1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2012, Joyent, Inc. All rights reserved. 24 * Copyright (c) 2011, 2014 by Delphix. All rights reserved. 25 * Copyright (c) 2014 by Saso Kiselkov. All rights reserved. 26 * Copyright 2014 Nexenta Systems, Inc. All rights reserved. 27 */ 28 29 /* 30 * DVA-based Adjustable Replacement Cache 31 * 32 * While much of the theory of operation used here is 33 * based on the self-tuning, low overhead replacement cache 34 * presented by Megiddo and Modha at FAST 2003, there are some 35 * significant differences: 36 * 37 * 1. The Megiddo and Modha model assumes any page is evictable. 38 * Pages in its cache cannot be "locked" into memory. This makes 39 * the eviction algorithm simple: evict the last page in the list. 40 * This also make the performance characteristics easy to reason 41 * about. Our cache is not so simple. At any given moment, some 42 * subset of the blocks in the cache are un-evictable because we 43 * have handed out a reference to them. Blocks are only evictable 44 * when there are no external references active. This makes 45 * eviction far more problematic: we choose to evict the evictable 46 * blocks that are the "lowest" in the list. 47 * 48 * There are times when it is not possible to evict the requested 49 * space. In these circumstances we are unable to adjust the cache 50 * size. To prevent the cache growing unbounded at these times we 51 * implement a "cache throttle" that slows the flow of new data 52 * into the cache until we can make space available. 53 * 54 * 2. The Megiddo and Modha model assumes a fixed cache size. 55 * Pages are evicted when the cache is full and there is a cache 56 * miss. Our model has a variable sized cache. It grows with 57 * high use, but also tries to react to memory pressure from the 58 * operating system: decreasing its size when system memory is 59 * tight. 60 * 61 * 3. The Megiddo and Modha model assumes a fixed page size. All 62 * elements of the cache are therefore exactly the same size. So 63 * when adjusting the cache size following a cache miss, its simply 64 * a matter of choosing a single page to evict. In our model, we 65 * have variable sized cache blocks (rangeing from 512 bytes to 66 * 128K bytes). We therefore choose a set of blocks to evict to make 67 * space for a cache miss that approximates as closely as possible 68 * the space used by the new block. 69 * 70 * See also: "ARC: A Self-Tuning, Low Overhead Replacement Cache" 71 * by N. Megiddo & D. Modha, FAST 2003 72 */ 73 74 /* 75 * The locking model: 76 * 77 * A new reference to a cache buffer can be obtained in two 78 * ways: 1) via a hash table lookup using the DVA as a key, 79 * or 2) via one of the ARC lists. The arc_read() interface 80 * uses method 1, while the internal arc algorithms for 81 * adjusting the cache use method 2. We therefore provide two 82 * types of locks: 1) the hash table lock array, and 2) the 83 * arc list locks. 84 * 85 * Buffers do not have their own mutexes, rather they rely on the 86 * hash table mutexes for the bulk of their protection (i.e. most 87 * fields in the arc_buf_hdr_t are protected by these mutexes). 88 * 89 * buf_hash_find() returns the appropriate mutex (held) when it 90 * locates the requested buffer in the hash table. It returns 91 * NULL for the mutex if the buffer was not in the table. 92 * 93 * buf_hash_remove() expects the appropriate hash mutex to be 94 * already held before it is invoked. 95 * 96 * Each arc state also has a mutex which is used to protect the 97 * buffer list associated with the state. When attempting to 98 * obtain a hash table lock while holding an arc list lock you 99 * must use: mutex_tryenter() to avoid deadlock. Also note that 100 * the active state mutex must be held before the ghost state mutex. 101 * 102 * Arc buffers may have an associated eviction callback function. 103 * This function will be invoked prior to removing the buffer (e.g. 104 * in arc_do_user_evicts()). Note however that the data associated 105 * with the buffer may be evicted prior to the callback. The callback 106 * must be made with *no locks held* (to prevent deadlock). Additionally, 107 * the users of callbacks must ensure that their private data is 108 * protected from simultaneous callbacks from arc_clear_callback() 109 * and arc_do_user_evicts(). 110 * 111 * Note that the majority of the performance stats are manipulated 112 * with atomic operations. 113 * 114 * The L2ARC uses the l2arc_buflist_mtx global mutex for the following: 115 * 116 * - L2ARC buflist creation 117 * - L2ARC buflist eviction 118 * - L2ARC write completion, which walks L2ARC buflists 119 * - ARC header destruction, as it removes from L2ARC buflists 120 * - ARC header release, as it removes from L2ARC buflists 121 */ 122 123 #include <sys/spa.h> 124 #include <sys/zio.h> 125 #include <sys/zio_compress.h> 126 #include <sys/zfs_context.h> 127 #include <sys/arc.h> 128 #include <sys/refcount.h> 129 #include <sys/vdev.h> 130 #include <sys/vdev_impl.h> 131 #include <sys/dsl_pool.h> 132 #ifdef _KERNEL 133 #include <sys/vmsystm.h> 134 #include <vm/anon.h> 135 #include <sys/fs/swapnode.h> 136 #include <sys/dnlc.h> 137 #endif 138 #include <sys/callb.h> 139 #include <sys/kstat.h> 140 #include <zfs_fletcher.h> 141 142 #ifndef _KERNEL 143 /* set with ZFS_DEBUG=watch, to enable watchpoints on frozen buffers */ 144 boolean_t arc_watch = B_FALSE; 145 int arc_procfd; 146 #endif 147 148 static kmutex_t arc_reclaim_thr_lock; 149 static kcondvar_t arc_reclaim_thr_cv; /* used to signal reclaim thr */ 150 static uint8_t arc_thread_exit; 151 152 #define ARC_REDUCE_DNLC_PERCENT 3 153 uint_t arc_reduce_dnlc_percent = ARC_REDUCE_DNLC_PERCENT; 154 155 typedef enum arc_reclaim_strategy { 156 ARC_RECLAIM_AGGR, /* Aggressive reclaim strategy */ 157 ARC_RECLAIM_CONS /* Conservative reclaim strategy */ 158 } arc_reclaim_strategy_t; 159 160 /* 161 * The number of iterations through arc_evict_*() before we 162 * drop & reacquire the lock. 163 */ 164 int arc_evict_iterations = 100; 165 166 /* number of seconds before growing cache again */ 167 static int arc_grow_retry = 60; 168 169 /* shift of arc_c for calculating both min and max arc_p */ 170 static int arc_p_min_shift = 4; 171 172 /* log2(fraction of arc to reclaim) */ 173 static int arc_shrink_shift = 5; 174 175 /* 176 * minimum lifespan of a prefetch block in clock ticks 177 * (initialized in arc_init()) 178 */ 179 static int arc_min_prefetch_lifespan; 180 181 /* 182 * If this percent of memory is free, don't throttle. 183 */ 184 int arc_lotsfree_percent = 10; 185 186 static int arc_dead; 187 188 /* 189 * The arc has filled available memory and has now warmed up. 190 */ 191 static boolean_t arc_warm; 192 193 /* 194 * These tunables are for performance analysis. 195 */ 196 uint64_t zfs_arc_max; 197 uint64_t zfs_arc_min; 198 uint64_t zfs_arc_meta_limit = 0; 199 int zfs_arc_grow_retry = 0; 200 int zfs_arc_shrink_shift = 0; 201 int zfs_arc_p_min_shift = 0; 202 int zfs_disable_dup_eviction = 0; 203 int zfs_arc_average_blocksize = 8 * 1024; /* 8KB */ 204 205 /* 206 * Note that buffers can be in one of 6 states: 207 * ARC_anon - anonymous (discussed below) 208 * ARC_mru - recently used, currently cached 209 * ARC_mru_ghost - recentely used, no longer in cache 210 * ARC_mfu - frequently used, currently cached 211 * ARC_mfu_ghost - frequently used, no longer in cache 212 * ARC_l2c_only - exists in L2ARC but not other states 213 * When there are no active references to the buffer, they are 214 * are linked onto a list in one of these arc states. These are 215 * the only buffers that can be evicted or deleted. Within each 216 * state there are multiple lists, one for meta-data and one for 217 * non-meta-data. Meta-data (indirect blocks, blocks of dnodes, 218 * etc.) is tracked separately so that it can be managed more 219 * explicitly: favored over data, limited explicitly. 220 * 221 * Anonymous buffers are buffers that are not associated with 222 * a DVA. These are buffers that hold dirty block copies 223 * before they are written to stable storage. By definition, 224 * they are "ref'd" and are considered part of arc_mru 225 * that cannot be freed. Generally, they will aquire a DVA 226 * as they are written and migrate onto the arc_mru list. 227 * 228 * The ARC_l2c_only state is for buffers that are in the second 229 * level ARC but no longer in any of the ARC_m* lists. The second 230 * level ARC itself may also contain buffers that are in any of 231 * the ARC_m* states - meaning that a buffer can exist in two 232 * places. The reason for the ARC_l2c_only state is to keep the 233 * buffer header in the hash table, so that reads that hit the 234 * second level ARC benefit from these fast lookups. 235 */ 236 237 typedef struct arc_state { 238 list_t arcs_list[ARC_BUFC_NUMTYPES]; /* list of evictable buffers */ 239 uint64_t arcs_lsize[ARC_BUFC_NUMTYPES]; /* amount of evictable data */ 240 uint64_t arcs_size; /* total amount of data in this state */ 241 kmutex_t arcs_mtx; 242 } arc_state_t; 243 244 /* The 6 states: */ 245 static arc_state_t ARC_anon; 246 static arc_state_t ARC_mru; 247 static arc_state_t ARC_mru_ghost; 248 static arc_state_t ARC_mfu; 249 static arc_state_t ARC_mfu_ghost; 250 static arc_state_t ARC_l2c_only; 251 252 typedef struct arc_stats { 253 kstat_named_t arcstat_hits; 254 kstat_named_t arcstat_misses; 255 kstat_named_t arcstat_demand_data_hits; 256 kstat_named_t arcstat_demand_data_misses; 257 kstat_named_t arcstat_demand_metadata_hits; 258 kstat_named_t arcstat_demand_metadata_misses; 259 kstat_named_t arcstat_prefetch_data_hits; 260 kstat_named_t arcstat_prefetch_data_misses; 261 kstat_named_t arcstat_prefetch_metadata_hits; 262 kstat_named_t arcstat_prefetch_metadata_misses; 263 kstat_named_t arcstat_mru_hits; 264 kstat_named_t arcstat_mru_ghost_hits; 265 kstat_named_t arcstat_mfu_hits; 266 kstat_named_t arcstat_mfu_ghost_hits; 267 kstat_named_t arcstat_deleted; 268 kstat_named_t arcstat_recycle_miss; 269 /* 270 * Number of buffers that could not be evicted because the hash lock 271 * was held by another thread. The lock may not necessarily be held 272 * by something using the same buffer, since hash locks are shared 273 * by multiple buffers. 274 */ 275 kstat_named_t arcstat_mutex_miss; 276 /* 277 * Number of buffers skipped because they have I/O in progress, are 278 * indrect prefetch buffers that have not lived long enough, or are 279 * not from the spa we're trying to evict from. 280 */ 281 kstat_named_t arcstat_evict_skip; 282 kstat_named_t arcstat_evict_l2_cached; 283 kstat_named_t arcstat_evict_l2_eligible; 284 kstat_named_t arcstat_evict_l2_ineligible; 285 kstat_named_t arcstat_hash_elements; 286 kstat_named_t arcstat_hash_elements_max; 287 kstat_named_t arcstat_hash_collisions; 288 kstat_named_t arcstat_hash_chains; 289 kstat_named_t arcstat_hash_chain_max; 290 kstat_named_t arcstat_p; 291 kstat_named_t arcstat_c; 292 kstat_named_t arcstat_c_min; 293 kstat_named_t arcstat_c_max; 294 kstat_named_t arcstat_size; 295 kstat_named_t arcstat_hdr_size; 296 kstat_named_t arcstat_data_size; 297 kstat_named_t arcstat_other_size; 298 kstat_named_t arcstat_l2_hits; 299 kstat_named_t arcstat_l2_misses; 300 kstat_named_t arcstat_l2_feeds; 301 kstat_named_t arcstat_l2_rw_clash; 302 kstat_named_t arcstat_l2_read_bytes; 303 kstat_named_t arcstat_l2_write_bytes; 304 kstat_named_t arcstat_l2_writes_sent; 305 kstat_named_t arcstat_l2_writes_done; 306 kstat_named_t arcstat_l2_writes_error; 307 kstat_named_t arcstat_l2_writes_hdr_miss; 308 kstat_named_t arcstat_l2_evict_lock_retry; 309 kstat_named_t arcstat_l2_evict_reading; 310 kstat_named_t arcstat_l2_free_on_write; 311 kstat_named_t arcstat_l2_abort_lowmem; 312 kstat_named_t arcstat_l2_cksum_bad; 313 kstat_named_t arcstat_l2_io_error; 314 kstat_named_t arcstat_l2_size; 315 kstat_named_t arcstat_l2_asize; 316 kstat_named_t arcstat_l2_hdr_size; 317 kstat_named_t arcstat_l2_compress_successes; 318 kstat_named_t arcstat_l2_compress_zeros; 319 kstat_named_t arcstat_l2_compress_failures; 320 kstat_named_t arcstat_memory_throttle_count; 321 kstat_named_t arcstat_duplicate_buffers; 322 kstat_named_t arcstat_duplicate_buffers_size; 323 kstat_named_t arcstat_duplicate_reads; 324 kstat_named_t arcstat_meta_used; 325 kstat_named_t arcstat_meta_limit; 326 kstat_named_t arcstat_meta_max; 327 } arc_stats_t; 328 329 static arc_stats_t arc_stats = { 330 { "hits", KSTAT_DATA_UINT64 }, 331 { "misses", KSTAT_DATA_UINT64 }, 332 { "demand_data_hits", KSTAT_DATA_UINT64 }, 333 { "demand_data_misses", KSTAT_DATA_UINT64 }, 334 { "demand_metadata_hits", KSTAT_DATA_UINT64 }, 335 { "demand_metadata_misses", KSTAT_DATA_UINT64 }, 336 { "prefetch_data_hits", KSTAT_DATA_UINT64 }, 337 { "prefetch_data_misses", KSTAT_DATA_UINT64 }, 338 { "prefetch_metadata_hits", KSTAT_DATA_UINT64 }, 339 { "prefetch_metadata_misses", KSTAT_DATA_UINT64 }, 340 { "mru_hits", KSTAT_DATA_UINT64 }, 341 { "mru_ghost_hits", KSTAT_DATA_UINT64 }, 342 { "mfu_hits", KSTAT_DATA_UINT64 }, 343 { "mfu_ghost_hits", KSTAT_DATA_UINT64 }, 344 { "deleted", KSTAT_DATA_UINT64 }, 345 { "recycle_miss", KSTAT_DATA_UINT64 }, 346 { "mutex_miss", KSTAT_DATA_UINT64 }, 347 { "evict_skip", KSTAT_DATA_UINT64 }, 348 { "evict_l2_cached", KSTAT_DATA_UINT64 }, 349 { "evict_l2_eligible", KSTAT_DATA_UINT64 }, 350 { "evict_l2_ineligible", KSTAT_DATA_UINT64 }, 351 { "hash_elements", KSTAT_DATA_UINT64 }, 352 { "hash_elements_max", KSTAT_DATA_UINT64 }, 353 { "hash_collisions", KSTAT_DATA_UINT64 }, 354 { "hash_chains", KSTAT_DATA_UINT64 }, 355 { "hash_chain_max", KSTAT_DATA_UINT64 }, 356 { "p", KSTAT_DATA_UINT64 }, 357 { "c", KSTAT_DATA_UINT64 }, 358 { "c_min", KSTAT_DATA_UINT64 }, 359 { "c_max", KSTAT_DATA_UINT64 }, 360 { "size", KSTAT_DATA_UINT64 }, 361 { "hdr_size", KSTAT_DATA_UINT64 }, 362 { "data_size", KSTAT_DATA_UINT64 }, 363 { "other_size", KSTAT_DATA_UINT64 }, 364 { "l2_hits", KSTAT_DATA_UINT64 }, 365 { "l2_misses", KSTAT_DATA_UINT64 }, 366 { "l2_feeds", KSTAT_DATA_UINT64 }, 367 { "l2_rw_clash", KSTAT_DATA_UINT64 }, 368 { "l2_read_bytes", KSTAT_DATA_UINT64 }, 369 { "l2_write_bytes", KSTAT_DATA_UINT64 }, 370 { "l2_writes_sent", KSTAT_DATA_UINT64 }, 371 { "l2_writes_done", KSTAT_DATA_UINT64 }, 372 { "l2_writes_error", KSTAT_DATA_UINT64 }, 373 { "l2_writes_hdr_miss", KSTAT_DATA_UINT64 }, 374 { "l2_evict_lock_retry", KSTAT_DATA_UINT64 }, 375 { "l2_evict_reading", KSTAT_DATA_UINT64 }, 376 { "l2_free_on_write", KSTAT_DATA_UINT64 }, 377 { "l2_abort_lowmem", KSTAT_DATA_UINT64 }, 378 { "l2_cksum_bad", KSTAT_DATA_UINT64 }, 379 { "l2_io_error", KSTAT_DATA_UINT64 }, 380 { "l2_size", KSTAT_DATA_UINT64 }, 381 { "l2_asize", KSTAT_DATA_UINT64 }, 382 { "l2_hdr_size", KSTAT_DATA_UINT64 }, 383 { "l2_compress_successes", KSTAT_DATA_UINT64 }, 384 { "l2_compress_zeros", KSTAT_DATA_UINT64 }, 385 { "l2_compress_failures", KSTAT_DATA_UINT64 }, 386 { "memory_throttle_count", KSTAT_DATA_UINT64 }, 387 { "duplicate_buffers", KSTAT_DATA_UINT64 }, 388 { "duplicate_buffers_size", KSTAT_DATA_UINT64 }, 389 { "duplicate_reads", KSTAT_DATA_UINT64 }, 390 { "arc_meta_used", KSTAT_DATA_UINT64 }, 391 { "arc_meta_limit", KSTAT_DATA_UINT64 }, 392 { "arc_meta_max", KSTAT_DATA_UINT64 } 393 }; 394 395 #define ARCSTAT(stat) (arc_stats.stat.value.ui64) 396 397 #define ARCSTAT_INCR(stat, val) \ 398 atomic_add_64(&arc_stats.stat.value.ui64, (val)) 399 400 #define ARCSTAT_BUMP(stat) ARCSTAT_INCR(stat, 1) 401 #define ARCSTAT_BUMPDOWN(stat) ARCSTAT_INCR(stat, -1) 402 403 #define ARCSTAT_MAX(stat, val) { \ 404 uint64_t m; \ 405 while ((val) > (m = arc_stats.stat.value.ui64) && \ 406 (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val)))) \ 407 continue; \ 408 } 409 410 #define ARCSTAT_MAXSTAT(stat) \ 411 ARCSTAT_MAX(stat##_max, arc_stats.stat.value.ui64) 412 413 /* 414 * We define a macro to allow ARC hits/misses to be easily broken down by 415 * two separate conditions, giving a total of four different subtypes for 416 * each of hits and misses (so eight statistics total). 417 */ 418 #define ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \ 419 if (cond1) { \ 420 if (cond2) { \ 421 ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \ 422 } else { \ 423 ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \ 424 } \ 425 } else { \ 426 if (cond2) { \ 427 ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \ 428 } else { \ 429 ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\ 430 } \ 431 } 432 433 kstat_t *arc_ksp; 434 static arc_state_t *arc_anon; 435 static arc_state_t *arc_mru; 436 static arc_state_t *arc_mru_ghost; 437 static arc_state_t *arc_mfu; 438 static arc_state_t *arc_mfu_ghost; 439 static arc_state_t *arc_l2c_only; 440 441 /* 442 * There are several ARC variables that are critical to export as kstats -- 443 * but we don't want to have to grovel around in the kstat whenever we wish to 444 * manipulate them. For these variables, we therefore define them to be in 445 * terms of the statistic variable. This assures that we are not introducing 446 * the possibility of inconsistency by having shadow copies of the variables, 447 * while still allowing the code to be readable. 