1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2012, Joyent, Inc. All rights reserved. 24 * Copyright (c) 2011, 2014 by Delphix. All rights reserved. 25 * Copyright (c) 2014 by Saso Kiselkov. All rights reserved. 26 * Copyright 2014 Nexenta Systems, Inc. All rights reserved. 27 */ 28 29 /* 30 * DVA-based Adjustable Replacement Cache 31 * 32 * While much of the theory of operation used here is 33 * based on the self-tuning, low overhead replacement cache 34 * presented by Megiddo and Modha at FAST 2003, there are some 35 * significant differences: 36 * 37 * 1. The Megiddo and Modha model assumes any page is evictable. 38 * Pages in its cache cannot be "locked" into memory. This makes 39 * the eviction algorithm simple: evict the last page in the list. 40 * This also make the performance characteristics easy to reason 41 * about. Our cache is not so simple. At any given moment, some 42 * subset of the blocks in the cache are un-evictable because we 43 * have handed out a reference to them. Blocks are only evictable 44 * when there are no external references active. This makes 45 * eviction far more problematic: we choose to evict the evictable 46 * blocks that are the "lowest" in the list. 47 * 48 * There are times when it is not possible to evict the requested 49 * space. In these circumstances we are unable to adjust the cache 50 * size. To prevent the cache growing unbounded at these times we 51 * implement a "cache throttle" that slows the flow of new data 52 * into the cache until we can make space available. 53 * 54 * 2. The Megiddo and Modha model assumes a fixed cache size. 55 * Pages are evicted when the cache is full and there is a cache 56 * miss. Our model has a variable sized cache. It grows with 57 * high use, but also tries to react to memory pressure from the 58 * operating system: decreasing its size when system memory is 59 * tight. 60 * 61 * 3. The Megiddo and Modha model assumes a fixed page size. All 62 * elements of the cache are therefore exactly the same size. So 63 * when adjusting the cache size following a cache miss, its simply 64 * a matter of choosing a single page to evict. In our model, we 65 * have variable sized cache blocks (rangeing from 512 bytes to 66 * 128K bytes). We therefore choose a set of blocks to evict to make 67 * space for a cache miss that approximates as closely as possible 68 * the space used by the new block. 69 * 70 * See also: "ARC: A Self-Tuning, Low Overhead Replacement Cache" 71 * by N. Megiddo & D. Modha, FAST 2003 72 */ 73 74 /* 75 * The locking model: 76 * 77 * A new reference to a cache buffer can be obtained in two 78 * ways: 1) via a hash table lookup using the DVA as a key, 79 * or 2) via one of the ARC lists. The arc_read() interface 80 * uses method 1, while the internal arc algorithms for 81 * adjusting the cache use method 2. We therefore provide two 82 * types of locks: 1) the hash table lock array, and 2) the 83 * arc list locks. 84 * 85 * Buffers do not have their own mutexes, rather they rely on the 86 * hash table mutexes for the bulk of their protection (i.e. most 87 * fields in the arc_buf_hdr_t are protected by these mutexes). 88 * 89 * buf_hash_find() returns the appropriate mutex (held) when it 90 * locates the requested buffer in the hash table. It returns 91 * NULL for the mutex if the buffer was not in the table. 92 * 93 * buf_hash_remove() expects the appropriate hash mutex to be 94 * already held before it is invoked. 95 * 96 * Each arc state also has a mutex which is used to protect the 97 * buffer list associated with the state. When attempting to 98 * obtain a hash table lock while holding an arc list lock you 99 * must use: mutex_tryenter() to avoid deadlock. Also note that 100 * the active state mutex must be held before the ghost state mutex. 101 * 102 * Arc buffers may have an associated eviction callback function. 103 * This function will be invoked prior to removing the buffer (e.g. 104 * in arc_do_user_evicts()). Note however that the data associated 105 * with the buffer may be evicted prior to the callback. The callback 106 * must be made with *no locks held* (to prevent deadlock). Additionally, 107 * the users of callbacks must ensure that their private data is 108 * protected from simultaneous callbacks from arc_clear_callback() 109 * and arc_do_user_evicts(). 110 * 111 * Note that the majority of the performance stats are manipulated 112 * with atomic operations. 113 * 114 * The L2ARC uses the l2arc_buflist_mtx global mutex for the following: 115 * 116 * - L2ARC buflist creation 117 * - L2ARC buflist eviction 118 * - L2ARC write completion, which walks L2ARC buflists 119 * - ARC header destruction, as it removes from L2ARC buflists 120 * - ARC header release, as it removes from L2ARC buflists 121 */ 122 123 #include <sys/spa.h> 124 #include <sys/zio.h> 125 #include <sys/zio_compress.h> 126 #include <sys/zfs_context.h> 127 #include <sys/arc.h> 128 #include <sys/refcount.h> 129 #include <sys/vdev.h> 130 #include <sys/vdev_impl.h> 131 #include <sys/dsl_pool.h> 132 #ifdef _KERNEL 133 #include <sys/vmsystm.h> 134 #include <vm/anon.h> 135 #include <sys/fs/swapnode.h> 136 #include <sys/dnlc.h> 137 #endif 138 #include <sys/callb.h> 139 #include <sys/kstat.h> 140 #include <zfs_fletcher.h> 141 142 #ifndef _KERNEL 143 /* set with ZFS_DEBUG=watch, to enable watchpoints on frozen buffers */ 144 boolean_t arc_watch = B_FALSE; 145 int arc_procfd; 146 #endif 147 148 static kmutex_t arc_reclaim_thr_lock; 149 static kcondvar_t arc_reclaim_thr_cv; /* used to signal reclaim thr */ 150 static uint8_t arc_thread_exit; 151 152 #define ARC_REDUCE_DNLC_PERCENT 3 153 uint_t arc_reduce_dnlc_percent = ARC_REDUCE_DNLC_PERCENT; 154 155 typedef enum arc_reclaim_strategy { 156 ARC_RECLAIM_AGGR, /* Aggressive reclaim strategy */ 157 ARC_RECLAIM_CONS /* Conservative reclaim strategy */ 158 } arc_reclaim_strategy_t; 159 160 /* 161 * The number of iterations through arc_evict_*() before we 162 * drop & reacquire the lock. 163 */ 164 int arc_evict_iterations = 100; 165 166 /* number of seconds before growing cache again */ 167 static int arc_grow_retry = 60; 168 169 /* shift of arc_c for calculating both min and max arc_p */ 170 static int arc_p_min_shift = 4; 171 172 /* log2(fraction of arc to reclaim) */ 173 static int arc_shrink_shift = 5; 174 175 /* 176 * minimum lifespan of a prefetch block in clock ticks 177 * (initialized in arc_init()) 178 */ 179 static int arc_min_prefetch_lifespan; 180 181 /* 182 * If this percent of memory is free, don't throttle. 183 */ 184 int arc_lotsfree_percent = 10; 185 186 static int arc_dead; 187 188 /* 189 * The arc has filled available memory and has now warmed up. 190 */ 191 static boolean_t arc_warm; 192 193 /* 194 * These tunables are for performance analysis. 195 */ 196 uint64_t zfs_arc_max; 197 uint64_t zfs_arc_min; 198 uint64_t zfs_arc_meta_limit = 0; 199 int zfs_arc_grow_retry = 0; 200 int zfs_arc_shrink_shift = 0; 201 int zfs_arc_p_min_shift = 0; 202 int zfs_disable_dup_eviction = 0; 203 int zfs_arc_average_blocksize = 8 * 1024; /* 8KB */ 204 205 /* 206 * Note that buffers can be in one of 6 states: 207 * ARC_anon - anonymous (discussed below) 208 * ARC_mru - recently used, currently cached 209 * ARC_mru_ghost - recentely used, no longer in cache 210 * ARC_mfu - frequently used, currently cached 211 * ARC_mfu_ghost - frequently used, no longer in cache 212 * ARC_l2c_only - exists in L2ARC but not other states 213 * When there are no active references to the buffer, they are 214 * are linked onto a list in one of these arc states. These are 215 * the only buffers that can be evicted or deleted. Within each 216 * state there are multiple lists, one for meta-data and one for 217 * non-meta-data. Meta-data (indirect blocks, blocks of dnodes, 218 * etc.) is tracked separately so that it can be managed more 219 * explicitly: favored over data, limited explicitly. 220 * 221 * Anonymous buffers are buffers that are not associated with 222 * a DVA. These are buffers that hold dirty block copies 223 * before they are written to stable storage. By definition, 224 * they are "ref'd" and are considered part of arc_mru 225 * that cannot be freed. Generally, they will aquire a DVA 226 * as they are written and migrate onto the arc_mru list. 227 * 228 * The ARC_l2c_only state is for buffers that are in the second 229 * level ARC but no longer in any of the ARC_m* lists. The second 230 * level ARC itself may also contain buffers that are in any of 231 * the ARC_m* states - meaning that a buffer can exist in two 232 * places. The reason for the ARC_l2c_only state is to keep the 233 * buffer header in the hash table, so that reads that hit the 234 * second level ARC benefit from these fast lookups. 235 */ 236 237 typedef struct arc_state { 238 list_t arcs_list[ARC_BUFC_NUMTYPES]; /* list of evictable buffers */ 239 uint64_t arcs_lsize[ARC_BUFC_NUMTYPES]; /* amount of evictable data */ 240 uint64_t arcs_size; /* total amount of data in this state */ 241 kmutex_t arcs_mtx; 242 } arc_state_t; 243 244 /* The 6 states: */ 245 static arc_state_t ARC_anon; 246 static arc_state_t ARC_mru; 247 static arc_state_t ARC_mru_ghost; 248 static arc_state_t ARC_mfu; 249 static arc_state_t ARC_mfu_ghost; 250 static arc_state_t ARC_l2c_only; 251 252 typedef struct arc_stats { 253 kstat_named_t arcstat_hits; 254 kstat_named_t arcstat_misses; 255 kstat_named_t arcstat_demand_data_hits; 256 kstat_named_t arcstat_demand_data_misses; 257 kstat_named_t arcstat_demand_metadata_hits; 258 kstat_named_t arcstat_demand_metadata_misses; 259 kstat_named_t arcstat_prefetch_data_hits; 260 kstat_named_t arcstat_prefetch_data_misses; 261 kstat_named_t arcstat_prefetch_metadata_hits; 262 kstat_named_t arcstat_prefetch_metadata_misses; 263 kstat_named_t arcstat_mru_hits; 264 kstat_named_t arcstat_mru_ghost_hits; 265 kstat_named_t arcstat_mfu_hits; 266 kstat_named_t arcstat_mfu_ghost_hits; 267 kstat_named_t arcstat_deleted; 268 kstat_named_t arcstat_recycle_miss; 269 /* 270 * Number of buffers that could not be evicted because the hash lock 271 * was held by another thread. The lock may not necessarily be held 272 * by something using the same buffer, since hash locks are shared 273 * by multiple buffers. 274 */ 275 kstat_named_t arcstat_mutex_miss; 276 /* 277 * Number of buffers skipped because they have I/O in progress, are 278 * indrect prefetch buffers that have not lived long enough, or are 279 * not from the spa we're trying to evict from. 280 */ 281 kstat_named_t arcstat_evict_skip; 282 kstat_named_t arcstat_evict_l2_cached; 283 kstat_named_t arcstat_evict_l2_eligible; 284 kstat_named_t arcstat_evict_l2_ineligible; 285 kstat_named_t arcstat_hash_elements; 286 kstat_named_t arcstat_hash_elements_max; 287 kstat_named_t arcstat_hash_collisions; 288 kstat_named_t arcstat_hash_chains; 289 kstat_named_t arcstat_hash_chain_max; 290 kstat_named_t arcstat_p; 291 kstat_named_t arcstat_c; 292 kstat_named_t arcstat_c_min; 293 kstat_named_t arcstat_c_max; 294 kstat_named_t arcstat_size; 295 kstat_named_t arcstat_hdr_size; 296 kstat_named_t arcstat_data_size; 297 kstat_named_t arcstat_other_size; 298 kstat_named_t arcstat_l2_hits; 299 kstat_named_t arcstat_l2_misses; 300 kstat_named_t arcstat_l2_feeds; 301 kstat_named_t arcstat_l2_rw_clash; 302 kstat_named_t arcstat_l2_read_bytes; 303 kstat_named_t arcstat_l2_write_bytes; 304 kstat_named_t arcstat_l2_writes_sent; 305 kstat_named_t arcstat_l2_writes_done; 306 kstat_named_t arcstat_l2_writes_error; 307 kstat_named_t arcstat_l2_writes_hdr_miss; 308 kstat_named_t arcstat_l2_evict_lock_retry; 309 kstat_named_t arcstat_l2_evict_reading; 310 kstat_named_t arcstat_l2_free_on_write; 311 kstat_named_t arcstat_l2_abort_lowmem; 312 kstat_named_t arcstat_l2_cksum_bad; 313 kstat_named_t arcstat_l2_io_error; 314 kstat_named_t arcstat_l2_size; 315 kstat_named_t arcstat_l2_asize; 316 kstat_named_t arcstat_l2_hdr_size; 317 kstat_named_t arcstat_l2_compress_successes; 318 kstat_named_t arcstat_l2_compress_zeros; 319 kstat_named_t arcstat_l2_compress_failures; 320 kstat_named_t arcstat_memory_throttle_count; 321 kstat_named_t arcstat_duplicate_buffers; 322 kstat_named_t arcstat_duplicate_buffers_size; 323 kstat_named_t arcstat_duplicate_reads; 324 kstat_named_t arcstat_meta_used; 325 kstat_named_t arcstat_meta_limit; 326 kstat_named_t arcstat_meta_max; 327 } arc_stats_t; 328 329 static arc_stats_t arc_stats = { 330 { "hits", KSTAT_DATA_UINT64 }, 331 { "misses", KSTAT_DATA_UINT64 }, 332 { "demand_data_hits", KSTAT_DATA_UINT64 }, 333 { "demand_data_misses", KSTAT_DATA_UINT64 }, 334 { "demand_metadata_hits", KSTAT_DATA_UINT64 }, 335 { "demand_metadata_misses", KSTAT_DATA_UINT64 }, 336 { "prefetch_data_hits", KSTAT_DATA_UINT64 }, 337 { "prefetch_data_misses", KSTAT_DATA_UINT64 }, 338 { "prefetch_metadata_hits", KSTAT_DATA_UINT64 }, 339 { "prefetch_metadata_misses", KSTAT_DATA_UINT64 }, 340 { "mru_hits", KSTAT_DATA_UINT64 }, 341 { "mru_ghost_hits", KSTAT_DATA_UINT64 }, 342 { "mfu_hits", KSTAT_DATA_UINT64 }, 343 { "mfu_ghost_hits", KSTAT_DATA_UINT64 }, 344 { "deleted", KSTAT_DATA_UINT64 }, 345 { "recycle_miss", KSTAT_DATA_UINT64 }, 346 { "mutex_miss", KSTAT_DATA_UINT64 }, 347 { "evict_skip", KSTAT_DATA_UINT64 }, 348 { "evict_l2_cached", KSTAT_DATA_UINT64 }, 349 { "evict_l2_eligible", KSTAT_DATA_UINT64 }, 350 { "evict_l2_ineligible", KSTAT_DATA_UINT64 }, 351 { "hash_elements", KSTAT_DATA_UINT64 }, 352 { "hash_elements_max", KSTAT_DATA_UINT64 }, 353 { "hash_collisions", KSTAT_DATA_UINT64 }, 354 { "hash_chains", KSTAT_DATA_UINT64 }, 355 { "hash_chain_max", KSTAT_DATA_UINT64 }, 356 { "p", KSTAT_DATA_UINT64 }, 357 { "c", KSTAT_DATA_UINT64 }, 358 { "c_min", KSTAT_DATA_UINT64 }, 359 { "c_max", KSTAT_DATA_UINT64 }, 360 { "size", KSTAT_DATA_UINT64 }, 361 { "hdr_size", KSTAT_DATA_UINT64 }, 362 { "data_size", KSTAT_DATA_UINT64 }, 363 { "other_size", KSTAT_DATA_UINT64 }, 364 { "l2_hits", KSTAT_DATA_UINT64 }, 365 { "l2_misses", KSTAT_DATA_UINT64 }, 366 { "l2_feeds", KSTAT_DATA_UINT64 }, 367 { "l2_rw_clash", KSTAT_DATA_UINT64 }, 368 { "l2_read_bytes", KSTAT_DATA_UINT64 }, 369 { "l2_write_bytes", KSTAT_DATA_UINT64 }, 370 { "l2_writes_sent", KSTAT_DATA_UINT64 }, 371 { "l2_writes_done", KSTAT_DATA_UINT64 }, 372 { "l2_writes_error", KSTAT_DATA_UINT64 }, 373 { "l2_writes_hdr_miss", KSTAT_DATA_UINT64 }, 374 { "l2_evict_lock_retry", KSTAT_DATA_UINT64 }, 375 { "l2_evict_reading", KSTAT_DATA_UINT64 }, 376 { "l2_free_on_write", KSTAT_DATA_UINT64 }, 377 { "l2_abort_lowmem", KSTAT_DATA_UINT64 }, 378 { "l2_cksum_bad", KSTAT_DATA_UINT64 }, 379 { "l2_io_error", KSTAT_DATA_UINT64 }, 380 { "l2_size", KSTAT_DATA_UINT64 }, 381 { "l2_asize", KSTAT_DATA_UINT64 }, 382 { "l2_hdr_size", KSTAT_DATA_UINT64 }, 383 { "l2_compress_successes", KSTAT_DATA_UINT64 }, 384 { "l2_compress_zeros", KSTAT_DATA_UINT64 }, 385 { "l2_compress_failures", KSTAT_DATA_UINT64 }, 386 { "memory_throttle_count", KSTAT_DATA_UINT64 }, 387 { "duplicate_buffers", KSTAT_DATA_UINT64 }, 388 { "duplicate_buffers_size", KSTAT_DATA_UINT64 }, 389 { "duplicate_reads", KSTAT_DATA_UINT64 }, 390 { "arc_meta_used", KSTAT_DATA_UINT64 }, 391 { "arc_meta_limit", KSTAT_DATA_UINT64 }, 392 { "arc_meta_max", KSTAT_DATA_UINT64 } 393 }; 394 395 #define ARCSTAT(stat) (arc_stats.stat.value.ui64) 396 397 #define ARCSTAT_INCR(stat, val) \ 398 atomic_add_64(&arc_stats.stat.value.ui64, (val)) 399 400 #define ARCSTAT_BUMP(stat) ARCSTAT_INCR(stat, 1) 401 #define ARCSTAT_BUMPDOWN(stat) ARCSTAT_INCR(stat, -1) 402 403 #define ARCSTAT_MAX(stat, val) { \ 404 uint64_t m; \ 405 while ((val) > (m = arc_stats.stat.value.ui64) && \ 406 (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val)))) \ 407 continue; \ 408 } 409 410 #define ARCSTAT_MAXSTAT(stat) \ 411 ARCSTAT_MAX(stat##_max, arc_stats.stat.value.ui64) 412 413 /* 414 * We define a macro to allow ARC hits/misses to be easily broken down by 415 * two separate conditions, giving a total of four different subtypes for 416 * each of hits and misses (so eight statistics total). 417 */ 418 #define ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \ 419 if (cond1) { \ 420 if (cond2) { \ 421 ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \ 422 } else { \ 423 ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \ 424 } \ 425 } else { \ 426 if (cond2) { \ 427 ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \ 428 } else { \ 429 ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\ 430 } \ 431 } 432 433 kstat_t *arc_ksp; 434 static arc_state_t *arc_anon; 435 static arc_state_t *arc_mru; 436 static arc_state_t *arc_mru_ghost; 437 static arc_state_t *arc_mfu; 438 static arc_state_t *arc_mfu_ghost; 439 static arc_state_t *arc_l2c_only; 440 441 /* 442 * There are several ARC variables that are critical to export as kstats -- 443 * but we don't want to have to grovel around in the kstat whenever we wish to 444 * manipulate them. For these variables, we therefore define them to be in 445 * terms of the statistic variable. This assures that we are not introducing 446 * the possibility of inconsistency by having shadow copies of the variables, 447 * while still allowing the code to be readable. 448 */ 449 #define arc_size ARCSTAT(arcstat_size) /* actual total arc size */ 450 #define arc_p ARCSTAT(arcstat_p) /* target size of MRU */ 451 #define arc_c ARCSTAT(arcstat_c) /* target size of cache */ 452 #define arc_c_min ARCSTAT(arcstat_c_min) /* min target cache size */ 453 #define arc_c_max ARCSTAT(arcstat_c_max) /* max target cache size */ 454 #define arc_meta_limit ARCSTAT(arcstat_meta_limit) /* max size for metadata */ 455 #define arc_meta_used ARCSTAT(arcstat_meta_used) /* size of metadata */ 456 #define arc_meta_max ARCSTAT(arcstat_meta_max) /* max size of metadata */ 457 458 #define L2ARC_IS_VALID_COMPRESS(_c_) \ 459 ((_c_) == ZIO_COMPRESS_LZ4 || (_c_) == ZIO_COMPRESS_EMPTY) 460 461 static int arc_no_grow; /* Don't try to grow cache size */ 462 static uint64_t arc_tempreserve; 463 static uint64_t arc_loaned_bytes; 464 465 typedef struct l2arc_buf_hdr l2arc_buf_hdr_t; 466 467 typedef struct arc_callback arc_callback_t; 468 469 struct arc_callback { 470 void *acb_private; 471 arc_done_func_t *acb_done; 472 arc_buf_t *acb_buf; 473 zio_t *acb_zio_dummy; 474 arc_callback_t *acb_next; 475 }; 476 477 typedef struct arc_write_callback arc_write_callback_t; 478 479 struct arc_write_callback { 480 void *awcb_private; 481 arc_done_func_t *awcb_ready; 482 arc_done_func_t *awcb_physdone; 483 arc_done_func_t *awcb_done; 484 arc_buf_t *awcb_buf; 485 }; 486 487 struct arc_buf_hdr { 488 /* protected by hash lock */ 489 dva_t b_dva; 490 uint64_t b_birth; 491 uint64_t b_cksum0; 492 493 kmutex_t b_freeze_lock; 494 zio_cksum_t *b_freeze_cksum; 495 void *b_thawed; 496 497 arc_buf_hdr_t *b_hash_next; 498 arc_buf_t *b_buf; 499 uint32_t b_flags; 500 uint32_t b_datacnt; 501 502 arc_callback_t *b_acb; 503 kcondvar_t b_cv; 504 505 /* immutable */ 506 arc_buf_contents_t b_type; 507 uint64_t b_size; 508 uint64_t b_spa; 509 510 /* protected by arc state mutex */ 511 arc_state_t *b_state; 512 list_node_t b_arc_node; 513 514 /* updated atomically */ 515 clock_t b_arc_access; 516 517 /* self protecting */ 518 refcount_t b_refcnt; 519 520 l2arc_buf_hdr_t *b_l2hdr; 521 list_node_t b_l2node; 522 }; 523 524 static arc_buf_t *arc_eviction_list; 525 static kmutex_t arc_eviction_mtx; 526 static arc_buf_hdr_t arc_eviction_hdr; 527 static void arc_get_data_buf(arc_buf_t *buf); 528 static void arc_access(arc_buf_hdr_t *buf, kmutex_t *hash_lock); 529 static int arc_evict_needed(arc_buf_contents_t type); 530 static void arc_evict_ghost(arc_state_t *state, uint64_t spa, int64_t bytes); 531 static void arc_buf_watch(arc_buf_t *buf); 532 533 static boolean_t l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *ab); 534 535 #define GHOST_STATE(state) \ 536 ((state) == arc_mru_ghost || (state) == arc_mfu_ghost || \ 537 (state) == arc_l2c_only) 538 539 /* 540 * Private ARC flags. These flags are private ARC only flags that will show up 541 * in b_flags in the arc_hdr_buf_t. Some flags are publicly declared, and can 542 * be passed in as arc_flags in things like arc_read. However, these flags 543 * should never be passed and should only be set by ARC code. When adding new 544 * public flags, make sure not to smash the private ones. 545 */ 546 547 #define ARC_IN_HASH_TABLE (1 << 9) /* this buffer is hashed */ 548 #define ARC_IO_IN_PROGRESS (1 << 10) /* I/O in progress for buf */ 549 #define ARC_IO_ERROR (1 << 11) /* I/O failed for buf */ 550 #define ARC_FREED_IN_READ (1 << 12) /* buf freed while in read */ 551 #define ARC_BUF_AVAILABLE (1 << 13) /* block not in active use */ 552 #define ARC_INDIRECT (1 << 14) /* this is an indirect block */ 553 #define ARC_FREE_IN_PROGRESS (1 << 15) /* hdr about to be freed */ 554 #define ARC_L2_WRITING (1 << 16) /* L2ARC write in progress */ 555 #define ARC_L2_EVICTED (1 << 17) /* evicted during I/O */ 556 #define ARC_L2_WRITE_HEAD (1 << 18) /* head of write list */ 557 558 #define HDR_IN_HASH_TABLE(hdr) ((hdr)->b_flags & ARC_IN_HASH_TABLE) 559 #define HDR_IO_IN_PROGRESS(hdr) ((hdr)->b_flags & ARC_IO_IN_PROGRESS) 560 #define HDR_IO_ERROR(hdr) ((hdr)->b_flags & ARC_IO_ERROR) 561 #define HDR_PREFETCH(hdr) ((hdr)->b_flags & ARC_PREFETCH) 562 #define HDR_FREED_IN_READ(hdr) ((hdr)->b_flags & ARC_FREED_IN_READ) 563 #define HDR_BUF_AVAILABLE(hdr) ((hdr)->b_flags & ARC_BUF_AVAILABLE) 564 #define HDR_FREE_IN_PROGRESS(hdr) ((hdr)->b_flags & ARC_FREE_IN_PROGRESS) 565 #define HDR_L2CACHE(hdr) ((hdr)->b_flags & ARC_L2CACHE) 566 #define HDR_L2_READING(hdr) ((hdr)->b_flags & ARC_IO_IN_PROGRESS && \ 567 (hdr)->b_l2hdr != NULL) 568 #define HDR_L2_WRITING(hdr) ((hdr)->b_flags & ARC_L2_WRITING) 569 #define HDR_L2_EVICTED(hdr) ((hdr)->b_flags & ARC_L2_EVICTED) 570 #define HDR_L2_WRITE_HEAD(hdr) ((hdr)->b_flags & ARC_L2_WRITE_HEAD) 571 572 /* 573 * Other sizes 574 */ 575 576 #define HDR_SIZE ((int64_t)sizeof (arc_buf_hdr_t)) 577 #define L2HDR_SIZE ((int64_t)sizeof (l2arc_buf_hdr_t)) 578 579 /* 580 * Hash table routines 581 */ 582 583 #define HT_LOCK_PAD 64 584 585 struct ht_lock { 586 kmutex_t ht_lock; 587 #ifdef _KERNEL 588 unsigned char pad[(HT_LOCK_PAD - sizeof (kmutex_t))]; 589 #endif 590 }; 591 592 #define BUF_LOCKS 256 593 typedef struct buf_hash_table { 594 uint64_t ht_mask; 595 arc_buf_hdr_t **ht_table; 596 struct ht_lock ht_locks[BUF_LOCKS]; 597 } buf_hash_table_t; 598 599 static buf_hash_table_t buf_hash_table; 600 601 #define BUF_HASH_INDEX(spa, dva, birth) \ 602 (buf_hash(spa, dva, birth) & buf_hash_table.ht_mask) 603 #define BUF_HASH_LOCK_NTRY(idx) (buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)]) 604 #define BUF_HASH_LOCK(idx) (&(BUF_HASH_LOCK_NTRY(idx).ht_lock)) 605 #define HDR_LOCK(hdr) \ 606 (BUF_HASH_LOCK(BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth))) 607 608 uint64_t zfs_crc64_table[256]; 609 610 /* 611 * Level 2 ARC 612 */ 613 614 #define L2ARC_WRITE_SIZE (8 * 1024 * 1024) /* initial write max */ 615 #define L2ARC_HEADROOM 2 /* num of writes */ 616 /* 617 * If we discover during ARC scan any buffers to be compressed, we boost 618 * our headroom for the next scanning cycle by this percentage multiple. 