1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 */ 24 25 /* 26 * DVA-based Adjustable Replacement Cache 27 * 28 * While much of the theory of operation used here is 29 * based on the self-tuning, low overhead replacement cache 30 * presented by Megiddo and Modha at FAST 2003, there are some 31 * significant differences: 32 * 33 * 1. The Megiddo and Modha model assumes any page is evictable. 34 * Pages in its cache cannot be "locked" into memory. This makes 35 * the eviction algorithm simple: evict the last page in the list. 36 * This also make the performance characteristics easy to reason 37 * about. Our cache is not so simple. At any given moment, some 38 * subset of the blocks in the cache are un-evictable because we 39 * have handed out a reference to them. Blocks are only evictable 40 * when there are no external references active. This makes 41 * eviction far more problematic: we choose to evict the evictable 42 * blocks that are the "lowest" in the list. 43 * 44 * There are times when it is not possible to evict the requested 45 * space. In these circumstances we are unable to adjust the cache 46 * size. To prevent the cache growing unbounded at these times we 47 * implement a "cache throttle" that slows the flow of new data 48 * into the cache until we can make space available. 49 * 50 * 2. The Megiddo and Modha model assumes a fixed cache size. 51 * Pages are evicted when the cache is full and there is a cache 52 * miss. Our model has a variable sized cache. It grows with 53 * high use, but also tries to react to memory pressure from the 54 * operating system: decreasing its size when system memory is 55 * tight. 56 * 57 * 3. The Megiddo and Modha model assumes a fixed page size. All 58 * elements of the cache are therefor exactly the same size. So 59 * when adjusting the cache size following a cache miss, its simply 60 * a matter of choosing a single page to evict. In our model, we 61 * have variable sized cache blocks (rangeing from 512 bytes to 62 * 128K bytes). We therefor choose a set of blocks to evict to make 63 * space for a cache miss that approximates as closely as possible 64 * the space used by the new block. 65 * 66 * See also: "ARC: A Self-Tuning, Low Overhead Replacement Cache" 67 * by N. Megiddo & D. Modha, FAST 2003 68 */ 69 70 /* 71 * The locking model: 72 * 73 * A new reference to a cache buffer can be obtained in two 74 * ways: 1) via a hash table lookup using the DVA as a key, 75 * or 2) via one of the ARC lists. The arc_read() interface 76 * uses method 1, while the internal arc algorithms for 77 * adjusting the cache use method 2. We therefor provide two 78 * types of locks: 1) the hash table lock array, and 2) the 79 * arc list locks. 80 * 81 * Buffers do not have their own mutexs, rather they rely on the 82 * hash table mutexs for the bulk of their protection (i.e. most 83 * fields in the arc_buf_hdr_t are protected by these mutexs). 84 * 85 * buf_hash_find() returns the appropriate mutex (held) when it 86 * locates the requested buffer in the hash table. It returns 87 * NULL for the mutex if the buffer was not in the table. 88 * 89 * buf_hash_remove() expects the appropriate hash mutex to be 90 * already held before it is invoked. 91 * 92 * Each arc state also has a mutex which is used to protect the 93 * buffer list associated with the state. When attempting to 94 * obtain a hash table lock while holding an arc list lock you 95 * must use: mutex_tryenter() to avoid deadlock. Also note that 96 * the active state mutex must be held before the ghost state mutex. 97 * 98 * Arc buffers may have an associated eviction callback function. 99 * This function will be invoked prior to removing the buffer (e.g. 100 * in arc_do_user_evicts()). Note however that the data associated 101 * with the buffer may be evicted prior to the callback. The callback 102 * must be made with *no locks held* (to prevent deadlock). Additionally, 103 * the users of callbacks must ensure that their private data is 104 * protected from simultaneous callbacks from arc_buf_evict() 105 * and arc_do_user_evicts(). 106 * 107 * Note that the majority of the performance stats are manipulated 108 * with atomic operations. 109 * 110 * The L2ARC uses the l2arc_buflist_mtx global mutex for the following: 111 * 112 * - L2ARC buflist creation 113 * - L2ARC buflist eviction 114 * - L2ARC write completion, which walks L2ARC buflists 115 * - ARC header destruction, as it removes from L2ARC buflists 116 * - ARC header release, as it removes from L2ARC buflists 117 */ 118 119 #include <sys/spa.h> 120 #include <sys/zio.h> 121 #include <sys/zfs_context.h> 122 #include <sys/arc.h> 123 #include <sys/refcount.h> 124 #include <sys/vdev.h> 125 #include <sys/vdev_impl.h> 126 #ifdef _KERNEL 127 #include <sys/vmsystm.h> 128 #include <vm/anon.h> 129 #include <sys/fs/swapnode.h> 130 #include <sys/dnlc.h> 131 #endif 132 #include <sys/callb.h> 133 #include <sys/kstat.h> 134 #include <zfs_fletcher.h> 135 136 static kmutex_t arc_reclaim_thr_lock; 137 static kcondvar_t arc_reclaim_thr_cv; /* used to signal reclaim thr */ 138 static uint8_t arc_thread_exit; 139 140 extern int zfs_write_limit_shift; 141 extern uint64_t zfs_write_limit_max; 142 extern kmutex_t zfs_write_limit_lock; 143 144 #define ARC_REDUCE_DNLC_PERCENT 3 145 uint_t arc_reduce_dnlc_percent = ARC_REDUCE_DNLC_PERCENT; 146 147 typedef enum arc_reclaim_strategy { 148 ARC_RECLAIM_AGGR, /* Aggressive reclaim strategy */ 149 ARC_RECLAIM_CONS /* Conservative reclaim strategy */ 150 } arc_reclaim_strategy_t; 151 152 /* number of seconds before growing cache again */ 153 static int arc_grow_retry = 60; 154 155 /* shift of arc_c for calculating both min and max arc_p */ 156 static int arc_p_min_shift = 4; 157 158 /* log2(fraction of arc to reclaim) */ 159 static int arc_shrink_shift = 5; 160 161 /* 162 * minimum lifespan of a prefetch block in clock ticks 163 * (initialized in arc_init()) 164 */ 165 static int arc_min_prefetch_lifespan; 166 167 static int arc_dead; 168 169 /* 170 * The arc has filled available memory and has now warmed up. 171 */ 172 static boolean_t arc_warm; 173 174 /* 175 * These tunables are for performance analysis. 176 */ 177 uint64_t zfs_arc_max; 178 uint64_t zfs_arc_min; 179 uint64_t zfs_arc_meta_limit = 0; 180 int zfs_arc_grow_retry = 0; 181 int zfs_arc_shrink_shift = 0; 182 int zfs_arc_p_min_shift = 0; 183 184 /* 185 * Note that buffers can be in one of 6 states: 186 * ARC_anon - anonymous (discussed below) 187 * ARC_mru - recently used, currently cached 188 * ARC_mru_ghost - recentely used, no longer in cache 189 * ARC_mfu - frequently used, currently cached 190 * ARC_mfu_ghost - frequently used, no longer in cache 191 * ARC_l2c_only - exists in L2ARC but not other states 192 * When there are no active references to the buffer, they are 193 * are linked onto a list in one of these arc states. These are 194 * the only buffers that can be evicted or deleted. Within each 195 * state there are multiple lists, one for meta-data and one for 196 * non-meta-data. Meta-data (indirect blocks, blocks of dnodes, 197 * etc.) is tracked separately so that it can be managed more 198 * explicitly: favored over data, limited explicitly. 199 * 200 * Anonymous buffers are buffers that are not associated with 201 * a DVA. These are buffers that hold dirty block copies 202 * before they are written to stable storage. By definition, 203 * they are "ref'd" and are considered part of arc_mru 204 * that cannot be freed. Generally, they will aquire a DVA 205 * as they are written and migrate onto the arc_mru list. 206 * 207 * The ARC_l2c_only state is for buffers that are in the second 208 * level ARC but no longer in any of the ARC_m* lists. The second 209 * level ARC itself may also contain buffers that are in any of 210 * the ARC_m* states - meaning that a buffer can exist in two 211 * places. The reason for the ARC_l2c_only state is to keep the 212 * buffer header in the hash table, so that reads that hit the 213 * second level ARC benefit from these fast lookups. 214 */ 215 216 typedef struct arc_state { 217 list_t arcs_list[ARC_BUFC_NUMTYPES]; /* list of evictable buffers */ 218 uint64_t arcs_lsize[ARC_BUFC_NUMTYPES]; /* amount of evictable data */ 219 uint64_t arcs_size; /* total amount of data in this state */ 220 kmutex_t arcs_mtx; 221 } arc_state_t; 222 223 /* The 6 states: */ 224 static arc_state_t ARC_anon; 225 static arc_state_t ARC_mru; 226 static arc_state_t ARC_mru_ghost; 227 static arc_state_t ARC_mfu; 228 static arc_state_t ARC_mfu_ghost; 229 static arc_state_t ARC_l2c_only; 230 231 typedef struct arc_stats { 232 kstat_named_t arcstat_hits; 233 kstat_named_t arcstat_misses; 234 kstat_named_t arcstat_demand_data_hits; 235 kstat_named_t arcstat_demand_data_misses; 236 kstat_named_t arcstat_demand_metadata_hits; 237 kstat_named_t arcstat_demand_metadata_misses; 238 kstat_named_t arcstat_prefetch_data_hits; 239 kstat_named_t arcstat_prefetch_data_misses; 240 kstat_named_t arcstat_prefetch_metadata_hits; 241 kstat_named_t arcstat_prefetch_metadata_misses; 242 kstat_named_t arcstat_mru_hits; 243 kstat_named_t arcstat_mru_ghost_hits; 244 kstat_named_t arcstat_mfu_hits; 245 kstat_named_t arcstat_mfu_ghost_hits; 246 kstat_named_t arcstat_deleted; 247 kstat_named_t arcstat_recycle_miss; 248 kstat_named_t arcstat_mutex_miss; 249 kstat_named_t arcstat_evict_skip; 250 kstat_named_t arcstat_evict_l2_cached; 251 kstat_named_t arcstat_evict_l2_eligible; 252 kstat_named_t arcstat_evict_l2_ineligible; 253 kstat_named_t arcstat_hash_elements; 254 kstat_named_t arcstat_hash_elements_max; 255 kstat_named_t arcstat_hash_collisions; 256 kstat_named_t arcstat_hash_chains; 257 kstat_named_t arcstat_hash_chain_max; 258 kstat_named_t arcstat_p; 259 kstat_named_t arcstat_c; 260 kstat_named_t arcstat_c_min; 261 kstat_named_t arcstat_c_max; 262 kstat_named_t arcstat_size; 263 kstat_named_t arcstat_hdr_size; 264 kstat_named_t arcstat_data_size; 265 kstat_named_t arcstat_other_size; 266 kstat_named_t arcstat_l2_hits; 267 kstat_named_t arcstat_l2_misses; 268 kstat_named_t arcstat_l2_feeds; 269 kstat_named_t arcstat_l2_rw_clash; 270 kstat_named_t arcstat_l2_read_bytes; 271 kstat_named_t arcstat_l2_write_bytes; 272 kstat_named_t arcstat_l2_writes_sent; 273 kstat_named_t arcstat_l2_writes_done; 274 kstat_named_t arcstat_l2_writes_error; 275 kstat_named_t arcstat_l2_writes_hdr_miss; 276 kstat_named_t arcstat_l2_evict_lock_retry; 277 kstat_named_t arcstat_l2_evict_reading; 278 kstat_named_t arcstat_l2_free_on_write; 279 kstat_named_t arcstat_l2_abort_lowmem; 280 kstat_named_t arcstat_l2_cksum_bad; 281 kstat_named_t arcstat_l2_io_error; 282 kstat_named_t arcstat_l2_size; 283 kstat_named_t arcstat_l2_hdr_size; 284 kstat_named_t arcstat_memory_throttle_count; 285 } arc_stats_t; 286 287 static arc_stats_t arc_stats = { 288 { "hits", KSTAT_DATA_UINT64 }, 289 { "misses", KSTAT_DATA_UINT64 }, 290 { "demand_data_hits", KSTAT_DATA_UINT64 }, 291 { "demand_data_misses", KSTAT_DATA_UINT64 }, 292 { "demand_metadata_hits", KSTAT_DATA_UINT64 }, 293 { "demand_metadata_misses", KSTAT_DATA_UINT64 }, 294 { "prefetch_data_hits", KSTAT_DATA_UINT64 }, 295 { "prefetch_data_misses", KSTAT_DATA_UINT64 }, 296 { "prefetch_metadata_hits", KSTAT_DATA_UINT64 }, 297 { "prefetch_metadata_misses", KSTAT_DATA_UINT64 }, 298 { "mru_hits", KSTAT_DATA_UINT64 }, 299 { "mru_ghost_hits", KSTAT_DATA_UINT64 }, 300 { "mfu_hits", KSTAT_DATA_UINT64 }, 301 { "mfu_ghost_hits", KSTAT_DATA_UINT64 }, 302 { "deleted", KSTAT_DATA_UINT64 }, 303 { "recycle_miss", KSTAT_DATA_UINT64 }, 304 { "mutex_miss", KSTAT_DATA_UINT64 }, 305 { "evict_skip", KSTAT_DATA_UINT64 }, 306 { "evict_l2_cached", KSTAT_DATA_UINT64 }, 307 { "evict_l2_eligible", KSTAT_DATA_UINT64 }, 308 { "evict_l2_ineligible", KSTAT_DATA_UINT64 }, 309 { "hash_elements", KSTAT_DATA_UINT64 }, 310 { "hash_elements_max", KSTAT_DATA_UINT64 }, 311 { "hash_collisions", KSTAT_DATA_UINT64 }, 312 { "hash_chains", KSTAT_DATA_UINT64 }, 313 { "hash_chain_max", KSTAT_DATA_UINT64 }, 314 { "p", KSTAT_DATA_UINT64 }, 315 { "c", KSTAT_DATA_UINT64 }, 316 { "c_min", KSTAT_DATA_UINT64 }, 317 { "c_max", KSTAT_DATA_UINT64 }, 318 { "size", KSTAT_DATA_UINT64 }, 319 { "hdr_size", KSTAT_DATA_UINT64 }, 320 { "data_size", KSTAT_DATA_UINT64 }, 321 { "other_size", KSTAT_DATA_UINT64 }, 322 { "l2_hits", KSTAT_DATA_UINT64 }, 323 { "l2_misses", KSTAT_DATA_UINT64 }, 324 { "l2_feeds", KSTAT_DATA_UINT64 }, 325 { "l2_rw_clash", KSTAT_DATA_UINT64 }, 326 { "l2_read_bytes", KSTAT_DATA_UINT64 }, 327 { "l2_write_bytes", KSTAT_DATA_UINT64 }, 328 { "l2_writes_sent", KSTAT_DATA_UINT64 }, 329 { "l2_writes_done", KSTAT_DATA_UINT64 }, 330 { "l2_writes_error", KSTAT_DATA_UINT64 }, 331 { "l2_writes_hdr_miss", KSTAT_DATA_UINT64 }, 332 { "l2_evict_lock_retry", KSTAT_DATA_UINT64 }, 333 { "l2_evict_reading", KSTAT_DATA_UINT64 }, 334 { "l2_free_on_write", KSTAT_DATA_UINT64 }, 335 { "l2_abort_lowmem", KSTAT_DATA_UINT64 }, 336 { "l2_cksum_bad", KSTAT_DATA_UINT64 }, 337 { "l2_io_error", KSTAT_DATA_UINT64 }, 338 { "l2_size", KSTAT_DATA_UINT64 }, 339 { "l2_hdr_size", KSTAT_DATA_UINT64 }, 340 { "memory_throttle_count", KSTAT_DATA_UINT64 } 341 }; 342 343 #define ARCSTAT(stat) (arc_stats.stat.value.ui64) 344 345 #define ARCSTAT_INCR(stat, val) \ 346 atomic_add_64(&arc_stats.stat.value.ui64, (val)); 347 348 #define ARCSTAT_BUMP(stat) ARCSTAT_INCR(stat, 1) 349 #define ARCSTAT_BUMPDOWN(stat) ARCSTAT_INCR(stat, -1) 350 351 #define ARCSTAT_MAX(stat, val) { \ 352 uint64_t m; \ 353 while ((val) > (m = arc_stats.stat.value.ui64) && \ 354 (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val)))) \ 355 continue; \ 356 } 357 358 #define ARCSTAT_MAXSTAT(stat) \ 359 ARCSTAT_MAX(stat##_max, arc_stats.stat.value.ui64) 360 361 /* 362 * We define a macro to allow ARC hits/misses to be easily broken down by 363 * two separate conditions, giving a total of four different subtypes for 364 * each of hits and misses (so eight statistics total). 365 */ 366 #define ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \ 367 if (cond1) { \ 368 if (cond2) { \ 369 ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \ 370 } else { \ 371 ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \ 372 } \ 373 } else { \ 374 if (cond2) { \ 375 ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \ 376 } else { \ 377 ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\ 378 } \ 379 } 380 381 kstat_t *arc_ksp; 382 static arc_state_t *arc_anon; 383 static arc_state_t *arc_mru; 384 static arc_state_t *arc_mru_ghost; 385 static arc_state_t *arc_mfu; 386 static arc_state_t *arc_mfu_ghost; 387 static arc_state_t *arc_l2c_only; 388 389 /* 390 * There are several ARC variables that are critical to export as kstats -- 391 * but we don't want to have to grovel around in the kstat whenever we wish to 392 * manipulate them. For these variables, we therefore define them to be in 393 * terms of the statistic variable. This assures that we are not introducing 394 * the possibility of inconsistency by having shadow copies of the variables, 395 * while still allowing the code to be readable. 396 */ 397 #define arc_size ARCSTAT(arcstat_size) /* actual total arc size */ 398 #define arc_p ARCSTAT(arcstat_p) /* target size of MRU */ 399 #define arc_c ARCSTAT(arcstat_c) /* target size of cache */ 400 #define arc_c_min ARCSTAT(arcstat_c_min) /* min target cache size */ 401 #define arc_c_max ARCSTAT(arcstat_c_max) /* max target cache size */ 402 403 static int arc_no_grow; /* Don't try to grow cache size */ 404 static uint64_t arc_tempreserve; 405 static uint64_t arc_loaned_bytes; 406 static uint64_t arc_meta_used; 407 static uint64_t arc_meta_limit; 408 static uint64_t arc_meta_max = 0; 409 410 typedef struct l2arc_buf_hdr l2arc_buf_hdr_t; 411 412 typedef struct arc_callback arc_callback_t; 413 414 struct arc_callback { 415 void *acb_private; 416 arc_done_func_t *acb_done; 417 arc_buf_t *acb_buf; 418 zio_t *acb_zio_dummy; 419 arc_callback_t *acb_next; 420 }; 421 422 typedef struct arc_write_callback arc_write_callback_t; 423 424 struct arc_write_callback { 425 void *awcb_private; 426 arc_done_func_t *awcb_ready; 427 arc_done_func_t *awcb_done; 428 arc_buf_t *awcb_buf; 429 }; 430 431 struct arc_buf_hdr { 432 /* protected by hash lock */ 433 dva_t b_dva; 434 uint64_t b_birth; 435 uint64_t b_cksum0; 436 437 kmutex_t b_freeze_lock; 438 zio_cksum_t *b_freeze_cksum; 439 void *b_thawed; 440 441 arc_buf_hdr_t *b_hash_next; 442 arc_buf_t *b_buf; 443 uint32_t b_flags; 444 uint32_t b_datacnt; 445 446 arc_callback_t *b_acb; 447 kcondvar_t b_cv; 448 449 /* immutable */ 450 arc_buf_contents_t b_type; 451 uint64_t b_size; 452 uint64_t b_spa; 453 454 /* protected by arc state mutex */ 455 arc_state_t *b_state; 456 list_node_t b_arc_node; 457 458 /* updated atomically */ 459 clock_t b_arc_access; 460 461 /* self protecting */ 462 refcount_t b_refcnt; 463 464 l2arc_buf_hdr_t *b_l2hdr; 465 list_node_t b_l2node; 466 }; 467 468 static arc_buf_t *arc_eviction_list; 469 static kmutex_t arc_eviction_mtx; 470 static arc_buf_hdr_t arc_eviction_hdr; 471 static void arc_get_data_buf(arc_buf_t *buf); 472 static void arc_access(arc_buf_hdr_t *buf, kmutex_t *hash_lock); 473 static int arc_evict_needed(arc_buf_contents_t type); 474 static void arc_evict_ghost(arc_state_t *state, uint64_t spa, int64_t bytes); 475 476 static boolean_t l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *ab); 477 478 #define GHOST_STATE(state) \ 479 ((state) == arc_mru_ghost || (state) == arc_mfu_ghost || \ 480 (state) == arc_l2c_only) 481 482 /* 483 * Private ARC flags. These flags are private ARC only flags that will show up 484 * in b_flags in the arc_hdr_buf_t. Some flags are publicly declared, and can 485 * be passed in as arc_flags in things like arc_read. However, these flags 486 * should never be passed and should only be set by ARC code. When adding new 487 * public flags, make sure not to smash the private ones. 488 */ 489 490 #define ARC_IN_HASH_TABLE (1 << 9) /* this buffer is hashed */ 491 #define ARC_IO_IN_PROGRESS (1 << 10) /* I/O in progress for buf */ 492 #define ARC_IO_ERROR (1 << 11) /* I/O failed for buf */ 493 #define ARC_FREED_IN_READ (1 << 12) /* buf freed while in read */ 494 #define ARC_BUF_AVAILABLE (1 << 13) /* block not in active use */ 495 #define ARC_INDIRECT (1 << 14) /* this is an indirect block */ 496 #define ARC_FREE_IN_PROGRESS (1 << 15) /* hdr about to be freed */ 497 #define ARC_L2_WRITING (1 << 16) /* L2ARC write in progress */ 498 #define ARC_L2_EVICTED (1 << 17) /* evicted during I/O */ 499 #define ARC_L2_WRITE_HEAD (1 << 18) /* head of write list */ 500 501 #define HDR_IN_HASH_TABLE(hdr) ((hdr)->b_flags & ARC_IN_HASH_TABLE) 502 #define HDR_IO_IN_PROGRESS(hdr) ((hdr)->b_flags & ARC_IO_IN_PROGRESS) 503 #define HDR_IO_ERROR(hdr) ((hdr)->b_flags & ARC_IO_ERROR) 504 #define HDR_PREFETCH(hdr) ((hdr)->b_flags & ARC_PREFETCH) 505 #define HDR_FREED_IN_READ(hdr) ((hdr)->b_flags & ARC_FREED_IN_READ) 506 #define HDR_BUF_AVAILABLE(hdr) ((hdr)->b_flags & ARC_BUF_AVAILABLE) 507 #define HDR_FREE_IN_PROGRESS(hdr) ((hdr)->b_flags & ARC_FREE_IN_PROGRESS) 508 #define HDR_L2CACHE(hdr) ((hdr)->b_flags & ARC_L2CACHE) 509 #define HDR_L2_READING(hdr) ((hdr)->b_flags & ARC_IO_IN_PROGRESS && \ 510 (hdr)->b_l2hdr != NULL) 511 #define HDR_L2_WRITING(hdr) ((hdr)->b_flags & ARC_L2_WRITING) 512 #define HDR_L2_EVICTED(hdr) ((hdr)->b_flags & ARC_L2_EVICTED) 513 #define HDR_L2_WRITE_HEAD(hdr) ((hdr)->b_flags & ARC_L2_WRITE_HEAD) 514 515 /* 516 * Other sizes 517 */ 518 519 #define HDR_SIZE ((int64_t)sizeof (arc_buf_hdr_t)) 520 #define L2HDR_SIZE ((int64_t)sizeof (l2arc_buf_hdr_t)) 521 522 /* 523 * Hash table routines 524 */ 525 526 #define HT_LOCK_PAD 64 527 528 struct ht_lock { 529 kmutex_t ht_lock; 530 #ifdef _KERNEL 531 unsigned char pad[(HT_LOCK_PAD - sizeof (kmutex_t))]; 532 #endif 533 }; 534 535 #define BUF_LOCKS 256 536 typedef struct buf_hash_table { 537 uint64_t ht_mask; 538 arc_buf_hdr_t **ht_table; 539 struct ht_lock ht_locks[BUF_LOCKS]; 540 } buf_hash_table_t; 541 542 static buf_hash_table_t buf_hash_table; 543 544 #define BUF_HASH_INDEX(spa, dva, birth) \ 545 (buf_hash(spa, dva, birth) & buf_hash_table.ht_mask) 546 #define BUF_HASH_LOCK_NTRY(idx) (buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)]) 547 #define BUF_HASH_LOCK(idx) (&(BUF_HASH_LOCK_NTRY(idx).ht_lock)) 548 #define HDR_LOCK(hdr) \ 549 (BUF_HASH_LOCK(BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth))) 550 551 uint64_t zfs_crc64_table[256]; 552 553 /* 554 * Level 2 ARC 555 */ 556 557 #define L2ARC_WRITE_SIZE (8 * 1024 * 1024) /* initial write max */ 558 #define L2ARC_HEADROOM 2 /* num of writes */ 559 #define L2ARC_FEED_SECS 1 /* caching interval secs */ 560 #define L2ARC_FEED_MIN_MS 200 /* min caching interval ms */ 561 562 #define l2arc_writes_sent ARCSTAT(arcstat_l2_writes_sent) 563 #define l2arc_writes_done ARCSTAT(arcstat_l2_writes_done) 564 565 /* 566 * L2ARC Performance Tunables 567 */ 568 uint64_t l2arc_write_max = L2ARC_WRITE_SIZE; /* default max write size */ 569 uint64_t l2arc_write_boost = L2ARC_WRITE_SIZE; /* extra write during warmup */ 570 uint64_t l2arc_headroom = L2ARC_HEADROOM; /* number of dev writes */ 571 uint64_t l2arc_feed_secs = L2ARC_FEED_SECS; /* interval seconds */ 572 uint64_t l2arc_feed_min_ms = L2ARC_FEED_MIN_MS; /* min interval milliseconds */ 573 boolean_t l2arc_noprefetch = B_TRUE; /* don't cache prefetch bufs */ 574 boolean_t l2arc_feed_again = B_TRUE; /* turbo warmup */ 575 boolean_t l2arc_norw = B_TRUE; /* no reads during writes */ 576 577 /* 578 * L2ARC Internals 579 */ 580 typedef struct l2arc_dev { 581 vdev_t *l2ad_vdev; /* vdev */ 582 spa_t *l2ad_spa; /* spa */ 583 uint64_t l2ad_hand; /* next write location */ 584 uint64_t l2ad_write; /* desired write size, bytes */ 585 uint64_t l2ad_boost; /* warmup write boost, bytes */ 586 uint64_t l2ad_start; /* first addr on device */ 587 uint64_t l2ad_end; /* last addr on device */ 588 uint64_t l2ad_evict; /* last addr eviction reached */ 589 boolean_t l2ad_first; /* first sweep through */ 590 boolean_t l2ad_writing; /* currently writing */ 591 list_t *l2ad_buflist; /* buffer list */ 592 list_node_t l2ad_node; /* device list node */ 593 } l2arc_dev_t; 594 595 static list_t L2ARC_dev_list; /* device list */ 596 static list_t *l2arc_dev_list; /* device list pointer */ 597 static kmutex_t l2arc_dev_mtx; /* device list mutex */ 598 static l2arc_dev_t *l2arc_dev_last; /* last device used */ 599 static kmutex_t l2arc_buflist_mtx; /* mutex for all buflists */ 600 static list_t L2ARC_free_on_write; /* free after write buf list */ 601 static list_t *l2arc_free_on_write; /* free after write list ptr */ 602 static kmutex_t l2arc_free_on_write_mtx; /* mutex for list */ 603 static uint64_t l2arc_ndev; /* number of devices */ 604 605 typedef struct l2arc_read_callback { 606 arc_buf_t *l2rcb_buf; /* read buffer */ 607 spa_t *l2rcb_spa; /* spa */ 608 blkptr_t l2rcb_bp; /* original blkptr */ 609 zbookmark_t l2rcb_zb; /* original bookmark */ 610 int l2rcb_flags; /* original flags */ 611 } l2arc_read_callback_t; 612 613 typedef struct l2arc_write_callback { 614 l2arc_dev_t *l2wcb_dev; /* device info */ 615 arc_buf_hdr_t *l2wcb_head; /* head of write buflist */ 616 } l2arc_write_callback_t; 617 618 struct l2arc_buf_hdr { 619 /* protected by arc_buf_hdr mutex */ 620 l2arc_dev_t *b_dev; /* L2ARC device */ 621 uint64_t b_daddr; /* disk address, offset byte */ 622 }; 623 624 typedef struct l2arc_data_free { 625 /* protected by l2arc_free_on_write_mtx */ 626 void *l2df_data; 627 size_t l2df_size; 628 void (*l2df_func)(void *, size_t); 629 list_node_t l2df_list_node; 630 } l2arc_data_free_t; 631 632 static kmutex_t l2arc_feed_thr_lock; 633 static kcondvar_t l2arc_feed_thr_cv; 634 static uint8_t l2arc_thread_exit; 635 636 static void l2arc_read_done(zio_t *zio); 637 static void l2arc_hdr_stat_add(void); 638 static void l2arc_hdr_stat_remove(void); 639 640 static uint64_t 641 buf_hash(uint64_t spa, const dva_t *dva, uint64_t birth) 642 { 643 uint8_t *vdva = (uint8_t *)dva; 644 uint64_t crc = -1ULL; 645 int i; 646 647 ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY); 648 649 for (i = 0; i < sizeof (dva_t); i++) 650 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ vdva[i]) & 0xFF]; 651 652 crc ^= (spa>>8) ^ birth; 653 654 return (crc); 655 } 656 657 #define BUF_EMPTY(buf) \ 658 ((buf)->b_dva.dva_word[0] == 0 && \ 659 (buf)->b_dva.dva_word[1] == 0 && \ 660 (buf)->b_birth == 0) 661 662 #define BUF_EQUAL(spa, dva, birth, buf) \ 663 ((buf)->b_dva.dva_word[0] == (dva)->dva_word[0]) && \ 664 ((buf)->b_dva.dva_word[1] == (dva)->dva_word[1]) && \ 665 ((buf)->b_birth == birth) && ((buf)->b_spa == spa) 666 667 static void 668 buf_discard_identity(arc_buf_hdr_t *hdr) 669 { 670 hdr->b_dva.dva_word[0] = 0; 671 hdr->b_dva.dva_word[1] = 0; 672 hdr->b_birth = 0; 673 hdr->b_cksum0 = 0; 674 } 675 676 static arc_buf_hdr_t * 677 buf_hash_find(uint64_t spa, const dva_t *dva, uint64_t birth, kmutex_t **lockp) 678 { 679 uint64_t idx = BUF_HASH_INDEX(spa, dva, birth); 680 kmutex_t *hash_lock = BUF_HASH_LOCK(idx); 681 arc_buf_hdr_t *buf; 682 683 mutex_enter(hash_lock); 684 for (buf = buf_hash_table.ht_table[idx]; buf != NULL; 685 buf = buf->b_hash_next) { 686 if (BUF_EQUAL(spa, dva, birth, buf)) { 687 *lockp = hash_lock; 688 return (buf); 689 } 690 } 691 mutex_exit(hash_lock); 692 *lockp = NULL; 693 return (NULL); 694 } 695 696 /* 697 * Insert an entry into the hash table. If there is already an element 698 * equal to elem in the hash table, then the already existing element 699 * will be returned and the new element will not be inserted. 700 * Otherwise returns NULL. 701 */ 702 static arc_buf_hdr_t * 703 buf_hash_insert(arc_buf_hdr_t *buf, kmutex_t **lockp) 704 { 705 uint64_t idx = BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth); 706 kmutex_t *hash_lock = BUF_HASH_LOCK(idx); 707 arc_buf_hdr_t *fbuf; 708 uint32_t i; 709 710 ASSERT(!HDR_IN_HASH_TABLE(buf)); 711 *lockp = hash_lock; 712 mutex_enter(hash_lock); 713 for (fbuf = buf_hash_table.ht_table[idx], i = 0; fbuf != NULL; 714 fbuf = fbuf->b_hash_next, i++) { 715 if (BUF_EQUAL(buf->b_spa, &buf->b_dva, buf->b_birth, fbuf)) 716 return (fbuf); 717 } 718 719 buf->b_hash_next = buf_hash_table.ht_table[idx]; 720 buf_hash_table.ht_table[idx] = buf; 721 buf->b_flags |= ARC_IN_HASH_TABLE; 722 723 /* collect some hash table performance data */ 724 if (i > 0) { 725 ARCSTAT_BUMP(arcstat_hash_collisions); 726 if (i == 1) 727 ARCSTAT_BUMP(arcstat_hash_chains); 728 729 ARCSTAT_MAX(arcstat_hash_chain_max, i); 730 } 731 732 ARCSTAT_BUMP(arcstat_hash_elements); 733 ARCSTAT_MAXSTAT(arcstat_hash_elements); 734 735 return (NULL); 736 } 737 738 static void 739 buf_hash_remove(arc_buf_hdr_t *buf) 740 { 741 arc_buf_hdr_t *fbuf, **bufp; 742 uint64_t idx = BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth); 743 744 ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx))); 745 ASSERT(HDR_IN_HASH_TABLE(buf)); 746 747 bufp = &buf_hash_table.ht_table[idx]; 748 while ((fbuf = *bufp) != buf) { 749 ASSERT(fbuf != NULL); 750 bufp = &fbuf->b_hash_next; 751 } 752 *bufp = buf->b_hash_next; 753 buf->b_hash_next = NULL; 754 buf->b_flags &= ~ARC_IN_HASH_TABLE; 755 756 /* collect some hash table performance data */ 757 ARCSTAT_BUMPDOWN(arcstat_hash_elements); 758 759 if (buf_hash_table.ht_table[idx] && 760 buf_hash_table.ht_table[idx]->b_hash_next == NULL) 761 ARCSTAT_BUMPDOWN(arcstat_hash_chains); 762 } 763 764 /* 765 * Global data structures and functions for the buf kmem cache. 766 */ 767 static kmem_cache_t *hdr_cache; 768 static kmem_cache_t *buf_cache; 769 770 static void 771 buf_fini(void) 772 { 773 int i; 774 775 kmem_free(buf_hash_table.ht_table, 776 (buf_hash_table.ht_mask + 1) * sizeof (void *)); 777 for (i = 0; i < BUF_LOCKS; i++) 778 mutex_destroy(&buf_hash_table.ht_locks[i].ht_lock); 779 kmem_cache_destroy(hdr_cache); 780 kmem_cache_destroy(buf_cache); 781 } 782 783 /* 784 * Constructor callback - called when the cache is empty 785 * and a new buf is requested. 786 */ 787 /* ARGSUSED */ 788 static int 789 hdr_cons(void *vbuf, void *unused, int kmflag) 790 { 791 arc_buf_hdr_t *buf = vbuf; 792 793 bzero(buf, sizeof (arc_buf_hdr_t)); 794 refcount_create(&buf->b_refcnt); 795 cv_init(&buf->b_cv, NULL, CV_DEFAULT, NULL); 796 mutex_init(&buf->b_freeze_lock, NULL, MUTEX_DEFAULT, NULL); 797 arc_space_consume(sizeof (arc_buf_hdr_t), ARC_SPACE_HDRS); 798 799 return (0); 800 } 801 802 /* ARGSUSED */ 803 static int 804 buf_cons(void *vbuf, void *unused, int kmflag) 805 { 806 arc_buf_t *buf = vbuf; 807 808 bzero(buf, sizeof (arc_buf_t)); 809 mutex_init(&buf->b_evict_lock, NULL, MUTEX_DEFAULT, NULL); 810 rw_init(&buf->b_data_lock, NULL, RW_DEFAULT, NULL); 811 arc_space_consume(sizeof (arc_buf_t), ARC_SPACE_HDRS); 812 813 return (0); 814 } 815 816 /* 817 * Destructor callback - called when a cached buf is 818 * no longer required. 819 */ 820 /* ARGSUSED */ 821 static void 822 hdr_dest(void *vbuf, void *unused) 823 { 824 arc_buf_hdr_t *buf = vbuf; 825 826 ASSERT(BUF_EMPTY(buf)); 827 refcount_destroy(&buf->b_refcnt); 828 cv_destroy(&buf->b_cv); 829 mutex_destroy(&buf->b_freeze_lock); 830 arc_space_return(sizeof (arc_buf_hdr_t), ARC_SPACE_HDRS); 831 } 832 833 /* ARGSUSED */ 834 static void 835 buf_dest(void *vbuf, void *unused) 836 { 837 arc_buf_t *buf = vbuf; 838 839 mutex_destroy(&buf->b_evict_lock); 840 rw_destroy(&buf->b_data_lock); 841 arc_space_return(sizeof (arc_buf_t), ARC_SPACE_HDRS); 842 } 843 844 /* 845 * Reclaim callback -- invoked when memory is low. 846 */ 847 /* ARGSUSED */ 848 static void 849 hdr_recl(void *unused) 850 { 851 dprintf("hdr_recl called\n"); 852 /* 853 * umem calls the reclaim func when we destroy the buf cache, 854 * which is after we do arc_fini(). 855 */ 856 if (!arc_dead) 857 cv_signal(&arc_reclaim_thr_cv); 858 } 859 860 static void 861 buf_init(void) 862 { 863 uint64_t *ct; 864 uint64_t hsize = 1ULL << 12; 865 int i, j; 866 867 /* 868 * The hash table is big enough to fill all of physical memory 869 * with an average 64K block size. The table will take up 870 * totalmem*sizeof(void*)/64K (eg. 128KB/GB with 8-byte pointers). 871 */ 872 while (hsize * 65536 < physmem * PAGESIZE) 873 hsize <<= 1; 874 retry: 875 buf_hash_table.ht_mask = hsize - 1; 876 buf_hash_table.ht_table = 877 kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP); 878 if (buf_hash_table.ht_table == NULL) { 879 ASSERT(hsize > (1ULL << 8)); 880 hsize >>= 1; 881 goto retry; 882 } 883 884 hdr_cache = kmem_cache_create("arc_buf_hdr_t", sizeof (arc_buf_hdr_t), 885 0, hdr_cons, hdr_dest, hdr_recl, NULL, NULL, 0); 886 buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t), 887 0, buf_cons, buf_dest, NULL, NULL, NULL, 0); 888 889 for (i = 0; i < 256; i++) 890 for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--) 891 *ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY); 892 893 for (i = 0; i < BUF_LOCKS; i++) { 894 mutex_init(&buf_hash_table.ht_locks[i].ht_lock, 895 NULL, MUTEX_DEFAULT, NULL); 896 } 897 } 898 899 #define ARC_MINTIME (hz>>4) /* 62 ms */ 900 901 static void 902 arc_cksum_verify(arc_buf_t *buf) 903 { 904 zio_cksum_t zc; 905 906 if (!(zfs_flags & ZFS_DEBUG_MODIFY)) 907 return; 908 909 mutex_enter(&buf->b_hdr->b_freeze_lock); 910 if (buf->b_hdr->b_freeze_cksum == NULL || 911 (buf->b_hdr->b_flags & ARC_IO_ERROR)) { 912 mutex_exit(&buf->b_hdr->b_freeze_lock); 913 return; 914 } 915 fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc); 916 if (!ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc)) 917 panic("buffer modified while frozen!"); 918 mutex_exit(&buf->b_hdr->b_freeze_lock); 919 } 920 921 static int 922 arc_cksum_equal(arc_buf_t *buf) 923 { 924 zio_cksum_t zc; 925 int equal; 926 927 mutex_enter(&buf->b_hdr->b_freeze_lock); 928 fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc); 929 equal = ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc); 930 mutex_exit(&buf->b_hdr->b_freeze_lock); 931 932 return (equal); 933 } 934 935 static void 936 arc_cksum_compute(arc_buf_t *buf, boolean_t force) 937 { 938 if (!force && !(zfs_flags & ZFS_DEBUG_MODIFY)) 939 return; 940 941 mutex_enter(&buf->b_hdr->b_freeze_lock); 942 if (buf->b_hdr->b_freeze_cksum != NULL) { 943 mutex_exit(&buf->b_hdr->b_freeze_lock); 944 return; 945 } 946 buf->b_hdr->b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t), KM_SLEEP); 947 fletcher_2_native(buf->b_data, buf->b_hdr->b_size, 948 buf->b_hdr->b_freeze_cksum); 949 mutex_exit(&buf->b_hdr->b_freeze_lock); 950 } 951 952 void 953 arc_buf_thaw(arc_buf_t *buf) 954 { 955 if (zfs_flags & ZFS_DEBUG_MODIFY) { 956 if (buf->b_hdr->b_state != arc_anon) 957 panic("modifying non-anon buffer!"); 958 if (buf->b_hdr->b_flags & ARC_IO_IN_PROGRESS) 959 panic("modifying buffer while i/o in progress!"); 960 arc_cksum_verify(buf); 961 } 962 963 mutex_enter(&buf->b_hdr->b_freeze_lock); 964 if (buf->b_hdr->b_freeze_cksum != NULL) { 965 kmem_free(buf->b_hdr->b_freeze_cksum, sizeof (zio_cksum_t)); 966 buf->b_hdr->b_freeze_cksum = NULL; 967 } 968 969 if (zfs_flags & ZFS_DEBUG_MODIFY) { 970 if (buf->b_hdr->b_thawed) 971 kmem_free(buf->b_hdr->b_thawed, 1); 972 buf->b_hdr->b_thawed = kmem_alloc(1, KM_SLEEP); 973 } 974 975 mutex_exit(&buf->b_hdr->b_freeze_lock); 976 } 977 978 void 979 arc_buf_freeze(arc_buf_t *buf) 980 { 981 kmutex_t *hash_lock; 982 983 if (!(zfs_flags & ZFS_DEBUG_MODIFY)) 984 return; 985 986 hash_lock = HDR_LOCK(buf->b_hdr); 987 mutex_enter(hash_lock); 988 989 ASSERT(buf->b_hdr->b_freeze_cksum != NULL || 990 buf->b_hdr->b_state == arc_anon); 991 arc_cksum_compute(buf, B_FALSE); 992 mutex_exit(hash_lock); 993 } 994 995 static void 996 add_reference(arc_buf_hdr_t *ab, kmutex_t *hash_lock, void *tag) 997 { 998 ASSERT(MUTEX_HELD(hash_lock)); 999 1000 if ((refcount_add(&ab->b_refcnt, tag) == 1) && 1001 (ab->b_state != arc_anon)) { 1002 uint64_t delta = ab->b_size * ab->b_datacnt; 1003 list_t *list = &ab->b_state->arcs_list[ab->b_type]; 1004 uint64_t *size = &ab->b_state->arcs_lsize[ab->b_type]; 1005 1006 ASSERT(!MUTEX_HELD(&ab->b_state->arcs_mtx)); 1007 mutex_enter(&ab->b_state->arcs_mtx); 1008 ASSERT(list_link_active(&ab->b_arc_node)); 1009 list_remove(list, ab); 1010 if (GHOST_STATE(ab->b_state)) { 1011 ASSERT3U(ab->b_datacnt, ==, 0); 1012 ASSERT3P(ab->b_buf, ==, NULL); 1013 delta = ab->b_size; 1014 } 1015 ASSERT(delta > 0); 1016 ASSERT3U(*size, >=, delta); 1017 atomic_add_64(size, -delta); 1018 mutex_exit(&ab->b_state->arcs_mtx); 1019 /* remove the prefetch flag if we get a reference */ 1020 if (ab->b_flags & ARC_PREFETCH) 1021 ab->b_flags &= ~ARC_PREFETCH; 1022 } 1023 } 1024 1025 static int 1026 remove_reference(arc_buf_hdr_t *ab, kmutex_t *hash_lock, void *tag) 1027 { 1028 int cnt; 1029 arc_state_t *state = ab->b_state; 1030 1031 ASSERT(state == arc_anon || MUTEX_HELD(hash_lock)); 1032 ASSERT(!GHOST_STATE(state)); 1033 1034 if (((cnt = refcount_remove(&ab->b_refcnt, tag)) == 0) && 1035 (state != arc_anon)) { 1036 uint64_t *size = &state->arcs_lsize[ab->b_type]; 1037 1038 ASSERT(!MUTEX_HELD(&state->arcs_mtx)); 1039 mutex_enter(&state->arcs_mtx); 1040 ASSERT(!list_link_active(&ab->b_arc_node)); 1041 list_insert_head(&state->arcs_list[ab->b_type], ab); 1042 ASSERT(ab->b_datacnt > 0); 1043 atomic_add_64(size, ab->b_size * ab->b_datacnt); 1044 mutex_exit(&state->arcs_mtx); 1045 } 1046 return (cnt); 1047 } 1048 1049 /* 1050 * Move the supplied buffer to the indicated state. The mutex 1051 * for the buffer must be held by the caller. 