448 */ 449 #define arc_size ARCSTAT(arcstat_size) /* actual total arc size */ 450 #define arc_p ARCSTAT(arcstat_p) /* target size of MRU */ 451 #define arc_c ARCSTAT(arcstat_c) /* target size of cache */ 452 #define arc_c_min ARCSTAT(arcstat_c_min) /* min target cache size */ 453 #define arc_c_max ARCSTAT(arcstat_c_max) /* max target cache size */ 454 #define arc_meta_limit ARCSTAT(arcstat_meta_limit) /* max size for metadata */ 455 #define arc_meta_used ARCSTAT(arcstat_meta_used) /* size of metadata */ 456 #define arc_meta_max ARCSTAT(arcstat_meta_max) /* max size of metadata */ 457 458 #define L2ARC_IS_VALID_COMPRESS(_c_) \ 459 ((_c_) == ZIO_COMPRESS_LZ4 || (_c_) == ZIO_COMPRESS_EMPTY) 460 461 static int arc_no_grow; /* Don't try to grow cache size */ 462 static uint64_t arc_tempreserve; 463 static uint64_t arc_loaned_bytes; 464 465 typedef struct l2arc_buf_hdr l2arc_buf_hdr_t; 466 467 typedef struct arc_callback arc_callback_t; 468 469 struct arc_callback { 470 void *acb_private; 471 arc_done_func_t *acb_done; 472 arc_buf_t *acb_buf; 473 zio_t *acb_zio_dummy; 474 arc_callback_t *acb_next; 475 }; 476 477 typedef struct arc_write_callback arc_write_callback_t; 478 479 struct arc_write_callback { 480 void *awcb_private; 481 arc_done_func_t *awcb_ready; 482 arc_done_func_t *awcb_physdone; 483 arc_done_func_t *awcb_done; 484 arc_buf_t *awcb_buf; 485 }; 486 487 struct arc_buf_hdr { 488 /* protected by hash lock */ 489 dva_t b_dva; 490 uint64_t b_birth; 491 uint64_t b_cksum0; 492 493 kmutex_t b_freeze_lock; 494 zio_cksum_t *b_freeze_cksum; 495 void *b_thawed; 496 497 arc_buf_hdr_t *b_hash_next; 498 arc_buf_t *b_buf; 499 uint32_t b_flags; 500 uint32_t b_datacnt; 501 502 arc_callback_t *b_acb; 503 kcondvar_t b_cv; 504 505 /* immutable */ 506 arc_buf_contents_t b_type; 507 uint64_t b_size; 508 uint64_t b_spa; 509 510 /* protected by arc state mutex */ 511 arc_state_t *b_state; 512 list_node_t b_arc_node; 513 514 /* updated atomically */ 515 clock_t b_arc_access; 516 517 /* self protecting */ 518 refcount_t b_refcnt; 519 520 l2arc_buf_hdr_t *b_l2hdr; 521 list_node_t b_l2node; 522 }; 523 524 static arc_buf_t *arc_eviction_list; 525 static kmutex_t arc_eviction_mtx; 526 static arc_buf_hdr_t arc_eviction_hdr; 527 static void arc_get_data_buf(arc_buf_t *buf); 528 static void arc_access(arc_buf_hdr_t *buf, kmutex_t *hash_lock); 529 static int arc_evict_needed(arc_buf_contents_t type); 530 static void arc_evict_ghost(arc_state_t *state, uint64_t spa, int64_t bytes); 531 static void arc_buf_watch(arc_buf_t *buf); 532 533 static boolean_t l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *ab); 534 535 #define GHOST_STATE(state) \ 536 ((state) == arc_mru_ghost || (state) == arc_mfu_ghost || \ 537 (state) == arc_l2c_only) 538 539 /* 540 * Private ARC flags. These flags are private ARC only flags that will show up 541 * in b_flags in the arc_hdr_buf_t. Some flags are publicly declared, and can 542 * be passed in as arc_flags in things like arc_read. However, these flags 543 * should never be passed and should only be set by ARC code. When adding new 544 * public flags, make sure not to smash the private ones. 545 */ 546 547 #define ARC_IN_HASH_TABLE (1 << 9) /* this buffer is hashed */ 548 #define ARC_IO_IN_PROGRESS (1 << 10) /* I/O in progress for buf */ 549 #define ARC_IO_ERROR (1 << 11) /* I/O failed for buf */ 550 #define ARC_FREED_IN_READ (1 << 12) /* buf freed while in read */ 551 #define ARC_BUF_AVAILABLE (1 << 13) /* block not in active use */ 552 #define ARC_INDIRECT (1 << 14) /* this is an indirect block */ 553 #define ARC_FREE_IN_PROGRESS (1 << 15) /* hdr about to be freed */ 554 #define ARC_L2_WRITING (1 << 16) /* L2ARC write in progress */ 555 #define ARC_L2_EVICTED (1 << 17) /* evicted during I/O */ 556 #define ARC_L2_WRITE_HEAD (1 << 18) /* head of write list */ 557 558 #define HDR_IN_HASH_TABLE(hdr) ((hdr)->b_flags & ARC_IN_HASH_TABLE) 559 #define HDR_IO_IN_PROGRESS(hdr) ((hdr)->b_flags & ARC_IO_IN_PROGRESS) 560 #define HDR_IO_ERROR(hdr) ((hdr)->b_flags & ARC_IO_ERROR) 561 #define HDR_PREFETCH(hdr) ((hdr)->b_flags & ARC_PREFETCH) 562 #define HDR_FREED_IN_READ(hdr) ((hdr)->b_flags & ARC_FREED_IN_READ) 563 #define HDR_BUF_AVAILABLE(hdr) ((hdr)->b_flags & ARC_BUF_AVAILABLE) 564 #define HDR_FREE_IN_PROGRESS(hdr) ((hdr)->b_flags & ARC_FREE_IN_PROGRESS) 565 #define HDR_L2CACHE(hdr) ((hdr)->b_flags & ARC_L2CACHE) 566 #define HDR_L2_READING(hdr) ((hdr)->b_flags & ARC_IO_IN_PROGRESS && \ 567 (hdr)->b_l2hdr != NULL) 568 #define HDR_L2_WRITING(hdr) ((hdr)->b_flags & ARC_L2_WRITING) 569 #define HDR_L2_EVICTED(hdr) ((hdr)->b_flags & ARC_L2_EVICTED) 570 #define HDR_L2_WRITE_HEAD(hdr) ((hdr)->b_flags & ARC_L2_WRITE_HEAD) 571 572 /* 573 * Other sizes 574 */ 575 576 #define HDR_SIZE ((int64_t)sizeof (arc_buf_hdr_t)) 577 #define L2HDR_SIZE ((int64_t)sizeof (l2arc_buf_hdr_t)) 578 579 /* 580 * Hash table routines 581 */ 582 583 #define HT_LOCK_PAD 64 584 585 struct ht_lock { 586 kmutex_t ht_lock; 587 #ifdef _KERNEL 588 unsigned char pad[(HT_LOCK_PAD - sizeof (kmutex_t))]; 589 #endif 590 }; 591 592 #define BUF_LOCKS 256 593 typedef struct buf_hash_table { 594 uint64_t ht_mask; 595 arc_buf_hdr_t **ht_table; 596 struct ht_lock ht_locks[BUF_LOCKS]; 597 } buf_hash_table_t; 598 599 static buf_hash_table_t buf_hash_table; 600 601 #define BUF_HASH_INDEX(spa, dva, birth) \ 602 (buf_hash(spa, dva, birth) & buf_hash_table.ht_mask) 603 #define BUF_HASH_LOCK_NTRY(idx) (buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)]) 604 #define BUF_HASH_LOCK(idx) (&(BUF_HASH_LOCK_NTRY(idx).ht_lock)) 605 #define HDR_LOCK(hdr) \ 606 (BUF_HASH_LOCK(BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth))) 607 608 uint64_t zfs_crc64_table[256]; 609 610 /* 611 * Level 2 ARC 612 */ 613 614 #define L2ARC_WRITE_SIZE (8 * 1024 * 1024) /* initial write max */ 615 #define L2ARC_HEADROOM 2 /* num of writes */ 616 /* 617 * If we discover during ARC scan any buffers to be compressed, we boost 618 * our headroom for the next scanning cycle by this percentage multiple. 619 */ 620 #define L2ARC_HEADROOM_BOOST 200 621 #define L2ARC_FEED_SECS 1 /* caching interval secs */ 622 #define L2ARC_FEED_MIN_MS 200 /* min caching interval ms */ 623 624 #define l2arc_writes_sent ARCSTAT(arcstat_l2_writes_sent) 625 #define l2arc_writes_done ARCSTAT(arcstat_l2_writes_done) 626 627 /* L2ARC Performance Tunables */ 628 uint64_t l2arc_write_max = L2ARC_WRITE_SIZE; /* default max write size */ 629 uint64_t l2arc_write_boost = L2ARC_WRITE_SIZE; /* extra write during warmup */ 630 uint64_t l2arc_headroom = L2ARC_HEADROOM; /* number of dev writes */ 631 uint64_t l2arc_headroom_boost = L2ARC_HEADROOM_BOOST; 632 uint64_t l2arc_feed_secs = L2ARC_FEED_SECS; /* interval seconds */ 633 uint64_t l2arc_feed_min_ms = L2ARC_FEED_MIN_MS; /* min interval milliseconds */ 634 boolean_t l2arc_noprefetch = B_TRUE; /* don't cache prefetch bufs */ 635 boolean_t l2arc_feed_again = B_TRUE; /* turbo warmup */ 636 boolean_t l2arc_norw = B_TRUE; /* no reads during writes */ 637 638 /* 639 * L2ARC Internals 640 */ 641 typedef struct l2arc_dev { 642 vdev_t *l2ad_vdev; /* vdev */ 643 spa_t *l2ad_spa; /* spa */ 644 uint64_t l2ad_hand; /* next write location */ 645 uint64_t l2ad_start; /* first addr on device */ 646 uint64_t l2ad_end; /* last addr on device */ 647 uint64_t l2ad_evict; /* last addr eviction reached */ 648 boolean_t l2ad_first; /* first sweep through */ 649 boolean_t l2ad_writing; /* currently writing */ 650 list_t *l2ad_buflist; /* buffer list */ 651 list_node_t l2ad_node; /* device list node */ 652 } l2arc_dev_t; 653 654 static list_t L2ARC_dev_list; /* device list */ 655 static list_t *l2arc_dev_list; /* device list pointer */ 656 static kmutex_t l2arc_dev_mtx; /* device list mutex */ 657 static l2arc_dev_t *l2arc_dev_last; /* last device used */ 658 static kmutex_t l2arc_buflist_mtx; /* mutex for all buflists */ 659 static list_t L2ARC_free_on_write; /* free after write buf list */ 660 static list_t *l2arc_free_on_write; /* free after write list ptr */ 661 static kmutex_t l2arc_free_on_write_mtx; /* mutex for list */ 662 static uint64_t l2arc_ndev; /* number of devices */ 663 664 typedef struct l2arc_read_callback { 665 arc_buf_t *l2rcb_buf; /* read buffer */ 666 spa_t *l2rcb_spa; /* spa */ 667 blkptr_t l2rcb_bp; /* original blkptr */ 668 zbookmark_phys_t l2rcb_zb; /* original bookmark */ 669 int l2rcb_flags; /* original flags */ 670 enum zio_compress l2rcb_compress; /* applied compress */ 671 } l2arc_read_callback_t; 672 673 typedef struct l2arc_write_callback { 674 l2arc_dev_t *l2wcb_dev; /* device info */ 675 arc_buf_hdr_t *l2wcb_head; /* head of write buflist */ 676 } l2arc_write_callback_t; 677 678 struct l2arc_buf_hdr { 679 /* protected by arc_buf_hdr mutex */ 680 l2arc_dev_t *b_dev; /* L2ARC device */ 681 uint64_t b_daddr; /* disk address, offset byte */ 682 /* compression applied to buffer data */ 683 enum zio_compress b_compress; 684 /* real alloc'd buffer size depending on b_compress applied */ 685 int b_asize; 686 /* temporary buffer holder for in-flight compressed data */ 687 void *b_tmp_cdata; 688 }; 689 690 typedef struct l2arc_data_free { 691 /* protected by l2arc_free_on_write_mtx */ 692 void *l2df_data; 693 size_t l2df_size; 694 void (*l2df_func)(void *, size_t); 695 list_node_t l2df_list_node; 696 } l2arc_data_free_t; 697 698 static kmutex_t l2arc_feed_thr_lock; 699 static kcondvar_t l2arc_feed_thr_cv; 700 static uint8_t l2arc_thread_exit; 701 702 static void l2arc_read_done(zio_t *zio); 703 static void l2arc_hdr_stat_add(void); 704 static void l2arc_hdr_stat_remove(void); 705 706 static boolean_t l2arc_compress_buf(l2arc_buf_hdr_t *l2hdr); 707 static void l2arc_decompress_zio(zio_t *zio, arc_buf_hdr_t *hdr, 708 enum zio_compress c); 709 static void l2arc_release_cdata_buf(arc_buf_hdr_t *ab); 710 711 static uint64_t 712 buf_hash(uint64_t spa, const dva_t *dva, uint64_t birth) 713 { 714 uint8_t *vdva = (uint8_t *)dva; 715 uint64_t crc = -1ULL; 716 int i; 717 718 ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY); 719 720 for (i = 0; i < sizeof (dva_t); i++) 721 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ vdva[i]) & 0xFF]; 722 723 crc ^= (spa>>8) ^ birth; 724 725 return (crc); 726 } 727 728 #define BUF_EMPTY(buf) \ 729 ((buf)->b_dva.dva_word[0] == 0 && \ 730 (buf)->b_dva.dva_word[1] == 0 && \ 731 (buf)->b_cksum0 == 0) 732 733 #define BUF_EQUAL(spa, dva, birth, buf) \ 734 ((buf)->b_dva.dva_word[0] == (dva)->dva_word[0]) && \ 735 ((buf)->b_dva.dva_word[1] == (dva)->dva_word[1]) && \ 736 ((buf)->b_birth == birth) && ((buf)->b_spa == spa) 737 738 static void 739 buf_discard_identity(arc_buf_hdr_t *hdr) 740 { 741 hdr->b_dva.dva_word[0] = 0; 742 hdr->b_dva.dva_word[1] = 0; 743 hdr->b_birth = 0; 744 hdr->b_cksum0 = 0; 745 } 746 747 static arc_buf_hdr_t * 748 buf_hash_find(uint64_t spa, const blkptr_t *bp, kmutex_t **lockp) 749 { 750 const dva_t *dva = BP_IDENTITY(bp); 751 uint64_t birth = BP_PHYSICAL_BIRTH(bp); 752 uint64_t idx = BUF_HASH_INDEX(spa, dva, birth); 753 kmutex_t *hash_lock = BUF_HASH_LOCK(idx); 754 arc_buf_hdr_t *buf; 755 756 mutex_enter(hash_lock); 757 for (buf = buf_hash_table.ht_table[idx]; buf != NULL; 758 buf = buf->b_hash_next) { 759 if (BUF_EQUAL(spa, dva, birth, buf)) { 760 *lockp = hash_lock; 761 return (buf); 762 } 763 } 764 mutex_exit(hash_lock); 765 *lockp = NULL; 766 return (NULL); 767 } 768 769 /* 770 * Insert an entry into the hash table. If there is already an element 771 * equal to elem in the hash table, then the already existing element 772 * will be returned and the new element will not be inserted. 773 * Otherwise returns NULL. 774 */ 775 static arc_buf_hdr_t * 776 buf_hash_insert(arc_buf_hdr_t *buf, kmutex_t **lockp) 777 { 778 uint64_t idx = BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth); 779 kmutex_t *hash_lock = BUF_HASH_LOCK(idx); 780 arc_buf_hdr_t *fbuf; 781 uint32_t i; 782 783 ASSERT(!DVA_IS_EMPTY(&buf->b_dva)); 784 ASSERT(buf->b_birth != 0); 785 ASSERT(!HDR_IN_HASH_TABLE(buf)); 786 *lockp = hash_lock; 787 mutex_enter(hash_lock); 788 for (fbuf = buf_hash_table.ht_table[idx], i = 0; fbuf != NULL; 789 fbuf = fbuf->b_hash_next, i++) { 790 if (BUF_EQUAL(buf->b_spa, &buf->b_dva, buf->b_birth, fbuf)) 791 return (fbuf); 792 } 793 794 buf->b_hash_next = buf_hash_table.ht_table[idx]; 795 buf_hash_table.ht_table[idx] = buf; 796 buf->b_flags |= ARC_IN_HASH_TABLE; 797 798 /* collect some hash table performance data */ 799 if (i > 0) { 800 ARCSTAT_BUMP(arcstat_hash_collisions); 801 if (i == 1) 802 ARCSTAT_BUMP(arcstat_hash_chains); 803 804 ARCSTAT_MAX(arcstat_hash_chain_max, i); 805 } 806 807 ARCSTAT_BUMP(arcstat_hash_elements); 808 ARCSTAT_MAXSTAT(arcstat_hash_elements); 809 810 return (NULL); 811 } 812 813 static void 814 buf_hash_remove(arc_buf_hdr_t *buf) 815 { 816 arc_buf_hdr_t *fbuf, **bufp; 817 uint64_t idx = BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth); 818 819 ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx))); 820 ASSERT(HDR_IN_HASH_TABLE(buf)); 821 822 bufp = &buf_hash_table.ht_table[idx]; 823 while ((fbuf = *bufp) != buf) { 824 ASSERT(fbuf != NULL); 825 bufp = &fbuf->b_hash_next; 826 } 827 *bufp = buf->b_hash_next; 828 buf->b_hash_next = NULL; 829 buf->b_flags &= ~ARC_IN_HASH_TABLE; 830 831 /* collect some hash table performance data */ 832 ARCSTAT_BUMPDOWN(arcstat_hash_elements); 833 834 if (buf_hash_table.ht_table[idx] && 835 buf_hash_table.ht_table[idx]->b_hash_next == NULL) 836 ARCSTAT_BUMPDOWN(arcstat_hash_chains); 837 } 838 839 /* 840 * Global data structures and functions for the buf kmem cache. 841 */ 842 static kmem_cache_t *hdr_cache; 843 static kmem_cache_t *buf_cache; 844 845 static void 846 buf_fini(void) 847 { 848 int i; 849 850 kmem_free(buf_hash_table.ht_table, 851 (buf_hash_table.ht_mask + 1) * sizeof (void *)); 852 for (i = 0; i < BUF_LOCKS; i++) 853 mutex_destroy(&buf_hash_table.ht_locks[i].ht_lock); 854 kmem_cache_destroy(hdr_cache); 855 kmem_cache_destroy(buf_cache); 856 } 857 858 /* 859 * Constructor callback - called when the cache is empty 860 * and a new buf is requested. 861 */ 862 /* ARGSUSED */ 863 static int 864 hdr_cons(void *vbuf, void *unused, int kmflag) 865 { 866 arc_buf_hdr_t *buf = vbuf; 867 868 bzero(buf, sizeof (arc_buf_hdr_t)); 869 refcount_create(&buf->b_refcnt); 870 cv_init(&buf->b_cv, NULL, CV_DEFAULT, NULL); 871 mutex_init(&buf->b_freeze_lock, NULL, MUTEX_DEFAULT, NULL); 872 arc_space_consume(sizeof (arc_buf_hdr_t), ARC_SPACE_HDRS); 873 874 return (0); 875 } 876 877 /* ARGSUSED */ 878 static int 879 buf_cons(void *vbuf, void *unused, int kmflag) 880 { 881 arc_buf_t *buf = vbuf; 882 883 bzero(buf, sizeof (arc_buf_t)); 884 mutex_init(&buf->b_evict_lock, NULL, MUTEX_DEFAULT, NULL); 885 arc_space_consume(sizeof (arc_buf_t), ARC_SPACE_HDRS); 886 887 return (0); 888 } 889 890 /* 891 * Destructor callback - called when a cached buf is 892 * no longer required. 893 */ 894 /* ARGSUSED */ 895 static void 896 hdr_dest(void *vbuf, void *unused) 897 { 898 arc_buf_hdr_t *buf = vbuf; 899 900 ASSERT(BUF_EMPTY(buf)); 901 refcount_destroy(&buf->b_refcnt); 902 cv_destroy(&buf->b_cv); 903 mutex_destroy(&buf->b_freeze_lock); 904 arc_space_return(sizeof (arc_buf_hdr_t), ARC_SPACE_HDRS); 905 } 906 907 /* ARGSUSED */ 908 static void 909 buf_dest(void *vbuf, void *unused) 910 { 911 arc_buf_t *buf = vbuf; 912 913 mutex_destroy(&buf->b_evict_lock); 914 arc_space_return(sizeof (arc_buf_t), ARC_SPACE_HDRS); 915 } 916 917 /* 918 * Reclaim callback -- invoked when memory is low. 919 */ 920 /* ARGSUSED */ 921 static void 922 hdr_recl(void *unused) 923 { 924 dprintf("hdr_recl called\n"); 925 /* 926 * umem calls the reclaim func when we destroy the buf cache, 927 * which is after we do arc_fini(). 928 */ 929 if (!arc_dead) 930 cv_signal(&arc_reclaim_thr_cv); 931 } 932 933 static void 934 buf_init(void) 935 { 936 uint64_t *ct; 937 uint64_t hsize = 1ULL << 12; 938 int i, j; 939 940 /* 941 * The hash table is big enough to fill all of physical memory 942 * with an average block size of zfs_arc_average_blocksize (default 8K). 943 * By default, the table will take up 944 * totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers). 945 */ 946 while (hsize * zfs_arc_average_blocksize < physmem * PAGESIZE) 947 hsize <<= 1; 948 retry: 949 buf_hash_table.ht_mask = hsize - 1; 950 buf_hash_table.ht_table = 951 kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP); 952 if (buf_hash_table.ht_table == NULL) { 953 ASSERT(hsize > (1ULL << 8)); 954 hsize >>= 1; 955 goto retry; 956 } 957 958 hdr_cache = kmem_cache_create("arc_buf_hdr_t", sizeof (arc_buf_hdr_t), 959 0, hdr_cons, hdr_dest, hdr_recl, NULL, NULL, 0); 960 buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t), 961 0, buf_cons, buf_dest, NULL, NULL, NULL, 0); 962 963 for (i = 0; i < 256; i++) 964 for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--) 965 *ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY); 966 967 for (i = 0; i < BUF_LOCKS; i++) { 968 mutex_init(&buf_hash_table.ht_locks[i].ht_lock, 969 NULL, MUTEX_DEFAULT, NULL); 970 } 971 } 972 973 #define ARC_MINTIME (hz>>4) /* 62 ms */ 974 975 static void 976 arc_cksum_verify(arc_buf_t *buf) 977 { 978 zio_cksum_t zc; 979 980 if (!(zfs_flags & ZFS_DEBUG_MODIFY)) 981 return; 982 983 mutex_enter(&buf->b_hdr->b_freeze_lock); 984 if (buf->b_hdr->b_freeze_cksum == NULL || 985 (buf->b_hdr->b_flags & ARC_IO_ERROR)) { 986 mutex_exit(&buf->b_hdr->b_freeze_lock); 987 return; 988 } 989 fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc); 990 if (!ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc)) 991 panic("buffer modified while frozen!"); 992 mutex_exit(&buf->b_hdr->b_freeze_lock); 993 } 994 995 static int 996 arc_cksum_equal(arc_buf_t *buf) 997 { 998 zio_cksum_t zc; 999 int equal; 1000 1001 mutex_enter(&buf->b_hdr->b_freeze_lock); 1002 fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc); 1003 equal = ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc); 1004 mutex_exit(&buf->b_hdr->b_freeze_lock); 1005 1006 return (equal); 1007 } 1008 1009 static void 1010 arc_cksum_compute(arc_buf_t *buf, boolean_t force) 1011 { 1012 if (!force && !(zfs_flags & ZFS_DEBUG_MODIFY)) 1013 return; 1014 1015 mutex_enter(&buf->b_hdr->b_freeze_lock); 1016 if (buf->b_hdr->b_freeze_cksum != NULL) { 1017 mutex_exit(&buf->b_hdr->b_freeze_lock); 1018 return; 1019 } 1020 buf->b_hdr->b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t), KM_SLEEP); 1021 fletcher_2_native(buf->b_data, buf->b_hdr->b_size, 1022 buf->b_hdr->b_freeze_cksum); 1023 mutex_exit(&buf->b_hdr->b_freeze_lock); 1024 arc_buf_watch(buf); 1025 } 1026 1027 #ifndef _KERNEL 1028 typedef struct procctl { 1029 long cmd; 1030 prwatch_t prwatch; 1031 } procctl_t; 1032 #endif 1033 1034 /* ARGSUSED */ 1035 static void 1036 arc_buf_unwatch(arc_buf_t *buf) 1037 { 1038 #ifndef _KERNEL 1039 if (arc_watch) { 1040 int result; 1041 procctl_t ctl; 1042 ctl.cmd = PCWATCH; 1043 ctl.prwatch.pr_vaddr = (uintptr_t)buf->b_data; 1044 ctl.prwatch.pr_size = 0; 1045 ctl.prwatch.pr_wflags = 0; 1046 result = write(arc_procfd, &ctl, sizeof (ctl)); 1047 ASSERT3U(result, ==, sizeof (ctl)); 1048 } 1049 #endif 1050 } 1051 1052 /* ARGSUSED */ 1053 static void 1054 arc_buf_watch(arc_buf_t *buf) 1055 { 1056 #ifndef _KERNEL 1057 if (arc_watch) { 1058 int result; 1059 procctl_t ctl; 1060 ctl.cmd = PCWATCH; 1061 ctl.prwatch.pr_vaddr = (uintptr_t)buf->b_data; 1062 ctl.prwatch.pr_size = buf->b_hdr->b_size; 1063 ctl.prwatch.pr_wflags = WA_WRITE; 1064 result = write(arc_procfd, &ctl, sizeof (ctl)); 1065 ASSERT3U(result, ==, sizeof (ctl)); 1066 } 1067 #endif 1068 } 1069 1070 void 1071 arc_buf_thaw(arc_buf_t *buf) 1072 { 1073 if (zfs_flags & ZFS_DEBUG_MODIFY) { 1074 if (buf->b_hdr->b_state != arc_anon) 1075 panic("modifying non-anon buffer!"); 1076 if (buf->b_hdr->b_flags & ARC_IO_IN_PROGRESS) 1077 panic("modifying buffer while i/o in progress!"); 1078 arc_cksum_verify(buf); 1079 } 1080 1081 mutex_enter(&buf->b_hdr->b_freeze_lock); 1082 if (buf->b_hdr->b_freeze_cksum != NULL) { 1083 kmem_free(buf->b_hdr->b_freeze_cksum, sizeof (zio_cksum_t)); 1084 buf->b_hdr->b_freeze_cksum = NULL; 1085 } 1086 1087 if (zfs_flags & ZFS_DEBUG_MODIFY) { 1088 if (buf->b_hdr->b_thawed) 1089 kmem_free(buf->b_hdr->b_thawed, 1); 1090 buf->b_hdr->b_thawed = kmem_alloc(1, KM_SLEEP); 1091 } 1092 1093 mutex_exit(&buf->b_hdr->b_freeze_lock); 1094 1095 arc_buf_unwatch(buf); 1096 } 1097 1098 void 1099 arc_buf_freeze(arc_buf_t *buf) 1100 { 1101 kmutex_t *hash_lock; 1102 1103 if (!(zfs_flags & ZFS_DEBUG_MODIFY)) 1104 return; 1105 1106 hash_lock = HDR_LOCK(buf->b_hdr); 1107 mutex_enter(hash_lock); 1108 1109 ASSERT(buf->b_hdr->b_freeze_cksum != NULL || 1110 buf->b_hdr->b_state == arc_anon); 1111 arc_cksum_compute(buf, B_FALSE); 1112 mutex_exit(hash_lock); 1113 1114 } 1115 1116 static void 1117 add_reference(arc_buf_hdr_t *ab, kmutex_t *hash_lock, void *tag) 1118 { 1119 ASSERT(MUTEX_HELD(hash_lock)); 1120 1121 if ((refcount_add(&ab->b_refcnt, tag) == 1) && 1122 (ab->b_state != arc_anon)) { 1123 uint64_t delta = ab->b_size * ab->b_datacnt; 1124 list_t *list = &ab->b_state->arcs_list[ab->b_type]; 1125 uint64_t *size = &ab->b_state->arcs_lsize[ab->b_type]; 1126 1127 ASSERT(!MUTEX_HELD(&ab->b_state->arcs_mtx)); 1128 mutex_enter(&ab->b_state->arcs_mtx); 1129 ASSERT(list_link_active(&ab->b_arc_node)); 1130 list_remove(list, ab); 1131 if (GHOST_STATE(ab->b_state)) { 1132 ASSERT0(ab->b_datacnt); 1133 ASSERT3P(ab->b_buf, ==, NULL); 1134 delta = ab->b_size; 1135 } 1136 ASSERT(delta > 0); 1137 ASSERT3U(*size, >=, delta); 1138 atomic_add_64(size, -delta); 1139 mutex_exit(&ab->b_state->arcs_mtx); 1140 /* remove the prefetch flag if we get a reference */ 1141 if (ab->b_flags & ARC_PREFETCH) 1142 ab->b_flags &= ~ARC_PREFETCH; 1143 } 1144 } 1145 1146 static int 1147 remove_reference(arc_buf_hdr_t *ab, kmutex_t *hash_lock, void *tag) 1148 { 1149 int cnt; 1150 arc_state_t *state = ab->b_state; 1151 1152 ASSERT(state == arc_anon || MUTEX_HELD(hash_lock)); 1153 ASSERT(!GHOST_STATE(state)); 1154 1155 if (((cnt = refcount_remove(&ab->b_refcnt, tag)) == 0) && 1156 (state != arc_anon)) { 1157 uint64_t *size = &state->arcs_lsize[ab->b_type]; 1158 1159 ASSERT(!MUTEX_HELD(&state->arcs_mtx)); 1160 mutex_enter(&state->arcs_mtx); 1161 ASSERT(!list_link_active(&ab->b_arc_node)); 1162 list_insert_head(&state->arcs_list[ab->b_type], ab); 1163 ASSERT(ab->b_datacnt > 0); 1164 atomic_add_64(size, ab->b_size * ab->b_datacnt); 1165 mutex_exit(&state->arcs_mtx); 1166 } 1167 return (cnt); 1168 } 1169 1170 /* 1171 * Move the supplied buffer to the indicated state. The mutex 1172 * for the buffer must be held by the caller. 1173 */ 1174 static void 1175 arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *ab, kmutex_t *hash_lock) 1176 { 1177 arc_state_t *old_state = ab->b_state; 1178 int64_t refcnt = refcount_count(&ab->b_refcnt); 1179 uint64_t from_delta, to_delta; 1180 1181 ASSERT(MUTEX_HELD(hash_lock)); 1182 ASSERT3P(new_state, !