619 */ 620 #define L2ARC_HEADROOM_BOOST 200 621 #define L2ARC_FEED_SECS 1 /* caching interval secs */ 622 #define L2ARC_FEED_MIN_MS 200 /* min caching interval ms */ 623 624 #define l2arc_writes_sent ARCSTAT(arcstat_l2_writes_sent) 625 #define l2arc_writes_done ARCSTAT(arcstat_l2_writes_done) 626 627 /* L2ARC Performance Tunables */ 628 uint64_t l2arc_write_max = L2ARC_WRITE_SIZE; /* default max write size */ 629 uint64_t l2arc_write_boost = L2ARC_WRITE_SIZE; /* extra write during warmup */ 630 uint64_t l2arc_headroom = L2ARC_HEADROOM; /* number of dev writes */ 631 uint64_t l2arc_headroom_boost = L2ARC_HEADROOM_BOOST; 632 uint64_t l2arc_feed_secs = L2ARC_FEED_SECS; /* interval seconds */ 633 uint64_t l2arc_feed_min_ms = L2ARC_FEED_MIN_MS; /* min interval milliseconds */ 634 boolean_t l2arc_noprefetch = B_TRUE; /* don't cache prefetch bufs */ 635 boolean_t l2arc_feed_again = B_TRUE; /* turbo warmup */ 636 boolean_t l2arc_norw = B_TRUE; /* no reads during writes */ 637 638 /* 639 * L2ARC Internals 640 */ 641 typedef struct l2arc_dev { 642 vdev_t *l2ad_vdev; /* vdev */ 643 spa_t *l2ad_spa; /* spa */ 644 uint64_t l2ad_hand; /* next write location */ 645 uint64_t l2ad_start; /* first addr on device */ 646 uint64_t l2ad_end; /* last addr on device */ 647 uint64_t l2ad_evict; /* last addr eviction reached */ 648 boolean_t l2ad_first; /* first sweep through */ 649 boolean_t l2ad_writing; /* currently writing */ 650 list_t *l2ad_buflist; /* buffer list */ 651 list_node_t l2ad_node; /* device list node */ 652 } l2arc_dev_t; 653 654 static list_t L2ARC_dev_list; /* device list */ 655 static list_t *l2arc_dev_list; /* device list pointer */ 656 static kmutex_t l2arc_dev_mtx; /* device list mutex */ 657 static l2arc_dev_t *l2arc_dev_last; /* last device used */ 658 static kmutex_t l2arc_buflist_mtx; /* mutex for all buflists */ 659 static list_t L2ARC_free_on_write; /* free after write buf list */ 660 static list_t *l2arc_free_on_write; /* free after write list ptr */ 661 static kmutex_t l2arc_free_on_write_mtx; /* mutex for list */ 662 static uint64_t l2arc_ndev; /* number of devices */ 663 664 typedef struct l2arc_read_callback { 665 arc_buf_t *l2rcb_buf; /* read buffer */ 666 spa_t *l2rcb_spa; /* spa */ 667 blkptr_t l2rcb_bp; /* original blkptr */ 668 zbookmark_phys_t l2rcb_zb; /* original bookmark */ 669 int l2rcb_flags; /* original flags */ 670 enum zio_compress l2rcb_compress; /* applied compress */ 671 } l2arc_read_callback_t; 672 673 typedef struct l2arc_write_callback { 674 l2arc_dev_t *l2wcb_dev; /* device info */ 675 arc_buf_hdr_t *l2wcb_head; /* head of write buflist */ 676 } l2arc_write_callback_t; 677 678 struct l2arc_buf_hdr { 679 /* protected by arc_buf_hdr mutex */ 680 l2arc_dev_t *b_dev; /* L2ARC device */ 681 uint64_t b_daddr; /* disk address, offset byte */ 682 /* compression applied to buffer data */ 683 enum zio_compress b_compress; 684 /* real alloc'd buffer size depending on b_compress applied */ 685 int b_asize; 686 /* temporary buffer holder for in-flight compressed data */ 687 void *b_tmp_cdata; 688 }; 689 690 typedef struct l2arc_data_free { 691 /* protected by l2arc_free_on_write_mtx */ 692 void *l2df_data; 693 size_t l2df_size; 694 void (*l2df_func)(void *, size_t); 695 list_node_t l2df_list_node; 696 } l2arc_data_free_t; 697 698 static kmutex_t l2arc_feed_thr_lock; 699 static kcondvar_t l2arc_feed_thr_cv; 700 static uint8_t l2arc_thread_exit; 701 702 static void l2arc_read_done(zio_t *zio); 703 static void l2arc_hdr_stat_add(void); 704 static void l2arc_hdr_stat_remove(void); 705 706 static boolean_t l2arc_compress_buf(l2arc_buf_hdr_t *l2hdr); 707 static void l2arc_decompress_zio(zio_t *zio, arc_buf_hdr_t *hdr, 708 enum zio_compress c); 709 static void l2arc_release_cdata_buf(arc_buf_hdr_t *ab); 710 711 static uint64_t 712 buf_hash(uint64_t spa, const dva_t *dva, uint64_t birth) 713 { 714 uint8_t *vdva = (uint8_t *)dva; 715 uint64_t crc = -1ULL; 716 int i; 717 718 ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY); 719 720 for (i = 0; i < sizeof (dva_t); i++) 721 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ vdva[i]) & 0xFF]; 722 723 crc ^= (spa>>8) ^ birth; 724 725 return (crc); 726 } 727 728 #define BUF_EMPTY(buf) \ 729 ((buf)->b_dva.dva_word[0] == 0 && \ 730 (buf)->b_dva.dva_word[1] == 0 && \ 731 (buf)->b_cksum0 == 0) 732 733 #define BUF_EQUAL(spa, dva, birth, buf) \ 734 ((buf)->b_dva.dva_word[0] == (dva)->dva_word[0]) && \ 735 ((buf)->b_dva.dva_word[1] == (dva)->dva_word[1]) && \ 736 ((buf)->b_birth == birth) && ((buf)->b_spa == spa) 737 738 static void 739 buf_discard_identity(arc_buf_hdr_t *hdr) 740 { 741 hdr->b_dva.dva_word[0] = 0; 742 hdr->b_dva.dva_word[1] = 0; 743 hdr->b_birth = 0; 744 hdr->b_cksum0 = 0; 745 } 746 747 static arc_buf_hdr_t * 748 buf_hash_find(uint64_t spa, const blkptr_t *bp, kmutex_t **lockp) 749 { 750 const dva_t *dva = BP_IDENTITY(bp); 751 uint64_t birth = BP_PHYSICAL_BIRTH(bp); 752 uint64_t idx = BUF_HASH_INDEX(spa, dva, birth); 753 kmutex_t *hash_lock = BUF_HASH_LOCK(idx); 754 arc_buf_hdr_t *buf; 755 756 mutex_enter(hash_lock); 757 for (buf = buf_hash_table.ht_table[idx]; buf != NULL; 758 buf = buf->b_hash_next) { 759 if (BUF_EQUAL(spa, dva, birth, buf)) { 760 *lockp = hash_lock; 761 return (buf); 762 } 763 } 764 mutex_exit(hash_lock); 765 *lockp = NULL; 766 return (NULL); 767 } 768 769 /* 770 * Insert an entry into the hash table. If there is already an element 771 * equal to elem in the hash table, then the already existing element 772 * will be returned and the new element will not be inserted. 773 * Otherwise returns NULL. 774 */ 775 static arc_buf_hdr_t * 776 buf_hash_insert(arc_buf_hdr_t *buf, kmutex_t **lockp) 777 { 778 uint64_t idx = BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth); 779 kmutex_t *hash_lock = BUF_HASH_LOCK(idx); 780 arc_buf_hdr_t *fbuf; 781 uint32_t i; 782 783 ASSERT(!DVA_IS_EMPTY(&buf->b_dva)); 784 ASSERT(buf->b_birth != 0); 785 ASSERT(!HDR_IN_HASH_TABLE(buf)); 786 *lockp = hash_lock; 787 mutex_enter(hash_lock); 788 for (fbuf = buf_hash_table.ht_table[idx], i = 0; fbuf != NULL; 789 fbuf = fbuf->b_hash_next, i++) { 790 if (BUF_EQUAL(buf->b_spa, &buf->b_dva, buf->b_birth, fbuf)) 791 return (fbuf); 792 } 793 794 buf->b_hash_next = buf_hash_table.ht_table[idx]; 795 buf_hash_table.ht_table[idx] = buf; 796 buf->b_flags |= ARC_IN_HASH_TABLE; 797 798 /* collect some hash table performance data */ 799 if (i > 0) { 800 ARCSTAT_BUMP(arcstat_hash_collisions); 801 if (i == 1) 802 ARCSTAT_BUMP(arcstat_hash_chains); 803 804 ARCSTAT_MAX(arcstat_hash_chain_max, i); 805 } 806 807 ARCSTAT_BUMP(arcstat_hash_elements); 808 ARCSTAT_MAXSTAT(arcstat_hash_elements); 809 810 return (NULL); 811 } 812 813 static void 814 buf_hash_remove(arc_buf_hdr_t *buf) 815 { 816 arc_buf_hdr_t *fbuf, **bufp; 817 uint64_t idx = BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth); 818 819 ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx))); 820 ASSERT(HDR_IN_HASH_TABLE(buf)); 821 822 bufp = &buf_hash_table.ht_table[idx]; 823 while ((fbuf = *bufp) != buf) { 824 ASSERT(fbuf != NULL); 825 bufp = &fbuf->b_hash_next; 826 } 827 *bufp = buf->b_hash_next; 828 buf->b_hash_next = NULL; 829 buf->b_flags &= ~ARC_IN_HASH_TABLE; 830 831 /* collect some hash table performance data */ 832 ARCSTAT_BUMPDOWN(arcstat_hash_elements); 833 834 if (buf_hash_table.ht_table[idx] && 835 buf_hash_table.ht_table[idx]->b_hash_next == NULL) 836 ARCSTAT_BUMPDOWN(arcstat_hash_chains); 837 } 838 839 /* 840 * Global data structures and functions for the buf kmem cache. 841 */ 842 static kmem_cache_t *hdr_cache; 843 static kmem_cache_t *buf_cache; 844 845 static void 846 buf_fini(void) 847 { 848 int i; 849 850 kmem_free(buf_hash_table.ht_table, 851 (buf_hash_table.ht_mask + 1) * sizeof (void *)); 852 for (i = 0; i < BUF_LOCKS; i++) 853 mutex_destroy(&buf_hash_table.ht_locks[i].ht_lock); 854 kmem_cache_destroy(hdr_cache); 855 kmem_cache_destroy(buf_cache); 856 } 857 858 /* 859 * Constructor callback - called when the cache is empty 860 * and a new buf is requested. 861 */ 862 /* ARGSUSED */ 863 static int 864 hdr_cons(void *vbuf, void *unused, int kmflag) 865 { 866 arc_buf_hdr_t *buf = vbuf; 867 868 bzero(buf, sizeof (arc_buf_hdr_t)); 869 refcount_create(&buf->b_refcnt); 870 cv_init(&buf->b_cv, NULL, CV_DEFAULT, NULL); 871 mutex_init(&buf->b_freeze_lock, NULL, MUTEX_DEFAULT, NULL); 872 arc_space_consume(sizeof (arc_buf_hdr_t), ARC_SPACE_HDRS); 873 874 return (0); 875 } 876 877 /* ARGSUSED */ 878 static int 879 buf_cons(void *vbuf, void *unused, int kmflag) 880 { 881 arc_buf_t *buf = vbuf; 882 883 bzero(buf, sizeof (arc_buf_t)); 884 mutex_init(&buf->b_evict_lock, NULL, MUTEX_DEFAULT, NULL); 885 arc_space_consume(sizeof (arc_buf_t), ARC_SPACE_HDRS); 886 887 return (0); 888 } 889 890 /* 891 * Destructor callback - called when a cached buf is 892 * no longer required. 893 */ 894 /* ARGSUSED */ 895 static void 896 hdr_dest(void *vbuf, void *unused) 897 { 898 arc_buf_hdr_t *buf = vbuf; 899 900 ASSERT(BUF_EMPTY(buf)); 901 refcount_destroy(&buf->b_refcnt); 902 cv_destroy(&buf->b_cv); 903 mutex_destroy(&buf->b_freeze_lock); 904 arc_space_return(sizeof (arc_buf_hdr_t), ARC_SPACE_HDRS); 905 } 906 907 /* ARGSUSED */ 908 static void 909 buf_dest(void *vbuf, void *unused) 910 { 911 arc_buf_t *buf = vbuf; 912 913 mutex_destroy(&buf->b_evict_lock); 914 arc_space_return(sizeof (arc_buf_t), ARC_SPACE_HDRS); 915 } 916 917 /* 918 * Reclaim callback -- invoked when memory is low. 919 */ 920 /* ARGSUSED */ 921 static void 922 hdr_recl(void *unused) 923 { 924 dprintf("hdr_recl called\n"); 925 /* 926 * umem calls the reclaim func when we destroy the buf cache, 927 * which is after we do arc_fini(). 928 */ 929 if (!arc_dead) 930 cv_signal(&arc_reclaim_thr_cv); 931 } 932 933 static void 934 buf_init(void) 935 { 936 uint64_t *ct; 937 uint64_t hsize = 1ULL << 12; 938 int i, j; 939 940 /* 941 * The hash table is big enough to fill all of physical memory 942 * with an average block size of zfs_arc_average_blocksize (default 8K). 943 * By default, the table will take up 944 * totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers). 945 */ 946 while (hsize * zfs_arc_average_blocksize < physmem * PAGESIZE) 947 hsize <<= 1; 948 retry: 949 buf_hash_table.ht_mask = hsize - 1; 950 buf_hash_table.ht_table = 951 kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP); 952 if (buf_hash_table.ht_table == NULL) { 953 ASSERT(hsize > (1ULL << 8)); 954 hsize >>= 1; 955 goto retry; 956 } 957 958 hdr_cache = kmem_cache_create("arc_buf_hdr_t", sizeof (arc_buf_hdr_t), 959 0, hdr_cons, hdr_dest, hdr_recl, NULL, NULL, 0); 960 buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t), 961 0, buf_cons, buf_dest, NULL, NULL, NULL, 0); 962 963 for (i = 0; i < 256; i++) 964 for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--) 965 *ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY); 966 967 for (i = 0; i < BUF_LOCKS; i++) { 968 mutex_init(&buf_hash_table.ht_locks[i].ht_lock, 969 NULL, MUTEX_DEFAULT, NULL); 970 } 971 } 972 973 #define ARC_MINTIME (hz>>4) /* 62 ms */ 974 975 static void 976 arc_cksum_verify(arc_buf_t *buf) 977 { 978 zio_cksum_t zc; 979 980 if (!(zfs_flags & ZFS_DEBUG_MODIFY)) 981 return; 982 983 mutex_enter(&buf->b_hdr->b_freeze_lock); 984 if (buf->b_hdr->b_freeze_cksum == NULL || 985 (buf->b_hdr->b_flags & ARC_IO_ERROR)) { 986 mutex_exit(&buf->b_hdr->b_freeze_lock); 987 return; 988 } 989 fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc); 990 if (!ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc)) 991 panic("buffer modified while frozen!"); 992 mutex_exit(&buf->b_hdr->b_freeze_lock); 993 } 994 995 static int 996 arc_cksum_equal(arc_buf_t *buf) 997 { 998 zio_cksum_t zc; 999 int equal; 1000 1001 mutex_enter(&buf->b_hdr->b_freeze_lock); 1002 fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc); 1003 equal = ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc); 1004 mutex_exit(&buf->b_hdr->b_freeze_lock); 1005 1006 return (equal); 1007 } 1008 1009 static void 1010 arc_cksum_compute(arc_buf_t *buf, boolean_t force) 1011 { 1012 if (!force && !(zfs_flags & ZFS_DEBUG_MODIFY)) 1013 return; 1014 1015 mutex_enter(&buf->b_hdr->b_freeze_lock); 1016 if (buf->b_hdr->b_freeze_cksum != NULL) { 1017 mutex_exit(&buf->b_hdr->b_freeze_lock); 1018 return; 1019 } 1020 buf->b_hdr->b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t), KM_SLEEP); 1021 fletcher_2_native(buf->b_data, buf->b_hdr->b_size, 1022 buf->b_hdr->b_freeze_cksum); 1023 mutex_exit(&buf->b_hdr->b_freeze_lock); 1024 arc_buf_watch(buf); 1025 } 1026 1027 #ifndef _KERNEL 1028 typedef struct procctl { 1029 long cmd; 1030 prwatch_t prwatch; 1031 } procctl_t; 1032 #endif 1033 1034 /* ARGSUSED */ 1035 static void 1036 arc_buf_unwatch(arc_buf_t *buf) 1037 { 1038 #ifndef _KERNEL 1039 if (arc_watch) { 1040 int result; 1041 procctl_t ctl; 1042 ctl.cmd = PCWATCH; 1043 ctl.prwatch.pr_vaddr = (uintptr_t)buf->b_data; 1044 ctl.prwatch.pr_size = 0; 1045 ctl.prwatch.pr_wflags = 0; 1046 result = write(arc_procfd, &ctl, sizeof (ctl)); 1047 ASSERT3U(result, ==, sizeof (ctl)); 1048 } 1049 #endif 1050 } 1051 1052 /* ARGSUSED */ 1053 static void 1054 arc_buf_watch(arc_buf_t *buf) 1055 { 1056 #ifndef _KERNEL 1057 if (arc_watch) { 1058 int result; 1059 procctl_t ctl; 1060 ctl.cmd = PCWATCH; 1061 ctl.prwatch.pr_vaddr = (uintptr_t)buf->b_data; 1062 ctl.prwatch.pr_size = buf->b_hdr->b_size; 1063 ctl.prwatch.pr_wflags = WA_WRITE; 1064 result = write(arc_procfd, &ctl, sizeof (ctl)); 1065 ASSERT3U(result, ==, sizeof (ctl)); 1066 } 1067 #endif 1068 } 1069 1070 void 1071 arc_buf_thaw(arc_buf_t *buf) 1072 { 1073 if (zfs_flags & ZFS_DEBUG_MODIFY) { 1074 if (buf->b_hdr->b_state != arc_anon) 1075 panic("modifying non-anon buffer!"); 1076 if (buf->b_hdr->b_flags & ARC_IO_IN_PROGRESS) 1077 panic("modifying buffer while i/o in progress!"); 1078 arc_cksum_verify(buf); 1079 } 1080 1081 mutex_enter(&buf->b_hdr->b_freeze_lock); 1082 if (buf->b_hdr->b_freeze_cksum != NULL) { 1083 kmem_free(buf->b_hdr->b_freeze_cksum, sizeof (zio_cksum_t)); 1084 buf->b_hdr->b_freeze_cksum = NULL; 1085 } 1086 1087 if (zfs_flags & ZFS_DEBUG_MODIFY) { 1088 if (buf->b_hdr->b_thawed) 1089 kmem_free(buf->b_hdr->b_thawed, 1); 1090 buf->b_hdr->b_thawed = kmem_alloc(1, KM_SLEEP); 1091 } 1092 1093 mutex_exit(&buf->b_hdr->b_freeze_lock); 1094 1095 arc_buf_unwatch(buf); 1096 } 1097 1098 void 1099 arc_buf_freeze(arc_buf_t *buf) 1100 { 1101 kmutex_t *hash_lock; 1102 1103 if (!(zfs_flags & ZFS_DEBUG_MODIFY)) 1104 return; 1105 1106 hash_lock = HDR_LOCK(buf->b_hdr); 1107 mutex_enter(hash_lock); 1108 1109 ASSERT(buf->b_hdr->b_freeze_cksum != NULL || 1110 buf->b_hdr->b_state == arc_anon); 1111 arc_cksum_compute(buf, B_FALSE); 1112 mutex_exit(hash_lock); 1113 1114 } 1115 1116 static void 1117 add_reference(arc_buf_hdr_t *ab, kmutex_t *hash_lock, void *tag) 1118 { 1119 ASSERT(MUTEX_HELD(hash_lock)); 1120 1121 if ((refcount_add(&ab->b_refcnt, tag) == 1) && 1122 (ab->b_state != arc_anon)) { 1123 uint64_t delta = ab->b_size * ab->b_datacnt; 1124 list_t *list = &ab->b_state->arcs_list[ab->b_type]; 1125 uint64_t *size = &ab->b_state->arcs_lsize[ab->b_type]; 1126 1127 ASSERT(!MUTEX_HELD(&ab->b_state->arcs_mtx)); 1128 mutex_enter(&ab->b_state->arcs_mtx); 1129 ASSERT(list_link_active(&ab->b_arc_node)); 1130 list_remove(list, ab); 1131 if (GHOST_STATE(ab->b_state)) { 1132 ASSERT0(ab->b_datacnt); 1133 ASSERT3P(ab->b_buf, ==, NULL); 1134 delta = ab->b_size; 1135 } 1136 ASSERT(delta > 0); 1137 ASSERT3U(*size, >=, delta); 1138 atomic_add_64(size, -delta); 1139 mutex_exit(&ab->b_state->arcs_mtx); 1140 /* remove the prefetch flag if we get a reference */ 1141 if (ab->b_flags & ARC_PREFETCH) 1142 ab->b_flags &= ~ARC_PREFETCH; 1143 } 1144 } 1145 1146 static int 1147 remove_reference(arc_buf_hdr_t *ab, kmutex_t *hash_lock, void *tag) 1148 { 1149 int cnt; 1150 arc_state_t *state = ab->b_state; 1151 1152 ASSERT(state == arc_anon || MUTEX_HELD(hash_lock)); 1153 ASSERT(!GHOST_STATE(state)); 1154 1155 if (((cnt = refcount_remove(&ab->b_refcnt, tag)) == 0) && 1156 (state != arc_anon)) { 1157 uint64_t *size = &state->arcs_lsize[ab->b_type]; 1158 1159 ASSERT(!MUTEX_HELD(&state->arcs_mtx)); 1160 mutex_enter(&state->arcs_mtx); 1161 ASSERT(!list_link_active(&ab->b_arc_node)); 1162 list_insert_head(&state->arcs_list[ab->b_type], ab); 1163 ASSERT(ab->b_datacnt > 0); 1164 atomic_add_64(size, ab->b_size * ab->b_datacnt); 1165 mutex_exit(&state->arcs_mtx); 1166 } 1167 return (cnt); 1168 } 1169 1170 /* 1171 * Move the supplied buffer to the indicated state. The mutex 1172 * for the buffer must be held by the caller. 1173 */ 1174 static void 1175 arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *ab, kmutex_t *hash_lock) 1176 { 1177 arc_state_t *old_state = ab->b_state; 1178 int64_t refcnt = refcount_count(&ab->b_refcnt); 1179 uint64_t from_delta, to_delta; 1180 1181 ASSERT(MUTEX_HELD(hash_lock)); 1182 ASSERT3P(new_state, !=, old_state); 1183 ASSERT(refcnt == 0 || ab->b_datacnt > 0); 1184 ASSERT(ab->b_datacnt == 0 || !GHOST_STATE(new_state)); 1185 ASSERT(ab->b_datacnt <= 1 || old_state != arc_anon); 1186 1187 from_delta = to_delta = ab->b_datacnt * ab->b_size; 1188 1189 /* 1190 * If this buffer is evictable, transfer it from the 1191 * old state list to the new state list. 1192 */ 1193 if (refcnt == 0) { 1194 if (old_state != arc_anon) { 1195 int use_mutex = !MUTEX_HELD(&old_state->arcs_mtx); 1196 uint64_t *size = &old_state->arcs_lsize[ab->b_type]; 1197 1198 if (use_mutex) 1199 mutex_enter(&old_state->arcs_mtx); 1200 1201 ASSERT(list_link_active(&ab->b_arc_node)); 1202 list_remove(&old_state->arcs_list[ab->b_type], ab); 1203 1204 /* 1205 * If prefetching out of the ghost cache, 1206 * we will have a non-zero datacnt. 