771 772 ARCSTAT_INCR(arcstat_hdr_size, -HDR_SIZE); 773 } 774 775 /* 776 * Reclaim callback -- invoked when memory is low. 777 */ 778 /* ARGSUSED */ 779 static void 780 hdr_recl(void *unused) 781 { 782 dprintf("hdr_recl called\n"); 783 /* 784 * umem calls the reclaim func when we destroy the buf cache, 785 * which is after we do arc_fini(). 786 */ 787 if (!arc_dead) 788 cv_signal(&arc_reclaim_thr_cv); 789 } 790 791 static void 792 buf_init(void) 793 { 794 uint64_t *ct; 795 uint64_t hsize = 1ULL << 12; 796 int i, j; 797 798 /* 799 * The hash table is big enough to fill all of physical memory 800 * with an average 64K block size. The table will take up 801 * totalmem*sizeof(void*)/64K (eg. 128KB/GB with 8-byte pointers). 802 */ 803 while (hsize * 65536 < physmem * PAGESIZE) 804 hsize <<= 1; 805 retry: 806 buf_hash_table.ht_mask = hsize - 1; 807 buf_hash_table.ht_table = 808 kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP); 809 if (buf_hash_table.ht_table == NULL) { 810 ASSERT(hsize > (1ULL << 8)); 811 hsize >>= 1; 812 goto retry; 813 } 814 815 hdr_cache = kmem_cache_create("arc_buf_hdr_t", sizeof (arc_buf_hdr_t), 816 0, hdr_cons, hdr_dest, hdr_recl, NULL, NULL, 0); 817 buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t), 818 0, NULL, NULL, NULL, NULL, NULL, 0); 819 820 for (i = 0; i < 256; i++) 821 for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--) 822 *ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY); 823 824 for (i = 0; i < BUF_LOCKS; i++) { 825 mutex_init(&buf_hash_table.ht_locks[i].ht_lock, 826 NULL, MUTEX_DEFAULT, NULL); 827 } 828 } 829 830 #define ARC_MINTIME (hz>>4) /* 62 ms */ 831 832 static void 833 arc_cksum_verify(arc_buf_t *buf) 834 { 835 zio_cksum_t zc; 836 837 if (!(zfs_flags & ZFS_DEBUG_MODIFY)) 838 return; 839 840 mutex_enter(&buf->b_hdr->b_freeze_lock); 841 if (buf->b_hdr->b_freeze_cksum == NULL || 842 (buf->b_hdr->b_flags & ARC_IO_ERROR)) { 843 mutex_exit(&buf->b_hdr->b_freeze_lock); 844 return; 845 } 846 fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc); 847 if (!ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc)) 848 panic("buffer modified while frozen!"); 849 mutex_exit(&buf->b_hdr->b_freeze_lock); 850 } 851 852 static int 853 arc_cksum_equal(arc_buf_t *buf) 854 { 855 zio_cksum_t zc; 856 int equal; 857 858 mutex_enter(&buf->b_hdr->b_freeze_lock); 859 fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc); 860 equal = ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc); 861 mutex_exit(&buf->b_hdr->b_freeze_lock); 862 863 return (equal); 864 } 865 866 static void 867 arc_cksum_compute(arc_buf_t *buf, boolean_t force) 868 { 869 if (!force && !(zfs_flags & ZFS_DEBUG_MODIFY)) 870 return; 871 872 mutex_enter(&buf->b_hdr->b_freeze_lock); 873 if (buf->b_hdr->b_freeze_cksum != NULL) { 874 mutex_exit(&buf->b_hdr->b_freeze_lock); 875 return; 876 } 877 buf->b_hdr->b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t), KM_SLEEP); 878 fletcher_2_native(buf->b_data, buf->b_hdr->b_size, 879 buf->b_hdr->b_freeze_cksum); 880 mutex_exit(&buf->b_hdr->b_freeze_lock); 881 } 882 883 void 884 arc_buf_thaw(arc_buf_t *buf) 885 { 886 if (zfs_flags & ZFS_DEBUG_MODIFY) { 887 if (buf->b_hdr->b_state != arc_anon) 888 panic("modifying non-anon buffer!"); 889 if (buf->b_hdr->b_flags & ARC_IO_IN_PROGRESS) 890 panic("modifying buffer while i/o in progress!"); 891 arc_cksum_verify(buf); 892 } 893 894 mutex_enter(&buf->b_hdr->b_freeze_lock); 895 if (buf->b_hdr->b_freeze_cksum != NULL) { 896 kmem_free(buf->b_hdr->b_freeze_cksum, sizeof (zio_cksum_t)); 897 buf->b_hdr->b_freeze_cksum = NULL; 898 } 899 mutex_exit(&buf->b_hdr->b_freeze_lock); 900 } 901 902 void 903 arc_buf_freeze(arc_buf_t *buf) 904 { 905 if (!(zfs_flags & ZFS_DEBUG_MODIFY)) 906 return; 907 908 ASSERT(buf->b_hdr->b_freeze_cksum != NULL || 909 buf->b_hdr->b_state == arc_anon); 910 arc_cksum_compute(buf, B_FALSE); 911 } 912 913 static void 914 add_reference(arc_buf_hdr_t *ab, kmutex_t *hash_lock, void *tag) 915 { 916 ASSERT(MUTEX_HELD(hash_lock)); 917 918 if ((refcount_add(&ab->b_refcnt, tag) == 1) && 919 (ab->b_state != arc_anon)) { 920 uint64_t delta = ab->b_size * ab->b_datacnt; 921 list_t *list = &ab->b_state->arcs_list[ab->b_type]; 922 uint64_t *size = &ab->b_state->arcs_lsize[ab->b_type]; 923 924 ASSERT(!MUTEX_HELD(&ab->b_state->arcs_mtx)); 925 mutex_enter(&ab->b_state->arcs_mtx); 926 ASSERT(list_link_active(&ab->b_arc_node)); 927 list_remove(list, ab); 928 if (GHOST_STATE(ab->b_state)) { 929 ASSERT3U(ab->b_datacnt, ==, 0); 930 ASSERT3P(ab->b_buf, ==, NULL); 931 delta = ab->b_size; 932 } 933 ASSERT(delta > 0); 934 ASSERT3U(*size, >=, delta); 935 atomic_add_64(size, -delta); 936 mutex_exit(&ab->b_state->arcs_mtx); 937 /* remove the prefetch flag is we get a reference */ 938 if (ab->b_flags & ARC_PREFETCH) 939 ab->b_flags &= ~ARC_PREFETCH; 940 } 941 } 942 943 static int 944 remove_reference(arc_buf_hdr_t *ab, kmutex_t *hash_lock, void *tag) 945 { 946 int cnt; 947 arc_state_t *state = ab->b_state; 948 949 ASSERT(state == arc_anon || MUTEX_HELD(hash_lock)); 950 ASSERT(!GHOST_STATE(state)); 951 952 if (((cnt = refcount_remove(&ab->b_refcnt, tag)) == 0) && 953 (state != arc_anon)) { 954 uint64_t *size = &state->arcs_lsize[ab->b_type]; 955 956 ASSERT(!MUTEX_HELD(&state->arcs_mtx)); 957 mutex_enter(&state->arcs_mtx); 958 ASSERT(!list_link_active(&ab->b_arc_node)); 959 list_insert_head(&state->arcs_list[ab->b_type], ab); 960 ASSERT(ab->b_datacnt > 0); 961 atomic_add_64(size, ab->b_size * ab->b_datacnt); 962 mutex_exit(&state->arcs_mtx); 963 } 964 return (cnt); 965 } 966 967 /* 968 * Move the supplied buffer to the indicated state. The mutex 969 * for the buffer must be held by the caller. 970 */ 971 static void 972 arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *ab, kmutex_t *hash_lock) 973 { 974 arc_state_t *old_state = ab->b_state; 975 int64_t refcnt = refcount_count(&ab->b_refcnt); 976 uint64_t from_delta, to_delta; 977 978 ASSERT(MUTEX_HELD(hash_lock)); 979 ASSERT(new_state != old_state); 980 ASSERT(refcnt == 0 || ab->b_datacnt > 0); 981 ASSERT(ab->b_datacnt == 0 || !GHOST_STATE(new_state)); 982 983 from_delta = to_delta = ab->b_datacnt * ab->b_size; 984 985 /* 986 * If this buffer is evictable, transfer it from the 987 * old state list to the new state list. 988 */ 989 if (refcnt == 0) { 990 if (old_state != arc_anon) { 991 int use_mutex = !MUTEX_HELD(&old_state->arcs_mtx); 992 uint64_t *size = &old_state->arcs_lsize[ab->b_type]; 993 994 if (use_mutex) 995 mutex_enter(&old_state->arcs_mtx); 996 997 ASSERT(list_link_active(&ab->b_arc_node)); 998 list_remove(&old_state->arcs_list[ab->b_type], ab); 999 1000 /* 1001 * If prefetching out of the ghost cache, 1002 * we will have a non-null datacnt. 1003 */ 1004 if (GHOST_STATE(old_state) && ab->b_datacnt == 0) { 1005 /* ghost elements have a ghost size */ 1006 ASSERT(ab->b_buf == NULL); 1007 from_delta = ab->b_size; 1008 } 1009 ASSERT3U(*size, >=, from_delta); 1010 atomic_add_64(size, -from_delta); 1011 1012 if (use_mutex) 1013 mutex_exit(&old_state->arcs_mtx); 1014 } 1015 if (new_state != arc_anon) { 1016 int use_mutex = !MUTEX_HELD(&new_state->arcs_mtx); 1017 uint64_t *size = &new_state->arcs_lsize[ab->b_type]; 1018 1019 if (use_mutex) 1020 mutex_enter(&new_state->arcs_mtx); 1021 1022 list_insert_head(&new_state->arcs_list[ab->b_type], ab); 1023 1024 /* ghost elements have a ghost size */ 1025 if (GHOST_STATE(new_state)) { 1026 ASSERT(ab->b_datacnt == 0); 1027 ASSERT(ab->b_buf == NULL); 1028 to_delta = ab->b_size; 1029 } 1030 atomic_add_64(size, to_delta); 1031 1032 if (use_mutex) 1033 mutex_exit(&new_state->arcs_mtx); 1034 } 1035 } 1036 1037 ASSERT(!BUF_EMPTY(ab)); 1038 if (new_state == arc_anon) { 1039 buf_hash_remove(ab); 1040 } 1041 1042 /* adjust state sizes */ 1043 if (to_delta) 1044 atomic_add_64(&new_state->arcs_size, to_delta); 1045 if (from_delta) { 1046 ASSERT3U(old_state->arcs_size, >=, from_delta); 1047 atomic_add_64(&old_state->arcs_size, -from_delta); 1048 } 1049 ab->b_state = new_state; 1050 1051 /* adjust l2arc hdr stats */ 1052 if (new_state == arc_l2c_only) 1053 l2arc_hdr_stat_add(); 1054 else if (old_state == arc_l2c_only) 1055 l2arc_hdr_stat_remove(); 1056 } 1057 1058 void 1059 arc_space_consume(uint64_t space) 1060 { 1061 atomic_add_64(&arc_meta_used, space); 1062 atomic_add_64(&arc_size, space); 1063 } 1064 1065 void 1066 arc_space_return(uint64_t space) 1067 { 1068 ASSERT(arc_meta_used >= space); 1069 if (arc_meta_max < arc_meta_used) 1070 arc_meta_max = arc_meta_used; 1071 atomic_add_64(&arc_meta_used, -space); 1072 ASSERT(arc_size >= space); 1073 atomic_add_64(&arc_size, -space); 1074 } 1075 1076 void * 1077 arc_data_buf_alloc(uint64_t size) 1078 { 1079 if (arc_evict_needed(ARC_BUFC_DATA)) 1080 cv_signal(&arc_reclaim_thr_cv); 1081 atomic_add_64(&arc_size, size); 1082 return (zio_data_buf_alloc(size)); 1083 } 1084 1085 void 1086 arc_data_buf_free(void *buf, uint64_t size) 1087 { 1088 zio_data_buf_free(buf, size); 1089 ASSERT(arc_size >= size); 1090 atomic_add_64(&arc_size, -size); 1091 } 1092 1093 arc_buf_t * 1094 arc_buf_alloc(spa_t *spa, int size, void *tag, arc_buf_contents_t type) 1095 { 1096 arc_buf_hdr_t *hdr; 1097 arc_buf_t *buf; 1098 1099 ASSERT3U(size, >, 0); 1100 hdr = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE); 1101 ASSERT(BUF_EMPTY(hdr)); 1102 hdr->b_size = size; 1103 hdr->b_type = type; 1104 hdr->b_spa = spa; 1105 hdr->b_state = arc_anon; 1106 hdr->b_arc_access = 0; 1107 buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE); 1108 buf->b_hdr = hdr; 1109 buf->b_data = NULL; 1110 buf->b_efunc = NULL; 1111 buf->b_private = NULL; 1112 buf->b_next = NULL; 1113 hdr->b_buf = buf; 1114 arc_get_data_buf(buf); 1115 hdr->b_datacnt = 1; 1116 hdr->b_flags = 0; 1117 ASSERT(refcount_is_zero(&hdr->b_refcnt)); 1118 (void) refcount_add(&hdr->b_refcnt, tag); 1119 1120 return (buf); 1121 } 1122 1123 static arc_buf_t * 1124 arc_buf_clone(arc_buf_t *from) 1125 { 1126 arc_buf_t *buf; 1127 arc_buf_hdr_t *hdr = from->b_hdr; 1128 uint64_t size = hdr->b_size; 1129 1130 buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE); 1131 buf->b_hdr = hdr; 1132 buf->b_data = NULL; 1133 buf->b_efunc = NULL; 1134 buf->b_private = NULL; 1135 buf->b_next = hdr->b_buf; 1136 hdr->b_buf = buf; 1137 arc_get_data_buf(buf); 1138 bcopy(from->b_data, buf->b_data, size); 1139 hdr->b_datacnt += 1; 1140 return (buf); 1141 } 1142 1143 void 1144 arc_buf_add_ref(arc_buf_t *buf, void* tag) 1145 { 1146 arc_buf_hdr_t *hdr; 1147 kmutex_t *hash_lock; 1148 1149 /* 1150 * Check to see if this buffer is currently being evicted via 1151 * arc_do_user_evicts(). 1152 */ 1153 mutex_enter(&arc_eviction_mtx); 1154 hdr = buf->b_hdr; 1155 if (hdr == NULL) { 1156 mutex_exit(&arc_eviction_mtx); 1157 return; 1158 } 1159 hash_lock = HDR_LOCK(hdr); 1160 mutex_exit(&arc_eviction_mtx); 1161 1162 mutex_enter(hash_lock); 1163 if (buf->b_data == NULL) { 1164 /* 1165 * This buffer is evicted. 1166 */ 1167 mutex_exit(hash_lock); 1168 return; 1169 } 1170 1171 ASSERT(buf->b_hdr == hdr); 1172 ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu); 1173 add_reference(hdr, hash_lock, tag); 1174 arc_access(hdr, hash_lock); 1175 mutex_exit(hash_lock); 1176 ARCSTAT_BUMP(arcstat_hits); 1177 ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH), 1178 demand, prefetch, hdr->b_type != ARC_BUFC_METADATA, 1179 data, metadata, hits); 1180 } 1181 1182 /* 1183 * Free the arc data buffer. If it is an l2arc write in progress, 1184 * the buffer is placed on l2arc_free_on_write to be freed later. 