=, old_state); 1183 ASSERT(refcnt == 0 || ab->b_datacnt > 0); 1184 ASSERT(ab->b_datacnt == 0 || !GHOST_STATE(new_state)); 1185 ASSERT(ab->b_datacnt <= 1 || old_state != arc_anon); 1186 1187 from_delta = to_delta = ab->b_datacnt * ab->b_size; 1188 1189 /* 1190 * If this buffer is evictable, transfer it from the 1191 * old state list to the new state list. 1192 */ 1193 if (refcnt == 0) { 1194 if (old_state != arc_anon) { 1195 int use_mutex = !MUTEX_HELD(&old_state->arcs_mtx); 1196 uint64_t *size = &old_state->arcs_lsize[ab->b_type]; 1197 1198 if (use_mutex) 1199 mutex_enter(&old_state->arcs_mtx); 1200 1201 ASSERT(list_link_active(&ab->b_arc_node)); 1202 list_remove(&old_state->arcs_list[ab->b_type], ab); 1203 1204 /* 1205 * If prefetching out of the ghost cache, 1206 * we will have a non-zero datacnt. 1207 */ 1208 if (GHOST_STATE(old_state) && ab->b_datacnt == 0) { 1209 /* ghost elements have a ghost size */ 1210 ASSERT(ab->b_buf == NULL); 1211 from_delta = ab->b_size; 1212 } 1213 ASSERT3U(*size, >=, from_delta); 1214 atomic_add_64(size, -from_delta); 1215 1216 if (use_mutex) 1217 mutex_exit(&old_state->arcs_mtx); 1218 } 1219 if (new_state != arc_anon) { 1220 int use_mutex = !MUTEX_HELD(&new_state->arcs_mtx); 1221 uint64_t *size = &new_state->arcs_lsize[ab->b_type]; 1222 1223 if (use_mutex) 1224 mutex_enter(&new_state->arcs_mtx); 1225 1226 list_insert_head(&new_state->arcs_list[ab->b_type], ab); 1227 1228 /* ghost elements have a ghost size */ 1229 if (GHOST_STATE(new_state)) { 1230 ASSERT(ab->b_datacnt == 0); 1231 ASSERT(ab->b_buf == NULL); 1232 to_delta = ab->b_size; 1233 } 1234 atomic_add_64(size, to_delta); 1235 1236 if (use_mutex) 1237 mutex_exit(&new_state->arcs_mtx); 1238 } 1239 } 1240 1241 ASSERT(!BUF_EMPTY(ab)); 1242 if (new_state == arc_anon && HDR_IN_HASH_TABLE(ab)) 1243 buf_hash_remove(ab); 1244 1245 /* adjust state sizes */ 1246 if (to_delta) 1247 atomic_add_64(&new_state->arcs_size, to_delta); 1248 if (from_delta) { 1249 ASSERT3U(old_state->arcs_size, >=, from_delta); 1250 atomic_add_64(&old_state->arcs_size, -from_delta); 1251 } 1252 ab->b_state = new_state; 1253 1254 /* adjust l2arc hdr stats */ 1255 if (new_state == arc_l2c_only) 1256 l2arc_hdr_stat_add(); 1257 else if (old_state == arc_l2c_only) 1258 l2arc_hdr_stat_remove(); 1259 } 1260 1261 void 1262 arc_space_consume(uint64_t space, arc_space_type_t type) 1263 { 1264 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES); 1265 1266 switch (type) { 1267 case ARC_SPACE_DATA: 1268 ARCSTAT_INCR(arcstat_data_size, space); 1269 break; 1270 case ARC_SPACE_OTHER: 1271 ARCSTAT_INCR(arcstat_other_size, space); 1272 break; 1273 case ARC_SPACE_HDRS: 1274 ARCSTAT_INCR(arcstat_hdr_size, space); 1275 break; 1276 case ARC_SPACE_L2HDRS: 1277 ARCSTAT_INCR(arcstat_l2_hdr_size, space); 1278 break; 1279 } 1280 1281 ARCSTAT_INCR(arcstat_meta_used, space); 1282 atomic_add_64(&arc_size, space); 1283 } 1284 1285 void 1286 arc_space_return(uint64_t space, arc_space_type_t type) 1287 { 1288 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES); 1289 1290 switch (type) { 1291 case ARC_SPACE_DATA: 1292 ARCSTAT_INCR(arcstat_data_size, -space); 1293 break; 1294 case ARC_SPACE_OTHER: 1295 ARCSTAT_INCR(arcstat_other_size, -space); 1296 break; 1297 case ARC_SPACE_HDRS: 1298 ARCSTAT_INCR(arcstat_hdr_size, -space); 1299 break; 1300 case ARC_SPACE_L2HDRS: 1301 ARCSTAT_INCR(arcstat_l2_hdr_size, -space); 1302 break; 1303 } 1304 1305 ASSERT(arc_meta_used >= space); 1306 if (arc_meta_max < arc_meta_used) 1307 arc_meta_max = arc_meta_used; 1308 ARCSTAT_INCR(arcstat_meta_used, -space); 1309 ASSERT(arc_size >= space); 1310 atomic_add_64(&arc_size, -space); 1311 } 1312 1313 void * 1314 arc_data_buf_alloc(uint64_t size) 1315 { 1316 if (arc_evict_needed(ARC_BUFC_DATA)) 1317 cv_signal(&arc_reclaim_thr_cv); 1318 atomic_add_64(&arc_size, size); 1319 return (zio_data_buf_alloc(size)); 1320 } 1321 1322 void 1323 arc_data_buf_free(void *buf, uint64_t size) 1324 { 1325 zio_data_buf_free(buf, size); 1326 ASSERT(arc_size >= size); 1327 atomic_add_64(&arc_size, -size); 1328 } 1329 1330 arc_buf_t * 1331 arc_buf_alloc(spa_t *spa, int size, void *tag, arc_buf_contents_t type) 1332 { 1333 arc_buf_hdr_t *hdr; 1334 arc_buf_t *buf; 1335 1336 ASSERT3U(size, >, 0); 1337 hdr = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE); 1338 ASSERT(BUF_EMPTY(hdr)); 1339 hdr->b_size = size; 1340 hdr->b_type = type; 1341 hdr->b_spa = spa_load_guid(spa); 1342 hdr->b_state = arc_anon; 1343 hdr->b_arc_access = 0; 1344 buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE); 1345 buf->b_hdr = hdr; 1346 buf->b_data = NULL; 1347 buf->b_efunc = NULL; 1348 buf->b_private = NULL; 1349 buf->b_next = NULL; 1350 hdr->b_buf = buf; 1351 arc_get_data_buf(buf); 1352 hdr->b_datacnt = 1; 1353 hdr->b_flags = 0; 1354 ASSERT(refcount_is_zero(&hdr->b_refcnt)); 1355 (void) refcount_add(&hdr->b_refcnt, tag); 1356 1357 return (buf); 1358 } 1359 1360 static char *arc_onloan_tag = "onloan"; 1361 1362 /* 1363 * Loan out an anonymous arc buffer. Loaned buffers are not counted as in 1364 * flight data by arc_tempreserve_space() until they are "returned". Loaned 1365 * buffers must be returned to the arc before they can be used by the DMU or 1366 * freed. 1367 */ 1368 arc_buf_t * 1369 arc_loan_buf(spa_t *spa, int size) 1370 { 1371 arc_buf_t *buf; 1372 1373 buf = arc_buf_alloc(spa, size, arc_onloan_tag, ARC_BUFC_DATA); 1374 1375 atomic_add_64(&arc_loaned_bytes, size); 1376 return (buf); 1377 } 1378 1379 /* 1380 * Return a loaned arc buffer to the arc. 1381 */ 1382 void 1383 arc_return_buf(arc_buf_t *buf, void *tag) 1384 { 1385 arc_buf_hdr_t *hdr = buf->b_hdr; 1386 1387 ASSERT(buf->b_data != NULL); 1388 (void) refcount_add(&hdr->b_refcnt, tag); 1389 (void) refcount_remove(&hdr->b_refcnt, arc_onloan_tag); 1390 1391 atomic_add_64(&arc_loaned_bytes, -hdr->b_size); 1392 } 1393 1394 /* Detach an arc_buf from a dbuf (tag) */ 1395 void 1396 arc_loan_inuse_buf(arc_buf_t *buf, void *tag) 1397 { 1398 arc_buf_hdr_t *hdr; 1399 1400 ASSERT(buf->b_data != NULL); 1401 hdr = buf->b_hdr; 1402 (void) refcount_add(&hdr->b_refcnt, arc_onloan_tag); 1403 (void) refcount_remove(&hdr->b_refcnt, tag); 1404 buf->b_efunc = NULL; 1405 buf->b_private = NULL; 1406 1407 atomic_add_64(&arc_loaned_bytes, hdr->b_size); 1408 } 1409 1410 static arc_buf_t * 1411 arc_buf_clone(arc_buf_t *from) 1412 { 1413 arc_buf_t *buf; 1414 arc_buf_hdr_t *hdr = from->b_hdr; 1415 uint64_t size = hdr->b_size; 1416 1417 ASSERT(hdr->b_state != arc_anon); 1418 1419 buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE); 1420 buf->b_hdr = hdr; 1421 buf->b_data = NULL; 1422 buf->b_efunc = NULL; 1423 buf->b_private = NULL; 1424 buf->b_next = hdr->b_buf; 1425 hdr->b_buf = buf; 1426 arc_get_data_buf(buf); 1427 bcopy(from->b_data, buf->b_data, size); 1428 1429 /* 1430 * This buffer already exists in the arc so create a duplicate 1431 * copy for the caller. If the buffer is associated with user data 1432 * then track the size and number of duplicates. These stats will be 1433 * updated as duplicate buffers are created and destroyed. 1434 */ 1435 if (hdr->b_type == ARC_BUFC_DATA) { 1436 ARCSTAT_BUMP(arcstat_duplicate_buffers); 1437 ARCSTAT_INCR(arcstat_duplicate_buffers_size, size); 1438 } 1439 hdr->b_datacnt += 1; 1440 return (buf); 1441 } 1442 1443 void 1444 arc_buf_add_ref(arc_buf_t *buf, void* tag) 1445 { 1446 arc_buf_hdr_t *hdr; 1447 kmutex_t *hash_lock; 1448 1449 /* 1450 * Check to see if this buffer is evicted. Callers 1451 * must verify b_data != NULL to know if the add_ref 1452 * was successful. 1453 */ 1454 mutex_enter(&buf->b_evict_lock); 1455 if (buf->b_data == NULL) { 1456 mutex_exit(&buf->b_evict_lock); 1457 return; 1458 } 1459 hash_lock = HDR_LOCK(buf->b_hdr); 1460 mutex_enter(hash_lock); 1461 hdr = buf->b_hdr; 1462 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 1463 mutex_exit(&buf->b_evict_lock); 1464 1465 ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu); 1466 add_reference(hdr, hash_lock, tag); 1467 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr); 1468 arc_access(hdr, hash_lock); 1469 mutex_exit(hash_lock); 1470 ARCSTAT_BUMP(arcstat_hits); 1471 ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH), 1472 demand, prefetch, hdr->b_type != ARC_BUFC_METADATA, 1473 data, metadata, hits); 1474 } 1475 1476 /* 1477 * Free the arc data buffer. If it is an l2arc write in progress, 1478 * the buffer is placed on l2arc_free_on_write to be freed later. 1479 */ 1480 static void 1481 arc_buf_data_free(arc_buf_t *buf, void (*free_func)(void *, size_t)) 1482 { 1483 arc_buf_hdr_t *hdr = buf->b_hdr; 1484 1485 if (HDR_L2_WRITING(hdr)) { 1486 l2arc_data_free_t *df; 1487 df = kmem_alloc(sizeof (l2arc_data_free_t), KM_SLEEP); 1488 df->l2df_data = buf->b_data; 1489 df->l2df_size = hdr->b_size; 1490 df->l2df_func = free_func; 1491 mutex_enter(&l2arc_free_on_write_mtx); 1492 list_insert_head(l2arc_free_on_write, df); 1493 mutex_exit(&l2arc_free_on_write_mtx); 1494 ARCSTAT_BUMP(arcstat_l2_free_on_write); 1495 } else { 1496 free_func(buf->b_data, hdr->b_size); 1497 } 1498 } 1499 1500 /* 1501 * Free up buf->b_data and if 'remove' is set, then pull the 1502 * arc_buf_t off of the the arc_buf_hdr_t's list and free it. 1503 */ 1504 static void 1505 arc_buf_destroy(arc_buf_t *buf, boolean_t recycle, boolean_t remove) 1506 { 1507 arc_buf_t **bufp; 1508 1509 /* free up data associated with the buf */ 1510 if (buf->b_data) { 1511 arc_state_t *state = buf->b_hdr->b_state; 1512 uint64_t size = buf->b_hdr->b_size; 1513 arc_buf_contents_t type = buf->b_hdr->b_type; 1514 1515 arc_cksum_verify(buf); 1516 arc_buf_unwatch(buf); 1517 1518 if (!recycle) { 1519 if (type == ARC_BUFC_METADATA) { 1520 arc_buf_data_free(buf, zio_buf_free); 1521 arc_space_return(size, ARC_SPACE_DATA); 1522 } else { 1523 ASSERT(type == ARC_BUFC_DATA); 1524 arc_buf_data_free(buf, zio_data_buf_free); 1525 ARCSTAT_INCR(arcstat_data_size, -size); 1526 atomic_add_64(&arc_size, -size); 1527 } 1528 } 1529 if (list_link_active(&buf->b_hdr->b_arc_node)) { 1530 uint64_t *cnt = &state->arcs_lsize[type]; 1531 1532 ASSERT(refcount_is_zero(&buf->b_hdr->b_refcnt)); 1533 ASSERT(state != arc_anon); 1534 1535 ASSERT3U(*cnt, >=, size); 1536 atomic_add_64(cnt, -size); 1537 } 1538 ASSERT3U(state->arcs_size, >=, size); 1539 atomic_add_64(&state->arcs_size, -size); 1540 buf->b_data = NULL; 1541 1542 /* 1543 * If we're destroying a duplicate buffer make sure 1544 * that the appropriate statistics are updated. 1545 */ 1546 if (buf->b_hdr->b_datacnt > 1 && 1547 buf->b_hdr->b_type == ARC_BUFC_DATA) { 1548 ARCSTAT_BUMPDOWN(arcstat_duplicate_buffers); 1549 ARCSTAT_INCR(arcstat_duplicate_buffers_size, -size); 1550 } 1551 ASSERT(buf->b_hdr->b_datacnt > 0); 1552 buf->b_hdr->b_datacnt -= 1; 1553 } 1554 1555 /* only remove the buf if requested */ 1556 if (!remove) 1557 return; 1558 1559 /* remove the buf from the hdr list */ 1560 for (bufp = &buf->b_hdr->b_buf; *bufp != buf; bufp = &(*bufp)->b_next) 1561 continue; 1562 *bufp = buf->b_next; 1563 buf->b_next = NULL; 1564 1565 ASSERT(buf->b_efunc == NULL); 1566 1567 /* clean up the buf */ 1568 buf->b_hdr = NULL; 1569 kmem_cache_free(buf_cache, buf); 1570 } 1571 1572 static void 1573 arc_hdr_destroy(arc_buf_hdr_t *hdr) 1574 { 1575 ASSERT(refcount_is_zero(&hdr->b_refcnt)); 1576 ASSERT3P(hdr->b_state, ==, arc_anon); 1577 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 1578 l2arc_buf_hdr_t *l2hdr = hdr->b_l2hdr; 1579 1580 if (l2hdr != NULL) { 1581 boolean_t buflist_held = MUTEX_HELD(&l2arc_buflist_mtx); 1582 /* 1583 * To prevent arc_free() and l2arc_evict() from 1584 * attempting to free the same buffer at the same time, 1585 * a FREE_IN_PROGRESS flag is given to arc_free() to 1586 * give it priority. l2arc_evict() can't destroy this 1587 * header while we are waiting on l2arc_buflist_mtx. 1588 * 1589 * The hdr may be removed from l2ad_buflist before we 1590 * grab l2arc_buflist_mtx, so b_l2hdr is rechecked. 1591 */ 1592 if (!buflist_held) { 1593 mutex_enter(&l2arc_buflist_mtx); 1594 l2hdr = hdr->b_l2hdr; 1595 } 1596 1597 if (l2hdr != NULL) { 1598 list_remove(l2hdr->b_dev->l2ad_buflist, hdr); 1599 ARCSTAT_INCR(arcstat_l2_size, -hdr->b_size); 1600 ARCSTAT_INCR(arcstat_l2_asize, -l2hdr->b_asize); 1601 vdev_space_update(l2hdr->b_dev->l2ad_vdev, 1602 -l2hdr->b_asize, 0, 0); 1603 kmem_free(l2hdr, sizeof (l2arc_buf_hdr_t)); 1604 if (hdr->b_state == arc_l2c_only) 1605 l2arc_hdr_stat_remove(); 1606 hdr->b_l2hdr = NULL; 1607 } 1608 1609 if (!buflist_held) 1610 mutex_exit(&l2arc_buflist_mtx); 1611 } 1612 1613 if (!BUF_EMPTY(hdr)) { 1614 ASSERT(!HDR_IN_HASH_TABLE(hdr)); 1615 buf_discard_identity(hdr); 1616 } 1617 while (hdr->b_buf) { 1618 arc_buf_t *buf = hdr->b_buf; 1619 1620 if (buf->b_efunc) { 1621 mutex_enter(&arc_eviction_mtx); 1622 mutex_enter(&buf->b_evict_lock); 1623 ASSERT(buf->b_hdr != NULL); 1624 arc_buf_destroy(hdr->b_buf, FALSE, FALSE); 1625 hdr->b_buf = buf->b_next; 1626 buf->b_hdr = &arc_eviction_hdr; 1627 buf->b_next = arc_eviction_list; 1628 arc_eviction_list = buf; 1629 mutex_exit(&buf->b_evict_lock); 1630 mutex_exit(&arc_eviction_mtx); 1631 } else { 1632 arc_buf_destroy(hdr->b_buf, FALSE, TRUE); 1633 } 1634 } 1635 if (hdr->b_freeze_cksum != NULL) { 1636 kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t)); 1637 hdr->b_freeze_cksum = NULL; 1638 } 1639 if (hdr->b_thawed) { 1640 kmem_free(hdr->b_thawed, 1); 1641 hdr->b_thawed = NULL; 1642 } 1643 1644 ASSERT(!list_link_active(&hdr->b_arc_node)); 1645 ASSERT3P(hdr->b_hash_next, ==, NULL); 1646 ASSERT3P(hdr->b_acb, ==, NULL); 1647 kmem_cache_free(hdr_cache, hdr); 1648 } 1649 1650 void 1651 arc_buf_free(arc_buf_t *buf, void *tag) 1652 { 1653 arc_buf_hdr_t *hdr = buf->b_hdr; 1654 int hashed = hdr->b_state != arc_anon; 1655 1656 ASSERT(buf->b_efunc == NULL); 1657 ASSERT(buf->b_data != NULL); 1658 1659 if (hashed) { 1660 kmutex_t *hash_lock = HDR_LOCK(hdr); 1661 1662 mutex_enter(hash_lock); 1663 hdr = buf->b_hdr; 1664 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 1665 1666 (void) remove_reference(hdr, hash_lock, tag); 1667 if (hdr->b_datacnt > 1) { 1668 arc_buf_destroy(buf, FALSE, TRUE); 1669 } else { 1670 ASSERT(buf == hdr->b_buf); 1671 ASSERT(buf->b_efunc == NULL); 1672 hdr->b_flags |= ARC_BUF_AVAILABLE; 1673 } 1674 mutex_exit(hash_lock); 1675 } else if (HDR_IO_IN_PROGRESS(hdr)) { 1676 int destroy_hdr; 1677 /* 1678 * We are in the middle of an async write. Don't destroy 1679 * this buffer unless the write completes before we finish 1680 * decrementing the reference count. 1681 */ 1682 mutex_enter(&arc_eviction_mtx); 1683 (void) remove_reference(hdr, NULL, tag); 1684 ASSERT(refcount_is_zero(&hdr->b_refcnt)); 1685 destroy_hdr = !HDR_IO_IN_PROGRESS(hdr); 1686 mutex_exit(&arc_eviction_mtx); 1687 if (destroy_hdr) 1688 arc_hdr_destroy(hdr); 1689 } else { 1690 if (remove_reference(hdr, NULL, tag) > 0) 1691 arc_buf_destroy(buf, FALSE, TRUE); 1692 else 1693 arc_hdr_destroy(hdr); 1694 } 1695 } 1696 1697 boolean_t 1698 arc_buf_remove_ref(arc_buf_t *buf, void* tag) 1699 { 1700 arc_buf_hdr_t *hdr = buf->b_hdr; 1701 kmutex_t *hash_lock = HDR_LOCK(hdr); 1702 boolean_t no_callback = (buf->b_efunc == NULL); 1703 1704 if (hdr->b_state == arc_anon) { 1705 ASSERT(hdr->b_datacnt == 1); 1706 arc_buf_free(buf, tag); 1707 return (no_callback); 1708 } 1709 1710 mutex_enter(hash_lock); 1711 hdr = buf->b_hdr; 1712 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 1713 ASSERT(hdr->b_state != arc_anon); 1714 ASSERT(buf->b_data != NULL); 1715 1716 (void) remove_reference(hdr, hash_lock, tag); 1717 if (hdr->b_datacnt > 1) { 1718 if (no_callback) 1719 arc_buf_destroy(buf, FALSE, TRUE); 1720 } else if (no_callback) { 1721 ASSERT(hdr->b_buf == buf && buf->b_next == NULL); 1722 ASSERT(buf->b_efunc == NULL); 1723 hdr->b_flags |= ARC_BUF_AVAILABLE; 1724 } 1725 ASSERT(no_callback || hdr->b_datacnt > 1 || 1726 refcount_is_zero(&hdr->b_refcnt)); 1727 mutex_exit(hash_lock); 1728 return (no_callback); 1729 } 1730 1731 int 1732 arc_buf_size(arc_buf_t *buf) 1733 { 1734 return (buf->b_hdr->b_size); 1735 } 1736 1737 /* 1738 * Called from the DMU to determine if the current buffer should be 1739 * evicted. In order to ensure proper locking, the eviction must be initiated 1740 * from the DMU. Return true if the buffer is associated with user data and 1741 * duplicate buffers still exist. 1742 */ 1743 boolean_t 1744 arc_buf_eviction_needed(arc_buf_t *buf) 1745 { 1746 arc_buf_hdr_t *hdr; 1747 boolean_t evict_needed = B_FALSE; 1748 1749 if (zfs_disable_dup_eviction) 1750 return (B_FALSE); 1751 1752 mutex_enter(&buf->b_evict_lock); 1753 hdr = buf->b_hdr; 1754 if (hdr == NULL) { 1755 /* 1756 * We are in arc_do_user_evicts(); let that function 1757 * perform the eviction. 1758 */ 1759 ASSERT(buf->b_data == NULL); 1760 mutex_exit(&buf->b_evict_lock); 1761 return (B_FALSE); 1762 } else if (buf->b_data == NULL) { 1763 /* 1764 * We have already been added to the arc eviction list; 1765 * recommend eviction. 1766 */ 1767 ASSERT3P(hdr, ==, &arc_eviction_hdr); 1768 mutex_exit(&buf->b_evict_lock); 1769 return (B_TRUE); 1770 } 1771 1772 if (hdr->b_datacnt > 1 && hdr->b_type == ARC_BUFC_DATA) 1773 evict_needed = B_TRUE; 1774 1775 mutex_exit(&buf->b_evict_lock); 1776 return (evict_needed); 1777 } 1778 1779 /* 1780 * Evict buffers from list until we've removed the specified number of 1781 * bytes. Move the removed buffers to the appropriate evict state. 1782 * If the recycle flag is set, then attempt to "recycle" a buffer: 1783 * - look for a buffer to evict that is `bytes' long. 1784 * - return the data block from this buffer rather than freeing it. 1785 * This flag is used by callers that are trying to make space for a 1786 * new buffer in a full arc cache. 1787 * 1788 * This function makes a "best effort". It skips over any buffers 1789 * it can't get a hash_lock on, and so may not catch all candidates. 1790 * It may also return without evicting as much space as requested. 1791 */ 1792 static void * 1793 arc_evict(arc_state_t *state, uint64_t spa, int64_t bytes, boolean_t recycle, 1794 arc_buf_contents_t type) 1795 { 1796 arc_state_t *evicted_state; 1797 uint64_t bytes_evicted = 0, skipped = 0, missed = 0; 1798 arc_buf_hdr_t *ab, *ab_prev = NULL; 1799 list_t *list = &state->arcs_list[type]; 1800 kmutex_t *hash_lock; 1801 boolean_t have_lock; 1802 void *stolen = NULL; 1803 arc_buf_hdr_t marker = { 0 }; 1804 int count = 0; 1805 1806 ASSERT(state == arc_mru || state == arc_mfu); 1807 1808 evicted_state = (state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost; 1809 1810 mutex_enter(&state->arcs_mtx); 1811 mutex_enter(&evicted_state->arcs_mtx); 1812 1813 for (ab = list_tail(list); ab; ab = ab_prev) { 1814 ab_prev = list_prev(list, ab); 1815 /* prefetch buffers have a minimum lifespan */ 1816 if (HDR_IO_IN_PROGRESS(ab) || 1817 (spa && ab->b_spa != spa) || 1818 (ab->b_flags & (ARC_PREFETCH|ARC_INDIRECT) && 1819 ddi_get_lbolt() - ab->b_arc_access < 1820 arc_min_prefetch_lifespan)) { 1821 skipped++; 1822 continue; 1823 } 1824 /* "lookahead" for better eviction candidate */ 1825 if (recycle && ab->b_size != bytes && 1826 ab_prev && ab_prev->b_size == bytes) 1827 continue; 1828 1829 /* ignore markers */ 1830 if (ab->b_spa == 0) 1831 continue; 1832 1833 /* 1834 * It may take a long time to evict all the bufs requested. 1835 * To avoid blocking all arc activity, periodically drop 1836 * the arcs_mtx and give other threads a chance to run 1837 * before reacquiring the lock. 1838 * 1839 * If we are looking for a buffer to recycle, we are in 1840 * the hot code path, so don't sleep. 