1052 */ 1053 static void 1054 arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *ab, kmutex_t *hash_lock) 1055 { 1056 arc_state_t *old_state = ab->b_state; 1057 int64_t refcnt = refcount_count(&ab->b_refcnt); 1058 uint64_t from_delta, to_delta; 1059 1060 ASSERT(MUTEX_HELD(hash_lock)); 1061 ASSERT(new_state != old_state); 1062 ASSERT(refcnt == 0 || ab->b_datacnt > 0); 1063 ASSERT(ab->b_datacnt == 0 || !GHOST_STATE(new_state)); 1064 ASSERT(ab->b_datacnt <= 1 || old_state != arc_anon); 1065 1066 from_delta = to_delta = ab->b_datacnt * ab->b_size; 1067 1068 /* 1069 * If this buffer is evictable, transfer it from the 1070 * old state list to the new state list. 1071 */ 1072 if (refcnt == 0) { 1073 if (old_state != arc_anon) { 1074 int use_mutex = !MUTEX_HELD(&old_state->arcs_mtx); 1075 uint64_t *size = &old_state->arcs_lsize[ab->b_type]; 1076 1077 if (use_mutex) 1078 mutex_enter(&old_state->arcs_mtx); 1079 1080 ASSERT(list_link_active(&ab->b_arc_node)); 1081 list_remove(&old_state->arcs_list[ab->b_type], ab); 1082 1083 /* 1084 * If prefetching out of the ghost cache, 1085 * we will have a non-zero datacnt. 1086 */ 1087 if (GHOST_STATE(old_state) && ab->b_datacnt == 0) { 1088 /* ghost elements have a ghost size */ 1089 ASSERT(ab->b_buf == NULL); 1090 from_delta = ab->b_size; 1091 } 1092 ASSERT3U(*size, >=, from_delta); 1093 atomic_add_64(size, -from_delta); 1094 1095 if (use_mutex) 1096 mutex_exit(&old_state->arcs_mtx); 1097 } 1098 if (new_state != arc_anon) { 1099 int use_mutex = !MUTEX_HELD(&new_state->arcs_mtx); 1100 uint64_t *size = &new_state->arcs_lsize[ab->b_type]; 1101 1102 if (use_mutex) 1103 mutex_enter(&new_state->arcs_mtx); 1104 1105 list_insert_head(&new_state->arcs_list[ab->b_type], ab); 1106 1107 /* ghost elements have a ghost size */ 1108 if (GHOST_STATE(new_state)) { 1109 ASSERT(ab->b_datacnt == 0); 1110 ASSERT(ab->b_buf == NULL); 1111 to_delta = ab->b_size; 1112 } 1113 atomic_add_64(size, to_delta); 1114 1115 if (use_mutex) 1116 mutex_exit(&new_state->arcs_mtx); 1117 } 1118 } 1119 1120 ASSERT(!BUF_EMPTY(ab)); 1121 if (new_state == arc_anon && HDR_IN_HASH_TABLE(ab)) 1122 buf_hash_remove(ab); 1123 1124 /* adjust state sizes */ 1125 if (to_delta) 1126 atomic_add_64(&new_state->arcs_size, to_delta); 1127 if (from_delta) { 1128 ASSERT3U(old_state->arcs_size, >=, from_delta); 1129 atomic_add_64(&old_state->arcs_size, -from_delta); 1130 } 1131 ab->b_state = new_state; 1132 1133 /* adjust l2arc hdr stats */ 1134 if (new_state == arc_l2c_only) 1135 l2arc_hdr_stat_add(); 1136 else if (old_state == arc_l2c_only) 1137 l2arc_hdr_stat_remove(); 1138 } 1139 1140 void 1141 arc_space_consume(uint64_t space, arc_space_type_t type) 1142 { 1143 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES); 1144 1145 switch (type) { 1146 case ARC_SPACE_DATA: 1147 ARCSTAT_INCR(arcstat_data_size, space); 1148 break; 1149 case ARC_SPACE_OTHER: 1150 ARCSTAT_INCR(arcstat_other_size, space); 1151 break; 1152 case ARC_SPACE_HDRS: 1153 ARCSTAT_INCR(arcstat_hdr_size, space); 1154 break; 1155 case ARC_SPACE_L2HDRS: 1156 ARCSTAT_INCR(arcstat_l2_hdr_size, space); 1157 break; 1158 } 1159 1160 atomic_add_64(&arc_meta_used, space); 1161 atomic_add_64(&arc_size, space); 1162 } 1163 1164 void 1165 arc_space_return(uint64_t space, arc_space_type_t type) 1166 { 1167 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES); 1168 1169 switch (type) { 1170 case ARC_SPACE_DATA: 1171 ARCSTAT_INCR(arcstat_data_size, -space); 1172 break; 1173 case ARC_SPACE_OTHER: 1174 ARCSTAT_INCR(arcstat_other_size, -space); 1175 break; 1176 case ARC_SPACE_HDRS: 1177 ARCSTAT_INCR(arcstat_hdr_size, -space); 1178 break; 1179 case ARC_SPACE_L2HDRS: 1180 ARCSTAT_INCR(arcstat_l2_hdr_size, -space); 1181 break; 1182 } 1183 1184 ASSERT(arc_meta_used >= space); 1185 if (arc_meta_max < arc_meta_used) 1186 arc_meta_max = arc_meta_used; 1187 atomic_add_64(&arc_meta_used, -space); 1188 ASSERT(arc_size >= space); 1189 atomic_add_64(&arc_size, -space); 1190 } 1191 1192 void * 1193 arc_data_buf_alloc(uint64_t size) 1194 { 1195 if (arc_evict_needed(ARC_BUFC_DATA)) 1196 cv_signal(&arc_reclaim_thr_cv); 1197 atomic_add_64(&arc_size, size); 1198 return (zio_data_buf_alloc(size)); 1199 } 1200 1201 void 1202 arc_data_buf_free(void *buf, uint64_t size) 1203 { 1204 zio_data_buf_free(buf, size); 1205 ASSERT(arc_size >= size); 1206 atomic_add_64(&arc_size, -size); 1207 } 1208 1209 arc_buf_t * 1210 arc_buf_alloc(spa_t *spa, int size, void *tag, arc_buf_contents_t type) 1211 { 1212 arc_buf_hdr_t *hdr; 1213 arc_buf_t *buf; 1214 1215 ASSERT3U(size, >, 0); 1216 hdr = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE); 1217 ASSERT(BUF_EMPTY(hdr)); 1218 hdr->b_size = size; 1219 hdr->b_type = type; 1220 hdr->b_spa = spa_guid(spa); 1221 hdr->b_state = arc_anon; 1222 hdr->b_arc_access = 0; 1223 buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE); 1224 buf->b_hdr = hdr; 1225 buf->b_data = NULL; 1226 buf->b_efunc = NULL; 1227 buf->b_private = NULL; 1228 buf->b_next = NULL; 1229 hdr->b_buf = buf; 1230 arc_get_data_buf(buf); 1231 hdr->b_datacnt = 1; 1232 hdr->b_flags = 0; 1233 ASSERT(refcount_is_zero(&hdr->b_refcnt)); 1234 (void) refcount_add(&hdr->b_refcnt, tag); 1235 1236 return (buf); 1237 } 1238 1239 static char *arc_onloan_tag = "onloan"; 1240 1241 /* 1242 * Loan out an anonymous arc buffer. Loaned buffers are not counted as in 1243 * flight data by arc_tempreserve_space() until they are "returned". Loaned 1244 * buffers must be returned to the arc before they can be used by the DMU or 1245 * freed. 1246 */ 1247 arc_buf_t * 1248 arc_loan_buf(spa_t *spa, int size) 1249 { 1250 arc_buf_t *buf; 1251 1252 buf = arc_buf_alloc(spa, size, arc_onloan_tag, ARC_BUFC_DATA); 1253 1254 atomic_add_64(&arc_loaned_bytes, size); 1255 return (buf); 1256 } 1257 1258 /* 1259 * Return a loaned arc buffer to the arc. 1260 */ 1261 void 1262 arc_return_buf(arc_buf_t *buf, void *tag) 1263 { 1264 arc_buf_hdr_t *hdr = buf->b_hdr; 1265 1266 ASSERT(buf->b_data != NULL); 1267 (void) refcount_add(&hdr->b_refcnt, tag); 1268 (void) refcount_remove(&hdr->b_refcnt, arc_onloan_tag); 1269 1270 atomic_add_64(&arc_loaned_bytes, -hdr->b_size); 1271 } 1272 1273 /* Detach an arc_buf from a dbuf (tag) */ 1274 void 1275 arc_loan_inuse_buf(arc_buf_t *buf, void *tag) 1276 { 1277 arc_buf_hdr_t *hdr; 1278 1279 ASSERT(buf->b_data != NULL); 1280 hdr = buf->b_hdr; 1281 (void) refcount_add(&hdr->b_refcnt, arc_onloan_tag); 1282 (void) refcount_remove(&hdr->b_refcnt, tag); 1283 buf->b_efunc = NULL; 1284 buf->b_private = NULL; 1285 1286 atomic_add_64(&arc_loaned_bytes, hdr->b_size); 1287 } 1288 1289 static arc_buf_t * 1290 arc_buf_clone(arc_buf_t *from) 1291 { 1292 arc_buf_t *buf; 1293 arc_buf_hdr_t *hdr = from->b_hdr; 1294 uint64_t size = hdr->b_size; 1295 1296 ASSERT(hdr->b_state != arc_anon); 1297 1298 buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE); 1299 buf->b_hdr = hdr; 1300 buf->b_data = NULL; 1301 buf->b_efunc = NULL; 1302 buf->b_private = NULL; 1303 buf->b_next = hdr->b_buf; 1304 hdr->b_buf = buf; 1305 arc_get_data_buf(buf); 1306 bcopy(from->b_data, buf->b_data, size); 1307 hdr->b_datacnt += 1; 1308 return (buf); 1309 } 1310 1311 void 1312 arc_buf_add_ref(arc_buf_t *buf, void* tag) 1313 { 1314 arc_buf_hdr_t *hdr; 1315 kmutex_t *hash_lock; 1316 1317 /* 1318 * Check to see if this buffer is evicted. Callers 1319 * must verify b_data != NULL to know if the add_ref 1320 * was successful. 1321 */ 1322 mutex_enter(&buf->b_evict_lock); 1323 if (buf->b_data == NULL) { 1324 mutex_exit(&buf->b_evict_lock); 1325 return; 1326 } 1327 hash_lock = HDR_LOCK(buf->b_hdr); 1328 mutex_enter(hash_lock); 1329 hdr = buf->b_hdr; 1330 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 1331 mutex_exit(&buf->b_evict_lock); 1332 1333 ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu); 1334 add_reference(hdr, hash_lock, tag); 1335 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr); 1336 arc_access(hdr, hash_lock); 1337 mutex_exit(hash_lock); 1338 ARCSTAT_BUMP(arcstat_hits); 1339 ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH), 1340 demand, prefetch, hdr->b_type != ARC_BUFC_METADATA, 1341 data, metadata, hits); 1342 } 1343 1344 /* 1345 * Free the arc data buffer. If it is an l2arc write in progress, 1346 * the buffer is placed on l2arc_free_on_write to be freed later. 1347 */ 1348 static void 1349 arc_buf_data_free(arc_buf_hdr_t *hdr, void (*free_func)(void *, size_t), 1350 void *data, size_t size) 1351 { 1352 if (HDR_L2_WRITING(hdr)) { 1353 l2arc_data_free_t *df; 1354 df = kmem_alloc(sizeof (l2arc_data_free_t), KM_SLEEP); 1355 df->l2df_data = data; 1356 df->l2df_size = size; 1357 df->l2df_func = free_func; 1358 mutex_enter(&l2arc_free_on_write_mtx); 1359 list_insert_head(l2arc_free_on_write, df); 1360 mutex_exit(&l2arc_free_on_write_mtx); 1361 ARCSTAT_BUMP(arcstat_l2_free_on_write); 1362 } else { 1363 free_func(data, size); 1364 } 1365 } 1366 1367 static void 1368 arc_buf_destroy(arc_buf_t *buf, boolean_t recycle, boolean_t all) 1369 { 1370 arc_buf_t **bufp; 1371 1372 /* free up data associated with the buf */ 1373 if (buf->b_data) { 1374 arc_state_t *state = buf->b_hdr->b_state; 1375 uint64_t size = buf->b_hdr->b_size; 1376 arc_buf_contents_t type = buf->b_hdr->b_type; 1377 1378 arc_cksum_verify(buf); 1379 1380 if (!recycle) { 1381 if (type == ARC_BUFC_METADATA) { 1382 arc_buf_data_free(buf->b_hdr, zio_buf_free, 1383 buf->b_data, size); 1384 arc_space_return(size, ARC_SPACE_DATA); 1385 } else { 1386 ASSERT(type == ARC_BUFC_DATA); 1387 arc_buf_data_free(buf->b_hdr, 1388 zio_data_buf_free, buf->b_data, size); 1389 ARCSTAT_INCR(arcstat_data_size, -size); 1390 atomic_add_64(&arc_size, -size); 1391 } 1392 } 1393 if (list_link_active(&buf->b_hdr->b_arc_node)) { 1394 uint64_t *cnt = &state->arcs_lsize[type]; 1395 1396 ASSERT(refcount_is_zero(&buf->b_hdr->b_refcnt)); 1397 ASSERT(state != arc_anon); 1398 1399 ASSERT3U(*cnt, >=, size); 1400 atomic_add_64(cnt, -size); 1401 } 1402 ASSERT3U(state->arcs_size, >=, size); 1403 atomic_add_64(&state->arcs_size, -size); 1404 buf->b_data = NULL; 1405 ASSERT(buf->b_hdr->b_datacnt > 0); 1406 buf->b_hdr->b_datacnt -= 1; 1407 } 1408 1409 /* only remove the buf if requested */ 1410 if (!all) 1411 return; 1412 1413 /* remove the buf from the hdr list */ 1414 for (bufp = &buf->b_hdr->b_buf; *bufp != buf; bufp = &(*bufp)->b_next) 1415 continue; 1416 *bufp = buf->b_next; 1417 buf->b_next = NULL; 1418 1419 ASSERT(buf->b_efunc == NULL); 1420 1421 /* clean up the buf */ 1422 buf->b_hdr = NULL; 1423 kmem_cache_free(buf_cache, buf); 1424 } 1425 1426 static void 1427 arc_hdr_destroy(arc_buf_hdr_t *hdr) 1428 { 1429 ASSERT(refcount_is_zero(&hdr->b_refcnt)); 1430 ASSERT3P(hdr->b_state, ==, arc_anon); 1431 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 1432 l2arc_buf_hdr_t *l2hdr = hdr->b_l2hdr; 1433 1434 if (l2hdr != NULL) { 1435 boolean_t buflist_held = MUTEX_HELD(&l2arc_buflist_mtx); 1436 /* 1437 * To prevent arc_free() and l2arc_evict() from 1438 * attempting to free the same buffer at the same time, 1439 * a FREE_IN_PROGRESS flag is given to arc_free() to 1440 * give it priority. l2arc_evict() can't destroy this 1441 * header while we are waiting on l2arc_buflist_mtx. 1442 * 1443 * The hdr may be removed from l2ad_buflist before we 1444 * grab l2arc_buflist_mtx, so b_l2hdr is rechecked. 1445 */ 1446 if (!buflist_held) { 1447 mutex_enter(&l2arc_buflist_mtx); 1448 l2hdr = hdr->b_l2hdr; 1449 } 1450 1451 if (l2hdr != NULL) { 1452 list_remove(l2hdr->b_dev->l2ad_buflist, hdr); 1453 ARCSTAT_INCR(arcstat_l2_size, -hdr->b_size); 1454 kmem_free(l2hdr, sizeof (l2arc_buf_hdr_t)); 1455 if (hdr->b_state == arc_l2c_only) 1456 l2arc_hdr_stat_remove(); 1457 hdr->b_l2hdr = NULL; 1458 } 1459 1460 if (!buflist_held) 1461 mutex_exit(&l2arc_buflist_mtx); 1462 } 1463 1464 if (!BUF_EMPTY(hdr)) { 1465 ASSERT(!HDR_IN_HASH_TABLE(hdr)); 1466 buf_discard_identity(hdr); 1467 } 1468 while (hdr->b_buf) { 1469 arc_buf_t *buf = hdr->b_buf; 1470 1471 if (buf->b_efunc) { 1472 mutex_enter(&arc_eviction_mtx); 1473 mutex_enter(&buf->b_evict_lock); 1474 ASSERT(buf->b_hdr != NULL); 1475 arc_buf_destroy(hdr->b_buf, FALSE, FALSE); 1476 hdr->b_buf = buf->b_next; 1477 buf->b_hdr = &arc_eviction_hdr; 1478 buf->b_next = arc_eviction_list; 1479 arc_eviction_list = buf; 1480 mutex_exit(&buf->b_evict_lock); 1481 mutex_exit(&arc_eviction_mtx); 1482 } else { 1483 arc_buf_destroy(hdr->b_buf, FALSE, TRUE); 1484 } 1485 } 1486 if (hdr->b_freeze_cksum != NULL) { 1487 kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t)); 1488 hdr->b_freeze_cksum = NULL; 1489 } 1490 if (hdr->b_thawed) { 1491 kmem_free(hdr->b_thawed, 1); 1492 hdr->b_thawed = NULL; 1493 } 1494 1495 ASSERT(!list_link_active(&hdr->b_arc_node)); 1496 ASSERT3P(hdr->b_hash_next, ==, NULL); 1497 ASSERT3P(hdr->b_acb, ==, NULL); 1498 kmem_cache_free(hdr_cache, hdr); 1499 } 1500 1501 void 1502 arc_buf_free(arc_buf_t *buf, void *tag) 1503 { 1504 arc_buf_hdr_t *hdr = buf->b_hdr; 1505 int hashed = hdr->b_state != arc_anon; 1506 1507 ASSERT(buf->b_efunc == NULL); 1508 ASSERT(buf->b_data != NULL); 1509 1510 if (hashed) { 1511 kmutex_t *hash_lock = HDR_LOCK(hdr); 1512 1513 mutex_enter(hash_lock); 1514 hdr = buf->b_hdr; 1515 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 1516 1517 (void) remove_reference(hdr, hash_lock, tag); 1518 if (hdr->b_datacnt > 1) { 1519 arc_buf_destroy(buf, FALSE, TRUE); 1520 } else { 1521 ASSERT(buf == hdr->b_buf); 1522 ASSERT(buf->b_efunc == NULL); 1523 hdr->b_flags |= ARC_BUF_AVAILABLE; 1524 } 1525 mutex_exit(hash_lock); 1526 } else if (HDR_IO_IN_PROGRESS(hdr)) { 1527 int destroy_hdr; 1528 /* 1529 * We are in the middle of an async write. Don't destroy 1530 * this buffer unless the write completes before we finish 1531 * decrementing the reference count. 1532 */ 1533 mutex_enter(&arc_eviction_mtx); 1534 (void) remove_reference(hdr, NULL, tag); 1535 ASSERT(refcount_is_zero(&hdr->b_refcnt)); 1536 destroy_hdr = !HDR_IO_IN_PROGRESS(hdr); 1537 mutex_exit(&arc_eviction_mtx); 1538 if (destroy_hdr) 1539 arc_hdr_destroy(hdr); 1540 } else { 1541 if (remove_reference(hdr, NULL, tag) > 0) 1542 arc_buf_destroy(buf, FALSE, TRUE); 1543 else 1544 arc_hdr_destroy(hdr); 1545 } 1546 } 1547 1548 int 1549 arc_buf_remove_ref(arc_buf_t *buf, void* tag) 1550 { 1551 arc_buf_hdr_t *hdr = buf->b_hdr; 1552 kmutex_t *hash_lock = HDR_LOCK(hdr); 1553 int no_callback = (buf->b_efunc == NULL); 1554 1555 if (hdr->b_state == arc_anon) { 1556 ASSERT(hdr->b_datacnt == 1); 1557 arc_buf_free(buf, tag); 1558 return (no_callback); 1559 } 1560 1561 mutex_enter(hash_lock); 1562 hdr = buf->b_hdr; 1563 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 1564 ASSERT(hdr->b_state != arc_anon); 1565 ASSERT(buf->b_data != NULL); 1566 1567 (void) remove_reference(hdr, hash_lock, tag); 1568 if (hdr->b_datacnt > 1) { 1569 if (no_callback) 1570 arc_buf_destroy(buf, FALSE, TRUE); 1571 } else if (no_callback) { 1572 ASSERT(hdr->b_buf == buf && buf->b_next == NULL); 1573 ASSERT(buf->b_efunc == NULL); 1574 hdr->b_flags |= ARC_BUF_AVAILABLE; 1575 } 1576 ASSERT(no_callback || hdr->b_datacnt > 1 || 1577 refcount_is_zero(&hdr->b_refcnt)); 1578 mutex_exit(hash_lock); 1579 return (no_callback); 1580 } 1581 1582 int 1583 arc_buf_size(arc_buf_t *buf) 1584 { 1585 return (buf->b_hdr->b_size); 1586 } 1587 1588 /* 1589 * Evict buffers from list until we've removed the specified number of 1590 * bytes. Move the removed buffers to the appropriate evict state. 1591 * If the recycle flag is set, then attempt to "recycle" a buffer: 1592 * - look for a buffer to evict that is `bytes' long. 1593 * - return the data block from this buffer rather than freeing it. 1594 * This flag is used by callers that are trying to make space for a 1595 * new buffer in a full arc cache. 1596 * 1597 * This function makes a "best effort". It skips over any buffers 1598 * it can't get a hash_lock on, and so may not catch all candidates. 1599 * It may also return without evicting as much space as requested. 1600 */ 1601 static void * 1602 arc_evict(arc_state_t *state, uint64_t spa, int64_t bytes, boolean_t recycle, 1603 arc_buf_contents_t type) 1604 { 1605 arc_state_t *evicted_state; 1606 uint64_t bytes_evicted = 0, skipped = 0, missed = 0; 1607 arc_buf_hdr_t *ab, *ab_prev = NULL; 1608 list_t *list = &state->arcs_list[type]; 1609 kmutex_t *hash_lock; 1610 boolean_t have_lock; 1611 void *stolen = NULL; 1612 1613 ASSERT(state == arc_mru || state == arc_mfu); 1614 1615 evicted_state = (state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost; 1616 1617 mutex_enter(&state->arcs_mtx); 1618 mutex_enter(&evicted_state->arcs_mtx); 1619 1620 for (ab = list_tail(list); ab; ab = ab_prev) { 1621 ab_prev = list_prev(list, ab); 1622 /* prefetch buffers have a minimum lifespan */ 1623 if (HDR_IO_IN_PROGRESS(ab) || 1624 (spa && ab->b_spa != spa) || 1625 (ab->b_flags & (ARC_PREFETCH|ARC_INDIRECT) && 1626 ddi_get_lbolt() - ab->b_arc_access < 1627 arc_min_prefetch_lifespan)) { 1628 skipped++; 1629 continue; 1630 } 1631 /* "lookahead" for better eviction candidate */ 1632 if (recycle && ab->b_size != bytes && 1633 ab_prev && ab_prev->b_size == bytes) 1634 continue; 1635 hash_lock = HDR_LOCK(ab); 1636 have_lock = MUTEX_HELD(hash_lock); 1637 if (have_lock || mutex_tryenter(hash_lock)) { 1638 ASSERT3U(refcount_count(&ab->b_refcnt), ==, 0); 1639 ASSERT(ab->b_datacnt > 0); 1640 while (ab->b_buf) { 1641 arc_buf_t *buf = ab->b_buf; 1642 if (!mutex_tryenter(&buf->b_evict_lock)) { 1643 missed += 1; 1644 break; 1645 } 1646 if (buf->b_data) { 1647 bytes_evicted += ab->b_size; 1648 if (recycle && ab->b_type == type && 1649 ab->b_size == bytes && 1650 !HDR_L2_WRITING(ab)) { 1651 stolen = buf->b_data; 1652 recycle = FALSE; 1653 } 1654 } 1655 if (buf->b_efunc) { 1656 mutex_enter(&arc_eviction_mtx); 1657 arc_buf_destroy(buf, 1658 buf->b_data == stolen, FALSE); 1659 ab->b_buf = buf->b_next; 1660 buf->b_hdr = &arc_eviction_hdr; 1661 buf->b_next = arc_eviction_list; 1662 arc_eviction_list = buf; 1663 mutex_exit(&arc_eviction_mtx); 1664 mutex_exit(&buf->b_evict_lock); 1665 } else { 1666 mutex_exit(&buf->b_evict_lock); 1667 arc_buf_destroy(buf, 1668 buf->b_data == stolen, TRUE); 1669 } 1670 } 1671 1672 if (ab->b_l2hdr) { 1673 ARCSTAT_INCR(arcstat_evict_l2_cached, 1674 ab->b_size); 1675 } else { 1676 if (l2arc_write_eligible(ab->b_spa, ab)) { 1677 ARCSTAT_INCR(arcstat_evict_l2_eligible, 1678 ab->b_size); 1679 } else { 1680 ARCSTAT_INCR( 1681 arcstat_evict_l2_ineligible, 1682 ab->b_size); 1683 } 1684 } 1685 1686 if (ab->b_datacnt == 0) { 1687 arc_change_state(evicted_state, ab, hash_lock); 1688 ASSERT(HDR_IN_HASH_TABLE(ab)); 1689 ab->b_flags |= ARC_IN_HASH_TABLE; 1690 ab->b_flags &= ~ARC_BUF_AVAILABLE; 1691 DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, ab); 1692 } 1693 if (!have_lock) 1694 mutex_exit(hash_lock); 1695 if (bytes >= 0 && bytes_evicted >= bytes) 1696 break; 1697 } else { 1698 missed += 1; 1699 } 1700 } 1701 1702 mutex_exit(&evicted_state->arcs_mtx); 1703 mutex_exit(&state->arcs_mtx); 1704 1705 if (bytes_evicted < bytes) 1706 dprintf("only evicted %lld bytes from %x", 1707 (longlong_t)bytes_evicted, state); 1708 1709 if (skipped) 1710 ARCSTAT_INCR(arcstat_evict_skip, skipped); 1711 1712 if (missed) 1713 ARCSTAT_INCR(arcstat_mutex_miss, missed); 1714 1715 /* 1716 * We have just evicted some date into the ghost state, make 1717 * sure we also adjust the ghost state size if necessary. 