1185 */ 1186 static void 1187 arc_buf_data_free(arc_buf_hdr_t *hdr, void (*free_func)(void *, size_t), 1188 void *data, size_t size) 1189 { 1190 if (HDR_L2_WRITING(hdr)) { 1191 l2arc_data_free_t *df; 1192 df = kmem_alloc(sizeof (l2arc_data_free_t), KM_SLEEP); 1193 df->l2df_data = data; 1194 df->l2df_size = size; 1195 df->l2df_func = free_func; 1196 mutex_enter(&l2arc_free_on_write_mtx); 1197 list_insert_head(l2arc_free_on_write, df); 1198 mutex_exit(&l2arc_free_on_write_mtx); 1199 ARCSTAT_BUMP(arcstat_l2_free_on_write); 1200 } else { 1201 free_func(data, size); 1202 } 1203 } 1204 1205 static void 1206 arc_buf_destroy(arc_buf_t *buf, boolean_t recycle, boolean_t all) 1207 { 1208 arc_buf_t **bufp; 1209 1210 /* free up data associated with the buf */ 1211 if (buf->b_data) { 1212 arc_state_t *state = buf->b_hdr->b_state; 1213 uint64_t size = buf->b_hdr->b_size; 1214 arc_buf_contents_t type = buf->b_hdr->b_type; 1215 1216 arc_cksum_verify(buf); 1217 if (!recycle) { 1218 if (type == ARC_BUFC_METADATA) { 1219 arc_buf_data_free(buf->b_hdr, zio_buf_free, 1220 buf->b_data, size); 1221 arc_space_return(size); 1222 } else { 1223 ASSERT(type == ARC_BUFC_DATA); 1224 arc_buf_data_free(buf->b_hdr, 1225 zio_data_buf_free, buf->b_data, size); 1226 atomic_add_64(&arc_size, -size); 1227 } 1228 } 1229 if (list_link_active(&buf->b_hdr->b_arc_node)) { 1230 uint64_t *cnt = &state->arcs_lsize[type]; 1231 1232 ASSERT(refcount_is_zero(&buf->b_hdr->b_refcnt)); 1233 ASSERT(state != arc_anon); 1234 1235 ASSERT3U(*cnt, >=, size); 1236 atomic_add_64(cnt, -size); 1237 } 1238 ASSERT3U(state->arcs_size, >=, size); 1239 atomic_add_64(&state->arcs_size, -size); 1240 buf->b_data = NULL; 1241 ASSERT(buf->b_hdr->b_datacnt > 0); 1242 buf->b_hdr->b_datacnt -= 1; 1243 } 1244 1245 /* only remove the buf if requested */ 1246 if (!all) 1247 return; 1248 1249 /* remove the buf from the hdr list */ 1250 for (bufp = &buf->b_hdr->b_buf; *bufp != buf; bufp = &(*bufp)->b_next) 1251 continue; 1252 *bufp = buf->b_next; 1253 1254 ASSERT(buf->b_efunc == NULL); 1255 1256 /* clean up the buf */ 1257 buf->b_hdr = NULL; 1258 kmem_cache_free(buf_cache, buf); 1259 } 1260 1261 static void 1262 arc_hdr_destroy(arc_buf_hdr_t *hdr) 1263 { 1264 ASSERT(refcount_is_zero(&hdr->b_refcnt)); 1265 ASSERT3P(hdr->b_state, ==, arc_anon); 1266 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 1267 1268 if (hdr->b_l2hdr != NULL) { 1269 if (!MUTEX_HELD(&l2arc_buflist_mtx)) { 1270 /* 1271 * To prevent arc_free() and l2arc_evict() from 1272 * attempting to free the same buffer at the same time, 1273 * a FREE_IN_PROGRESS flag is given to arc_free() to 1274 * give it priority. l2arc_evict() can't destroy this 1275 * header while we are waiting on l2arc_buflist_mtx. 1276 */ 1277 mutex_enter(&l2arc_buflist_mtx); 1278 ASSERT(hdr->b_l2hdr != NULL); 1279 1280 list_remove(hdr->b_l2hdr->b_dev->l2ad_buflist, hdr); 1281 mutex_exit(&l2arc_buflist_mtx); 1282 } else { 1283 list_remove(hdr->b_l2hdr->b_dev->l2ad_buflist, hdr); 1284 } 1285 ARCSTAT_INCR(arcstat_l2_size, -hdr->b_size); 1286 kmem_free(hdr->b_l2hdr, sizeof (l2arc_buf_hdr_t)); 1287 if (hdr->b_state == arc_l2c_only) 1288 l2arc_hdr_stat_remove(); 1289 hdr->b_l2hdr = NULL; 1290 } 1291 1292 if (!BUF_EMPTY(hdr)) { 1293 ASSERT(!HDR_IN_HASH_TABLE(hdr)); 1294 bzero(&hdr->b_dva, sizeof (dva_t)); 1295 hdr->b_birth = 0; 1296 hdr->b_cksum0 = 0; 1297 } 1298 while (hdr->b_buf) { 1299 arc_buf_t *buf = hdr->b_buf; 1300 1301 if (buf->b_efunc) { 1302 mutex_enter(&arc_eviction_mtx); 1303 ASSERT(buf->b_hdr != NULL); 1304 arc_buf_destroy(hdr->b_buf, FALSE, FALSE); 1305 hdr->b_buf = buf->b_next; 1306 buf->b_hdr = &arc_eviction_hdr; 1307 buf->b_next = arc_eviction_list; 1308 arc_eviction_list = buf; 1309 mutex_exit(&arc_eviction_mtx); 1310 } else { 1311 arc_buf_destroy(hdr->b_buf, FALSE, TRUE); 1312 } 1313 } 1314 if (hdr->b_freeze_cksum != NULL) { 1315 kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t)); 1316 hdr->b_freeze_cksum = NULL; 1317 } 1318 1319 ASSERT(!list_link_active(&hdr->b_arc_node)); 1320 ASSERT3P(hdr->b_hash_next, ==, NULL); 1321 ASSERT3P(hdr->b_acb, ==, NULL); 1322 kmem_cache_free(hdr_cache, hdr); 1323 } 1324 1325 void 1326 arc_buf_free(arc_buf_t *buf, void *tag) 1327 { 1328 arc_buf_hdr_t *hdr = buf->b_hdr; 1329 int hashed = hdr->b_state != arc_anon; 1330 1331 ASSERT(buf->b_efunc == NULL); 1332 ASSERT(buf->b_data != NULL); 1333 1334 if (hashed) { 1335 kmutex_t *hash_lock = HDR_LOCK(hdr); 1336 1337 mutex_enter(hash_lock); 1338 (void) remove_reference(hdr, hash_lock, tag); 1339 if (hdr->b_datacnt > 1) 1340 arc_buf_destroy(buf, FALSE, TRUE); 1341 else 1342 hdr->b_flags |= ARC_BUF_AVAILABLE; 1343 mutex_exit(hash_lock); 1344 } else if (HDR_IO_IN_PROGRESS(hdr)) { 1345 int destroy_hdr; 1346 /* 1347 * We are in the middle of an async write. Don't destroy 1348 * this buffer unless the write completes before we finish 1349 * decrementing the reference count. 1350 */ 1351 mutex_enter(&arc_eviction_mtx); 1352 (void) remove_reference(hdr, NULL, tag); 1353 ASSERT(refcount_is_zero(&hdr->b_refcnt)); 1354 destroy_hdr = !HDR_IO_IN_PROGRESS(hdr); 1355 mutex_exit(&arc_eviction_mtx); 1356 if (destroy_hdr) 1357 arc_hdr_destroy(hdr); 1358 } else { 1359 if (remove_reference(hdr, NULL, tag) > 0) { 1360 ASSERT(HDR_IO_ERROR(hdr)); 1361 arc_buf_destroy(buf, FALSE, TRUE); 1362 } else { 1363 arc_hdr_destroy(hdr); 1364 } 1365 } 1366 } 1367 1368 int 1369 arc_buf_remove_ref(arc_buf_t *buf, void* tag) 1370 { 1371 arc_buf_hdr_t *hdr = buf->b_hdr; 1372 kmutex_t *hash_lock = HDR_LOCK(hdr); 1373 int no_callback = (buf->b_efunc == NULL); 1374 1375 if (hdr->b_state == arc_anon) { 1376 arc_buf_free(buf, tag); 1377 return (no_callback); 1378 } 1379 1380 mutex_enter(hash_lock); 1381 ASSERT(hdr->b_state != arc_anon); 1382 ASSERT(buf->b_data != NULL); 1383 1384 (void) remove_reference(hdr, hash_lock, tag); 1385 if (hdr->b_datacnt > 1) { 1386 if (no_callback) 1387 arc_buf_destroy(buf, FALSE, TRUE); 1388 } else if (no_callback) { 1389 ASSERT(hdr->b_buf == buf && buf->b_next == NULL); 1390 hdr->b_flags |= ARC_BUF_AVAILABLE; 1391 } 1392 ASSERT(no_callback || hdr->b_datacnt > 1 || 1393 refcount_is_zero(&hdr->b_refcnt)); 1394 mutex_exit(hash_lock); 1395 return (no_callback); 1396 } 1397 1398 int 1399 arc_buf_size(arc_buf_t *buf) 1400 { 1401 return (buf->b_hdr->b_size); 1402 } 1403 1404 /* 1405 * Evict buffers from list until we've removed the specified number of 1406 * bytes. Move the removed buffers to the appropriate evict state. 1407 * If the recycle flag is set, then attempt to "recycle" a buffer: 1408 * - look for a buffer to evict that is `bytes' long. 1409 * - return the data block from this buffer rather than freeing it. 1410 * This flag is used by callers that are trying to make space for a 1411 * new buffer in a full arc cache. 1412 * 1413 * This function makes a "best effort". It skips over any buffers 1414 * it can't get a hash_lock on, and so may not catch all candidates. 1415 * It may also return without evicting as much space as requested. 1416 */ 1417 static void * 1418 arc_evict(arc_state_t *state, spa_t *spa, int64_t bytes, boolean_t recycle, 1419 arc_buf_contents_t type) 1420 { 1421 arc_state_t *evicted_state; 1422 uint64_t bytes_evicted = 0, skipped = 0, missed = 0; 1423 arc_buf_hdr_t *ab, *ab_prev = NULL; 1424 list_t *list = &state->arcs_list[type]; 1425 kmutex_t *hash_lock; 1426 boolean_t have_lock; 1427 void *stolen = NULL; 1428 1429 ASSERT(state == arc_mru || state == arc_mfu); 1430 1431 evicted_state = (state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost; 1432 1433 mutex_enter(&state->arcs_mtx); 1434 mutex_enter(&evicted_state->arcs_mtx); 1435 1436 for (ab = list_tail(list); ab; ab = ab_prev) { 1437 ab_prev = list_prev(list, ab); 1438 /* prefetch buffers have a minimum lifespan */ 1439 if (HDR_IO_IN_PROGRESS(ab) || 1440 (spa && ab->b_spa != spa) || 1441 (ab->b_flags & (ARC_PREFETCH|ARC_INDIRECT) && 1442 lbolt - ab->b_arc_access < arc_min_prefetch_lifespan)) { 1443 skipped++; 1444 continue; 1445 } 1446 /* "lookahead" for better eviction candidate */ 1447 if (recycle && ab->b_size != bytes && 1448 ab_prev && ab_prev->b_size == bytes) 1449 continue; 1450 hash_lock = HDR_LOCK(ab); 1451 have_lock = MUTEX_HELD(hash_lock); 1452 if (have_lock || mutex_tryenter(hash_lock)) { 1453 ASSERT3U(refcount_count(&ab->b_refcnt), ==, 0); 1454 ASSERT(ab->b_datacnt > 0); 1455 while (ab->b_buf) { 1456 arc_buf_t *buf = ab->b_buf; 1457 if (buf->b_data) { 1458 bytes_evicted += ab->b_size; 1459 if (recycle && ab->b_type == type && 1460 ab->b_size == bytes && 1461 !HDR_L2_WRITING(ab)) { 1462 stolen = buf->b_data; 1463 recycle = FALSE; 1464 } 1465 } 1466 if (buf->b_efunc) { 1467 mutex_enter(&arc_eviction_mtx); 1468 arc_buf_destroy(buf, 1469 buf->b_data == stolen, FALSE); 1470 ab->b_buf = buf->b_next; 1471 buf->b_hdr = &arc_eviction_hdr; 1472 buf->b_next = arc_eviction_list; 1473 arc_eviction_list = buf; 1474 mutex_exit(&arc_eviction_mtx); 1475 } else { 1476 arc_buf_destroy(buf, 1477 buf->b_data == stolen, TRUE); 1478 } 1479 } 1480 ASSERT(ab->b_datacnt == 0); 1481 arc_change_state(evicted_state, ab, hash_lock); 1482 ASSERT(HDR_IN_HASH_TABLE(ab)); 1483 ab->b_flags |= ARC_IN_HASH_TABLE; 1484 ab->b_flags &= ~ARC_BUF_AVAILABLE; 1485 DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, ab); 1486 if (!have_lock) 1487 mutex_exit(hash_lock); 1488 if (bytes >= 0 && bytes_evicted >= bytes) 1489 break; 1490 } else { 1491 missed += 1; 1492 } 1493 } 1494 1495 mutex_exit(&evicted_state->arcs_mtx); 1496 mutex_exit(&state->arcs_mtx); 1497 1498 if (bytes_evicted < bytes) 1499 dprintf("only evicted %lld bytes from %x", 1500 (longlong_t)bytes_evicted, state); 1501 1502 if (skipped) 1503 ARCSTAT_INCR(arcstat_evict_skip, skipped); 1504 1505 if (missed) 1506 ARCSTAT_INCR(arcstat_mutex_miss, missed); 1507 1508 /* 1509 * We have just evicted some date into the ghost state, make 1510 * sure we also adjust the ghost state size if necessary. 1511 */ 1512 if (arc_no_grow && 1513 arc_mru_ghost->arcs_size + arc_mfu_ghost->arcs_size > arc_c) { 1514 int64_t mru_over = arc_anon->arcs_size + arc_mru->arcs_size + 1515 arc_mru_ghost->arcs_size - arc_c; 1516 1517 if (mru_over > 0 && arc_mru_ghost->arcs_lsize[type] > 0) { 1518 int64_t todelete = 1519 MIN(arc_mru_ghost->arcs_lsize[type], mru_over); 1520 arc_evict_ghost(arc_mru_ghost, NULL, todelete); 1521 } else if (arc_mfu_ghost->arcs_lsize[type] > 0) { 1522 int64_t todelete = MIN(arc_mfu_ghost->arcs_lsize[type], 1523 arc_mru_ghost->arcs_size + 1524 arc_mfu_ghost->arcs_size - arc_c); 1525 arc_evict_ghost(arc_mfu_ghost, NULL, todelete); 1526 } 1527 } 1528 1529 return (stolen); 1530 } 1531 1532 /* 1533 * Remove buffers from list until we've removed the specified number of 1534 * bytes. Destroy the buffers that are removed. 1535 */ 1536 static void 1537 arc_evict_ghost(arc_state_t *state, spa_t *spa, int64_t bytes) 1538 { 1539 arc_buf_hdr_t *ab, *ab_prev; 1540 list_t *list = &state->arcs_list[ARC_BUFC_DATA]; 1541 kmutex_t *hash_lock; 1542 uint64_t bytes_deleted = 0; 1543 uint64_t bufs_skipped = 0; 1544 1545 ASSERT(GHOST_STATE(state)); 1546 top: 1547 mutex_enter(&state->arcs_mtx); 1548 for (ab = list_tail(list); ab; ab = ab_prev) { 1549 ab_prev = list_prev(list, ab); 1550 if (spa && ab->b_spa != spa) 1551 continue; 1552 hash_lock = HDR_LOCK(ab); 1553 if (mutex_tryenter(hash_lock)) { 1554 ASSERT(!HDR_IO_IN_PROGRESS(ab)); 1555 ASSERT(ab->b_buf == NULL); 1556 ARCSTAT_BUMP(arcstat_deleted); 1557 bytes_deleted += ab->b_size; 1558 1559 if (ab->b_l2hdr != NULL) { 1560 /* 1561 * This buffer is cached on the 2nd Level ARC; 1562 * don't destroy the header. 1563 */ 1564 arc_change_state(arc_l2c_only, ab, hash_lock); 1565 mutex_exit(hash_lock); 1566 } else { 1567 arc_change_state(arc_anon, ab, hash_lock); 1568 mutex_exit(hash_lock); 1569 arc_hdr_destroy(ab); 1570 } 1571 1572 DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, ab); 1573 if (bytes >= 0 && bytes_deleted >= bytes) 1574 break; 1575 } else { 1576 if (bytes < 0) { 1577 mutex_exit(&state->arcs_mtx); 1578 mutex_enter(hash_lock); 1579 mutex_exit(hash_lock); 1580 goto top; 1581 } 1582 bufs_skipped += 1; 1583 } 1584 } 1585 mutex_exit(&state->arcs_mtx); 1586 1587 if (list == &state->arcs_list[ARC_BUFC_DATA] && 1588 (bytes < 0 || bytes_deleted < bytes)) { 1589 list = &state->arcs_list[ARC_BUFC_METADATA]; 1590 goto top; 1591 } 1592 1593 if (bufs_skipped) { 1594 ARCSTAT_INCR(arcstat_mutex_miss, bufs_skipped); 1595 ASSERT(bytes >= 0); 1596 } 1597 1598 if (bytes_deleted < bytes) 1599 dprintf("only deleted %lld bytes from %p", 1600 (longlong_t)bytes_deleted, state); 1601 } 1602 1603 static void 1604 arc_adjust(void) 1605 { 1606 int64_t top_sz, mru_over, arc_over, todelete; 1607 1608 top_sz = arc_anon->arcs_size + arc_mru->arcs_size + arc_meta_used; 1609 1610 if (top_sz > arc_p && arc_mru->arcs_lsize[ARC_BUFC_DATA] > 0) { 1611 int64_t toevict = 1612 MIN(arc_mru->arcs_lsize[ARC_BUFC_DATA], top_sz - arc_p); 1613 (void) arc_evict(arc_mru, NULL, toevict, FALSE, ARC_BUFC_DATA); 1614 top_sz = arc_anon->arcs_size + arc_mru->arcs_size; 1615 } 1616 1617 if (top_sz > arc_p && arc_mru->arcs_lsize[ARC_BUFC_METADATA] > 0) { 1618 int64_t toevict = 1619 MIN(arc_mru->arcs_lsize[ARC_BUFC_METADATA], top_sz - arc_p); 1620 (void) arc_evict(arc_mru, NULL, toevict, FALSE, 1621 ARC_BUFC_METADATA); 1622 top_sz = arc_anon->arcs_size + arc_mru->arcs_size; 1623 } 1624 1625 mru_over = top_sz + arc_mru_ghost->arcs_size - arc_c; 1626 1627 if (mru_over > 0) { 1628 if (arc_mru_ghost->arcs_size > 0) { 1629 todelete = MIN(arc_mru_ghost->arcs_size, mru_over); 1630 arc_evict_ghost(arc_mru_ghost, NULL, todelete); 1631 } 1632 } 1633 1634 if ((arc_over = arc_size - arc_c) > 0) { 1635 int64_t tbl_over; 1636 1637 if (arc_mfu->arcs_lsize[ARC_BUFC_DATA] > 0) { 1638 int64_t toevict = 1639 MIN(arc_mfu->arcs_lsize[ARC_BUFC_DATA], arc_over); 1640 (void) arc_evict(arc_mfu, NULL, toevict, FALSE, 1641 ARC_BUFC_DATA); 1642 arc_over = arc_size - arc_c; 1643 } 1644 1645 if (arc_over > 0 && 1646 arc_mfu->arcs_lsize[ARC_BUFC_METADATA] > 0) { 1647 int64_t toevict = 1648 MIN(arc_mfu->arcs_lsize[ARC_BUFC_METADATA], 1649 arc_over); 1650 (void) arc_evict(arc_mfu, NULL, toevict, FALSE, 1651 ARC_BUFC_METADATA); 1652 } 1653 1654 tbl_over = arc_size + arc_mru_ghost->arcs_size + 1655 arc_mfu_ghost->arcs_size - arc_c * 2; 1656 1657 if (tbl_over > 0 && arc_mfu_ghost->arcs_size > 0) { 1658 todelete = MIN(arc_mfu_ghost->arcs_size, tbl_over); 1659 