1841 */ 1842 if (!recycle && count++ > arc_evict_iterations) { 1843 list_insert_after(list, ab, &marker); 1844 mutex_exit(&evicted_state->arcs_mtx); 1845 mutex_exit(&state->arcs_mtx); 1846 kpreempt(KPREEMPT_SYNC); 1847 mutex_enter(&state->arcs_mtx); 1848 mutex_enter(&evicted_state->arcs_mtx); 1849 ab_prev = list_prev(list, &marker); 1850 list_remove(list, &marker); 1851 count = 0; 1852 continue; 1853 } 1854 1855 hash_lock = HDR_LOCK(ab); 1856 have_lock = MUTEX_HELD(hash_lock); 1857 if (have_lock || mutex_tryenter(hash_lock)) { 1858 ASSERT0(refcount_count(&ab->b_refcnt)); 1859 ASSERT(ab->b_datacnt > 0); 1860 while (ab->b_buf) { 1861 arc_buf_t *buf = ab->b_buf; 1862 if (!mutex_tryenter(&buf->b_evict_lock)) { 1863 missed += 1; 1864 break; 1865 } 1866 if (buf->b_data) { 1867 bytes_evicted += ab->b_size; 1868 if (recycle && ab->b_type == type && 1869 ab->b_size == bytes && 1870 !HDR_L2_WRITING(ab)) { 1871 stolen = buf->b_data; 1872 recycle = FALSE; 1873 } 1874 } 1875 if (buf->b_efunc) { 1876 mutex_enter(&arc_eviction_mtx); 1877 arc_buf_destroy(buf, 1878 buf->b_data == stolen, FALSE); 1879 ab->b_buf = buf->b_next; 1880 buf->b_hdr = &arc_eviction_hdr; 1881 buf->b_next = arc_eviction_list; 1882 arc_eviction_list = buf; 1883 mutex_exit(&arc_eviction_mtx); 1884 mutex_exit(&buf->b_evict_lock); 1885 } else { 1886 mutex_exit(&buf->b_evict_lock); 1887 arc_buf_destroy(buf, 1888 buf->b_data == stolen, TRUE); 1889 } 1890 } 1891 1892 if (ab->b_l2hdr) { 1893 ARCSTAT_INCR(arcstat_evict_l2_cached, 1894 ab->b_size); 1895 } else { 1896 if (l2arc_write_eligible(ab->b_spa, ab)) { 1897 ARCSTAT_INCR(arcstat_evict_l2_eligible, 1898 ab->b_size); 1899 } else { 1900 ARCSTAT_INCR( 1901 arcstat_evict_l2_ineligible, 1902 ab->b_size); 1903 } 1904 } 1905 1906 if (ab->b_datacnt == 0) { 1907 arc_change_state(evicted_state, ab, hash_lock); 1908 ASSERT(HDR_IN_HASH_TABLE(ab)); 1909 ab->b_flags |= ARC_IN_HASH_TABLE; 1910 ab->b_flags &= ~ARC_BUF_AVAILABLE; 1911 DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, ab); 1912 } 1913 if (!have_lock) 1914 mutex_exit(hash_lock); 1915 if (bytes >= 0 && bytes_evicted >= bytes) 1916 break; 1917 } else { 1918 missed += 1; 1919 } 1920 } 1921 1922 mutex_exit(&evicted_state->arcs_mtx); 1923 mutex_exit(&state->arcs_mtx); 1924 1925 if (bytes_evicted < bytes) 1926 dprintf("only evicted %lld bytes from %x", 1927 (longlong_t)bytes_evicted, state); 1928 1929 if (skipped) 1930 ARCSTAT_INCR(arcstat_evict_skip, skipped); 1931 1932 if (missed) 1933 ARCSTAT_INCR(arcstat_mutex_miss, missed); 1934 1935 /* 1936 * Note: we have just evicted some data into the ghost state, 1937 * potentially putting the ghost size over the desired size. Rather 1938 * that evicting from the ghost list in this hot code path, leave 1939 * this chore to the arc_reclaim_thread(). 1940 */ 1941 1942 return (stolen); 1943 } 1944 1945 /* 1946 * Remove buffers from list until we've removed the specified number of 1947 * bytes. Destroy the buffers that are removed. 1948 */ 1949 static void 1950 arc_evict_ghost(arc_state_t *state, uint64_t spa, int64_t bytes) 1951 { 1952 arc_buf_hdr_t *ab, *ab_prev; 1953 arc_buf_hdr_t marker = { 0 }; 1954 list_t *list = &state->arcs_list[ARC_BUFC_DATA]; 1955 kmutex_t *hash_lock; 1956 uint64_t bytes_deleted = 0; 1957 uint64_t bufs_skipped = 0; 1958 int count = 0; 1959 1960 ASSERT(GHOST_STATE(state)); 1961 top: 1962 mutex_enter(&state->arcs_mtx); 1963 for (ab = list_tail(list); ab; ab = ab_prev) { 1964 ab_prev = list_prev(list, ab); 1965 if (ab->b_type > ARC_BUFC_NUMTYPES) 1966 panic("invalid ab=%p", (void *)ab); 1967 if (spa && ab->b_spa != spa) 1968 continue; 1969 1970 /* ignore markers */ 1971 if (ab->b_spa == 0) 1972 continue; 1973 1974 hash_lock = HDR_LOCK(ab); 1975 /* caller may be trying to modify this buffer, skip it */ 1976 if (MUTEX_HELD(hash_lock)) 1977 continue; 1978 1979 /* 1980 * It may take a long time to evict all the bufs requested. 1981 * To avoid blocking all arc activity, periodically drop 1982 * the arcs_mtx and give other threads a chance to run 1983 * before reacquiring the lock. 1984 */ 1985 if (count++ > arc_evict_iterations) { 1986 list_insert_after(list, ab, &marker); 1987 mutex_exit(&state->arcs_mtx); 1988 kpreempt(KPREEMPT_SYNC); 1989 mutex_enter(&state->arcs_mtx); 1990 ab_prev = list_prev(list, &marker); 1991 list_remove(list, &marker); 1992 count = 0; 1993 continue; 1994 } 1995 if (mutex_tryenter(hash_lock)) { 1996 ASSERT(!HDR_IO_IN_PROGRESS(ab)); 1997 ASSERT(ab->b_buf == NULL); 1998 ARCSTAT_BUMP(arcstat_deleted); 1999 bytes_deleted += ab->b_size; 2000 2001 if (ab->b_l2hdr != NULL) { 2002 /* 2003 * This buffer is cached on the 2nd Level ARC; 2004 * don't destroy the header. 2005 */ 2006 arc_change_state(arc_l2c_only, ab, hash_lock); 2007 mutex_exit(hash_lock); 2008 } else { 2009 arc_change_state(arc_anon, ab, hash_lock); 2010 mutex_exit(hash_lock); 2011 arc_hdr_destroy(ab); 2012 } 2013 2014 DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, ab); 2015 if (bytes >= 0 && bytes_deleted >= bytes) 2016 break; 2017 } else if (bytes < 0) { 2018 /* 2019 * Insert a list marker and then wait for the 2020 * hash lock to become available. Once its 2021 * available, restart from where we left off. 2022 */ 2023 list_insert_after(list, ab, &marker); 2024 mutex_exit(&state->arcs_mtx); 2025 mutex_enter(hash_lock); 2026 mutex_exit(hash_lock); 2027 mutex_enter(&state->arcs_mtx); 2028 ab_prev = list_prev(list, &marker); 2029 list_remove(list, &marker); 2030 } else { 2031 bufs_skipped += 1; 2032 } 2033 2034 } 2035 mutex_exit(&state->arcs_mtx); 2036 2037 if (list == &state->arcs_list[ARC_BUFC_DATA] && 2038 (bytes < 0 || bytes_deleted < bytes)) { 2039 list = &state->arcs_list[ARC_BUFC_METADATA]; 2040 goto top; 2041 } 2042 2043 if (bufs_skipped) { 2044 ARCSTAT_INCR(arcstat_mutex_miss, bufs_skipped); 2045 ASSERT(bytes >= 0); 2046 } 2047 2048 if (bytes_deleted < bytes) 2049 dprintf("only deleted %lld bytes from %p", 2050 (longlong_t)bytes_deleted, state); 2051 } 2052 2053 static void 2054 arc_adjust(void) 2055 { 2056 int64_t adjustment, delta; 2057 2058 /* 2059 * Adjust MRU size 2060 */ 2061 2062 adjustment = MIN((int64_t)(arc_size - arc_c), 2063 (int64_t)(arc_anon->arcs_size + arc_mru->arcs_size + arc_meta_used - 2064 arc_p)); 2065 2066 if (adjustment > 0 && arc_mru->arcs_lsize[ARC_BUFC_DATA] > 0) { 2067 delta = MIN(arc_mru->arcs_lsize[ARC_BUFC_DATA], adjustment); 2068 (void) arc_evict(arc_mru, NULL, delta, FALSE, ARC_BUFC_DATA); 2069 adjustment -= delta; 2070 } 2071 2072 if (adjustment > 0 && arc_mru->arcs_lsize[ARC_BUFC_METADATA] > 0) { 2073 delta = MIN(arc_mru->arcs_lsize[ARC_BUFC_METADATA], adjustment); 2074 (void) arc_evict(arc_mru, NULL, delta, FALSE, 2075 ARC_BUFC_METADATA); 2076 } 2077 2078 /* 2079 * Adjust MFU size 2080 */ 2081 2082 adjustment = arc_size - arc_c; 2083 2084 if (adjustment > 0 && arc_mfu->arcs_lsize[ARC_BUFC_DATA] > 0) { 2085 delta = MIN(adjustment, arc_mfu->arcs_lsize[ARC_BUFC_DATA]); 2086 (void) arc_evict(arc_mfu, NULL, delta, FALSE, ARC_BUFC_DATA); 2087 adjustment -= delta; 2088 } 2089 2090 if (adjustment > 0 && arc_mfu->arcs_lsize[ARC_BUFC_METADATA] > 0) { 2091 int64_t delta = MIN(adjustment, 2092 arc_mfu->arcs_lsize[ARC_BUFC_METADATA]); 2093 (void) arc_evict(arc_mfu, NULL, delta, FALSE, 2094 ARC_BUFC_METADATA); 2095 } 2096 2097 /* 2098 * Adjust ghost lists 2099 */ 2100 2101 adjustment = arc_mru->arcs_size + arc_mru_ghost->arcs_size - arc_c; 2102 2103 if (adjustment > 0 && arc_mru_ghost->arcs_size > 0) { 2104 delta = MIN(arc_mru_ghost->arcs_size, adjustment); 2105 arc_evict_ghost(arc_mru_ghost, NULL, delta); 2106 } 2107 2108 adjustment = 2109 arc_mru_ghost->arcs_size + arc_mfu_ghost->arcs_size - arc_c; 2110 2111 if (adjustment > 0 && arc_mfu_ghost->arcs_size > 0) { 2112 delta = MIN(arc_mfu_ghost->arcs_size, adjustment); 2113 arc_evict_ghost(arc_mfu_ghost, NULL, delta); 2114 } 2115 } 2116 2117 static void 2118 arc_do_user_evicts(void) 2119 { 2120 mutex_enter(&arc_eviction_mtx); 2121 while (arc_eviction_list != NULL) { 2122 arc_buf_t *buf = arc_eviction_list; 2123 arc_eviction_list = buf->b_next; 2124 mutex_enter(&buf->b_evict_lock); 2125 buf->b_hdr = NULL; 2126 mutex_exit(&buf->b_evict_lock); 2127 mutex_exit(&arc_eviction_mtx); 2128 2129 if (buf->b_efunc != NULL) 2130 VERIFY0(buf->b_efunc(buf->b_private)); 2131 2132 buf->b_efunc = NULL; 2133 buf->b_private = NULL; 2134 kmem_cache_free(buf_cache, buf); 2135 mutex_enter(&arc_eviction_mtx); 2136 } 2137 mutex_exit(&arc_eviction_mtx); 2138 } 2139 2140 /* 2141 * Flush all *evictable* data from the cache for the given spa. 2142 * NOTE: this will not touch "active" (i.e. referenced) data. 2143 */ 2144 void 2145 arc_flush(spa_t *spa) 2146 { 2147 uint64_t guid = 0; 2148 2149 if (spa) 2150 guid = spa_load_guid(spa); 2151 2152 while (list_head(&arc_mru->arcs_list[ARC_BUFC_DATA])) { 2153 (void) arc_evict(arc_mru, guid, -1, FALSE, ARC_BUFC_DATA); 2154 if (spa) 2155 break; 2156 } 2157 while (list_head(&arc_mru->arcs_list[ARC_BUFC_METADATA])) { 2158 (void) arc_evict(arc_mru, guid, -1, FALSE, ARC_BUFC_METADATA); 2159 if (spa) 2160 break; 2161 } 2162 while (list_head(&arc_mfu->arcs_list[ARC_BUFC_DATA])) { 2163 (void) arc_evict(arc_mfu, guid, -1, FALSE, ARC_BUFC_DATA); 2164 if (spa) 2165 break; 2166 } 2167 while (list_head(&arc_mfu->arcs_list[ARC_BUFC_METADATA])) { 2168 (void) arc_evict(arc_mfu, guid, -1, FALSE, ARC_BUFC_METADATA); 2169 if (spa) 2170 break; 2171 } 2172 2173 arc_evict_ghost(arc_mru_ghost, guid, -1); 2174 arc_evict_ghost(arc_mfu_ghost, guid, -1); 2175 2176 mutex_enter(&arc_reclaim_thr_lock); 2177 arc_do_user_evicts(); 2178 mutex_exit(&arc_reclaim_thr_lock); 2179 ASSERT(spa || arc_eviction_list == NULL); 2180 } 2181 2182 void 2183 arc_shrink(void) 2184 { 2185 if (arc_c > arc_c_min) { 2186 uint64_t to_free; 2187 2188 #ifdef _KERNEL 2189 to_free = MAX(arc_c >> arc_shrink_shift, ptob(needfree)); 2190 #else 2191 to_free = arc_c >> arc_shrink_shift; 2192 #endif 2193 if (arc_c > arc_c_min + to_free) 2194 atomic_add_64(&arc_c, -to_free); 2195 else 2196 arc_c = arc_c_min; 2197 2198 atomic_add_64(&arc_p, -(arc_p >> arc_shrink_shift)); 2199 if (arc_c > arc_size) 2200 arc_c = MAX(arc_size, arc_c_min); 2201 if (arc_p > arc_c) 2202 arc_p = (arc_c >> 1); 2203 ASSERT(arc_c >= arc_c_min); 2204 ASSERT((int64_t)arc_p >= 0); 2205 } 2206 2207 if (arc_size > arc_c) 2208 arc_adjust(); 2209 } 2210 2211 /* 2212 * Determine if the system is under memory pressure and is asking 2213 * to reclaim memory. A return value of 1 indicates that the system 2214 * is under memory pressure and that the arc should adjust accordingly. 2215 */ 2216 static int 2217 arc_reclaim_needed(void) 2218 { 2219 uint64_t extra; 2220 2221 #ifdef _KERNEL 2222 2223 if (needfree) 2224 return (1); 2225 2226 /* 2227 * take 'desfree' extra pages, so we reclaim sooner, rather than later 2228 */ 2229 extra = desfree; 2230 2231 /* 2232 * check that we're out of range of the pageout scanner. It starts to 2233 * schedule paging if freemem is less than lotsfree and needfree. 2234 * lotsfree is the high-water mark for pageout, and needfree is the 2235 * number of needed free pages. We add extra pages here to make sure 2236 * the scanner doesn't start up while we're freeing memory. 2237 */ 2238 if (freemem < lotsfree + needfree + extra) 2239 return (1); 2240 2241 /* 2242 * check to make sure that swapfs has enough space so that anon 2243 * reservations can still succeed. anon_resvmem() checks that the 2244 * availrmem is greater than swapfs_minfree, and the number of reserved 2245 * swap pages. We also add a bit of extra here just to prevent 2246 * circumstances from getting really dire. 2247 */ 2248 if (availrmem < swapfs_minfree + swapfs_reserve + extra) 2249 return (1); 2250 2251 /* 2252 * Check that we have enough availrmem that memory locking (e.g., via 2253 * mlock(3C) or memcntl(2)) can still succeed. (pages_pp_maximum 2254 * stores the number of pages that cannot be locked; when availrmem 2255 * drops below pages_pp_maximum, page locking mechanisms such as 2256 * page_pp_lock() will fail.) 2257 */ 2258 if (availrmem <= pages_pp_maximum) 2259 return (1); 2260 2261 #if defined(__i386) 2262 /* 2263 * If we're on an i386 platform, it's possible that we'll exhaust the 2264 * kernel heap space before we ever run out of available physical 2265 * memory. Most checks of the size of the heap_area compare against 2266 * tune.t_minarmem, which is the minimum available real memory that we 2267 * can have in the system. However, this is generally fixed at 25 pages 2268 * which is so low that it's useless. In this comparison, we seek to 2269 * calculate the total heap-size, and reclaim if more than 3/4ths of the 2270 * heap is allocated. (Or, in the calculation, if less than 1/4th is 2271 * free) 2272 */ 2273 if (vmem_size(heap_arena, VMEM_FREE) < 2274 (vmem_size(heap_arena, VMEM_FREE | VMEM_ALLOC) >> 2)) 2275 return (1); 2276 #endif 2277 2278 /* 2279 * If zio data pages are being allocated out of a separate heap segment, 2280 * then enforce that the size of available vmem for this arena remains 2281 * above about 1/16th free. 2282 * 2283 * Note: The 1/16th arena free requirement was put in place 2284 * to aggressively evict memory from the arc in order to avoid 2285 * memory fragmentation issues. 2286 */ 2287 if (zio_arena != NULL && 2288 vmem_size(zio_arena, VMEM_FREE) < 2289 (vmem_size(zio_arena, VMEM_ALLOC) >> 4)) 2290 return (1); 2291 #else 2292 if (spa_get_random(100) == 0) 2293 return (1); 2294 #endif 2295 return (0); 2296 } 2297 2298 static void 2299 arc_kmem_reap_now(arc_reclaim_strategy_t strat) 2300 { 2301 size_t i; 2302 kmem_cache_t *prev_cache = NULL; 2303 kmem_cache_t *prev_data_cache = NULL; 2304 extern kmem_cache_t *zio_buf_cache[]; 2305 extern kmem_cache_t *zio_data_buf_cache[]; 2306 2307 #ifdef _KERNEL 2308 if (arc_meta_used >= arc_meta_limit) { 2309 /* 2310 * We are exceeding our meta-data cache limit. 2311 * Purge some DNLC entries to release holds on meta-data. 2312 */ 2313 dnlc_reduce_cache((void *)(uintptr_t)arc_reduce_dnlc_percent); 2314 } 2315 #if defined(__i386) 2316 /* 2317 * Reclaim unused memory from all kmem caches. 2318 */ 2319 kmem_reap(); 2320 #endif 2321 #endif 2322 2323 /* 2324 * An aggressive reclamation will shrink the cache size as well as 2325 * reap free buffers from the arc kmem caches. 2326 */ 2327 if (strat == ARC_RECLAIM_AGGR) 2328 arc_shrink(); 2329 2330 for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) { 2331 if (zio_buf_cache[i] != prev_cache) { 2332 prev_cache = zio_buf_cache[i]; 2333 kmem_cache_reap_now(zio_buf_cache[i]); 2334 } 2335 if (zio_data_buf_cache[i] != prev_data_cache) { 2336 prev_data_cache = zio_data_buf_cache[i]; 2337 kmem_cache_reap_now(zio_data_buf_cache[i]); 2338 } 2339 } 2340 kmem_cache_reap_now(buf_cache); 2341 kmem_cache_reap_now(hdr_cache); 2342 2343 /* 2344 * Ask the vmem areana to reclaim unused memory from its 2345 * quantum caches. 2346 */ 2347 if (zio_arena != NULL && strat == ARC_RECLAIM_AGGR) 2348 vmem_qcache_reap(zio_arena); 2349 } 2350 2351 static void 2352 arc_reclaim_thread(void) 2353 { 2354 clock_t growtime = 0; 2355 arc_reclaim_strategy_t last_reclaim = ARC_RECLAIM_CONS; 2356 callb_cpr_t cpr; 2357 2358 CALLB_CPR_INIT(&cpr, &arc_reclaim_thr_lock, callb_generic_cpr, FTAG); 2359 2360 mutex_enter(&arc_reclaim_thr_lock); 2361 while (arc_thread_exit == 0) { 2362 if (arc_reclaim_needed()) { 2363 2364 if (arc_no_grow) { 2365 if (last_reclaim == ARC_RECLAIM_CONS) { 2366 last_reclaim = ARC_RECLAIM_AGGR; 2367 } else { 2368 last_reclaim = ARC_RECLAIM_CONS; 2369 } 2370 } else { 2371 arc_no_grow = TRUE; 2372 last_reclaim = ARC_RECLAIM_AGGR; 2373 membar_producer(); 2374 } 2375 2376 /* reset the growth delay for every reclaim */ 2377 growtime = ddi_get_lbolt() + (arc_grow_retry * hz); 2378 2379 arc_kmem_reap_now(last_reclaim); 2380 arc_warm = B_TRUE; 2381 2382 } else if (arc_no_grow && ddi_get_lbolt() >= growtime) { 2383 arc_no_grow = FALSE; 2384 } 2385 2386 arc_adjust(); 2387 2388 if (arc_eviction_list != NULL) 2389 arc_do_user_evicts(); 2390 2391 /* block until needed, or one second, whichever is shorter */ 2392 CALLB_CPR_SAFE_BEGIN(&cpr); 2393 (void) cv_timedwait(&arc_reclaim_thr_cv, 2394 &arc_reclaim_thr_lock, (ddi_get_lbolt() + hz)); 2395 CALLB_CPR_SAFE_END(&cpr, &arc_reclaim_thr_lock); 2396 } 2397 2398 arc_thread_exit = 0; 2399 cv_broadcast(&arc_reclaim_thr_cv); 2400 CALLB_CPR_EXIT(&cpr); /* drops arc_reclaim_thr_lock */ 2401 thread_exit(); 2402 } 2403 2404 /* 2405 * Adapt arc info given the number of bytes we are trying to add and 2406 * the state that we are comming from. This function is only called 2407 * when we are adding new content to the cache. 2408 */ 2409 static void 2410 arc_adapt(int bytes, arc_state_t *state) 2411 { 2412 int mult; 2413 uint64_t arc_p_min = (arc_c >> arc_p_min_shift); 2414 2415 if (state == arc_l2c_only) 2416 return; 2417 2418 ASSERT(bytes > 0); 2419 /* 2420 * Adapt the target size of the MRU list: 2421 * - if we just hit in the MRU ghost list, then increase 2422 * the target size of the MRU list. 2423 * - if we just hit in the MFU ghost list, then increase 2424 * the target size of the MFU list by decreasing the 2425 * target size of the MRU list. 2426 */ 2427 if (state == arc_mru_ghost) { 2428 mult = ((arc_mru_ghost->arcs_size >= arc_mfu_ghost->arcs_size) ? 2429 1 : (arc_mfu_ghost->arcs_size/arc_mru_ghost->arcs_size)); 2430 mult = MIN(mult, 10); /* avoid wild arc_p adjustment */ 2431 2432 arc_p = MIN(arc_c - arc_p_min, arc_p + bytes * mult); 2433 } else if (state == arc_mfu_ghost) { 2434 uint64_t delta; 2435 2436 mult = ((arc_mfu_ghost->arcs_size >= arc_mru_ghost->arcs_size) ? 2437 1 : (arc_mru_ghost->arcs_size/arc_mfu_ghost->arcs_size)); 2438 mult = MIN(mult, 10); 2439 2440 delta = MIN(bytes * mult, arc_p); 2441 arc_p = MAX(arc_p_min, arc_p - delta); 2442 } 2443 ASSERT((int64_t)arc_p >= 0); 2444 2445 if (arc_reclaim_needed()) { 2446 cv_signal(&arc_reclaim_thr_cv); 2447 return; 2448 } 2449 2450 if (arc_no_grow) 2451 return; 2452 2453 if (arc_c >= arc_c_max) 2454 return; 2455 2456 /* 2457 * If we're within (2 * maxblocksize) bytes of the target 2458 * cache size, increment the target cache size 2459 */ 2460 if (arc_size > arc_c - (2ULL << SPA_MAXBLOCKSHIFT)) { 2461 atomic_add_64(&arc_c, (int64_t)bytes); 2462 if (arc_c > arc_c_max) 2463 arc_c = arc_c_max; 2464 else if (state == arc_anon) 2465 atomic_add_64(&arc_p, (int64_t)bytes); 2466 if (arc_p > arc_c) 2467 arc_p = arc_c; 2468 } 2469 ASSERT((int64_t)arc_p >= 0); 2470 } 2471 2472 /* 2473 * Check if the cache has reached its limits and eviction is required 2474 * prior to insert. 2475 */ 2476 static int 2477 arc_evict_needed(arc_buf_contents_t type) 2478 { 2479 if (type == ARC_BUFC_METADATA && arc_meta_used >= arc_meta_limit) 2480 return (1); 2481 2482 if (arc_reclaim_needed()) 2483 return (1); 2484 2485 return (arc_size > arc_c); 2486 } 2487 2488 /* 2489 * The buffer, supplied as the first argument, needs a data block. 2490 * So, if we are at cache max, determine which cache should be victimized. 2491 * We have the following cases: 2492 * 2493 * 1. Insert for MRU, p > sizeof(arc_anon + arc_mru) -> 2494 * In this situation if we're out of space, but the resident size of the MFU is 2495 * under the limit, victimize the MFU cache to satisfy this insertion request. 2496 * 2497 * 2. Insert for MRU, p <= sizeof(arc_anon + arc_mru) -> 2498 * Here, we've used up all of the available space for the MRU, so we need to 2499 * evict from our own cache instead. Evict from the set of resident MRU 2500 * entries. 2501 * 2502 * 3. Insert for MFU (c - p) > sizeof(arc_mfu) -> 2503 * c minus p represents the MFU space in the cache, since p is the size of the 2504 * cache that is dedicated to the MRU. In this situation there's still space on 2505 * the MFU side, so the MRU side needs to be victimized. 2506 * 2507 * 4. Insert for MFU (c - p) < sizeof(arc_mfu) -> 2508 * MFU's resident set is consuming more space than it has been allotted. In 2509 * this situation, we must victimize our own cache, the MFU, for this insertion. 2510 */ 2511 static void 2512 arc_get_data_buf(arc_buf_t *buf) 2513 { 2514 arc_state_t *state = buf->b_hdr->b_state; 2515 uint64_t size = buf->b_hdr->b_size; 2516 arc_buf_contents_t type = buf->b_hdr->b_type; 2517 2518 arc_adapt(size, state); 2519 2520 /* 2521 * We have not yet reached cache maximum size, 2522 * just allocate a new buffer. 2523 */ 2524 if (!arc_evict_needed(type)) { 2525 if (type == ARC_BUFC_METADATA) { 2526 buf->b_data = zio_buf_alloc(size); 2527 arc_space_consume(size, ARC_SPACE_DATA); 2528 } else { 2529 ASSERT(type == ARC_BUFC_DATA); 2530 buf->b_data = zio_data_buf_alloc(size); 2531 ARCSTAT_INCR(arcstat_data_size, size); 2532 atomic_add_64(&arc_size, size); 2533 } 2534 goto out; 2535 } 2536 2537 /* 2538 * If we are prefetching from the mfu ghost list, this buffer 2539 * will end up on the mru list; so steal space from there. 