1718 */ 1719 if (arc_no_grow && 1720 arc_mru_ghost->arcs_size + arc_mfu_ghost->arcs_size > arc_c) { 1721 int64_t mru_over = arc_anon->arcs_size + arc_mru->arcs_size + 1722 arc_mru_ghost->arcs_size - arc_c; 1723 1724 if (mru_over > 0 && arc_mru_ghost->arcs_lsize[type] > 0) { 1725 int64_t todelete = 1726 MIN(arc_mru_ghost->arcs_lsize[type], mru_over); 1727 arc_evict_ghost(arc_mru_ghost, NULL, todelete); 1728 } else if (arc_mfu_ghost->arcs_lsize[type] > 0) { 1729 int64_t todelete = MIN(arc_mfu_ghost->arcs_lsize[type], 1730 arc_mru_ghost->arcs_size + 1731 arc_mfu_ghost->arcs_size - arc_c); 1732 arc_evict_ghost(arc_mfu_ghost, NULL, todelete); 1733 } 1734 } 1735 1736 return (stolen); 1737 } 1738 1739 /* 1740 * Remove buffers from list until we've removed the specified number of 1741 * bytes. Destroy the buffers that are removed. 1742 */ 1743 static void 1744 arc_evict_ghost(arc_state_t *state, uint64_t spa, int64_t bytes) 1745 { 1746 arc_buf_hdr_t *ab, *ab_prev; 1747 list_t *list = &state->arcs_list[ARC_BUFC_DATA]; 1748 kmutex_t *hash_lock; 1749 uint64_t bytes_deleted = 0; 1750 uint64_t bufs_skipped = 0; 1751 1752 ASSERT(GHOST_STATE(state)); 1753 top: 1754 mutex_enter(&state->arcs_mtx); 1755 for (ab = list_tail(list); ab; ab = ab_prev) { 1756 ab_prev = list_prev(list, ab); 1757 if (spa && ab->b_spa != spa) 1758 continue; 1759 hash_lock = HDR_LOCK(ab); 1760 /* caller may be trying to modify this buffer, skip it */ 1761 if (MUTEX_HELD(hash_lock)) 1762 continue; 1763 if (mutex_tryenter(hash_lock)) { 1764 ASSERT(!HDR_IO_IN_PROGRESS(ab)); 1765 ASSERT(ab->b_buf == NULL); 1766 ARCSTAT_BUMP(arcstat_deleted); 1767 bytes_deleted += ab->b_size; 1768 1769 if (ab->b_l2hdr != NULL) { 1770 /* 1771 * This buffer is cached on the 2nd Level ARC; 1772 * don't destroy the header. 1773 */ 1774 arc_change_state(arc_l2c_only, ab, hash_lock); 1775 mutex_exit(hash_lock); 1776 } else { 1777 arc_change_state(arc_anon, ab, hash_lock); 1778 mutex_exit(hash_lock); 1779 arc_hdr_destroy(ab); 1780 } 1781 1782 DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, ab); 1783 if (bytes >= 0 && bytes_deleted >= bytes) 1784 break; 1785 } else { 1786 if (bytes < 0) { 1787 mutex_exit(&state->arcs_mtx); 1788 mutex_enter(hash_lock); 1789 mutex_exit(hash_lock); 1790 goto top; 1791 } 1792 bufs_skipped += 1; 1793 } 1794 } 1795 mutex_exit(&state->arcs_mtx); 1796 1797 if (list == &state->arcs_list[ARC_BUFC_DATA] && 1798 (bytes < 0 || bytes_deleted < bytes)) { 1799 list = &state->arcs_list[ARC_BUFC_METADATA]; 1800 goto top; 1801 } 1802 1803 if (bufs_skipped) { 1804 ARCSTAT_INCR(arcstat_mutex_miss, bufs_skipped); 1805 ASSERT(bytes >= 0); 1806 } 1807 1808 if (bytes_deleted < bytes) 1809 dprintf("only deleted %lld bytes from %p", 1810 (longlong_t)bytes_deleted, state); 1811 } 1812 1813 static void 1814 arc_adjust(void) 1815 { 1816 int64_t adjustment, delta; 1817 1818 /* 1819 * Adjust MRU size 1820 */ 1821 1822 adjustment = MIN((int64_t)(arc_size - arc_c), 1823 (int64_t)(arc_anon->arcs_size + arc_mru->arcs_size + arc_meta_used - 1824 arc_p)); 1825 1826 if (adjustment > 0 && arc_mru->arcs_lsize[ARC_BUFC_DATA] > 0) { 1827 delta = MIN(arc_mru->arcs_lsize[ARC_BUFC_DATA], adjustment); 1828 (void) arc_evict(arc_mru, NULL, delta, FALSE, ARC_BUFC_DATA); 1829 adjustment -= delta; 1830 } 1831 1832 if (adjustment > 0 && arc_mru->arcs_lsize[ARC_BUFC_METADATA] > 0) { 1833 delta = MIN(arc_mru->arcs_lsize[ARC_BUFC_METADATA], adjustment); 1834 (void) arc_evict(arc_mru, NULL, delta, FALSE, 1835 ARC_BUFC_METADATA); 1836 } 1837 1838 /* 1839 * Adjust MFU size 1840 */ 1841 1842 adjustment = arc_size - arc_c; 1843 1844 if (adjustment > 0 && arc_mfu->arcs_lsize[ARC_BUFC_DATA] > 0) { 1845 delta = MIN(adjustment, arc_mfu->arcs_lsize[ARC_BUFC_DATA]); 1846 (void) arc_evict(arc_mfu, NULL, delta, FALSE, ARC_BUFC_DATA); 1847 adjustment -= delta; 1848 } 1849 1850 if (adjustment > 0 && arc_mfu->arcs_lsize[ARC_BUFC_METADATA] > 0) { 1851 int64_t delta = MIN(adjustment, 1852 arc_mfu->arcs_lsize[ARC_BUFC_METADATA]); 1853 (void) arc_evict(arc_mfu, NULL, delta, FALSE, 1854 ARC_BUFC_METADATA); 1855 } 1856 1857 /* 1858 * Adjust ghost lists 1859 */ 1860 1861 adjustment = arc_mru->arcs_size + arc_mru_ghost->arcs_size - arc_c; 1862 1863 if (adjustment > 0 && arc_mru_ghost->arcs_size > 0) { 1864 delta = MIN(arc_mru_ghost->arcs_size, adjustment); 1865 arc_evict_ghost(arc_mru_ghost, NULL, delta); 1866 } 1867 1868 adjustment = 1869 arc_mru_ghost->arcs_size + arc_mfu_ghost->arcs_size - arc_c; 1870 1871 if (adjustment > 0 && arc_mfu_ghost->arcs_size > 0) { 1872 delta = MIN(arc_mfu_ghost->arcs_size, adjustment); 1873 arc_evict_ghost(arc_mfu_ghost, NULL, delta); 1874 } 1875 } 1876 1877 static void 1878 arc_do_user_evicts(void) 1879 { 1880 mutex_enter(&arc_eviction_mtx); 1881 while (arc_eviction_list != NULL) { 1882 arc_buf_t *buf = arc_eviction_list; 1883 arc_eviction_list = buf->b_next; 1884 mutex_enter(&buf->b_evict_lock); 1885 buf->b_hdr = NULL; 1886 mutex_exit(&buf->b_evict_lock); 1887 mutex_exit(&arc_eviction_mtx); 1888 1889 if (buf->b_efunc != NULL) 1890 VERIFY(buf->b_efunc(buf) == 0); 1891 1892 buf->b_efunc = NULL; 1893 buf->b_private = NULL; 1894 kmem_cache_free(buf_cache, buf); 1895 mutex_enter(&arc_eviction_mtx); 1896 } 1897 mutex_exit(&arc_eviction_mtx); 1898 } 1899 1900 /* 1901 * Flush all *evictable* data from the cache for the given spa. 1902 * NOTE: this will not touch "active" (i.e. referenced) data. 1903 */ 1904 void 1905 arc_flush(spa_t *spa) 1906 { 1907 uint64_t guid = 0; 1908 1909 if (spa) 1910 guid = spa_guid(spa); 1911 1912 while (list_head(&arc_mru->arcs_list[ARC_BUFC_DATA])) { 1913 (void) arc_evict(arc_mru, guid, -1, FALSE, ARC_BUFC_DATA); 1914 if (spa) 1915 break; 1916 } 1917 while (list_head(&arc_mru->arcs_list[ARC_BUFC_METADATA])) { 1918 (void) arc_evict(arc_mru, guid, -1, FALSE, ARC_BUFC_METADATA); 1919 if (spa) 1920 break; 1921 } 1922 while (list_head(&arc_mfu->arcs_list[ARC_BUFC_DATA])) { 1923 (void) arc_evict(arc_mfu, guid, -1, FALSE, ARC_BUFC_DATA); 1924 if (spa) 1925 break; 1926 } 1927 while (list_head(&arc_mfu->arcs_list[ARC_BUFC_METADATA])) { 1928 (void) arc_evict(arc_mfu, guid, -1, FALSE, ARC_BUFC_METADATA); 1929 if (spa) 1930 break; 1931 } 1932 1933 arc_evict_ghost(arc_mru_ghost, guid, -1); 1934 arc_evict_ghost(arc_mfu_ghost, guid, -1); 1935 1936 mutex_enter(&arc_reclaim_thr_lock); 1937 arc_do_user_evicts(); 1938 mutex_exit(&arc_reclaim_thr_lock); 1939 ASSERT(spa || arc_eviction_list == NULL); 1940 } 1941 1942 void 1943 arc_shrink(void) 1944 { 1945 if (arc_c > arc_c_min) { 1946 uint64_t to_free; 1947 1948 #ifdef _KERNEL 1949 to_free = MAX(arc_c >> arc_shrink_shift, ptob(needfree)); 1950 #else 1951 to_free = arc_c >> arc_shrink_shift; 1952 #endif 1953 if (arc_c > arc_c_min + to_free) 1954 atomic_add_64(&arc_c, -to_free); 1955 else 1956 arc_c = arc_c_min; 1957 1958 atomic_add_64(&arc_p, -(arc_p >> arc_shrink_shift)); 1959 if (arc_c > arc_size) 1960 arc_c = MAX(arc_size, arc_c_min); 1961 if (arc_p > arc_c) 1962 arc_p = (arc_c >> 1); 1963 ASSERT(arc_c >= arc_c_min); 1964 ASSERT((int64_t)arc_p >= 0); 1965 } 1966 1967 if (arc_size > arc_c) 1968 arc_adjust(); 1969 } 1970 1971 static int 1972 arc_reclaim_needed(void) 1973 { 1974 uint64_t extra; 1975 1976 #ifdef _KERNEL 1977 1978 if (needfree) 1979 return (1); 1980 1981 /* 1982 * take 'desfree' extra pages, so we reclaim sooner, rather than later 1983 */ 1984 extra = desfree; 1985 1986 /* 1987 * check that we're out of range of the pageout scanner. It starts to 1988 * schedule paging if freemem is less than lotsfree and needfree. 1989 * lotsfree is the high-water mark for pageout, and needfree is the 1990 * number of needed free pages. We add extra pages here to make sure 1991 * the scanner doesn't start up while we're freeing memory. 1992 */ 1993 if (freemem < lotsfree + needfree + extra) 1994 return (1); 1995 1996 /* 1997 * check to make sure that swapfs has enough space so that anon 1998 * reservations can still succeed. anon_resvmem() checks that the 1999 * availrmem is greater than swapfs_minfree, and the number of reserved 2000 * swap pages. We also add a bit of extra here just to prevent 2001 * circumstances from getting really dire. 2002 */ 2003 if (availrmem < swapfs_minfree + swapfs_reserve + extra) 2004 return (1); 2005 2006 #if defined(__i386) 2007 /* 2008 * If we're on an i386 platform, it's possible that we'll exhaust the 2009 * kernel heap space before we ever run out of available physical 2010 * memory. Most checks of the size of the heap_area compare against 2011 * tune.t_minarmem, which is the minimum available real memory that we 2012 * can have in the system. However, this is generally fixed at 25 pages 2013 * which is so low that it's useless. In this comparison, we seek to 2014 * calculate the total heap-size, and reclaim if more than 3/4ths of the 2015 * heap is allocated. (Or, in the calculation, if less than 1/4th is 2016 * free) 2017 */ 2018 if (btop(vmem_size(heap_arena, VMEM_FREE)) < 2019 (btop(vmem_size(heap_arena, VMEM_FREE | VMEM_ALLOC)) >> 2)) 2020 return (1); 2021 #endif 2022 2023 #else 2024 if (spa_get_random(100) == 0) 2025 return (1); 2026 #endif 2027 return (0); 2028 } 2029 2030 static void 2031 arc_kmem_reap_now(arc_reclaim_strategy_t strat) 2032 { 2033 size_t i; 2034 kmem_cache_t *prev_cache = NULL; 2035 kmem_cache_t *prev_data_cache = NULL; 2036 extern kmem_cache_t *zio_buf_cache[]; 2037 extern kmem_cache_t *zio_data_buf_cache[]; 2038 2039 #ifdef _KERNEL 2040 if (arc_meta_used >= arc_meta_limit) { 2041 /* 2042 * We are exceeding our meta-data cache limit. 2043 * Purge some DNLC entries to release holds on meta-data. 2044 */ 2045 dnlc_reduce_cache((void *)(uintptr_t)arc_reduce_dnlc_percent); 2046 } 2047 #if defined(__i386) 2048 /* 2049 * Reclaim unused memory from all kmem caches. 2050 */ 2051 kmem_reap(); 2052 #endif 2053 #endif 2054 2055 /* 2056 * An aggressive reclamation will shrink the cache size as well as 2057 * reap free buffers from the arc kmem caches. 2058 */ 2059 if (strat == ARC_RECLAIM_AGGR) 2060 arc_shrink(); 2061 2062 for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) { 2063 if (zio_buf_cache[i] != prev_cache) { 2064 prev_cache = zio_buf_cache[i]; 2065 kmem_cache_reap_now(zio_buf_cache[i]); 2066 } 2067 if (zio_data_buf_cache[i] != prev_data_cache) { 2068 prev_data_cache = zio_data_buf_cache[i]; 2069 kmem_cache_reap_now(zio_data_buf_cache[i]); 2070 } 2071 } 2072 kmem_cache_reap_now(buf_cache); 2073 kmem_cache_reap_now(hdr_cache); 2074 } 2075 2076 static void 2077 arc_reclaim_thread(void) 2078 { 2079 clock_t growtime = 0; 2080 arc_reclaim_strategy_t last_reclaim = ARC_RECLAIM_CONS; 2081 callb_cpr_t cpr; 2082 2083 CALLB_CPR_INIT(&cpr, &arc_reclaim_thr_lock, callb_generic_cpr, FTAG); 2084 2085 mutex_enter(&arc_reclaim_thr_lock); 2086 while (arc_thread_exit == 0) { 2087 if (arc_reclaim_needed()) { 2088 2089 if (arc_no_grow) { 2090 if (last_reclaim == ARC_RECLAIM_CONS) { 2091 last_reclaim = ARC_RECLAIM_AGGR; 2092 } else { 2093 last_reclaim = ARC_RECLAIM_CONS; 2094 } 2095 } else { 2096 arc_no_grow = TRUE; 2097 last_reclaim = ARC_RECLAIM_AGGR; 2098 membar_producer(); 2099 } 2100 2101 /* reset the growth delay for every reclaim */ 2102 growtime = ddi_get_lbolt() + (arc_grow_retry * hz); 2103 2104 arc_kmem_reap_now(last_reclaim); 2105 arc_warm = B_TRUE; 2106 2107 } else if (arc_no_grow && ddi_get_lbolt() >= growtime) { 2108 arc_no_grow = FALSE; 2109 } 2110 2111 arc_adjust(); 2112 2113 if (arc_eviction_list != NULL) 2114 arc_do_user_evicts(); 2115 2116 /* block until needed, or one second, whichever is shorter */ 2117 CALLB_CPR_SAFE_BEGIN(&cpr); 2118 (void) cv_timedwait(&arc_reclaim_thr_cv, 2119 &arc_reclaim_thr_lock, (ddi_get_lbolt() + hz)); 2120 CALLB_CPR_SAFE_END(&cpr, &arc_reclaim_thr_lock); 2121 } 2122 2123 arc_thread_exit = 0; 2124 cv_broadcast(&arc_reclaim_thr_cv); 2125 CALLB_CPR_EXIT(&cpr); /* drops arc_reclaim_thr_lock */ 2126 thread_exit(); 2127 } 2128 2129 /* 2130 * Adapt arc info given the number of bytes we are trying to add and 2131 * the state that we are comming from. This function is only called 2132 * when we are adding new content to the cache. 2133 */ 2134 static void 2135 arc_adapt(int bytes, arc_state_t *state) 2136 { 2137 int mult; 2138 uint64_t arc_p_min = (arc_c >> arc_p_min_shift); 2139 2140 if (state == arc_l2c_only) 2141 return; 2142 2143 ASSERT(bytes > 0); 2144 /* 2145 * Adapt the target size of the MRU list: 2146 * - if we just hit in the MRU ghost list, then increase 2147 * the target size of the MRU list. 2148 * - if we just hit in the MFU ghost list, then increase 2149 * the target size of the MFU list by decreasing the 2150 * target size of the MRU list. 2151 */ 2152 if (state == arc_mru_ghost) { 2153 mult = ((arc_mru_ghost->arcs_size >= arc_mfu_ghost->arcs_size) ? 2154 1 : (arc_mfu_ghost->arcs_size/arc_mru_ghost->arcs_size)); 2155 mult = MIN(mult, 10); /* avoid wild arc_p adjustment */ 2156 2157 arc_p = MIN(arc_c - arc_p_min, arc_p + bytes * mult); 2158 } else if (state == arc_mfu_ghost) { 2159 uint64_t delta; 2160 2161 mult = ((arc_mfu_ghost->arcs_size >= arc_mru_ghost->arcs_size) ? 2162 1 : (arc_mru_ghost->arcs_size/arc_mfu_ghost->arcs_size)); 2163 mult = MIN(mult, 10); 2164 2165 delta = MIN(bytes * mult, arc_p); 2166 arc_p = MAX(arc_p_min, arc_p - delta); 2167 } 2168 ASSERT((int64_t)arc_p >= 0); 2169 2170 if (arc_reclaim_needed()) { 2171 cv_signal(&arc_reclaim_thr_cv); 2172 return; 2173 } 2174 2175 if (arc_no_grow) 2176 return; 2177 2178 if (arc_c >= arc_c_max) 2179 return; 2180 2181 /* 2182 * If we're within (2 * maxblocksize) bytes of the target 2183 * cache size, increment the target cache size 2184 */ 2185 if (arc_size > arc_c - (2ULL << SPA_MAXBLOCKSHIFT)) { 2186 atomic_add_64(&arc_c, (int64_t)bytes); 2187 if (arc_c > arc_c_max) 2188 arc_c = arc_c_max; 2189 else if (state == arc_anon) 2190 atomic_add_64(&arc_p, (int64_t)bytes); 2191 if (arc_p > arc_c) 2192 arc_p = arc_c; 2193 } 2194 ASSERT((int64_t)arc_p >= 0); 2195 } 2196 2197 /* 2198 * Check if the cache has reached its limits and eviction is required 2199 * prior to insert. 2200 */ 2201 static int 2202 arc_evict_needed(arc_buf_contents_t type) 2203 { 2204 if (type == ARC_BUFC_METADATA && arc_meta_used >= arc_meta_limit) 2205 return (1); 2206 2207 #ifdef _KERNEL 2208 /* 2209 * If zio data pages are being allocated out of a separate heap segment, 2210 * then enforce that the size of available vmem for this area remains 2211 * above about 1/32nd free. 2212 */ 2213 if (type == ARC_BUFC_DATA && zio_arena != NULL && 2214 vmem_size(zio_arena, VMEM_FREE) < 2215 (vmem_size(zio_arena, VMEM_ALLOC) >> 5)) 2216 return (1); 2217 #endif 2218 2219 if (arc_reclaim_needed()) 2220 return (1); 2221 2222 return (arc_size > arc_c); 2223 } 2224 2225 /* 2226 * The buffer, supplied as the first argument, needs a data block. 2227 * So, if we are at cache max, determine which cache should be victimized. 2228 * We have the following cases: 2229 * 2230 * 1. Insert for MRU, p > sizeof(arc_anon + arc_mru) -> 2231 * In this situation if we're out of space, but the resident size of the MFU is 2232 * under the limit, victimize the MFU cache to satisfy this insertion request. 2233 * 2234 * 2. Insert for MRU, p <= sizeof(arc_anon + arc_mru) -> 2235 * Here, we've used up all of the available space for the MRU, so we need to 2236 * evict from our own cache instead. Evict from the set of resident MRU 2237 * entries. 2238 * 2239 * 3. Insert for MFU (c - p) > sizeof(arc_mfu) -> 2240 * c minus p represents the MFU space in the cache, since p is the size of the 2241 * cache that is dedicated to the MRU. In this situation there's still space on 2242 * the MFU side, so the MRU side needs to be victimized. 2243 * 2244 * 4. Insert for MFU (c - p) < sizeof(arc_mfu) -> 2245 * MFU's resident set is consuming more space than it has been allotted. In 2246 * this situation, we must victimize our own cache, the MFU, for this insertion. 2247 */ 2248 static void 2249 arc_get_data_buf(arc_buf_t *buf) 2250 { 2251 arc_state_t *state = buf->b_hdr->b_state; 2252 uint64_t size = buf->b_hdr->b_size; 2253 arc_buf_contents_t type = buf->b_hdr->b_type; 2254 2255 arc_adapt(size, state); 2256 2257 /* 2258 * We have not yet reached cache maximum size, 2259 * just allocate a new buffer. 2260 */ 2261 if (!arc_evict_needed(type)) { 2262 if (type == ARC_BUFC_METADATA) { 2263 buf->b_data = zio_buf_alloc(size); 2264 arc_space_consume(size, ARC_SPACE_DATA); 2265 } else { 2266 ASSERT(type == ARC_BUFC_DATA); 2267 buf->b_data = zio_data_buf_alloc(size); 2268 ARCSTAT_INCR(arcstat_data_size, size); 2269 atomic_add_64(&arc_size, size); 2270 } 2271 goto out; 2272 } 2273 2274 /* 2275 * If we are prefetching from the mfu ghost list, this buffer 2276 * will end up on the mru list; so steal space from there. 