arc_evict_ghost(arc_mfu_ghost, NULL, todelete); 1660 } 1661 } 1662 } 1663 1664 static void 1665 arc_do_user_evicts(void) 1666 { 1667 mutex_enter(&arc_eviction_mtx); 1668 while (arc_eviction_list != NULL) { 1669 arc_buf_t *buf = arc_eviction_list; 1670 arc_eviction_list = buf->b_next; 1671 buf->b_hdr = NULL; 1672 mutex_exit(&arc_eviction_mtx); 1673 1674 if (buf->b_efunc != NULL) 1675 VERIFY(buf->b_efunc(buf) == 0); 1676 1677 buf->b_efunc = NULL; 1678 buf->b_private = NULL; 1679 kmem_cache_free(buf_cache, buf); 1680 mutex_enter(&arc_eviction_mtx); 1681 } 1682 mutex_exit(&arc_eviction_mtx); 1683 } 1684 1685 /* 1686 * Flush all *evictable* data from the cache for the given spa. 1687 * NOTE: this will not touch "active" (i.e. referenced) data. 1688 */ 1689 void 1690 arc_flush(spa_t *spa) 1691 { 1692 while (list_head(&arc_mru->arcs_list[ARC_BUFC_DATA])) { 1693 (void) arc_evict(arc_mru, spa, -1, FALSE, ARC_BUFC_DATA); 1694 if (spa) 1695 break; 1696 } 1697 while (list_head(&arc_mru->arcs_list[ARC_BUFC_METADATA])) { 1698 (void) arc_evict(arc_mru, spa, -1, FALSE, ARC_BUFC_METADATA); 1699 if (spa) 1700 break; 1701 } 1702 while (list_head(&arc_mfu->arcs_list[ARC_BUFC_DATA])) { 1703 (void) arc_evict(arc_mfu, spa, -1, FALSE, ARC_BUFC_DATA); 1704 if (spa) 1705 break; 1706 } 1707 while (list_head(&arc_mfu->arcs_list[ARC_BUFC_METADATA])) { 1708 (void) arc_evict(arc_mfu, spa, -1, FALSE, ARC_BUFC_METADATA); 1709 if (spa) 1710 break; 1711 } 1712 1713 arc_evict_ghost(arc_mru_ghost, spa, -1); 1714 arc_evict_ghost(arc_mfu_ghost, spa, -1); 1715 1716 mutex_enter(&arc_reclaim_thr_lock); 1717 arc_do_user_evicts(); 1718 mutex_exit(&arc_reclaim_thr_lock); 1719 ASSERT(spa || arc_eviction_list == NULL); 1720 } 1721 1722 int arc_shrink_shift = 5; /* log2(fraction of arc to reclaim) */ 1723 1724 void 1725 arc_shrink(void) 1726 { 1727 if (arc_c > arc_c_min) { 1728 uint64_t to_free; 1729 1730 #ifdef _KERNEL 1731 to_free = MAX(arc_c >> arc_shrink_shift, ptob(needfree)); 1732 #else 1733 to_free = arc_c >> arc_shrink_shift; 1734 #endif 1735 if (arc_c > arc_c_min + to_free) 1736 atomic_add_64(&arc_c, -to_free); 1737 else 1738 arc_c = arc_c_min; 1739 1740 atomic_add_64(&arc_p, -(arc_p >> arc_shrink_shift)); 1741 if (arc_c > arc_size) 1742 arc_c = MAX(arc_size, arc_c_min); 1743 if (arc_p > arc_c) 1744 arc_p = (arc_c >> 1); 1745 ASSERT(arc_c >= arc_c_min); 1746 ASSERT((int64_t)arc_p >= 0); 1747 } 1748 1749 if (arc_size > arc_c) 1750 arc_adjust(); 1751 } 1752 1753 static int 1754 arc_reclaim_needed(void) 1755 { 1756 uint64_t extra; 1757 1758 #ifdef _KERNEL 1759 1760 if (needfree) 1761 return (1); 1762 1763 /* 1764 * take 'desfree' extra pages, so we reclaim sooner, rather than later 1765 */ 1766 extra = desfree; 1767 1768 /* 1769 * check that we're out of range of the pageout scanner. It starts to 1770 * schedule paging if freemem is less than lotsfree and needfree. 1771 * lotsfree is the high-water mark for pageout, and needfree is the 1772 * number of needed free pages. We add extra pages here to make sure 1773 * the scanner doesn't start up while we're freeing memory. 1774 */ 1775 if (freemem < lotsfree + needfree + extra) 1776 return (1); 1777 1778 /* 1779 * check to make sure that swapfs has enough space so that anon 1780 * reservations can still succeed. anon_resvmem() checks that the 1781 * availrmem is greater than swapfs_minfree, and the number of reserved 1782 * swap pages. We also add a bit of extra here just to prevent 1783 * circumstances from getting really dire. 1784 */ 1785 if (availrmem < swapfs_minfree + swapfs_reserve + extra) 1786 return (1); 1787 1788 #if defined(__i386) 1789 /* 1790 * If we're on an i386 platform, it's possible that we'll exhaust the 1791 * kernel heap space before we ever run out of available physical 1792 * memory. Most checks of the size of the heap_area compare against 1793 * tune.t_minarmem, which is the minimum available real memory that we 1794 * can have in the system. However, this is generally fixed at 25 pages 1795 * which is so low that it's useless. In this comparison, we seek to 1796 * calculate the total heap-size, and reclaim if more than 3/4ths of the 1797 * heap is allocated. (Or, in the calculation, if less than 1/4th is 1798 * free) 1799 */ 1800 if (btop(vmem_size(heap_arena, VMEM_FREE)) < 1801 (btop(vmem_size(heap_arena, VMEM_FREE | VMEM_ALLOC)) >> 2)) 1802 return (1); 1803 #endif 1804 1805 #else 1806 if (spa_get_random(100) == 0) 1807 return (1); 1808 #endif 1809 return (0); 1810 } 1811 1812 static void 1813 arc_kmem_reap_now(arc_reclaim_strategy_t strat) 1814 { 1815 size_t i; 1816 kmem_cache_t *prev_cache = NULL; 1817 kmem_cache_t *prev_data_cache = NULL; 1818 extern kmem_cache_t *zio_buf_cache[]; 1819 extern kmem_cache_t *zio_data_buf_cache[]; 1820 1821 #ifdef _KERNEL 1822 if (arc_meta_used >= arc_meta_limit) { 1823 /* 1824 * We are exceeding our meta-data cache limit. 1825 * Purge some DNLC entries to release holds on meta-data. 1826 */ 1827 dnlc_reduce_cache((void *)(uintptr_t)arc_reduce_dnlc_percent); 1828 } 1829 #if defined(__i386) 1830 /* 1831 * Reclaim unused memory from all kmem caches. 1832 */ 1833 kmem_reap(); 1834 #endif 1835 #endif 1836 1837 /* 1838 * An aggressive reclamation will shrink the cache size as well as 1839 * reap free buffers from the arc kmem caches. 1840 */ 1841 if (strat == ARC_RECLAIM_AGGR) 1842 arc_shrink(); 1843 1844 for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) { 1845 if (zio_buf_cache[i] != prev_cache) { 1846 prev_cache = zio_buf_cache[i]; 1847 kmem_cache_reap_now(zio_buf_cache[i]); 1848 } 1849 if (zio_data_buf_cache[i] != prev_data_cache) { 1850 prev_data_cache = zio_data_buf_cache[i]; 1851 kmem_cache_reap_now(zio_data_buf_cache[i]); 1852 } 1853 } 1854 kmem_cache_reap_now(buf_cache); 1855 kmem_cache_reap_now(hdr_cache); 1856 } 1857 1858 static void 1859 arc_reclaim_thread(void) 1860 { 1861 clock_t growtime = 0; 1862 arc_reclaim_strategy_t last_reclaim = ARC_RECLAIM_CONS; 1863 callb_cpr_t cpr; 1864 1865 CALLB_CPR_INIT(&cpr, &arc_reclaim_thr_lock, callb_generic_cpr, FTAG); 1866 1867 mutex_enter(&arc_reclaim_thr_lock); 1868 while (arc_thread_exit == 0) { 1869 if (arc_reclaim_needed()) { 1870 1871 if (arc_no_grow) { 1872 if (last_reclaim == ARC_RECLAIM_CONS) { 1873 last_reclaim = ARC_RECLAIM_AGGR; 1874 } else { 1875 last_reclaim = ARC_RECLAIM_CONS; 1876 } 1877 } else { 1878 arc_no_grow = TRUE; 1879 last_reclaim = ARC_RECLAIM_AGGR; 1880 membar_producer(); 1881 } 1882 1883 /* reset the growth delay for every reclaim */ 1884 growtime = lbolt + (arc_grow_retry * hz); 1885 1886 arc_kmem_reap_now(last_reclaim); 1887 1888 } else if (arc_no_grow && lbolt >= growtime) { 1889 arc_no_grow = FALSE; 1890 } 1891 1892 if (2 * arc_c < arc_size + 1893 arc_mru_ghost->arcs_size + arc_mfu_ghost->arcs_size) 1894 arc_adjust(); 1895 1896 if (arc_eviction_list != NULL) 1897 arc_do_user_evicts(); 1898 1899 /* block until needed, or one second, whichever is shorter */ 1900 CALLB_CPR_SAFE_BEGIN(&cpr); 1901 (void) cv_timedwait(&arc_reclaim_thr_cv, 1902 &arc_reclaim_thr_lock, (lbolt + hz)); 1903 CALLB_CPR_SAFE_END(&cpr, &arc_reclaim_thr_lock); 1904 } 1905 1906 arc_thread_exit = 0; 1907 cv_broadcast(&arc_reclaim_thr_cv); 1908 CALLB_CPR_EXIT(&cpr); /* drops arc_reclaim_thr_lock */ 1909 thread_exit(); 1910 } 1911 1912 /* 1913 * Adapt arc info given the number of bytes we are trying to add and 1914 * the state that we are comming from. This function is only called 1915 * when we are adding new content to the cache. 1916 */ 1917 static void 1918 arc_adapt(int bytes, arc_state_t *state) 1919 { 1920 int mult; 1921 1922 if (state == arc_l2c_only) 1923 return; 1924 1925 ASSERT(bytes > 0); 1926 /* 1927 * Adapt the target size of the MRU list: 1928 * - if we just hit in the MRU ghost list, then increase 1929 * the target size of the MRU list. 1930 * - if we just hit in the MFU ghost list, then increase 1931 * the target size of the MFU list by decreasing the 1932 * target size of the MRU list. 1933 */ 1934 if (state == arc_mru_ghost) { 1935 mult = ((arc_mru_ghost->arcs_size >= arc_mfu_ghost->arcs_size) ? 1936 1 : (arc_mfu_ghost->arcs_size/arc_mru_ghost->arcs_size)); 1937 1938 arc_p = MIN(arc_c, arc_p + bytes * mult); 1939 } else if (state == arc_mfu_ghost) { 1940 mult = ((arc_mfu_ghost->arcs_size >= arc_mru_ghost->arcs_size) ? 1941 1 : (arc_mru_ghost->arcs_size/arc_mfu_ghost->arcs_size)); 1942 1943 arc_p = MAX(0, (int64_t)arc_p - bytes * mult); 1944 } 1945 ASSERT((int64_t)arc_p >= 0); 1946 1947 if (arc_reclaim_needed()) { 1948 cv_signal(&arc_reclaim_thr_cv); 1949 return; 1950 } 1951 1952 if (arc_no_grow) 1953 return; 1954 1955 if (arc_c >= arc_c_max) 1956 return; 1957 1958 /* 1959 * If we're within (2 * maxblocksize) bytes of the target 1960 * cache size, increment the target cache size 1961 */ 1962 if (arc_size > arc_c - (2ULL << SPA_MAXBLOCKSHIFT)) { 1963 atomic_add_64(&arc_c, (int64_t)bytes); 1964 if (arc_c > arc_c_max) 1965 arc_c = arc_c_max; 1966 else if (state == arc_anon) 1967 atomic_add_64(&arc_p, (int64_t)bytes); 1968 if (arc_p > arc_c) 1969 arc_p = arc_c; 1970 } 1971 ASSERT((int64_t)arc_p >= 0); 1972 } 1973 1974 /* 1975 * Check if the cache has reached its limits and eviction is required 1976 * prior to insert. 1977 */ 1978 static int 1979 arc_evict_needed(arc_buf_contents_t type) 1980 { 1981 if (type == ARC_BUFC_METADATA && arc_meta_used >= arc_meta_limit) 1982 return (1); 1983 1984 #ifdef _KERNEL 1985 /* 1986 * If zio data pages are being allocated out of a separate heap segment, 1987 * then enforce that the size of available vmem for this area remains 1988 * above about 1/32nd free. 1989 */ 1990 if (type == ARC_BUFC_DATA && zio_arena != NULL && 1991 vmem_size(zio_arena, VMEM_FREE) < 1992 (vmem_size(zio_arena, VMEM_ALLOC) >> 5)) 1993 return (1); 1994 #endif 1995 1996 if (arc_reclaim_needed()) 1997 return (1); 1998 1999 return (arc_size > arc_c); 2000 } 2001 2002 /* 2003 * The buffer, supplied as the first argument, needs a data block. 2004 * So, if we are at cache max, determine which cache should be victimized. 2005 * We have the following cases: 2006 * 2007 * 1. Insert for MRU, p > sizeof(arc_anon + arc_mru) -> 2008 * In this situation if we're out of space, but the resident size of the MFU is 2009 * under the limit, victimize the MFU cache to satisfy this insertion request. 2010 * 2011 * 2. Insert for MRU, p <= sizeof(arc_anon + arc_mru) -> 2012 * Here, we've used up all of the available space for the MRU, so we need to 2013 * evict from our own cache instead. Evict from the set of resident MRU 2014 * entries. 2015 * 2016 * 3. Insert for MFU (c - p) > sizeof(arc_mfu) -> 2017 * c minus p represents the MFU space in the cache, since p is the size of the 2018 * cache that is dedicated to the MRU. In this situation there's still space on 2019 * the MFU side, so the MRU side needs to be victimized. 2020 * 2021 * 4. Insert for MFU (c - p) < sizeof(arc_mfu) -> 2022 * MFU's resident set is consuming more space than it has been allotted. In 2023 * this situation, we must victimize our own cache, the MFU, for this insertion. 2024 */ 2025 static void 2026 arc_get_data_buf(arc_buf_t *buf) 2027 { 2028 arc_state_t *state = buf->b_hdr->b_state; 2029 uint64_t size = buf->b_hdr->b_size; 2030 arc_buf_contents_t type = buf->b_hdr->b_type; 2031 2032 arc_adapt(size, state); 2033 2034 /* 2035 * We have not yet reached cache maximum size, 2036 * just allocate a new buffer. 2037 */ 2038 if (!arc_evict_needed(type)) { 2039 if (type == ARC_BUFC_METADATA) { 2040 buf->b_data = zio_buf_alloc(size); 2041 arc_space_consume(size); 2042 } else { 2043 ASSERT(type == ARC_BUFC_DATA); 2044 buf->b_data = zio_data_buf_alloc(size); 2045 atomic_add_64(&arc_size, size); 2046 } 2047 goto out; 2048 } 2049 2050 /* 2051 * If we are prefetching from the mfu ghost list, this buffer 2052 * will end up on the mru list; so steal space from there. 2053 */ 2054 if (state == arc_mfu_ghost) 2055 state = buf->b_hdr->b_flags & ARC_PREFETCH ? arc_mru : arc_mfu; 2056 else if (state == arc_mru_ghost) 2057 state = arc_mru; 2058 2059 if (state == arc_mru || state == arc_anon) { 2060 uint64_t mru_used = arc_anon->arcs_size + arc_mru->arcs_size; 2061 state = (arc_mfu->arcs_lsize[type] > 0 && 2062 arc_p > mru_used) ? arc_mfu : arc_mru; 2063 } else { 2064 /* MFU cases */ 2065 uint64_t mfu_space = arc_c - arc_p; 2066 state = (arc_mru->arcs_lsize[type] > 0 && 2067 mfu_space > arc_mfu->arcs_size) ? arc_mru : arc_mfu; 2068 } 2069 if ((buf->b_data = arc_evict(state, NULL, size, TRUE, type)) == NULL) { 2070 if (type == ARC_BUFC_METADATA) { 2071 buf->b_data = zio_buf_alloc(size); 2072 arc_space_consume(size); 2073 } else { 2074 ASSERT(type == ARC_BUFC_DATA); 2075 buf->b_data = zio_data_buf_alloc(size); 2076 atomic_add_64(&arc_size, size); 2077 } 2078 ARCSTAT_BUMP(arcstat_recycle_miss); 2079 } 2080 ASSERT(buf->b_data != NULL); 2081 out: 2082 /* 2083 * Update the state size. Note that ghost states have a 2084 * "ghost size" and so don't need to be updated. 