2540 */ 2541 if (state == arc_mfu_ghost) 2542 state = buf->b_hdr->b_flags & ARC_PREFETCH ? arc_mru : arc_mfu; 2543 else if (state == arc_mru_ghost) 2544 state = arc_mru; 2545 2546 if (state == arc_mru || state == arc_anon) { 2547 uint64_t mru_used = arc_anon->arcs_size + arc_mru->arcs_size; 2548 state = (arc_mfu->arcs_lsize[type] >= size && 2549 arc_p > mru_used) ? arc_mfu : arc_mru; 2550 } else { 2551 /* MFU cases */ 2552 uint64_t mfu_space = arc_c - arc_p; 2553 state = (arc_mru->arcs_lsize[type] >= size && 2554 mfu_space > arc_mfu->arcs_size) ? arc_mru : arc_mfu; 2555 } 2556 if ((buf->b_data = arc_evict(state, NULL, size, TRUE, type)) == NULL) { 2557 if (type == ARC_BUFC_METADATA) { 2558 buf->b_data = zio_buf_alloc(size); 2559 arc_space_consume(size, ARC_SPACE_DATA); 2560 } else { 2561 ASSERT(type == ARC_BUFC_DATA); 2562 buf->b_data = zio_data_buf_alloc(size); 2563 ARCSTAT_INCR(arcstat_data_size, size); 2564 atomic_add_64(&arc_size, size); 2565 } 2566 ARCSTAT_BUMP(arcstat_recycle_miss); 2567 } 2568 ASSERT(buf->b_data != NULL); 2569 out: 2570 /* 2571 * Update the state size. Note that ghost states have a 2572 * "ghost size" and so don't need to be updated. 2573 */ 2574 if (!GHOST_STATE(buf->b_hdr->b_state)) { 2575 arc_buf_hdr_t *hdr = buf->b_hdr; 2576 2577 atomic_add_64(&hdr->b_state->arcs_size, size); 2578 if (list_link_active(&hdr->b_arc_node)) { 2579 ASSERT(refcount_is_zero(&hdr->b_refcnt)); 2580 atomic_add_64(&hdr->b_state->arcs_lsize[type], size); 2581 } 2582 /* 2583 * If we are growing the cache, and we are adding anonymous 2584 * data, and we have outgrown arc_p, update arc_p 2585 */ 2586 if (arc_size < arc_c && hdr->b_state == arc_anon && 2587 arc_anon->arcs_size + arc_mru->arcs_size > arc_p) 2588 arc_p = MIN(arc_c, arc_p + size); 2589 } 2590 } 2591 2592 /* 2593 * This routine is called whenever a buffer is accessed. 2594 * NOTE: the hash lock is dropped in this function. 2595 */ 2596 static void 2597 arc_access(arc_buf_hdr_t *buf, kmutex_t *hash_lock) 2598 { 2599 clock_t now; 2600 2601 ASSERT(MUTEX_HELD(hash_lock)); 2602 2603 if (buf->b_state == arc_anon) { 2604 /* 2605 * This buffer is not in the cache, and does not 2606 * appear in our "ghost" list. Add the new buffer 2607 * to the MRU state. 2608 */ 2609 2610 ASSERT(buf->b_arc_access == 0); 2611 buf->b_arc_access = ddi_get_lbolt(); 2612 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, buf); 2613 arc_change_state(arc_mru, buf, hash_lock); 2614 2615 } else if (buf->b_state == arc_mru) { 2616 now = ddi_get_lbolt(); 2617 2618 /* 2619 * If this buffer is here because of a prefetch, then either: 2620 * - clear the flag if this is a "referencing" read 2621 * (any subsequent access will bump this into the MFU state). 2622 * or 2623 * - move the buffer to the head of the list if this is 2624 * another prefetch (to make it less likely to be evicted). 2625 */ 2626 if ((buf->b_flags & ARC_PREFETCH) != 0) { 2627 if (refcount_count(&buf->b_refcnt) == 0) { 2628 ASSERT(list_link_active(&buf->b_arc_node)); 2629 } else { 2630 buf->b_flags &= ~ARC_PREFETCH; 2631 ARCSTAT_BUMP(arcstat_mru_hits); 2632 } 2633 buf->b_arc_access = now; 2634 return; 2635 } 2636 2637 /* 2638 * This buffer has been "accessed" only once so far, 2639 * but it is still in the cache. Move it to the MFU 2640 * state. 2641 */ 2642 if (now > buf->b_arc_access + ARC_MINTIME) { 2643 /* 2644 * More than 125ms have passed since we 2645 * instantiated this buffer. Move it to the 2646 * most frequently used state. 2647 */ 2648 buf->b_arc_access = now; 2649 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf); 2650 arc_change_state(arc_mfu, buf, hash_lock); 2651 } 2652 ARCSTAT_BUMP(arcstat_mru_hits); 2653 } else if (buf->b_state == arc_mru_ghost) { 2654 arc_state_t *new_state; 2655 /* 2656 * This buffer has been "accessed" recently, but 2657 * was evicted from the cache. Move it to the 2658 * MFU state. 2659 */ 2660 2661 if (buf->b_flags & ARC_PREFETCH) { 2662 new_state = arc_mru; 2663 if (refcount_count(&buf->b_refcnt) > 0) 2664 buf->b_flags &= ~ARC_PREFETCH; 2665 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, buf); 2666 } else { 2667 new_state = arc_mfu; 2668 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf); 2669 } 2670 2671 buf->b_arc_access = ddi_get_lbolt(); 2672 arc_change_state(new_state, buf, hash_lock); 2673 2674 ARCSTAT_BUMP(arcstat_mru_ghost_hits); 2675 } else if (buf->b_state == arc_mfu) { 2676 /* 2677 * This buffer has been accessed more than once and is 2678 * still in the cache. Keep it in the MFU state. 2679 * 2680 * NOTE: an add_reference() that occurred when we did 2681 * the arc_read() will have kicked this off the list. 2682 * If it was a prefetch, we will explicitly move it to 2683 * the head of the list now. 2684 */ 2685 if ((buf->b_flags & ARC_PREFETCH) != 0) { 2686 ASSERT(refcount_count(&buf->b_refcnt) == 0); 2687 ASSERT(list_link_active(&buf->b_arc_node)); 2688 } 2689 ARCSTAT_BUMP(arcstat_mfu_hits); 2690 buf->b_arc_access = ddi_get_lbolt(); 2691 } else if (buf->b_state == arc_mfu_ghost) { 2692 arc_state_t *new_state = arc_mfu; 2693 /* 2694 * This buffer has been accessed more than once but has 2695 * been evicted from the cache. Move it back to the 2696 * MFU state. 2697 */ 2698 2699 if (buf->b_flags & ARC_PREFETCH) { 2700 /* 2701 * This is a prefetch access... 2702 * move this block back to the MRU state. 2703 */ 2704 ASSERT0(refcount_count(&buf->b_refcnt)); 2705 new_state = arc_mru; 2706 } 2707 2708 buf->b_arc_access = ddi_get_lbolt(); 2709 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf); 2710 arc_change_state(new_state, buf, hash_lock); 2711 2712 ARCSTAT_BUMP(arcstat_mfu_ghost_hits); 2713 } else if (buf->b_state == arc_l2c_only) { 2714 /* 2715 * This buffer is on the 2nd Level ARC. 2716 */ 2717 2718 buf->b_arc_access = ddi_get_lbolt(); 2719 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf); 2720 arc_change_state(arc_mfu, buf, hash_lock); 2721 } else { 2722 ASSERT(!"invalid arc state"); 2723 } 2724 } 2725 2726 /* a generic arc_done_func_t which you can use */ 2727 /* ARGSUSED */ 2728 void 2729 arc_bcopy_func(zio_t *zio, arc_buf_t *buf, void *arg) 2730 { 2731 if (zio == NULL || zio->io_error == 0) 2732 bcopy(buf->b_data, arg, buf->b_hdr->b_size); 2733 VERIFY(arc_buf_remove_ref(buf, arg)); 2734 } 2735 2736 /* a generic arc_done_func_t */ 2737 void 2738 arc_getbuf_func(zio_t *zio, arc_buf_t *buf, void *arg) 2739 { 2740 arc_buf_t **bufp = arg; 2741 if (zio && zio->io_error) { 2742 VERIFY(arc_buf_remove_ref(buf, arg)); 2743 *bufp = NULL; 2744 } else { 2745 *bufp = buf; 2746 ASSERT(buf->b_data); 2747 } 2748 } 2749 2750 static void 2751 arc_read_done(zio_t *zio) 2752 { 2753 arc_buf_hdr_t *hdr; 2754 arc_buf_t *buf; 2755 arc_buf_t *abuf; /* buffer we're assigning to callback */ 2756 kmutex_t *hash_lock = NULL; 2757 arc_callback_t *callback_list, *acb; 2758 int freeable = FALSE; 2759 2760 buf = zio->io_private; 2761 hdr = buf->b_hdr; 2762 2763 /* 2764 * The hdr was inserted into hash-table and removed from lists 2765 * prior to starting I/O. We should find this header, since 2766 * it's in the hash table, and it should be legit since it's 2767 * not possible to evict it during the I/O. The only possible 2768 * reason for it not to be found is if we were freed during the 2769 * read. 2770 */ 2771 if (HDR_IN_HASH_TABLE(hdr)) { 2772 ASSERT3U(hdr->b_birth, ==, BP_PHYSICAL_BIRTH(zio->io_bp)); 2773 ASSERT3U(hdr->b_dva.dva_word[0], ==, 2774 BP_IDENTITY(zio->io_bp)->dva_word[0]); 2775 ASSERT3U(hdr->b_dva.dva_word[1], ==, 2776 BP_IDENTITY(zio->io_bp)->dva_word[1]); 2777 2778 arc_buf_hdr_t *found = buf_hash_find(hdr->b_spa, zio->io_bp, 2779 &hash_lock); 2780 2781 ASSERT((found == NULL && HDR_FREED_IN_READ(hdr) && 2782 hash_lock == NULL) || 2783 (found == hdr && 2784 DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))) || 2785 (found == hdr && HDR_L2_READING(hdr))); 2786 } 2787 2788 hdr->b_flags &= ~ARC_L2_EVICTED; 2789 if (l2arc_noprefetch && (hdr->b_flags & ARC_PREFETCH)) 2790 hdr->b_flags &= ~ARC_L2CACHE; 2791 2792 /* byteswap if necessary */ 2793 callback_list = hdr->b_acb; 2794 ASSERT(callback_list != NULL); 2795 if (BP_SHOULD_BYTESWAP(zio->io_bp) && zio->io_error == 0) { 2796 dmu_object_byteswap_t bswap = 2797 DMU_OT_BYTESWAP(BP_GET_TYPE(zio->io_bp)); 2798 arc_byteswap_func_t *func = BP_GET_LEVEL(zio->io_bp) > 0 ? 2799 byteswap_uint64_array : 2800 dmu_ot_byteswap[bswap].ob_func; 2801 func(buf->b_data, hdr->b_size); 2802 } 2803 2804 arc_cksum_compute(buf, B_FALSE); 2805 arc_buf_watch(buf); 2806 2807 if (hash_lock && zio->io_error == 0 && hdr->b_state == arc_anon) { 2808 /* 2809 * Only call arc_access on anonymous buffers. This is because 2810 * if we've issued an I/O for an evicted buffer, we've already 2811 * called arc_access (to prevent any simultaneous readers from 2812 * getting confused). 2813 */ 2814 arc_access(hdr, hash_lock); 2815 } 2816 2817 /* create copies of the data buffer for the callers */ 2818 abuf = buf; 2819 for (acb = callback_list; acb; acb = acb->acb_next) { 2820 if (acb->acb_done) { 2821 if (abuf == NULL) { 2822 ARCSTAT_BUMP(arcstat_duplicate_reads); 2823 abuf = arc_buf_clone(buf); 2824 } 2825 acb->acb_buf = abuf; 2826 abuf = NULL; 2827 } 2828 } 2829 hdr->b_acb = NULL; 2830 hdr->b_flags &= ~ARC_IO_IN_PROGRESS; 2831 ASSERT(!HDR_BUF_AVAILABLE(hdr)); 2832 if (abuf == buf) { 2833 ASSERT(buf->b_efunc == NULL); 2834 ASSERT(hdr->b_datacnt == 1); 2835 hdr->b_flags |= ARC_BUF_AVAILABLE; 2836 } 2837 2838 ASSERT(refcount_is_zero(&hdr->b_refcnt) || callback_list != NULL); 2839 2840 if (zio->io_error != 0) { 2841 hdr->b_flags |= ARC_IO_ERROR; 2842 if (hdr->b_state != arc_anon) 2843 arc_change_state(arc_anon, hdr, hash_lock); 2844 if (HDR_IN_HASH_TABLE(hdr)) 2845 buf_hash_remove(hdr); 2846 freeable = refcount_is_zero(&hdr->b_refcnt); 2847 } 2848 2849 /* 2850 * Broadcast before we drop the hash_lock to avoid the possibility 2851 * that the hdr (and hence the cv) might be freed before we get to 2852 * the cv_broadcast(). 2853 */ 2854 cv_broadcast(&hdr->b_cv); 2855 2856 if (hash_lock) { 2857 mutex_exit(hash_lock); 2858 } else { 2859 /* 2860 * This block was freed while we waited for the read to 2861 * complete. It has been removed from the hash table and 2862 * moved to the anonymous state (so that it won't show up 2863 * in the cache). 2864 */ 2865 ASSERT3P(hdr->b_state, ==, arc_anon); 2866 freeable = refcount_is_zero(&hdr->b_refcnt); 2867 } 2868 2869 /* execute each callback and free its structure */ 2870 while ((acb = callback_list) != NULL) { 2871 if (acb->acb_done) 2872 acb->acb_done(zio, acb->acb_buf, acb->acb_private); 2873 2874 if (acb->acb_zio_dummy != NULL) { 2875 acb->acb_zio_dummy->io_error = zio->io_error; 2876 zio_nowait(acb->acb_zio_dummy); 2877 } 2878 2879 callback_list = acb->acb_next; 2880 kmem_free(acb, sizeof (arc_callback_t)); 2881 } 2882 2883 if (freeable) 2884 arc_hdr_destroy(hdr); 2885 } 2886 2887 /* 2888 * "Read" the block at the specified DVA (in bp) via the 2889 * cache. If the block is found in the cache, invoke the provided 2890 * callback immediately and return. Note that the `zio' parameter 2891 * in the callback will be NULL in this case, since no IO was 2892 * required. If the block is not in the cache pass the read request 2893 * on to the spa with a substitute callback function, so that the 2894 * requested block will be added to the cache. 2895 * 2896 * If a read request arrives for a block that has a read in-progress, 2897 * either wait for the in-progress read to complete (and return the 2898 * results); or, if this is a read with a "done" func, add a record 2899 * to the read to invoke the "done" func when the read completes, 2900 * and return; or just return. 2901 * 2902 * arc_read_done() will invoke all the requested "done" functions 2903 * for readers of this block. 2904 */ 2905 int 2906 arc_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, arc_done_func_t *done, 2907 void *private, zio_priority_t priority, int zio_flags, uint32_t *arc_flags, 2908 const zbookmark_phys_t *zb) 2909 { 2910 arc_buf_hdr_t *hdr = NULL; 2911 arc_buf_t *buf = NULL; 2912 kmutex_t *hash_lock = NULL; 2913 zio_t *rzio; 2914 uint64_t guid = spa_load_guid(spa); 2915 2916 ASSERT(!BP_IS_EMBEDDED(bp) || 2917 BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA); 2918 2919 top: 2920 if (!BP_IS_EMBEDDED(bp)) { 2921 /* 2922 * Embedded BP's have no DVA and require no I/O to "read". 2923 * Create an anonymous arc buf to back it. 2924 */ 2925 hdr = buf_hash_find(guid, bp, &hash_lock); 2926 } 2927 2928 if (hdr != NULL && hdr->b_datacnt > 0) { 2929 2930 *arc_flags |= ARC_CACHED; 2931 2932 if (HDR_IO_IN_PROGRESS(hdr)) { 2933 2934 if (*arc_flags & ARC_WAIT) { 2935 cv_wait(&hdr->b_cv, hash_lock); 2936 mutex_exit(hash_lock); 2937 goto top; 2938 } 2939 ASSERT(*arc_flags & ARC_NOWAIT); 2940 2941 if (done) { 2942 arc_callback_t *acb = NULL; 2943 2944 acb = kmem_zalloc(sizeof (arc_callback_t), 2945 KM_SLEEP); 2946 acb->acb_done = done; 2947 acb->acb_private = private; 2948 if (pio != NULL) 2949 acb->acb_zio_dummy = zio_null(pio, 2950 spa, NULL, NULL, NULL, zio_flags); 2951 2952 ASSERT(acb->acb_done != NULL); 2953 acb->acb_next = hdr->b_acb; 2954 hdr->b_acb = acb; 2955 add_reference(hdr, hash_lock, private); 2956 mutex_exit(hash_lock); 2957 return (0); 2958 } 2959 mutex_exit(hash_lock); 2960 return (0); 2961 } 2962 2963 ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu); 2964 2965 if (done) { 2966 add_reference(hdr, hash_lock, private); 2967 /* 2968 * If this block is already in use, create a new 2969 * copy of the data so that we will be guaranteed 2970 * that arc_release() will always succeed. 2971 */ 2972 buf = hdr->b_buf; 2973 ASSERT(buf); 2974 ASSERT(buf->b_data); 2975 if (HDR_BUF_AVAILABLE(hdr)) { 2976 ASSERT(buf->b_efunc == NULL); 2977 hdr->b_flags &= ~ARC_BUF_AVAILABLE; 2978 } else { 2979 buf = arc_buf_clone(buf); 2980 } 2981 2982 } else if (*arc_flags & ARC_PREFETCH && 2983 refcount_count(&hdr->b_refcnt) == 0) { 2984 hdr->b_flags |= ARC_PREFETCH; 2985 } 2986 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr); 2987 arc_access(hdr, hash_lock); 2988 if (*arc_flags & ARC_L2CACHE) 2989 hdr->b_flags |= ARC_L2CACHE; 2990 if (*arc_flags & ARC_L2COMPRESS) 2991 hdr->b_flags |= ARC_L2COMPRESS; 2992 mutex_exit(hash_lock); 2993 ARCSTAT_BUMP(arcstat_hits); 2994 ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH), 2995 demand, prefetch, hdr->b_type != ARC_BUFC_METADATA, 2996 data, metadata, hits); 2997 2998 if (done) 2999 done(NULL, buf, private); 3000 } else { 3001 uint64_t size = BP_GET_LSIZE(bp); 3002 arc_callback_t *acb; 3003 vdev_t *vd = NULL; 3004 uint64_t addr = 0; 3005 boolean_t devw = B_FALSE; 3006 enum zio_compress b_compress = ZIO_COMPRESS_OFF; 3007 uint64_t b_asize = 0; 3008 3009 if (hdr == NULL) { 3010 /* this block is not in the cache */ 3011 arc_buf_hdr_t *exists = NULL; 3012 arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp); 3013 buf = arc_buf_alloc(spa, size, private, type); 3014 hdr = buf->b_hdr; 3015 if (!BP_IS_EMBEDDED(bp)) { 3016 hdr->b_dva = *BP_IDENTITY(bp); 3017 hdr->b_birth = BP_PHYSICAL_BIRTH(bp); 3018 hdr->b_cksum0 = bp->blk_cksum.zc_word[0]; 3019 exists = buf_hash_insert(hdr, &hash_lock); 3020 } 3021 if (exists != NULL) { 3022 /* somebody beat us to the hash insert */ 3023 mutex_exit(hash_lock); 3024 buf_discard_identity(hdr); 3025 (void) arc_buf_remove_ref(buf, private); 3026 goto top; /* restart the IO request */ 3027 } 3028 /* if this is a prefetch, we don't have a reference */ 3029 if (*arc_flags & ARC_PREFETCH) { 3030 (void) remove_reference(hdr, hash_lock, 3031 private); 3032 hdr->b_flags |= ARC_PREFETCH; 3033 } 3034 if (*arc_flags & ARC_L2CACHE) 3035 hdr->b_flags |= ARC_L2CACHE; 3036 if (*arc_flags & ARC_L2COMPRESS) 3037 hdr->b_flags |= ARC_L2COMPRESS; 3038 if (BP_GET_LEVEL(bp) > 0) 3039 hdr->b_flags |= ARC_INDIRECT; 3040 } else { 3041 /* this block is in the ghost cache */ 3042 ASSERT(GHOST_STATE(hdr->b_state)); 3043 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 3044 ASSERT0(refcount_count(&hdr->b_refcnt)); 3045 ASSERT(hdr->b_buf == NULL); 3046 3047 /* if this is a prefetch, we don't have a reference */ 3048 if (*arc_flags & ARC_PREFETCH) 3049 hdr->b_flags |= ARC_PREFETCH; 3050 else 3051 add_reference(hdr, hash_lock, private); 3052 if (*arc_flags & ARC_L2CACHE) 3053 hdr->b_flags |= ARC_L2CACHE; 3054 if (*arc_flags & ARC_L2COMPRESS) 3055 hdr->b_flags |= ARC_L2COMPRESS; 3056 buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE); 3057 buf->b_hdr = hdr; 3058 buf->b_data = NULL; 3059 buf->b_efunc = NULL; 3060 buf->b_private = NULL; 3061 buf->b_next = NULL; 3062 hdr->b_buf = buf; 3063 ASSERT(hdr->b_datacnt == 0); 3064 hdr->b_datacnt = 1; 3065 arc_get_data_buf(buf); 3066 arc_access(hdr, hash_lock); 3067 } 3068 3069 ASSERT(!GHOST_STATE(hdr->b_state)); 3070 3071 acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP); 3072 acb->acb_done = done; 3073 acb->acb_private = private; 3074 3075 ASSERT(hdr->b_acb == NULL); 3076 hdr->b_acb = acb; 3077 hdr->b_flags |= ARC_IO_IN_PROGRESS; 3078 3079 if (hdr->b_l2hdr != NULL && 3080 (vd = hdr->b_l2hdr->b_dev->l2ad_vdev) != NULL) { 3081 devw = hdr->b_l2hdr->b_dev->l2ad_writing; 3082 addr = hdr->b_l2hdr->b_daddr; 3083 b_compress = hdr->b_l2hdr->b_compress; 3084 b_asize = hdr->b_l2hdr->b_asize; 3085 /* 3086 * Lock out device removal. 3087 */ 3088 if (vdev_is_dead(vd) || 3089 !spa_config_tryenter(spa, SCL_L2ARC, vd, RW_READER)) 3090 vd = NULL; 3091 } 3092 3093 if (hash_lock != NULL) 3094 mutex_exit(hash_lock); 3095 3096 /* 3097 * At this point, we have a level 1 cache miss. Try again in 3098 * L2ARC if possible. 3099 */ 3100 ASSERT3U(hdr->b_size, ==, size); 3101 DTRACE_PROBE4(arc__miss, arc_buf_hdr_t *, hdr, blkptr_t *, bp, 3102 uint64_t, size, zbookmark_phys_t *, zb); 3103 ARCSTAT_BUMP(arcstat_misses); 3104 ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH), 3105 demand, prefetch, hdr->b_type != ARC_BUFC_METADATA, 3106 data, metadata, misses); 3107 3108 if (vd != NULL && l2arc_ndev != 0 && !(l2arc_norw && devw)) { 3109 /* 3110 * Read from the L2ARC if the following are true: 3111 * 1. The L2ARC vdev was previously cached. 3112 * 2. This buffer still has L2ARC metadata. 3113 * 3. This buffer isn't currently writing to the L2ARC. 3114 * 4. The L2ARC entry wasn't evicted, which may 3115 * also have invalidated the vdev. 3116 * 5. This isn't prefetch and l2arc_noprefetch is set. 3117 */ 3118 if (hdr->b_l2hdr != NULL && 3119 !HDR_L2_WRITING(hdr) && !HDR_L2_EVICTED(hdr) && 3120 !(l2arc_noprefetch && HDR_PREFETCH(hdr))) { 3121 l2arc_read_callback_t *cb; 3122 3123 DTRACE_PROBE1(l2arc__hit, arc_buf_hdr_t *, hdr); 3124 ARCSTAT_BUMP(arcstat_l2_hits); 3125 3126 cb = kmem_zalloc(sizeof (l2arc_read_callback_t), 3127 KM_SLEEP); 3128 cb->l2rcb_buf = buf; 3129 cb->l2rcb_spa = spa; 3130 cb->l2rcb_bp = *bp; 3131 cb->l2rcb_zb = *zb; 3132 cb->l2rcb_flags = zio_flags; 3133 cb->l2rcb_compress = b_compress; 3134 3135 ASSERT(addr >= VDEV_LABEL_START_SIZE && 3136 addr + size < vd->vdev_psize - 3137 VDEV_LABEL_END_SIZE); 3138 3139 /* 3140 * l2arc read. The SCL_L2ARC lock will be 3141 * released by l2arc_read_done(). 3142 * Issue a null zio if the underlying buffer 3143 * was squashed to zero size by compression. 