2277 */ 2278 if (state == arc_mfu_ghost) 2279 state = buf->b_hdr->b_flags & ARC_PREFETCH ? arc_mru : arc_mfu; 2280 else if (state == arc_mru_ghost) 2281 state = arc_mru; 2282 2283 if (state == arc_mru || state == arc_anon) { 2284 uint64_t mru_used = arc_anon->arcs_size + arc_mru->arcs_size; 2285 state = (arc_mfu->arcs_lsize[type] >= size && 2286 arc_p > mru_used) ? arc_mfu : arc_mru; 2287 } else { 2288 /* MFU cases */ 2289 uint64_t mfu_space = arc_c - arc_p; 2290 state = (arc_mru->arcs_lsize[type] >= size && 2291 mfu_space > arc_mfu->arcs_size) ? arc_mru : arc_mfu; 2292 } 2293 if ((buf->b_data = arc_evict(state, NULL, size, TRUE, type)) == NULL) { 2294 if (type == ARC_BUFC_METADATA) { 2295 buf->b_data = zio_buf_alloc(size); 2296 arc_space_consume(size, ARC_SPACE_DATA); 2297 } else { 2298 ASSERT(type == ARC_BUFC_DATA); 2299 buf->b_data = zio_data_buf_alloc(size); 2300 ARCSTAT_INCR(arcstat_data_size, size); 2301 atomic_add_64(&arc_size, size); 2302 } 2303 ARCSTAT_BUMP(arcstat_recycle_miss); 2304 } 2305 ASSERT(buf->b_data != NULL); 2306 out: 2307 /* 2308 * Update the state size. Note that ghost states have a 2309 * "ghost size" and so don't need to be updated. 2310 */ 2311 if (!GHOST_STATE(buf->b_hdr->b_state)) { 2312 arc_buf_hdr_t *hdr = buf->b_hdr; 2313 2314 atomic_add_64(&hdr->b_state->arcs_size, size); 2315 if (list_link_active(&hdr->b_arc_node)) { 2316 ASSERT(refcount_is_zero(&hdr->b_refcnt)); 2317 atomic_add_64(&hdr->b_state->arcs_lsize[type], size); 2318 } 2319 /* 2320 * If we are growing the cache, and we are adding anonymous 2321 * data, and we have outgrown arc_p, update arc_p 2322 */ 2323 if (arc_size < arc_c && hdr->b_state == arc_anon && 2324 arc_anon->arcs_size + arc_mru->arcs_size > arc_p) 2325 arc_p = MIN(arc_c, arc_p + size); 2326 } 2327 } 2328 2329 /* 2330 * This routine is called whenever a buffer is accessed. 2331 * NOTE: the hash lock is dropped in this function. 2332 */ 2333 static void 2334 arc_access(arc_buf_hdr_t *buf, kmutex_t *hash_lock) 2335 { 2336 clock_t now; 2337 2338 ASSERT(MUTEX_HELD(hash_lock)); 2339 2340 if (buf->b_state == arc_anon) { 2341 /* 2342 * This buffer is not in the cache, and does not 2343 * appear in our "ghost" list. Add the new buffer 2344 * to the MRU state. 2345 */ 2346 2347 ASSERT(buf->b_arc_access == 0); 2348 buf->b_arc_access = ddi_get_lbolt(); 2349 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, buf); 2350 arc_change_state(arc_mru, buf, hash_lock); 2351 2352 } else if (buf->b_state == arc_mru) { 2353 now = ddi_get_lbolt(); 2354 2355 /* 2356 * If this buffer is here because of a prefetch, then either: 2357 * - clear the flag if this is a "referencing" read 2358 * (any subsequent access will bump this into the MFU state). 2359 * or 2360 * - move the buffer to the head of the list if this is 2361 * another prefetch (to make it less likely to be evicted). 2362 */ 2363 if ((buf->b_flags & ARC_PREFETCH) != 0) { 2364 if (refcount_count(&buf->b_refcnt) == 0) { 2365 ASSERT(list_link_active(&buf->b_arc_node)); 2366 } else { 2367 buf->b_flags &= ~ARC_PREFETCH; 2368 ARCSTAT_BUMP(arcstat_mru_hits); 2369 } 2370 buf->b_arc_access = now; 2371 return; 2372 } 2373 2374 /* 2375 * This buffer has been "accessed" only once so far, 2376 * but it is still in the cache. Move it to the MFU 2377 * state. 2378 */ 2379 if (now > buf->b_arc_access + ARC_MINTIME) { 2380 /* 2381 * More than 125ms have passed since we 2382 * instantiated this buffer. Move it to the 2383 * most frequently used state. 2384 */ 2385 buf->b_arc_access = now; 2386 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf); 2387 arc_change_state(arc_mfu, buf, hash_lock); 2388 } 2389 ARCSTAT_BUMP(arcstat_mru_hits); 2390 } else if (buf->b_state == arc_mru_ghost) { 2391 arc_state_t *new_state; 2392 /* 2393 * This buffer has been "accessed" recently, but 2394 * was evicted from the cache. Move it to the 2395 * MFU state. 2396 */ 2397 2398 if (buf->b_flags & ARC_PREFETCH) { 2399 new_state = arc_mru; 2400 if (refcount_count(&buf->b_refcnt) > 0) 2401 buf->b_flags &= ~ARC_PREFETCH; 2402 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, buf); 2403 } else { 2404 new_state = arc_mfu; 2405 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf); 2406 } 2407 2408 buf->b_arc_access = ddi_get_lbolt(); 2409 arc_change_state(new_state, buf, hash_lock); 2410 2411 ARCSTAT_BUMP(arcstat_mru_ghost_hits); 2412 } else if (buf->b_state == arc_mfu) { 2413 /* 2414 * This buffer has been accessed more than once and is 2415 * still in the cache. Keep it in the MFU state. 2416 * 2417 * NOTE: an add_reference() that occurred when we did 2418 * the arc_read() will have kicked this off the list. 2419 * If it was a prefetch, we will explicitly move it to 2420 * the head of the list now. 2421 */ 2422 if ((buf->b_flags & ARC_PREFETCH) != 0) { 2423 ASSERT(refcount_count(&buf->b_refcnt) == 0); 2424 ASSERT(list_link_active(&buf->b_arc_node)); 2425 } 2426 ARCSTAT_BUMP(arcstat_mfu_hits); 2427 buf->b_arc_access = ddi_get_lbolt(); 2428 } else if (buf->b_state == arc_mfu_ghost) { 2429 arc_state_t *new_state = arc_mfu; 2430 /* 2431 * This buffer has been accessed more than once but has 2432 * been evicted from the cache. Move it back to the 2433 * MFU state. 2434 */ 2435 2436 if (buf->b_flags & ARC_PREFETCH) { 2437 /* 2438 * This is a prefetch access... 2439 * move this block back to the MRU state. 2440 */ 2441 ASSERT3U(refcount_count(&buf->b_refcnt), ==, 0); 2442 new_state = arc_mru; 2443 } 2444 2445 buf->b_arc_access = ddi_get_lbolt(); 2446 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf); 2447 arc_change_state(new_state, buf, hash_lock); 2448 2449 ARCSTAT_BUMP(arcstat_mfu_ghost_hits); 2450 } else if (buf->b_state == arc_l2c_only) { 2451 /* 2452 * This buffer is on the 2nd Level ARC. 2453 */ 2454 2455 buf->b_arc_access = ddi_get_lbolt(); 2456 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf); 2457 arc_change_state(arc_mfu, buf, hash_lock); 2458 } else { 2459 ASSERT(!"invalid arc state"); 2460 } 2461 } 2462 2463 /* a generic arc_done_func_t which you can use */ 2464 /* ARGSUSED */ 2465 void 2466 arc_bcopy_func(zio_t *zio, arc_buf_t *buf, void *arg) 2467 { 2468 if (zio == NULL || zio->io_error == 0) 2469 bcopy(buf->b_data, arg, buf->b_hdr->b_size); 2470 VERIFY(arc_buf_remove_ref(buf, arg) == 1); 2471 } 2472 2473 /* a generic arc_done_func_t */ 2474 void 2475 arc_getbuf_func(zio_t *zio, arc_buf_t *buf, void *arg) 2476 { 2477 arc_buf_t **bufp = arg; 2478 if (zio && zio->io_error) { 2479 VERIFY(arc_buf_remove_ref(buf, arg) == 1); 2480 *bufp = NULL; 2481 } else { 2482 *bufp = buf; 2483 ASSERT(buf->b_data); 2484 } 2485 } 2486 2487 static void 2488 arc_read_done(zio_t *zio) 2489 { 2490 arc_buf_hdr_t *hdr, *found; 2491 arc_buf_t *buf; 2492 arc_buf_t *abuf; /* buffer we're assigning to callback */ 2493 kmutex_t *hash_lock; 2494 arc_callback_t *callback_list, *acb; 2495 int freeable = FALSE; 2496 2497 buf = zio->io_private; 2498 hdr = buf->b_hdr; 2499 2500 /* 2501 * The hdr was inserted into hash-table and removed from lists 2502 * prior to starting I/O. We should find this header, since 2503 * it's in the hash table, and it should be legit since it's 2504 * not possible to evict it during the I/O. The only possible 2505 * reason for it not to be found is if we were freed during the 2506 * read. 2507 */ 2508 found = buf_hash_find(hdr->b_spa, &hdr->b_dva, hdr->b_birth, 2509 &hash_lock); 2510 2511 ASSERT((found == NULL && HDR_FREED_IN_READ(hdr) && hash_lock == NULL) || 2512 (found == hdr && DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))) || 2513 (found == hdr && HDR_L2_READING(hdr))); 2514 2515 hdr->b_flags &= ~ARC_L2_EVICTED; 2516 if (l2arc_noprefetch && (hdr->b_flags & ARC_PREFETCH)) 2517 hdr->b_flags &= ~ARC_L2CACHE; 2518 2519 /* byteswap if necessary */ 2520 callback_list = hdr->b_acb; 2521 ASSERT(callback_list != NULL); 2522 if (BP_SHOULD_BYTESWAP(zio->io_bp) && zio->io_error == 0) { 2523 arc_byteswap_func_t *func = BP_GET_LEVEL(zio->io_bp) > 0 ? 2524 byteswap_uint64_array : 2525 dmu_ot[BP_GET_TYPE(zio->io_bp)].ot_byteswap; 2526 func(buf->b_data, hdr->b_size); 2527 } 2528 2529 arc_cksum_compute(buf, B_FALSE); 2530 2531 if (hash_lock && zio->io_error == 0 && hdr->b_state == arc_anon) { 2532 /* 2533 * Only call arc_access on anonymous buffers. This is because 2534 * if we've issued an I/O for an evicted buffer, we've already 2535 * called arc_access (to prevent any simultaneous readers from 2536 * getting confused). 2537 */ 2538 arc_access(hdr, hash_lock); 2539 } 2540 2541 /* create copies of the data buffer for the callers */ 2542 abuf = buf; 2543 for (acb = callback_list; acb; acb = acb->acb_next) { 2544 if (acb->acb_done) { 2545 if (abuf == NULL) 2546 abuf = arc_buf_clone(buf); 2547 acb->acb_buf = abuf; 2548 abuf = NULL; 2549 } 2550 } 2551 hdr->b_acb = NULL; 2552 hdr->b_flags &= ~ARC_IO_IN_PROGRESS; 2553 ASSERT(!HDR_BUF_AVAILABLE(hdr)); 2554 if (abuf == buf) { 2555 ASSERT(buf->b_efunc == NULL); 2556 ASSERT(hdr->b_datacnt == 1); 2557 hdr->b_flags |= ARC_BUF_AVAILABLE; 2558 } 2559 2560 ASSERT(refcount_is_zero(&hdr->b_refcnt) || callback_list != NULL); 2561 2562 if (zio->io_error != 0) { 2563 hdr->b_flags |= ARC_IO_ERROR; 2564 if (hdr->b_state != arc_anon) 2565 arc_change_state(arc_anon, hdr, hash_lock); 2566 if (HDR_IN_HASH_TABLE(hdr)) 2567 buf_hash_remove(hdr); 2568 freeable = refcount_is_zero(&hdr->b_refcnt); 2569 } 2570 2571 /* 2572 * Broadcast before we drop the hash_lock to avoid the possibility 2573 * that the hdr (and hence the cv) might be freed before we get to 2574 * the cv_broadcast(). 2575 */ 2576 cv_broadcast(&hdr->b_cv); 2577 2578 if (hash_lock) { 2579 mutex_exit(hash_lock); 2580 } else { 2581 /* 2582 * This block was freed while we waited for the read to 2583 * complete. It has been removed from the hash table and 2584 * moved to the anonymous state (so that it won't show up 2585 * in the cache). 2586 */ 2587 ASSERT3P(hdr->b_state, ==, arc_anon); 2588 freeable = refcount_is_zero(&hdr->b_refcnt); 2589 } 2590 2591 /* execute each callback and free its structure */ 2592 while ((acb = callback_list) != NULL) { 2593 if (acb->acb_done) 2594 acb->acb_done(zio, acb->acb_buf, acb->acb_private); 2595 2596 if (acb->acb_zio_dummy != NULL) { 2597 acb->acb_zio_dummy->io_error = zio->io_error; 2598 zio_nowait(acb->acb_zio_dummy); 2599 } 2600 2601 callback_list = acb->acb_next; 2602 kmem_free(acb, sizeof (arc_callback_t)); 2603 } 2604 2605 if (freeable) 2606 arc_hdr_destroy(hdr); 2607 } 2608 2609 /* 2610 * "Read" the block block at the specified DVA (in bp) via the 2611 * cache. If the block is found in the cache, invoke the provided 2612 * callback immediately and return. Note that the `zio' parameter 2613 * in the callback will be NULL in this case, since no IO was 2614 * required. If the block is not in the cache pass the read request 2615 * on to the spa with a substitute callback function, so that the 2616 * requested block will be added to the cache. 2617 * 2618 * If a read request arrives for a block that has a read in-progress, 2619 * either wait for the in-progress read to complete (and return the 2620 * results); or, if this is a read with a "done" func, add a record 2621 * to the read to invoke the "done" func when the read completes, 2622 * and return; or just return. 2623 * 2624 * arc_read_done() will invoke all the requested "done" functions 2625 * for readers of this block. 2626 * 2627 * Normal callers should use arc_read and pass the arc buffer and offset 2628 * for the bp. But if you know you don't need locking, you can use 2629 * arc_read_bp. 2630 */ 2631 int 2632 arc_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, arc_buf_t *pbuf, 2633 arc_done_func_t *done, void *private, int priority, int zio_flags, 2634 uint32_t *arc_flags, const zbookmark_t *zb) 2635 { 2636 int err; 2637 2638 if (pbuf == NULL) { 2639 /* 2640 * XXX This happens from traverse callback funcs, for 2641 * the objset_phys_t block. 2642 */ 2643 return (arc_read_nolock(pio, spa, bp, done, private, priority, 2644 zio_flags, arc_flags, zb)); 2645 } 2646 2647 ASSERT(!refcount_is_zero(&pbuf->b_hdr->b_refcnt)); 2648 ASSERT3U((char *)bp - (char *)pbuf->b_data, <, pbuf->b_hdr->b_size); 2649 rw_enter(&pbuf->b_data_lock, RW_READER); 2650 2651 err = arc_read_nolock(pio, spa, bp, done, private, priority, 2652 zio_flags, arc_flags, zb); 2653 rw_exit(&pbuf->b_data_lock); 2654 2655 return (err); 2656 } 2657 2658 int 2659 arc_read_nolock(zio_t *pio, spa_t *spa, const blkptr_t *bp, 2660 arc_done_func_t *done, void *private, int priority, int zio_flags, 2661 uint32_t *arc_flags, const zbookmark_t *zb) 2662 { 2663 arc_buf_hdr_t *hdr; 2664 arc_buf_t *buf; 2665 kmutex_t *hash_lock; 2666 zio_t *rzio; 2667 uint64_t guid = spa_guid(spa); 2668 2669 top: 2670 hdr = buf_hash_find(guid, BP_IDENTITY(bp), BP_PHYSICAL_BIRTH(bp), 2671 &hash_lock); 2672 if (hdr && hdr->b_datacnt > 0) { 2673 2674 *arc_flags |= ARC_CACHED; 2675 2676 if (HDR_IO_IN_PROGRESS(hdr)) { 2677 2678 if (*arc_flags & ARC_WAIT) { 2679 cv_wait(&hdr->b_cv, hash_lock); 2680 mutex_exit(hash_lock); 2681 goto top; 2682 } 2683 ASSERT(*arc_flags & ARC_NOWAIT); 2684 2685 if (done) { 2686 arc_callback_t *acb = NULL; 2687 2688 acb = kmem_zalloc(sizeof (arc_callback_t), 2689 KM_SLEEP); 2690 acb->acb_done = done; 2691 acb->acb_private = private; 2692 if (pio != NULL) 2693 acb->acb_zio_dummy = zio_null(pio, 2694 spa, NULL, NULL, NULL, zio_flags); 2695 2696 ASSERT(acb->acb_done != NULL); 2697 acb->acb_next = hdr->b_acb; 2698 hdr->b_acb = acb; 2699 add_reference(hdr, hash_lock, private); 2700 mutex_exit(hash_lock); 2701 return (0); 2702 } 2703 mutex_exit(hash_lock); 2704 return (0); 2705 } 2706 2707 ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu); 2708 2709 if (done) { 2710 add_reference(hdr, hash_lock, private); 2711 /* 2712 * If this block is already in use, create a new 2713 * copy of the data so that we will be guaranteed 2714 * that arc_release() will always succeed. 2715 */ 2716 buf = hdr->b_buf; 2717 ASSERT(buf); 2718 ASSERT(buf->b_data); 2719 if (HDR_BUF_AVAILABLE(hdr)) { 2720 ASSERT(buf->b_efunc == NULL); 2721 hdr->b_flags &= ~ARC_BUF_AVAILABLE; 2722 } else { 2723 buf = arc_buf_clone(buf); 2724 } 2725 2726 } else if (*arc_flags & ARC_PREFETCH && 2727 refcount_count(&hdr->b_refcnt) == 0) { 2728 hdr->b_flags |= ARC_PREFETCH; 2729 } 2730 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr); 2731 arc_access(hdr, hash_lock); 2732 if (*arc_flags & ARC_L2CACHE) 2733 hdr->b_flags |= ARC_L2CACHE; 2734 mutex_exit(hash_lock); 2735 ARCSTAT_BUMP(arcstat_hits); 2736 ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH), 2737 demand, prefetch, hdr->b_type != ARC_BUFC_METADATA, 2738 data, metadata, hits); 2739 2740 if (done) 2741 done(NULL, buf, private); 2742 } else { 2743 uint64_t size = BP_GET_LSIZE(bp); 2744 arc_callback_t *acb; 2745 vdev_t *vd = NULL; 2746 uint64_t addr; 2747 boolean_t devw = B_FALSE; 2748 2749 if (hdr == NULL) { 2750 /* this block is not in the cache */ 2751 arc_buf_hdr_t *exists; 2752 arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp); 2753 buf = arc_buf_alloc(spa, size, private, type); 2754 hdr = buf->b_hdr; 2755 hdr->b_dva = *BP_IDENTITY(bp); 2756 hdr->b_birth = BP_PHYSICAL_BIRTH(bp); 2757 hdr->b_cksum0 = bp->blk_cksum.zc_word[0]; 2758 exists = buf_hash_insert(hdr, &hash_lock); 2759 if (exists) { 2760 /* somebody beat us to the hash insert */ 2761 mutex_exit(hash_lock); 2762 buf_discard_identity(hdr); 2763 (void) arc_buf_remove_ref(buf, private); 2764 goto top; /* restart the IO request */ 2765 } 2766 /* if this is a prefetch, we don't have a reference */ 2767 if (*arc_flags & ARC_PREFETCH) { 2768 (void) remove_reference(hdr, hash_lock, 2769 private); 2770 hdr->b_flags |= ARC_PREFETCH; 2771 } 2772 if (*arc_flags & ARC_L2CACHE) 2773 hdr->b_flags |= ARC_L2CACHE; 2774 if (BP_GET_LEVEL(bp) > 0) 2775 hdr->b_flags |= ARC_INDIRECT; 2776 } else { 2777 /* this block is in the ghost cache */ 2778 ASSERT(GHOST_STATE(hdr->b_state)); 2779 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 2780 ASSERT3U(refcount_count(&hdr->b_refcnt), ==, 0); 2781 ASSERT(hdr->b_buf == NULL); 2782 2783 /* if this is a prefetch, we don't have a reference */ 2784 if (*arc_flags & ARC_PREFETCH) 2785 hdr->b_flags |= ARC_PREFETCH; 2786 else 2787 add_reference(hdr, hash_lock, private); 2788 if (*arc_flags & ARC_L2CACHE) 2789 hdr->b_flags |= ARC_L2CACHE; 2790 buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE); 2791 buf->b_hdr = hdr; 2792 buf->b_data = NULL; 2793 buf->b_efunc = NULL; 2794 buf->b_private = NULL; 2795 buf->b_next = NULL; 2796 hdr->b_buf = buf; 2797 ASSERT(hdr->b_datacnt == 0); 2798 hdr->b_datacnt = 1; 2799 arc_get_data_buf(buf); 2800 arc_access(hdr, hash_lock); 2801 } 2802 2803 ASSERT(!GHOST_STATE(hdr->b_state)); 2804 2805 acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP); 2806 acb->acb_done = done; 2807 acb->acb_private = private; 2808 2809 ASSERT(hdr->b_acb == NULL); 2810 hdr->b_acb = acb; 2811 hdr->b_flags |= ARC_IO_IN_PROGRESS; 2812 2813 if (HDR_L2CACHE(hdr) && hdr->b_l2hdr != NULL && 2814 (vd = hdr->b_l2hdr->b_dev->l2ad_vdev) != NULL) { 2815 devw = hdr->b_l2hdr->b_dev->l2ad_writing; 2816 addr = hdr->b_l2hdr->b_daddr; 2817 /* 2818 * Lock out device removal. 2819 */ 2820 if (vdev_is_dead(vd) || 2821 !spa_config_tryenter(spa, SCL_L2ARC, vd, RW_READER)) 2822 vd = NULL; 2823 } 2824 2825 mutex_exit(hash_lock); 2826 2827 ASSERT3U(hdr->b_size, ==, size); 2828 DTRACE_PROBE4(arc__miss, arc_buf_hdr_t *, hdr, blkptr_t *, bp, 2829 uint64_t, size, zbookmark_t *, zb); 2830 ARCSTAT_BUMP(arcstat_misses); 2831 ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH), 2832 demand, prefetch, hdr->b_type != ARC_BUFC_METADATA, 2833 data, metadata, misses); 2834 2835 if (vd != NULL && l2arc_ndev != 0 && !(l2arc_norw && devw)) { 2836 /* 2837 * Read from the L2ARC if the following are true: 2838 * 1. The L2ARC vdev was previously cached. 2839 * 2. This buffer still has L2ARC metadata. 