2085 */ 2086 if (!GHOST_STATE(buf->b_hdr->b_state)) { 2087 arc_buf_hdr_t *hdr = buf->b_hdr; 2088 2089 atomic_add_64(&hdr->b_state->arcs_size, size); 2090 if (list_link_active(&hdr->b_arc_node)) { 2091 ASSERT(refcount_is_zero(&hdr->b_refcnt)); 2092 atomic_add_64(&hdr->b_state->arcs_lsize[type], size); 2093 } 2094 /* 2095 * If we are growing the cache, and we are adding anonymous 2096 * data, and we have outgrown arc_p, update arc_p 2097 */ 2098 if (arc_size < arc_c && hdr->b_state == arc_anon && 2099 arc_anon->arcs_size + arc_mru->arcs_size > arc_p) 2100 arc_p = MIN(arc_c, arc_p + size); 2101 } 2102 } 2103 2104 /* 2105 * This routine is called whenever a buffer is accessed. 2106 * NOTE: the hash lock is dropped in this function. 2107 */ 2108 static void 2109 arc_access(arc_buf_hdr_t *buf, kmutex_t *hash_lock) 2110 { 2111 ASSERT(MUTEX_HELD(hash_lock)); 2112 2113 if (buf->b_state == arc_anon) { 2114 /* 2115 * This buffer is not in the cache, and does not 2116 * appear in our "ghost" list. Add the new buffer 2117 * to the MRU state. 2118 */ 2119 2120 ASSERT(buf->b_arc_access == 0); 2121 buf->b_arc_access = lbolt; 2122 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, buf); 2123 arc_change_state(arc_mru, buf, hash_lock); 2124 2125 } else if (buf->b_state == arc_mru) { 2126 /* 2127 * If this buffer is here because of a prefetch, then either: 2128 * - clear the flag if this is a "referencing" read 2129 * (any subsequent access will bump this into the MFU state). 2130 * or 2131 * - move the buffer to the head of the list if this is 2132 * another prefetch (to make it less likely to be evicted). 2133 */ 2134 if ((buf->b_flags & ARC_PREFETCH) != 0) { 2135 if (refcount_count(&buf->b_refcnt) == 0) { 2136 ASSERT(list_link_active(&buf->b_arc_node)); 2137 } else { 2138 buf->b_flags &= ~ARC_PREFETCH; 2139 ARCSTAT_BUMP(arcstat_mru_hits); 2140 } 2141 buf->b_arc_access = lbolt; 2142 return; 2143 } 2144 2145 /* 2146 * This buffer has been "accessed" only once so far, 2147 * but it is still in the cache. Move it to the MFU 2148 * state. 2149 */ 2150 if (lbolt > buf->b_arc_access + ARC_MINTIME) { 2151 /* 2152 * More than 125ms have passed since we 2153 * instantiated this buffer. Move it to the 2154 * most frequently used state. 2155 */ 2156 buf->b_arc_access = lbolt; 2157 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf); 2158 arc_change_state(arc_mfu, buf, hash_lock); 2159 } 2160 ARCSTAT_BUMP(arcstat_mru_hits); 2161 } else if (buf->b_state == arc_mru_ghost) { 2162 arc_state_t *new_state; 2163 /* 2164 * This buffer has been "accessed" recently, but 2165 * was evicted from the cache. Move it to the 2166 * MFU state. 2167 */ 2168 2169 if (buf->b_flags & ARC_PREFETCH) { 2170 new_state = arc_mru; 2171 if (refcount_count(&buf->b_refcnt) > 0) 2172 buf->b_flags &= ~ARC_PREFETCH; 2173 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, buf); 2174 } else { 2175 new_state = arc_mfu; 2176 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf); 2177 } 2178 2179 buf->b_arc_access = lbolt; 2180 arc_change_state(new_state, buf, hash_lock); 2181 2182 ARCSTAT_BUMP(arcstat_mru_ghost_hits); 2183 } else if (buf->b_state == arc_mfu) { 2184 /* 2185 * This buffer has been accessed more than once and is 2186 * still in the cache. Keep it in the MFU state. 2187 * 2188 * NOTE: an add_reference() that occurred when we did 2189 * the arc_read() will have kicked this off the list. 2190 * If it was a prefetch, we will explicitly move it to 2191 * the head of the list now. 2192 */ 2193 if ((buf->b_flags & ARC_PREFETCH) != 0) { 2194 ASSERT(refcount_count(&buf->b_refcnt) == 0); 2195 ASSERT(list_link_active(&buf->b_arc_node)); 2196 } 2197 ARCSTAT_BUMP(arcstat_mfu_hits); 2198 buf->b_arc_access = lbolt; 2199 } else if (buf->b_state == arc_mfu_ghost) { 2200 arc_state_t *new_state = arc_mfu; 2201 /* 2202 * This buffer has been accessed more than once but has 2203 * been evicted from the cache. Move it back to the 2204 * MFU state. 2205 */ 2206 2207 if (buf->b_flags & ARC_PREFETCH) { 2208 /* 2209 * This is a prefetch access... 2210 * move this block back to the MRU state. 2211 */ 2212 ASSERT3U(refcount_count(&buf->b_refcnt), ==, 0); 2213 new_state = arc_mru; 2214 } 2215 2216 buf->b_arc_access = lbolt; 2217 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf); 2218 arc_change_state(new_state, buf, hash_lock); 2219 2220 ARCSTAT_BUMP(arcstat_mfu_ghost_hits); 2221 } else if (buf->b_state == arc_l2c_only) { 2222 /* 2223 * This buffer is on the 2nd Level ARC. 2224 */ 2225 2226 buf->b_arc_access = lbolt; 2227 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf); 2228 arc_change_state(arc_mfu, buf, hash_lock); 2229 } else { 2230 ASSERT(!"invalid arc state"); 2231 } 2232 } 2233 2234 /* a generic arc_done_func_t which you can use */ 2235 /* ARGSUSED */ 2236 void 2237 arc_bcopy_func(zio_t *zio, arc_buf_t *buf, void *arg) 2238 { 2239 bcopy(buf->b_data, arg, buf->b_hdr->b_size); 2240 VERIFY(arc_buf_remove_ref(buf, arg) == 1); 2241 } 2242 2243 /* a generic arc_done_func_t */ 2244 void 2245 arc_getbuf_func(zio_t *zio, arc_buf_t *buf, void *arg) 2246 { 2247 arc_buf_t **bufp = arg; 2248 if (zio && zio->io_error) { 2249 VERIFY(arc_buf_remove_ref(buf, arg) == 1); 2250 *bufp = NULL; 2251 } else { 2252 *bufp = buf; 2253 } 2254 } 2255 2256 static void 2257 arc_read_done(zio_t *zio) 2258 { 2259 arc_buf_hdr_t *hdr, *found; 2260 arc_buf_t *buf; 2261 arc_buf_t *abuf; /* buffer we're assigning to callback */ 2262 kmutex_t *hash_lock; 2263 arc_callback_t *callback_list, *acb; 2264 int freeable = FALSE; 2265 2266 buf = zio->io_private; 2267 hdr = buf->b_hdr; 2268 2269 /* 2270 * The hdr was inserted into hash-table and removed from lists 2271 * prior to starting I/O. We should find this header, since 2272 * it's in the hash table, and it should be legit since it's 2273 * not possible to evict it during the I/O. The only possible 2274 * reason for it not to be found is if we were freed during the 2275 * read. 2276 */ 2277 found = buf_hash_find(zio->io_spa, &hdr->b_dva, hdr->b_birth, 2278 &hash_lock); 2279 2280 ASSERT((found == NULL && HDR_FREED_IN_READ(hdr) && hash_lock == NULL) || 2281 (found == hdr && DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))) || 2282 (found == hdr && HDR_L2_READING(hdr))); 2283 2284 hdr->b_flags &= ~(ARC_L2_READING|ARC_L2_EVICTED); 2285 if (l2arc_noprefetch && (hdr->b_flags & ARC_PREFETCH)) 2286 hdr->b_flags |= ARC_DONT_L2CACHE; 2287 2288 /* byteswap if necessary */ 2289 callback_list = hdr->b_acb; 2290 ASSERT(callback_list != NULL); 2291 if (BP_SHOULD_BYTESWAP(zio->io_bp) && callback_list->acb_byteswap) 2292 callback_list->acb_byteswap(buf->b_data, hdr->b_size); 2293 2294 arc_cksum_compute(buf, B_FALSE); 2295 2296 /* create copies of the data buffer for the callers */ 2297 abuf = buf; 2298 for (acb = callback_list; acb; acb = acb->acb_next) { 2299 if (acb->acb_done) { 2300 if (abuf == NULL) 2301 abuf = arc_buf_clone(buf); 2302 acb->acb_buf = abuf; 2303 abuf = NULL; 2304 } 2305 } 2306 hdr->b_acb = NULL; 2307 hdr->b_flags &= ~ARC_IO_IN_PROGRESS; 2308 ASSERT(!HDR_BUF_AVAILABLE(hdr)); 2309 if (abuf == buf) 2310 hdr->b_flags |= ARC_BUF_AVAILABLE; 2311 2312 ASSERT(refcount_is_zero(&hdr->b_refcnt) || callback_list != NULL); 2313 2314 if (zio->io_error != 0) { 2315 hdr->b_flags |= ARC_IO_ERROR; 2316 if (hdr->b_state != arc_anon) 2317 arc_change_state(arc_anon, hdr, hash_lock); 2318 if (HDR_IN_HASH_TABLE(hdr)) 2319 buf_hash_remove(hdr); 2320 freeable = refcount_is_zero(&hdr->b_refcnt); 2321 /* convert checksum errors into IO errors */ 2322 if (zio->io_error == ECKSUM) 2323 zio->io_error = EIO; 2324 } 2325 2326 /* 2327 * Broadcast before we drop the hash_lock to avoid the possibility 2328 * that the hdr (and hence the cv) might be freed before we get to 2329 * the cv_broadcast(). 2330 */ 2331 cv_broadcast(&hdr->b_cv); 2332 2333 if (hash_lock) { 2334 /* 2335 * Only call arc_access on anonymous buffers. This is because 2336 * if we've issued an I/O for an evicted buffer, we've already 2337 * called arc_access (to prevent any simultaneous readers from 2338 * getting confused). 2339 */ 2340 if (zio->io_error == 0 && hdr->b_state == arc_anon) 2341 arc_access(hdr, hash_lock); 2342 mutex_exit(hash_lock); 2343 } else { 2344 /* 2345 * This block was freed while we waited for the read to 2346 * complete. It has been removed from the hash table and 2347 * moved to the anonymous state (so that it won't show up 2348 * in the cache). 2349 */ 2350 ASSERT3P(hdr->b_state, ==, arc_anon); 2351 freeable = refcount_is_zero(&hdr->b_refcnt); 2352 } 2353 2354 /* execute each callback and free its structure */ 2355 while ((acb = callback_list) != NULL) { 2356 if (acb->acb_done) 2357 acb->acb_done(zio, acb->acb_buf, acb->acb_private); 2358 2359 if (acb->acb_zio_dummy != NULL) { 2360 acb->acb_zio_dummy->io_error = zio->io_error; 2361 zio_nowait(acb->acb_zio_dummy); 2362 } 2363 2364 callback_list = acb->acb_next; 2365 kmem_free(acb, sizeof (arc_callback_t)); 2366 } 2367 2368 if (freeable) 2369 arc_hdr_destroy(hdr); 2370 } 2371 2372 /* 2373 * "Read" the block block at the specified DVA (in bp) via the 2374 * cache. If the block is found in the cache, invoke the provided 2375 * callback immediately and return. Note that the `zio' parameter 2376 * in the callback will be NULL in this case, since no IO was 2377 * required. If the block is not in the cache pass the read request 2378 * on to the spa with a substitute callback function, so that the 2379 * requested block will be added to the cache. 2380 * 2381 * If a read request arrives for a block that has a read in-progress, 2382 * either wait for the in-progress read to complete (and return the 2383 * results); or, if this is a read with a "done" func, add a record 2384 * to the read to invoke the "done" func when the read completes, 2385 * and return; or just return. 2386 * 2387 * arc_read_done() will invoke all the requested "done" functions 2388 * for readers of this block. 2389 */ 2390 int 2391 arc_read(zio_t *pio, spa_t *spa, blkptr_t *bp, arc_byteswap_func_t *swap, 2392 arc_done_func_t *done, void *private, int priority, int flags, 2393 uint32_t *arc_flags, zbookmark_t *zb) 2394 { 2395 arc_buf_hdr_t *hdr; 2396 arc_buf_t *buf; 2397 kmutex_t *hash_lock; 2398 zio_t *rzio; 2399 2400 top: 2401 hdr = buf_hash_find(spa, BP_IDENTITY(bp), bp->blk_birth, &hash_lock); 2402 if (hdr && hdr->b_datacnt > 0) { 2403 2404 *arc_flags |= ARC_CACHED; 2405 2406 if (HDR_IO_IN_PROGRESS(hdr)) { 2407 2408 if (*arc_flags & ARC_WAIT) { 2409 cv_wait(&hdr->b_cv, hash_lock); 2410 mutex_exit(hash_lock); 2411 goto top; 2412 } 2413 ASSERT(*arc_flags & ARC_NOWAIT); 2414 2415 if (done) { 2416 arc_callback_t *acb = NULL; 2417 2418 acb = kmem_zalloc(sizeof (arc_callback_t), 2419 KM_SLEEP); 2420 acb->acb_done = done; 2421 acb->acb_private = private; 2422 acb->acb_byteswap = swap; 2423 if (pio != NULL) 2424 acb->acb_zio_dummy = zio_null(pio, 2425 spa, NULL, NULL, flags); 2426 2427 ASSERT(acb->acb_done != NULL); 2428 acb->acb_next = hdr->b_acb; 2429 hdr->b_acb = acb; 2430 add_reference(hdr, hash_lock, private); 2431 mutex_exit(hash_lock); 2432 return (0); 2433 } 2434 mutex_exit(hash_lock); 2435 return (0); 2436 } 2437 2438 ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu); 2439 2440 if (done) { 2441 add_reference(hdr, hash_lock, private); 2442 /* 2443 * If this block is already in use, create a new 2444 * copy of the data so that we will be guaranteed 2445 * that arc_release() will always succeed. 