3144 */ 3145 if (b_compress == ZIO_COMPRESS_EMPTY) { 3146 rzio = zio_null(pio, spa, vd, 3147 l2arc_read_done, cb, 3148 zio_flags | ZIO_FLAG_DONT_CACHE | 3149 ZIO_FLAG_CANFAIL | 3150 ZIO_FLAG_DONT_PROPAGATE | 3151 ZIO_FLAG_DONT_RETRY); 3152 } else { 3153 rzio = zio_read_phys(pio, vd, addr, 3154 b_asize, buf->b_data, 3155 ZIO_CHECKSUM_OFF, 3156 l2arc_read_done, cb, priority, 3157 zio_flags | ZIO_FLAG_DONT_CACHE | 3158 ZIO_FLAG_CANFAIL | 3159 ZIO_FLAG_DONT_PROPAGATE | 3160 ZIO_FLAG_DONT_RETRY, B_FALSE); 3161 } 3162 DTRACE_PROBE2(l2arc__read, vdev_t *, vd, 3163 zio_t *, rzio); 3164 ARCSTAT_INCR(arcstat_l2_read_bytes, b_asize); 3165 3166 if (*arc_flags & ARC_NOWAIT) { 3167 zio_nowait(rzio); 3168 return (0); 3169 } 3170 3171 ASSERT(*arc_flags & ARC_WAIT); 3172 if (zio_wait(rzio) == 0) 3173 return (0); 3174 3175 /* l2arc read error; goto zio_read() */ 3176 } else { 3177 DTRACE_PROBE1(l2arc__miss, 3178 arc_buf_hdr_t *, hdr); 3179 ARCSTAT_BUMP(arcstat_l2_misses); 3180 if (HDR_L2_WRITING(hdr)) 3181 ARCSTAT_BUMP(arcstat_l2_rw_clash); 3182 spa_config_exit(spa, SCL_L2ARC, vd); 3183 } 3184 } else { 3185 if (vd != NULL) 3186 spa_config_exit(spa, SCL_L2ARC, vd); 3187 if (l2arc_ndev != 0) { 3188 DTRACE_PROBE1(l2arc__miss, 3189 arc_buf_hdr_t *, hdr); 3190 ARCSTAT_BUMP(arcstat_l2_misses); 3191 } 3192 } 3193 3194 rzio = zio_read(pio, spa, bp, buf->b_data, size, 3195 arc_read_done, buf, priority, zio_flags, zb); 3196 3197 if (*arc_flags & ARC_WAIT) 3198 return (zio_wait(rzio)); 3199 3200 ASSERT(*arc_flags & ARC_NOWAIT); 3201 zio_nowait(rzio); 3202 } 3203 return (0); 3204 } 3205 3206 void 3207 arc_set_callback(arc_buf_t *buf, arc_evict_func_t *func, void *private) 3208 { 3209 ASSERT(buf->b_hdr != NULL); 3210 ASSERT(buf->b_hdr->b_state != arc_anon); 3211 ASSERT(!refcount_is_zero(&buf->b_hdr->b_refcnt) || func == NULL); 3212 ASSERT(buf->b_efunc == NULL); 3213 ASSERT(!HDR_BUF_AVAILABLE(buf->b_hdr)); 3214 3215 buf->b_efunc = func; 3216 buf->b_private = private; 3217 } 3218 3219 /* 3220 * Notify the arc that a block was freed, and thus will never be used again. 3221 */ 3222 void 3223 arc_freed(spa_t *spa, const blkptr_t *bp) 3224 { 3225 arc_buf_hdr_t *hdr; 3226 kmutex_t *hash_lock; 3227 uint64_t guid = spa_load_guid(spa); 3228 3229 ASSERT(!BP_IS_EMBEDDED(bp)); 3230 3231 hdr = buf_hash_find(guid, bp, &hash_lock); 3232 if (hdr == NULL) 3233 return; 3234 if (HDR_BUF_AVAILABLE(hdr)) { 3235 arc_buf_t *buf = hdr->b_buf; 3236 add_reference(hdr, hash_lock, FTAG); 3237 hdr->b_flags &= ~ARC_BUF_AVAILABLE; 3238 mutex_exit(hash_lock); 3239 3240 arc_release(buf, FTAG); 3241 (void) arc_buf_remove_ref(buf, FTAG); 3242 } else { 3243 mutex_exit(hash_lock); 3244 } 3245 3246 } 3247 3248 /* 3249 * Clear the user eviction callback set by arc_set_callback(), first calling 3250 * it if it exists. Because the presence of a callback keeps an arc_buf cached 3251 * clearing the callback may result in the arc_buf being destroyed. However, 3252 * it will not result in the *last* arc_buf being destroyed, hence the data 3253 * will remain cached in the ARC. We make a copy of the arc buffer here so 3254 * that we can process the callback without holding any locks. 3255 * 3256 * It's possible that the callback is already in the process of being cleared 3257 * by another thread. In this case we can not clear the callback. 3258 * 3259 * Returns B_TRUE if the callback was successfully called and cleared. 3260 */ 3261 boolean_t 3262 arc_clear_callback(arc_buf_t *buf) 3263 { 3264 arc_buf_hdr_t *hdr; 3265 kmutex_t *hash_lock; 3266 arc_evict_func_t *efunc = buf->b_efunc; 3267 void *private = buf->b_private; 3268 3269 mutex_enter(&buf->b_evict_lock); 3270 hdr = buf->b_hdr; 3271 if (hdr == NULL) { 3272 /* 3273 * We are in arc_do_user_evicts(). 3274 */ 3275 ASSERT(buf->b_data == NULL); 3276 mutex_exit(&buf->b_evict_lock); 3277 return (B_FALSE); 3278 } else if (buf->b_data == NULL) { 3279 /* 3280 * We are on the eviction list; process this buffer now 3281 * but let arc_do_user_evicts() do the reaping. 3282 */ 3283 buf->b_efunc = NULL; 3284 mutex_exit(&buf->b_evict_lock); 3285 VERIFY0(efunc(private)); 3286 return (B_TRUE); 3287 } 3288 hash_lock = HDR_LOCK(hdr); 3289 mutex_enter(hash_lock); 3290 hdr = buf->b_hdr; 3291 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 3292 3293 ASSERT3U(refcount_count(&hdr->b_refcnt), <, hdr->b_datacnt); 3294 ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu); 3295 3296 buf->b_efunc = NULL; 3297 buf->b_private = NULL; 3298 3299 if (hdr->b_datacnt > 1) { 3300 mutex_exit(&buf->b_evict_lock); 3301 arc_buf_destroy(buf, FALSE, TRUE); 3302 } else { 3303 ASSERT(buf == hdr->b_buf); 3304 hdr->b_flags |= ARC_BUF_AVAILABLE; 3305 mutex_exit(&buf->b_evict_lock); 3306 } 3307 3308 mutex_exit(hash_lock); 3309 VERIFY0(efunc(private)); 3310 return (B_TRUE); 3311 } 3312 3313 /* 3314 * Release this buffer from the cache, making it an anonymous buffer. This 3315 * must be done after a read and prior to modifying the buffer contents. 3316 * If the buffer has more than one reference, we must make 3317 * a new hdr for the buffer. 3318 */ 3319 void 3320 arc_release(arc_buf_t *buf, void *tag) 3321 { 3322 arc_buf_hdr_t *hdr; 3323 kmutex_t *hash_lock = NULL; 3324 l2arc_buf_hdr_t *l2hdr; 3325 uint64_t buf_size; 3326 3327 /* 3328 * It would be nice to assert that if it's DMU metadata (level > 3329 * 0 || it's the dnode file), then it must be syncing context. 3330 * But we don't know that information at this level. 3331 */ 3332 3333 mutex_enter(&buf->b_evict_lock); 3334 hdr = buf->b_hdr; 3335 3336 /* this buffer is not on any list */ 3337 ASSERT(refcount_count(&hdr->b_refcnt) > 0); 3338 3339 if (hdr->b_state == arc_anon) { 3340 /* this buffer is already released */ 3341 ASSERT(buf->b_efunc == NULL); 3342 } else { 3343 hash_lock = HDR_LOCK(hdr); 3344 mutex_enter(hash_lock); 3345 hdr = buf->b_hdr; 3346 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 3347 } 3348 3349 l2hdr = hdr->b_l2hdr; 3350 if (l2hdr) { 3351 mutex_enter(&l2arc_buflist_mtx); 3352 hdr->b_l2hdr = NULL; 3353 list_remove(l2hdr->b_dev->l2ad_buflist, hdr); 3354 } 3355 buf_size = hdr->b_size; 3356 3357 /* 3358 * Do we have more than one buf? 3359 */ 3360 if (hdr->b_datacnt > 1) { 3361 arc_buf_hdr_t *nhdr; 3362 arc_buf_t **bufp; 3363 uint64_t blksz = hdr->b_size; 3364 uint64_t spa = hdr->b_spa; 3365 arc_buf_contents_t type = hdr->b_type; 3366 uint32_t flags = hdr->b_flags; 3367 3368 ASSERT(hdr->b_buf != buf || buf->b_next != NULL); 3369 /* 3370 * Pull the data off of this hdr and attach it to 3371 * a new anonymous hdr. 3372 */ 3373 (void) remove_reference(hdr, hash_lock, tag); 3374 bufp = &hdr->b_buf; 3375 while (*bufp != buf) 3376 bufp = &(*bufp)->b_next; 3377 *bufp = buf->b_next; 3378 buf->b_next = NULL; 3379 3380 ASSERT3U(hdr->b_state->arcs_size, >=, hdr->b_size); 3381 atomic_add_64(&hdr->b_state->arcs_size, -hdr->b_size); 3382 if (refcount_is_zero(&hdr->b_refcnt)) { 3383 uint64_t *size = &hdr->b_state->arcs_lsize[hdr->b_type]; 3384 ASSERT3U(*size, >=, hdr->b_size); 3385 atomic_add_64(size, -hdr->b_size); 3386 } 3387 3388 /* 3389 * We're releasing a duplicate user data buffer, update 3390 * our statistics accordingly. 3391 */ 3392 if (hdr->b_type == ARC_BUFC_DATA) { 3393 ARCSTAT_BUMPDOWN(arcstat_duplicate_buffers); 3394 ARCSTAT_INCR(arcstat_duplicate_buffers_size, 3395 -hdr->b_size); 3396 } 3397 hdr->b_datacnt -= 1; 3398 arc_cksum_verify(buf); 3399 arc_buf_unwatch(buf); 3400 3401 mutex_exit(hash_lock); 3402 3403 nhdr = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE); 3404 nhdr->b_size = blksz; 3405 nhdr->b_spa = spa; 3406 nhdr->b_type = type; 3407 nhdr->b_buf = buf; 3408 nhdr->b_state = arc_anon; 3409 nhdr->b_arc_access = 0; 3410 nhdr->b_flags = flags & ARC_L2_WRITING; 3411 nhdr->b_l2hdr = NULL; 3412 nhdr->b_datacnt = 1; 3413 nhdr->b_freeze_cksum = NULL; 3414 (void) refcount_add(&nhdr->b_refcnt, tag); 3415 buf->b_hdr = nhdr; 3416 mutex_exit(&buf->b_evict_lock); 3417 atomic_add_64(&arc_anon->arcs_size, blksz); 3418 } else { 3419 mutex_exit(&buf->b_evict_lock); 3420 ASSERT(refcount_count(&hdr->b_refcnt) == 1); 3421 ASSERT(!list_link_active(&hdr->b_arc_node)); 3422 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 3423 if (hdr->b_state != arc_anon) 3424 arc_change_state(arc_anon, hdr, hash_lock); 3425 hdr->b_arc_access = 0; 3426 if (hash_lock) 3427 mutex_exit(hash_lock); 3428 3429 buf_discard_identity(hdr); 3430 arc_buf_thaw(buf); 3431 } 3432 buf->b_efunc = NULL; 3433 buf->b_private = NULL; 3434 3435 if (l2hdr) { 3436 ARCSTAT_INCR(arcstat_l2_asize, -l2hdr->b_asize); 3437 vdev_space_update(l2hdr->b_dev->l2ad_vdev, 3438 -l2hdr->b_asize, 0, 0); 3439 kmem_free(l2hdr, sizeof (l2arc_buf_hdr_t)); 3440 ARCSTAT_INCR(arcstat_l2_size, -buf_size); 3441 mutex_exit(&l2arc_buflist_mtx); 3442 } 3443 } 3444 3445 int 3446 arc_released(arc_buf_t *buf) 3447 { 3448 int released; 3449 3450 mutex_enter(&buf->b_evict_lock); 3451 released = (buf->b_data != NULL && buf->b_hdr->b_state == arc_anon); 3452 mutex_exit(&buf->b_evict_lock); 3453 return (released); 3454 } 3455 3456 #ifdef ZFS_DEBUG 3457 int 3458 arc_referenced(arc_buf_t *buf) 3459 { 3460 int referenced; 3461 3462 mutex_enter(&buf->b_evict_lock); 3463 referenced = (refcount_count(&buf->b_hdr->b_refcnt)); 3464 mutex_exit(&buf->b_evict_lock); 3465 return (referenced); 3466 } 3467 #endif 3468 3469 static void 3470 arc_write_ready(zio_t *zio) 3471 { 3472 arc_write_callback_t *callback = zio->io_private; 3473 arc_buf_t *buf = callback->awcb_buf; 3474 arc_buf_hdr_t *hdr = buf->b_hdr; 3475 3476 ASSERT(!refcount_is_zero(&buf->b_hdr->b_refcnt)); 3477 callback->awcb_ready(zio, buf, callback->awcb_private); 3478 3479 /* 3480 * If the IO is already in progress, then this is a re-write 3481 * attempt, so we need to thaw and re-compute the cksum. 3482 * It is the responsibility of the callback to handle the 3483 * accounting for any re-write attempt. 3484 */ 3485 if (HDR_IO_IN_PROGRESS(hdr)) { 3486 mutex_enter(&hdr->b_freeze_lock); 3487 if (hdr->b_freeze_cksum != NULL) { 3488 kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t)); 3489 hdr->b_freeze_cksum = NULL; 3490 } 3491 mutex_exit(&hdr->b_freeze_lock); 3492 } 3493 arc_cksum_compute(buf, B_FALSE); 3494 hdr->b_flags |= ARC_IO_IN_PROGRESS; 3495 } 3496 3497 /* 3498 * The SPA calls this callback for each physical write that happens on behalf 3499 * of a logical write. See the comment in dbuf_write_physdone() for details. 3500 */ 3501 static void 3502 arc_write_physdone(zio_t *zio) 3503 { 3504 arc_write_callback_t *cb = zio->io_private; 3505 if (cb->awcb_physdone != NULL) 3506 cb->awcb_physdone(zio, cb->awcb_buf, cb->awcb_private); 3507 } 3508 3509 static void 3510 arc_write_done(zio_t *zio) 3511 { 3512 arc_write_callback_t *callback = zio->io_private; 3513 arc_buf_t *buf = callback->awcb_buf; 3514 arc_buf_hdr_t *hdr = buf->b_hdr; 3515 3516 ASSERT(hdr->b_acb == NULL); 3517 3518 if (zio->io_error == 0) { 3519 if (BP_IS_HOLE(zio->io_bp) || BP_IS_EMBEDDED(zio->io_bp)) { 3520 buf_discard_identity(hdr); 3521 } else { 3522 hdr->b_dva = *BP_IDENTITY(zio->io_bp); 3523 hdr->b_birth = BP_PHYSICAL_BIRTH(zio->io_bp); 3524 hdr->b_cksum0 = zio->io_bp->blk_cksum.zc_word[0]; 3525 } 3526 } else { 3527 ASSERT(BUF_EMPTY(hdr)); 3528 } 3529 3530 /* 3531 * If the block to be written was all-zero or compressed enough to be 3532 * embedded in the BP, no write was performed so there will be no 3533 * dva/birth/checksum. The buffer must therefore remain anonymous 3534 * (and uncached). 3535 */ 3536 if (!BUF_EMPTY(hdr)) { 3537 arc_buf_hdr_t *exists; 3538 kmutex_t *hash_lock; 3539 3540 ASSERT(zio->io_error == 0); 3541 3542 arc_cksum_verify(buf); 3543 3544 exists = buf_hash_insert(hdr, &hash_lock); 3545 if (exists) { 3546 /* 3547 * This can only happen if we overwrite for 3548 * sync-to-convergence, because we remove 3549 * buffers from the hash table when we arc_free(). 3550 */ 3551 if (zio->io_flags & ZIO_FLAG_IO_REWRITE) { 3552 if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp)) 3553 panic("bad overwrite, hdr=%p exists=%p", 3554 (void *)hdr, (void *)exists); 3555 ASSERT(refcount_is_zero(&exists->b_refcnt)); 3556 arc_change_state(arc_anon, exists, hash_lock); 3557 mutex_exit(hash_lock); 3558 arc_hdr_destroy(exists); 3559 exists = buf_hash_insert(hdr, &hash_lock); 3560 ASSERT3P(exists, ==, NULL); 3561 } else if (zio->io_flags & ZIO_FLAG_NOPWRITE) { 3562 /* nopwrite */ 3563 ASSERT(zio->io_prop.zp_nopwrite); 3564 if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp)) 3565 panic("bad nopwrite, hdr=%p exists=%p", 3566 (void *)hdr, (void *)exists); 3567 } else { 3568 /* Dedup */ 3569 ASSERT(hdr->b_datacnt == 1); 3570 ASSERT(hdr->b_state == arc_anon); 3571 ASSERT(BP_GET_DEDUP(zio->io_bp)); 3572 ASSERT(BP_GET_LEVEL(zio->io_bp) == 0); 3573 } 3574 } 3575 hdr->b_flags &= ~ARC_IO_IN_PROGRESS; 3576 /* if it's not anon, we are doing a scrub */ 3577 if (!exists && hdr->b_state == arc_anon) 3578 arc_access(hdr, hash_lock); 3579 mutex_exit(hash_lock); 3580 } else { 3581 hdr->b_flags &= ~ARC_IO_IN_PROGRESS; 3582 } 3583 3584 ASSERT(!refcount_is_zero(&hdr->b_refcnt)); 3585 callback->awcb_done(zio, buf, callback->awcb_private); 3586 3587 kmem_free(callback, sizeof (arc_write_callback_t)); 3588 } 3589 3590 zio_t * 3591 arc_write(zio_t *pio, spa_t *spa, uint64_t txg, 3592 blkptr_t *bp, arc_buf_t *buf, boolean_t l2arc, boolean_t l2arc_compress, 3593 const zio_prop_t *zp, arc_done_func_t *ready, arc_done_func_t *physdone, 3594 arc_done_func_t *done, void *private, zio_priority_t priority, 3595 int zio_flags, const zbookmark_phys_t *zb) 3596 { 3597 arc_buf_hdr_t *hdr = buf->b_hdr; 3598 arc_write_callback_t *callback; 3599 zio_t *zio; 3600 3601 ASSERT(ready != NULL); 3602 ASSERT(done != NULL); 3603 ASSERT(!HDR_IO_ERROR(hdr)); 3604 ASSERT((hdr->b_flags & ARC_IO_IN_PROGRESS) == 0); 3605 ASSERT(hdr->b_acb == NULL); 3606 if (l2arc) 3607 hdr->b_flags |= ARC_L2CACHE; 3608 if (l2arc_compress) 3609 hdr->b_flags |= ARC_L2COMPRESS; 3610 callback = kmem_zalloc(sizeof (arc_write_callback_t), KM_SLEEP); 3611 callback->awcb_ready = ready; 3612 callback->awcb_physdone = physdone; 3613 callback->awcb_done = done; 3614 callback->awcb_private = private; 3615 callback->awcb_buf = buf; 3616 3617 zio = zio_write(pio, spa, txg, bp, buf->b_data, hdr->b_size, zp, 3618 arc_write_ready, arc_write_physdone, arc_write_done, callback, 3619 priority, zio_flags, zb); 3620 3621 return (zio); 3622 } 3623 3624 static int 3625 arc_memory_throttle(uint64_t reserve, uint64_t txg) 3626 { 3627 #ifdef _KERNEL 3628 uint64_t available_memory = ptob(freemem); 3629 static uint64_t page_load = 0; 3630 static uint64_t last_txg = 0; 3631 3632 #if defined(__i386) 3633 available_memory = 3634 MIN(available_memory, vmem_size(heap_arena, VMEM_FREE)); 3635 #endif 3636 3637 if (freemem > physmem * arc_lotsfree_percent / 100) 3638 return (0); 3639 3640 if (txg > last_txg) { 3641 last_txg = txg; 3642 page_load = 0; 3643 } 3644 /* 3645 * If we are in pageout, we know that memory is already tight, 3646 * the arc is already going to be evicting, so we just want to 3647 * continue to let page writes occur as quickly as possible. 3648 */ 3649 if (curproc == proc_pageout) { 3650 if (page_load > MAX(ptob(minfree), available_memory) / 4) 3651 return (SET_ERROR(ERESTART)); 3652 /* Note: reserve is inflated, so we deflate */ 3653 page_load += reserve / 8; 3654 return (0); 3655 } else if (page_load > 0 && arc_reclaim_needed()) { 3656 /* memory is low, delay before restarting */ 3657 ARCSTAT_INCR(arcstat_memory_throttle_count, 1); 3658 return (SET_ERROR(EAGAIN)); 3659 } 3660 page_load = 0; 3661 #endif 3662 return (0); 3663 } 3664 3665 void 3666 arc_tempreserve_clear(uint64_t reserve) 3667 { 3668 atomic_add_64(&arc_tempreserve, -reserve); 3669 ASSERT((int64_t)arc_tempreserve >= 0); 3670 } 3671 3672 int 3673 arc_tempreserve_space(uint64_t reserve, uint64_t txg) 3674 { 3675 int error; 3676 uint64_t anon_size; 3677 3678 if (reserve > arc_c/4 && !arc_no_grow) 3679 arc_c = MIN(arc_c_max, reserve * 4); 3680 if (reserve > arc_c) 3681 return (SET_ERROR(ENOMEM)); 3682 3683 /* 3684 * Don't count loaned bufs as in flight dirty data to prevent long 3685 * network delays from blocking transactions that are ready to be 3686 * assigned to a txg. 3687 */ 3688 anon_size = MAX((int64_t)(arc_anon->arcs_size - arc_loaned_bytes), 0); 3689 3690 /* 3691 * Writes will, almost always, require additional memory allocations 3692 * in order to compress/encrypt/etc the data. We therefore need to 3693 * make sure that there is sufficient available memory for this. 3694 */ 3695 error = arc_memory_throttle(reserve, txg); 3696 if (error != 0) 3697 return (error); 3698 3699 /* 3700 * Throttle writes when the amount of dirty data in the cache 3701 * gets too large. We try to keep the cache less than half full 3702 * of dirty blocks so that our sync times don't grow too large. 3703 * Note: if two requests come in concurrently, we might let them 3704 * both succeed, when one of them should fail. Not a huge deal. 3705 */ 3706 3707 if (reserve + arc_tempreserve + anon_size > arc_c / 2 && 3708 anon_size > arc_c / 4) { 3709 dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK " 3710 "anon_data=%lluK tempreserve=%lluK arc_c=%lluK\n", 3711 arc_tempreserve>>10, 3712 arc_anon->arcs_lsize[ARC_BUFC_METADATA]>>10, 3713 arc_anon->arcs_lsize[ARC_BUFC_DATA]>>10, 3714 reserve>>10, arc_c>>10); 3715 return (SET_ERROR(ERESTART)); 3716 } 3717 atomic_add_64(&arc_tempreserve, reserve); 3718 return (0); 3719 } 3720 3721 void 3722 arc_init(void) 3723 { 3724 mutex_init(&arc_reclaim_thr_lock, NULL, MUTEX_DEFAULT, NULL); 3725 cv_init(&arc_reclaim_thr_cv, NULL, CV_DEFAULT, NULL); 3726 3727 /* Convert seconds to clock ticks */ 3728 arc_min_prefetch_lifespan = 1 * hz; 3729 3730 /* Start out with 1/8 of all memory */ 3731 arc_c = physmem * PAGESIZE / 8; 3732 3733 #ifdef _KERNEL 3734 /* 3735 * On architectures where the physical memory can be larger 3736 * than the addressable space (intel in 32-bit mode), we may 3737 * need to limit the cache to 1/8 of VM size. 3738 */ 3739 arc_c = MIN(arc_c, vmem_size(heap_arena, VMEM_ALLOC | VMEM_FREE) / 8); 3740 #endif 3741 3742 /* set min cache to 1/32 of all memory, or 64MB, whichever is more */ 3743 arc_c_min = MAX(arc_c / 4, 64<<20); 3744 /* set max to 3/4 of all memory, or all but 1GB, whichever is more */ 3745 if (arc_c * 8 >= 1<<30) 3746 arc_c_max = (arc_c * 8) - (1<<30); 3747 else 3748 arc_c_max = arc_c_min; 3749 arc_c_max = MAX(arc_c * 6, arc_c_max); 3750 3751 /* 3752 * Allow the tunables to override our calculations if they are 3753 * reasonable (ie. over 64MB) 3754 */ 3755 if (zfs_arc_max > 64<<20 && zfs_arc_max < physmem * PAGESIZE) 3756 arc_c_max = zfs_arc_max; 3757 if (zfs_arc_min > 64<<20 && zfs_arc_min <= arc_c_max) 3758 arc_c_min = zfs_arc_min; 3759 3760 arc_c = arc_c_max; 3761 arc_p = (arc_c >> 1); 3762 3763 /* limit meta-data to 1/4 of the arc capacity */ 3764 arc_meta_limit = arc_c_max / 4; 3765 3766 /* Allow the tunable to override if it is reasonable */ 3767 if (zfs_arc_meta_limit > 0 && zfs_arc_meta_limit <= arc_c_max) 3768 arc_meta_limit = zfs_arc_meta_limit; 3769 3770 if (arc_c_min < arc_meta_limit / 2 && zfs_arc_min == 0) 3771 arc_c_min = arc_meta_limit / 2; 3772 3773 if (zfs_arc_grow_retry > 0) 3774 arc_grow_retry = zfs_arc_grow_retry; 3775 3776 if (zfs_arc_shrink_shift > 0) 3777 arc_shrink_shift = zfs_arc_shrink_shift; 3778 3779 if (zfs_arc_p_min_shift > 0) 3780 arc_p_min_shift = zfs_arc_p_min_shift; 3781 3782 /* if kmem_flags are set, lets try to use less memory */ 3783 if (kmem_debugging()) 3784 arc_c = arc_c / 2; 3785 if (arc_c < arc_c_min) 3786 arc_c = arc_c_min; 3787 3788 arc_anon = &ARC_anon; 3789 arc_mru = &ARC_mru; 3790 arc_mru_ghost = &ARC_mru_ghost; 3791 arc_mfu = &ARC_mfu; 3792 arc_mfu_ghost = &ARC_mfu_ghost; 3793 arc_l2c_only = &ARC_l2c_only; 3794 arc_size = 0; 3795 3796 mutex_init(&arc_anon->arcs_mtx, NULL, MUTEX_DEFAULT, NULL); 3797 mutex_init(&arc_mru->arcs_mtx, NULL, MUTEX_DEFAULT, NULL); 3798 mutex_init(&arc_mru_ghost->arcs_mtx, NULL, MUTEX_DEFAULT, NULL); 3799 mutex_init(&arc_mfu->arcs_mtx, NULL, MUTEX_DEFAULT, NULL); 3800 mutex_init(&arc_mfu_ghost->arcs_mtx, NULL, MUTEX_DEFAULT, NULL); 3801 mutex_init(&arc_l2c_only->arcs_mtx, NULL, MUTEX_DEFAULT, NULL); 3802 3803 list_create(&arc_mru->arcs_list[ARC_BUFC_METADATA], 3804 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3805 list_create(&arc_mru->arcs_list[ARC_BUFC_DATA], 3806 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3807 list_create(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA], 3808 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3809 list_create(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA], 3810 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3811 list_create(&arc_mfu->arcs_list[ARC_BUFC_METADATA], 3812 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3813 list_create(&arc_mfu->arcs_list[ARC_BUFC_DATA], 3814 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3815 list_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA], 3816 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3817 list_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA], 3818 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3819 list_create(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA], 3820 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3821 list_create(&arc_l2c_only->arcs_list[ARC_BUFC_DATA], 3822 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3823 3824 buf_init(); 3825 3826 arc_thread_exit = 0; 3827 arc_eviction_list = NULL; 3828 mutex_init(&arc_eviction_mtx, NULL, MUTEX_DEFAULT, NULL); 3829 bzero(&arc_eviction_hdr, sizeof (arc_buf_hdr_t)); 3830 3831 arc_ksp = kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED, 3832 sizeof (arc_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL); 3833 3834 if (arc_ksp != NULL) { 3835 arc_ksp->ks_data = &arc_stats; 3836 kstat_install(arc_ksp); 3837 } 3838 3839 (void) thread_create(NULL, 0, arc_reclaim_thread, NULL, 0, &p0, 3840 TS_RUN, minclsyspri); 3841 3842 arc_dead = FALSE; 3843 arc_warm = B_FALSE; 3844 3845 /* 3846 * Calculate maximum amount of dirty data per pool. 3847 * 3848 * If it has been set by /etc/system, take that. 3849 * Otherwise, use a percentage of physical memory defined by 3850 * zfs_dirty_data_max_percent (default 10%) with a cap at 3851 * zfs_dirty_data_max_max (default 4GB). 