2840 * 3. This buffer isn't currently writing to the L2ARC. 2841 * 4. The L2ARC entry wasn't evicted, which may 2842 * also have invalidated the vdev. 2843 * 5. This isn't prefetch and l2arc_noprefetch is set. 2844 */ 2845 if (hdr->b_l2hdr != NULL && 2846 !HDR_L2_WRITING(hdr) && !HDR_L2_EVICTED(hdr) && 2847 !(l2arc_noprefetch && HDR_PREFETCH(hdr))) { 2848 l2arc_read_callback_t *cb; 2849 2850 DTRACE_PROBE1(l2arc__hit, arc_buf_hdr_t *, hdr); 2851 ARCSTAT_BUMP(arcstat_l2_hits); 2852 2853 cb = kmem_zalloc(sizeof (l2arc_read_callback_t), 2854 KM_SLEEP); 2855 cb->l2rcb_buf = buf; 2856 cb->l2rcb_spa = spa; 2857 cb->l2rcb_bp = *bp; 2858 cb->l2rcb_zb = *zb; 2859 cb->l2rcb_flags = zio_flags; 2860 2861 /* 2862 * l2arc read. The SCL_L2ARC lock will be 2863 * released by l2arc_read_done(). 2864 */ 2865 rzio = zio_read_phys(pio, vd, addr, size, 2866 buf->b_data, ZIO_CHECKSUM_OFF, 2867 l2arc_read_done, cb, priority, zio_flags | 2868 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_CANFAIL | 2869 ZIO_FLAG_DONT_PROPAGATE | 2870 ZIO_FLAG_DONT_RETRY, B_FALSE); 2871 DTRACE_PROBE2(l2arc__read, vdev_t *, vd, 2872 zio_t *, rzio); 2873 ARCSTAT_INCR(arcstat_l2_read_bytes, size); 2874 2875 if (*arc_flags & ARC_NOWAIT) { 2876 zio_nowait(rzio); 2877 return (0); 2878 } 2879 2880 ASSERT(*arc_flags & ARC_WAIT); 2881 if (zio_wait(rzio) == 0) 2882 return (0); 2883 2884 /* l2arc read error; goto zio_read() */ 2885 } else { 2886 DTRACE_PROBE1(l2arc__miss, 2887 arc_buf_hdr_t *, hdr); 2888 ARCSTAT_BUMP(arcstat_l2_misses); 2889 if (HDR_L2_WRITING(hdr)) 2890 ARCSTAT_BUMP(arcstat_l2_rw_clash); 2891 spa_config_exit(spa, SCL_L2ARC, vd); 2892 } 2893 } else { 2894 if (vd != NULL) 2895 spa_config_exit(spa, SCL_L2ARC, vd); 2896 if (l2arc_ndev != 0) { 2897 DTRACE_PROBE1(l2arc__miss, 2898 arc_buf_hdr_t *, hdr); 2899 ARCSTAT_BUMP(arcstat_l2_misses); 2900 } 2901 } 2902 2903 rzio = zio_read(pio, spa, bp, buf->b_data, size, 2904 arc_read_done, buf, priority, zio_flags, zb); 2905 2906 if (*arc_flags & ARC_WAIT) 2907 return (zio_wait(rzio)); 2908 2909 ASSERT(*arc_flags & ARC_NOWAIT); 2910 zio_nowait(rzio); 2911 } 2912 return (0); 2913 } 2914 2915 void 2916 arc_set_callback(arc_buf_t *buf, arc_evict_func_t *func, void *private) 2917 { 2918 ASSERT(buf->b_hdr != NULL); 2919 ASSERT(buf->b_hdr->b_state != arc_anon); 2920 ASSERT(!refcount_is_zero(&buf->b_hdr->b_refcnt) || func == NULL); 2921 ASSERT(buf->b_efunc == NULL); 2922 ASSERT(!HDR_BUF_AVAILABLE(buf->b_hdr)); 2923 2924 buf->b_efunc = func; 2925 buf->b_private = private; 2926 } 2927 2928 /* 2929 * This is used by the DMU to let the ARC know that a buffer is 2930 * being evicted, so the ARC should clean up. If this arc buf 2931 * is not yet in the evicted state, it will be put there. 2932 */ 2933 int 2934 arc_buf_evict(arc_buf_t *buf) 2935 { 2936 arc_buf_hdr_t *hdr; 2937 kmutex_t *hash_lock; 2938 arc_buf_t **bufp; 2939 2940 mutex_enter(&buf->b_evict_lock); 2941 hdr = buf->b_hdr; 2942 if (hdr == NULL) { 2943 /* 2944 * We are in arc_do_user_evicts(). 2945 */ 2946 ASSERT(buf->b_data == NULL); 2947 mutex_exit(&buf->b_evict_lock); 2948 return (0); 2949 } else if (buf->b_data == NULL) { 2950 arc_buf_t copy = *buf; /* structure assignment */ 2951 /* 2952 * We are on the eviction list; process this buffer now 2953 * but let arc_do_user_evicts() do the reaping. 2954 */ 2955 buf->b_efunc = NULL; 2956 mutex_exit(&buf->b_evict_lock); 2957 VERIFY(copy.b_efunc(©) == 0); 2958 return (1); 2959 } 2960 hash_lock = HDR_LOCK(hdr); 2961 mutex_enter(hash_lock); 2962 hdr = buf->b_hdr; 2963 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 2964 2965 ASSERT3U(refcount_count(&hdr->b_refcnt), <, hdr->b_datacnt); 2966 ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu); 2967 2968 /* 2969 * Pull this buffer off of the hdr 2970 */ 2971 bufp = &hdr->b_buf; 2972 while (*bufp != buf) 2973 bufp = &(*bufp)->b_next; 2974 *bufp = buf->b_next; 2975 2976 ASSERT(buf->b_data != NULL); 2977 arc_buf_destroy(buf, FALSE, FALSE); 2978 2979 if (hdr->b_datacnt == 0) { 2980 arc_state_t *old_state = hdr->b_state; 2981 arc_state_t *evicted_state; 2982 2983 ASSERT(hdr->b_buf == NULL); 2984 ASSERT(refcount_is_zero(&hdr->b_refcnt)); 2985 2986 evicted_state = 2987 (old_state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost; 2988 2989 mutex_enter(&old_state->arcs_mtx); 2990 mutex_enter(&evicted_state->arcs_mtx); 2991 2992 arc_change_state(evicted_state, hdr, hash_lock); 2993 ASSERT(HDR_IN_HASH_TABLE(hdr)); 2994 hdr->b_flags |= ARC_IN_HASH_TABLE; 2995 hdr->b_flags &= ~ARC_BUF_AVAILABLE; 2996 2997 mutex_exit(&evicted_state->arcs_mtx); 2998 mutex_exit(&old_state->arcs_mtx); 2999 } 3000 mutex_exit(hash_lock); 3001 mutex_exit(&buf->b_evict_lock); 3002 3003 VERIFY(buf->b_efunc(buf) == 0); 3004 buf->b_efunc = NULL; 3005 buf->b_private = NULL; 3006 buf->b_hdr = NULL; 3007 buf->b_next = NULL; 3008 kmem_cache_free(buf_cache, buf); 3009 return (1); 3010 } 3011 3012 /* 3013 * Release this buffer from the cache. This must be done 3014 * after a read and prior to modifying the buffer contents. 3015 * If the buffer has more than one reference, we must make 3016 * a new hdr for the buffer. 3017 */ 3018 void 3019 arc_release(arc_buf_t *buf, void *tag) 3020 { 3021 arc_buf_hdr_t *hdr; 3022 kmutex_t *hash_lock = NULL; 3023 l2arc_buf_hdr_t *l2hdr; 3024 uint64_t buf_size; 3025 3026 /* 3027 * It would be nice to assert that if it's DMU metadata (level > 3028 * 0 || it's the dnode file), then it must be syncing context. 3029 * But we don't know that information at this level. 3030 */ 3031 3032 mutex_enter(&buf->b_evict_lock); 3033 hdr = buf->b_hdr; 3034 3035 /* this buffer is not on any list */ 3036 ASSERT(refcount_count(&hdr->b_refcnt) > 0); 3037 3038 if (hdr->b_state == arc_anon) { 3039 /* this buffer is already released */ 3040 ASSERT(buf->b_efunc == NULL); 3041 } else { 3042 hash_lock = HDR_LOCK(hdr); 3043 mutex_enter(hash_lock); 3044 hdr = buf->b_hdr; 3045 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 3046 } 3047 3048 l2hdr = hdr->b_l2hdr; 3049 if (l2hdr) { 3050 mutex_enter(&l2arc_buflist_mtx); 3051 hdr->b_l2hdr = NULL; 3052 buf_size = hdr->b_size; 3053 } 3054 3055 /* 3056 * Do we have more than one buf? 3057 */ 3058 if (hdr->b_datacnt > 1) { 3059 arc_buf_hdr_t *nhdr; 3060 arc_buf_t **bufp; 3061 uint64_t blksz = hdr->b_size; 3062 uint64_t spa = hdr->b_spa; 3063 arc_buf_contents_t type = hdr->b_type; 3064 uint32_t flags = hdr->b_flags; 3065 3066 ASSERT(hdr->b_buf != buf || buf->b_next != NULL); 3067 /* 3068 * Pull the data off of this hdr and attach it to 3069 * a new anonymous hdr. 3070 */ 3071 (void) remove_reference(hdr, hash_lock, tag); 3072 bufp = &hdr->b_buf; 3073 while (*bufp != buf) 3074 bufp = &(*bufp)->b_next; 3075 *bufp = buf->b_next; 3076 buf->b_next = NULL; 3077 3078 ASSERT3U(hdr->b_state->arcs_size, >=, hdr->b_size); 3079 atomic_add_64(&hdr->b_state->arcs_size, -hdr->b_size); 3080 if (refcount_is_zero(&hdr->b_refcnt)) { 3081 uint64_t *size = &hdr->b_state->arcs_lsize[hdr->b_type]; 3082 ASSERT3U(*size, >=, hdr->b_size); 3083 atomic_add_64(size, -hdr->b_size); 3084 } 3085 hdr->b_datacnt -= 1; 3086 arc_cksum_verify(buf); 3087 3088 mutex_exit(hash_lock); 3089 3090 nhdr = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE); 3091 nhdr->b_size = blksz; 3092 nhdr->b_spa = spa; 3093 nhdr->b_type = type; 3094 nhdr->b_buf = buf; 3095 nhdr->b_state = arc_anon; 3096 nhdr->b_arc_access = 0; 3097 nhdr->b_flags = flags & ARC_L2_WRITING; 3098 nhdr->b_l2hdr = NULL; 3099 nhdr->b_datacnt = 1; 3100 nhdr->b_freeze_cksum = NULL; 3101 (void) refcount_add(&nhdr->b_refcnt, tag); 3102 buf->b_hdr = nhdr; 3103 mutex_exit(&buf->b_evict_lock); 3104 atomic_add_64(&arc_anon->arcs_size, blksz); 3105 } else { 3106 mutex_exit(&buf->b_evict_lock); 3107 ASSERT(refcount_count(&hdr->b_refcnt) == 1); 3108 ASSERT(!list_link_active(&hdr->b_arc_node)); 3109 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 3110 if (hdr->b_state != arc_anon) 3111 arc_change_state(arc_anon, hdr, hash_lock); 3112 hdr->b_arc_access = 0; 3113 if (hash_lock) 3114 mutex_exit(hash_lock); 3115 3116 buf_discard_identity(hdr); 3117 arc_buf_thaw(buf); 3118 } 3119 buf->b_efunc = NULL; 3120 buf->b_private = NULL; 3121 3122 if (l2hdr) { 3123 list_remove(l2hdr->b_dev->l2ad_buflist, hdr); 3124 kmem_free(l2hdr, sizeof (l2arc_buf_hdr_t)); 3125 ARCSTAT_INCR(arcstat_l2_size, -buf_size); 3126 mutex_exit(&l2arc_buflist_mtx); 3127 } 3128 } 3129 3130 /* 3131 * Release this buffer. If it does not match the provided BP, fill it 3132 * with that block's contents. 3133 */ 3134 /* ARGSUSED */ 3135 int 3136 arc_release_bp(arc_buf_t *buf, void *tag, blkptr_t *bp, spa_t *spa, 3137 zbookmark_t *zb) 3138 { 3139 arc_release(buf, tag); 3140 return (0); 3141 } 3142 3143 int 3144 arc_released(arc_buf_t *buf) 3145 { 3146 int released; 3147 3148 mutex_enter(&buf->b_evict_lock); 3149 released = (buf->b_data != NULL && buf->b_hdr->b_state == arc_anon); 3150 mutex_exit(&buf->b_evict_lock); 3151 return (released); 3152 } 3153 3154 int 3155 arc_has_callback(arc_buf_t *buf) 3156 { 3157 int callback; 3158 3159 mutex_enter(&buf->b_evict_lock); 3160 callback = (buf->b_efunc != NULL); 3161 mutex_exit(&buf->b_evict_lock); 3162 return (callback); 3163 } 3164 3165 #ifdef ZFS_DEBUG 3166 int 3167 arc_referenced(arc_buf_t *buf) 3168 { 3169 int referenced; 3170 3171 mutex_enter(&buf->b_evict_lock); 3172 referenced = (refcount_count(&buf->b_hdr->b_refcnt)); 3173 mutex_exit(&buf->b_evict_lock); 3174 return (referenced); 3175 } 3176 #endif 3177 3178 static void 3179 arc_write_ready(zio_t *zio) 3180 { 3181 arc_write_callback_t *callback = zio->io_private; 3182 arc_buf_t *buf = callback->awcb_buf; 3183 arc_buf_hdr_t *hdr = buf->b_hdr; 3184 3185 ASSERT(!refcount_is_zero(&buf->b_hdr->b_refcnt)); 3186 callback->awcb_ready(zio, buf, callback->awcb_private); 3187 3188 /* 3189 * If the IO is already in progress, then this is a re-write 3190 * attempt, so we need to thaw and re-compute the cksum. 3191 * It is the responsibility of the callback to handle the 3192 * accounting for any re-write attempt. 3193 */ 3194 if (HDR_IO_IN_PROGRESS(hdr)) { 3195 mutex_enter(&hdr->b_freeze_lock); 3196 if (hdr->b_freeze_cksum != NULL) { 3197 kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t)); 3198 hdr->b_freeze_cksum = NULL; 3199 } 3200 mutex_exit(&hdr->b_freeze_lock); 3201 } 3202 arc_cksum_compute(buf, B_FALSE); 3203 hdr->b_flags |= ARC_IO_IN_PROGRESS; 3204 } 3205 3206 static void 3207 arc_write_done(zio_t *zio) 3208 { 3209 arc_write_callback_t *callback = zio->io_private; 3210 arc_buf_t *buf = callback->awcb_buf; 3211 arc_buf_hdr_t *hdr = buf->b_hdr; 3212 3213 ASSERT(hdr->b_acb == NULL); 3214 3215 if (zio->io_error == 0) { 3216 hdr->b_dva = *BP_IDENTITY(zio->io_bp); 3217 hdr->b_birth = BP_PHYSICAL_BIRTH(zio->io_bp); 3218 hdr->b_cksum0 = zio->io_bp->blk_cksum.zc_word[0]; 3219 } else { 3220 ASSERT(BUF_EMPTY(hdr)); 3221 } 3222 3223 /* 3224 * If the block to be written was all-zero, we may have 3225 * compressed it away. In this case no write was performed 3226 * so there will be no dva/birth/checksum. The buffer must 3227 * therefore remain anonymous (and uncached). 3228 */ 3229 if (!BUF_EMPTY(hdr)) { 3230 arc_buf_hdr_t *exists; 3231 kmutex_t *hash_lock; 3232 3233 ASSERT(zio->io_error == 0); 3234 3235 arc_cksum_verify(buf); 3236 3237 exists = buf_hash_insert(hdr, &hash_lock); 3238 if (exists) { 3239 /* 3240 * This can only happen if we overwrite for 3241 * sync-to-convergence, because we remove 3242 * buffers from the hash table when we arc_free(). 3243 */ 3244 if (zio->io_flags & ZIO_FLAG_IO_REWRITE) { 3245 if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp)) 3246 panic("bad overwrite, hdr=%p exists=%p", 3247 (void *)hdr, (void *)exists); 3248 ASSERT(refcount_is_zero(&exists->b_refcnt)); 3249 arc_change_state(arc_anon, exists, hash_lock); 3250 mutex_exit(hash_lock); 3251 arc_hdr_destroy(exists); 3252 exists = buf_hash_insert(hdr, &hash_lock); 3253 ASSERT3P(exists, ==, NULL); 3254 } else { 3255 /* Dedup */ 3256 ASSERT(hdr->b_datacnt == 1); 3257 ASSERT(hdr->b_state == arc_anon); 3258 ASSERT(BP_GET_DEDUP(zio->io_bp)); 3259 ASSERT(BP_GET_LEVEL(zio->io_bp) == 0); 3260 } 3261 } 3262 hdr->b_flags &= ~ARC_IO_IN_PROGRESS; 3263 /* if it's not anon, we are doing a scrub */ 3264 if (!exists && hdr->b_state == arc_anon) 3265 arc_access(hdr, hash_lock); 3266 mutex_exit(hash_lock); 3267 } else { 3268 hdr->b_flags &= ~ARC_IO_IN_PROGRESS; 3269 } 3270 3271 ASSERT(!refcount_is_zero(&hdr->b_refcnt)); 3272 callback->awcb_done(zio, buf, callback->awcb_private); 3273 3274 kmem_free(callback, sizeof (arc_write_callback_t)); 3275 } 3276 3277 zio_t * 3278 arc_write(zio_t *pio, spa_t *spa, uint64_t txg, 3279 blkptr_t *bp, arc_buf_t *buf, boolean_t l2arc, const zio_prop_t *zp, 3280 arc_done_func_t *ready, arc_done_func_t *done, void *private, 3281 int priority, int zio_flags, const zbookmark_t *zb) 3282 { 3283 arc_buf_hdr_t *hdr = buf->b_hdr; 3284 arc_write_callback_t *callback; 3285 zio_t *zio; 3286 3287 ASSERT(ready != NULL); 3288 ASSERT(done != NULL); 3289 ASSERT(!HDR_IO_ERROR(hdr)); 3290 ASSERT((hdr->b_flags & ARC_IO_IN_PROGRESS) == 0); 3291 ASSERT(hdr->b_acb == NULL); 3292 if (l2arc) 3293 hdr->b_flags |= ARC_L2CACHE; 3294 callback = kmem_zalloc(sizeof (arc_write_callback_t), KM_SLEEP); 3295 callback->awcb_ready = ready; 3296 callback->awcb_done = done; 3297 callback->awcb_private = private; 3298 callback->awcb_buf = buf; 3299 3300 zio = zio_write(pio, spa, txg, bp, buf->b_data, hdr->b_size, zp, 3301 arc_write_ready, arc_write_done, callback, priority, zio_flags, zb); 3302 3303 return (zio); 3304 } 3305 3306 static int 3307 arc_memory_throttle(uint64_t reserve, uint64_t inflight_data, uint64_t txg) 3308 { 3309 #ifdef _KERNEL 3310 uint64_t available_memory = ptob(freemem); 3311 static uint64_t page_load = 0; 3312 static uint64_t last_txg = 0; 3313 3314 #if defined(__i386) 3315 available_memory = 3316 MIN(available_memory, vmem_size(heap_arena, VMEM_FREE)); 3317 #endif 3318 if (available_memory >= zfs_write_limit_max) 3319 return (0); 3320 3321 if (txg > last_txg) { 3322 last_txg = txg; 3323 page_load = 0; 3324 } 3325 /* 3326 * If we are in pageout, we know that memory is already tight, 3327 * the arc is already going to be evicting, so we just want to 3328 * continue to let page writes occur as quickly as possible. 3329 */ 3330 if (curproc == proc_pageout) { 3331 if (page_load > MAX(ptob(minfree), available_memory) / 4) 3332 return (ERESTART); 3333 /* Note: reserve is inflated, so we deflate */ 3334 page_load += reserve / 8; 3335 return (0); 3336 } else if (page_load > 0 && arc_reclaim_needed()) { 3337 /* memory is low, delay before restarting */ 3338 ARCSTAT_INCR(arcstat_memory_throttle_count, 1); 3339 return (EAGAIN); 3340 } 3341 page_load = 0; 3342 3343 if (arc_size > arc_c_min) { 3344 uint64_t evictable_memory = 3345 arc_mru->arcs_lsize[ARC_BUFC_DATA] + 3346 arc_mru->arcs_lsize[ARC_BUFC_METADATA] + 3347 arc_mfu->arcs_lsize[ARC_BUFC_DATA] + 3348 arc_mfu->arcs_lsize[ARC_BUFC_METADATA]; 3349 available_memory += MIN(evictable_memory, arc_size - arc_c_min); 3350 } 3351 3352 if (inflight_data > available_memory / 4) { 3353 ARCSTAT_INCR(arcstat_memory_throttle_count, 1); 3354 return (ERESTART); 3355 } 3356 #endif 3357 return (0); 3358 } 3359 3360 void 3361 arc_tempreserve_clear(uint64_t reserve) 3362 { 3363 atomic_add_64(&arc_tempreserve, -reserve); 3364 ASSERT((int64_t)arc_tempreserve >= 0); 3365 } 3366 3367 int 3368 arc_tempreserve_space(uint64_t reserve, uint64_t txg) 3369 { 3370 int error; 3371 uint64_t anon_size; 3372 3373 #ifdef ZFS_DEBUG 3374 /* 3375 * Once in a while, fail for no reason. Everything should cope. 3376 */ 3377 if (spa_get_random(10000) == 0) { 3378 dprintf("forcing random failure\n"); 3379 return (ERESTART); 3380 } 3381 #endif 3382 if (reserve > arc_c/4 && !arc_no_grow) 3383 arc_c = MIN(arc_c_max, reserve * 4); 3384 if (reserve > arc_c) 3385 return (ENOMEM); 3386 3387 /* 3388 * Don't count loaned bufs as in flight dirty data to prevent long 3389 * network delays from blocking transactions that are ready to be 3390 * assigned to a txg. 3391 */ 3392 anon_size = MAX((int64_t)(arc_anon->arcs_size - arc_loaned_bytes), 0); 3393 3394 /* 3395 * Writes will, almost always, require additional memory allocations 3396 * in order to compress/encrypt/etc the data. We therefor need to 3397 * make sure that there is sufficient available memory for this. 3398 */ 3399 if (error = arc_memory_throttle(reserve, anon_size, txg)) 3400 return (error); 3401 3402 /* 3403 * Throttle writes when the amount of dirty data in the cache 3404 * gets too large. We try to keep the cache less than half full 3405 * of dirty blocks so that our sync times don't grow too large. 