1207 */ 1208 if (GHOST_STATE(old_state) && ab->b_datacnt == 0) { 1209 /* ghost elements have a ghost size */ 1210 ASSERT(ab->b_buf == NULL); 1211 from_delta = ab->b_size; 1212 } 1213 ASSERT3U(*size, >=, from_delta); 1214 atomic_add_64(size, -from_delta); 1215 1216 if (use_mutex) 1217 mutex_exit(&old_state->arcs_mtx); 1218 } 1219 if (new_state != arc_anon) { 1220 int use_mutex = !MUTEX_HELD(&new_state->arcs_mtx); 1221 uint64_t *size = &new_state->arcs_lsize[ab->b_type]; 1222 1223 if (use_mutex) 1224 mutex_enter(&new_state->arcs_mtx); 1225 1226 list_insert_head(&new_state->arcs_list[ab->b_type], ab); 1227 1228 /* ghost elements have a ghost size */ 1229 if (GHOST_STATE(new_state)) { 1230 ASSERT(ab->b_datacnt == 0); 1231 ASSERT(ab->b_buf == NULL); 1232 to_delta = ab->b_size; 1233 } 1234 atomic_add_64(size, to_delta); 1235 1236 if (use_mutex) 1237 mutex_exit(&new_state->arcs_mtx); 1238 } 1239 } 1240 1241 ASSERT(!BUF_EMPTY(ab)); 1242 if (new_state == arc_anon && HDR_IN_HASH_TABLE(ab)) 1243 buf_hash_remove(ab); 1244 1245 /* adjust state sizes */ 1246 if (to_delta) 1247 atomic_add_64(&new_state->arcs_size, to_delta); 1248 if (from_delta) { 1249 ASSERT3U(old_state->arcs_size, >=, from_delta); 1250 atomic_add_64(&old_state->arcs_size, -from_delta); 1251 } 1252 ab->b_state = new_state; 1253 1254 /* adjust l2arc hdr stats */ 1255 if (new_state == arc_l2c_only) 1256 l2arc_hdr_stat_add(); 1257 else if (old_state == arc_l2c_only) 1258 l2arc_hdr_stat_remove(); 1259 } 1260 1261 void 1262 arc_space_consume(uint64_t space, arc_space_type_t type) 1263 { 1264 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES); 1265 1266 switch (type) { 1267 case ARC_SPACE_DATA: 1268 ARCSTAT_INCR(arcstat_data_size, space); 1269 break; 1270 case ARC_SPACE_OTHER: 1271 ARCSTAT_INCR(arcstat_other_size, space); 1272 break; 1273 case ARC_SPACE_HDRS: 1274 ARCSTAT_INCR(arcstat_hdr_size, space); 1275 break; 1276 case ARC_SPACE_L2HDRS: 1277 ARCSTAT_INCR(arcstat_l2_hdr_size, space); 1278 break; 1279 } 1280 1281 ARCSTAT_INCR(arcstat_meta_used, space); 1282 atomic_add_64(&arc_size, space); 1283 } 1284 1285 void 1286 arc_space_return(uint64_t space, arc_space_type_t type) 1287 { 1288 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES); 1289 1290 switch (type) { 1291 case ARC_SPACE_DATA: 1292 ARCSTAT_INCR(arcstat_data_size, -space); 1293 break; 1294 case ARC_SPACE_OTHER: 1295 ARCSTAT_INCR(arcstat_other_size, -space); 1296 break; 1297 case ARC_SPACE_HDRS: 1298 ARCSTAT_INCR(arcstat_hdr_size, -space); 1299 break; 1300 case ARC_SPACE_L2HDRS: 1301 ARCSTAT_INCR(arcstat_l2_hdr_size, -space); 1302 break; 1303 } 1304 1305 ASSERT(arc_meta_used >= space); 1306 if (arc_meta_max < arc_meta_used) 1307 arc_meta_max = arc_meta_used; 1308 ARCSTAT_INCR(arcstat_meta_used, -space); 1309 ASSERT(arc_size >= space); 1310 atomic_add_64(&arc_size, -space); 1311 } 1312 1313 arc_buf_t * 1314 arc_buf_alloc(spa_t *spa, int size, void *tag, arc_buf_contents_t type) 1315 { 1316 arc_buf_hdr_t *hdr; 1317 arc_buf_t *buf; 1318 1319 ASSERT3U(size, >, 0); 1320 hdr = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE); 1321 ASSERT(BUF_EMPTY(hdr)); 1322 hdr->b_size = size; 1323 hdr->b_type = type; 1324 hdr->b_spa = spa_load_guid(spa); 1325 hdr->b_state = arc_anon; 1326 hdr->b_arc_access = 0; 1327 buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE); 1328 buf->b_hdr = hdr; 1329 buf->b_data = NULL; 1330 buf->b_efunc = NULL; 1331 buf->b_private = NULL; 1332 buf->b_next = NULL; 1333 hdr->b_buf = buf; 1334 arc_get_data_buf(buf); 1335 hdr->b_datacnt = 1; 1336 hdr->b_flags = 0; 1337 ASSERT(refcount_is_zero(&hdr->b_refcnt)); 1338 (void) refcount_add(&hdr->b_refcnt, tag); 1339 1340 return (buf); 1341 } 1342 1343 static char *arc_onloan_tag = "onloan"; 1344 1345 /* 1346 * Loan out an anonymous arc buffer. Loaned buffers are not counted as in 1347 * flight data by arc_tempreserve_space() until they are "returned". Loaned 1348 * buffers must be returned to the arc before they can be used by the DMU or 1349 * freed. 1350 */ 1351 arc_buf_t * 1352 arc_loan_buf(spa_t *spa, int size) 1353 { 1354 arc_buf_t *buf; 1355 1356 buf = arc_buf_alloc(spa, size, arc_onloan_tag, ARC_BUFC_DATA); 1357 1358 atomic_add_64(&arc_loaned_bytes, size); 1359 return (buf); 1360 } 1361 1362 /* 1363 * Return a loaned arc buffer to the arc. 1364 */ 1365 void 1366 arc_return_buf(arc_buf_t *buf, void *tag) 1367 { 1368 arc_buf_hdr_t *hdr = buf->b_hdr; 1369 1370 ASSERT(buf->b_data != NULL); 1371 (void) refcount_add(&hdr->b_refcnt, tag); 1372 (void) refcount_remove(&hdr->b_refcnt, arc_onloan_tag); 1373 1374 atomic_add_64(&arc_loaned_bytes, -hdr->b_size); 1375 } 1376 1377 /* Detach an arc_buf from a dbuf (tag) */ 1378 void 1379 arc_loan_inuse_buf(arc_buf_t *buf, void *tag) 1380 { 1381 arc_buf_hdr_t *hdr; 1382 1383 ASSERT(buf->b_data != NULL); 1384 hdr = buf->b_hdr; 1385 (void) refcount_add(&hdr->b_refcnt, arc_onloan_tag); 1386 (void) refcount_remove(&hdr->b_refcnt, tag); 1387 buf->b_efunc = NULL; 1388 buf->b_private = NULL; 1389 1390 atomic_add_64(&arc_loaned_bytes, hdr->b_size); 1391 } 1392 1393 static arc_buf_t * 1394 arc_buf_clone(arc_buf_t *from) 1395 { 1396 arc_buf_t *buf; 1397 arc_buf_hdr_t *hdr = from->b_hdr; 1398 uint64_t size = hdr->b_size; 1399 1400 ASSERT(hdr->b_state != arc_anon); 1401 1402 buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE); 1403 buf->b_hdr = hdr; 1404 buf->b_data = NULL; 1405 buf->b_efunc = NULL; 1406 buf->b_private = NULL; 1407 buf->b_next = hdr->b_buf; 1408 hdr->b_buf = buf; 1409 arc_get_data_buf(buf); 1410 bcopy(from->b_data, buf->b_data, size); 1411 1412 /* 1413 * This buffer already exists in the arc so create a duplicate 1414 * copy for the caller. If the buffer is associated with user data 1415 * then track the size and number of duplicates. These stats will be 1416 * updated as duplicate buffers are created and destroyed. 1417 */ 1418 if (hdr->b_type == ARC_BUFC_DATA) { 1419 ARCSTAT_BUMP(arcstat_duplicate_buffers); 1420 ARCSTAT_INCR(arcstat_duplicate_buffers_size, size); 1421 } 1422 hdr->b_datacnt += 1; 1423 return (buf); 1424 } 1425 1426 void 1427 arc_buf_add_ref(arc_buf_t *buf, void* tag) 1428 { 1429 arc_buf_hdr_t *hdr; 1430 kmutex_t *hash_lock; 1431 1432 /* 1433 * Check to see if this buffer is evicted. Callers 1434 * must verify b_data != NULL to know if the add_ref 1435 * was successful. 1436 */ 1437 mutex_enter(&buf->b_evict_lock); 1438 if (buf->b_data == NULL) { 1439 mutex_exit(&buf->b_evict_lock); 1440 return; 1441 } 1442 hash_lock = HDR_LOCK(buf->b_hdr); 1443 mutex_enter(hash_lock); 1444 hdr = buf->b_hdr; 1445 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 1446 mutex_exit(&buf->b_evict_lock); 1447 1448 ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu); 1449 add_reference(hdr, hash_lock, tag); 1450 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr); 1451 arc_access(hdr, hash_lock); 1452 mutex_exit(hash_lock); 1453 ARCSTAT_BUMP(arcstat_hits); 1454 ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH), 1455 demand, prefetch, hdr->b_type != ARC_BUFC_METADATA, 1456 data, metadata, hits); 1457 } 1458 1459 /* 1460 * Free the arc data buffer. If it is an l2arc write in progress, 1461 * the buffer is placed on l2arc_free_on_write to be freed later. 1462 */ 1463 static void 1464 arc_buf_data_free(arc_buf_t *buf, void (*free_func)(void *, size_t)) 1465 { 1466 arc_buf_hdr_t *hdr = buf->b_hdr; 1467 1468 if (HDR_L2_WRITING(hdr)) { 1469 l2arc_data_free_t *df; 1470 df = kmem_alloc(sizeof (l2arc_data_free_t), KM_SLEEP); 1471 df->l2df_data = buf->b_data; 1472 df->l2df_size = hdr->b_size; 1473 df->l2df_func = free_func; 1474 mutex_enter(&l2arc_free_on_write_mtx); 1475 list_insert_head(l2arc_free_on_write, df); 1476 mutex_exit(&l2arc_free_on_write_mtx); 1477 ARCSTAT_BUMP(arcstat_l2_free_on_write); 1478 } else { 1479 free_func(buf->b_data, hdr->b_size); 1480 } 1481 } 1482 1483 /* 1484 * Free up buf->b_data and if 'remove' is set, then pull the 1485 * arc_buf_t off of the the arc_buf_hdr_t's list and free it. 1486 */ 1487 static void 1488 arc_buf_destroy(arc_buf_t *buf, boolean_t recycle, boolean_t remove) 1489 { 1490 arc_buf_t **bufp; 1491 1492 /* free up data associated with the buf */ 1493 if (buf->b_data) { 1494 arc_state_t *state = buf->b_hdr->b_state; 1495 uint64_t size = buf->b_hdr->b_size; 1496 arc_buf_contents_t type = buf->b_hdr->b_type; 1497 1498 arc_cksum_verify(buf); 1499 arc_buf_unwatch(buf); 1500 1501 if (!recycle) { 1502 if (type == ARC_BUFC_METADATA) { 1503 arc_buf_data_free(buf, zio_buf_free); 1504 arc_space_return(size, ARC_SPACE_DATA); 1505 } else { 1506 ASSERT(type == ARC_BUFC_DATA); 1507 arc_buf_data_free(buf, zio_data_buf_free); 1508 ARCSTAT_INCR(arcstat_data_size, -size); 1509 atomic_add_64(&arc_size, -size); 1510 } 1511 } 1512 if (list_link_active(&buf->b_hdr->b_arc_node)) { 1513 uint64_t *cnt = &state->arcs_lsize[type]; 1514 1515 ASSERT(refcount_is_zero(&buf->b_hdr->b_refcnt)); 1516 ASSERT(state != arc_anon); 1517 1518 ASSERT3U(*cnt, >=, size); 1519 atomic_add_64(cnt, -size); 1520 } 1521 ASSERT3U(state->arcs_size, >=, size); 1522 atomic_add_64(&state->arcs_size, -size); 1523 buf->b_data = NULL; 1524 1525 /* 1526 * If we're destroying a duplicate buffer make sure 1527 * that the appropriate statistics are updated. 1528 */ 1529 if (buf->b_hdr->b_datacnt > 1 && 1530 buf->b_hdr->b_type == ARC_BUFC_DATA) { 1531 ARCSTAT_BUMPDOWN(arcstat_duplicate_buffers); 1532 ARCSTAT_INCR(arcstat_duplicate_buffers_size, -size); 1533 } 1534 ASSERT(buf->b_hdr->b_datacnt > 0); 1535 buf->b_hdr->b_datacnt -= 1; 1536 } 1537 1538 /* only remove the buf if requested */ 1539 if (!remove) 1540 return; 1541 1542 /* remove the buf from the hdr list */ 1543 for (bufp = &buf->b_hdr->b_buf; *bufp != buf; bufp = &(*bufp)->b_next) 1544 continue; 1545 *bufp = buf->b_next; 1546 buf->b_next = NULL; 1547 1548 ASSERT(buf->b_efunc == NULL); 1549 1550 /* clean up the buf */ 1551 buf->b_hdr = NULL; 1552 kmem_cache_free(buf_cache, buf); 1553 } 1554 1555 static void 1556 arc_hdr_destroy(arc_buf_hdr_t *hdr) 1557 { 1558 ASSERT(refcount_is_zero(&hdr->b_refcnt)); 1559 ASSERT3P(hdr->b_state, ==, arc_anon); 1560 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 1561 l2arc_buf_hdr_t *l2hdr = hdr->b_l2hdr; 1562 1563 if (l2hdr != NULL) { 1564 boolean_t buflist_held = MUTEX_HELD(&l2arc_buflist_mtx); 1565 /* 1566 * To prevent arc_free() and l2arc_evict() from 1567 * attempting to free the same buffer at the same time, 1568 * a FREE_IN_PROGRESS flag is given to arc_free() to 1569 * give it priority. l2arc_evict() can't destroy this 1570 * header while we are waiting on l2arc_buflist_mtx. 1571 * 1572 * The hdr may be removed from l2ad_buflist before we 1573 * grab l2arc_buflist_mtx, so b_l2hdr is rechecked. 1574 */ 1575 if (!buflist_held) { 1576 mutex_enter(&l2arc_buflist_mtx); 1577 l2hdr = hdr->b_l2hdr; 1578 } 1579 1580 if (l2hdr != NULL) { 1581 list_remove(l2hdr->b_dev->l2ad_buflist, hdr); 1582 ARCSTAT_INCR(arcstat_l2_size, -hdr->b_size); 1583 ARCSTAT_INCR(arcstat_l2_asize, -l2hdr->b_asize); 1584 vdev_space_update(l2hdr->b_dev->l2ad_vdev, 1585 -l2hdr->b_asize, 0, 0); 1586 kmem_free(l2hdr, sizeof (l2arc_buf_hdr_t)); 1587 if (hdr->b_state == arc_l2c_only) 1588 l2arc_hdr_stat_remove(); 1589 hdr->b_l2hdr = NULL; 1590 } 1591 1592 if (!buflist_held) 1593 mutex_exit(&l2arc_buflist_mtx); 1594 } 1595 1596 if (!BUF_EMPTY(hdr)) { 1597 ASSERT(!HDR_IN_HASH_TABLE(hdr)); 1598 buf_discard_identity(hdr); 1599 } 1600 while (hdr->b_buf) { 1601 arc_buf_t *buf = hdr->b_buf; 1602 1603 if (buf->b_efunc) { 1604 mutex_enter(&arc_eviction_mtx); 1605 mutex_enter(&buf->b_evict_lock); 1606 ASSERT(buf->b_hdr != NULL); 1607 arc_buf_destroy(hdr->b_buf, FALSE, FALSE); 1608 hdr->b_buf = buf->b_next; 1609 buf->b_hdr = &arc_eviction_hdr; 1610 buf->b_next = arc_eviction_list; 1611 arc_eviction_list = buf; 1612 mutex_exit(&buf->b_evict_lock); 1613 mutex_exit(&arc_eviction_mtx); 1614 } else { 1615 arc_buf_destroy(hdr->b_buf, FALSE, TRUE); 1616 } 1617 } 1618 if (hdr->b_freeze_cksum != NULL) { 1619 kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t)); 1620 hdr->b_freeze_cksum = NULL; 1621 } 1622 if (hdr->b_thawed) { 1623 kmem_free(hdr->b_thawed, 1); 1624 hdr->b_thawed = NULL; 1625 } 1626 1627 ASSERT(!list_link_active(&hdr->b_arc_node)); 1628 ASSERT3P(hdr->b_hash_next, ==, NULL); 1629 ASSERT3P(hdr->b_acb, ==, NULL); 1630 kmem_cache_free(hdr_cache, hdr); 1631 } 1632 1633 void 1634 arc_buf_free(arc_buf_t *buf, void *tag) 1635 { 1636 arc_buf_hdr_t *hdr = buf->b_hdr; 1637 int hashed = hdr->b_state != arc_anon; 1638 1639 ASSERT(buf->b_efunc == NULL); 1640 ASSERT(buf->b_data != NULL); 1641 1642 if (hashed) { 1643 kmutex_t *hash_lock = HDR_LOCK(hdr); 1644 1645 mutex_enter(hash_lock); 1646 hdr = buf->b_hdr; 1647 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 1648 1649 (void) remove_reference(hdr, hash_lock, tag); 1650 if (hdr->b_datacnt > 1) { 1651 arc_buf_destroy(buf, FALSE, TRUE); 1652 } else { 1653 ASSERT(buf == hdr->b_buf); 1654 ASSERT(buf->b_efunc == NULL); 1655 hdr->b_flags |= ARC_BUF_AVAILABLE; 1656 } 1657 mutex_exit(hash_lock); 1658 } else if (HDR_IO_IN_PROGRESS(hdr)) { 1659 int destroy_hdr; 1660 /* 1661 * We are in the middle of an async write. Don't destroy 1662 * this buffer unless the write completes before we finish 1663 * decrementing the reference count. 1664 */ 1665 mutex_enter(&arc_eviction_mtx); 1666 (void) remove_reference(hdr, NULL, tag); 1667 ASSERT(refcount_is_zero(&hdr->b_refcnt)); 1668 destroy_hdr = !HDR_IO_IN_PROGRESS(hdr); 1669 mutex_exit(&arc_eviction_mtx); 1670 if (destroy_hdr) 1671 arc_hdr_destroy(hdr); 1672 } else { 1673 if (remove_reference(hdr, NULL, tag) > 0) 1674 arc_buf_destroy(buf, FALSE, TRUE); 1675 else 1676 arc_hdr_destroy(hdr); 1677 } 1678 } 1679 1680 boolean_t 1681 arc_buf_remove_ref(arc_buf_t *buf, void* tag) 1682 { 1683 arc_buf_hdr_t *hdr = buf->b_hdr; 1684 kmutex_t *hash_lock = HDR_LOCK(hdr); 1685 boolean_t no_callback = (buf->b_efunc == NULL); 1686 1687 if (hdr->b_state == arc_anon) { 1688 ASSERT(hdr->b_datacnt == 1); 1689 arc_buf_free(buf, tag); 1690 return (no_callback); 1691 } 1692 1693 mutex_enter(hash_lock); 1694 hdr = buf->b_hdr; 1695 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 1696 ASSERT(hdr->b_state != arc_anon); 1697 ASSERT(buf->b_data != NULL); 1698 1699 (void) remove_reference(hdr, hash_lock, tag); 1700 if (hdr->b_datacnt > 1) { 1701 if (no_callback) 1702 arc_buf_destroy(buf, FALSE, TRUE); 1703 } else if (no_callback) { 1704 ASSERT(hdr->b_buf == buf && buf->b_next == NULL); 1705 ASSERT(buf->b_efunc == NULL); 1706 hdr->b_flags |= ARC_BUF_AVAILABLE; 1707 } 1708 ASSERT(no_callback || hdr->b_datacnt > 1 || 1709 refcount_is_zero(&hdr->b_refcnt)); 1710 mutex_exit(hash_lock); 1711 return (no_callback); 1712 } 1713 1714 int 1715 arc_buf_size(arc_buf_t *buf) 1716 { 1717 return (buf->b_hdr->b_size); 1718 } 1719 1720 /* 1721 * Called from the DMU to determine if the current buffer should be 1722 * evicted. In order to ensure proper locking, the eviction must be initiated 1723 * from the DMU. Return true if the buffer is associated with user data and 1724 * duplicate buffers still exist. 1725 */ 1726 boolean_t 1727 arc_buf_eviction_needed(arc_buf_t *buf) 1728 { 1729 arc_buf_hdr_t *hdr; 1730 boolean_t evict_needed = B_FALSE; 1731 1732 if (zfs_disable_dup_eviction) 1733 return (B_FALSE); 1734 1735 mutex_enter(&buf->b_evict_lock); 1736 hdr = buf->b_hdr; 1737 if (hdr == NULL) { 1738 /* 1739 * We are in arc_do_user_evicts(); let that function 1740 * perform the eviction. 1741 */ 1742 ASSERT(buf->b_data == NULL); 1743 mutex_exit(&buf->b_evict_lock); 1744 return (B_FALSE); 1745 } else if (buf->b_data == NULL) { 1746 /* 1747 * We have already been added to the arc eviction list; 1748 * recommend eviction. 1749 */ 1750 ASSERT3P(hdr, ==, &arc_eviction_hdr); 1751 mutex_exit(&buf->b_evict_lock); 1752 return (B_TRUE); 1753 } 1754 1755 if (hdr->b_datacnt > 1 && hdr->b_type == ARC_BUFC_DATA) 1756 evict_needed = B_TRUE; 1757 1758 mutex_exit(&buf->b_evict_lock); 1759 return (evict_needed); 1760 } 1761 1762 /* 1763 * Evict buffers from list until we've removed the specified number of 1764 * bytes. Move the removed buffers to the appropriate evict state. 1765 * If the recycle flag is set, then attempt to "recycle" a buffer: 1766 * - look for a buffer to evict that is `bytes' long. 1767 * - return the data block from this buffer rather than freeing it. 1768 * This flag is used by callers that are trying to make space for a 1769 * new buffer in a full arc cache. 1770 * 1771 * This function makes a "best effort". It skips over any buffers 1772 * it can't get a hash_lock on, and so may not catch all candidates. 1773 * It may also return without evicting as much space as requested. 1774 */ 1775 static void * 1776 arc_evict(arc_state_t *state, uint64_t spa, int64_t bytes, boolean_t recycle, 1777 arc_buf_contents_t type) 1778 { 1779 arc_state_t *evicted_state; 1780 uint64_t bytes_evicted = 0, skipped = 0, missed = 0; 1781 arc_buf_hdr_t *ab, *ab_prev = NULL; 1782 list_t *list = &state->arcs_list[type]; 1783 kmutex_t *hash_lock; 1784 boolean_t have_lock; 1785 void *stolen = NULL; 1786 arc_buf_hdr_t marker = { 0 }; 1787 int count = 0; 1788 1789 ASSERT(state == arc_mru || state == arc_mfu); 1790 1791 evicted_state = (state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost; 1792 1793 mutex_enter(&state->arcs_mtx); 1794 mutex_enter(&evicted_state->arcs_mtx); 1795 1796 for (ab = list_tail(list); ab; ab = ab_prev) { 1797 ab_prev = list_prev(list, ab); 1798 /* prefetch buffers have a minimum lifespan */ 1799 if (HDR_IO_IN_PROGRESS(ab) || 1800 (spa && ab->b_spa != spa) || 1801 (ab->b_flags & (ARC_PREFETCH|ARC_INDIRECT) && 1802 ddi_get_lbolt() - ab->b_arc_access < 1803 arc_min_prefetch_lifespan)) { 1804 skipped++; 1805 continue; 1806 } 1807 /* "lookahead" for better eviction candidate */ 1808 if (recycle && ab->b_size != bytes && 1809 ab_prev && ab_prev->b_size == bytes) 1810 continue; 1811 1812 /* ignore markers */ 1813 if (ab->b_spa == 0) 1814 continue; 1815 1816 /* 1817 * It may take a long time to evict all the bufs requested. 1818 * To avoid blocking all arc activity, periodically drop 1819 * the arcs_mtx and give other threads a chance to run 1820 * before reacquiring the lock. 1821 * 1822 * If we are looking for a buffer to recycle, we are in 1823 * the hot code path, so don't sleep. 1824 */ 1825 if (!recycle && count++ > arc_evict_iterations) { 1826 list_insert_after(list, ab, &marker); 1827 mutex_exit(&evicted_state->arcs_mtx); 1828 mutex_exit(&state->arcs_mtx); 1829 kpreempt(KPREEMPT_SYNC); 1830 mutex_enter(&state->arcs_mtx); 1831 mutex_enter(&evicted_state->arcs_mtx); 1832 ab_prev = list_prev(list, &marker); 1833 list_remove(list, &marker); 1834 count = 0; 1835 continue; 1836 } 1837 1838 hash_lock = HDR_LOCK(ab); 1839 have_lock = MUTEX_HELD(hash_lock); 1840 if (have_lock || mutex_tryenter(hash_lock)) { 1841 ASSERT0(refcount_count(&ab->b_refcnt)); 1842 ASSERT(ab->b_datacnt > 0); 1843 while (ab->b_buf) { 1844 arc_buf_t *buf = ab->b_buf; 1845 if (!mutex_tryenter(&buf->b_evict_lock)) { 1846 missed += 1; 1847 break; 1848 } 1849 if (buf->b_data) { 1850 bytes_evicted += ab->b_size; 1851 if (recycle && ab->b_type == type && 1852 ab->b_size == bytes && 1853 !HDR_L2_WRITING(ab)) { 1854 stolen = buf->b_data; 1855 recycle = FALSE; 1856 } 1857 } 1858 if (buf->b_efunc) { 1859 mutex_enter(&arc_eviction_mtx); 1860 arc_buf_destroy(buf, 1861 buf->b_data == stolen, FALSE); 1862 ab->b_buf = buf->b_next; 1863 buf->b_hdr = &arc_eviction_hdr; 1864 buf->b_next = arc_eviction_list; 1865 arc_eviction_list = buf; 1866 mutex_exit(&arc_eviction_mtx); 1867 mutex_exit(&buf->b_evict_lock); 1868 } else { 1869 mutex_exit(&buf->b_evict_lock); 1870 arc_buf_destroy(buf, 1871 buf->b_data == stolen, TRUE); 1872 } 1873 } 1874 1875 if (ab->b_l2hdr) { 1876 ARCSTAT_INCR(arcstat_evict_l2_cached, 1877 ab->b_size); 1878 } else { 1879 if (l2arc_write_eligible(ab->b_spa, ab)) { 1880 ARCSTAT_INCR(arcstat_evict_l2_eligible, 1881 ab->b_size); 1882 } else { 1883 ARCSTAT_INCR( 1884 arcstat_evict_l2_ineligible, 1885 ab->b_size); 1886 } 1887 } 1888 1889 if (ab->b_datacnt == 0) { 1890 arc_change_state(evicted_state, ab, hash_lock); 1891 ASSERT(HDR_IN_HASH_TABLE(ab)); 1892 ab->b_flags |= ARC_IN_HASH_TABLE; 1893 ab->b_flags &= ~ARC_BUF_AVAILABLE; 1894 DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, ab); 1895 } 1896 if (!have_lock) 1897 mutex_exit(hash_lock); 1898 if (bytes >= 0 && bytes_evicted >= bytes) 1899 break; 1900 } else { 1901 missed += 1; 1902 } 1903 } 1904 1905 mutex_exit(&evicted_state->arcs_mtx); 1906 mutex_exit(&state->arcs_mtx); 1907 1908 if (bytes_evicted < bytes) 1909 dprintf("only evicted %lld bytes from %x", 1910 (longlong_t)bytes_evicted, state); 1911 1912 if (skipped) 1913 ARCSTAT_INCR(arcstat_evict_skip, skipped); 1914 1915 if (missed) 1916 ARCSTAT_INCR(arcstat_mutex_miss, missed); 1917 1918 /* 1919 * Note: we have just evicted some data into the ghost state, 1920 * potentially putting the ghost size over the desired size. Rather 1921 * that evicting from the ghost list in this hot code path, leave 1922 * this chore to the arc_reclaim_thread(). 