2446 */ 2447 buf = hdr->b_buf; 2448 ASSERT(buf); 2449 ASSERT(buf->b_data); 2450 if (HDR_BUF_AVAILABLE(hdr)) { 2451 ASSERT(buf->b_efunc == NULL); 2452 hdr->b_flags &= ~ARC_BUF_AVAILABLE; 2453 } else { 2454 buf = arc_buf_clone(buf); 2455 } 2456 } else if (*arc_flags & ARC_PREFETCH && 2457 refcount_count(&hdr->b_refcnt) == 0) { 2458 hdr->b_flags |= ARC_PREFETCH; 2459 } 2460 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr); 2461 arc_access(hdr, hash_lock); 2462 mutex_exit(hash_lock); 2463 ARCSTAT_BUMP(arcstat_hits); 2464 ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH), 2465 demand, prefetch, hdr->b_type != ARC_BUFC_METADATA, 2466 data, metadata, hits); 2467 2468 if (done) 2469 done(NULL, buf, private); 2470 } else { 2471 uint64_t size = BP_GET_LSIZE(bp); 2472 arc_callback_t *acb; 2473 2474 if (hdr == NULL) { 2475 /* this block is not in the cache */ 2476 arc_buf_hdr_t *exists; 2477 arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp); 2478 buf = arc_buf_alloc(spa, size, private, type); 2479 hdr = buf->b_hdr; 2480 hdr->b_dva = *BP_IDENTITY(bp); 2481 hdr->b_birth = bp->blk_birth; 2482 hdr->b_cksum0 = bp->blk_cksum.zc_word[0]; 2483 exists = buf_hash_insert(hdr, &hash_lock); 2484 if (exists) { 2485 /* somebody beat us to the hash insert */ 2486 mutex_exit(hash_lock); 2487 bzero(&hdr->b_dva, sizeof (dva_t)); 2488 hdr->b_birth = 0; 2489 hdr->b_cksum0 = 0; 2490 (void) arc_buf_remove_ref(buf, private); 2491 goto top; /* restart the IO request */ 2492 } 2493 /* if this is a prefetch, we don't have a reference */ 2494 if (*arc_flags & ARC_PREFETCH) { 2495 (void) remove_reference(hdr, hash_lock, 2496 private); 2497 hdr->b_flags |= ARC_PREFETCH; 2498 } 2499 if (BP_GET_LEVEL(bp) > 0) 2500 hdr->b_flags |= ARC_INDIRECT; 2501 } else { 2502 /* this block is in the ghost cache */ 2503 ASSERT(GHOST_STATE(hdr->b_state)); 2504 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 2505 ASSERT3U(refcount_count(&hdr->b_refcnt), ==, 0); 2506 ASSERT(hdr->b_buf == NULL); 2507 2508 /* if this is a prefetch, we don't have a reference */ 2509 if (*arc_flags & ARC_PREFETCH) 2510 hdr->b_flags |= ARC_PREFETCH; 2511 else 2512 add_reference(hdr, hash_lock, private); 2513 buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE); 2514 buf->b_hdr = hdr; 2515 buf->b_data = NULL; 2516 buf->b_efunc = NULL; 2517 buf->b_private = NULL; 2518 buf->b_next = NULL; 2519 hdr->b_buf = buf; 2520 arc_get_data_buf(buf); 2521 ASSERT(hdr->b_datacnt == 0); 2522 hdr->b_datacnt = 1; 2523 2524 } 2525 2526 acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP); 2527 acb->acb_done = done; 2528 acb->acb_private = private; 2529 acb->acb_byteswap = swap; 2530 2531 ASSERT(hdr->b_acb == NULL); 2532 hdr->b_acb = acb; 2533 hdr->b_flags |= ARC_IO_IN_PROGRESS; 2534 2535 /* 2536 * If the buffer has been evicted, migrate it to a present state 2537 * before issuing the I/O. Once we drop the hash-table lock, 2538 * the header will be marked as I/O in progress and have an 2539 * attached buffer. At this point, anybody who finds this 2540 * buffer ought to notice that it's legit but has a pending I/O. 2541 */ 2542 2543 if (GHOST_STATE(hdr->b_state)) 2544 arc_access(hdr, hash_lock); 2545 2546 ASSERT3U(hdr->b_size, ==, size); 2547 DTRACE_PROBE3(arc__miss, blkptr_t *, bp, uint64_t, size, 2548 zbookmark_t *, zb); 2549 ARCSTAT_BUMP(arcstat_misses); 2550 ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH), 2551 demand, prefetch, hdr->b_type != ARC_BUFC_METADATA, 2552 data, metadata, misses); 2553 2554 if (l2arc_ndev != 0) { 2555 /* 2556 * Read from the L2ARC if the following are true: 2557 * 1. This buffer has L2ARC metadata. 2558 * 2. This buffer isn't currently writing to the L2ARC. 2559 */ 2560 if (hdr->b_l2hdr != NULL && !HDR_L2_WRITING(hdr)) { 2561 vdev_t *vd = hdr->b_l2hdr->b_dev->l2ad_vdev; 2562 daddr_t addr = hdr->b_l2hdr->b_daddr; 2563 l2arc_read_callback_t *cb; 2564 2565 DTRACE_PROBE1(l2arc__hit, arc_buf_hdr_t *, hdr); 2566 ARCSTAT_BUMP(arcstat_l2_hits); 2567 2568 hdr->b_flags |= ARC_L2_READING; 2569 mutex_exit(hash_lock); 2570 2571 cb = kmem_zalloc(sizeof (l2arc_read_callback_t), 2572 KM_SLEEP); 2573 cb->l2rcb_buf = buf; 2574 cb->l2rcb_spa = spa; 2575 cb->l2rcb_bp = *bp; 2576 cb->l2rcb_zb = *zb; 2577 cb->l2rcb_flags = flags; 2578 2579 /* 2580 * l2arc read. 2581 */ 2582 rzio = zio_read_phys(pio, vd, addr, size, 2583 buf->b_data, ZIO_CHECKSUM_OFF, 2584 l2arc_read_done, cb, priority, 2585 flags | ZIO_FLAG_DONT_CACHE, B_FALSE); 2586 DTRACE_PROBE2(l2arc__read, vdev_t *, vd, 2587 zio_t *, rzio); 2588 2589 if (*arc_flags & ARC_WAIT) 2590 return (zio_wait(rzio)); 2591 2592 ASSERT(*arc_flags & ARC_NOWAIT); 2593 zio_nowait(rzio); 2594 return (0); 2595 } else { 2596 DTRACE_PROBE1(l2arc__miss, 2597 arc_buf_hdr_t *, hdr); 2598 ARCSTAT_BUMP(arcstat_l2_misses); 2599 if (HDR_L2_WRITING(hdr)) 2600 ARCSTAT_BUMP(arcstat_l2_rw_clash); 2601 } 2602 } 2603 mutex_exit(hash_lock); 2604 2605 rzio = zio_read(pio, spa, bp, buf->b_data, size, 2606 arc_read_done, buf, priority, flags, zb); 2607 2608 if (*arc_flags & ARC_WAIT) 2609 return (zio_wait(rzio)); 2610 2611 ASSERT(*arc_flags & ARC_NOWAIT); 2612 zio_nowait(rzio); 2613 } 2614 return (0); 2615 } 2616 2617 /* 2618 * arc_read() variant to support pool traversal. If the block is already 2619 * in the ARC, make a copy of it; otherwise, the caller will do the I/O. 2620 * The idea is that we don't want pool traversal filling up memory, but 2621 * if the ARC already has the data anyway, we shouldn't pay for the I/O. 2622 */ 2623 int 2624 arc_tryread(spa_t *spa, blkptr_t *bp, void *data) 2625 { 2626 arc_buf_hdr_t *hdr; 2627 kmutex_t *hash_mtx; 2628 int rc = 0; 2629 2630 hdr = buf_hash_find(spa, BP_IDENTITY(bp), bp->blk_birth, &hash_mtx); 2631 2632 if (hdr && hdr->b_datacnt > 0 && !HDR_IO_IN_PROGRESS(hdr)) { 2633 arc_buf_t *buf = hdr->b_buf; 2634 2635 ASSERT(buf); 2636 while (buf->b_data == NULL) { 2637 buf = buf->b_next; 2638 ASSERT(buf); 2639 } 2640 bcopy(buf->b_data, data, hdr->b_size); 2641 } else { 2642 rc = ENOENT; 2643 } 2644 2645 if (hash_mtx) 2646 mutex_exit(hash_mtx); 2647 2648 return (rc); 2649 } 2650 2651 void 2652 arc_set_callback(arc_buf_t *buf, arc_evict_func_t *func, void *private) 2653 { 2654 ASSERT(buf->b_hdr != NULL); 2655 ASSERT(buf->b_hdr->b_state != arc_anon); 2656 ASSERT(!refcount_is_zero(&buf->b_hdr->b_refcnt) || func == NULL); 2657 buf->b_efunc = func; 2658 buf->b_private = private; 2659 } 2660 2661 /* 2662 * This is used by the DMU to let the ARC know that a buffer is 2663 * being evicted, so the ARC should clean up. If this arc buf 2664 * is not yet in the evicted state, it will be put there. 2665 */ 2666 int 2667 arc_buf_evict(arc_buf_t *buf) 2668 { 2669 arc_buf_hdr_t *hdr; 2670 kmutex_t *hash_lock; 2671 arc_buf_t **bufp; 2672 2673 mutex_enter(&arc_eviction_mtx); 2674 hdr = buf->b_hdr; 2675 if (hdr == NULL) { 2676 /* 2677 * We are in arc_do_user_evicts(). 2678 */ 2679 ASSERT(buf->b_data == NULL); 2680 mutex_exit(&arc_eviction_mtx); 2681 return (0); 2682 } 2683 hash_lock = HDR_LOCK(hdr); 2684 mutex_exit(&arc_eviction_mtx); 2685 2686 mutex_enter(hash_lock); 2687 2688 if (buf->b_data == NULL) { 2689 /* 2690 * We are on the eviction list. 2691 */ 2692 mutex_exit(hash_lock); 2693 mutex_enter(&arc_eviction_mtx); 2694 if (buf->b_hdr == NULL) { 2695 /* 2696 * We are already in arc_do_user_evicts(). 2697 */ 2698 mutex_exit(&arc_eviction_mtx); 2699 return (0); 2700 } else { 2701 arc_buf_t copy = *buf; /* structure assignment */ 2702 /* 2703 * Process this buffer now 2704 * but let arc_do_user_evicts() do the reaping. 2705 */ 2706 buf->b_efunc = NULL; 2707 mutex_exit(&arc_eviction_mtx); 2708 VERIFY(copy.b_efunc(©) == 0); 2709 return (1); 2710 } 2711 } 2712 2713 ASSERT(buf->b_hdr == hdr); 2714 ASSERT3U(refcount_count(&hdr->b_refcnt), <, hdr->b_datacnt); 2715 ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu); 2716 2717 /* 2718 * Pull this buffer off of the hdr 2719 */ 2720 bufp = &hdr->b_buf; 2721 while (*bufp != buf) 2722 bufp = &(*bufp)->b_next; 2723 *bufp = buf->b_next; 2724 2725 ASSERT(buf->b_data != NULL); 2726 arc_buf_destroy(buf, FALSE, FALSE); 2727 2728 if (hdr->b_datacnt == 0) { 2729 arc_state_t *old_state = hdr->b_state; 2730 arc_state_t *evicted_state; 2731 2732 ASSERT(refcount_is_zero(&hdr->b_refcnt)); 2733 2734 evicted_state = 2735 (old_state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost; 2736 2737 mutex_enter(&old_state->arcs_mtx); 2738 mutex_enter(&evicted_state->arcs_mtx); 2739 2740 arc_change_state(evicted_state, hdr, hash_lock); 2741 ASSERT(HDR_IN_HASH_TABLE(hdr)); 2742 hdr->b_flags |= ARC_IN_HASH_TABLE; 2743 hdr->b_flags &= ~ARC_BUF_AVAILABLE; 2744 2745 mutex_exit(&evicted_state->arcs_mtx); 2746 mutex_exit(&old_state->arcs_mtx); 2747 } 2748 mutex_exit(hash_lock); 2749 2750 VERIFY(buf->b_efunc(buf) == 0); 2751 buf->b_efunc = NULL; 2752 buf->b_private = NULL; 2753 buf->b_hdr = NULL; 2754 kmem_cache_free(buf_cache, buf); 2755 return (1); 2756 } 2757 2758 /* 2759 * Release this buffer from the cache. This must be done 2760 * after a read and prior to modifying the buffer contents. 2761 * If the buffer has more than one reference, we must make 2762 * make a new hdr for the buffer. 2763 */ 2764 void 2765 arc_release(arc_buf_t *buf, void *tag) 2766 { 2767 arc_buf_hdr_t *hdr = buf->b_hdr; 2768 kmutex_t *hash_lock = HDR_LOCK(hdr); 2769 l2arc_buf_hdr_t *l2hdr = NULL; 2770 uint64_t buf_size; 2771 2772 /* this buffer is not on any list */ 2773 ASSERT(refcount_count(&hdr->b_refcnt) > 0); 2774 2775 if (hdr->b_state == arc_anon) { 2776 /* this buffer is already released */ 2777 ASSERT3U(refcount_count(&hdr->b_refcnt), ==, 1); 2778 ASSERT(BUF_EMPTY(hdr)); 2779 ASSERT(buf->b_efunc == NULL); 2780 arc_buf_thaw(buf); 2781 return; 2782 } 2783 2784 mutex_enter(hash_lock); 2785 2786 /* 2787 * Do we have more than one buf? 2788 */ 2789 if (hdr->b_buf != buf || buf->b_next != NULL) { 2790 arc_buf_hdr_t *nhdr; 2791 arc_buf_t **bufp; 2792 uint64_t blksz = hdr->b_size; 2793 spa_t *spa = hdr->b_spa; 2794 arc_buf_contents_t type = hdr->b_type; 2795 uint32_t flags = hdr->b_flags; 2796 2797 ASSERT(hdr->b_datacnt > 1); 2798 /* 2799 * Pull the data off of this buf and attach it to 2800 * a new anonymous buf. 2801 */ 2802 (void) remove_reference(hdr, hash_lock, tag); 2803 bufp = &hdr->b_buf; 2804 while (*bufp != buf) 2805 bufp = &(*bufp)->b_next; 2806 *bufp = (*bufp)->b_next; 2807 buf->b_next = NULL; 2808 2809 ASSERT3U(hdr->b_state->arcs_size, >=, hdr->b_size); 2810 atomic_add_64(&hdr->b_state->arcs_size, -hdr->b_size); 2811 if (refcount_is_zero(&hdr->b_refcnt)) { 2812 uint64_t *size = &hdr->b_state->arcs_lsize[hdr->b_type]; 2813 ASSERT3U(*size, >=, hdr->b_size); 2814 atomic_add_64(size, -hdr->b_size); 2815 } 2816 hdr->b_datacnt -= 1; 2817 if (hdr->b_l2hdr != NULL) { 2818 mutex_enter(&l2arc_buflist_mtx); 2819 l2hdr = hdr->b_l2hdr; 2820 hdr->b_l2hdr = NULL; 2821 buf_size = hdr->b_size; 2822 } 2823 arc_cksum_verify(buf); 2824 2825 mutex_exit(hash_lock); 2826 2827 nhdr = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE); 2828 nhdr->b_size = blksz; 2829 nhdr->b_spa = spa; 2830 nhdr->b_type = type; 2831 nhdr->b_buf = buf; 2832 nhdr->b_state = arc_anon; 2833 nhdr->b_arc_access = 0; 2834 nhdr->b_flags = flags & ARC_L2_WRITING; 2835 nhdr->b_l2hdr = NULL; 2836 nhdr->b_datacnt = 1; 2837 nhdr->b_freeze_cksum = NULL; 2838 (void) refcount_add(&nhdr->b_refcnt, tag); 2839 buf->b_hdr = nhdr; 2840 atomic_add_64(&arc_anon->arcs_size, blksz); 2841 } else { 2842 ASSERT(refcount_count(&hdr->b_refcnt) == 1); 2843 ASSERT(!list_link_active(&hdr->b_arc_node)); 2844 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 2845 arc_change_state(arc_anon, hdr, hash_lock); 2846 hdr->b_arc_access = 0; 2847 if (hdr->b_l2hdr != NULL) { 2848 mutex_enter(&l2arc_buflist_mtx); 2849 l2hdr = hdr->b_l2hdr; 2850 hdr->b_l2hdr = NULL; 2851 buf_size = hdr->b_size; 2852 } 2853 mutex_exit(hash_lock); 2854 2855 bzero(&hdr->b_dva, sizeof (dva_t)); 2856 hdr->b_birth = 0; 2857 hdr->b_cksum0 = 0; 2858 arc_buf_thaw(buf); 2859 } 2860 buf->b_efunc = NULL; 2861 buf->b_private = NULL; 2862 2863 if (l2hdr) { 2864 list_remove(l2hdr->b_dev->l2ad_buflist, hdr); 2865 kmem_free(l2hdr, sizeof (l2arc_buf_hdr_t)); 2866 ARCSTAT_INCR(arcstat_l2_size, -buf_size); 2867 } 2868 if (MUTEX_HELD(&l2arc_buflist_mtx)) 2869 mutex_exit(&l2arc_buflist_mtx); 2870 } 2871 2872 int 2873 arc_released(arc_buf_t *buf) 2874 { 2875 return (buf->b_data != NULL && buf->b_hdr->b_state == arc_anon); 2876 } 2877 2878 int 2879 arc_has_callback(arc_buf_t *buf) 2880 { 2881 return (buf->b_efunc != NULL); 2882 } 2883 2884 #ifdef ZFS_DEBUG 2885 int 2886 arc_referenced(arc_buf_t *buf) 2887 { 2888 return (refcount_count(&buf->b_hdr->b_refcnt)); 2889 } 2890 #endif 2891 2892 static void 2893 arc_write_ready(zio_t *zio) 2894 { 2895 arc_write_callback_t *callback = zio->io_private; 2896 arc_buf_t *buf = callback->awcb_buf; 2897 arc_buf_hdr_t *hdr = buf->b_hdr; 2898 2899 if (zio->io_error == 0 && callback->awcb_ready) { 2900 ASSERT(!refcount_is_zero(&buf->b_hdr->b_refcnt)); 2901 callback->awcb_ready(zio, buf, callback->awcb_private); 2902 } 2903 /* 2904 * If the IO is already in progress, then this is a re-write 2905 * attempt, so we need to thaw and re-compute the cksum. It is 2906 * the responsibility of the callback to handle the freeing 2907 * and accounting for any re-write attempt. If we don't have a 2908 * callback registered then simply free the block here. 2909 */ 2910 if (HDR_IO_IN_PROGRESS(hdr)) { 2911 if (!BP_IS_HOLE(&zio->io_bp_orig) && 2912 callback->awcb_ready == NULL) { 2913 zio_nowait(zio_free(zio, zio->io_spa, zio->io_txg, 2914 &zio->io_bp_orig, NULL, NULL)); 2915 } 2916 mutex_enter(&hdr->b_freeze_lock); 2917 if (hdr->b_freeze_cksum != NULL) { 2918 kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t)); 2919 hdr->b_freeze_cksum = NULL; 2920 } 2921 mutex_exit(&hdr->b_freeze_lock); 2922 } 2923 arc_cksum_compute(buf, B_FALSE); 2924 hdr->b_flags |= ARC_IO_IN_PROGRESS; 2925 } 2926 2927 static void 2928 arc_write_done(zio_t *zio) 2929 { 2930 arc_write_callback_t *callback = zio->io_private; 2931 arc_buf_t *buf = callback->awcb_buf; 2932 arc_buf_hdr_t *hdr = buf->b_hdr; 2933 2934 hdr->b_acb = NULL; 2935 2936 /* this buffer is on no lists and is not in the hash table */ 2937 ASSERT3P(hdr->b_state, ==, arc_anon); 2938 2939 hdr->b_dva = *BP_IDENTITY(zio->io_bp); 2940 hdr->b_birth = zio->io_bp->blk_birth; 2941 hdr->b_cksum0 = zio->io_bp->blk_cksum.zc_word[0]; 2942 /* 2943 * If the block to be written was all-zero, we may have 2944 * compressed it away. In this case no write was performed 2945 * so there will be no dva/birth-date/checksum. The buffer 2946 * must therefor remain anonymous (and uncached). 