3406 * Note: if two requests come in concurrently, we might let them 3407 * both succeed, when one of them should fail. Not a huge deal. 3408 */ 3409 3410 if (reserve + arc_tempreserve + anon_size > arc_c / 2 && 3411 anon_size > arc_c / 4) { 3412 dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK " 3413 "anon_data=%lluK tempreserve=%lluK arc_c=%lluK\n", 3414 arc_tempreserve>>10, 3415 arc_anon->arcs_lsize[ARC_BUFC_METADATA]>>10, 3416 arc_anon->arcs_lsize[ARC_BUFC_DATA]>>10, 3417 reserve>>10, arc_c>>10); 3418 return (ERESTART); 3419 } 3420 atomic_add_64(&arc_tempreserve, reserve); 3421 return (0); 3422 } 3423 3424 void 3425 arc_init(void) 3426 { 3427 mutex_init(&arc_reclaim_thr_lock, NULL, MUTEX_DEFAULT, NULL); 3428 cv_init(&arc_reclaim_thr_cv, NULL, CV_DEFAULT, NULL); 3429 3430 /* Convert seconds to clock ticks */ 3431 arc_min_prefetch_lifespan = 1 * hz; 3432 3433 /* Start out with 1/8 of all memory */ 3434 arc_c = physmem * PAGESIZE / 8; 3435 3436 #ifdef _KERNEL 3437 /* 3438 * On architectures where the physical memory can be larger 3439 * than the addressable space (intel in 32-bit mode), we may 3440 * need to limit the cache to 1/8 of VM size. 3441 */ 3442 arc_c = MIN(arc_c, vmem_size(heap_arena, VMEM_ALLOC | VMEM_FREE) / 8); 3443 #endif 3444 3445 /* set min cache to 1/32 of all memory, or 64MB, whichever is more */ 3446 arc_c_min = MAX(arc_c / 4, 64<<20); 3447 /* set max to 3/4 of all memory, or all but 1GB, whichever is more */ 3448 if (arc_c * 8 >= 1<<30) 3449 arc_c_max = (arc_c * 8) - (1<<30); 3450 else 3451 arc_c_max = arc_c_min; 3452 arc_c_max = MAX(arc_c * 6, arc_c_max); 3453 3454 /* 3455 * Allow the tunables to override our calculations if they are 3456 * reasonable (ie. over 64MB) 3457 */ 3458 if (zfs_arc_max > 64<<20 && zfs_arc_max < physmem * PAGESIZE) 3459 arc_c_max = zfs_arc_max; 3460 if (zfs_arc_min > 64<<20 && zfs_arc_min <= arc_c_max) 3461 arc_c_min = zfs_arc_min; 3462 3463 arc_c = arc_c_max; 3464 arc_p = (arc_c >> 1); 3465 3466 /* limit meta-data to 1/4 of the arc capacity */ 3467 arc_meta_limit = arc_c_max / 4; 3468 3469 /* Allow the tunable to override if it is reasonable */ 3470 if (zfs_arc_meta_limit > 0 && zfs_arc_meta_limit <= arc_c_max) 3471 arc_meta_limit = zfs_arc_meta_limit; 3472 3473 if (arc_c_min < arc_meta_limit / 2 && zfs_arc_min == 0) 3474 arc_c_min = arc_meta_limit / 2; 3475 3476 if (zfs_arc_grow_retry > 0) 3477 arc_grow_retry = zfs_arc_grow_retry; 3478 3479 if (zfs_arc_shrink_shift > 0) 3480 arc_shrink_shift = zfs_arc_shrink_shift; 3481 3482 if (zfs_arc_p_min_shift > 0) 3483 arc_p_min_shift = zfs_arc_p_min_shift; 3484 3485 /* if kmem_flags are set, lets try to use less memory */ 3486 if (kmem_debugging()) 3487 arc_c = arc_c / 2; 3488 if (arc_c < arc_c_min) 3489 arc_c = arc_c_min; 3490 3491 arc_anon = &ARC_anon; 3492 arc_mru = &ARC_mru; 3493 arc_mru_ghost = &ARC_mru_ghost; 3494 arc_mfu = &ARC_mfu; 3495 arc_mfu_ghost = &ARC_mfu_ghost; 3496 arc_l2c_only = &ARC_l2c_only; 3497 arc_size = 0; 3498 3499 mutex_init(&arc_anon->arcs_mtx, NULL, MUTEX_DEFAULT, NULL); 3500 mutex_init(&arc_mru->arcs_mtx, NULL, MUTEX_DEFAULT, NULL); 3501 mutex_init(&arc_mru_ghost->arcs_mtx, NULL, MUTEX_DEFAULT, NULL); 3502 mutex_init(&arc_mfu->arcs_mtx, NULL, MUTEX_DEFAULT, NULL); 3503 mutex_init(&arc_mfu_ghost->arcs_mtx, NULL, MUTEX_DEFAULT, NULL); 3504 mutex_init(&arc_l2c_only->arcs_mtx, NULL, MUTEX_DEFAULT, NULL); 3505 3506 list_create(&arc_mru->arcs_list[ARC_BUFC_METADATA], 3507 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3508 list_create(&arc_mru->arcs_list[ARC_BUFC_DATA], 3509 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3510 list_create(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA], 3511 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3512 list_create(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA], 3513 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3514 list_create(&arc_mfu->arcs_list[ARC_BUFC_METADATA], 3515 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3516 list_create(&arc_mfu->arcs_list[ARC_BUFC_DATA], 3517 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3518 list_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA], 3519 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3520 list_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA], 3521 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3522 list_create(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA], 3523 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3524 list_create(&arc_l2c_only->arcs_list[ARC_BUFC_DATA], 3525 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3526 3527 buf_init(); 3528 3529 arc_thread_exit = 0; 3530 arc_eviction_list = NULL; 3531 mutex_init(&arc_eviction_mtx, NULL, MUTEX_DEFAULT, NULL); 3532 bzero(&arc_eviction_hdr, sizeof (arc_buf_hdr_t)); 3533 3534 arc_ksp = kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED, 3535 sizeof (arc_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL); 3536 3537 if (arc_ksp != NULL) { 3538 arc_ksp->ks_data = &arc_stats; 3539 kstat_install(arc_ksp); 3540 } 3541 3542 (void) thread_create(NULL, 0, arc_reclaim_thread, NULL, 0, &p0, 3543 TS_RUN, minclsyspri); 3544 3545 arc_dead = FALSE; 3546 arc_warm = B_FALSE; 3547 3548 if (zfs_write_limit_max == 0) 3549 zfs_write_limit_max = ptob(physmem) >> zfs_write_limit_shift; 3550 else 3551 zfs_write_limit_shift = 0; 3552 mutex_init(&zfs_write_limit_lock, NULL, MUTEX_DEFAULT, NULL); 3553 } 3554 3555 void 3556 arc_fini(void) 3557 { 3558 mutex_enter(&arc_reclaim_thr_lock); 3559 arc_thread_exit = 1; 3560 while (arc_thread_exit != 0) 3561 cv_wait(&arc_reclaim_thr_cv, &arc_reclaim_thr_lock); 3562 mutex_exit(&arc_reclaim_thr_lock); 3563 3564 arc_flush(NULL); 3565 3566 arc_dead = TRUE; 3567 3568 if (arc_ksp != NULL) { 3569 kstat_delete(arc_ksp); 3570 arc_ksp = NULL; 3571 } 3572 3573 mutex_destroy(&arc_eviction_mtx); 3574 mutex_destroy(&arc_reclaim_thr_lock); 3575 cv_destroy(&arc_reclaim_thr_cv); 3576 3577 list_destroy(&arc_mru->arcs_list[ARC_BUFC_METADATA]); 3578 list_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA]); 3579 list_destroy(&arc_mfu->arcs_list[ARC_BUFC_METADATA]); 3580 list_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA]); 3581 list_destroy(&arc_mru->arcs_list[ARC_BUFC_DATA]); 3582 list_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA]); 3583 list_destroy(&arc_mfu->arcs_list[ARC_BUFC_DATA]); 3584 list_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA]); 3585 3586 mutex_destroy(&arc_anon->arcs_mtx); 3587 mutex_destroy(&arc_mru->arcs_mtx); 3588 mutex_destroy(&arc_mru_ghost->arcs_mtx); 3589 mutex_destroy(&arc_mfu->arcs_mtx); 3590 mutex_destroy(&arc_mfu_ghost->arcs_mtx); 3591 mutex_destroy(&arc_l2c_only->arcs_mtx); 3592 3593 mutex_destroy(&zfs_write_limit_lock); 3594 3595 buf_fini(); 3596 3597 ASSERT(arc_loaned_bytes == 0); 3598 } 3599 3600 /* 3601 * Level 2 ARC 3602 * 3603 * The level 2 ARC (L2ARC) is a cache layer in-between main memory and disk. 3604 * It uses dedicated storage devices to hold cached data, which are populated 3605 * using large infrequent writes. The main role of this cache is to boost 3606 * the performance of random read workloads. The intended L2ARC devices 3607 * include short-stroked disks, solid state disks, and other media with 3608 * substantially faster read latency than disk. 3609 * 3610 * +-----------------------+ 3611 * | ARC | 3612 * +-----------------------+ 3613 * | ^ ^ 3614 * | | | 3615 * l2arc_feed_thread() arc_read() 3616 * | | | 3617 * | l2arc read | 3618 * V | | 3619 * +---------------+ | 3620 * | L2ARC | | 3621 * +---------------+ | 3622 * | ^ | 3623 * l2arc_write() | | 3624 * | | | 3625 * V | | 3626 * +-------+ +-------+ 3627 * | vdev | | vdev | 3628 * | cache | | cache | 3629 * +-------+ +-------+ 3630 * +=========+ .-----. 3631 * : L2ARC : |-_____-| 3632 * : devices : | Disks | 3633 * +=========+ `-_____-' 3634 * 3635 * Read requests are satisfied from the following sources, in order: 3636 * 3637 * 1) ARC 3638 * 2) vdev cache of L2ARC devices 3639 * 3) L2ARC devices 3640 * 4) vdev cache of disks 3641 * 5) disks 3642 * 3643 * Some L2ARC device types exhibit extremely slow write performance. 3644 * To accommodate for this there are some significant differences between 3645 * the L2ARC and traditional cache design: 3646 * 3647 * 1. There is no eviction path from the ARC to the L2ARC. Evictions from 3648 * the ARC behave as usual, freeing buffers and placing headers on ghost 3649 * lists. The ARC does not send buffers to the L2ARC during eviction as 3650 * this would add inflated write latencies for all ARC memory pressure. 3651 * 3652 * 2. The L2ARC attempts to cache data from the ARC before it is evicted. 3653 * It does this by periodically scanning buffers from the eviction-end of 3654 * the MFU and MRU ARC lists, copying them to the L2ARC devices if they are 3655 * not already there. It scans until a headroom of buffers is satisfied, 3656 * which itself is a buffer for ARC eviction. The thread that does this is 3657 * l2arc_feed_thread(), illustrated below; example sizes are included to 3658 * provide a better sense of ratio than this diagram: 3659 * 3660 * head --> tail 3661 * +---------------------+----------+ 3662 * ARC_mfu |:::::#:::::::::::::::|o#o###o###|-->. # already on L2ARC 3663 * +---------------------+----------+ | o L2ARC eligible 3664 * ARC_mru |:#:::::::::::::::::::|#o#ooo####|-->| : ARC buffer 3665 * +---------------------+----------+ | 3666 * 15.9 Gbytes ^ 32 Mbytes | 3667 * headroom | 3668 * l2arc_feed_thread() 3669 * | 3670 * l2arc write hand <--[oooo]--' 3671 * | 8 Mbyte 3672 * | write max 3673 * V 3674 * +==============================+ 3675 * L2ARC dev |####|#|###|###| |####| ... | 3676 * +==============================+ 3677 * 32 Gbytes 3678 * 3679 * 3. If an ARC buffer is copied to the L2ARC but then hit instead of 3680 * evicted, then the L2ARC has cached a buffer much sooner than it probably 3681 * needed to, potentially wasting L2ARC device bandwidth and storage. It is 3682 * safe to say that this is an uncommon case, since buffers at the end of 3683 * the ARC lists have moved there due to inactivity. 3684 * 3685 * 4. If the ARC evicts faster than the L2ARC can maintain a headroom, 3686 * then the L2ARC simply misses copying some buffers. This serves as a 3687 * pressure valve to prevent heavy read workloads from both stalling the ARC 3688 * with waits and clogging the L2ARC with writes. This also helps prevent 3689 * the potential for the L2ARC to churn if it attempts to cache content too 3690 * quickly, such as during backups of the entire pool. 3691 * 3692 * 5. After system boot and before the ARC has filled main memory, there are 3693 * no evictions from the ARC and so the tails of the ARC_mfu and ARC_mru 3694 * lists can remain mostly static. Instead of searching from tail of these 3695 * lists as pictured, the l2arc_feed_thread() will search from the list heads 3696 * for eligible buffers, greatly increasing its chance of finding them. 3697 * 3698 * The L2ARC device write speed is also boosted during this time so that 3699 * the L2ARC warms up faster. Since there have been no ARC evictions yet, 3700 * there are no L2ARC reads, and no fear of degrading read performance 3701 * through increased writes. 3702 * 3703 * 6. Writes to the L2ARC devices are grouped and sent in-sequence, so that 3704 * the vdev queue can aggregate them into larger and fewer writes. Each 3705 * device is written to in a rotor fashion, sweeping writes through 3706 * available space then repeating. 3707 * 3708 * 7. The L2ARC does not store dirty content. It never needs to flush 3709 * write buffers back to disk based storage. 3710 * 3711 * 8. If an ARC buffer is written (and dirtied) which also exists in the 3712 * L2ARC, the now stale L2ARC buffer is immediately dropped. 3713 * 3714 * The performance of the L2ARC can be tweaked by a number of tunables, which 3715 * may be necessary for different workloads: 3716 * 3717 * l2arc_write_max max write bytes per interval 3718 * l2arc_write_boost extra write bytes during device warmup 3719 * l2arc_noprefetch skip caching prefetched buffers 3720 * l2arc_headroom number of max device writes to precache 3721 * l2arc_feed_secs seconds between L2ARC writing 3722 * 3723 * Tunables may be removed or added as future performance improvements are 3724 * integrated, and also may become zpool properties. 3725 * 3726 * There are three key functions that control how the L2ARC warms up: 3727 * 3728 * l2arc_write_eligible() check if a buffer is eligible to cache 3729 * l2arc_write_size() calculate how much to write 3730 * l2arc_write_interval() calculate sleep delay between writes 3731 * 3732 * These three functions determine what to write, how much, and how quickly 3733 * to send writes. 3734 */ 3735 3736 static boolean_t 3737 l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *ab) 3738 { 3739 /* 3740 * A buffer is *not* eligible for the L2ARC if it: 3741 * 1. belongs to a different spa. 3742 * 2. is already cached on the L2ARC. 3743 * 3. has an I/O in progress (it may be an incomplete read). 3744 * 4. is flagged not eligible (zfs property). 3745 */ 3746 if (ab->b_spa != spa_guid || ab->b_l2hdr != NULL || 3747 HDR_IO_IN_PROGRESS(ab) || !HDR_L2CACHE(ab)) 3748 return (B_FALSE); 3749 3750 return (B_TRUE); 3751 } 3752 3753 static uint64_t 3754 l2arc_write_size(l2arc_dev_t *dev) 3755 { 3756 uint64_t size; 3757 3758 size = dev->l2ad_write; 3759 3760 if (arc_warm == B_FALSE) 3761 size += dev->l2ad_boost; 3762 3763 return (size); 3764 3765 } 3766 3767 static clock_t 3768 l2arc_write_interval(clock_t began, uint64_t wanted, uint64_t wrote) 3769 { 3770 clock_t interval, next, now; 3771 3772 /* 3773 * If the ARC lists are busy, increase our write rate; if the 3774 * lists are stale, idle back. This is achieved by checking 3775 * how much we previously wrote - if it was more than half of 3776 * what we wanted, schedule the next write much sooner. 3777 */ 3778 if (l2arc_feed_again && wrote > (wanted / 2)) 3779 interval = (hz * l2arc_feed_min_ms) / 1000; 3780 else 3781 interval = hz * l2arc_feed_secs; 3782 3783 now = ddi_get_lbolt(); 3784 next = MAX(now, MIN(now + interval, began + interval)); 3785 3786 return (next); 3787 } 3788 3789 static void 3790 l2arc_hdr_stat_add(void) 3791 { 3792 ARCSTAT_INCR(arcstat_l2_hdr_size, HDR_SIZE + L2HDR_SIZE); 3793 ARCSTAT_INCR(arcstat_hdr_size, -HDR_SIZE); 3794 } 3795 3796 static void 3797 l2arc_hdr_stat_remove(void) 3798 { 3799 ARCSTAT_INCR(arcstat_l2_hdr_size, -(HDR_SIZE + L2HDR_SIZE)); 3800 ARCSTAT_INCR(arcstat_hdr_size, HDR_SIZE); 3801 } 3802 3803 /* 3804 * Cycle through L2ARC devices. This is how L2ARC load balances. 3805 * If a device is returned, this also returns holding the spa config lock. 3806 */ 3807 static l2arc_dev_t * 3808 l2arc_dev_get_next(void) 3809 { 3810 l2arc_dev_t *first, *next = NULL; 3811 3812 /* 3813 * Lock out the removal of spas (spa_namespace_lock), then removal 3814 * of cache devices (l2arc_dev_mtx). Once a device has been selected, 3815 * both locks will be dropped and a spa config lock held instead. 3816 */ 3817 mutex_enter(&spa_namespace_lock); 3818 mutex_enter(&l2arc_dev_mtx); 3819 3820 /* if there are no vdevs, there is nothing to do */ 3821 if (l2arc_ndev == 0) 3822 goto out; 3823 3824 first = NULL; 3825 next = l2arc_dev_last; 3826 do { 3827 /* loop around the list looking for a non-faulted vdev */ 3828 if (next == NULL) { 3829 next = list_head(l2arc_dev_list); 3830 } else { 3831 next = list_next(l2arc_dev_list, next); 3832 if (next == NULL) 3833 next = list_head(l2arc_dev_list); 3834 } 3835 3836 /* if we have come back to the start, bail out */ 3837 if (first == NULL) 3838 first = next; 3839 else if (next == first) 3840 break; 3841 3842 } while (vdev_is_dead(next->l2ad_vdev)); 3843 3844 /* if we were unable to find any usable vdevs, return NULL */ 3845 if (vdev_is_dead(next->l2ad_vdev)) 3846 next = NULL; 3847 3848 l2arc_dev_last = next; 3849 3850 out: 3851 mutex_exit(&l2arc_dev_mtx); 3852 3853 /* 3854 * Grab the config lock to prevent the 'next' device from being 3855 * removed while we are writing to it. 3856 */ 3857 if (next != NULL) 3858 spa_config_enter(next->l2ad_spa, SCL_L2ARC, next, RW_READER); 3859 mutex_exit(&spa_namespace_lock); 3860 3861 return (next); 3862 } 3863 3864 /* 3865 * Free buffers that were tagged for destruction. 3866 */ 3867 static void 3868 l2arc_do_free_on_write() 3869 { 3870 list_t *buflist; 3871 l2arc_data_free_t *df, *df_prev; 3872 3873 mutex_enter(&l2arc_free_on_write_mtx); 3874 buflist = l2arc_free_on_write; 3875 3876 for (df = list_tail(buflist); df; df = df_prev) { 3877 df_prev = list_prev(buflist, df); 3878 ASSERT(df->l2df_data != NULL); 3879 ASSERT(df->l2df_func != NULL); 3880 df->l2df_func(df->l2df_data, df->l2df_size); 3881 list_remove(buflist, df); 3882 kmem_free(df, sizeof (l2arc_data_free_t)); 3883 } 3884 3885 mutex_exit(&l2arc_free_on_write_mtx); 3886 } 3887 3888 /* 3889 * A write to a cache device has completed. Update all headers to allow 3890 * reads from these buffers to begin. 3891 */ 3892 static void 3893 l2arc_write_done(zio_t *zio) 3894 { 3895 l2arc_write_callback_t *cb; 3896 l2arc_dev_t *dev; 3897 list_t *buflist; 3898 arc_buf_hdr_t *head, *ab, *ab_prev; 3899 l2arc_buf_hdr_t *abl2; 3900 kmutex_t *hash_lock; 3901 3902 cb = zio->io_private; 3903 ASSERT(cb != NULL); 3904 dev = cb->l2wcb_dev; 3905 ASSERT(dev != NULL); 3906 head = cb->l2wcb_head; 3907 ASSERT(head != NULL); 3908 buflist = dev->l2ad_buflist; 3909 ASSERT(buflist != NULL); 3910 DTRACE_PROBE2(l2arc__iodone, zio_t *, zio, 3911 l2arc_write_callback_t *, cb); 3912 3913 if (zio->io_error != 0) 3914 ARCSTAT_BUMP(arcstat_l2_writes_error); 3915 3916 mutex_enter(&l2arc_buflist_mtx); 3917 3918 /* 3919 * All writes completed, or an error was hit. 3920 */ 3921 for (ab = list_prev(buflist, head); ab; ab = ab_prev) { 3922 ab_prev = list_prev(buflist, ab); 3923 3924 hash_lock = HDR_LOCK(ab); 3925 if (!mutex_tryenter(hash_lock)) { 3926 /* 3927 * This buffer misses out. It may be in a stage 3928 * of eviction. Its ARC_L2_WRITING flag will be 3929 * left set, denying reads to this buffer. 3930 */ 3931 ARCSTAT_BUMP(arcstat_l2_writes_hdr_miss); 3932 continue; 3933 } 3934 3935 if (zio->io_error != 0) { 3936 /* 3937 * Error - drop L2ARC entry. 3938 */ 3939 list_remove(buflist, ab); 3940 abl2 = ab->b_l2hdr; 3941 ab->b_l2hdr = NULL; 3942 kmem_free(abl2, sizeof (l2arc_buf_hdr_t)); 3943 ARCSTAT_INCR(arcstat_l2_size, -ab->b_size); 3944 } 3945 3946 /* 3947 * Allow ARC to begin reads to this L2ARC entry. 3948 */ 3949 ab->b_flags &= ~ARC_L2_WRITING; 3950 3951 mutex_exit(hash_lock); 3952 } 3953 3954 atomic_inc_64(&l2arc_writes_done); 3955 list_remove(buflist, head); 3956 kmem_cache_free(hdr_cache, head); 3957 mutex_exit(&l2arc_buflist_mtx); 3958 3959 l2arc_do_free_on_write(); 3960 3961 kmem_free(cb, sizeof (l2arc_write_callback_t)); 3962 } 3963 3964 /* 3965 * A read to a cache device completed. Validate buffer contents before 3966 * handing over to the regular ARC routines. 