1923 */ 1924 1925 return (stolen); 1926 } 1927 1928 /* 1929 * Remove buffers from list until we've removed the specified number of 1930 * bytes. Destroy the buffers that are removed. 1931 */ 1932 static void 1933 arc_evict_ghost(arc_state_t *state, uint64_t spa, int64_t bytes) 1934 { 1935 arc_buf_hdr_t *ab, *ab_prev; 1936 arc_buf_hdr_t marker = { 0 }; 1937 list_t *list = &state->arcs_list[ARC_BUFC_DATA]; 1938 kmutex_t *hash_lock; 1939 uint64_t bytes_deleted = 0; 1940 uint64_t bufs_skipped = 0; 1941 int count = 0; 1942 1943 ASSERT(GHOST_STATE(state)); 1944 top: 1945 mutex_enter(&state->arcs_mtx); 1946 for (ab = list_tail(list); ab; ab = ab_prev) { 1947 ab_prev = list_prev(list, ab); 1948 if (ab->b_type > ARC_BUFC_NUMTYPES) 1949 panic("invalid ab=%p", (void *)ab); 1950 if (spa && ab->b_spa != spa) 1951 continue; 1952 1953 /* ignore markers */ 1954 if (ab->b_spa == 0) 1955 continue; 1956 1957 hash_lock = HDR_LOCK(ab); 1958 /* caller may be trying to modify this buffer, skip it */ 1959 if (MUTEX_HELD(hash_lock)) 1960 continue; 1961 1962 /* 1963 * It may take a long time to evict all the bufs requested. 1964 * To avoid blocking all arc activity, periodically drop 1965 * the arcs_mtx and give other threads a chance to run 1966 * before reacquiring the lock. 1967 */ 1968 if (count++ > arc_evict_iterations) { 1969 list_insert_after(list, ab, &marker); 1970 mutex_exit(&state->arcs_mtx); 1971 kpreempt(KPREEMPT_SYNC); 1972 mutex_enter(&state->arcs_mtx); 1973 ab_prev = list_prev(list, &marker); 1974 list_remove(list, &marker); 1975 count = 0; 1976 continue; 1977 } 1978 if (mutex_tryenter(hash_lock)) { 1979 ASSERT(!HDR_IO_IN_PROGRESS(ab)); 1980 ASSERT(ab->b_buf == NULL); 1981 ARCSTAT_BUMP(arcstat_deleted); 1982 bytes_deleted += ab->b_size; 1983 1984 if (ab->b_l2hdr != NULL) { 1985 /* 1986 * This buffer is cached on the 2nd Level ARC; 1987 * don't destroy the header. 1988 */ 1989 arc_change_state(arc_l2c_only, ab, hash_lock); 1990 mutex_exit(hash_lock); 1991 } else { 1992 arc_change_state(arc_anon, ab, hash_lock); 1993 mutex_exit(hash_lock); 1994 arc_hdr_destroy(ab); 1995 } 1996 1997 DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, ab); 1998 if (bytes >= 0 && bytes_deleted >= bytes) 1999 break; 2000 } else if (bytes < 0) { 2001 /* 2002 * Insert a list marker and then wait for the 2003 * hash lock to become available. Once its 2004 * available, restart from where we left off. 2005 */ 2006 list_insert_after(list, ab, &marker); 2007 mutex_exit(&state->arcs_mtx); 2008 mutex_enter(hash_lock); 2009 mutex_exit(hash_lock); 2010 mutex_enter(&state->arcs_mtx); 2011 ab_prev = list_prev(list, &marker); 2012 list_remove(list, &marker); 2013 } else { 2014 bufs_skipped += 1; 2015 } 2016 2017 } 2018 mutex_exit(&state->arcs_mtx); 2019 2020 if (list == &state->arcs_list[ARC_BUFC_DATA] && 2021 (bytes < 0 || bytes_deleted < bytes)) { 2022 list = &state->arcs_list[ARC_BUFC_METADATA]; 2023 goto top; 2024 } 2025 2026 if (bufs_skipped) { 2027 ARCSTAT_INCR(arcstat_mutex_miss, bufs_skipped); 2028 ASSERT(bytes >= 0); 2029 } 2030 2031 if (bytes_deleted < bytes) 2032 dprintf("only deleted %lld bytes from %p", 2033 (longlong_t)bytes_deleted, state); 2034 } 2035 2036 static void 2037 arc_adjust(void) 2038 { 2039 int64_t adjustment, delta; 2040 2041 /* 2042 * Adjust MRU size 2043 */ 2044 2045 adjustment = MIN((int64_t)(arc_size - arc_c), 2046 (int64_t)(arc_anon->arcs_size + arc_mru->arcs_size + arc_meta_used - 2047 arc_p)); 2048 2049 if (adjustment > 0 && arc_mru->arcs_lsize[ARC_BUFC_DATA] > 0) { 2050 delta = MIN(arc_mru->arcs_lsize[ARC_BUFC_DATA], adjustment); 2051 (void) arc_evict(arc_mru, NULL, delta, FALSE, ARC_BUFC_DATA); 2052 adjustment -= delta; 2053 } 2054 2055 if (adjustment > 0 && arc_mru->arcs_lsize[ARC_BUFC_METADATA] > 0) { 2056 delta = MIN(arc_mru->arcs_lsize[ARC_BUFC_METADATA], adjustment); 2057 (void) arc_evict(arc_mru, NULL, delta, FALSE, 2058 ARC_BUFC_METADATA); 2059 } 2060 2061 /* 2062 * Adjust MFU size 2063 */ 2064 2065 adjustment = arc_size - arc_c; 2066 2067 if (adjustment > 0 && arc_mfu->arcs_lsize[ARC_BUFC_DATA] > 0) { 2068 delta = MIN(adjustment, arc_mfu->arcs_lsize[ARC_BUFC_DATA]); 2069 (void) arc_evict(arc_mfu, NULL, delta, FALSE, ARC_BUFC_DATA); 2070 adjustment -= delta; 2071 } 2072 2073 if (adjustment > 0 && arc_mfu->arcs_lsize[ARC_BUFC_METADATA] > 0) { 2074 int64_t delta = MIN(adjustment, 2075 arc_mfu->arcs_lsize[ARC_BUFC_METADATA]); 2076 (void) arc_evict(arc_mfu, NULL, delta, FALSE, 2077 ARC_BUFC_METADATA); 2078 } 2079 2080 /* 2081 * Adjust ghost lists 2082 */ 2083 2084 adjustment = arc_mru->arcs_size + arc_mru_ghost->arcs_size - arc_c; 2085 2086 if (adjustment > 0 && arc_mru_ghost->arcs_size > 0) { 2087 delta = MIN(arc_mru_ghost->arcs_size, adjustment); 2088 arc_evict_ghost(arc_mru_ghost, NULL, delta); 2089 } 2090 2091 adjustment = 2092 arc_mru_ghost->arcs_size + arc_mfu_ghost->arcs_size - arc_c; 2093 2094 if (adjustment > 0 && arc_mfu_ghost->arcs_size > 0) { 2095 delta = MIN(arc_mfu_ghost->arcs_size, adjustment); 2096 arc_evict_ghost(arc_mfu_ghost, NULL, delta); 2097 } 2098 } 2099 2100 static void 2101 arc_do_user_evicts(void) 2102 { 2103 mutex_enter(&arc_eviction_mtx); 2104 while (arc_eviction_list != NULL) { 2105 arc_buf_t *buf = arc_eviction_list; 2106 arc_eviction_list = buf->b_next; 2107 mutex_enter(&buf->b_evict_lock); 2108 buf->b_hdr = NULL; 2109 mutex_exit(&buf->b_evict_lock); 2110 mutex_exit(&arc_eviction_mtx); 2111 2112 if (buf->b_efunc != NULL) 2113 VERIFY0(buf->b_efunc(buf->b_private)); 2114 2115 buf->b_efunc = NULL; 2116 buf->b_private = NULL; 2117 kmem_cache_free(buf_cache, buf); 2118 mutex_enter(&arc_eviction_mtx); 2119 } 2120 mutex_exit(&arc_eviction_mtx); 2121 } 2122 2123 /* 2124 * Flush all *evictable* data from the cache for the given spa. 2125 * NOTE: this will not touch "active" (i.e. referenced) data. 2126 */ 2127 void 2128 arc_flush(spa_t *spa) 2129 { 2130 uint64_t guid = 0; 2131 2132 if (spa) 2133 guid = spa_load_guid(spa); 2134 2135 while (list_head(&arc_mru->arcs_list[ARC_BUFC_DATA])) { 2136 (void) arc_evict(arc_mru, guid, -1, FALSE, ARC_BUFC_DATA); 2137 if (spa) 2138 break; 2139 } 2140 while (list_head(&arc_mru->arcs_list[ARC_BUFC_METADATA])) { 2141 (void) arc_evict(arc_mru, guid, -1, FALSE, ARC_BUFC_METADATA); 2142 if (spa) 2143 break; 2144 } 2145 while (list_head(&arc_mfu->arcs_list[ARC_BUFC_DATA])) { 2146 (void) arc_evict(arc_mfu, guid, -1, FALSE, ARC_BUFC_DATA); 2147 if (spa) 2148 break; 2149 } 2150 while (list_head(&arc_mfu->arcs_list[ARC_BUFC_METADATA])) { 2151 (void) arc_evict(arc_mfu, guid, -1, FALSE, ARC_BUFC_METADATA); 2152 if (spa) 2153 break; 2154 } 2155 2156 arc_evict_ghost(arc_mru_ghost, guid, -1); 2157 arc_evict_ghost(arc_mfu_ghost, guid, -1); 2158 2159 mutex_enter(&arc_reclaim_thr_lock); 2160 arc_do_user_evicts(); 2161 mutex_exit(&arc_reclaim_thr_lock); 2162 ASSERT(spa || arc_eviction_list == NULL); 2163 } 2164 2165 void 2166 arc_shrink(void) 2167 { 2168 if (arc_c > arc_c_min) { 2169 uint64_t to_free; 2170 2171 #ifdef _KERNEL 2172 to_free = MAX(arc_c >> arc_shrink_shift, ptob(needfree)); 2173 #else 2174 to_free = arc_c >> arc_shrink_shift; 2175 #endif 2176 if (arc_c > arc_c_min + to_free) 2177 atomic_add_64(&arc_c, -to_free); 2178 else 2179 arc_c = arc_c_min; 2180 2181 atomic_add_64(&arc_p, -(arc_p >> arc_shrink_shift)); 2182 if (arc_c > arc_size) 2183 arc_c = MAX(arc_size, arc_c_min); 2184 if (arc_p > arc_c) 2185 arc_p = (arc_c >> 1); 2186 ASSERT(arc_c >= arc_c_min); 2187 ASSERT((int64_t)arc_p >= 0); 2188 } 2189 2190 if (arc_size > arc_c) 2191 arc_adjust(); 2192 } 2193 2194 /* 2195 * Determine if the system is under memory pressure and is asking 2196 * to reclaim memory. A return value of 1 indicates that the system 2197 * is under memory pressure and that the arc should adjust accordingly. 2198 */ 2199 static int 2200 arc_reclaim_needed(void) 2201 { 2202 uint64_t extra; 2203 2204 #ifdef _KERNEL 2205 2206 if (needfree) 2207 return (1); 2208 2209 /* 2210 * take 'desfree' extra pages, so we reclaim sooner, rather than later 2211 */ 2212 extra = desfree; 2213 2214 /* 2215 * check that we're out of range of the pageout scanner. It starts to 2216 * schedule paging if freemem is less than lotsfree and needfree. 2217 * lotsfree is the high-water mark for pageout, and needfree is the 2218 * number of needed free pages. We add extra pages here to make sure 2219 * the scanner doesn't start up while we're freeing memory. 2220 */ 2221 if (freemem < lotsfree + needfree + extra) 2222 return (1); 2223 2224 /* 2225 * check to make sure that swapfs has enough space so that anon 2226 * reservations can still succeed. anon_resvmem() checks that the 2227 * availrmem is greater than swapfs_minfree, and the number of reserved 2228 * swap pages. We also add a bit of extra here just to prevent 2229 * circumstances from getting really dire. 2230 */ 2231 if (availrmem < swapfs_minfree + swapfs_reserve + extra) 2232 return (1); 2233 2234 /* 2235 * Check that we have enough availrmem that memory locking (e.g., via 2236 * mlock(3C) or memcntl(2)) can still succeed. (pages_pp_maximum 2237 * stores the number of pages that cannot be locked; when availrmem 2238 * drops below pages_pp_maximum, page locking mechanisms such as 2239 * page_pp_lock() will fail.) 2240 */ 2241 if (availrmem <= pages_pp_maximum) 2242 return (1); 2243 2244 #if defined(__i386) 2245 /* 2246 * If we're on an i386 platform, it's possible that we'll exhaust the 2247 * kernel heap space before we ever run out of available physical 2248 * memory. Most checks of the size of the heap_area compare against 2249 * tune.t_minarmem, which is the minimum available real memory that we 2250 * can have in the system. However, this is generally fixed at 25 pages 2251 * which is so low that it's useless. In this comparison, we seek to 2252 * calculate the total heap-size, and reclaim if more than 3/4ths of the 2253 * heap is allocated. (Or, in the calculation, if less than 1/4th is 2254 * free) 2255 */ 2256 if (vmem_size(heap_arena, VMEM_FREE) < 2257 (vmem_size(heap_arena, VMEM_FREE | VMEM_ALLOC) >> 2)) 2258 return (1); 2259 #endif 2260 2261 /* 2262 * If zio data pages are being allocated out of a separate heap segment, 2263 * then enforce that the size of available vmem for this arena remains 2264 * above about 1/16th free. 2265 * 2266 * Note: The 1/16th arena free requirement was put in place 2267 * to aggressively evict memory from the arc in order to avoid 2268 * memory fragmentation issues. 2269 */ 2270 if (zio_arena != NULL && 2271 vmem_size(zio_arena, VMEM_FREE) < 2272 (vmem_size(zio_arena, VMEM_ALLOC) >> 4)) 2273 return (1); 2274 #else 2275 if (spa_get_random(100) == 0) 2276 return (1); 2277 #endif 2278 return (0); 2279 } 2280 2281 static void 2282 arc_kmem_reap_now(arc_reclaim_strategy_t strat) 2283 { 2284 size_t i; 2285 kmem_cache_t *prev_cache = NULL; 2286 kmem_cache_t *prev_data_cache = NULL; 2287 extern kmem_cache_t *zio_buf_cache[]; 2288 extern kmem_cache_t *zio_data_buf_cache[]; 2289 extern kmem_cache_t *range_seg_cache; 2290 2291 #ifdef _KERNEL 2292 if (arc_meta_used >= arc_meta_limit) { 2293 /* 2294 * We are exceeding our meta-data cache limit. 2295 * Purge some DNLC entries to release holds on meta-data. 2296 */ 2297 dnlc_reduce_cache((void *)(uintptr_t)arc_reduce_dnlc_percent); 2298 } 2299 #if defined(__i386) 2300 /* 2301 * Reclaim unused memory from all kmem caches. 2302 */ 2303 kmem_reap(); 2304 #endif 2305 #endif 2306 2307 /* 2308 * An aggressive reclamation will shrink the cache size as well as 2309 * reap free buffers from the arc kmem caches. 2310 */ 2311 if (strat == ARC_RECLAIM_AGGR) 2312 arc_shrink(); 2313 2314 for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) { 2315 if (zio_buf_cache[i] != prev_cache) { 2316 prev_cache = zio_buf_cache[i]; 2317 kmem_cache_reap_now(zio_buf_cache[i]); 2318 } 2319 if (zio_data_buf_cache[i] != prev_data_cache) { 2320 prev_data_cache = zio_data_buf_cache[i]; 2321 kmem_cache_reap_now(zio_data_buf_cache[i]); 2322 } 2323 } 2324 kmem_cache_reap_now(buf_cache); 2325 kmem_cache_reap_now(hdr_cache); 2326 kmem_cache_reap_now(range_seg_cache); 2327 2328 /* 2329 * Ask the vmem areana to reclaim unused memory from its 2330 * quantum caches. 2331 */ 2332 if (zio_arena != NULL && strat == ARC_RECLAIM_AGGR) 2333 vmem_qcache_reap(zio_arena); 2334 } 2335 2336 static void 2337 arc_reclaim_thread(void) 2338 { 2339 clock_t growtime = 0; 2340 arc_reclaim_strategy_t last_reclaim = ARC_RECLAIM_CONS; 2341 callb_cpr_t cpr; 2342 2343 CALLB_CPR_INIT(&cpr, &arc_reclaim_thr_lock, callb_generic_cpr, FTAG); 2344 2345 mutex_enter(&arc_reclaim_thr_lock); 2346 while (arc_thread_exit == 0) { 2347 if (arc_reclaim_needed()) { 2348 2349 if (arc_no_grow) { 2350 if (last_reclaim == ARC_RECLAIM_CONS) { 2351 last_reclaim = ARC_RECLAIM_AGGR; 2352 } else { 2353 last_reclaim = ARC_RECLAIM_CONS; 2354 } 2355 } else { 2356 arc_no_grow = TRUE; 2357 last_reclaim = ARC_RECLAIM_AGGR; 2358 membar_producer(); 2359 } 2360 2361 /* reset the growth delay for every reclaim */ 2362 growtime = ddi_get_lbolt() + (arc_grow_retry * hz); 2363 2364 arc_kmem_reap_now(last_reclaim); 2365 arc_warm = B_TRUE; 2366 2367 } else if (arc_no_grow && ddi_get_lbolt() >= growtime) { 2368 arc_no_grow = FALSE; 2369 } 2370 2371 arc_adjust(); 2372 2373 if (arc_eviction_list != NULL) 2374 arc_do_user_evicts(); 2375 2376 /* block until needed, or one second, whichever is shorter */ 2377 CALLB_CPR_SAFE_BEGIN(&cpr); 2378 (void) cv_timedwait(&arc_reclaim_thr_cv, 2379 &arc_reclaim_thr_lock, (ddi_get_lbolt() + hz)); 2380 CALLB_CPR_SAFE_END(&cpr, &arc_reclaim_thr_lock); 2381 } 2382 2383 arc_thread_exit = 0; 2384 cv_broadcast(&arc_reclaim_thr_cv); 2385 CALLB_CPR_EXIT(&cpr); /* drops arc_reclaim_thr_lock */ 2386 thread_exit(); 2387 } 2388 2389 /* 2390 * Adapt arc info given the number of bytes we are trying to add and 2391 * the state that we are comming from. This function is only called 2392 * when we are adding new content to the cache. 2393 */ 2394 static void 2395 arc_adapt(int bytes, arc_state_t *state) 2396 { 2397 int mult; 2398 uint64_t arc_p_min = (arc_c >> arc_p_min_shift); 2399 2400 if (state == arc_l2c_only) 2401 return; 2402 2403 ASSERT(bytes > 0); 2404 /* 2405 * Adapt the target size of the MRU list: 2406 * - if we just hit in the MRU ghost list, then increase 2407 * the target size of the MRU list. 2408 * - if we just hit in the MFU ghost list, then increase 2409 * the target size of the MFU list by decreasing the 2410 * target size of the MRU list. 2411 */ 2412 if (state == arc_mru_ghost) { 2413 mult = ((arc_mru_ghost->arcs_size >= arc_mfu_ghost->arcs_size) ? 2414 1 : (arc_mfu_ghost->arcs_size/arc_mru_ghost->arcs_size)); 2415 mult = MIN(mult, 10); /* avoid wild arc_p adjustment */ 2416 2417 arc_p = MIN(arc_c - arc_p_min, arc_p + bytes * mult); 2418 } else if (state == arc_mfu_ghost) { 2419 uint64_t delta; 2420 2421 mult = ((arc_mfu_ghost->arcs_size >= arc_mru_ghost->arcs_size) ? 2422 1 : (arc_mru_ghost->arcs_size/arc_mfu_ghost->arcs_size)); 2423 mult = MIN(mult, 10); 2424 2425 delta = MIN(bytes * mult, arc_p); 2426 arc_p = MAX(arc_p_min, arc_p - delta); 2427 } 2428 ASSERT((int64_t)arc_p >= 0); 2429 2430 if (arc_reclaim_needed()) { 2431 cv_signal(&arc_reclaim_thr_cv); 2432 return; 2433 } 2434 2435 if (arc_no_grow) 2436 return; 2437 2438 if (arc_c >= arc_c_max) 2439 return; 2440 2441 /* 2442 * If we're within (2 * maxblocksize) bytes of the target 2443 * cache size, increment the target cache size 2444 */ 2445 if (arc_size > arc_c - (2ULL << SPA_MAXBLOCKSHIFT)) { 2446 atomic_add_64(&arc_c, (int64_t)bytes); 2447 if (arc_c > arc_c_max) 2448 arc_c = arc_c_max; 2449 else if (state == arc_anon) 2450 atomic_add_64(&arc_p, (int64_t)bytes); 2451 if (arc_p > arc_c) 2452 arc_p = arc_c; 2453 } 2454 ASSERT((int64_t)arc_p >= 0); 2455 } 2456 2457 /* 2458 * Check if the cache has reached its limits and eviction is required 2459 * prior to insert. 2460 */ 2461 static int 2462 arc_evict_needed(arc_buf_contents_t type) 2463 { 2464 if (type == ARC_BUFC_METADATA && arc_meta_used >= arc_meta_limit) 2465 return (1); 2466 2467 if (arc_reclaim_needed()) 2468 return (1); 2469 2470 return (arc_size > arc_c); 2471 } 2472 2473 /* 2474 * The buffer, supplied as the first argument, needs a data block. 2475 * So, if we are at cache max, determine which cache should be victimized. 2476 * We have the following cases: 2477 * 2478 * 1. Insert for MRU, p > sizeof(arc_anon + arc_mru) -> 2479 * In this situation if we're out of space, but the resident size of the MFU is 2480 * under the limit, victimize the MFU cache to satisfy this insertion request. 2481 * 2482 * 2. Insert for MRU, p <= sizeof(arc_anon + arc_mru) -> 2483 * Here, we've used up all of the available space for the MRU, so we need to 2484 * evict from our own cache instead. Evict from the set of resident MRU 2485 * entries. 2486 * 2487 * 3. Insert for MFU (c - p) > sizeof(arc_mfu) -> 2488 * c minus p represents the MFU space in the cache, since p is the size of the 2489 * cache that is dedicated to the MRU. In this situation there's still space on 2490 * the MFU side, so the MRU side needs to be victimized. 2491 * 2492 * 4. Insert for MFU (c - p) < sizeof(arc_mfu) -> 2493 * MFU's resident set is consuming more space than it has been allotted. In 2494 * this situation, we must victimize our own cache, the MFU, for this insertion. 2495 */ 2496 static void 2497 arc_get_data_buf(arc_buf_t *buf) 2498 { 2499 arc_state_t *state = buf->b_hdr->b_state; 2500 uint64_t size = buf->b_hdr->b_size; 2501 arc_buf_contents_t type = buf->b_hdr->b_type; 2502 2503 arc_adapt(size, state); 2504 2505 /* 2506 * We have not yet reached cache maximum size, 2507 * just allocate a new buffer. 2508 */ 2509 if (!arc_evict_needed(type)) { 2510 if (type == ARC_BUFC_METADATA) { 2511 buf->b_data = zio_buf_alloc(size); 2512 arc_space_consume(size, ARC_SPACE_DATA); 2513 } else { 2514 ASSERT(type == ARC_BUFC_DATA); 2515 buf->b_data = zio_data_buf_alloc(size); 2516 ARCSTAT_INCR(arcstat_data_size, size); 2517 atomic_add_64(&arc_size, size); 2518 } 2519 goto out; 2520 } 2521 2522 /* 2523 * If we are prefetching from the mfu ghost list, this buffer 2524 * will end up on the mru list; so steal space from there. 2525 */ 2526 if (state == arc_mfu_ghost) 2527 state = buf->b_hdr->b_flags & ARC_PREFETCH ? arc_mru : arc_mfu; 2528 else if (state == arc_mru_ghost) 2529 state = arc_mru; 2530 2531 if (state == arc_mru || state == arc_anon) { 2532 uint64_t mru_used = arc_anon->arcs_size + arc_mru->arcs_size; 2533 state = (arc_mfu->arcs_lsize[type] >= size && 2534 arc_p > mru_used) ? arc_mfu : arc_mru; 2535 } else { 2536 /* MFU cases */ 2537 uint64_t mfu_space = arc_c - arc_p; 2538 state = (arc_mru->arcs_lsize[type] >= size && 2539 mfu_space > arc_mfu->arcs_size) ? arc_mru : arc_mfu; 2540 } 2541 if ((buf->b_data = arc_evict(state, NULL, size, TRUE, type)) == NULL) { 2542 if (type == ARC_BUFC_METADATA) { 2543 buf->b_data = zio_buf_alloc(size); 2544 arc_space_consume(size, ARC_SPACE_DATA); 2545 } else { 2546 ASSERT(type == ARC_BUFC_DATA); 2547 buf->b_data = zio_data_buf_alloc(size); 2548 ARCSTAT_INCR(arcstat_data_size, size); 2549 atomic_add_64(&arc_size, size); 2550 } 2551 ARCSTAT_BUMP(arcstat_recycle_miss); 2552 } 2553 ASSERT(buf->b_data != NULL); 2554 out: 2555 /* 2556 * Update the state size. Note that ghost states have a 2557 * "ghost size" and so don't need to be updated. 2558 */ 2559 if (!GHOST_STATE(buf->b_hdr->b_state)) { 2560 arc_buf_hdr_t *hdr = buf->b_hdr; 2561 2562 atomic_add_64(&hdr->b_state->arcs_size, size); 2563 if (list_link_active(&hdr->b_arc_node)) { 2564 ASSERT(refcount_is_zero(&hdr->b_refcnt)); 2565 atomic_add_64(&hdr->b_state->arcs_lsize[type], size); 2566 } 2567 /* 2568 * If we are growing the cache, and we are adding anonymous 2569 * data, and we have outgrown arc_p, update arc_p 2570 */ 2571 if (arc_size < arc_c && hdr->b_state == arc_anon && 2572 arc_anon->arcs_size + arc_mru->arcs_size > arc_p) 2573 arc_p = MIN(arc_c, arc_p + size); 2574 } 2575 } 2576 2577 /* 2578 * This routine is called whenever a buffer is accessed. 