3852 */ 3853 if (zfs_dirty_data_max == 0) { 3854 zfs_dirty_data_max = physmem * PAGESIZE * 3855 zfs_dirty_data_max_percent / 100; 3856 zfs_dirty_data_max = MIN(zfs_dirty_data_max, 3857 zfs_dirty_data_max_max); 3858 } 3859 } 3860 3861 void 3862 arc_fini(void) 3863 { 3864 mutex_enter(&arc_reclaim_thr_lock); 3865 arc_thread_exit = 1; 3866 while (arc_thread_exit != 0) 3867 cv_wait(&arc_reclaim_thr_cv, &arc_reclaim_thr_lock); 3868 mutex_exit(&arc_reclaim_thr_lock); 3869 3870 arc_flush(NULL); 3871 3872 arc_dead = TRUE; 3873 3874 if (arc_ksp != NULL) { 3875 kstat_delete(arc_ksp); 3876 arc_ksp = NULL; 3877 } 3878 3879 mutex_destroy(&arc_eviction_mtx); 3880 mutex_destroy(&arc_reclaim_thr_lock); 3881 cv_destroy(&arc_reclaim_thr_cv); 3882 3883 list_destroy(&arc_mru->arcs_list[ARC_BUFC_METADATA]); 3884 list_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA]); 3885 list_destroy(&arc_mfu->arcs_list[ARC_BUFC_METADATA]); 3886 list_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA]); 3887 list_destroy(&arc_mru->arcs_list[ARC_BUFC_DATA]); 3888 list_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA]); 3889 list_destroy(&arc_mfu->arcs_list[ARC_BUFC_DATA]); 3890 list_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA]); 3891 3892 mutex_destroy(&arc_anon->arcs_mtx); 3893 mutex_destroy(&arc_mru->arcs_mtx); 3894 mutex_destroy(&arc_mru_ghost->arcs_mtx); 3895 mutex_destroy(&arc_mfu->arcs_mtx); 3896 mutex_destroy(&arc_mfu_ghost->arcs_mtx); 3897 mutex_destroy(&arc_l2c_only->arcs_mtx); 3898 3899 buf_fini(); 3900 3901 ASSERT(arc_loaned_bytes == 0); 3902 } 3903 3904 /* 3905 * Level 2 ARC 3906 * 3907 * The level 2 ARC (L2ARC) is a cache layer in-between main memory and disk. 3908 * It uses dedicated storage devices to hold cached data, which are populated 3909 * using large infrequent writes. The main role of this cache is to boost 3910 * the performance of random read workloads. The intended L2ARC devices 3911 * include short-stroked disks, solid state disks, and other media with 3912 * substantially faster read latency than disk. 3913 * 3914 * +-----------------------+ 3915 * | ARC | 3916 * +-----------------------+ 3917 * | ^ ^ 3918 * | | | 3919 * l2arc_feed_thread() arc_read() 3920 * | | | 3921 * | l2arc read | 3922 * V | | 3923 * +---------------+ | 3924 * | L2ARC | | 3925 * +---------------+ | 3926 * | ^ | 3927 * l2arc_write() | | 3928 * | | | 3929 * V | | 3930 * +-------+ +-------+ 3931 * | vdev | | vdev | 3932 * | cache | | cache | 3933 * +-------+ +-------+ 3934 * +=========+ .-----. 3935 * : L2ARC : |-_____-| 3936 * : devices : | Disks | 3937 * +=========+ `-_____-' 3938 * 3939 * Read requests are satisfied from the following sources, in order: 3940 * 3941 * 1) ARC 3942 * 2) vdev cache of L2ARC devices 3943 * 3) L2ARC devices 3944 * 4) vdev cache of disks 3945 * 5) disks 3946 * 3947 * Some L2ARC device types exhibit extremely slow write performance. 3948 * To accommodate for this there are some significant differences between 3949 * the L2ARC and traditional cache design: 3950 * 3951 * 1. There is no eviction path from the ARC to the L2ARC. Evictions from 3952 * the ARC behave as usual, freeing buffers and placing headers on ghost 3953 * lists. The ARC does not send buffers to the L2ARC during eviction as 3954 * this would add inflated write latencies for all ARC memory pressure. 3955 * 3956 * 2. The L2ARC attempts to cache data from the ARC before it is evicted. 3957 * It does this by periodically scanning buffers from the eviction-end of 3958 * the MFU and MRU ARC lists, copying them to the L2ARC devices if they are 3959 * not already there. It scans until a headroom of buffers is satisfied, 3960 * which itself is a buffer for ARC eviction. If a compressible buffer is 3961 * found during scanning and selected for writing to an L2ARC device, we 3962 * temporarily boost scanning headroom during the next scan cycle to make 3963 * sure we adapt to compression effects (which might significantly reduce 3964 * the data volume we write to L2ARC). The thread that does this is 3965 * l2arc_feed_thread(), illustrated below; example sizes are included to 3966 * provide a better sense of ratio than this diagram: 3967 * 3968 * head --> tail 3969 * +---------------------+----------+ 3970 * ARC_mfu |:::::#:::::::::::::::|o#o###o###|-->. # already on L2ARC 3971 * +---------------------+----------+ | o L2ARC eligible 3972 * ARC_mru |:#:::::::::::::::::::|#o#ooo####|-->| : ARC buffer 3973 * +---------------------+----------+ | 3974 * 15.9 Gbytes ^ 32 Mbytes | 3975 * headroom | 3976 * l2arc_feed_thread() 3977 * | 3978 * l2arc write hand <--[oooo]--' 3979 * | 8 Mbyte 3980 * | write max 3981 * V 3982 * +==============================+ 3983 * L2ARC dev |####|#|###|###| |####| ... | 3984 * +==============================+ 3985 * 32 Gbytes 3986 * 3987 * 3. If an ARC buffer is copied to the L2ARC but then hit instead of 3988 * evicted, then the L2ARC has cached a buffer much sooner than it probably 3989 * needed to, potentially wasting L2ARC device bandwidth and storage. It is 3990 * safe to say that this is an uncommon case, since buffers at the end of 3991 * the ARC lists have moved there due to inactivity. 3992 * 3993 * 4. If the ARC evicts faster than the L2ARC can maintain a headroom, 3994 * then the L2ARC simply misses copying some buffers. This serves as a 3995 * pressure valve to prevent heavy read workloads from both stalling the ARC 3996 * with waits and clogging the L2ARC with writes. This also helps prevent 3997 * the potential for the L2ARC to churn if it attempts to cache content too 3998 * quickly, such as during backups of the entire pool. 3999 * 4000 * 5. After system boot and before the ARC has filled main memory, there are 4001 * no evictions from the ARC and so the tails of the ARC_mfu and ARC_mru 4002 * lists can remain mostly static. Instead of searching from tail of these 4003 * lists as pictured, the l2arc_feed_thread() will search from the list heads 4004 * for eligible buffers, greatly increasing its chance of finding them. 4005 * 4006 * The L2ARC device write speed is also boosted during this time so that 4007 * the L2ARC warms up faster. Since there have been no ARC evictions yet, 4008 * there are no L2ARC reads, and no fear of degrading read performance 4009 * through increased writes. 4010 * 4011 * 6. Writes to the L2ARC devices are grouped and sent in-sequence, so that 4012 * the vdev queue can aggregate them into larger and fewer writes. Each 4013 * device is written to in a rotor fashion, sweeping writes through 4014 * available space then repeating. 4015 * 4016 * 7. The L2ARC does not store dirty content. It never needs to flush 4017 * write buffers back to disk based storage. 4018 * 4019 * 8. If an ARC buffer is written (and dirtied) which also exists in the 4020 * L2ARC, the now stale L2ARC buffer is immediately dropped. 4021 * 4022 * The performance of the L2ARC can be tweaked by a number of tunables, which 4023 * may be necessary for different workloads: 4024 * 4025 * l2arc_write_max max write bytes per interval 4026 * l2arc_write_boost extra write bytes during device warmup 4027 * l2arc_noprefetch skip caching prefetched buffers 4028 * l2arc_headroom number of max device writes to precache 4029 * l2arc_headroom_boost when we find compressed buffers during ARC 4030 * scanning, we multiply headroom by this 4031 * percentage factor for the next scan cycle, 4032 * since more compressed buffers are likely to 4033 * be present 4034 * l2arc_feed_secs seconds between L2ARC writing 4035 * 4036 * Tunables may be removed or added as future performance improvements are 4037 * integrated, and also may become zpool properties. 4038 * 4039 * There are three key functions that control how the L2ARC warms up: 4040 * 4041 * l2arc_write_eligible() check if a buffer is eligible to cache 4042 * l2arc_write_size() calculate how much to write 4043 * l2arc_write_interval() calculate sleep delay between writes 4044 * 4045 * These three functions determine what to write, how much, and how quickly 4046 * to send writes. 4047 */ 4048 4049 static boolean_t 4050 l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *ab) 4051 { 4052 /* 4053 * A buffer is *not* eligible for the L2ARC if it: 4054 * 1. belongs to a different spa. 4055 * 2. is already cached on the L2ARC. 4056 * 3. has an I/O in progress (it may be an incomplete read). 4057 * 4. is flagged not eligible (zfs property). 4058 */ 4059 if (ab->b_spa != spa_guid || ab->b_l2hdr != NULL || 4060 HDR_IO_IN_PROGRESS(ab) || !HDR_L2CACHE(ab)) 4061 return (B_FALSE); 4062 4063 return (B_TRUE); 4064 } 4065 4066 static uint64_t 4067 l2arc_write_size(void) 4068 { 4069 uint64_t size; 4070 4071 /* 4072 * Make sure our globals have meaningful values in case the user 4073 * altered them. 4074 */ 4075 size = l2arc_write_max; 4076 if (size == 0) { 4077 cmn_err(CE_NOTE, "Bad value for l2arc_write_max, value must " 4078 "be greater than zero, resetting it to the default (%d)", 4079 L2ARC_WRITE_SIZE); 4080 size = l2arc_write_max = L2ARC_WRITE_SIZE; 4081 } 4082 4083 if (arc_warm == B_FALSE) 4084 size += l2arc_write_boost; 4085 4086 return (size); 4087 4088 } 4089 4090 static clock_t 4091 l2arc_write_interval(clock_t began, uint64_t wanted, uint64_t wrote) 4092 { 4093 clock_t interval, next, now; 4094 4095 /* 4096 * If the ARC lists are busy, increase our write rate; if the 4097 * lists are stale, idle back. This is achieved by checking 4098 * how much we previously wrote - if it was more than half of 4099 * what we wanted, schedule the next write much sooner. 4100 */ 4101 if (l2arc_feed_again && wrote > (wanted / 2)) 4102 interval = (hz * l2arc_feed_min_ms) / 1000; 4103 else 4104 interval = hz * l2arc_feed_secs; 4105 4106 now = ddi_get_lbolt(); 4107 next = MAX(now, MIN(now + interval, began + interval)); 4108 4109 return (next); 4110 } 4111 4112 static void 4113 l2arc_hdr_stat_add(void) 4114 { 4115 ARCSTAT_INCR(arcstat_l2_hdr_size, HDR_SIZE + L2HDR_SIZE); 4116 ARCSTAT_INCR(arcstat_hdr_size, -HDR_SIZE); 4117 } 4118 4119 static void 4120 l2arc_hdr_stat_remove(void) 4121 { 4122 ARCSTAT_INCR(arcstat_l2_hdr_size, -(HDR_SIZE + L2HDR_SIZE)); 4123 ARCSTAT_INCR(arcstat_hdr_size, HDR_SIZE); 4124 } 4125 4126 /* 4127 * Cycle through L2ARC devices. This is how L2ARC load balances. 4128 * If a device is returned, this also returns holding the spa config lock. 4129 */ 4130 static l2arc_dev_t * 4131 l2arc_dev_get_next(void) 4132 { 4133 l2arc_dev_t *first, *next = NULL; 4134 4135 /* 4136 * Lock out the removal of spas (spa_namespace_lock), then removal 4137 * of cache devices (l2arc_dev_mtx). Once a device has been selected, 4138 * both locks will be dropped and a spa config lock held instead. 4139 */ 4140 mutex_enter(&spa_namespace_lock); 4141 mutex_enter(&l2arc_dev_mtx); 4142 4143 /* if there are no vdevs, there is nothing to do */ 4144 if (l2arc_ndev == 0) 4145 goto out; 4146 4147 first = NULL; 4148 next = l2arc_dev_last; 4149 do { 4150 /* loop around the list looking for a non-faulted vdev */ 4151 if (next == NULL) { 4152 next = list_head(l2arc_dev_list); 4153 } else { 4154 next = list_next(l2arc_dev_list, next); 4155 if (next == NULL) 4156 next = list_head(l2arc_dev_list); 4157 } 4158 4159 /* if we have come back to the start, bail out */ 4160 if (first == NULL) 4161 first = next; 4162 else if (next == first) 4163 break; 4164 4165 } while (vdev_is_dead(next->l2ad_vdev)); 4166 4167 /* if we were unable to find any usable vdevs, return NULL */ 4168 if (vdev_is_dead(next->l2ad_vdev)) 4169 next = NULL; 4170 4171 l2arc_dev_last = next; 4172 4173 out: 4174 mutex_exit(&l2arc_dev_mtx); 4175 4176 /* 4177 * Grab the config lock to prevent the 'next' device from being 4178 * removed while we are writing to it. 4179 */ 4180 if (next != NULL) 4181 spa_config_enter(next->l2ad_spa, SCL_L2ARC, next, RW_READER); 4182 mutex_exit(&spa_namespace_lock); 4183 4184 return (next); 4185 } 4186 4187 /* 4188 * Free buffers that were tagged for destruction. 4189 */ 4190 static void 4191 l2arc_do_free_on_write() 4192 { 4193 list_t *buflist; 4194 l2arc_data_free_t *df, *df_prev; 4195 4196 mutex_enter(&l2arc_free_on_write_mtx); 4197 buflist = l2arc_free_on_write; 4198 4199 for (df = list_tail(buflist); df; df = df_prev) { 4200 df_prev = list_prev(buflist, df); 4201 ASSERT(df->l2df_data != NULL); 4202 ASSERT(df->l2df_func != NULL); 4203 df->l2df_func(df->l2df_data, df->l2df_size); 4204 list_remove(buflist, df); 4205 kmem_free(df, sizeof (l2arc_data_free_t)); 4206 } 4207 4208 mutex_exit(&l2arc_free_on_write_mtx); 4209 } 4210 4211 /* 4212 * A write to a cache device has completed. Update all headers to allow 4213 * reads from these buffers to begin. 4214 */ 4215 static void 4216 l2arc_write_done(zio_t *zio) 4217 { 4218 l2arc_write_callback_t *cb; 4219 l2arc_dev_t *dev; 4220 list_t *buflist; 4221 arc_buf_hdr_t *head, *ab, *ab_prev; 4222 l2arc_buf_hdr_t *abl2; 4223 kmutex_t *hash_lock; 4224 int64_t bytes_dropped = 0; 4225 4226 cb = zio->io_private; 4227 ASSERT(cb != NULL); 4228 dev = cb->l2wcb_dev; 4229 ASSERT(dev != NULL); 4230 head = cb->l2wcb_head; 4231 ASSERT(head != NULL); 4232 buflist = dev->l2ad_buflist; 4233 ASSERT(buflist != NULL); 4234 DTRACE_PROBE2(l2arc__iodone, zio_t *, zio, 4235 l2arc_write_callback_t *, cb); 4236 4237 if (zio->io_error != 0) 4238 ARCSTAT_BUMP(arcstat_l2_writes_error); 4239 4240 mutex_enter(&l2arc_buflist_mtx); 4241 4242 /* 4243 * All writes completed, or an error was hit. 4244 */ 4245 for (ab = list_prev(buflist, head); ab; ab = ab_prev) { 4246 ab_prev = list_prev(buflist, ab); 4247 abl2 = ab->b_l2hdr; 4248 4249 /* 4250 * Release the temporary compressed buffer as soon as possible. 4251 */ 4252 if (abl2->b_compress != ZIO_COMPRESS_OFF) 4253 l2arc_release_cdata_buf(ab); 4254 4255 hash_lock = HDR_LOCK(ab); 4256 if (!mutex_tryenter(hash_lock)) { 4257 /* 4258 * This buffer misses out. It may be in a stage 4259 * of eviction. Its ARC_L2_WRITING flag will be 4260 * left set, denying reads to this buffer. 4261 */ 4262 ARCSTAT_BUMP(arcstat_l2_writes_hdr_miss); 4263 continue; 4264 } 4265 4266 if (zio->io_error != 0) { 4267 /* 4268 * Error - drop L2ARC entry. 4269 */ 4270 list_remove(buflist, ab); 4271 ARCSTAT_INCR(arcstat_l2_asize, -abl2->b_asize); 4272 bytes_dropped += abl2->b_asize; 4273 ab->b_l2hdr = NULL; 4274 kmem_free(abl2, sizeof (l2arc_buf_hdr_t)); 4275 ARCSTAT_INCR(arcstat_l2_size, -ab->b_size); 4276 } 4277 4278 /* 4279 * Allow ARC to begin reads to this L2ARC entry. 4280 */ 4281 ab->b_flags &= ~ARC_L2_WRITING; 4282 4283 mutex_exit(hash_lock); 4284 } 4285 4286 atomic_inc_64(&l2arc_writes_done); 4287 list_remove(buflist, head); 4288 kmem_cache_free(hdr_cache, head); 4289 mutex_exit(&l2arc_buflist_mtx); 4290 4291 vdev_space_update(dev->l2ad_vdev, -bytes_dropped, 0, 0); 4292 4293 l2arc_do_free_on_write(); 4294 4295 kmem_free(cb, sizeof (l2arc_write_callback_t)); 4296 } 4297 4298 /* 4299 * A read to a cache device completed. Validate buffer contents before 4300 * handing over to the regular ARC routines. 4301 */ 4302 static void 4303 l2arc_read_done(zio_t *zio) 4304 { 4305 l2arc_read_callback_t *cb; 4306 arc_buf_hdr_t *hdr; 4307 arc_buf_t *buf; 4308 kmutex_t *hash_lock; 4309 int equal; 4310 4311 ASSERT(zio->io_vd != NULL); 4312 ASSERT(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE); 4313 4314 spa_config_exit(zio->io_spa, SCL_L2ARC, zio->io_vd); 4315 4316 cb = zio->io_private; 4317 ASSERT(cb != NULL); 4318 buf = cb->l2rcb_buf; 4319 ASSERT(buf != NULL); 4320 4321 hash_lock = HDR_LOCK(buf->b_hdr); 4322 mutex_enter(hash_lock); 4323 hdr = buf->b_hdr; 4324 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 4325 4326 /* 4327 * If the buffer was compressed, decompress it first. 4328 */ 4329 if (cb->l2rcb_compress != ZIO_COMPRESS_OFF) 4330 l2arc_decompress_zio(zio, hdr, cb->l2rcb_compress); 4331 ASSERT(zio->io_data != NULL); 4332 4333 /* 4334 * Check this survived the L2ARC journey. 4335 */ 4336 equal = arc_cksum_equal(buf); 4337 if (equal && zio->io_error == 0 && !HDR_L2_EVICTED(hdr)) { 4338 mutex_exit(hash_lock); 4339 zio->io_private = buf; 4340 zio->io_bp_copy = cb->l2rcb_bp; /* XXX fix in L2ARC 2.0 */ 4341 zio->io_bp = &zio->io_bp_copy; /* XXX fix in L2ARC 2.0 */ 4342 arc_read_done(zio); 4343 } else { 4344 mutex_exit(hash_lock); 4345 /* 4346 * Buffer didn't survive caching. Increment stats and 4347 * reissue to the original storage device. 4348 */ 4349 if (zio->io_error != 0) { 4350 ARCSTAT_BUMP(arcstat_l2_io_error); 4351 } else { 4352 zio->io_error = SET_ERROR(EIO); 4353 } 4354 if (!equal) 4355 ARCSTAT_BUMP(arcstat_l2_cksum_bad); 4356 4357 /* 4358 * If there's no waiter, issue an async i/o to the primary 4359 * storage now. If there *is* a waiter, the caller must 4360 * issue the i/o in a context where it's OK to block. 4361 */ 4362 if (zio->io_waiter == NULL) { 4363 zio_t *pio = zio_unique_parent(zio); 4364 4365 ASSERT(!pio || pio->io_child_type == ZIO_CHILD_LOGICAL); 4366 4367 zio_nowait(zio_read(pio, cb->l2rcb_spa, &cb->l2rcb_bp, 4368 buf->b_data, zio->io_size, arc_read_done, buf, 4369 zio->io_priority, cb->l2rcb_flags, &cb->l2rcb_zb)); 4370 } 4371 } 4372 4373 kmem_free(cb, sizeof (l2arc_read_callback_t)); 4374 } 4375 4376 /* 4377 * This is the list priority from which the L2ARC will search for pages to 4378 * cache. This is used within loops (0..3) to cycle through lists in the 4379 * desired order. This order can have a significant effect on cache 4380 * performance. 4381 * 4382 * Currently the metadata lists are hit first, MFU then MRU, followed by 4383 * the data lists. This function returns a locked list, and also returns 4384 * the lock pointer. 4385 */ 4386 static list_t * 4387 l2arc_list_locked(int list_num, kmutex_t **lock) 4388 { 4389 list_t *list = NULL; 4390 4391 ASSERT(list_num >= 0 && list_num <= 3); 4392 4393 switch (list_num) { 4394 case 0: 4395 list = &arc_mfu->arcs_list[ARC_BUFC_METADATA]; 4396 *lock = &arc_mfu->arcs_mtx; 4397 break; 4398 case 1: 4399 list = &arc_mru->arcs_list[ARC_BUFC_METADATA]; 4400 *lock = &arc_mru->arcs_mtx; 4401 break; 4402 case 2: 4403 list = &arc_mfu->arcs_list[ARC_BUFC_DATA]; 4404 *lock = &arc_mfu->arcs_mtx; 4405 break; 4406 case 3: 4407 list = &arc_mru->arcs_list[ARC_BUFC_DATA]; 4408 *lock = &arc_mru->arcs_mtx; 4409 break; 4410 } 4411 4412 ASSERT(!(MUTEX_HELD(*lock))); 4413 mutex_enter(*lock); 4414 return (list); 4415 } 4416 4417 /* 4418 * Evict buffers from the device write hand to the distance specified in 4419 * bytes. This distance may span populated buffers, it may span nothing. 4420 * This is clearing a region on the L2ARC device ready for writing. 4421 * If the 'all' boolean is set, every buffer is evicted. 