2947 */ 2948 if (!BUF_EMPTY(hdr)) { 2949 arc_buf_hdr_t *exists; 2950 kmutex_t *hash_lock; 2951 2952 arc_cksum_verify(buf); 2953 2954 exists = buf_hash_insert(hdr, &hash_lock); 2955 if (exists) { 2956 /* 2957 * This can only happen if we overwrite for 2958 * sync-to-convergence, because we remove 2959 * buffers from the hash table when we arc_free(). 2960 */ 2961 ASSERT(DVA_EQUAL(BP_IDENTITY(&zio->io_bp_orig), 2962 BP_IDENTITY(zio->io_bp))); 2963 ASSERT3U(zio->io_bp_orig.blk_birth, ==, 2964 zio->io_bp->blk_birth); 2965 2966 ASSERT(refcount_is_zero(&exists->b_refcnt)); 2967 arc_change_state(arc_anon, exists, hash_lock); 2968 mutex_exit(hash_lock); 2969 arc_hdr_destroy(exists); 2970 exists = buf_hash_insert(hdr, &hash_lock); 2971 ASSERT3P(exists, ==, NULL); 2972 } 2973 hdr->b_flags &= ~ARC_IO_IN_PROGRESS; 2974 arc_access(hdr, hash_lock); 2975 mutex_exit(hash_lock); 2976 } else if (callback->awcb_done == NULL) { 2977 int destroy_hdr; 2978 /* 2979 * This is an anonymous buffer with no user callback, 2980 * destroy it if there are no active references. 2981 */ 2982 mutex_enter(&arc_eviction_mtx); 2983 destroy_hdr = refcount_is_zero(&hdr->b_refcnt); 2984 hdr->b_flags &= ~ARC_IO_IN_PROGRESS; 2985 mutex_exit(&arc_eviction_mtx); 2986 if (destroy_hdr) 2987 arc_hdr_destroy(hdr); 2988 } else { 2989 hdr->b_flags &= ~ARC_IO_IN_PROGRESS; 2990 } 2991 2992 if (callback->awcb_done) { 2993 ASSERT(!refcount_is_zero(&hdr->b_refcnt)); 2994 callback->awcb_done(zio, buf, callback->awcb_private); 2995 } 2996 2997 kmem_free(callback, sizeof (arc_write_callback_t)); 2998 } 2999 3000 zio_t * 3001 arc_write(zio_t *pio, spa_t *spa, int checksum, int compress, int ncopies, 3002 uint64_t txg, blkptr_t *bp, arc_buf_t *buf, 3003 arc_done_func_t *ready, arc_done_func_t *done, void *private, int priority, 3004 int flags, zbookmark_t *zb) 3005 { 3006 arc_buf_hdr_t *hdr = buf->b_hdr; 3007 arc_write_callback_t *callback; 3008 zio_t *zio; 3009 3010 /* this is a private buffer - no locking required */ 3011 ASSERT3P(hdr->b_state, ==, arc_anon); 3012 ASSERT(BUF_EMPTY(hdr)); 3013 ASSERT(!HDR_IO_ERROR(hdr)); 3014 ASSERT((hdr->b_flags & ARC_IO_IN_PROGRESS) == 0); 3015 ASSERT(hdr->b_acb == 0); 3016 callback = kmem_zalloc(sizeof (arc_write_callback_t), KM_SLEEP); 3017 callback->awcb_ready = ready; 3018 callback->awcb_done = done; 3019 callback->awcb_private = private; 3020 callback->awcb_buf = buf; 3021 zio = zio_write(pio, spa, checksum, compress, ncopies, txg, bp, 3022 buf->b_data, hdr->b_size, arc_write_ready, arc_write_done, callback, 3023 priority, flags, zb); 3024 3025 return (zio); 3026 } 3027 3028 int 3029 arc_free(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, 3030 zio_done_func_t *done, void *private, uint32_t arc_flags) 3031 { 3032 arc_buf_hdr_t *ab; 3033 kmutex_t *hash_lock; 3034 zio_t *zio; 3035 3036 /* 3037 * If this buffer is in the cache, release it, so it 3038 * can be re-used. 3039 */ 3040 ab = buf_hash_find(spa, BP_IDENTITY(bp), bp->blk_birth, &hash_lock); 3041 if (ab != NULL) { 3042 /* 3043 * The checksum of blocks to free is not always 3044 * preserved (eg. on the deadlist). However, if it is 3045 * nonzero, it should match what we have in the cache. 3046 */ 3047 ASSERT(bp->blk_cksum.zc_word[0] == 0 || 3048 ab->b_cksum0 == bp->blk_cksum.zc_word[0]); 3049 if (ab->b_state != arc_anon) 3050 arc_change_state(arc_anon, ab, hash_lock); 3051 if (HDR_IO_IN_PROGRESS(ab)) { 3052 /* 3053 * This should only happen when we prefetch. 3054 */ 3055 ASSERT(ab->b_flags & ARC_PREFETCH); 3056 ASSERT3U(ab->b_datacnt, ==, 1); 3057 ab->b_flags |= ARC_FREED_IN_READ; 3058 if (HDR_IN_HASH_TABLE(ab)) 3059 buf_hash_remove(ab); 3060 ab->b_arc_access = 0; 3061 bzero(&ab->b_dva, sizeof (dva_t)); 3062 ab->b_birth = 0; 3063 ab->b_cksum0 = 0; 3064 ab->b_buf->b_efunc = NULL; 3065 ab->b_buf->b_private = NULL; 3066 mutex_exit(hash_lock); 3067 } else if (refcount_is_zero(&ab->b_refcnt)) { 3068 ab->b_flags |= ARC_FREE_IN_PROGRESS; 3069 mutex_exit(hash_lock); 3070 arc_hdr_destroy(ab); 3071 ARCSTAT_BUMP(arcstat_deleted); 3072 } else { 3073 /* 3074 * We still have an active reference on this 3075 * buffer. This can happen, e.g., from 3076 * dbuf_unoverride(). 3077 */ 3078 ASSERT(!HDR_IN_HASH_TABLE(ab)); 3079 ab->b_arc_access = 0; 3080 bzero(&ab->b_dva, sizeof (dva_t)); 3081 ab->b_birth = 0; 3082 ab->b_cksum0 = 0; 3083 ab->b_buf->b_efunc = NULL; 3084 ab->b_buf->b_private = NULL; 3085 mutex_exit(hash_lock); 3086 } 3087 } 3088 3089 zio = zio_free(pio, spa, txg, bp, done, private); 3090 3091 if (arc_flags & ARC_WAIT) 3092 return (zio_wait(zio)); 3093 3094 ASSERT(arc_flags & ARC_NOWAIT); 3095 zio_nowait(zio); 3096 3097 return (0); 3098 } 3099 3100 static int 3101 arc_memory_throttle(uint64_t reserve, uint64_t txg) 3102 { 3103 #ifdef _KERNEL 3104 uint64_t inflight_data = arc_anon->arcs_size; 3105 uint64_t available_memory = ptob(freemem); 3106 static uint64_t page_load = 0; 3107 static uint64_t last_txg = 0; 3108 3109 #if defined(__i386) 3110 available_memory = 3111 MIN(available_memory, vmem_size(heap_arena, VMEM_FREE)); 3112 #endif 3113 if (available_memory >= zfs_write_limit_max) 3114 return (0); 3115 3116 if (txg > last_txg) { 3117 last_txg = txg; 3118 page_load = 0; 3119 } 3120 /* 3121 * If we are in pageout, we know that memory is already tight, 3122 * the arc is already going to be evicting, so we just want to 3123 * continue to let page writes occur as quickly as possible. 3124 */ 3125 if (curproc == proc_pageout) { 3126 if (page_load > MAX(ptob(minfree), available_memory) / 4) 3127 return (ERESTART); 3128 /* Note: reserve is inflated, so we deflate */ 3129 page_load += reserve / 8; 3130 return (0); 3131 } else if (page_load > 0 && arc_reclaim_needed()) { 3132 /* memory is low, delay before restarting */ 3133 ARCSTAT_INCR(arcstat_memory_throttle_count, 1); 3134 return (EAGAIN); 3135 } 3136 page_load = 0; 3137 3138 if (arc_size > arc_c_min) { 3139 uint64_t evictable_memory = 3140 arc_mru->arcs_lsize[ARC_BUFC_DATA] + 3141 arc_mru->arcs_lsize[ARC_BUFC_METADATA] + 3142 arc_mfu->arcs_lsize[ARC_BUFC_DATA] + 3143 arc_mfu->arcs_lsize[ARC_BUFC_METADATA]; 3144 available_memory += MIN(evictable_memory, arc_size - arc_c_min); 3145 } 3146 3147 if (inflight_data > available_memory / 4) { 3148 ARCSTAT_INCR(arcstat_memory_throttle_count, 1); 3149 return (ERESTART); 3150 } 3151 #endif 3152 return (0); 3153 } 3154 3155 void 3156 arc_tempreserve_clear(uint64_t reserve) 3157 { 3158 atomic_add_64(&arc_tempreserve, -reserve); 3159 ASSERT((int64_t)arc_tempreserve >= 0); 3160 } 3161 3162 int 3163 arc_tempreserve_space(uint64_t reserve, uint64_t txg) 3164 { 3165 int error; 3166 3167 #ifdef ZFS_DEBUG 3168 /* 3169 * Once in a while, fail for no reason. Everything should cope. 3170 */ 3171 if (spa_get_random(10000) == 0) { 3172 dprintf("forcing random failure\n"); 3173 return (ERESTART); 3174 } 3175 #endif 3176 if (reserve > arc_c/4 && !arc_no_grow) 3177 arc_c = MIN(arc_c_max, reserve * 4); 3178 if (reserve > arc_c) 3179 return (ENOMEM); 3180 3181 /* 3182 * Writes will, almost always, require additional memory allocations 3183 * in order to compress/encrypt/etc the data. We therefor need to 3184 * make sure that there is sufficient available memory for this. 3185 */ 3186 if (error = arc_memory_throttle(reserve, txg)) 3187 return (error); 3188 3189 /* 3190 * Throttle writes when the amount of dirty data in the cache 3191 * gets too large. We try to keep the cache less than half full 3192 * of dirty blocks so that our sync times don't grow too large. 3193 * Note: if two requests come in concurrently, we might let them 3194 * both succeed, when one of them should fail. Not a huge deal. 3195 */ 3196 if (reserve + arc_tempreserve + arc_anon->arcs_size > arc_c / 2 && 3197 arc_anon->arcs_size > arc_c / 4) { 3198 dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK " 3199 "anon_data=%lluK tempreserve=%lluK arc_c=%lluK\n", 3200 arc_tempreserve>>10, 3201 arc_anon->arcs_lsize[ARC_BUFC_METADATA]>>10, 3202 arc_anon->arcs_lsize[ARC_BUFC_DATA]>>10, 3203 reserve>>10, arc_c>>10); 3204 return (ERESTART); 3205 } 3206 atomic_add_64(&arc_tempreserve, reserve); 3207 return (0); 3208 } 3209 3210 void 3211 arc_init(void) 3212 { 3213 mutex_init(&arc_reclaim_thr_lock, NULL, MUTEX_DEFAULT, NULL); 3214 cv_init(&arc_reclaim_thr_cv, NULL, CV_DEFAULT, NULL); 3215 3216 /* Convert seconds to clock ticks */ 3217 arc_min_prefetch_lifespan = 1 * hz; 3218 3219 /* Start out with 1/8 of all memory */ 3220 arc_c = physmem * PAGESIZE / 8; 3221 3222 #ifdef _KERNEL 3223 /* 3224 * On architectures where the physical memory can be larger 3225 * than the addressable space (intel in 32-bit mode), we may 3226 * need to limit the cache to 1/8 of VM size. 3227 */ 3228 arc_c = MIN(arc_c, vmem_size(heap_arena, VMEM_ALLOC | VMEM_FREE) / 8); 3229 #endif 3230 3231 /* set min cache to 1/32 of all memory, or 64MB, whichever is more */ 3232 arc_c_min = MAX(arc_c / 4, 64<<20); 3233 /* set max to 3/4 of all memory, or all but 1GB, whichever is more */ 3234 if (arc_c * 8 >= 1<<30) 3235 arc_c_max = (arc_c * 8) - (1<<30); 3236 else 3237 arc_c_max = arc_c_min; 3238 arc_c_max = MAX(arc_c * 6, arc_c_max); 3239 3240 /* 3241 * Allow the tunables to override our calculations if they are 3242 * reasonable (ie. over 64MB) 3243 */ 3244 if (zfs_arc_max > 64<<20 && zfs_arc_max < physmem * PAGESIZE) 3245 arc_c_max = zfs_arc_max; 3246 if (zfs_arc_min > 64<<20 && zfs_arc_min <= arc_c_max) 3247 arc_c_min = zfs_arc_min; 3248 3249 arc_c = arc_c_max; 3250 arc_p = (arc_c >> 1); 3251 3252 /* limit meta-data to 1/4 of the arc capacity */ 3253 arc_meta_limit = arc_c_max / 4; 3254 3255 /* Allow the tunable to override if it is reasonable */ 3256 if (zfs_arc_meta_limit > 0 && zfs_arc_meta_limit <= arc_c_max) 3257 arc_meta_limit = zfs_arc_meta_limit; 3258 3259 if (arc_c_min < arc_meta_limit / 2 && zfs_arc_min == 0) 3260 arc_c_min = arc_meta_limit / 2; 3261 3262 /* if kmem_flags are set, lets try to use less memory */ 3263 if (kmem_debugging()) 3264 arc_c = arc_c / 2; 3265 if (arc_c < arc_c_min) 3266 arc_c = arc_c_min; 3267 3268 arc_anon = &ARC_anon; 3269 arc_mru = &ARC_mru; 3270 arc_mru_ghost = &ARC_mru_ghost; 3271 arc_mfu = &ARC_mfu; 3272 arc_mfu_ghost = &ARC_mfu_ghost; 3273 arc_l2c_only = &ARC_l2c_only; 3274 arc_size = 0; 3275 3276 mutex_init(&arc_anon->arcs_mtx, NULL, MUTEX_DEFAULT, NULL); 3277 mutex_init(&arc_mru->arcs_mtx, NULL, MUTEX_DEFAULT, NULL); 3278 mutex_init(&arc_mru_ghost->arcs_mtx, NULL, MUTEX_DEFAULT, NULL); 3279 mutex_init(&arc_mfu->arcs_mtx, NULL, MUTEX_DEFAULT, NULL); 3280 mutex_init(&arc_mfu_ghost->arcs_mtx, NULL, MUTEX_DEFAULT, NULL); 3281 mutex_init(&arc_l2c_only->arcs_mtx, NULL, MUTEX_DEFAULT, NULL); 3282 3283 list_create(&arc_mru->arcs_list[ARC_BUFC_METADATA], 3284 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3285 list_create(&arc_mru->arcs_list[ARC_BUFC_DATA], 3286 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3287 list_create(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA], 3288 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3289 list_create(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA], 3290 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3291 list_create(&arc_mfu->arcs_list[ARC_BUFC_METADATA], 3292 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3293 list_create(&arc_mfu->arcs_list[ARC_BUFC_DATA], 3294 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3295 list_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA], 3296 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3297 list_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA], 3298 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3299 list_create(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA], 3300 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3301 list_create(&arc_l2c_only->arcs_list[ARC_BUFC_DATA], 3302 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3303 3304 buf_init(); 3305 3306 arc_thread_exit = 0; 3307 arc_eviction_list = NULL; 3308 mutex_init(&arc_eviction_mtx, NULL, MUTEX_DEFAULT, NULL); 3309 bzero(&arc_eviction_hdr, sizeof (arc_buf_hdr_t)); 3310 3311 arc_ksp = kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED, 3312 sizeof (arc_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL); 3313 3314 if (arc_ksp != NULL) { 3315 arc_ksp->ks_data = &arc_stats; 3316 kstat_install(arc_ksp); 3317 } 3318 3319 (void) thread_create(NULL, 0, arc_reclaim_thread, NULL, 0, &p0, 3320 TS_RUN, minclsyspri); 3321 3322 arc_dead = FALSE; 3323 3324 if (zfs_write_limit_max == 0) 3325 zfs_write_limit_max = physmem * PAGESIZE >> 3326 zfs_write_limit_shift; 3327 else 3328 zfs_write_limit_shift = 0; 3329 } 3330 3331 void 3332 arc_fini(void) 3333 { 3334 mutex_enter(&arc_reclaim_thr_lock); 3335 arc_thread_exit = 1; 3336 while (arc_thread_exit != 0) 3337 cv_wait(&arc_reclaim_thr_cv, &arc_reclaim_thr_lock); 