2579 * NOTE: the hash lock is dropped in this function. 2580 */ 2581 static void 2582 arc_access(arc_buf_hdr_t *buf, kmutex_t *hash_lock) 2583 { 2584 clock_t now; 2585 2586 ASSERT(MUTEX_HELD(hash_lock)); 2587 2588 if (buf->b_state == arc_anon) { 2589 /* 2590 * This buffer is not in the cache, and does not 2591 * appear in our "ghost" list. Add the new buffer 2592 * to the MRU state. 2593 */ 2594 2595 ASSERT(buf->b_arc_access == 0); 2596 buf->b_arc_access = ddi_get_lbolt(); 2597 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, buf); 2598 arc_change_state(arc_mru, buf, hash_lock); 2599 2600 } else if (buf->b_state == arc_mru) { 2601 now = ddi_get_lbolt(); 2602 2603 /* 2604 * If this buffer is here because of a prefetch, then either: 2605 * - clear the flag if this is a "referencing" read 2606 * (any subsequent access will bump this into the MFU state). 2607 * or 2608 * - move the buffer to the head of the list if this is 2609 * another prefetch (to make it less likely to be evicted). 2610 */ 2611 if ((buf->b_flags & ARC_PREFETCH) != 0) { 2612 if (refcount_count(&buf->b_refcnt) == 0) { 2613 ASSERT(list_link_active(&buf->b_arc_node)); 2614 } else { 2615 buf->b_flags &= ~ARC_PREFETCH; 2616 ARCSTAT_BUMP(arcstat_mru_hits); 2617 } 2618 buf->b_arc_access = now; 2619 return; 2620 } 2621 2622 /* 2623 * This buffer has been "accessed" only once so far, 2624 * but it is still in the cache. Move it to the MFU 2625 * state. 2626 */ 2627 if (now > buf->b_arc_access + ARC_MINTIME) { 2628 /* 2629 * More than 125ms have passed since we 2630 * instantiated this buffer. Move it to the 2631 * most frequently used state. 2632 */ 2633 buf->b_arc_access = now; 2634 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf); 2635 arc_change_state(arc_mfu, buf, hash_lock); 2636 } 2637 ARCSTAT_BUMP(arcstat_mru_hits); 2638 } else if (buf->b_state == arc_mru_ghost) { 2639 arc_state_t *new_state; 2640 /* 2641 * This buffer has been "accessed" recently, but 2642 * was evicted from the cache. Move it to the 2643 * MFU state. 2644 */ 2645 2646 if (buf->b_flags & ARC_PREFETCH) { 2647 new_state = arc_mru; 2648 if (refcount_count(&buf->b_refcnt) > 0) 2649 buf->b_flags &= ~ARC_PREFETCH; 2650 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, buf); 2651 } else { 2652 new_state = arc_mfu; 2653 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf); 2654 } 2655 2656 buf->b_arc_access = ddi_get_lbolt(); 2657 arc_change_state(new_state, buf, hash_lock); 2658 2659 ARCSTAT_BUMP(arcstat_mru_ghost_hits); 2660 } else if (buf->b_state == arc_mfu) { 2661 /* 2662 * This buffer has been accessed more than once and is 2663 * still in the cache. Keep it in the MFU state. 2664 * 2665 * NOTE: an add_reference() that occurred when we did 2666 * the arc_read() will have kicked this off the list. 2667 * If it was a prefetch, we will explicitly move it to 2668 * the head of the list now. 2669 */ 2670 if ((buf->b_flags & ARC_PREFETCH) != 0) { 2671 ASSERT(refcount_count(&buf->b_refcnt) == 0); 2672 ASSERT(list_link_active(&buf->b_arc_node)); 2673 } 2674 ARCSTAT_BUMP(arcstat_mfu_hits); 2675 buf->b_arc_access = ddi_get_lbolt(); 2676 } else if (buf->b_state == arc_mfu_ghost) { 2677 arc_state_t *new_state = arc_mfu; 2678 /* 2679 * This buffer has been accessed more than once but has 2680 * been evicted from the cache. Move it back to the 2681 * MFU state. 2682 */ 2683 2684 if (buf->b_flags & ARC_PREFETCH) { 2685 /* 2686 * This is a prefetch access... 2687 * move this block back to the MRU state. 2688 */ 2689 ASSERT0(refcount_count(&buf->b_refcnt)); 2690 new_state = arc_mru; 2691 } 2692 2693 buf->b_arc_access = ddi_get_lbolt(); 2694 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf); 2695 arc_change_state(new_state, buf, hash_lock); 2696 2697 ARCSTAT_BUMP(arcstat_mfu_ghost_hits); 2698 } else if (buf->b_state == arc_l2c_only) { 2699 /* 2700 * This buffer is on the 2nd Level ARC. 2701 */ 2702 2703 buf->b_arc_access = ddi_get_lbolt(); 2704 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf); 2705 arc_change_state(arc_mfu, buf, hash_lock); 2706 } else { 2707 ASSERT(!"invalid arc state"); 2708 } 2709 } 2710 2711 /* a generic arc_done_func_t which you can use */ 2712 /* ARGSUSED */ 2713 void 2714 arc_bcopy_func(zio_t *zio, arc_buf_t *buf, void *arg) 2715 { 2716 if (zio == NULL || zio->io_error == 0) 2717 bcopy(buf->b_data, arg, buf->b_hdr->b_size); 2718 VERIFY(arc_buf_remove_ref(buf, arg)); 2719 } 2720 2721 /* a generic arc_done_func_t */ 2722 void 2723 arc_getbuf_func(zio_t *zio, arc_buf_t *buf, void *arg) 2724 { 2725 arc_buf_t **bufp = arg; 2726 if (zio && zio->io_error) { 2727 VERIFY(arc_buf_remove_ref(buf, arg)); 2728 *bufp = NULL; 2729 } else { 2730 *bufp = buf; 2731 ASSERT(buf->b_data); 2732 } 2733 } 2734 2735 static void 2736 arc_read_done(zio_t *zio) 2737 { 2738 arc_buf_hdr_t *hdr; 2739 arc_buf_t *buf; 2740 arc_buf_t *abuf; /* buffer we're assigning to callback */ 2741 kmutex_t *hash_lock = NULL; 2742 arc_callback_t *callback_list, *acb; 2743 int freeable = FALSE; 2744 2745 buf = zio->io_private; 2746 hdr = buf->b_hdr; 2747 2748 /* 2749 * The hdr was inserted into hash-table and removed from lists 2750 * prior to starting I/O. We should find this header, since 2751 * it's in the hash table, and it should be legit since it's 2752 * not possible to evict it during the I/O. The only possible 2753 * reason for it not to be found is if we were freed during the 2754 * read. 2755 */ 2756 if (HDR_IN_HASH_TABLE(hdr)) { 2757 ASSERT3U(hdr->b_birth, ==, BP_PHYSICAL_BIRTH(zio->io_bp)); 2758 ASSERT3U(hdr->b_dva.dva_word[0], ==, 2759 BP_IDENTITY(zio->io_bp)->dva_word[0]); 2760 ASSERT3U(hdr->b_dva.dva_word[1], ==, 2761 BP_IDENTITY(zio->io_bp)->dva_word[1]); 2762 2763 arc_buf_hdr_t *found = buf_hash_find(hdr->b_spa, zio->io_bp, 2764 &hash_lock); 2765 2766 ASSERT((found == NULL && HDR_FREED_IN_READ(hdr) && 2767 hash_lock == NULL) || 2768 (found == hdr && 2769 DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))) || 2770 (found == hdr && HDR_L2_READING(hdr))); 2771 } 2772 2773 hdr->b_flags &= ~ARC_L2_EVICTED; 2774 if (l2arc_noprefetch && (hdr->b_flags & ARC_PREFETCH)) 2775 hdr->b_flags &= ~ARC_L2CACHE; 2776 2777 /* byteswap if necessary */ 2778 callback_list = hdr->b_acb; 2779 ASSERT(callback_list != NULL); 2780 if (BP_SHOULD_BYTESWAP(zio->io_bp) && zio->io_error == 0) { 2781 dmu_object_byteswap_t bswap = 2782 DMU_OT_BYTESWAP(BP_GET_TYPE(zio->io_bp)); 2783 arc_byteswap_func_t *func = BP_GET_LEVEL(zio->io_bp) > 0 ? 2784 byteswap_uint64_array : 2785 dmu_ot_byteswap[bswap].ob_func; 2786 func(buf->b_data, hdr->b_size); 2787 } 2788 2789 arc_cksum_compute(buf, B_FALSE); 2790 arc_buf_watch(buf); 2791 2792 if (hash_lock && zio->io_error == 0 && hdr->b_state == arc_anon) { 2793 /* 2794 * Only call arc_access on anonymous buffers. This is because 2795 * if we've issued an I/O for an evicted buffer, we've already 2796 * called arc_access (to prevent any simultaneous readers from 2797 * getting confused). 2798 */ 2799 arc_access(hdr, hash_lock); 2800 } 2801 2802 /* create copies of the data buffer for the callers */ 2803 abuf = buf; 2804 for (acb = callback_list; acb; acb = acb->acb_next) { 2805 if (acb->acb_done) { 2806 if (abuf == NULL) { 2807 ARCSTAT_BUMP(arcstat_duplicate_reads); 2808 abuf = arc_buf_clone(buf); 2809 } 2810 acb->acb_buf = abuf; 2811 abuf = NULL; 2812 } 2813 } 2814 hdr->b_acb = NULL; 2815 hdr->b_flags &= ~ARC_IO_IN_PROGRESS; 2816 ASSERT(!HDR_BUF_AVAILABLE(hdr)); 2817 if (abuf == buf) { 2818 ASSERT(buf->b_efunc == NULL); 2819 ASSERT(hdr->b_datacnt == 1); 2820 hdr->b_flags |= ARC_BUF_AVAILABLE; 2821 } 2822 2823 ASSERT(refcount_is_zero(&hdr->b_refcnt) || callback_list != NULL); 2824 2825 if (zio->io_error != 0) { 2826 hdr->b_flags |= ARC_IO_ERROR; 2827 if (hdr->b_state != arc_anon) 2828 arc_change_state(arc_anon, hdr, hash_lock); 2829 if (HDR_IN_HASH_TABLE(hdr)) 2830 buf_hash_remove(hdr); 2831 freeable = refcount_is_zero(&hdr->b_refcnt); 2832 } 2833 2834 /* 2835 * Broadcast before we drop the hash_lock to avoid the possibility 2836 * that the hdr (and hence the cv) might be freed before we get to 2837 * the cv_broadcast(). 2838 */ 2839 cv_broadcast(&hdr->b_cv); 2840 2841 if (hash_lock) { 2842 mutex_exit(hash_lock); 2843 } else { 2844 /* 2845 * This block was freed while we waited for the read to 2846 * complete. It has been removed from the hash table and 2847 * moved to the anonymous state (so that it won't show up 2848 * in the cache). 2849 */ 2850 ASSERT3P(hdr->b_state, ==, arc_anon); 2851 freeable = refcount_is_zero(&hdr->b_refcnt); 2852 } 2853 2854 /* execute each callback and free its structure */ 2855 while ((acb = callback_list) != NULL) { 2856 if (acb->acb_done) 2857 acb->acb_done(zio, acb->acb_buf, acb->acb_private); 2858 2859 if (acb->acb_zio_dummy != NULL) { 2860 acb->acb_zio_dummy->io_error = zio->io_error; 2861 zio_nowait(acb->acb_zio_dummy); 2862 } 2863 2864 callback_list = acb->acb_next; 2865 kmem_free(acb, sizeof (arc_callback_t)); 2866 } 2867 2868 if (freeable) 2869 arc_hdr_destroy(hdr); 2870 } 2871 2872 /* 2873 * "Read" the block at the specified DVA (in bp) via the 2874 * cache. If the block is found in the cache, invoke the provided 2875 * callback immediately and return. Note that the `zio' parameter 2876 * in the callback will be NULL in this case, since no IO was 2877 * required. If the block is not in the cache pass the read request 2878 * on to the spa with a substitute callback function, so that the 2879 * requested block will be added to the cache. 2880 * 2881 * If a read request arrives for a block that has a read in-progress, 2882 * either wait for the in-progress read to complete (and return the 2883 * results); or, if this is a read with a "done" func, add a record 2884 * to the read to invoke the "done" func when the read completes, 2885 * and return; or just return. 2886 * 2887 * arc_read_done() will invoke all the requested "done" functions 2888 * for readers of this block. 2889 */ 2890 int 2891 arc_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, arc_done_func_t *done, 2892 void *private, zio_priority_t priority, int zio_flags, uint32_t *arc_flags, 2893 const zbookmark_phys_t *zb) 2894 { 2895 arc_buf_hdr_t *hdr = NULL; 2896 arc_buf_t *buf = NULL; 2897 kmutex_t *hash_lock = NULL; 2898 zio_t *rzio; 2899 uint64_t guid = spa_load_guid(spa); 2900 2901 ASSERT(!BP_IS_EMBEDDED(bp) || 2902 BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA); 2903 2904 top: 2905 if (!BP_IS_EMBEDDED(bp)) { 2906 /* 2907 * Embedded BP's have no DVA and require no I/O to "read". 2908 * Create an anonymous arc buf to back it. 2909 */ 2910 hdr = buf_hash_find(guid, bp, &hash_lock); 2911 } 2912 2913 if (hdr != NULL && hdr->b_datacnt > 0) { 2914 2915 *arc_flags |= ARC_CACHED; 2916 2917 if (HDR_IO_IN_PROGRESS(hdr)) { 2918 2919 if (*arc_flags & ARC_WAIT) { 2920 cv_wait(&hdr->b_cv, hash_lock); 2921 mutex_exit(hash_lock); 2922 goto top; 2923 } 2924 ASSERT(*arc_flags & ARC_NOWAIT); 2925 2926 if (done) { 2927 arc_callback_t *acb = NULL; 2928 2929 acb = kmem_zalloc(sizeof (arc_callback_t), 2930 KM_SLEEP); 2931 acb->acb_done = done; 2932 acb->acb_private = private; 2933 if (pio != NULL) 2934 acb->acb_zio_dummy = zio_null(pio, 2935 spa, NULL, NULL, NULL, zio_flags); 2936 2937 ASSERT(acb->acb_done != NULL); 2938 acb->acb_next = hdr->b_acb; 2939 hdr->b_acb = acb; 2940 add_reference(hdr, hash_lock, private); 2941 mutex_exit(hash_lock); 2942 return (0); 2943 } 2944 mutex_exit(hash_lock); 2945 return (0); 2946 } 2947 2948 ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu); 2949 2950 if (done) { 2951 add_reference(hdr, hash_lock, private); 2952 /* 2953 * If this block is already in use, create a new 2954 * copy of the data so that we will be guaranteed 2955 * that arc_release() will always succeed. 2956 */ 2957 buf = hdr->b_buf; 2958 ASSERT(buf); 2959 ASSERT(buf->b_data); 2960 if (HDR_BUF_AVAILABLE(hdr)) { 2961 ASSERT(buf->b_efunc == NULL); 2962 hdr->b_flags &= ~ARC_BUF_AVAILABLE; 2963 } else { 2964 buf = arc_buf_clone(buf); 2965 } 2966 2967 } else if (*arc_flags & ARC_PREFETCH && 2968 refcount_count(&hdr->b_refcnt) == 0) { 2969 hdr->b_flags |= ARC_PREFETCH; 2970 } 2971 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr); 2972 arc_access(hdr, hash_lock); 2973 if (*arc_flags & ARC_L2CACHE) 2974 hdr->b_flags |= ARC_L2CACHE; 2975 if (*arc_flags & ARC_L2COMPRESS) 2976 hdr->b_flags |= ARC_L2COMPRESS; 2977 mutex_exit(hash_lock); 2978 ARCSTAT_BUMP(arcstat_hits); 2979 ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH), 2980 demand, prefetch, hdr->b_type != ARC_BUFC_METADATA, 2981 data, metadata, hits); 2982 2983 if (done) 2984 done(NULL, buf, private); 2985 } else { 2986 uint64_t size = BP_GET_LSIZE(bp); 2987 arc_callback_t *acb; 2988 vdev_t *vd = NULL; 2989 uint64_t addr = 0; 2990 boolean_t devw = B_FALSE; 2991 enum zio_compress b_compress = ZIO_COMPRESS_OFF; 2992 uint64_t b_asize = 0; 2993 2994 if (hdr == NULL) { 2995 /* this block is not in the cache */ 2996 arc_buf_hdr_t *exists = NULL; 2997 arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp); 2998 buf = arc_buf_alloc(spa, size, private, type); 2999 hdr = buf->b_hdr; 3000 if (!BP_IS_EMBEDDED(bp)) { 3001 hdr->b_dva = *BP_IDENTITY(bp); 3002 hdr->b_birth = BP_PHYSICAL_BIRTH(bp); 3003 hdr->b_cksum0 = bp->blk_cksum.zc_word[0]; 3004 exists = buf_hash_insert(hdr, &hash_lock); 3005 } 3006 if (exists != NULL) { 3007 /* somebody beat us to the hash insert */ 3008 mutex_exit(hash_lock); 3009 buf_discard_identity(hdr); 3010 (void) arc_buf_remove_ref(buf, private); 3011 goto top; /* restart the IO request */ 3012 } 3013 /* if this is a prefetch, we don't have a reference */ 3014 if (*arc_flags & ARC_PREFETCH) { 3015 (void) remove_reference(hdr, hash_lock, 3016 private); 3017 hdr->b_flags |= ARC_PREFETCH; 3018 } 3019 if (*arc_flags & ARC_L2CACHE) 3020 hdr->b_flags |= ARC_L2CACHE; 3021 if (*arc_flags & ARC_L2COMPRESS) 3022 hdr->b_flags |= ARC_L2COMPRESS; 3023 if (BP_GET_LEVEL(bp) > 0) 3024 hdr->b_flags |= ARC_INDIRECT; 3025 } else { 3026 /* this block is in the ghost cache */ 3027 ASSERT(GHOST_STATE(hdr->b_state)); 3028 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 3029 ASSERT0(refcount_count(&hdr->b_refcnt)); 3030 ASSERT(hdr->b_buf == NULL); 3031 3032 /* if this is a prefetch, we don't have a reference */ 3033 if (*arc_flags & ARC_PREFETCH) 3034 hdr->b_flags |= ARC_PREFETCH; 3035 else 3036 add_reference(hdr, hash_lock, private); 3037 if (*arc_flags & ARC_L2CACHE) 3038 hdr->b_flags |= ARC_L2CACHE; 3039 if (*arc_flags & ARC_L2COMPRESS) 3040 hdr->b_flags |= ARC_L2COMPRESS; 3041 buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE); 3042 buf->b_hdr = hdr; 3043 buf->b_data = NULL; 3044 buf->b_efunc = NULL; 3045 buf->b_private = NULL; 3046 buf->b_next = NULL; 3047 hdr->b_buf = buf; 3048 ASSERT(hdr->b_datacnt == 0); 3049 hdr->b_datacnt = 1; 3050 arc_get_data_buf(buf); 3051 arc_access(hdr, hash_lock); 3052 } 3053 3054 ASSERT(!GHOST_STATE(hdr->b_state)); 3055 3056 acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP); 3057 acb->acb_done = done; 3058 acb->acb_private = private; 3059 3060 ASSERT(hdr->b_acb == NULL); 3061 hdr->b_acb = acb; 3062 hdr->b_flags |= ARC_IO_IN_PROGRESS; 3063 3064 if (hdr->b_l2hdr != NULL && 3065 (vd = hdr->b_l2hdr->b_dev->l2ad_vdev) != NULL) { 3066 devw = hdr->b_l2hdr->b_dev->l2ad_writing; 3067 addr = hdr->b_l2hdr->b_daddr; 3068 b_compress = hdr->b_l2hdr->b_compress; 3069 b_asize = hdr->b_l2hdr->b_asize; 3070 /* 3071 * Lock out device removal. 3072 */ 3073 if (vdev_is_dead(vd) || 3074 !spa_config_tryenter(spa, SCL_L2ARC, vd, RW_READER)) 3075 vd = NULL; 3076 } 3077 3078 if (hash_lock != NULL) 3079 mutex_exit(hash_lock); 3080 3081 /* 3082 * At this point, we have a level 1 cache miss. Try again in 3083 * L2ARC if possible. 3084 */ 3085 ASSERT3U(hdr->b_size, ==, size); 3086 DTRACE_PROBE4(arc__miss, arc_buf_hdr_t *, hdr, blkptr_t *, bp, 3087 uint64_t, size, zbookmark_phys_t *, zb); 3088 ARCSTAT_BUMP(arcstat_misses); 3089 ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH), 3090 demand, prefetch, hdr->b_type != ARC_BUFC_METADATA, 3091 data, metadata, misses); 3092 3093 if (vd != NULL && l2arc_ndev != 0 && !(l2arc_norw && devw)) { 3094 /* 3095 * Read from the L2ARC if the following are true: 3096 * 1. The L2ARC vdev was previously cached. 3097 * 2. This buffer still has L2ARC metadata. 3098 * 3. This buffer isn't currently writing to the L2ARC. 3099 * 4. The L2ARC entry wasn't evicted, which may 3100 * also have invalidated the vdev. 3101 * 5. This isn't prefetch and l2arc_noprefetch is set. 3102 */ 3103 if (hdr->b_l2hdr != NULL && 3104 !HDR_L2_WRITING(hdr) && !HDR_L2_EVICTED(hdr) && 3105 !(l2arc_noprefetch && HDR_PREFETCH(hdr))) { 3106 l2arc_read_callback_t *cb; 3107 3108 DTRACE_PROBE1(l2arc__hit, arc_buf_hdr_t *, hdr); 3109 ARCSTAT_BUMP(arcstat_l2_hits); 3110 3111 cb = kmem_zalloc(sizeof (l2arc_read_callback_t), 3112 KM_SLEEP); 3113 cb->l2rcb_buf = buf; 3114 cb->l2rcb_spa = spa; 3115 cb->l2rcb_bp = *bp; 3116 cb->l2rcb_zb = *zb; 3117 cb->l2rcb_flags = zio_flags; 3118 cb->l2rcb_compress = b_compress; 3119 3120 ASSERT(addr >= VDEV_LABEL_START_SIZE && 3121 addr + size < vd->vdev_psize - 3122 VDEV_LABEL_END_SIZE); 3123 3124 /* 3125 * l2arc read. The SCL_L2ARC lock will be 3126 * released by l2arc_read_done(). 3127 * Issue a null zio if the underlying buffer 3128 * was squashed to zero size by compression. 3129 */ 3130 if (b_compress == ZIO_COMPRESS_EMPTY) { 3131 rzio = zio_null(pio, spa, vd, 3132 l2arc_read_done, cb, 3133 zio_flags | ZIO_FLAG_DONT_CACHE | 3134 ZIO_FLAG_CANFAIL | 3135 ZIO_FLAG_DONT_PROPAGATE | 3136 ZIO_FLAG_DONT_RETRY); 3137 } else { 3138 rzio = zio_read_phys(pio, vd, addr, 3139 b_asize, buf->b_data, 3140 ZIO_CHECKSUM_OFF, 3141 l2arc_read_done, cb, priority, 3142 zio_flags | ZIO_FLAG_DONT_CACHE | 3143 ZIO_FLAG_CANFAIL | 3144 ZIO_FLAG_DONT_PROPAGATE | 3145 ZIO_FLAG_DONT_RETRY, B_FALSE); 3146 } 3147 DTRACE_PROBE2(l2arc__read, vdev_t *, vd, 3148 zio_t *, rzio); 3149 ARCSTAT_INCR(arcstat_l2_read_bytes, b_asize); 3150 3151 if (*arc_flags & ARC_NOWAIT) { 3152 zio_nowait(rzio); 3153 return (0); 3154 } 3155 3156 ASSERT(*arc_flags & ARC_WAIT); 3157 if (zio_wait(rzio) == 0) 3158 return (0); 3159 3160 /* l2arc read error; goto zio_read() */ 3161 } else { 3162 DTRACE_PROBE1(l2arc__miss, 3163 arc_buf_hdr_t *, hdr); 3164 ARCSTAT_BUMP(arcstat_l2_misses); 3165 if (HDR_L2_WRITING(hdr)) 3166 ARCSTAT_BUMP(arcstat_l2_rw_clash); 3167 spa_config_exit(spa, SCL_L2ARC, vd); 3168 } 3169 } else { 3170 if (vd != NULL) 3171 spa_config_exit(spa, SCL_L2ARC, vd); 3172 if (l2arc_ndev != 0) { 3173 DTRACE_PROBE1(l2arc__miss, 3174 arc_buf_hdr_t *, hdr); 3175 ARCSTAT_BUMP(arcstat_l2_misses); 3176 } 3177 } 3178 3179 rzio = zio_read(pio, spa, bp, buf->b_data, size, 3180 arc_read_done, buf, priority, zio_flags, zb); 3181 3182 if (*arc_flags & ARC_WAIT) 3183 return (zio_wait(rzio)); 3184 3185 ASSERT(*arc_flags & ARC_NOWAIT); 3186 zio_nowait(rzio); 3187 } 3188 return (0); 3189 } 3190 3191 void 3192 arc_set_callback(arc_buf_t *buf, arc_evict_func_t *func, void *private) 3193 { 3194 ASSERT(buf->b_hdr != NULL); 3195 ASSERT(buf->b_hdr->b_state != arc_anon); 3196 ASSERT(!refcount_is_zero(&buf->b_hdr->b_refcnt) || func == NULL); 3197 ASSERT(buf->b_efunc == NULL); 3198 ASSERT(!HDR_BUF_AVAILABLE(buf->b_hdr)); 3199 3200 buf->b_efunc = func; 3201 buf->b_private = private; 3202 } 3203 3204 /* 3205 * Notify the arc that a block was freed, and thus will never be used again. 3206 */ 3207 void 3208 arc_freed(spa_t *spa, const blkptr_t *bp) 3209 { 3210 arc_buf_hdr_t *hdr; 3211 kmutex_t *hash_lock; 3212 uint64_t guid = spa_load_guid(spa); 3213 3214 ASSERT(!BP_IS_EMBEDDED(bp)); 3215 3216 hdr = buf_hash_find(guid, bp, &hash_lock); 3217 if (hdr == NULL) 3218 return; 3219 if (HDR_BUF_AVAILABLE(hdr)) { 3220 arc_buf_t *buf = hdr->b_buf; 3221 add_reference(hdr, hash_lock, FTAG); 3222 hdr->b_flags &= ~ARC_BUF_AVAILABLE; 3223 mutex_exit(hash_lock); 3224 3225 arc_release(buf, FTAG); 3226 (void) arc_buf_remove_ref(buf, FTAG); 3227 } else { 3228 mutex_exit(hash_lock); 3229 } 3230 3231 } 3232 3233 /* 3234 * Clear the user eviction callback set by arc_set_callback(), first calling 3235 * it if it exists. Because the presence of a callback keeps an arc_buf cached 3236 * clearing the callback may result in the arc_buf being destroyed. However, 3237 * it will not result in the *last* arc_buf being destroyed, hence the data 3238 * will remain cached in the ARC. We make a copy of the arc buffer here so 3239 * that we can process the callback without holding any locks. 