3967 */ 3968 static void 3969 l2arc_read_done(zio_t *zio) 3970 { 3971 l2arc_read_callback_t *cb; 3972 arc_buf_hdr_t *hdr; 3973 arc_buf_t *buf; 3974 kmutex_t *hash_lock; 3975 int equal; 3976 3977 ASSERT(zio->io_vd != NULL); 3978 ASSERT(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE); 3979 3980 spa_config_exit(zio->io_spa, SCL_L2ARC, zio->io_vd); 3981 3982 cb = zio->io_private; 3983 ASSERT(cb != NULL); 3984 buf = cb->l2rcb_buf; 3985 ASSERT(buf != NULL); 3986 3987 hash_lock = HDR_LOCK(buf->b_hdr); 3988 mutex_enter(hash_lock); 3989 hdr = buf->b_hdr; 3990 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 3991 3992 /* 3993 * Check this survived the L2ARC journey. 3994 */ 3995 equal = arc_cksum_equal(buf); 3996 if (equal && zio->io_error == 0 && !HDR_L2_EVICTED(hdr)) { 3997 mutex_exit(hash_lock); 3998 zio->io_private = buf; 3999 zio->io_bp_copy = cb->l2rcb_bp; /* XXX fix in L2ARC 2.0 */ 4000 zio->io_bp = &zio->io_bp_copy; /* XXX fix in L2ARC 2.0 */ 4001 arc_read_done(zio); 4002 } else { 4003 mutex_exit(hash_lock); 4004 /* 4005 * Buffer didn't survive caching. Increment stats and 4006 * reissue to the original storage device. 4007 */ 4008 if (zio->io_error != 0) { 4009 ARCSTAT_BUMP(arcstat_l2_io_error); 4010 } else { 4011 zio->io_error = EIO; 4012 } 4013 if (!equal) 4014 ARCSTAT_BUMP(arcstat_l2_cksum_bad); 4015 4016 /* 4017 * If there's no waiter, issue an async i/o to the primary 4018 * storage now. If there *is* a waiter, the caller must 4019 * issue the i/o in a context where it's OK to block. 4020 */ 4021 if (zio->io_waiter == NULL) { 4022 zio_t *pio = zio_unique_parent(zio); 4023 4024 ASSERT(!pio || pio->io_child_type == ZIO_CHILD_LOGICAL); 4025 4026 zio_nowait(zio_read(pio, cb->l2rcb_spa, &cb->l2rcb_bp, 4027 buf->b_data, zio->io_size, arc_read_done, buf, 4028 zio->io_priority, cb->l2rcb_flags, &cb->l2rcb_zb)); 4029 } 4030 } 4031 4032 kmem_free(cb, sizeof (l2arc_read_callback_t)); 4033 } 4034 4035 /* 4036 * This is the list priority from which the L2ARC will search for pages to 4037 * cache. This is used within loops (0..3) to cycle through lists in the 4038 * desired order. This order can have a significant effect on cache 4039 * performance. 4040 * 4041 * Currently the metadata lists are hit first, MFU then MRU, followed by 4042 * the data lists. This function returns a locked list, and also returns 4043 * the lock pointer. 4044 */ 4045 static list_t * 4046 l2arc_list_locked(int list_num, kmutex_t **lock) 4047 { 4048 list_t *list; 4049 4050 ASSERT(list_num >= 0 && list_num <= 3); 4051 4052 switch (list_num) { 4053 case 0: 4054 list = &arc_mfu->arcs_list[ARC_BUFC_METADATA]; 4055 *lock = &arc_mfu->arcs_mtx; 4056 break; 4057 case 1: 4058 list = &arc_mru->arcs_list[ARC_BUFC_METADATA]; 4059 *lock = &arc_mru->arcs_mtx; 4060 break; 4061 case 2: 4062 list = &arc_mfu->arcs_list[ARC_BUFC_DATA]; 4063 *lock = &arc_mfu->arcs_mtx; 4064 break; 4065 case 3: 4066 list = &arc_mru->arcs_list[ARC_BUFC_DATA]; 4067 *lock = &arc_mru->arcs_mtx; 4068 break; 4069 } 4070 4071 ASSERT(!(MUTEX_HELD(*lock))); 4072 mutex_enter(*lock); 4073 return (list); 4074 } 4075 4076 /* 4077 * Evict buffers from the device write hand to the distance specified in 4078 * bytes. This distance may span populated buffers, it may span nothing. 4079 * This is clearing a region on the L2ARC device ready for writing. 4080 * If the 'all' boolean is set, every buffer is evicted. 4081 */ 4082 static void 4083 l2arc_evict(l2arc_dev_t *dev, uint64_t distance, boolean_t all) 4084 { 4085 list_t *buflist; 4086 l2arc_buf_hdr_t *abl2; 4087 arc_buf_hdr_t *ab, *ab_prev; 4088 kmutex_t *hash_lock; 4089 uint64_t taddr; 4090 4091 buflist = dev->l2ad_buflist; 4092 4093 if (buflist == NULL) 4094 return; 4095 4096 if (!all && dev->l2ad_first) { 4097 /* 4098 * This is the first sweep through the device. There is 4099 * nothing to evict. 4100 */ 4101 return; 4102 } 4103 4104 if (dev->l2ad_hand >= (dev->l2ad_end - (2 * distance))) { 4105 /* 4106 * When nearing the end of the device, evict to the end 4107 * before the device write hand jumps to the start. 4108 */ 4109 taddr = dev->l2ad_end; 4110 } else { 4111 taddr = dev->l2ad_hand + distance; 4112 } 4113 DTRACE_PROBE4(l2arc__evict, l2arc_dev_t *, dev, list_t *, buflist, 4114 uint64_t, taddr, boolean_t, all); 4115 4116 top: 4117 mutex_enter(&l2arc_buflist_mtx); 4118 for (ab = list_tail(buflist); ab; ab = ab_prev) { 4119 ab_prev = list_prev(buflist, ab); 4120 4121 hash_lock = HDR_LOCK(ab); 4122 if (!mutex_tryenter(hash_lock)) { 4123 /* 4124 * Missed the hash lock. Retry. 4125 */ 4126 ARCSTAT_BUMP(arcstat_l2_evict_lock_retry); 4127 mutex_exit(&l2arc_buflist_mtx); 4128 mutex_enter(hash_lock); 4129 mutex_exit(hash_lock); 4130 goto top; 4131 } 4132 4133 if (HDR_L2_WRITE_HEAD(ab)) { 4134 /* 4135 * We hit a write head node. Leave it for 4136 * l2arc_write_done(). 4137 */ 4138 list_remove(buflist, ab); 4139 mutex_exit(hash_lock); 4140 continue; 4141 } 4142 4143 if (!all && ab->b_l2hdr != NULL && 4144 (ab->b_l2hdr->b_daddr > taddr || 4145 ab->b_l2hdr->b_daddr < dev->l2ad_hand)) { 4146 /* 4147 * We've evicted to the target address, 4148 * or the end of the device. 4149 */ 4150 mutex_exit(hash_lock); 4151 break; 4152 } 4153 4154 if (HDR_FREE_IN_PROGRESS(ab)) { 4155 /* 4156 * Already on the path to destruction. 4157 */ 4158 mutex_exit(hash_lock); 4159 continue; 4160 } 4161 4162 if (ab->b_state == arc_l2c_only) { 4163 ASSERT(!HDR_L2_READING(ab)); 4164 /* 4165 * This doesn't exist in the ARC. Destroy. 4166 * arc_hdr_destroy() will call list_remove() 4167 * and decrement arcstat_l2_size. 4168 */ 4169 arc_change_state(arc_anon, ab, hash_lock); 4170 arc_hdr_destroy(ab); 4171 } else { 4172 /* 4173 * Invalidate issued or about to be issued 4174 * reads, since we may be about to write 4175 * over this location. 4176 */ 4177 if (HDR_L2_READING(ab)) { 4178 ARCSTAT_BUMP(arcstat_l2_evict_reading); 4179 ab->b_flags |= ARC_L2_EVICTED; 4180 } 4181 4182 /* 4183 * Tell ARC this no longer exists in L2ARC. 4184 */ 4185 if (ab->b_l2hdr != NULL) { 4186 abl2 = ab->b_l2hdr; 4187 ab->b_l2hdr = NULL; 4188 kmem_free(abl2, sizeof (l2arc_buf_hdr_t)); 4189 ARCSTAT_INCR(arcstat_l2_size, -ab->b_size); 4190 } 4191 list_remove(buflist, ab); 4192 4193 /* 4194 * This may have been leftover after a 4195 * failed write. 4196 */ 4197 ab->b_flags &= ~ARC_L2_WRITING; 4198 } 4199 mutex_exit(hash_lock); 4200 } 4201 mutex_exit(&l2arc_buflist_mtx); 4202 4203 vdev_space_update(dev->l2ad_vdev, -(taddr - dev->l2ad_evict), 0, 0); 4204 dev->l2ad_evict = taddr; 4205 } 4206 4207 /* 4208 * Find and write ARC buffers to the L2ARC device. 4209 * 4210 * An ARC_L2_WRITING flag is set so that the L2ARC buffers are not valid 4211 * for reading until they have completed writing. 4212 */ 4213 static uint64_t 4214 l2arc_write_buffers(spa_t *spa, l2arc_dev_t *dev, uint64_t target_sz) 4215 { 4216 arc_buf_hdr_t *ab, *ab_prev, *head; 4217 l2arc_buf_hdr_t *hdrl2; 4218 list_t *list; 4219 uint64_t passed_sz, write_sz, buf_sz, headroom; 4220 void *buf_data; 4221 kmutex_t *hash_lock, *list_lock; 4222 boolean_t have_lock, full; 4223 l2arc_write_callback_t *cb; 4224 zio_t *pio, *wzio; 4225 uint64_t guid = spa_guid(spa); 4226 4227 ASSERT(dev->l2ad_vdev != NULL); 4228 4229 pio = NULL; 4230 write_sz = 0; 4231 full = B_FALSE; 4232 head = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE); 4233 head->b_flags |= ARC_L2_WRITE_HEAD; 4234 4235 /* 4236 * Copy buffers for L2ARC writing. 4237 */ 4238 mutex_enter(&l2arc_buflist_mtx); 4239 for (int try = 0; try <= 3; try++) { 4240 list = l2arc_list_locked(try, &list_lock); 4241 passed_sz = 0; 4242 4243 /* 4244 * L2ARC fast warmup. 4245 * 4246 * Until the ARC is warm and starts to evict, read from the 4247 * head of the ARC lists rather than the tail. 4248 */ 4249 headroom = target_sz * l2arc_headroom; 4250 if (arc_warm == B_FALSE) 4251 ab = list_head(list); 4252 else 4253 ab = list_tail(list); 4254 4255 for (; ab; ab = ab_prev) { 4256 if (arc_warm == B_FALSE) 4257 ab_prev = list_next(list, ab); 4258 else 4259 ab_prev = list_prev(list, ab); 4260 4261 hash_lock = HDR_LOCK(ab); 4262 have_lock = MUTEX_HELD(hash_lock); 4263 if (!have_lock && !mutex_tryenter(hash_lock)) { 4264 /* 4265 * Skip this buffer rather than waiting. 4266 */ 4267 continue; 4268 } 4269 4270 passed_sz += ab->b_size; 4271 if (passed_sz > headroom) { 4272 /* 4273 * Searched too far. 4274 */ 4275 mutex_exit(hash_lock); 4276 break; 4277 } 4278 4279 if (!l2arc_write_eligible(guid, ab)) { 4280 mutex_exit(hash_lock); 4281 continue; 4282 } 4283 4284 if ((write_sz + ab->b_size) > target_sz) { 4285 full = B_TRUE; 4286 mutex_exit(hash_lock); 4287 break; 4288 } 4289 4290 if (pio == NULL) { 4291 /* 4292 * Insert a dummy header on the buflist so 4293 * l2arc_write_done() can find where the 4294 * write buffers begin without searching. 4295 */ 4296 list_insert_head(dev->l2ad_buflist, head); 4297 4298 cb = kmem_alloc( 4299 sizeof (l2arc_write_callback_t), KM_SLEEP); 4300 cb->l2wcb_dev = dev; 4301 cb->l2wcb_head = head; 4302 pio = zio_root(spa, l2arc_write_done, cb, 4303 ZIO_FLAG_CANFAIL); 4304 } 4305 4306 /* 4307 * Create and add a new L2ARC header. 4308 */ 4309 hdrl2 = kmem_zalloc(sizeof (l2arc_buf_hdr_t), KM_SLEEP); 4310 hdrl2->b_dev = dev; 4311 hdrl2->b_daddr = dev->l2ad_hand; 4312 4313 ab->b_flags |= ARC_L2_WRITING; 4314 ab->b_l2hdr = hdrl2; 4315 list_insert_head(dev->l2ad_buflist, ab); 4316 buf_data = ab->b_buf->b_data; 4317 buf_sz = ab->b_size; 4318 4319 /* 4320 * Compute and store the buffer cksum before 4321 * writing. On debug the cksum is verified first. 4322 */ 4323 arc_cksum_verify(ab->b_buf); 4324 arc_cksum_compute(ab->b_buf, B_TRUE); 4325 4326 mutex_exit(hash_lock); 4327 4328 wzio = zio_write_phys(pio, dev->l2ad_vdev, 4329 dev->l2ad_hand, buf_sz, buf_data, ZIO_CHECKSUM_OFF, 4330 NULL, NULL, ZIO_PRIORITY_ASYNC_WRITE, 4331 ZIO_FLAG_CANFAIL, B_FALSE); 4332 4333 DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev, 4334 zio_t *, wzio); 4335 (void) zio_nowait(wzio); 4336 4337 /* 4338 * Keep the clock hand suitably device-aligned. 4339 */ 4340 buf_sz = vdev_psize_to_asize(dev->l2ad_vdev, buf_sz); 4341 4342 write_sz += buf_sz; 4343 dev->l2ad_hand += buf_sz; 4344 } 4345 4346 mutex_exit(list_lock); 4347 4348 if (full == B_TRUE) 4349 break; 4350 } 4351 mutex_exit(&l2arc_buflist_mtx); 4352 4353 if (pio == NULL) { 4354 ASSERT3U(write_sz, ==, 0); 4355 kmem_cache_free(hdr_cache, head); 4356 return (0); 4357 } 4358 4359 ASSERT3U(write_sz, <=, target_sz); 4360 ARCSTAT_BUMP(arcstat_l2_writes_sent); 4361 ARCSTAT_INCR(arcstat_l2_write_bytes, write_sz); 4362 ARCSTAT_INCR(arcstat_l2_size, write_sz); 4363 vdev_space_update(dev->l2ad_vdev, write_sz, 0, 0); 4364 4365 /* 4366 * Bump device hand to the device start if it is approaching the end. 4367 * l2arc_evict() will already have evicted ahead for this case. 4368 */ 4369 if (dev->l2ad_hand >= (dev->l2ad_end - target_sz)) { 4370 vdev_space_update(dev->l2ad_vdev, 4371 dev->l2ad_end - dev->l2ad_hand, 0, 0); 4372 dev->l2ad_hand = dev->l2ad_start; 4373 dev->l2ad_evict = dev->l2ad_start; 4374 dev->l2ad_first = B_FALSE; 4375 } 4376 4377 dev->l2ad_writing = B_TRUE; 4378 (void) zio_wait(pio); 4379 dev->l2ad_writing = B_FALSE; 4380 4381 return (write_sz); 4382 } 4383 4384 /* 4385 * This thread feeds the L2ARC at regular intervals. This is the beating 4386 * heart of the L2ARC. 4387 */ 4388 static void 4389 l2arc_feed_thread(void) 4390 { 4391 callb_cpr_t cpr; 4392 l2arc_dev_t *dev; 4393 spa_t *spa; 4394 uint64_t size, wrote; 4395 clock_t begin, next = ddi_get_lbolt(); 4396 4397 CALLB_CPR_INIT(&cpr, &l2arc_feed_thr_lock, callb_generic_cpr, FTAG); 4398 4399 mutex_enter(&l2arc_feed_thr_lock); 4400 4401 while (l2arc_thread_exit == 0) { 4402 CALLB_CPR_SAFE_BEGIN(&cpr); 4403 (void) cv_timedwait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock, 4404 next); 4405 CALLB_CPR_SAFE_END(&cpr, &l2arc_feed_thr_lock); 4406 next = ddi_get_lbolt() + hz; 4407 4408 /* 4409 * Quick check for L2ARC devices. 4410 */ 4411 mutex_enter(&l2arc_dev_mtx); 4412 if (l2arc_ndev == 0) { 4413 mutex_exit(&l2arc_dev_mtx); 4414 continue; 4415 } 4416 mutex_exit(&l2arc_dev_mtx); 4417 begin = ddi_get_lbolt(); 4418 4419 /* 4420 * This selects the next l2arc device to write to, and in 4421 * doing so the next spa to feed from: dev->l2ad_spa. This 4422 * will return NULL if there are now no l2arc devices or if 4423 * they are all faulted. 4424 * 4425 * If a device is returned, its spa's config lock is also 4426 * held to prevent device removal. l2arc_dev_get_next() 4427 * will grab and release l2arc_dev_mtx. 4428 */ 4429 if ((dev = l2arc_dev_get_next()) == NULL) 4430 continue; 4431 4432 spa = dev->l2ad_spa; 4433 ASSERT(spa != NULL); 4434 4435 /* 4436 * Avoid contributing to memory pressure. 4437 */ 4438 if (arc_reclaim_needed()) { 4439 ARCSTAT_BUMP(arcstat_l2_abort_lowmem); 4440 spa_config_exit(spa, SCL_L2ARC, dev); 4441 continue; 4442 } 4443 4444 ARCSTAT_BUMP(arcstat_l2_feeds); 4445 4446 size = l2arc_write_size(dev); 4447 4448 /* 4449 * Evict L2ARC buffers that will be overwritten. 4450 */ 4451 l2arc_evict(dev, size, B_FALSE); 4452 4453 /* 4454 * Write ARC buffers. 4455 */ 4456 wrote = l2arc_write_buffers(spa, dev, size); 4457 4458 /* 4459 * Calculate interval between writes. 4460 */ 4461 next = l2arc_write_interval(begin, size, wrote); 4462 spa_config_exit(spa, SCL_L2ARC, dev); 4463 } 4464 4465 l2arc_thread_exit = 0; 4466 cv_broadcast(&l2arc_feed_thr_cv); 4467 CALLB_CPR_EXIT(&cpr); /* drops l2arc_feed_thr_lock */ 4468 thread_exit(); 4469 } 4470 4471 boolean_t 4472 l2arc_vdev_present(vdev_t *vd) 4473 { 4474 l2arc_dev_t *dev; 4475 4476 mutex_enter(&l2arc_dev_mtx); 4477 for (dev = list_head(l2arc_dev_list); dev != NULL; 4478 dev = list_next(l2arc_dev_list, dev)) { 4479 if (dev->l2ad_vdev == vd) 4480 break; 4481 } 4482 mutex_exit(&l2arc_dev_mtx); 4483 4484 return (dev != NULL); 4485 } 4486 4487 /* 4488 * Add a vdev for use by the L2ARC. By this point the spa has already 4489 * validated the vdev and opened it. 4490 */ 4491 void 4492 l2arc_add_vdev(spa_t *spa, vdev_t *vd) 4493 { 4494 l2arc_dev_t *adddev; 4495 4496 ASSERT(!l2arc_vdev_present(vd)); 4497 4498 /* 4499 * Create a new l2arc device entry. 4500 */ 4501 adddev = kmem_zalloc(sizeof (l2arc_dev_t), KM_SLEEP); 4502 adddev->l2ad_spa = spa; 4503 adddev->l2ad_vdev = vd; 4504 adddev->l2ad_write = l2arc_write_max; 4505 adddev->l2ad_boost = l2arc_write_boost; 4506 adddev->l2ad_start = VDEV_LABEL_START_SIZE; 4507 adddev->l2ad_end = VDEV_LABEL_START_SIZE + vdev_get_min_asize(vd); 4508 adddev->l2ad_hand = adddev->l2ad_start; 4509 adddev->l2ad_evict = adddev->l2ad_start; 4510 adddev->l2ad_first = B_TRUE; 4511 adddev->l2ad_writing = B_FALSE; 4512 ASSERT3U(adddev->l2ad_write, >, 0); 4513 4514 /* 4515 * This is a list of all ARC buffers that are still valid on the 4516 * device. 4517 */ 4518 adddev->l2ad_buflist = kmem_zalloc(sizeof (list_t), KM_SLEEP); 4519 list_create(adddev->l2ad_buflist, sizeof (arc_buf_hdr_t), 4520 offsetof(arc_buf_hdr_t, b_l2node)); 4521 4522 vdev_space_update(vd, 0, 0, adddev->l2ad_end - adddev->l2ad_hand); 4523 4524 /* 4525 * Add device to global list 4526 */ 4527 mutex_enter(&l2arc_dev_mtx); 4528 list_insert_head(l2arc_dev_list, adddev); 4529 atomic_inc_64(&l2arc_ndev); 4530 mutex_exit(&l2arc_dev_mtx); 4531 } 4532 4533 /* 4534 * Remove a vdev from the L2ARC. 4535 */ 4536 void 4537 l2arc_remove_vdev(vdev_t *vd) 4538 { 4539 l2arc_dev_t *dev, *nextdev, *remdev = NULL; 4540 4541 /* 4542 * Find the device by vdev 4543 */ 4544 mutex_enter(&l2arc_dev_mtx); 4545 for (dev = list_head(l2arc_dev_list); dev; dev = nextdev) { 4546 nextdev = list_next(l2arc_dev_list, dev); 4547 if (vd == dev->l2ad_vdev) { 4548 remdev = dev; 4549 break; 4550 } 4551 } 4552 ASSERT(remdev != NULL); 4553 4554 /* 4555 * Remove device from global list 4556 */ 4557 list_remove(l2arc_dev_list, remdev); 4558 l2arc_dev_last = NULL; /* may have been invalidated */ 4559 atomic_dec_64(&l2arc_ndev); 4560 mutex_exit(&l2arc_dev_mtx); 4561 4562 /* 4563 * Clear all buflists and ARC references. L2ARC device flush. 4564 */ 4565 l2arc_evict(remdev, 0, B_TRUE); 4566 list_destroy(remdev->l2ad_buflist); 4567 kmem_free(remdev->l2ad_buflist, sizeof (list_t)); 4568 kmem_free(remdev, sizeof (l2arc_dev_t)); 4569 } 4570 4571 void 4572 l2arc_init(void) 4573 { 4574 l2arc_thread_exit = 0; 4575 l2arc_ndev = 0; 4576 l2arc_writes_sent = 0; 4577 l2arc_writes_done = 0; 4578 4579 mutex_init(&l2arc_feed_thr_lock, NULL, MUTEX_DEFAULT, NULL); 4580 cv_init(&l2arc_feed_thr_cv, NULL, CV_DEFAULT, NULL); 4581 mutex_init(&l2arc_dev_mtx, NULL, MUTEX_DEFAULT, NULL); 4582 mutex_init(&l2arc_buflist_mtx, NULL, MUTEX_DEFAULT, NULL); 4583 mutex_init(&l2arc_free_on_write_mtx, NULL, MUTEX_DEFAULT, NULL); 4584 4585 l2arc_dev_list = &L2ARC_dev_list; 4586 l2arc_free_on_write = &L2ARC_free_on_write; 4587 list_create(l2arc_dev_list, sizeof (l2arc_dev_t), 4588 offsetof(l2arc_dev_t, l2ad_node)); 4589 list_create(l2arc_free_on_write, sizeof (l2arc_data_free_t), 4590 offsetof(l2arc_data_free_t, l2df_list_node)); 4591 } 4592 4593 void 4594 l2arc_fini(void) 4595 { 4596 /* 4597 * This is called from dmu_fini(), which is called from spa_fini(); 4598 * Because of this, we can assume that all l2arc devices have 4599 * already been removed when the pools themselves were removed. 4600 */ 4601 4602 l2arc_do_free_on_write(); 4603 4604 mutex_destroy(&l2arc_feed_thr_lock); 4605 cv_destroy(&l2arc_feed_thr_cv); 4606 mutex_destroy(&l2arc_dev_mtx); 4607 mutex_destroy(&l2arc_buflist_mtx); 4608 mutex_destroy(&l2arc_free_on_write_mtx); 4609 4610 list_destroy(l2arc_dev_list); 4611 list_destroy(l2arc_free_on_write); 4612 } 4613 4614 void 4615 l2arc_start(void) 4616 { 4617 if (!(spa_mode_global & FWRITE)) 4618 return; 4619 4620 (void) thread_create(NULL, 0, l2arc_feed_thread, NULL, 0, &p0, 4621 TS_RUN, minclsyspri); 4622 } 4623 4624 void 4625 l2arc_stop(void) 4626 { 4627 if (!(spa_mode_global & FWRITE)) 4628 return; 4629 4630 mutex_enter(&l2arc_feed_thr_lock); 4631 cv_signal(&l2arc_feed_thr_cv); /* kick thread out of startup */ 4632 l2arc_thread_exit = 1; 4633 while (l2arc_thread_exit != 0) 4634 cv_wait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock); 4635 mutex_exit(&l2arc_feed_thr_lock); 4636 } 4637