3338 mutex_exit(&arc_reclaim_thr_lock); 3339 3340 arc_flush(NULL); 3341 3342 arc_dead = TRUE; 3343 3344 if (arc_ksp != NULL) { 3345 kstat_delete(arc_ksp); 3346 arc_ksp = NULL; 3347 } 3348 3349 mutex_destroy(&arc_eviction_mtx); 3350 mutex_destroy(&arc_reclaim_thr_lock); 3351 cv_destroy(&arc_reclaim_thr_cv); 3352 3353 list_destroy(&arc_mru->arcs_list[ARC_BUFC_METADATA]); 3354 list_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA]); 3355 list_destroy(&arc_mfu->arcs_list[ARC_BUFC_METADATA]); 3356 list_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA]); 3357 list_destroy(&arc_mru->arcs_list[ARC_BUFC_DATA]); 3358 list_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA]); 3359 list_destroy(&arc_mfu->arcs_list[ARC_BUFC_DATA]); 3360 list_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA]); 3361 3362 mutex_destroy(&arc_anon->arcs_mtx); 3363 mutex_destroy(&arc_mru->arcs_mtx); 3364 mutex_destroy(&arc_mru_ghost->arcs_mtx); 3365 mutex_destroy(&arc_mfu->arcs_mtx); 3366 mutex_destroy(&arc_mfu_ghost->arcs_mtx); 3367 3368 buf_fini(); 3369 } 3370 3371 /* 3372 * Level 2 ARC 3373 * 3374 * The level 2 ARC (L2ARC) is a cache layer in-between main memory and disk. 3375 * It uses dedicated storage devices to hold cached data, which are populated 3376 * using large infrequent writes. The main role of this cache is to boost 3377 * the performance of random read workloads. The intended L2ARC devices 3378 * include short-stroked disks, solid state disks, and other media with 3379 * substantially faster read latency than disk. 3380 * 3381 * +-----------------------+ 3382 * | ARC | 3383 * +-----------------------+ 3384 * | ^ ^ 3385 * | | | 3386 * l2arc_feed_thread() arc_read() 3387 * | | | 3388 * | l2arc read | 3389 * V | | 3390 * +---------------+ | 3391 * | L2ARC | | 3392 * +---------------+ | 3393 * | ^ | 3394 * l2arc_write() | | 3395 * | | | 3396 * V | | 3397 * +-------+ +-------+ 3398 * | vdev | | vdev | 3399 * | cache | | cache | 3400 * +-------+ +-------+ 3401 * +=========+ .-----. 3402 * : L2ARC : |-_____-| 3403 * : devices : | Disks | 3404 * +=========+ `-_____-' 3405 * 3406 * Read requests are satisfied from the following sources, in order: 3407 * 3408 * 1) ARC 3409 * 2) vdev cache of L2ARC devices 3410 * 3) L2ARC devices 3411 * 4) vdev cache of disks 3412 * 5) disks 3413 * 3414 * Some L2ARC device types exhibit extremely slow write performance. 3415 * To accommodate for this there are some significant differences between 3416 * the L2ARC and traditional cache design: 3417 * 3418 * 1. There is no eviction path from the ARC to the L2ARC. Evictions from 3419 * the ARC behave as usual, freeing buffers and placing headers on ghost 3420 * lists. The ARC does not send buffers to the L2ARC during eviction as 3421 * this would add inflated write latencies for all ARC memory pressure. 3422 * 3423 * 2. The L2ARC attempts to cache data from the ARC before it is evicted. 3424 * It does this by periodically scanning buffers from the eviction-end of 3425 * the MFU and MRU ARC lists, copying them to the L2ARC devices if they are 3426 * not already there. It scans until a headroom of buffers is satisfied, 3427 * which itself is a buffer for ARC eviction. The thread that does this is 3428 * l2arc_feed_thread(), illustrated below; example sizes are included to 3429 * provide a better sense of ratio than this diagram: 3430 * 3431 * head --> tail 3432 * +---------------------+----------+ 3433 * ARC_mfu |:::::#:::::::::::::::|o#o###o###|-->. # already on L2ARC 3434 * +---------------------+----------+ | o L2ARC eligible 3435 * ARC_mru |:#:::::::::::::::::::|#o#ooo####|-->| : ARC buffer 3436 * +---------------------+----------+ | 3437 * 15.9 Gbytes ^ 32 Mbytes | 3438 * headroom | 3439 * l2arc_feed_thread() 3440 * | 3441 * l2arc write hand <--[oooo]--' 3442 * | 8 Mbyte 3443 * | write max 3444 * V 3445 * +==============================+ 3446 * L2ARC dev |####|#|###|###| |####| ... | 3447 * +==============================+ 3448 * 32 Gbytes 3449 * 3450 * 3. If an ARC buffer is copied to the L2ARC but then hit instead of 3451 * evicted, then the L2ARC has cached a buffer much sooner than it probably 3452 * needed to, potentially wasting L2ARC device bandwidth and storage. It is 3453 * safe to say that this is an uncommon case, since buffers at the end of 3454 * the ARC lists have moved there due to inactivity. 3455 * 3456 * 4. If the ARC evicts faster than the L2ARC can maintain a headroom, 3457 * then the L2ARC simply misses copying some buffers. This serves as a 3458 * pressure valve to prevent heavy read workloads from both stalling the ARC 3459 * with waits and clogging the L2ARC with writes. This also helps prevent 3460 * the potential for the L2ARC to churn if it attempts to cache content too 3461 * quickly, such as during backups of the entire pool. 3462 * 3463 * 5. Writes to the L2ARC devices are grouped and sent in-sequence, so that 3464 * the vdev queue can aggregate them into larger and fewer writes. Each 3465 * device is written to in a rotor fashion, sweeping writes through 3466 * available space then repeating. 3467 * 3468 * 6. The L2ARC does not store dirty content. It never needs to flush 3469 * write buffers back to disk based storage. 3470 * 3471 * 7. If an ARC buffer is written (and dirtied) which also exists in the 3472 * L2ARC, the now stale L2ARC buffer is immediately dropped. 3473 * 3474 * The performance of the L2ARC can be tweaked by a number of tunables, which 3475 * may be necessary for different workloads: 3476 * 3477 * l2arc_write_max max write bytes per interval 3478 * l2arc_noprefetch skip caching prefetched buffers 3479 * l2arc_headroom number of max device writes to precache 3480 * l2arc_feed_secs seconds between L2ARC writing 3481 * 3482 * Tunables may be removed or added as future performance improvements are 3483 * integrated, and also may become zpool properties. 3484 */ 3485 3486 static void 3487 l2arc_hdr_stat_add(void) 3488 { 3489 ARCSTAT_INCR(arcstat_l2_hdr_size, HDR_SIZE + L2HDR_SIZE); 3490 ARCSTAT_INCR(arcstat_hdr_size, -HDR_SIZE); 3491 } 3492 3493 static void 3494 l2arc_hdr_stat_remove(void) 3495 { 3496 ARCSTAT_INCR(arcstat_l2_hdr_size, -(HDR_SIZE + L2HDR_SIZE)); 3497 ARCSTAT_INCR(arcstat_hdr_size, HDR_SIZE); 3498 } 3499 3500 /* 3501 * Cycle through L2ARC devices. This is how L2ARC load balances. 3502 * This is called with l2arc_dev_mtx held, which also locks out spa removal. 3503 */ 3504 static l2arc_dev_t * 3505 l2arc_dev_get_next(void) 3506 { 3507 l2arc_dev_t *next; 3508 3509 if (l2arc_dev_last == NULL) { 3510 next = list_head(l2arc_dev_list); 3511 } else { 3512 next = list_next(l2arc_dev_list, l2arc_dev_last); 3513 if (next == NULL) 3514 next = list_head(l2arc_dev_list); 3515 } 3516 3517 l2arc_dev_last = next; 3518 3519 return (next); 3520 } 3521 3522 /* 3523 * A write to a cache device has completed. Update all headers to allow 3524 * reads from these buffers to begin. 3525 */ 3526 static void 3527 l2arc_write_done(zio_t *zio) 3528 { 3529 l2arc_write_callback_t *cb; 3530 l2arc_dev_t *dev; 3531 list_t *buflist; 3532 l2arc_data_free_t *df, *df_prev; 3533 arc_buf_hdr_t *head, *ab, *ab_prev; 3534 kmutex_t *hash_lock; 3535 3536 cb = zio->io_private; 3537 ASSERT(cb != NULL); 3538 dev = cb->l2wcb_dev; 3539 ASSERT(dev != NULL); 3540 head = cb->l2wcb_head; 3541 ASSERT(head != NULL); 3542 buflist = dev->l2ad_buflist; 3543 ASSERT(buflist != NULL); 3544 DTRACE_PROBE2(l2arc__iodone, zio_t *, zio, 3545 l2arc_write_callback_t *, cb); 3546 3547 if (zio->io_error != 0) 3548 ARCSTAT_BUMP(arcstat_l2_writes_error); 3549 3550 mutex_enter(&l2arc_buflist_mtx); 3551 3552 /* 3553 * All writes completed, or an error was hit. 3554 */ 3555 for (ab = list_prev(buflist, head); ab; ab = ab_prev) { 3556 ab_prev = list_prev(buflist, ab); 3557 3558 hash_lock = HDR_LOCK(ab); 3559 if (!mutex_tryenter(hash_lock)) { 3560 /* 3561 * This buffer misses out. It may be in a stage 3562 * of eviction. Its ARC_L2_WRITING flag will be 3563 * left set, denying reads to this buffer. 3564 */ 3565 ARCSTAT_BUMP(arcstat_l2_writes_hdr_miss); 3566 continue; 3567 } 3568 3569 if (zio->io_error != 0) { 3570 /* 3571 * Error - invalidate L2ARC entry. 3572 */ 3573 ab->b_l2hdr = NULL; 3574 } 3575 3576 /* 3577 * Allow ARC to begin reads to this L2ARC entry. 3578 */ 3579 ab->b_flags &= ~ARC_L2_WRITING; 3580 3581 mutex_exit(hash_lock); 3582 } 3583 3584 atomic_inc_64(&l2arc_writes_done); 3585 list_remove(buflist, head); 3586 kmem_cache_free(hdr_cache, head); 3587 mutex_exit(&l2arc_buflist_mtx); 3588 3589 /* 3590 * Free buffers that were tagged for destruction. 3591 */ 3592 mutex_enter(&l2arc_free_on_write_mtx); 3593 buflist = l2arc_free_on_write; 3594 for (df = list_tail(buflist); df; df = df_prev) { 3595 df_prev = list_prev(buflist, df); 3596 ASSERT(df->l2df_data != NULL); 3597 ASSERT(df->l2df_func != NULL); 3598 df->l2df_func(df->l2df_data, df->l2df_size); 3599 list_remove(buflist, df); 3600 kmem_free(df, sizeof (l2arc_data_free_t)); 3601 } 3602 mutex_exit(&l2arc_free_on_write_mtx); 3603 3604 kmem_free(cb, sizeof (l2arc_write_callback_t)); 3605 } 3606 3607 /* 3608 * A read to a cache device completed. Validate buffer contents before 3609 * handing over to the regular ARC routines. 3610 */ 3611 static void 3612 l2arc_read_done(zio_t *zio) 3613 { 3614 l2arc_read_callback_t *cb; 3615 arc_buf_hdr_t *hdr; 3616 arc_buf_t *buf; 3617 zio_t *rzio; 3618 kmutex_t *hash_lock; 3619 int equal, err = 0; 3620 3621 cb = zio->io_private; 3622 ASSERT(cb != NULL); 3623 buf = cb->l2rcb_buf; 3624 ASSERT(buf != NULL); 3625 hdr = buf->b_hdr; 3626 ASSERT(hdr != NULL); 3627 3628 hash_lock = HDR_LOCK(hdr); 3629 mutex_enter(hash_lock); 3630 3631 /* 3632 * Check this survived the L2ARC journey. 3633 */ 3634 equal = arc_cksum_equal(buf); 3635 if (equal && zio->io_error == 0 && !HDR_L2_EVICTED(hdr)) { 3636 mutex_exit(hash_lock); 3637 zio->io_private = buf; 3638 arc_read_done(zio); 3639 } else { 3640 mutex_exit(hash_lock); 3641 /* 3642 * Buffer didn't survive caching. Increment stats and 3643 * reissue to the original storage device. 3644 */ 3645 if (zio->io_error != 0) 3646 ARCSTAT_BUMP(arcstat_l2_io_error); 3647 if (!equal) 3648 ARCSTAT_BUMP(arcstat_l2_cksum_bad); 3649 3650 zio->io_flags &= ~ZIO_FLAG_DONT_CACHE; 3651 rzio = zio_read(NULL, cb->l2rcb_spa, &cb->l2rcb_bp, 3652 buf->b_data, zio->io_size, arc_read_done, buf, 3653 zio->io_priority, cb->l2rcb_flags, &cb->l2rcb_zb); 3654 3655 /* 3656 * Since this is a seperate thread, we can wait on this 3657 * I/O whether there is an io_waiter or not. 3658 */ 3659 err = zio_wait(rzio); 3660 3661 /* 3662 * Let the resent I/O call arc_read_done() instead. 3663 * io_error is set to the reissued I/O error status. 3664 */ 3665 zio->io_done = NULL; 3666 zio->io_waiter = NULL; 3667 zio->io_error = err; 3668 } 3669 3670 kmem_free(cb, sizeof (l2arc_read_callback_t)); 3671 } 3672 3673 /* 3674 * This is the list priority from which the L2ARC will search for pages to 3675 * cache. This is used within loops (0..3) to cycle through lists in the 3676 * desired order. This order can have a significant effect on cache 3677 * performance. 3678 * 3679 * Currently the metadata lists are hit first, MFU then MRU, followed by 3680 * the data lists. This function returns a locked list, and also returns 3681 * the lock pointer. 3682 */ 3683 static list_t * 3684 l2arc_list_locked(int list_num, kmutex_t **lock) 3685 { 3686 list_t *list; 3687 3688 ASSERT(list_num >= 0 && list_num <= 3); 3689 3690 switch (list_num) { 3691 case 0: 3692 list = &arc_mfu->arcs_list[ARC_BUFC_METADATA]; 3693 *lock = &arc_mfu->arcs_mtx; 3694 break; 3695 case 1: 3696 list = &arc_mru->arcs_list[ARC_BUFC_METADATA]; 3697 *lock = &arc_mru->arcs_mtx; 3698 break; 3699 case 2: 3700 list = &arc_mfu->arcs_list[ARC_BUFC_DATA]; 3701 *lock = &arc_mfu->arcs_mtx; 3702 break; 3703 case 3: 3704 list = &arc_mru->arcs_list[ARC_BUFC_DATA]; 3705 *lock = &arc_mru->arcs_mtx; 3706 break; 3707 } 3708 3709 ASSERT(!(MUTEX_HELD(*lock))); 3710 mutex_enter(*lock); 3711 return (list); 3712 } 3713 3714 /* 3715 * Evict buffers from the device write hand to the distance specified in 3716 * bytes. This distance may span populated buffers, it may span nothing. 3717 * This is clearing a region on the L2ARC device ready for writing. 3718 * If the 'all' boolean is set, every buffer is evicted. 3719 */ 3720 static void 3721 l2arc_evict(l2arc_dev_t *dev, uint64_t distance, boolean_t all) 3722 { 3723 list_t *buflist; 3724 l2arc_buf_hdr_t *abl2; 3725 arc_buf_hdr_t *ab, *ab_prev; 3726 kmutex_t *hash_lock; 3727 uint64_t taddr; 3728 3729 ASSERT(MUTEX_HELD(&l2arc_dev_mtx)); 3730 3731 buflist = dev->l2ad_buflist; 3732 3733 if (buflist == NULL) 3734 return; 3735 3736 if (!all && dev->l2ad_first) { 3737 /* 3738 * This is the first sweep through the device. There is 3739 * nothing to evict. 3740 */ 3741 return; 3742 } 3743 3744 if (dev->l2ad_hand >= (dev->l2ad_end - (2 * dev->l2ad_write))) { 3745 /* 3746 * When nearing the end of the device, evict to the end 3747 * before the device write hand jumps to the start. 