3240 * 3241 * It's possible that the callback is already in the process of being cleared 3242 * by another thread. In this case we can not clear the callback. 3243 * 3244 * Returns B_TRUE if the callback was successfully called and cleared. 3245 */ 3246 boolean_t 3247 arc_clear_callback(arc_buf_t *buf) 3248 { 3249 arc_buf_hdr_t *hdr; 3250 kmutex_t *hash_lock; 3251 arc_evict_func_t *efunc = buf->b_efunc; 3252 void *private = buf->b_private; 3253 3254 mutex_enter(&buf->b_evict_lock); 3255 hdr = buf->b_hdr; 3256 if (hdr == NULL) { 3257 /* 3258 * We are in arc_do_user_evicts(). 3259 */ 3260 ASSERT(buf->b_data == NULL); 3261 mutex_exit(&buf->b_evict_lock); 3262 return (B_FALSE); 3263 } else if (buf->b_data == NULL) { 3264 /* 3265 * We are on the eviction list; process this buffer now 3266 * but let arc_do_user_evicts() do the reaping. 3267 */ 3268 buf->b_efunc = NULL; 3269 mutex_exit(&buf->b_evict_lock); 3270 VERIFY0(efunc(private)); 3271 return (B_TRUE); 3272 } 3273 hash_lock = HDR_LOCK(hdr); 3274 mutex_enter(hash_lock); 3275 hdr = buf->b_hdr; 3276 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 3277 3278 ASSERT3U(refcount_count(&hdr->b_refcnt), <, hdr->b_datacnt); 3279 ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu); 3280 3281 buf->b_efunc = NULL; 3282 buf->b_private = NULL; 3283 3284 if (hdr->b_datacnt > 1) { 3285 mutex_exit(&buf->b_evict_lock); 3286 arc_buf_destroy(buf, FALSE, TRUE); 3287 } else { 3288 ASSERT(buf == hdr->b_buf); 3289 hdr->b_flags |= ARC_BUF_AVAILABLE; 3290 mutex_exit(&buf->b_evict_lock); 3291 } 3292 3293 mutex_exit(hash_lock); 3294 VERIFY0(efunc(private)); 3295 return (B_TRUE); 3296 } 3297 3298 /* 3299 * Release this buffer from the cache, making it an anonymous buffer. This 3300 * must be done after a read and prior to modifying the buffer contents. 3301 * If the buffer has more than one reference, we must make 3302 * a new hdr for the buffer. 3303 */ 3304 void 3305 arc_release(arc_buf_t *buf, void *tag) 3306 { 3307 arc_buf_hdr_t *hdr; 3308 kmutex_t *hash_lock = NULL; 3309 l2arc_buf_hdr_t *l2hdr; 3310 uint64_t buf_size; 3311 3312 /* 3313 * It would be nice to assert that if it's DMU metadata (level > 3314 * 0 || it's the dnode file), then it must be syncing context. 3315 * But we don't know that information at this level. 3316 */ 3317 3318 mutex_enter(&buf->b_evict_lock); 3319 hdr = buf->b_hdr; 3320 3321 /* this buffer is not on any list */ 3322 ASSERT(refcount_count(&hdr->b_refcnt) > 0); 3323 3324 if (hdr->b_state == arc_anon) { 3325 /* this buffer is already released */ 3326 ASSERT(buf->b_efunc == NULL); 3327 } else { 3328 hash_lock = HDR_LOCK(hdr); 3329 mutex_enter(hash_lock); 3330 hdr = buf->b_hdr; 3331 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 3332 } 3333 3334 l2hdr = hdr->b_l2hdr; 3335 if (l2hdr) { 3336 mutex_enter(&l2arc_buflist_mtx); 3337 hdr->b_l2hdr = NULL; 3338 list_remove(l2hdr->b_dev->l2ad_buflist, hdr); 3339 } 3340 buf_size = hdr->b_size; 3341 3342 /* 3343 * Do we have more than one buf? 3344 */ 3345 if (hdr->b_datacnt > 1) { 3346 arc_buf_hdr_t *nhdr; 3347 arc_buf_t **bufp; 3348 uint64_t blksz = hdr->b_size; 3349 uint64_t spa = hdr->b_spa; 3350 arc_buf_contents_t type = hdr->b_type; 3351 uint32_t flags = hdr->b_flags; 3352 3353 ASSERT(hdr->b_buf != buf || buf->b_next != NULL); 3354 /* 3355 * Pull the data off of this hdr and attach it to 3356 * a new anonymous hdr. 3357 */ 3358 (void) remove_reference(hdr, hash_lock, tag); 3359 bufp = &hdr->b_buf; 3360 while (*bufp != buf) 3361 bufp = &(*bufp)->b_next; 3362 *bufp = buf->b_next; 3363 buf->b_next = NULL; 3364 3365 ASSERT3U(hdr->b_state->arcs_size, >=, hdr->b_size); 3366 atomic_add_64(&hdr->b_state->arcs_size, -hdr->b_size); 3367 if (refcount_is_zero(&hdr->b_refcnt)) { 3368 uint64_t *size = &hdr->b_state->arcs_lsize[hdr->b_type]; 3369 ASSERT3U(*size, >=, hdr->b_size); 3370 atomic_add_64(size, -hdr->b_size); 3371 } 3372 3373 /* 3374 * We're releasing a duplicate user data buffer, update 3375 * our statistics accordingly. 3376 */ 3377 if (hdr->b_type == ARC_BUFC_DATA) { 3378 ARCSTAT_BUMPDOWN(arcstat_duplicate_buffers); 3379 ARCSTAT_INCR(arcstat_duplicate_buffers_size, 3380 -hdr->b_size); 3381 } 3382 hdr->b_datacnt -= 1; 3383 arc_cksum_verify(buf); 3384 arc_buf_unwatch(buf); 3385 3386 mutex_exit(hash_lock); 3387 3388 nhdr = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE); 3389 nhdr->b_size = blksz; 3390 nhdr->b_spa = spa; 3391 nhdr->b_type = type; 3392 nhdr->b_buf = buf; 3393 nhdr->b_state = arc_anon; 3394 nhdr->b_arc_access = 0; 3395 nhdr->b_flags = flags & ARC_L2_WRITING; 3396 nhdr->b_l2hdr = NULL; 3397 nhdr->b_datacnt = 1; 3398 nhdr->b_freeze_cksum = NULL; 3399 (void) refcount_add(&nhdr->b_refcnt, tag); 3400 buf->b_hdr = nhdr; 3401 mutex_exit(&buf->b_evict_lock); 3402 atomic_add_64(&arc_anon->arcs_size, blksz); 3403 } else { 3404 mutex_exit(&buf->b_evict_lock); 3405 ASSERT(refcount_count(&hdr->b_refcnt) == 1); 3406 ASSERT(!list_link_active(&hdr->b_arc_node)); 3407 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 3408 if (hdr->b_state != arc_anon) 3409 arc_change_state(arc_anon, hdr, hash_lock); 3410 hdr->b_arc_access = 0; 3411 if (hash_lock) 3412 mutex_exit(hash_lock); 3413 3414 buf_discard_identity(hdr); 3415 arc_buf_thaw(buf); 3416 } 3417 buf->b_efunc = NULL; 3418 buf->b_private = NULL; 3419 3420 if (l2hdr) { 3421 ARCSTAT_INCR(arcstat_l2_asize, -l2hdr->b_asize); 3422 vdev_space_update(l2hdr->b_dev->l2ad_vdev, 3423 -l2hdr->b_asize, 0, 0); 3424 kmem_free(l2hdr, sizeof (l2arc_buf_hdr_t)); 3425 ARCSTAT_INCR(arcstat_l2_size, -buf_size); 3426 mutex_exit(&l2arc_buflist_mtx); 3427 } 3428 } 3429 3430 int 3431 arc_released(arc_buf_t *buf) 3432 { 3433 int released; 3434 3435 mutex_enter(&buf->b_evict_lock); 3436 released = (buf->b_data != NULL && buf->b_hdr->b_state == arc_anon); 3437 mutex_exit(&buf->b_evict_lock); 3438 return (released); 3439 } 3440 3441 #ifdef ZFS_DEBUG 3442 int 3443 arc_referenced(arc_buf_t *buf) 3444 { 3445 int referenced; 3446 3447 mutex_enter(&buf->b_evict_lock); 3448 referenced = (refcount_count(&buf->b_hdr->b_refcnt)); 3449 mutex_exit(&buf->b_evict_lock); 3450 return (referenced); 3451 } 3452 #endif 3453 3454 static void 3455 arc_write_ready(zio_t *zio) 3456 { 3457 arc_write_callback_t *callback = zio->io_private; 3458 arc_buf_t *buf = callback->awcb_buf; 3459 arc_buf_hdr_t *hdr = buf->b_hdr; 3460 3461 ASSERT(!refcount_is_zero(&buf->b_hdr->b_refcnt)); 3462 callback->awcb_ready(zio, buf, callback->awcb_private); 3463 3464 /* 3465 * If the IO is already in progress, then this is a re-write 3466 * attempt, so we need to thaw and re-compute the cksum. 3467 * It is the responsibility of the callback to handle the 3468 * accounting for any re-write attempt. 3469 */ 3470 if (HDR_IO_IN_PROGRESS(hdr)) { 3471 mutex_enter(&hdr->b_freeze_lock); 3472 if (hdr->b_freeze_cksum != NULL) { 3473 kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t)); 3474 hdr->b_freeze_cksum = NULL; 3475 } 3476 mutex_exit(&hdr->b_freeze_lock); 3477 } 3478 arc_cksum_compute(buf, B_FALSE); 3479 hdr->b_flags |= ARC_IO_IN_PROGRESS; 3480 } 3481 3482 /* 3483 * The SPA calls this callback for each physical write that happens on behalf 3484 * of a logical write. See the comment in dbuf_write_physdone() for details. 3485 */ 3486 static void 3487 arc_write_physdone(zio_t *zio) 3488 { 3489 arc_write_callback_t *cb = zio->io_private; 3490 if (cb->awcb_physdone != NULL) 3491 cb->awcb_physdone(zio, cb->awcb_buf, cb->awcb_private); 3492 } 3493 3494 static void 3495 arc_write_done(zio_t *zio) 3496 { 3497 arc_write_callback_t *callback = zio->io_private; 3498 arc_buf_t *buf = callback->awcb_buf; 3499 arc_buf_hdr_t *hdr = buf->b_hdr; 3500 3501 ASSERT(hdr->b_acb == NULL); 3502 3503 if (zio->io_error == 0) { 3504 if (BP_IS_HOLE(zio->io_bp) || BP_IS_EMBEDDED(zio->io_bp)) { 3505 buf_discard_identity(hdr); 3506 } else { 3507 hdr->b_dva = *BP_IDENTITY(zio->io_bp); 3508 hdr->b_birth = BP_PHYSICAL_BIRTH(zio->io_bp); 3509 hdr->b_cksum0 = zio->io_bp->blk_cksum.zc_word[0]; 3510 } 3511 } else { 3512 ASSERT(BUF_EMPTY(hdr)); 3513 } 3514 3515 /* 3516 * If the block to be written was all-zero or compressed enough to be 3517 * embedded in the BP, no write was performed so there will be no 3518 * dva/birth/checksum. The buffer must therefore remain anonymous 3519 * (and uncached). 3520 */ 3521 if (!BUF_EMPTY(hdr)) { 3522 arc_buf_hdr_t *exists; 3523 kmutex_t *hash_lock; 3524 3525 ASSERT(zio->io_error == 0); 3526 3527 arc_cksum_verify(buf); 3528 3529 exists = buf_hash_insert(hdr, &hash_lock); 3530 if (exists) { 3531 /* 3532 * This can only happen if we overwrite for 3533 * sync-to-convergence, because we remove 3534 * buffers from the hash table when we arc_free(). 3535 */ 3536 if (zio->io_flags & ZIO_FLAG_IO_REWRITE) { 3537 if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp)) 3538 panic("bad overwrite, hdr=%p exists=%p", 3539 (void *)hdr, (void *)exists); 3540 ASSERT(refcount_is_zero(&exists->b_refcnt)); 3541 arc_change_state(arc_anon, exists, hash_lock); 3542 mutex_exit(hash_lock); 3543 arc_hdr_destroy(exists); 3544 exists = buf_hash_insert(hdr, &hash_lock); 3545 ASSERT3P(exists, ==, NULL); 3546 } else if (zio->io_flags & ZIO_FLAG_NOPWRITE) { 3547 /* nopwrite */ 3548 ASSERT(zio->io_prop.zp_nopwrite); 3549 if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp)) 3550 panic("bad nopwrite, hdr=%p exists=%p", 3551 (void *)hdr, (void *)exists); 3552 } else { 3553 /* Dedup */ 3554 ASSERT(hdr->b_datacnt == 1); 3555 ASSERT(hdr->b_state == arc_anon); 3556 ASSERT(BP_GET_DEDUP(zio->io_bp)); 3557 ASSERT(BP_GET_LEVEL(zio->io_bp) == 0); 3558 } 3559 } 3560 hdr->b_flags &= ~ARC_IO_IN_PROGRESS; 3561 /* if it's not anon, we are doing a scrub */ 3562 if (!exists && hdr->b_state == arc_anon) 3563 arc_access(hdr, hash_lock); 3564 mutex_exit(hash_lock); 3565 } else { 3566 hdr->b_flags &= ~ARC_IO_IN_PROGRESS; 3567 } 3568 3569 ASSERT(!refcount_is_zero(&hdr->b_refcnt)); 3570 callback->awcb_done(zio, buf, callback->awcb_private); 3571 3572 kmem_free(callback, sizeof (arc_write_callback_t)); 3573 } 3574 3575 zio_t * 3576 arc_write(zio_t *pio, spa_t *spa, uint64_t txg, 3577 blkptr_t *bp, arc_buf_t *buf, boolean_t l2arc, boolean_t l2arc_compress, 3578 const zio_prop_t *zp, arc_done_func_t *ready, arc_done_func_t *physdone, 3579 arc_done_func_t *done, void *private, zio_priority_t priority, 3580 int zio_flags, const zbookmark_phys_t *zb) 3581 { 3582 arc_buf_hdr_t *hdr = buf->b_hdr; 3583 arc_write_callback_t *callback; 3584 zio_t *zio; 3585 3586 ASSERT(ready != NULL); 3587 ASSERT(done != NULL); 3588 ASSERT(!HDR_IO_ERROR(hdr)); 3589 ASSERT((hdr->b_flags & ARC_IO_IN_PROGRESS) == 0); 3590 ASSERT(hdr->b_acb == NULL); 3591 if (l2arc) 3592 hdr->b_flags |= ARC_L2CACHE; 3593 if (l2arc_compress) 3594 hdr->b_flags |= ARC_L2COMPRESS; 3595 callback = kmem_zalloc(sizeof (arc_write_callback_t), KM_SLEEP); 3596 callback->awcb_ready = ready; 3597 callback->awcb_physdone = physdone; 3598 callback->awcb_done = done; 3599 callback->awcb_private = private; 3600 callback->awcb_buf = buf; 3601 3602 zio = zio_write(pio, spa, txg, bp, buf->b_data, hdr->b_size, zp, 3603 arc_write_ready, arc_write_physdone, arc_write_done, callback, 3604 priority, zio_flags, zb); 3605 3606 return (zio); 3607 } 3608 3609 static int 3610 arc_memory_throttle(uint64_t reserve, uint64_t txg) 3611 { 3612 #ifdef _KERNEL 3613 uint64_t available_memory = ptob(freemem); 3614 static uint64_t page_load = 0; 3615 static uint64_t last_txg = 0; 3616 3617 #if defined(__i386) 3618 available_memory = 3619 MIN(available_memory, vmem_size(heap_arena, VMEM_FREE)); 3620 #endif 3621 3622 if (freemem > physmem * arc_lotsfree_percent / 100) 3623 return (0); 3624 3625 if (txg > last_txg) { 3626 last_txg = txg; 3627 page_load = 0; 3628 } 3629 /* 3630 * If we are in pageout, we know that memory is already tight, 3631 * the arc is already going to be evicting, so we just want to 3632 * continue to let page writes occur as quickly as possible. 3633 */ 3634 if (curproc == proc_pageout) { 3635 if (page_load > MAX(ptob(minfree), available_memory) / 4) 3636 return (SET_ERROR(ERESTART)); 3637 /* Note: reserve is inflated, so we deflate */ 3638 page_load += reserve / 8; 3639 return (0); 3640 } else if (page_load > 0 && arc_reclaim_needed()) { 3641 /* memory is low, delay before restarting */ 3642 ARCSTAT_INCR(arcstat_memory_throttle_count, 1); 3643 return (SET_ERROR(EAGAIN)); 3644 } 3645 page_load = 0; 3646 #endif 3647 return (0); 3648 } 3649 3650 void 3651 arc_tempreserve_clear(uint64_t reserve) 3652 { 3653 atomic_add_64(&arc_tempreserve, -reserve); 3654 ASSERT((int64_t)arc_tempreserve >= 0); 3655 } 3656 3657 int 3658 arc_tempreserve_space(uint64_t reserve, uint64_t txg) 3659 { 3660 int error; 3661 uint64_t anon_size; 3662 3663 if (reserve > arc_c/4 && !arc_no_grow) 3664 arc_c = MIN(arc_c_max, reserve * 4); 3665 if (reserve > arc_c) 3666 return (SET_ERROR(ENOMEM)); 3667 3668 /* 3669 * Don't count loaned bufs as in flight dirty data to prevent long 3670 * network delays from blocking transactions that are ready to be 3671 * assigned to a txg. 3672 */ 3673 anon_size = MAX((int64_t)(arc_anon->arcs_size - arc_loaned_bytes), 0); 3674 3675 /* 3676 * Writes will, almost always, require additional memory allocations 3677 * in order to compress/encrypt/etc the data. We therefore need to 3678 * make sure that there is sufficient available memory for this. 3679 */ 3680 error = arc_memory_throttle(reserve, txg); 3681 if (error != 0) 3682 return (error); 3683 3684 /* 3685 * Throttle writes when the amount of dirty data in the cache 3686 * gets too large. We try to keep the cache less than half full 3687 * of dirty blocks so that our sync times don't grow too large. 3688 * Note: if two requests come in concurrently, we might let them 3689 * both succeed, when one of them should fail. Not a huge deal. 3690 */ 3691 3692 if (reserve + arc_tempreserve + anon_size > arc_c / 2 && 3693 anon_size > arc_c / 4) { 3694 dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK " 3695 "anon_data=%lluK tempreserve=%lluK arc_c=%lluK\n", 3696 arc_tempreserve>>10, 3697 arc_anon->arcs_lsize[ARC_BUFC_METADATA]>>10, 3698 arc_anon->arcs_lsize[ARC_BUFC_DATA]>>10, 3699 reserve>>10, arc_c>>10); 3700 return (SET_ERROR(ERESTART)); 3701 } 3702 atomic_add_64(&arc_tempreserve, reserve); 3703 return (0); 3704 } 3705 3706 void 3707 arc_init(void) 3708 { 3709 mutex_init(&arc_reclaim_thr_lock, NULL, MUTEX_DEFAULT, NULL); 3710 cv_init(&arc_reclaim_thr_cv, NULL, CV_DEFAULT, NULL); 3711 3712 /* Convert seconds to clock ticks */ 3713 arc_min_prefetch_lifespan = 1 * hz; 3714 3715 /* Start out with 1/8 of all memory */ 3716 arc_c = physmem * PAGESIZE / 8; 3717 3718 #ifdef _KERNEL 3719 /* 3720 * On architectures where the physical memory can be larger 3721 * than the addressable space (intel in 32-bit mode), we may 3722 * need to limit the cache to 1/8 of VM size. 3723 */ 3724 arc_c = MIN(arc_c, vmem_size(heap_arena, VMEM_ALLOC | VMEM_FREE) / 8); 3725 #endif 3726 3727 /* set min cache to 1/32 of all memory, or 64MB, whichever is more */ 3728 arc_c_min = MAX(arc_c / 4, 64<<20); 3729 /* set max to 3/4 of all memory, or all but 1GB, whichever is more */ 3730 if (arc_c * 8 >= 1<<30) 3731 arc_c_max = (arc_c * 8) - (1<<30); 3732 else 3733 arc_c_max = arc_c_min; 3734 arc_c_max = MAX(arc_c * 6, arc_c_max); 3735 3736 /* 3737 * Allow the tunables to override our calculations if they are 3738 * reasonable (ie. over 64MB) 3739 */ 3740 if (zfs_arc_max > 64<<20 && zfs_arc_max < physmem * PAGESIZE) 3741 arc_c_max = zfs_arc_max; 3742 if (zfs_arc_min > 64<<20 && zfs_arc_min <= arc_c_max) 3743 arc_c_min = zfs_arc_min; 3744 3745 arc_c = arc_c_max; 3746 arc_p = (arc_c >> 1); 3747 3748 /* limit meta-data to 1/4 of the arc capacity */ 3749 arc_meta_limit = arc_c_max / 4; 3750 3751 /* Allow the tunable to override if it is reasonable */ 3752 if (zfs_arc_meta_limit > 0 && zfs_arc_meta_limit <= arc_c_max) 3753 arc_meta_limit = zfs_arc_meta_limit; 3754 3755 if (arc_c_min < arc_meta_limit / 2 && zfs_arc_min == 0) 3756 arc_c_min = arc_meta_limit / 2; 3757 3758 if (zfs_arc_grow_retry > 0) 3759 arc_grow_retry = zfs_arc_grow_retry; 3760 3761 if (zfs_arc_shrink_shift > 0) 3762 arc_shrink_shift = zfs_arc_shrink_shift; 3763 3764 if (zfs_arc_p_min_shift > 0) 3765 arc_p_min_shift = zfs_arc_p_min_shift; 3766 3767 /* if kmem_flags are set, lets try to use less memory */ 3768 if (kmem_debugging()) 3769 arc_c = arc_c / 2; 3770 if (arc_c < arc_c_min) 3771 arc_c = arc_c_min; 3772 3773 arc_anon = &ARC_anon; 3774 arc_mru = &ARC_mru; 3775 arc_mru_ghost = &ARC_mru_ghost; 3776 arc_mfu = &ARC_mfu; 3777 arc_mfu_ghost = &ARC_mfu_ghost; 3778 arc_l2c_only = &ARC_l2c_only; 3779 arc_size = 0; 3780 3781 mutex_init(&arc_anon->arcs_mtx, NULL, MUTEX_DEFAULT, NULL); 3782 mutex_init(&arc_mru->arcs_mtx, NULL, MUTEX_DEFAULT, NULL); 3783 mutex_init(&arc_mru_ghost->arcs_mtx, NULL, MUTEX_DEFAULT, NULL); 3784 mutex_init(&arc_mfu->arcs_mtx, NULL, MUTEX_DEFAULT, NULL); 3785 mutex_init(&arc_mfu_ghost->arcs_mtx, NULL, MUTEX_DEFAULT, NULL); 3786 mutex_init(&arc_l2c_only->arcs_mtx, NULL, MUTEX_DEFAULT, NULL); 3787 3788 list_create(&arc_mru->arcs_list[ARC_BUFC_METADATA], 3789 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3790 list_create(&arc_mru->arcs_list[ARC_BUFC_DATA], 3791 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3792 list_create(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA], 3793 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3794 list_create(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA], 3795 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3796 list_create(&arc_mfu->arcs_list[ARC_BUFC_METADATA], 3797 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3798 list_create(&arc_mfu->arcs_list[ARC_BUFC_DATA], 3799 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3800 list_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA], 3801 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3802 list_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA], 3803 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3804 list_create(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA], 3805 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3806 list_create(&arc_l2c_only->arcs_list[ARC_BUFC_DATA], 3807 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3808 3809 buf_init(); 3810 3811 arc_thread_exit = 0; 3812 arc_eviction_list = NULL; 3813 mutex_init(&arc_eviction_mtx, NULL, MUTEX_DEFAULT, NULL); 3814 bzero(&arc_eviction_hdr, sizeof (arc_buf_hdr_t)); 3815 3816 arc_ksp = kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED, 3817 sizeof (arc_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL); 3818 3819 if (arc_ksp != NULL) { 3820 arc_ksp->ks_data = &arc_stats; 3821 kstat_install(arc_ksp); 3822 } 3823 3824 (void) thread_create(NULL, 0, arc_reclaim_thread, NULL, 0, &p0, 3825 TS_RUN, minclsyspri); 3826 3827 arc_dead = FALSE; 3828 arc_warm = B_FALSE; 3829 3830 /* 3831 * Calculate maximum amount of dirty data per pool. 3832 * 3833 * If it has been set by /etc/system, take that. 3834 * Otherwise, use a percentage of physical memory defined by 3835 * zfs_dirty_data_max_percent (default 10%) with a cap at 3836 * zfs_dirty_data_max_max (default 4GB). 3837 */ 3838 if (zfs_dirty_data_max == 0) { 3839 zfs_dirty_data_max = physmem * PAGESIZE * 3840 zfs_dirty_data_max_percent / 100; 3841 zfs_dirty_data_max = MIN(zfs_dirty_data_max, 3842 zfs_dirty_data_max_max); 3843 } 3844 } 3845 3846 void 3847 arc_fini(void) 3848 { 3849 mutex_enter(&arc_reclaim_thr_lock); 3850 arc_thread_exit = 1; 3851 while (arc_thread_exit != 0) 3852 cv_wait(&arc_reclaim_thr_cv, &arc_reclaim_thr_lock); 3853 mutex_exit(&arc_reclaim_thr_lock); 3854 3855 arc_flush(NULL); 3856 3857 arc_dead = TRUE; 3858 3859 if (arc_ksp != NULL) { 3860 kstat_delete(arc_ksp); 3861 arc_ksp = NULL; 3862 } 3863 3864 mutex_destroy(&arc_eviction_mtx); 3865 mutex_destroy(&arc_reclaim_thr_lock); 3866 cv_destroy(&arc_reclaim_thr_cv); 3867 3868 list_destroy(&arc_mru->arcs_list[ARC_BUFC_METADATA]); 3869 list_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA]); 3870 list_destroy(&arc_mfu->arcs_list[ARC_BUFC_METADATA]); 3871 list_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA]); 3872 list_destroy(&arc_mru->arcs_list[ARC_BUFC_DATA]); 3873 list_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA]); 3874 list_destroy(&arc_mfu->arcs_list[ARC_BUFC_DATA]); 3875 list_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA]); 3876 3877 mutex_destroy(&arc_anon->arcs_mtx); 3878 mutex_destroy(&arc_mru->arcs_mtx); 3879 mutex_destroy(&arc_mru_ghost->arcs_mtx); 3880 mutex_destroy(&arc_mfu->arcs_mtx); 3881 mutex_destroy(&arc_mfu_ghost->arcs_mtx); 3882 mutex_destroy(&arc_l2c_only->arcs_mtx); 3883 3884 buf_fini(); 3885 3886 ASSERT(arc_loaned_bytes == 0); 3887 } 3888 3889 /* 3890 * Level 2 ARC 3891 * 3892 * The level 2 ARC (L2ARC) is a cache layer in-between main memory and disk. 3893 * It uses dedicated storage devices to hold cached data, which are populated 3894 * using large infrequent writes. The main role of this cache is to boost 3895 * the performance of random read workloads. The intended L2ARC devices 3896 * include short-stroked disks, solid state disks, and other media with 3897 * substantially faster read latency than disk. 3898 * 3899 * +-----------------------+ 3900 * | ARC | 3901 * +-----------------------+ 3902 * | ^ ^ 3903 * | | | 3904 * l2arc_feed_thread() arc_read() 3905 * | | | 3906 * | l2arc read | 3907 * V | | 3908 * +---------------+ | 3909 * | L2ARC | | 3910 * +---------------+ | 3911 * | ^ | 3912 * l2arc_write() | | 3913 * | | | 3914 * V | | 3915 * +-------+ +-------+ 3916 * | vdev | | vdev | 3917 * | cache | | cache | 3918 * +-------+ +-------+ 3919 * +=========+ .-----. 3920 * : L2ARC : |-_____-| 3921 * : devices : | Disks | 3922 * +=========+ `-_____-' 3923 * 3924 * Read requests are satisfied from the following sources, in order: 3925 * 3926 * 1) ARC 3927 * 2) vdev cache of L2ARC devices 3928 * 3) L2ARC devices 3929 * 4) vdev cache of disks 3930 * 5) disks 3931 * 3932 * Some L2ARC device types exhibit extremely slow write performance. 3933 * To accommodate for this there are some significant differences between 3934 * the L2ARC and traditional cache design: 3935 * 3936 * 1. There is no eviction path from the ARC to the L2ARC. Evictions from 3937 * the ARC behave as usual, freeing buffers and placing headers on ghost 3938 * lists. The ARC does not send buffers to the L2ARC during eviction as 3939 * this would add inflated write latencies for all ARC memory pressure. 3940 * 3941 * 2. The L2ARC attempts to cache data from the ARC before it is evicted. 3942 * It does this by periodically scanning buffers from the eviction-end of 3943 * the MFU and MRU ARC lists, copying them to the L2ARC devices if they are 3944 * not already there. It scans until a headroom of buffers is satisfied, 3945 * which itself is a buffer for ARC eviction. If a compressible buffer is 3946 * found during scanning and selected for writing to an L2ARC device, we 3947 * temporarily boost scanning headroom during the next scan cycle to make 3948 * sure we adapt to compression effects (which might significantly reduce 3949 * the data volume we write to L2ARC). The thread that does this is 3950 * l2arc_feed_thread(), illustrated below; example sizes are included to 3951 * provide a better sense of ratio than this diagram: 3952 * 3953 * head --> tail 3954 * +---------------------+----------+ 3955 * ARC_mfu |:::::#:::::::::::::::|o#o###o###|-->. # already on L2ARC 3956 * +---------------------+----------+ | o L2ARC eligible 3957 * ARC_mru |:#:::::::::::::::::::|#o#ooo####|-->| : ARC buffer 3958 * +---------------------+----------+ | 3959 * 15.9 Gbytes ^ 32 Mbytes | 3960 * headroom | 3961 * l2arc_feed_thread() 3962 * | 3963 * l2arc write hand <--[oooo]--' 3964 * | 8 Mbyte 3965 * | write max 3966 * V 3967 * +==============================+ 3968 * L2ARC dev |####|#|###|###| |####| ... | 3969 * +==============================+ 3970 * 32 Gbytes 3971 * 3972 * 3. If an ARC buffer is copied to the L2ARC but then hit instead of 3973 * evicted, then the L2ARC has cached a buffer much sooner than it probably 3974 * needed to, potentially wasting L2ARC device bandwidth and storage. It is 3975 * safe to say that this is an uncommon case, since buffers at the end of 3976 * the ARC lists have moved there due to inactivity. 3977 * 3978 * 4. If the ARC evicts faster than the L2ARC can maintain a headroom, 3979 * then the L2ARC simply misses copying some buffers. This serves as a 3980 * pressure valve to prevent heavy read workloads from both stalling the ARC 3981 * with waits and clogging the L2ARC with writes. This also helps prevent 3982 * the potential for the L2ARC to churn if it attempts to cache content too 3983 * quickly, such as during backups of the entire pool. 3984 * 3985 * 5. After system boot and before the ARC has filled main memory, there are 3986 * no evictions from the ARC and so the tails of the ARC_mfu and ARC_mru 3987 * lists can remain mostly static. Instead of searching from tail of these 3988 * lists as pictured, the l2arc_feed_thread() will search from the list heads 3989 * for eligible buffers, greatly increasing its chance of finding them. 3990 * 3991 * The L2ARC device write speed is also boosted during this time so that 3992 * the L2ARC warms up faster. Since there have been no ARC evictions yet, 3993 * there are no L2ARC reads, and no fear of degrading read performance 3994 * through increased writes. 3995 * 3996 * 6. Writes to the L2ARC devices are grouped and sent in-sequence, so that 3997 * the vdev queue can aggregate them into larger and fewer writes. Each 3998 * device is written to in a rotor fashion, sweeping writes through 3999 * available space then repeating. 4000 * 4001 * 7. The L2ARC does not store dirty content. It never needs to flush 4002 * write buffers back to disk based storage. 4003 * 4004 * 8. If an ARC buffer is written (and dirtied) which also exists in the 4005 * L2ARC, the now stale L2ARC buffer is immediately dropped. 4006 * 4007 * The performance of the L2ARC can be tweaked by a number of tunables, which 4008 * may be necessary for different workloads: 4009 * 4010 * l2arc_write_max max write bytes per interval 4011 * l2arc_write_boost extra write bytes during device warmup 4012 * l2arc_noprefetch skip caching prefetched buffers 4013 * l2arc_headroom number of max device writes to precache 4014 * l2arc_headroom_boost when we find compressed buffers during ARC 4015 * scanning, we multiply headroom by this 4016 * percentage factor for the next scan cycle, 4017 * since more compressed buffers are likely to 4018 * be present 4019 * l2arc_feed_secs seconds between L2ARC writing 4020 * 4021 * Tunables may be removed or added as future performance improvements are 4022 * integrated, and also may become zpool properties. 4023 * 4024 * There are three key functions that control how the L2ARC warms up: 4025 * 4026 * l2arc_write_eligible() check if a buffer is eligible to cache 4027 * l2arc_write_size() calculate how much to write 4028 * l2arc_write_interval() calculate sleep delay between writes 4029 * 4030 * These three functions determine what to write, how much, and how quickly 4031 * to send writes. 4032 */ 4033 4034 static boolean_t 4035 l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *ab) 4036 { 4037 /* 4038 * A buffer is *not* eligible for the L2ARC if it: 4039 * 1. belongs to a different spa. 4040 * 2. is already cached on the L2ARC. 4041 * 3. has an I/O in progress (it may be an incomplete read). 4042 * 4. is flagged not eligible (zfs property). 4043 */ 4044 if (ab->b_spa != spa_guid || ab->b_l2hdr != NULL || 4045 HDR_IO_IN_PROGRESS(ab) || !HDR_L2CACHE(ab)) 4046 return (B_FALSE); 4047 4048 return (B_TRUE); 4049 } 4050 4051 static uint64_t 4052 l2arc_write_size(void) 4053 { 4054 uint64_t size; 4055 4056 /* 4057 * Make sure our globals have meaningful values in case the user 4058 * altered them. 4059 */ 4060 size = l2arc_write_max; 4061 if (size == 0) { 4062 cmn_err(CE_NOTE, "Bad value for l2arc_write_max, value must " 4063 "be greater than zero, resetting it to the default (%d)", 4064 L2ARC_WRITE_SIZE); 4065 size = l2arc_write_max = L2ARC_WRITE_SIZE; 4066 } 4067 4068 if (arc_warm == B_FALSE) 4069 size += l2arc_write_boost; 4070 4071 return (size); 4072 4073 } 4074 4075 static clock_t 4076 l2arc_write_interval(clock_t began, uint64_t wanted, uint64_t wrote) 4077 { 4078 clock_t interval, next, now; 4079 4080 /* 4081 * If the ARC lists are busy, increase our write rate; if the 4082 * lists are stale, idle back. This is achieved by checking 4083 * how much we previously wrote - if it was more than half of 4084 * what we wanted, schedule the next write much sooner. 4085 */ 4086 if (l2arc_feed_again && wrote > (wanted / 2)) 4087 interval = (hz * l2arc_feed_min_ms) / 1000; 4088 else 4089 interval = hz * l2arc_feed_secs; 4090 4091 now = ddi_get_lbolt(); 4092 next = MAX(now, MIN(now + interval, began + interval)); 4093 4094 return (next); 4095 } 4096 4097 static void 4098 l2arc_hdr_stat_add(void) 4099 { 4100 ARCSTAT_INCR(arcstat_l2_hdr_size, HDR_SIZE + L2HDR_SIZE); 4101 ARCSTAT_INCR(arcstat_hdr_size, -HDR_SIZE); 4102 } 4103 4104 static void 4105 l2arc_hdr_stat_remove(void) 4106 { 4107 ARCSTAT_INCR(arcstat_l2_hdr_size, -(HDR_SIZE + L2HDR_SIZE)); 4108 ARCSTAT_INCR(arcstat_hdr_size, HDR_SIZE); 4109 } 4110 4111 /* 4112 * Cycle through L2ARC devices. This is how L2ARC load balances. 4113 * If a device is returned, this also returns holding the spa config lock. 4114 */ 4115 static l2arc_dev_t * 4116 l2arc_dev_get_next(void) 4117 { 4118 l2arc_dev_t *first, *next = NULL; 4119 4120 /* 4121 * Lock out the removal of spas (spa_namespace_lock), then removal 4122 * of cache devices (l2arc_dev_mtx). Once a device has been selected, 4123 * both locks will be dropped and a spa config lock held instead. 4124 */ 4125 mutex_enter(&spa_namespace_lock); 4126 mutex_enter(&l2arc_dev_mtx); 4127 4128 /* if there are no vdevs, there is nothing to do */ 4129 if (l2arc_ndev == 0) 4130 goto out; 4131 4132 first = NULL; 4133 next = l2arc_dev_last; 4134 do { 4135 /* loop around the list looking for a non-faulted vdev */ 4136 if (next == NULL) { 4137 next = list_head(l2arc_dev_list); 4138 } else { 4139 next = list_next(l2arc_dev_list, next); 4140 if (next == NULL) 4141 next = list_head(l2arc_dev_list); 4142 } 4143 4144 /* if we have come back to the start, bail out */ 4145 if (first == NULL) 4146 first = next; 4147 else if (next == first) 4148 break; 4149 4150 } while (vdev_is_dead(next->l2ad_vdev)); 4151 4152 /* if we were unable to find any usable vdevs, return NULL */ 4153 if (vdev_is_dead(next->l2ad_vdev)) 4154 next = NULL; 4155 4156 l2arc_dev_last = next; 4157 4158 out: 4159 mutex_exit(&l2arc_dev_mtx); 4160 4161 /* 4162 * Grab the config lock to prevent the 'next' device from being 4163 * removed while we are writing to it. 4164 */ 4165 if (next != NULL) 4166 spa_config_enter(next->l2ad_spa, SCL_L2ARC, next, RW_READER); 4167 mutex_exit(&spa_namespace_lock); 4168 4169 return (next); 4170 } 4171 4172 /* 4173 * Free buffers that were tagged for destruction. 4174 */ 4175 static void 4176 l2arc_do_free_on_write() 4177 { 4178 list_t *buflist; 4179 l2arc_data_free_t *df, *df_prev; 4180 4181 mutex_enter(&l2arc_free_on_write_mtx); 4182 buflist = l2arc_free_on_write; 4183 4184 for (df = list_tail(buflist); df; df = df_prev) { 4185 df_prev = list_prev(buflist, df); 4186 ASSERT(df->l2df_data != NULL); 4187 ASSERT(df->l2df_func != NULL); 4188 df->l2df_func(df->l2df_data, df->l2df_size); 4189 list_remove(buflist, df); 4190 kmem_free(df, sizeof (l2arc_data_free_t)); 4191 } 4192 4193 mutex_exit(&l2arc_free_on_write_mtx); 4194 } 4195 4196 /* 4197 * A write to a cache device has completed. Update all headers to allow 4198 * reads from these buffers to begin. 4199 */ 4200 static void 4201 l2arc_write_done(zio_t *zio) 4202 { 4203 l2arc_write_callback_t *cb; 4204 l2arc_dev_t *dev; 4205 list_t *buflist; 4206 arc_buf_hdr_t *head, *ab, *ab_prev; 4207 l2arc_buf_hdr_t *abl2; 4208 kmutex_t *hash_lock; 4209 int64_t bytes_dropped = 0; 4210 4211 cb = zio->io_private; 4212 ASSERT(cb != NULL); 4213 dev = cb->l2wcb_dev; 4214 ASSERT(dev != NULL); 4215 head = cb->l2wcb_head; 4216 ASSERT(head != NULL); 4217 buflist = dev->l2ad_buflist; 4218 ASSERT(buflist != NULL); 4219 DTRACE_PROBE2(l2arc__iodone, zio_t *, zio, 4220 l2arc_write_callback_t *, cb); 4221 4222 if (zio->io_error != 0) 4223 ARCSTAT_BUMP(arcstat_l2_writes_error); 4224 4225 mutex_enter(&l2arc_buflist_mtx); 4226 4227 /* 4228 * All writes completed, or an error was hit. 4229 */ 4230 for (ab = list_prev(buflist, head); ab; ab = ab_prev) { 4231 ab_prev = list_prev(buflist, ab); 4232 abl2 = ab->b_l2hdr; 4233 4234 /* 4235 * Release the temporary compressed buffer as soon as possible. 4236 */ 4237 if (abl2->b_compress != ZIO_COMPRESS_OFF) 4238 l2arc_release_cdata_buf(ab); 4239 4240 hash_lock = HDR_LOCK(ab); 4241 if (!mutex_tryenter(hash_lock)) { 4242 /* 4243 * This buffer misses out. It may be in a stage 4244 * of eviction. Its ARC_L2_WRITING flag will be 4245 * left set, denying reads to this buffer. 4246 */ 4247 ARCSTAT_BUMP(arcstat_l2_writes_hdr_miss); 4248 continue; 4249 } 4250 4251 if (zio->io_error != 0) { 4252 /* 4253 * Error - drop L2ARC entry. 4254 */ 4255 list_remove(buflist, ab); 4256 ARCSTAT_INCR(arcstat_l2_asize, -abl2->b_asize); 4257 bytes_dropped += abl2->b_asize; 4258 ab->b_l2hdr = NULL; 4259 kmem_free(abl2, sizeof (l2arc_buf_hdr_t)); 4260 ARCSTAT_INCR(arcstat_l2_size, -ab->b_size); 4261 } 4262 4263 /* 4264 * Allow ARC to begin reads to this L2ARC entry. 4265 */ 4266 ab->b_flags &= ~ARC_L2_WRITING; 4267 4268 mutex_exit(hash_lock); 4269 } 4270 4271 atomic_inc_64(&l2arc_writes_done); 4272 list_remove(buflist, head); 4273 kmem_cache_free(hdr_cache, head); 4274 mutex_exit(&l2arc_buflist_mtx); 4275 4276 vdev_space_update(dev->l2ad_vdev, -bytes_dropped, 0, 0); 4277 4278 l2arc_do_free_on_write(); 4279 4280 kmem_free(cb, sizeof (l2arc_write_callback_t)); 4281 } 4282 4283 /* 4284 * A read to a cache device completed. Validate buffer contents before 4285 * handing over to the regular ARC routines. 4286 */ 4287 static void 4288 l2arc_read_done(zio_t *zio) 4289 { 4290 l2arc_read_callback_t *cb; 4291 arc_buf_hdr_t *hdr; 4292 arc_buf_t *buf; 4293 kmutex_t *hash_lock; 4294 int equal; 4295 4296 ASSERT(zio->io_vd != NULL); 4297 ASSERT(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE); 4298 4299 spa_config_exit(zio->io_spa, SCL_L2ARC, zio->io_vd); 4300 4301 cb = zio->io_private; 4302 ASSERT(cb != NULL); 4303 buf = cb->l2rcb_buf; 4304 ASSERT(buf != NULL); 4305 4306 hash_lock = HDR_LOCK(buf->b_hdr); 4307 mutex_enter(hash_lock); 4308 hdr = buf->b_hdr; 4309 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 4310 4311 /* 4312 * If the buffer was compressed, decompress it first. 4313 */ 4314 if (cb->l2rcb_compress != ZIO_COMPRESS_OFF) 4315 l2arc_decompress_zio(zio, hdr, cb->l2rcb_compress); 4316 ASSERT(zio->io_data != NULL); 4317 4318 /* 4319 * Check this survived the L2ARC journey. 4320 */ 4321 equal = arc_cksum_equal(buf); 4322 if (equal && zio->io_error == 0 && !HDR_L2_EVICTED(hdr)) { 4323 mutex_exit(hash_lock); 4324 zio->io_private = buf; 4325 zio->io_bp_copy = cb->l2rcb_bp; /* XXX fix in L2ARC 2.0 */ 4326 zio->io_bp = &zio->io_bp_copy; /* XXX fix in L2ARC 2.0 */ 4327 arc_read_done(zio); 4328 } else { 4329 mutex_exit(hash_lock); 4330 /* 4331 * Buffer didn't survive caching. Increment stats and 4332 * reissue to the original storage device. 4333 */ 4334 if (zio->io_error != 0) { 4335 ARCSTAT_BUMP(arcstat_l2_io_error); 4336 } else { 4337 zio->io_error = SET_ERROR(EIO); 4338 } 4339 if (!equal) 4340 ARCSTAT_BUMP(arcstat_l2_cksum_bad); 4341 4342 /* 4343 * If there's no waiter, issue an async i/o to the primary 4344 * storage now. If there *is* a waiter, the caller must 4345 * issue the i/o in a context where it's OK to block. 4346 */ 4347 if (zio->io_waiter == NULL) { 4348 zio_t *pio = zio_unique_parent(zio); 4349 4350 ASSERT(!pio || pio->io_child_type == ZIO_CHILD_LOGICAL); 4351 4352 zio_nowait(zio_read(pio, cb->l2rcb_spa, &cb->l2rcb_bp, 4353 buf->b_data, zio->io_size, arc_read_done, buf, 4354 zio->io_priority, cb->l2rcb_flags, &cb->l2rcb_zb)); 4355 } 4356 } 4357 4358 kmem_free(cb, sizeof (l2arc_read_callback_t)); 4359 } 4360 4361 /* 4362 * This is the list priority from which the L2ARC will search for pages to 4363 * cache. This is used within loops (0..3) to cycle through lists in the 4364 * desired order. This order can have a significant effect on cache 4365 * performance. 4366 * 4367 * Currently the metadata lists are hit first, MFU then MRU, followed by 4368 * the data lists. This function returns a locked list, and also returns 4369 * the lock pointer. 4370 */ 4371 static list_t * 4372 l2arc_list_locked(int list_num, kmutex_t **lock) 4373 { 4374 list_t *list = NULL; 4375 4376 ASSERT(list_num >= 0 && list_num <= 3); 4377 4378 switch (list_num) { 4379 case 0: 4380 list = &arc_mfu->arcs_list[ARC_BUFC_METADATA]; 4381 *lock = &arc_mfu->arcs_mtx; 4382 break; 4383 case 1: 4384 list = &arc_mru->arcs_list[ARC_BUFC_METADATA]; 4385 *lock = &arc_mru->arcs_mtx; 4386 break; 4387 case 2: 4388 list = &arc_mfu->arcs_list[ARC_BUFC_DATA]; 4389 *lock = &arc_mfu->arcs_mtx; 4390 break; 4391 case 3: 4392 list = &arc_mru->arcs_list[ARC_BUFC_DATA]; 4393 *lock = &arc_mru->arcs_mtx; 4394 break; 4395 } 4396 4397 ASSERT(!(MUTEX_HELD(*lock))); 4398 mutex_enter(*lock); 4399 return (list); 4400 } 4401 4402 /* 4403 * Evict buffers from the device write hand to the distance specified in 4404 * bytes. This distance may span populated buffers, it may span nothing. 4405 * This is clearing a region on the L2ARC device ready for writing. 4406 * If the 'all' boolean is set, every buffer is evicted. 4407 */ 4408 static void 4409 l2arc_evict(l2arc_dev_t *dev, uint64_t distance, boolean_t all) 4410 { 4411 list_t *buflist; 4412 l2arc_buf_hdr_t *abl2; 4413 arc_buf_hdr_t *ab, *ab_prev; 4414 kmutex_t *hash_lock; 4415 uint64_t taddr; 4416 int64_t bytes_evicted = 0; 4417 4418 buflist = dev->l2ad_buflist; 4419 4420 if (buflist == NULL) 4421 return; 4422 4423 if (!all && dev->l2ad_first) { 4424 /* 4425 * This is the first sweep through the device. There is 4426 * nothing to evict. 4427 */ 4428 return; 4429 } 4430 4431 if (dev->l2ad_hand >= (dev->l2ad_end - (2 * distance))) { 4432 /* 4433 * When nearing the end of the device, evict to the end 4434 * before the device write hand jumps to the start. 4435 */ 4436 taddr = dev->l2ad_end; 4437 } else { 4438 taddr = dev->l2ad_hand + distance; 4439 } 4440 DTRACE_PROBE4(l2arc__evict, l2arc_dev_t *, dev, list_t *, buflist, 4441 uint64_t, taddr, boolean_t, all); 4442 4443 top: 4444 mutex_enter(&l2arc_buflist_mtx); 4445 for (ab = list_tail(buflist); ab; ab = ab_prev) { 4446 ab_prev = list_prev(buflist, ab); 4447 4448 hash_lock = HDR_LOCK(ab); 4449 if (!mutex_tryenter(hash_lock)) { 4450 /* 4451 * Missed the hash lock. Retry. 4452 */ 4453 ARCSTAT_BUMP(arcstat_l2_evict_lock_retry); 4454 mutex_exit(&l2arc_buflist_mtx); 4455 mutex_enter(hash_lock); 4456 mutex_exit(hash_lock); 4457 goto top; 4458 } 4459 4460 if (HDR_L2_WRITE_HEAD(ab)) { 4461 /* 4462 * We hit a write head node. Leave it for 4463 * l2arc_write_done(). 4464 */ 4465 list_remove(buflist, ab); 4466 mutex_exit(hash_lock); 4467 continue; 4468 } 4469 4470 if (!all && ab->b_l2hdr != NULL && 4471 (ab->b_l2hdr->b_daddr > taddr || 4472 ab->b_l2hdr->b_daddr < dev->l2ad_hand)) { 4473 /* 4474 * We've evicted to the target address, 4475 * or the end of the device. 4476 */ 4477 mutex_exit(hash_lock); 4478 break; 4479 } 4480 4481 if (HDR_FREE_IN_PROGRESS(ab)) { 4482 /* 4483 * Already on the path to destruction. 4484 */ 4485 mutex_exit(hash_lock); 4486 continue; 4487 } 4488 4489 if (ab->b_state == arc_l2c_only) { 4490 ASSERT(!HDR_L2_READING(ab)); 4491 /* 4492 * This doesn't exist in the ARC. Destroy. 4493 * arc_hdr_destroy() will call list_remove() 4494 * and decrement arcstat_l2_size. 4495 */ 4496 arc_change_state(arc_anon, ab, hash_lock); 4497 arc_hdr_destroy(ab); 4498 } else { 4499 /* 4500 * Invalidate issued or about to be issued 4501 * reads, since we may be about to write 4502 * over this location. 4503 */ 4504 if (HDR_L2_READING(ab)) { 4505 ARCSTAT_BUMP(arcstat_l2_evict_reading); 4506 ab->b_flags |= ARC_L2_EVICTED; 4507 } 4508 4509 /* 4510 * Tell ARC this no longer exists in L2ARC. 4511 */ 4512 if (ab->b_l2hdr != NULL) { 4513 abl2 = ab->b_l2hdr; 4514 ARCSTAT_INCR(arcstat_l2_asize, -abl2->b_asize); 4515 bytes_evicted += abl2->b_asize; 4516 ab->b_l2hdr = NULL; 4517 kmem_free(abl2, sizeof (l2arc_buf_hdr_t)); 4518 ARCSTAT_INCR(arcstat_l2_size, -ab->b_size); 4519 } 4520 list_remove(buflist, ab); 4521 4522 /* 4523 * This may have been leftover after a 4524 * failed write. 