3748 */ 3749 taddr = dev->l2ad_end; 3750 } else { 3751 taddr = dev->l2ad_hand + distance; 3752 } 3753 DTRACE_PROBE4(l2arc__evict, l2arc_dev_t *, dev, list_t *, buflist, 3754 uint64_t, taddr, boolean_t, all); 3755 3756 top: 3757 mutex_enter(&l2arc_buflist_mtx); 3758 for (ab = list_tail(buflist); ab; ab = ab_prev) { 3759 ab_prev = list_prev(buflist, ab); 3760 3761 hash_lock = HDR_LOCK(ab); 3762 if (!mutex_tryenter(hash_lock)) { 3763 /* 3764 * Missed the hash lock. Retry. 3765 */ 3766 ARCSTAT_BUMP(arcstat_l2_evict_lock_retry); 3767 mutex_exit(&l2arc_buflist_mtx); 3768 mutex_enter(hash_lock); 3769 mutex_exit(hash_lock); 3770 goto top; 3771 } 3772 3773 if (HDR_L2_WRITE_HEAD(ab)) { 3774 /* 3775 * We hit a write head node. Leave it for 3776 * l2arc_write_done(). 3777 */ 3778 list_remove(buflist, ab); 3779 mutex_exit(hash_lock); 3780 continue; 3781 } 3782 3783 if (!all && ab->b_l2hdr != NULL && 3784 (ab->b_l2hdr->b_daddr > taddr || 3785 ab->b_l2hdr->b_daddr < dev->l2ad_hand)) { 3786 /* 3787 * We've evicted to the target address, 3788 * or the end of the device. 3789 */ 3790 mutex_exit(hash_lock); 3791 break; 3792 } 3793 3794 if (HDR_FREE_IN_PROGRESS(ab)) { 3795 /* 3796 * Already on the path to destruction. 3797 */ 3798 mutex_exit(hash_lock); 3799 continue; 3800 } 3801 3802 if (ab->b_state == arc_l2c_only) { 3803 ASSERT(!HDR_L2_READING(ab)); 3804 /* 3805 * This doesn't exist in the ARC. Destroy. 3806 * arc_hdr_destroy() will call list_remove() 3807 * and decrement arcstat_l2_size. 3808 */ 3809 arc_change_state(arc_anon, ab, hash_lock); 3810 arc_hdr_destroy(ab); 3811 } else { 3812 /* 3813 * Tell ARC this no longer exists in L2ARC. 3814 */ 3815 if (ab->b_l2hdr != NULL) { 3816 abl2 = ab->b_l2hdr; 3817 ab->b_l2hdr = NULL; 3818 kmem_free(abl2, sizeof (l2arc_buf_hdr_t)); 3819 ARCSTAT_INCR(arcstat_l2_size, -ab->b_size); 3820 } 3821 list_remove(buflist, ab); 3822 3823 /* 3824 * This may have been leftover after a 3825 * failed write. 3826 */ 3827 ab->b_flags &= ~ARC_L2_WRITING; 3828 3829 /* 3830 * Invalidate issued or about to be issued 3831 * reads, since we may be about to write 3832 * over this location. 3833 */ 3834 if (HDR_L2_READING(ab)) { 3835 ARCSTAT_BUMP(arcstat_l2_evict_reading); 3836 ab->b_flags |= ARC_L2_EVICTED; 3837 } 3838 } 3839 mutex_exit(hash_lock); 3840 } 3841 mutex_exit(&l2arc_buflist_mtx); 3842 3843 spa_l2cache_space_update(dev->l2ad_vdev, 0, -(taddr - dev->l2ad_evict)); 3844 dev->l2ad_evict = taddr; 3845 } 3846 3847 /* 3848 * Find and write ARC buffers to the L2ARC device. 3849 * 3850 * An ARC_L2_WRITING flag is set so that the L2ARC buffers are not valid 3851 * for reading until they have completed writing. 3852 */ 3853 static void 3854 l2arc_write_buffers(spa_t *spa, l2arc_dev_t *dev) 3855 { 3856 arc_buf_hdr_t *ab, *ab_prev, *head; 3857 l2arc_buf_hdr_t *hdrl2; 3858 list_t *list; 3859 uint64_t passed_sz, write_sz, buf_sz; 3860 uint64_t target_sz = dev->l2ad_write; 3861 uint64_t headroom = dev->l2ad_write * l2arc_headroom; 3862 void *buf_data; 3863 kmutex_t *hash_lock, *list_lock; 3864 boolean_t have_lock, full; 3865 l2arc_write_callback_t *cb; 3866 zio_t *pio, *wzio; 3867 3868 ASSERT(MUTEX_HELD(&l2arc_dev_mtx)); 3869 ASSERT(dev->l2ad_vdev != NULL); 3870 3871 pio = NULL; 3872 write_sz = 0; 3873 full = B_FALSE; 3874 head = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE); 3875 head->b_flags |= ARC_L2_WRITE_HEAD; 3876 3877 /* 3878 * Copy buffers for L2ARC writing. 3879 */ 3880 mutex_enter(&l2arc_buflist_mtx); 3881 for (int try = 0; try <= 3; try++) { 3882 list = l2arc_list_locked(try, &list_lock); 3883 passed_sz = 0; 3884 3885 for (ab = list_tail(list); ab; ab = ab_prev) { 3886 ab_prev = list_prev(list, ab); 3887 3888 hash_lock = HDR_LOCK(ab); 3889 have_lock = MUTEX_HELD(hash_lock); 3890 if (!have_lock && !mutex_tryenter(hash_lock)) { 3891 /* 3892 * Skip this buffer rather than waiting. 3893 */ 3894 continue; 3895 } 3896 3897 passed_sz += ab->b_size; 3898 if (passed_sz > headroom) { 3899 /* 3900 * Searched too far. 3901 */ 3902 mutex_exit(hash_lock); 3903 break; 3904 } 3905 3906 if (ab->b_spa != spa) { 3907 mutex_exit(hash_lock); 3908 continue; 3909 } 3910 3911 if (ab->b_l2hdr != NULL) { 3912 /* 3913 * Already in L2ARC. 3914 */ 3915 mutex_exit(hash_lock); 3916 continue; 3917 } 3918 3919 if (HDR_IO_IN_PROGRESS(ab) || HDR_DONT_L2CACHE(ab)) { 3920 mutex_exit(hash_lock); 3921 continue; 3922 } 3923 3924 if ((write_sz + ab->b_size) > target_sz) { 3925 full = B_TRUE; 3926 mutex_exit(hash_lock); 3927 break; 3928 } 3929 3930 if (ab->b_buf == NULL) { 3931 DTRACE_PROBE1(l2arc__buf__null, void *, ab); 3932 mutex_exit(hash_lock); 3933 continue; 3934 } 3935 3936 if (pio == NULL) { 3937 /* 3938 * Insert a dummy header on the buflist so 3939 * l2arc_write_done() can find where the 3940 * write buffers begin without searching. 3941 */ 3942 list_insert_head(dev->l2ad_buflist, head); 3943 3944 cb = kmem_alloc( 3945 sizeof (l2arc_write_callback_t), KM_SLEEP); 3946 cb->l2wcb_dev = dev; 3947 cb->l2wcb_head = head; 3948 pio = zio_root(spa, l2arc_write_done, cb, 3949 ZIO_FLAG_CANFAIL); 3950 } 3951 3952 /* 3953 * Create and add a new L2ARC header. 3954 */ 3955 hdrl2 = kmem_zalloc(sizeof (l2arc_buf_hdr_t), KM_SLEEP); 3956 hdrl2->b_dev = dev; 3957 hdrl2->b_daddr = dev->l2ad_hand; 3958 3959 ab->b_flags |= ARC_L2_WRITING; 3960 ab->b_l2hdr = hdrl2; 3961 list_insert_head(dev->l2ad_buflist, ab); 3962 buf_data = ab->b_buf->b_data; 3963 buf_sz = ab->b_size; 3964 3965 /* 3966 * Compute and store the buffer cksum before 3967 * writing. On debug the cksum is verified first. 3968 */ 3969 arc_cksum_verify(ab->b_buf); 3970 arc_cksum_compute(ab->b_buf, B_TRUE); 3971 3972 mutex_exit(hash_lock); 3973 3974 wzio = zio_write_phys(pio, dev->l2ad_vdev, 3975 dev->l2ad_hand, buf_sz, buf_data, ZIO_CHECKSUM_OFF, 3976 NULL, NULL, ZIO_PRIORITY_ASYNC_WRITE, 3977 ZIO_FLAG_CANFAIL, B_FALSE); 3978 3979 DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev, 3980 zio_t *, wzio); 3981 (void) zio_nowait(wzio); 3982 3983 write_sz += buf_sz; 3984 dev->l2ad_hand += buf_sz; 3985 } 3986 3987 mutex_exit(list_lock); 3988 3989 if (full == B_TRUE) 3990 break; 3991 } 3992 mutex_exit(&l2arc_buflist_mtx); 3993 3994 if (pio == NULL) { 3995 ASSERT3U(write_sz, ==, 0); 3996 kmem_cache_free(hdr_cache, head); 3997 return; 3998 } 3999 4000 ASSERT3U(write_sz, <=, target_sz); 4001 ARCSTAT_BUMP(arcstat_l2_writes_sent); 4002 ARCSTAT_INCR(arcstat_l2_size, write_sz); 4003 spa_l2cache_space_update(dev->l2ad_vdev, 0, write_sz); 4004 4005 /* 4006 * Bump device hand to the device start if it is approaching the end. 4007 * l2arc_evict() will already have evicted ahead for this case. 4008 */ 4009 if (dev->l2ad_hand >= (dev->l2ad_end - dev->l2ad_write)) { 4010 spa_l2cache_space_update(dev->l2ad_vdev, 0, 4011 dev->l2ad_end - dev->l2ad_hand); 4012 dev->l2ad_hand = dev->l2ad_start; 4013 dev->l2ad_evict = dev->l2ad_start; 4014 dev->l2ad_first = B_FALSE; 4015 } 4016 4017 (void) zio_wait(pio); 4018 } 4019 4020 /* 4021 * This thread feeds the L2ARC at regular intervals. This is the beating 4022 * heart of the L2ARC. 4023 */ 4024 static void 4025 l2arc_feed_thread(void) 4026 { 4027 callb_cpr_t cpr; 4028 l2arc_dev_t *dev; 4029 spa_t *spa; 4030 int interval; 4031 boolean_t startup = B_TRUE; 4032 4033 CALLB_CPR_INIT(&cpr, &l2arc_feed_thr_lock, callb_generic_cpr, FTAG); 4034 4035 mutex_enter(&l2arc_feed_thr_lock); 4036 4037 while (l2arc_thread_exit == 0) { 4038 /* 4039 * Initially pause for L2ARC_FEED_DELAY seconds as a grace 4040 * interval during boot, followed by l2arc_feed_secs seconds 4041 * thereafter. 4042 */ 4043 CALLB_CPR_SAFE_BEGIN(&cpr); 4044 if (startup) { 4045 interval = L2ARC_FEED_DELAY; 4046 startup = B_FALSE; 4047 } else { 4048 interval = l2arc_feed_secs; 4049 } 4050 (void) cv_timedwait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock, 4051 lbolt + (hz * interval)); 4052 CALLB_CPR_SAFE_END(&cpr, &l2arc_feed_thr_lock); 4053 4054 /* 4055 * Do nothing until L2ARC devices exist. 4056 */ 4057 mutex_enter(&l2arc_dev_mtx); 4058 if (l2arc_ndev == 0) { 4059 mutex_exit(&l2arc_dev_mtx); 4060 continue; 4061 } 4062 4063 /* 4064 * Avoid contributing to memory pressure. 4065 */ 4066 if (arc_reclaim_needed()) { 4067 ARCSTAT_BUMP(arcstat_l2_abort_lowmem); 4068 mutex_exit(&l2arc_dev_mtx); 4069 continue; 4070 } 4071 4072 /* 4073 * This selects the next l2arc device to write to, and in 4074 * doing so the next spa to feed from: dev->l2ad_spa. 4075 */ 4076 if ((dev = l2arc_dev_get_next()) == NULL) { 4077 mutex_exit(&l2arc_dev_mtx); 4078 continue; 4079 } 4080 spa = dev->l2ad_spa; 4081 ASSERT(spa != NULL); 4082 ARCSTAT_BUMP(arcstat_l2_feeds); 4083 4084 /* 4085 * Evict L2ARC buffers that will be overwritten. 4086 */ 4087 l2arc_evict(dev, dev->l2ad_write, B_FALSE); 4088 4089 /* 4090 * Write ARC buffers. 4091 */ 4092 l2arc_write_buffers(spa, dev); 4093 mutex_exit(&l2arc_dev_mtx); 4094 } 4095 4096 l2arc_thread_exit = 0; 4097 cv_broadcast(&l2arc_feed_thr_cv); 4098 CALLB_CPR_EXIT(&cpr); /* drops l2arc_feed_thr_lock */ 4099 thread_exit(); 4100 } 4101 4102 /* 4103 * Add a vdev for use by the L2ARC. By this point the spa has already 4104 * validated the vdev and opened it. 4105 */ 4106 void 4107 l2arc_add_vdev(spa_t *spa, vdev_t *vd, uint64_t start, uint64_t end) 4108 { 4109 l2arc_dev_t *adddev; 4110 4111 /* 4112 * Create a new l2arc device entry. 4113 */ 4114 adddev = kmem_zalloc(sizeof (l2arc_dev_t), KM_SLEEP); 4115 adddev->l2ad_spa = spa; 4116 adddev->l2ad_vdev = vd; 4117 adddev->l2ad_write = l2arc_write_max; 4118 adddev->l2ad_start = start; 4119 adddev->l2ad_end = end; 4120 adddev->l2ad_hand = adddev->l2ad_start; 4121 adddev->l2ad_evict = adddev->l2ad_start; 4122 adddev->l2ad_first = B_TRUE; 4123 ASSERT3U(adddev->l2ad_write, >, 0); 4124 4125 /* 4126 * This is a list of all ARC buffers that are still valid on the 4127 * device. 4128 */ 4129 adddev->l2ad_buflist = kmem_zalloc(sizeof (list_t), KM_SLEEP); 4130 list_create(adddev->l2ad_buflist, sizeof (arc_buf_hdr_t), 4131 offsetof(arc_buf_hdr_t, b_l2node)); 4132 4133 spa_l2cache_space_update(vd, adddev->l2ad_end - adddev->l2ad_hand, 0); 4134 4135 /* 4136 * Add device to global list 4137 */ 4138 mutex_enter(&l2arc_dev_mtx); 4139 list_insert_head(l2arc_dev_list, adddev); 4140 atomic_inc_64(&l2arc_ndev); 4141 mutex_exit(&l2arc_dev_mtx); 4142 } 4143 4144 /* 4145 * Remove a vdev from the L2ARC. 4146 */ 4147 void 4148 l2arc_remove_vdev(vdev_t *vd) 4149 { 4150 l2arc_dev_t *dev, *nextdev, *remdev = NULL; 4151 4152 /* 4153 * We can only grab the spa config lock when cache device writes 4154 * complete. 4155 */ 4156 ASSERT3U(l2arc_writes_sent, ==, l2arc_writes_done); 4157 4158 /* 4159 * Find the device by vdev 4160 */ 4161 mutex_enter(&l2arc_dev_mtx); 4162 for (dev = list_head(l2arc_dev_list); dev; dev = nextdev) { 4163 nextdev = list_next(l2arc_dev_list, dev); 4164 if (vd == dev->l2ad_vdev) { 4165 remdev = dev; 4166 break; 4167 } 4168 } 4169 ASSERT(remdev != NULL); 4170 4171 /* 4172 * Remove device from global list 4173 */ 4174 list_remove(l2arc_dev_list, remdev); 4175 l2arc_dev_last = NULL; /* may have been invalidated */ 4176 4177 /* 4178 * Clear all buflists and ARC references. L2ARC device flush. 4179 */ 4180 l2arc_evict(remdev, 0, B_TRUE); 4181 list_destroy(remdev->l2ad_buflist); 4182 kmem_free(remdev->l2ad_buflist, sizeof (list_t)); 4183 kmem_free(remdev, sizeof (l2arc_dev_t)); 4184 4185 atomic_dec_64(&l2arc_ndev); 4186 mutex_exit(&l2arc_dev_mtx); 4187 } 4188 4189 void 4190 l2arc_init() 4191 { 4192 l2arc_thread_exit = 0; 4193 l2arc_ndev = 0; 4194 l2arc_writes_sent = 0; 4195 l2arc_writes_done = 0; 4196 4197 mutex_init(&l2arc_feed_thr_lock, NULL, MUTEX_DEFAULT, NULL); 4198 cv_init(&l2arc_feed_thr_cv, NULL, CV_DEFAULT, NULL); 4199 mutex_init(&l2arc_dev_mtx, NULL, MUTEX_DEFAULT, NULL); 4200 mutex_init(&l2arc_buflist_mtx, NULL, MUTEX_DEFAULT, NULL); 4201 mutex_init(&l2arc_free_on_write_mtx, NULL, MUTEX_DEFAULT, NULL); 4202 4203 l2arc_dev_list = &L2ARC_dev_list; 4204 l2arc_free_on_write = &L2ARC_free_on_write; 4205 list_create(l2arc_dev_list, sizeof (l2arc_dev_t), 4206 offsetof(l2arc_dev_t, l2ad_node)); 4207 list_create(l2arc_free_on_write, sizeof (l2arc_data_free_t), 4208 offsetof(l2arc_data_free_t, l2df_list_node)); 4209 4210 (void) thread_create(NULL, 0, l2arc_feed_thread, NULL, 0, &p0, 4211 TS_RUN, minclsyspri); 4212 } 4213 4214 void 4215 l2arc_fini() 4216 { 4217 mutex_enter(&l2arc_feed_thr_lock); 4218 cv_signal(&l2arc_feed_thr_cv); /* kick thread out of startup */ 4219 l2arc_thread_exit = 1; 4220 while (l2arc_thread_exit != 0) 4221 cv_wait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock); 4222 mutex_exit(&l2arc_feed_thr_lock); 4223 4224 mutex_destroy(&l2arc_feed_thr_lock); 4225 cv_destroy(&l2arc_feed_thr_cv); 4226 mutex_destroy(&l2arc_dev_mtx); 4227 mutex_destroy(&l2arc_buflist_mtx); 4228 mutex_destroy(&l2arc_free_on_write_mtx); 4229 4230 list_destroy(l2arc_dev_list); 4231 list_destroy(l2arc_free_on_write); 4232 } 4233