4525 */ 4526 ab->b_flags &= ~ARC_L2_WRITING; 4527 } 4528 mutex_exit(hash_lock); 4529 } 4530 mutex_exit(&l2arc_buflist_mtx); 4531 4532 vdev_space_update(dev->l2ad_vdev, -bytes_evicted, 0, 0); 4533 dev->l2ad_evict = taddr; 4534 } 4535 4536 /* 4537 * Find and write ARC buffers to the L2ARC device. 4538 * 4539 * An ARC_L2_WRITING flag is set so that the L2ARC buffers are not valid 4540 * for reading until they have completed writing. 4541 * The headroom_boost is an in-out parameter used to maintain headroom boost 4542 * state between calls to this function. 4543 * 4544 * Returns the number of bytes actually written (which may be smaller than 4545 * the delta by which the device hand has changed due to alignment). 4546 */ 4547 static uint64_t 4548 l2arc_write_buffers(spa_t *spa, l2arc_dev_t *dev, uint64_t target_sz, 4549 boolean_t *headroom_boost) 4550 { 4551 arc_buf_hdr_t *ab, *ab_prev, *head; 4552 list_t *list; 4553 uint64_t write_asize, write_psize, write_sz, headroom, 4554 buf_compress_minsz; 4555 void *buf_data; 4556 kmutex_t *list_lock; 4557 boolean_t full; 4558 l2arc_write_callback_t *cb; 4559 zio_t *pio, *wzio; 4560 uint64_t guid = spa_load_guid(spa); 4561 const boolean_t do_headroom_boost = *headroom_boost; 4562 4563 ASSERT(dev->l2ad_vdev != NULL); 4564 4565 /* Lower the flag now, we might want to raise it again later. */ 4566 *headroom_boost = B_FALSE; 4567 4568 pio = NULL; 4569 write_sz = write_asize = write_psize = 0; 4570 full = B_FALSE; 4571 head = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE); 4572 head->b_flags |= ARC_L2_WRITE_HEAD; 4573 4574 /* 4575 * We will want to try to compress buffers that are at least 2x the 4576 * device sector size. 4577 */ 4578 buf_compress_minsz = 2 << dev->l2ad_vdev->vdev_ashift; 4579 4580 /* 4581 * Copy buffers for L2ARC writing. 4582 */ 4583 mutex_enter(&l2arc_buflist_mtx); 4584 for (int try = 0; try <= 3; try++) { 4585 uint64_t passed_sz = 0; 4586 4587 list = l2arc_list_locked(try, &list_lock); 4588 4589 /* 4590 * L2ARC fast warmup. 4591 * 4592 * Until the ARC is warm and starts to evict, read from the 4593 * head of the ARC lists rather than the tail. 4594 */ 4595 if (arc_warm == B_FALSE) 4596 ab = list_head(list); 4597 else 4598 ab = list_tail(list); 4599 4600 headroom = target_sz * l2arc_headroom; 4601 if (do_headroom_boost) 4602 headroom = (headroom * l2arc_headroom_boost) / 100; 4603 4604 for (; ab; ab = ab_prev) { 4605 l2arc_buf_hdr_t *l2hdr; 4606 kmutex_t *hash_lock; 4607 uint64_t buf_sz; 4608 4609 if (arc_warm == B_FALSE) 4610 ab_prev = list_next(list, ab); 4611 else 4612 ab_prev = list_prev(list, ab); 4613 4614 hash_lock = HDR_LOCK(ab); 4615 if (!mutex_tryenter(hash_lock)) { 4616 /* 4617 * Skip this buffer rather than waiting. 4618 */ 4619 continue; 4620 } 4621 4622 passed_sz += ab->b_size; 4623 if (passed_sz > headroom) { 4624 /* 4625 * Searched too far. 4626 */ 4627 mutex_exit(hash_lock); 4628 break; 4629 } 4630 4631 if (!l2arc_write_eligible(guid, ab)) { 4632 mutex_exit(hash_lock); 4633 continue; 4634 } 4635 4636 if ((write_sz + ab->b_size) > target_sz) { 4637 full = B_TRUE; 4638 mutex_exit(hash_lock); 4639 break; 4640 } 4641 4642 if (pio == NULL) { 4643 /* 4644 * Insert a dummy header on the buflist so 4645 * l2arc_write_done() can find where the 4646 * write buffers begin without searching. 4647 */ 4648 list_insert_head(dev->l2ad_buflist, head); 4649 4650 cb = kmem_alloc( 4651 sizeof (l2arc_write_callback_t), KM_SLEEP); 4652 cb->l2wcb_dev = dev; 4653 cb->l2wcb_head = head; 4654 pio = zio_root(spa, l2arc_write_done, cb, 4655 ZIO_FLAG_CANFAIL); 4656 } 4657 4658 /* 4659 * Create and add a new L2ARC header. 4660 */ 4661 l2hdr = kmem_zalloc(sizeof (l2arc_buf_hdr_t), KM_SLEEP); 4662 l2hdr->b_dev = dev; 4663 ab->b_flags |= ARC_L2_WRITING; 4664 4665 /* 4666 * Temporarily stash the data buffer in b_tmp_cdata. 4667 * The subsequent write step will pick it up from 4668 * there. This is because can't access ab->b_buf 4669 * without holding the hash_lock, which we in turn 4670 * can't access without holding the ARC list locks 4671 * (which we want to avoid during compression/writing). 4672 */ 4673 l2hdr->b_compress = ZIO_COMPRESS_OFF; 4674 l2hdr->b_asize = ab->b_size; 4675 l2hdr->b_tmp_cdata = ab->b_buf->b_data; 4676 4677 buf_sz = ab->b_size; 4678 ab->b_l2hdr = l2hdr; 4679 4680 list_insert_head(dev->l2ad_buflist, ab); 4681 4682 /* 4683 * Compute and store the buffer cksum before 4684 * writing. On debug the cksum is verified first. 4685 */ 4686 arc_cksum_verify(ab->b_buf); 4687 arc_cksum_compute(ab->b_buf, B_TRUE); 4688 4689 mutex_exit(hash_lock); 4690 4691 write_sz += buf_sz; 4692 } 4693 4694 mutex_exit(list_lock); 4695 4696 if (full == B_TRUE) 4697 break; 4698 } 4699 4700 /* No buffers selected for writing? */ 4701 if (pio == NULL) { 4702 ASSERT0(write_sz); 4703 mutex_exit(&l2arc_buflist_mtx); 4704 kmem_cache_free(hdr_cache, head); 4705 return (0); 4706 } 4707 4708 /* 4709 * Now start writing the buffers. We're starting at the write head 4710 * and work backwards, retracing the course of the buffer selector 4711 * loop above. 4712 */ 4713 for (ab = list_prev(dev->l2ad_buflist, head); ab; 4714 ab = list_prev(dev->l2ad_buflist, ab)) { 4715 l2arc_buf_hdr_t *l2hdr; 4716 uint64_t buf_sz; 4717 4718 /* 4719 * We shouldn't need to lock the buffer here, since we flagged 4720 * it as ARC_L2_WRITING in the previous step, but we must take 4721 * care to only access its L2 cache parameters. In particular, 4722 * ab->b_buf may be invalid by now due to ARC eviction. 4723 */ 4724 l2hdr = ab->b_l2hdr; 4725 l2hdr->b_daddr = dev->l2ad_hand; 4726 4727 if ((ab->b_flags & ARC_L2COMPRESS) && 4728 l2hdr->b_asize >= buf_compress_minsz) { 4729 if (l2arc_compress_buf(l2hdr)) { 4730 /* 4731 * If compression succeeded, enable headroom 4732 * boost on the next scan cycle. 4733 */ 4734 *headroom_boost = B_TRUE; 4735 } 4736 } 4737 4738 /* 4739 * Pick up the buffer data we had previously stashed away 4740 * (and now potentially also compressed). 4741 */ 4742 buf_data = l2hdr->b_tmp_cdata; 4743 buf_sz = l2hdr->b_asize; 4744 4745 /* Compression may have squashed the buffer to zero length. */ 4746 if (buf_sz != 0) { 4747 uint64_t buf_p_sz; 4748 4749 wzio = zio_write_phys(pio, dev->l2ad_vdev, 4750 dev->l2ad_hand, buf_sz, buf_data, ZIO_CHECKSUM_OFF, 4751 NULL, NULL, ZIO_PRIORITY_ASYNC_WRITE, 4752 ZIO_FLAG_CANFAIL, B_FALSE); 4753 4754 DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev, 4755 zio_t *, wzio); 4756 (void) zio_nowait(wzio); 4757 4758 write_asize += buf_sz; 4759 /* 4760 * Keep the clock hand suitably device-aligned. 4761 */ 4762 buf_p_sz = vdev_psize_to_asize(dev->l2ad_vdev, buf_sz); 4763 write_psize += buf_p_sz; 4764 dev->l2ad_hand += buf_p_sz; 4765 } 4766 } 4767 4768 mutex_exit(&l2arc_buflist_mtx); 4769 4770 ASSERT3U(write_asize, <=, target_sz); 4771 ARCSTAT_BUMP(arcstat_l2_writes_sent); 4772 ARCSTAT_INCR(arcstat_l2_write_bytes, write_asize); 4773 ARCSTAT_INCR(arcstat_l2_size, write_sz); 4774 ARCSTAT_INCR(arcstat_l2_asize, write_asize); 4775 vdev_space_update(dev->l2ad_vdev, write_asize, 0, 0); 4776 4777 /* 4778 * Bump device hand to the device start if it is approaching the end. 4779 * l2arc_evict() will already have evicted ahead for this case. 4780 */ 4781 if (dev->l2ad_hand >= (dev->l2ad_end - target_sz)) { 4782 dev->l2ad_hand = dev->l2ad_start; 4783 dev->l2ad_evict = dev->l2ad_start; 4784 dev->l2ad_first = B_FALSE; 4785 } 4786 4787 dev->l2ad_writing = B_TRUE; 4788 (void) zio_wait(pio); 4789 dev->l2ad_writing = B_FALSE; 4790 4791 return (write_asize); 4792 } 4793 4794 /* 4795 * Compresses an L2ARC buffer. 4796 * The data to be compressed must be prefilled in l2hdr->b_tmp_cdata and its 4797 * size in l2hdr->b_asize. This routine tries to compress the data and 4798 * depending on the compression result there are three possible outcomes: 4799 * *) The buffer was incompressible. The original l2hdr contents were left 4800 * untouched and are ready for writing to an L2 device. 4801 * *) The buffer was all-zeros, so there is no need to write it to an L2 4802 * device. To indicate this situation b_tmp_cdata is NULL'ed, b_asize is 4803 * set to zero and b_compress is set to ZIO_COMPRESS_EMPTY. 4804 * *) Compression succeeded and b_tmp_cdata was replaced with a temporary 4805 * data buffer which holds the compressed data to be written, and b_asize 4806 * tells us how much data there is. b_compress is set to the appropriate 4807 * compression algorithm. Once writing is done, invoke 4808 * l2arc_release_cdata_buf on this l2hdr to free this temporary buffer. 4809 * 4810 * Returns B_TRUE if compression succeeded, or B_FALSE if it didn't (the 4811 * buffer was incompressible). 4812 */ 4813 static boolean_t 4814 l2arc_compress_buf(l2arc_buf_hdr_t *l2hdr) 4815 { 4816 void *cdata; 4817 size_t csize, len, rounded; 4818 4819 ASSERT(l2hdr->b_compress == ZIO_COMPRESS_OFF); 4820 ASSERT(l2hdr->b_tmp_cdata != NULL); 4821 4822 len = l2hdr->b_asize; 4823 cdata = zio_data_buf_alloc(len); 4824 csize = zio_compress_data(ZIO_COMPRESS_LZ4, l2hdr->b_tmp_cdata, 4825 cdata, l2hdr->b_asize); 4826 4827 rounded = P2ROUNDUP(csize, (size_t)SPA_MINBLOCKSIZE); 4828 if (rounded > csize) { 4829 bzero((char *)cdata + csize, rounded - csize); 4830 csize = rounded; 4831 } 4832 4833 if (csize == 0) { 4834 /* zero block, indicate that there's nothing to write */ 4835 zio_data_buf_free(cdata, len); 4836 l2hdr->b_compress = ZIO_COMPRESS_EMPTY; 4837 l2hdr->b_asize = 0; 4838 l2hdr->b_tmp_cdata = NULL; 4839 ARCSTAT_BUMP(arcstat_l2_compress_zeros); 4840 return (B_TRUE); 4841 } else if (csize > 0 && csize < len) { 4842 /* 4843 * Compression succeeded, we'll keep the cdata around for 4844 * writing and release it afterwards. 4845 */ 4846 l2hdr->b_compress = ZIO_COMPRESS_LZ4; 4847 l2hdr->b_asize = csize; 4848 l2hdr->b_tmp_cdata = cdata; 4849 ARCSTAT_BUMP(arcstat_l2_compress_successes); 4850 return (B_TRUE); 4851 } else { 4852 /* 4853 * Compression failed, release the compressed buffer. 4854 * l2hdr will be left unmodified. 4855 */ 4856 zio_data_buf_free(cdata, len); 4857 ARCSTAT_BUMP(arcstat_l2_compress_failures); 4858 return (B_FALSE); 4859 } 4860 } 4861 4862 /* 4863 * Decompresses a zio read back from an l2arc device. On success, the 4864 * underlying zio's io_data buffer is overwritten by the uncompressed 4865 * version. On decompression error (corrupt compressed stream), the 4866 * zio->io_error value is set to signal an I/O error. 4867 * 4868 * Please note that the compressed data stream is not checksummed, so 4869 * if the underlying device is experiencing data corruption, we may feed 4870 * corrupt data to the decompressor, so the decompressor needs to be 4871 * able to handle this situation (LZ4 does). 4872 */ 4873 static void 4874 l2arc_decompress_zio(zio_t *zio, arc_buf_hdr_t *hdr, enum zio_compress c) 4875 { 4876 ASSERT(L2ARC_IS_VALID_COMPRESS(c)); 4877 4878 if (zio->io_error != 0) { 4879 /* 4880 * An io error has occured, just restore the original io 4881 * size in preparation for a main pool read. 4882 */ 4883 zio->io_orig_size = zio->io_size = hdr->b_size; 4884 return; 4885 } 4886 4887 if (c == ZIO_COMPRESS_EMPTY) { 4888 /* 4889 * An empty buffer results in a null zio, which means we 4890 * need to fill its io_data after we're done restoring the 4891 * buffer's contents. 4892 */ 4893 ASSERT(hdr->b_buf != NULL); 4894 bzero(hdr->b_buf->b_data, hdr->b_size); 4895 zio->io_data = zio->io_orig_data = hdr->b_buf->b_data; 4896 } else { 4897 ASSERT(zio->io_data != NULL); 4898 /* 4899 * We copy the compressed data from the start of the arc buffer 4900 * (the zio_read will have pulled in only what we need, the 4901 * rest is garbage which we will overwrite at decompression) 4902 * and then decompress back to the ARC data buffer. This way we 4903 * can minimize copying by simply decompressing back over the 4904 * original compressed data (rather than decompressing to an 4905 * aux buffer and then copying back the uncompressed buffer, 4906 * which is likely to be much larger). 4907 */ 4908 uint64_t csize; 4909 void *cdata; 4910 4911 csize = zio->io_size; 4912 cdata = zio_data_buf_alloc(csize); 4913 bcopy(zio->io_data, cdata, csize); 4914 if (zio_decompress_data(c, cdata, zio->io_data, csize, 4915 hdr->b_size) != 0) 4916 zio->io_error = EIO; 4917 zio_data_buf_free(cdata, csize); 4918 } 4919 4920 /* Restore the expected uncompressed IO size. */ 4921 zio->io_orig_size = zio->io_size = hdr->b_size; 4922 } 4923 4924 /* 4925 * Releases the temporary b_tmp_cdata buffer in an l2arc header structure. 4926 * This buffer serves as a temporary holder of compressed data while 4927 * the buffer entry is being written to an l2arc device. Once that is 4928 * done, we can dispose of it. 4929 */ 4930 static void 4931 l2arc_release_cdata_buf(arc_buf_hdr_t *ab) 4932 { 4933 l2arc_buf_hdr_t *l2hdr = ab->b_l2hdr; 4934 4935 if (l2hdr->b_compress == ZIO_COMPRESS_LZ4) { 4936 /* 4937 * If the data was compressed, then we've allocated a 4938 * temporary buffer for it, so now we need to release it. 4939 */ 4940 ASSERT(l2hdr->b_tmp_cdata != NULL); 4941 zio_data_buf_free(l2hdr->b_tmp_cdata, ab->b_size); 4942 } 4943 l2hdr->b_tmp_cdata = NULL; 4944 } 4945 4946 /* 4947 * This thread feeds the L2ARC at regular intervals. This is the beating 4948 * heart of the L2ARC. 4949 */ 4950 static void 4951 l2arc_feed_thread(void) 4952 { 4953 callb_cpr_t cpr; 4954 l2arc_dev_t *dev; 4955 spa_t *spa; 4956 uint64_t size, wrote; 4957 clock_t begin, next = ddi_get_lbolt(); 4958 boolean_t headroom_boost = B_FALSE; 4959 4960 CALLB_CPR_INIT(&cpr, &l2arc_feed_thr_lock, callb_generic_cpr, FTAG); 4961 4962 mutex_enter(&l2arc_feed_thr_lock); 4963 4964 while (l2arc_thread_exit == 0) { 4965 CALLB_CPR_SAFE_BEGIN(&cpr); 4966 (void) cv_timedwait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock, 4967 next); 4968 CALLB_CPR_SAFE_END(&cpr, &l2arc_feed_thr_lock); 4969 next = ddi_get_lbolt() + hz; 4970 4971 /* 4972 * Quick check for L2ARC devices. 4973 */ 4974 mutex_enter(&l2arc_dev_mtx); 4975 if (l2arc_ndev == 0) { 4976 mutex_exit(&l2arc_dev_mtx); 4977 continue; 4978 } 4979 mutex_exit(&l2arc_dev_mtx); 4980 begin = ddi_get_lbolt(); 4981 4982 /* 4983 * This selects the next l2arc device to write to, and in 4984 * doing so the next spa to feed from: dev->l2ad_spa. This 4985 * will return NULL if there are now no l2arc devices or if 4986 * they are all faulted. 4987 * 4988 * If a device is returned, its spa's config lock is also 4989 * held to prevent device removal. l2arc_dev_get_next() 4990 * will grab and release l2arc_dev_mtx. 4991 */ 4992 if ((dev = l2arc_dev_get_next()) == NULL) 4993 continue; 4994 4995 spa = dev->l2ad_spa; 4996 ASSERT(spa != NULL); 4997 4998 /* 4999 * If the pool is read-only then force the feed thread to 5000 * sleep a little longer. 5001 */ 5002 if (!spa_writeable(spa)) { 5003 next = ddi_get_lbolt() + 5 * l2arc_feed_secs * hz; 5004 spa_config_exit(spa, SCL_L2ARC, dev); 5005 continue; 5006 } 5007 5008 /* 5009 * Avoid contributing to memory pressure. 5010 */ 5011 if (arc_reclaim_needed()) { 5012 ARCSTAT_BUMP(arcstat_l2_abort_lowmem); 5013 spa_config_exit(spa, SCL_L2ARC, dev); 5014 continue; 5015 } 5016 5017 ARCSTAT_BUMP(arcstat_l2_feeds); 5018 5019 size = l2arc_write_size(); 5020 5021 /* 5022 * Evict L2ARC buffers that will be overwritten. 5023 */ 5024 l2arc_evict(dev, size, B_FALSE); 5025 5026 /* 5027 * Write ARC buffers. 5028 */ 5029 wrote = l2arc_write_buffers(spa, dev, size, &headroom_boost); 5030 5031 /* 5032 * Calculate interval between writes. 5033 */ 5034 next = l2arc_write_interval(begin, size, wrote); 5035 spa_config_exit(spa, SCL_L2ARC, dev); 5036 } 5037 5038 l2arc_thread_exit = 0; 5039 cv_broadcast(&l2arc_feed_thr_cv); 5040 CALLB_CPR_EXIT(&cpr); /* drops l2arc_feed_thr_lock */ 5041 thread_exit(); 5042 } 5043 5044 boolean_t 5045 l2arc_vdev_present(vdev_t *vd) 5046 { 5047 l2arc_dev_t *dev; 5048 5049 mutex_enter(&l2arc_dev_mtx); 5050 for (dev = list_head(l2arc_dev_list); dev != NULL; 5051 dev = list_next(l2arc_dev_list, dev)) { 5052 if (dev->l2ad_vdev == vd) 5053 break; 5054 } 5055 mutex_exit(&l2arc_dev_mtx); 5056 5057 return (dev != NULL); 5058 } 5059 5060 /* 5061 * Add a vdev for use by the L2ARC. By this point the spa has already 5062 * validated the vdev and opened it. 5063 */ 5064 void 5065 l2arc_add_vdev(spa_t *spa, vdev_t *vd) 5066 { 5067 l2arc_dev_t *adddev; 5068 5069 ASSERT(!l2arc_vdev_present(vd)); 5070 5071 /* 5072 * Create a new l2arc device entry. 5073 */ 5074 adddev = kmem_zalloc(sizeof (l2arc_dev_t), KM_SLEEP); 5075 adddev->l2ad_spa = spa; 5076 adddev->l2ad_vdev = vd; 5077 adddev->l2ad_start = VDEV_LABEL_START_SIZE; 5078 adddev->l2ad_end = VDEV_LABEL_START_SIZE + vdev_get_min_asize(vd); 5079 adddev->l2ad_hand = adddev->l2ad_start; 5080 adddev->l2ad_evict = adddev->l2ad_start; 5081 adddev->l2ad_first = B_TRUE; 5082 adddev->l2ad_writing = B_FALSE; 5083 5084 /* 5085 * This is a list of all ARC buffers that are still valid on the 5086 * device. 5087 */ 5088 adddev->l2ad_buflist = kmem_zalloc(sizeof (list_t), KM_SLEEP); 5089 list_create(adddev->l2ad_buflist, sizeof (arc_buf_hdr_t), 5090 offsetof(arc_buf_hdr_t, b_l2node)); 5091 5092 vdev_space_update(vd, 0, 0, adddev->l2ad_end - adddev->l2ad_hand); 5093 5094 /* 5095 * Add device to global list 5096 */ 5097 mutex_enter(&l2arc_dev_mtx); 5098 list_insert_head(l2arc_dev_list, adddev); 5099 atomic_inc_64(&l2arc_ndev); 5100 mutex_exit(&l2arc_dev_mtx); 5101 } 5102 5103 /* 5104 * Remove a vdev from the L2ARC. 5105 */ 5106 void 5107 l2arc_remove_vdev(vdev_t *vd) 5108 { 5109 l2arc_dev_t *dev, *nextdev, *remdev = NULL; 5110 5111 /* 5112 * Find the device by vdev 5113 */ 5114 mutex_enter(&l2arc_dev_mtx); 5115 for (dev = list_head(l2arc_dev_list); dev; dev = nextdev) { 5116 nextdev = list_next(l2arc_dev_list, dev); 5117 if (vd == dev->l2ad_vdev) { 5118 remdev = dev; 5119 break; 5120 } 5121 } 5122 ASSERT(remdev != NULL); 5123 5124 /* 5125 * Remove device from global list 5126 */ 5127 list_remove(l2arc_dev_list, remdev); 5128 l2arc_dev_last = NULL; /* may have been invalidated */ 5129 atomic_dec_64(&l2arc_ndev); 5130 mutex_exit(&l2arc_dev_mtx); 5131 5132 /* 5133 * Clear all buflists and ARC references. L2ARC device flush. 5134 */ 5135 l2arc_evict(remdev, 0, B_TRUE); 5136 list_destroy(remdev->l2ad_buflist); 5137 kmem_free(remdev->l2ad_buflist, sizeof (list_t)); 5138 kmem_free(remdev, sizeof (l2arc_dev_t)); 5139 } 5140 5141 void 5142 l2arc_init(void) 5143 { 5144 l2arc_thread_exit = 0; 5145 l2arc_ndev = 0; 5146 l2arc_writes_sent = 0; 5147 l2arc_writes_done = 0; 5148 5149 mutex_init(&l2arc_feed_thr_lock, NULL, MUTEX_DEFAULT, NULL); 5150 cv_init(&l2arc_feed_thr_cv, NULL, CV_DEFAULT, NULL); 5151 mutex_init(&l2arc_dev_mtx, NULL, MUTEX_DEFAULT, NULL); 5152 mutex_init(&l2arc_buflist_mtx, NULL, MUTEX_DEFAULT, NULL); 5153 mutex_init(&l2arc_free_on_write_mtx, NULL, MUTEX_DEFAULT, NULL); 5154 5155 l2arc_dev_list = &L2ARC_dev_list; 5156 l2arc_free_on_write = &L2ARC_free_on_write; 5157 list_create(l2arc_dev_list, sizeof (l2arc_dev_t), 5158 offsetof(l2arc_dev_t, l2ad_node)); 5159 list_create(l2arc_free_on_write, sizeof (l2arc_data_free_t), 5160 offsetof(l2arc_data_free_t, l2df_list_node)); 5161 } 5162 5163 void 5164 l2arc_fini(void) 5165 { 5166 /* 5167 * This is called from dmu_fini(), which is called from spa_fini(); 5168 * Because of this, we can assume that all l2arc devices have 5169 * already been removed when the pools themselves were removed. 5170 */ 5171 5172 l2arc_do_free_on_write(); 5173 5174 mutex_destroy(&l2arc_feed_thr_lock); 5175 cv_destroy(&l2arc_feed_thr_cv); 5176 mutex_destroy(&l2arc_dev_mtx); 5177 mutex_destroy(&l2arc_buflist_mtx); 5178 mutex_destroy(&l2arc_free_on_write_mtx); 5179 5180 list_destroy(l2arc_dev_list); 5181 list_destroy(l2arc_free_on_write); 5182 } 5183 5184 void 5185 l2arc_start(void) 5186 { 5187 if (!(spa_mode_global & FWRITE)) 5188 return; 5189 5190 (void) thread_create(NULL, 0, l2arc_feed_thread, NULL, 0, &p0, 5191 TS_RUN, minclsyspri); 5192 } 5193 5194 void 5195 l2arc_stop(void) 5196 { 5197 if (!(spa_mode_global & FWRITE)) 5198 return; 5199 5200 mutex_enter(&l2arc_feed_thr_lock); 5201 cv_signal(&l2arc_feed_thr_cv); /* kick thread out of startup */ 5202 l2arc_thread_exit = 1; 5203 while (l2arc_thread_exit != 0) 5204 cv_wait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock); 5205 mutex_exit(&l2arc_feed_thr_lock); 5206 } 5207