4422 */ 4423 static void 4424 l2arc_evict(l2arc_dev_t *dev, uint64_t distance, boolean_t all) 4425 { 4426 list_t *buflist; 4427 l2arc_buf_hdr_t *abl2; 4428 arc_buf_hdr_t *ab, *ab_prev; 4429 kmutex_t *hash_lock; 4430 uint64_t taddr; 4431 int64_t bytes_evicted = 0; 4432 4433 buflist = dev->l2ad_buflist; 4434 4435 if (buflist == NULL) 4436 return; 4437 4438 if (!all && dev->l2ad_first) { 4439 /* 4440 * This is the first sweep through the device. There is 4441 * nothing to evict. 4442 */ 4443 return; 4444 } 4445 4446 if (dev->l2ad_hand >= (dev->l2ad_end - (2 * distance))) { 4447 /* 4448 * When nearing the end of the device, evict to the end 4449 * before the device write hand jumps to the start. 4450 */ 4451 taddr = dev->l2ad_end; 4452 } else { 4453 taddr = dev->l2ad_hand + distance; 4454 } 4455 DTRACE_PROBE4(l2arc__evict, l2arc_dev_t *, dev, list_t *, buflist, 4456 uint64_t, taddr, boolean_t, all); 4457 4458 top: 4459 mutex_enter(&l2arc_buflist_mtx); 4460 for (ab = list_tail(buflist); ab; ab = ab_prev) { 4461 ab_prev = list_prev(buflist, ab); 4462 4463 hash_lock = HDR_LOCK(ab); 4464 if (!mutex_tryenter(hash_lock)) { 4465 /* 4466 * Missed the hash lock. Retry. 4467 */ 4468 ARCSTAT_BUMP(arcstat_l2_evict_lock_retry); 4469 mutex_exit(&l2arc_buflist_mtx); 4470 mutex_enter(hash_lock); 4471 mutex_exit(hash_lock); 4472 goto top; 4473 } 4474 4475 if (HDR_L2_WRITE_HEAD(ab)) { 4476 /* 4477 * We hit a write head node. Leave it for 4478 * l2arc_write_done(). 4479 */ 4480 list_remove(buflist, ab); 4481 mutex_exit(hash_lock); 4482 continue; 4483 } 4484 4485 if (!all && ab->b_l2hdr != NULL && 4486 (ab->b_l2hdr->b_daddr > taddr || 4487 ab->b_l2hdr->b_daddr < dev->l2ad_hand)) { 4488 /* 4489 * We've evicted to the target address, 4490 * or the end of the device. 4491 */ 4492 mutex_exit(hash_lock); 4493 break; 4494 } 4495 4496 if (HDR_FREE_IN_PROGRESS(ab)) { 4497 /* 4498 * Already on the path to destruction. 4499 */ 4500 mutex_exit(hash_lock); 4501 continue; 4502 } 4503 4504 if (ab->b_state == arc_l2c_only) { 4505 ASSERT(!HDR_L2_READING(ab)); 4506 /* 4507 * This doesn't exist in the ARC. Destroy. 4508 * arc_hdr_destroy() will call list_remove() 4509 * and decrement arcstat_l2_size. 4510 */ 4511 arc_change_state(arc_anon, ab, hash_lock); 4512 arc_hdr_destroy(ab); 4513 } else { 4514 /* 4515 * Invalidate issued or about to be issued 4516 * reads, since we may be about to write 4517 * over this location. 4518 */ 4519 if (HDR_L2_READING(ab)) { 4520 ARCSTAT_BUMP(arcstat_l2_evict_reading); 4521 ab->b_flags |= ARC_L2_EVICTED; 4522 } 4523 4524 /* 4525 * Tell ARC this no longer exists in L2ARC. 4526 */ 4527 if (ab->b_l2hdr != NULL) { 4528 abl2 = ab->b_l2hdr; 4529 ARCSTAT_INCR(arcstat_l2_asize, -abl2->b_asize); 4530 bytes_evicted += abl2->b_asize; 4531 ab->b_l2hdr = NULL; 4532 kmem_free(abl2, sizeof (l2arc_buf_hdr_t)); 4533 ARCSTAT_INCR(arcstat_l2_size, -ab->b_size); 4534 } 4535 list_remove(buflist, ab); 4536 4537 /* 4538 * This may have been leftover after a 4539 * failed write. 4540 */ 4541 ab->b_flags &= ~ARC_L2_WRITING; 4542 } 4543 mutex_exit(hash_lock); 4544 } 4545 mutex_exit(&l2arc_buflist_mtx); 4546 4547 vdev_space_update(dev->l2ad_vdev, -bytes_evicted, 0, 0); 4548 dev->l2ad_evict = taddr; 4549 } 4550 4551 /* 4552 * Find and write ARC buffers to the L2ARC device. 4553 * 4554 * An ARC_L2_WRITING flag is set so that the L2ARC buffers are not valid 4555 * for reading until they have completed writing. 4556 * The headroom_boost is an in-out parameter used to maintain headroom boost 4557 * state between calls to this function. 4558 * 4559 * Returns the number of bytes actually written (which may be smaller than 4560 * the delta by which the device hand has changed due to alignment). 4561 */ 4562 static uint64_t 4563 l2arc_write_buffers(spa_t *spa, l2arc_dev_t *dev, uint64_t target_sz, 4564 boolean_t *headroom_boost) 4565 { 4566 arc_buf_hdr_t *ab, *ab_prev, *head; 4567 list_t *list; 4568 uint64_t write_asize, write_psize, write_sz, headroom, 4569 buf_compress_minsz; 4570 void *buf_data; 4571 kmutex_t *list_lock; 4572 boolean_t full; 4573 l2arc_write_callback_t *cb; 4574 zio_t *pio, *wzio; 4575 uint64_t guid = spa_load_guid(spa); 4576 const boolean_t do_headroom_boost = *headroom_boost; 4577 4578 ASSERT(dev->l2ad_vdev != NULL); 4579 4580 /* Lower the flag now, we might want to raise it again later. */ 4581 *headroom_boost = B_FALSE; 4582 4583 pio = NULL; 4584 write_sz = write_asize = write_psize = 0; 4585 full = B_FALSE; 4586 head = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE); 4587 head->b_flags |= ARC_L2_WRITE_HEAD; 4588 4589 /* 4590 * We will want to try to compress buffers that are at least 2x the 4591 * device sector size. 4592 */ 4593 buf_compress_minsz = 2 << dev->l2ad_vdev->vdev_ashift; 4594 4595 /* 4596 * Copy buffers for L2ARC writing. 4597 */ 4598 mutex_enter(&l2arc_buflist_mtx); 4599 for (int try = 0; try <= 3; try++) { 4600 uint64_t passed_sz = 0; 4601 4602 list = l2arc_list_locked(try, &list_lock); 4603 4604 /* 4605 * L2ARC fast warmup. 4606 * 4607 * Until the ARC is warm and starts to evict, read from the 4608 * head of the ARC lists rather than the tail. 4609 */ 4610 if (arc_warm == B_FALSE) 4611 ab = list_head(list); 4612 else 4613 ab = list_tail(list); 4614 4615 headroom = target_sz * l2arc_headroom; 4616 if (do_headroom_boost) 4617 headroom = (headroom * l2arc_headroom_boost) / 100; 4618 4619 for (; ab; ab = ab_prev) { 4620 l2arc_buf_hdr_t *l2hdr; 4621 kmutex_t *hash_lock; 4622 uint64_t buf_sz; 4623 4624 if (arc_warm == B_FALSE) 4625 ab_prev = list_next(list, ab); 4626 else 4627 ab_prev = list_prev(list, ab); 4628 4629 hash_lock = HDR_LOCK(ab); 4630 if (!mutex_tryenter(hash_lock)) { 4631 /* 4632 * Skip this buffer rather than waiting. 4633 */ 4634 continue; 4635 } 4636 4637 passed_sz += ab->b_size; 4638 if (passed_sz > headroom) { 4639 /* 4640 * Searched too far. 4641 */ 4642 mutex_exit(hash_lock); 4643 break; 4644 } 4645 4646 if (!l2arc_write_eligible(guid, ab)) { 4647 mutex_exit(hash_lock); 4648 continue; 4649 } 4650 4651 if ((write_sz + ab->b_size) > target_sz) { 4652 full = B_TRUE; 4653 mutex_exit(hash_lock); 4654 break; 4655 } 4656 4657 if (pio == NULL) { 4658 /* 4659 * Insert a dummy header on the buflist so 4660 * l2arc_write_done() can find where the 4661 * write buffers begin without searching. 4662 */ 4663 list_insert_head(dev->l2ad_buflist, head); 4664 4665 cb = kmem_alloc( 4666 sizeof (l2arc_write_callback_t), KM_SLEEP); 4667 cb->l2wcb_dev = dev; 4668 cb->l2wcb_head = head; 4669 pio = zio_root(spa, l2arc_write_done, cb, 4670 ZIO_FLAG_CANFAIL); 4671 } 4672 4673 /* 4674 * Create and add a new L2ARC header. 4675 */ 4676 l2hdr = kmem_zalloc(sizeof (l2arc_buf_hdr_t), KM_SLEEP); 4677 l2hdr->b_dev = dev; 4678 ab->b_flags |= ARC_L2_WRITING; 4679 4680 /* 4681 * Temporarily stash the data buffer in b_tmp_cdata. 4682 * The subsequent write step will pick it up from 4683 * there. This is because can't access ab->b_buf 4684 * without holding the hash_lock, which we in turn 4685 * can't access without holding the ARC list locks 4686 * (which we want to avoid during compression/writing). 4687 */ 4688 l2hdr->b_compress = ZIO_COMPRESS_OFF; 4689 l2hdr->b_asize = ab->b_size; 4690 l2hdr->b_tmp_cdata = ab->b_buf->b_data; 4691 4692 buf_sz = ab->b_size; 4693 ab->b_l2hdr = l2hdr; 4694 4695 list_insert_head(dev->l2ad_buflist, ab); 4696 4697 /* 4698 * Compute and store the buffer cksum before 4699 * writing. On debug the cksum is verified first. 4700 */ 4701 arc_cksum_verify(ab->b_buf); 4702 arc_cksum_compute(ab->b_buf, B_TRUE); 4703 4704 mutex_exit(hash_lock); 4705 4706 write_sz += buf_sz; 4707 } 4708 4709 mutex_exit(list_lock); 4710 4711 if (full == B_TRUE) 4712 break; 4713 } 4714 4715 /* No buffers selected for writing? */ 4716 if (pio == NULL) { 4717 ASSERT0(write_sz); 4718 mutex_exit(&l2arc_buflist_mtx); 4719 kmem_cache_free(hdr_cache, head); 4720 return (0); 4721 } 4722 4723 /* 4724 * Now start writing the buffers. We're starting at the write head 4725 * and work backwards, retracing the course of the buffer selector 4726 * loop above. 4727 */ 4728 for (ab = list_prev(dev->l2ad_buflist, head); ab; 4729 ab = list_prev(dev->l2ad_buflist, ab)) { 4730 l2arc_buf_hdr_t *l2hdr; 4731 uint64_t buf_sz; 4732 4733 /* 4734 * We shouldn't need to lock the buffer here, since we flagged 4735 * it as ARC_L2_WRITING in the previous step, but we must take 4736 * care to only access its L2 cache parameters. In particular, 4737 * ab->b_buf may be invalid by now due to ARC eviction. 4738 */ 4739 l2hdr = ab->b_l2hdr; 4740 l2hdr->b_daddr = dev->l2ad_hand; 4741 4742 if ((ab->b_flags & ARC_L2COMPRESS) && 4743 l2hdr->b_asize >= buf_compress_minsz) { 4744 if (l2arc_compress_buf(l2hdr)) { 4745 /* 4746 * If compression succeeded, enable headroom 4747 * boost on the next scan cycle. 4748 */ 4749 *headroom_boost = B_TRUE; 4750 } 4751 } 4752 4753 /* 4754 * Pick up the buffer data we had previously stashed away 4755 * (and now potentially also compressed). 4756 */ 4757 buf_data = l2hdr->b_tmp_cdata; 4758 buf_sz = l2hdr->b_asize; 4759 4760 /* Compression may have squashed the buffer to zero length. */ 4761 if (buf_sz != 0) { 4762 uint64_t buf_p_sz; 4763 4764 wzio = zio_write_phys(pio, dev->l2ad_vdev, 4765 dev->l2ad_hand, buf_sz, buf_data, ZIO_CHECKSUM_OFF, 4766 NULL, NULL, ZIO_PRIORITY_ASYNC_WRITE, 4767 ZIO_FLAG_CANFAIL, B_FALSE); 4768 4769 DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev, 4770 zio_t *, wzio); 4771 (void) zio_nowait(wzio); 4772 4773 write_asize += buf_sz; 4774 /* 4775 * Keep the clock hand suitably device-aligned. 4776 */ 4777 buf_p_sz = vdev_psize_to_asize(dev->l2ad_vdev, buf_sz); 4778 write_psize += buf_p_sz; 4779 dev->l2ad_hand += buf_p_sz; 4780 } 4781 } 4782 4783 mutex_exit(&l2arc_buflist_mtx); 4784 4785 ASSERT3U(write_asize, <=, target_sz); 4786 ARCSTAT_BUMP(arcstat_l2_writes_sent); 4787 ARCSTAT_INCR(arcstat_l2_write_bytes, write_asize); 4788 ARCSTAT_INCR(arcstat_l2_size, write_sz); 4789 ARCSTAT_INCR(arcstat_l2_asize, write_asize); 4790 vdev_space_update(dev->l2ad_vdev, write_asize, 0, 0); 4791 4792 /* 4793 * Bump device hand to the device start if it is approaching the end. 4794 * l2arc_evict() will already have evicted ahead for this case. 4795 */ 4796 if (dev->l2ad_hand >= (dev->l2ad_end - target_sz)) { 4797 dev->l2ad_hand = dev->l2ad_start; 4798 dev->l2ad_evict = dev->l2ad_start; 4799 dev->l2ad_first = B_FALSE; 4800 } 4801 4802 dev->l2ad_writing = B_TRUE; 4803 (void) zio_wait(pio); 4804 dev->l2ad_writing = B_FALSE; 4805 4806 return (write_asize); 4807 } 4808 4809 /* 4810 * Compresses an L2ARC buffer. 4811 * The data to be compressed must be prefilled in l2hdr->b_tmp_cdata and its 4812 * size in l2hdr->b_asize. This routine tries to compress the data and 4813 * depending on the compression result there are three possible outcomes: 4814 * *) The buffer was incompressible. The original l2hdr contents were left 4815 * untouched and are ready for writing to an L2 device. 4816 * *) The buffer was all-zeros, so there is no need to write it to an L2 4817 * device. To indicate this situation b_tmp_cdata is NULL'ed, b_asize is 4818 * set to zero and b_compress is set to ZIO_COMPRESS_EMPTY. 4819 * *) Compression succeeded and b_tmp_cdata was replaced with a temporary 4820 * data buffer which holds the compressed data to be written, and b_asize 4821 * tells us how much data there is. b_compress is set to the appropriate 4822 * compression algorithm. Once writing is done, invoke 4823 * l2arc_release_cdata_buf on this l2hdr to free this temporary buffer. 4824 * 4825 * Returns B_TRUE if compression succeeded, or B_FALSE if it didn't (the 4826 * buffer was incompressible). 4827 */ 4828 static boolean_t 4829 l2arc_compress_buf(l2arc_buf_hdr_t *l2hdr) 4830 { 4831 void *cdata; 4832 size_t csize, len, rounded; 4833 4834 ASSERT(l2hdr->b_compress == ZIO_COMPRESS_OFF); 4835 ASSERT(l2hdr->b_tmp_cdata != NULL); 4836 4837 len = l2hdr->b_asize; 4838 cdata = zio_data_buf_alloc(len); 4839 csize = zio_compress_data(ZIO_COMPRESS_LZ4, l2hdr->b_tmp_cdata, 4840 cdata, l2hdr->b_asize); 4841 4842 rounded = P2ROUNDUP(csize, (size_t)SPA_MINBLOCKSIZE); 4843 if (rounded > csize) { 4844 bzero((char *)cdata + csize, rounded - csize); 4845 csize = rounded; 4846 } 4847 4848 if (csize == 0) { 4849 /* zero block, indicate that there's nothing to write */ 4850 zio_data_buf_free(cdata, len); 4851 l2hdr->b_compress = ZIO_COMPRESS_EMPTY; 4852 l2hdr->b_asize = 0; 4853 l2hdr->b_tmp_cdata = NULL; 4854 ARCSTAT_BUMP(arcstat_l2_compress_zeros); 4855 return (B_TRUE); 4856 } else if (csize > 0 && csize < len) { 4857 /* 4858 * Compression succeeded, we'll keep the cdata around for 4859 * writing and release it afterwards. 4860 */ 4861 l2hdr->b_compress = ZIO_COMPRESS_LZ4; 4862 l2hdr->b_asize = csize; 4863 l2hdr->b_tmp_cdata = cdata; 4864 ARCSTAT_BUMP(arcstat_l2_compress_successes); 4865 return (B_TRUE); 4866 } else { 4867 /* 4868 * Compression failed, release the compressed buffer. 4869 * l2hdr will be left unmodified. 4870 */ 4871 zio_data_buf_free(cdata, len); 4872 ARCSTAT_BUMP(arcstat_l2_compress_failures); 4873 return (B_FALSE); 4874 } 4875 } 4876 4877 /* 4878 * Decompresses a zio read back from an l2arc device. On success, the 4879 * underlying zio's io_data buffer is overwritten by the uncompressed 4880 * version. On decompression error (corrupt compressed stream), the 4881 * zio->io_error value is set to signal an I/O error. 4882 * 4883 * Please note that the compressed data stream is not checksummed, so 4884 * if the underlying device is experiencing data corruption, we may feed 4885 * corrupt data to the decompressor, so the decompressor needs to be 4886 * able to handle this situation (LZ4 does). 4887 */ 4888 static void 4889 l2arc_decompress_zio(zio_t *zio, arc_buf_hdr_t *hdr, enum zio_compress c) 4890 { 4891 ASSERT(L2ARC_IS_VALID_COMPRESS(c)); 4892 4893 if (zio->io_error != 0) { 4894 /* 4895 * An io error has occured, just restore the original io 4896 * size in preparation for a main pool read. 4897 */ 4898 zio->io_orig_size = zio->io_size = hdr->b_size; 4899 return; 4900 } 4901 4902 if (c == ZIO_COMPRESS_EMPTY) { 4903 /* 4904 * An empty buffer results in a null zio, which means we 4905 * need to fill its io_data after we're done restoring the 4906 * buffer's contents. 4907 */ 4908 ASSERT(hdr->b_buf != NULL); 4909 bzero(hdr->b_buf->b_data, hdr->b_size); 4910 zio->io_data = zio->io_orig_data = hdr->b_buf->b_data; 4911 } else { 4912 ASSERT(zio->io_data != NULL); 4913 /* 4914 * We copy the compressed data from the start of the arc buffer 4915 * (the zio_read will have pulled in only what we need, the 4916 * rest is garbage which we will overwrite at decompression) 4917 * and then decompress back to the ARC data buffer. This way we 4918 * can minimize copying by simply decompressing back over the 4919 * original compressed data (rather than decompressing to an 4920 * aux buffer and then copying back the uncompressed buffer, 4921 * which is likely to be much larger). 4922 */ 4923 uint64_t csize; 4924 void *cdata; 4925 4926 csize = zio->io_size; 4927 cdata = zio_data_buf_alloc(csize); 4928 bcopy(zio->io_data, cdata, csize); 4929 if (zio_decompress_data(c, cdata, zio->io_data, csize, 4930 hdr->b_size) != 0) 4931 zio->io_error = EIO; 4932 zio_data_buf_free(cdata, csize); 4933 } 4934 4935 /* Restore the expected uncompressed IO size. */ 4936 zio->io_orig_size = zio->io_size = hdr->b_size; 4937 } 4938 4939 /* 4940 * Releases the temporary b_tmp_cdata buffer in an l2arc header structure. 4941 * This buffer serves as a temporary holder of compressed data while 4942 * the buffer entry is being written to an l2arc device. Once that is 4943 * done, we can dispose of it. 4944 */ 4945 static void 4946 l2arc_release_cdata_buf(arc_buf_hdr_t *ab) 4947 { 4948 l2arc_buf_hdr_t *l2hdr = ab->b_l2hdr; 4949 4950 if (l2hdr->b_compress == ZIO_COMPRESS_LZ4) { 4951 /* 4952 * If the data was compressed, then we've allocated a 4953 * temporary buffer for it, so now we need to release it. 4954 */ 4955 ASSERT(l2hdr->b_tmp_cdata != NULL); 4956 zio_data_buf_free(l2hdr->b_tmp_cdata, ab->b_size); 4957 } 4958 l2hdr->b_tmp_cdata = NULL; 4959 } 4960 4961 /* 4962 * This thread feeds the L2ARC at regular intervals. This is the beating 4963 * heart of the L2ARC. 4964 */ 4965 static void 4966 l2arc_feed_thread(void) 4967 { 4968 callb_cpr_t cpr; 4969 l2arc_dev_t *dev; 4970 spa_t *spa; 4971 uint64_t size, wrote; 4972 clock_t begin, next = ddi_get_lbolt(); 4973 boolean_t headroom_boost = B_FALSE; 4974 4975 CALLB_CPR_INIT(&cpr, &l2arc_feed_thr_lock, callb_generic_cpr, FTAG); 4976 4977 mutex_enter(&l2arc_feed_thr_lock); 4978 4979 while (l2arc_thread_exit == 0) { 4980 CALLB_CPR_SAFE_BEGIN(&cpr); 4981 (void) cv_timedwait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock, 4982 next); 4983 CALLB_CPR_SAFE_END(&cpr, &l2arc_feed_thr_lock); 4984 next = ddi_get_lbolt() + hz; 4985 4986 /* 4987 * Quick check for L2ARC devices. 4988 */ 4989 mutex_enter(&l2arc_dev_mtx); 4990 if (l2arc_ndev == 0) { 4991 mutex_exit(&l2arc_dev_mtx); 4992 continue; 4993 } 4994 mutex_exit(&l2arc_dev_mtx); 4995 begin = ddi_get_lbolt(); 4996 4997 /* 4998 * This selects the next l2arc device to write to, and in 4999 * doing so the next spa to feed from: dev->l2ad_spa. This 5000 * will return NULL if there are now no l2arc devices or if 5001 * they are all faulted. 5002 * 5003 * If a device is returned, its spa's config lock is also 5004 * held to prevent device removal. l2arc_dev_get_next() 5005 * will grab and release l2arc_dev_mtx. 5006 */ 5007 if ((dev = l2arc_dev_get_next()) == NULL) 5008 continue; 5009 5010 spa = dev->l2ad_spa; 5011 ASSERT(spa != NULL); 5012 5013 /* 5014 * If the pool is read-only then force the feed thread to 5015 * sleep a little longer. 5016 */ 5017 if (!spa_writeable(spa)) { 5018 next = ddi_get_lbolt() + 5 * l2arc_feed_secs * hz; 5019 spa_config_exit(spa, SCL_L2ARC, dev); 5020 continue; 5021 } 5022 5023 /* 5024 * Avoid contributing to memory pressure. 5025 */ 5026 if (arc_reclaim_needed()) { 5027 ARCSTAT_BUMP(arcstat_l2_abort_lowmem); 5028 spa_config_exit(spa, SCL_L2ARC, dev); 5029 continue; 5030 } 5031 5032 ARCSTAT_BUMP(arcstat_l2_feeds); 5033 5034 size = l2arc_write_size(); 5035 5036 /* 5037 * Evict L2ARC buffers that will be overwritten. 5038 */ 5039 l2arc_evict(dev, size, B_FALSE); 5040 5041 /* 5042 * Write ARC buffers. 5043 */ 5044 wrote = l2arc_write_buffers(spa, dev, size, &headroom_boost); 5045 5046 /* 5047 * Calculate interval between writes. 5048 */ 5049 next = l2arc_write_interval(begin, size, wrote); 5050 spa_config_exit(spa, SCL_L2ARC, dev); 5051 } 5052 5053 l2arc_thread_exit = 0; 5054 cv_broadcast(&l2arc_feed_thr_cv); 5055 CALLB_CPR_EXIT(&cpr); /* drops l2arc_feed_thr_lock */ 5056 thread_exit(); 5057 } 5058 5059 boolean_t 5060 l2arc_vdev_present(vdev_t *vd) 5061 { 5062 l2arc_dev_t *dev; 5063 5064 mutex_enter(&l2arc_dev_mtx); 5065 for (dev = list_head(l2arc_dev_list); dev != NULL; 5066 dev = list_next(l2arc_dev_list, dev)) { 5067 if (dev->l2ad_vdev == vd) 5068 break; 5069 } 5070 mutex_exit(&l2arc_dev_mtx); 5071 5072 return (dev != NULL); 5073 } 5074 5075 /* 5076 * Add a vdev for use by the L2ARC. By this point the spa has already 5077 * validated the vdev and opened it. 5078 */ 5079 void 5080 l2arc_add_vdev(spa_t *spa, vdev_t *vd) 5081 { 5082 l2arc_dev_t *adddev; 5083 5084 ASSERT(!l2arc_vdev_present(vd)); 5085 5086 /* 5087 * Create a new l2arc device entry. 5088 */ 5089 adddev = kmem_zalloc(sizeof (l2arc_dev_t), KM_SLEEP); 5090 adddev->l2ad_spa = spa; 5091 adddev->l2ad_vdev = vd; 5092 adddev->l2ad_start = VDEV_LABEL_START_SIZE; 5093 adddev->l2ad_end = VDEV_LABEL_START_SIZE + vdev_get_min_asize(vd); 5094 adddev->l2ad_hand = adddev->l2ad_start; 5095 adddev->l2ad_evict = adddev->l2ad_start; 5096 adddev->l2ad_first = B_TRUE; 5097 adddev->l2ad_writing = B_FALSE; 5098 5099 /* 5100 * This is a list of all ARC buffers that are still valid on the 5101 * device. 5102 */ 5103 adddev->l2ad_buflist = kmem_zalloc(sizeof (list_t), KM_SLEEP); 5104 list_create(adddev->l2ad_buflist, sizeof (arc_buf_hdr_t), 5105 offsetof(arc_buf_hdr_t, b_l2node)); 5106 5107 vdev_space_update(vd, 0, 0, adddev->l2ad_end - adddev->l2ad_hand); 5108 5109 /* 5110 * Add device to global list 5111 */ 5112 mutex_enter(&l2arc_dev_mtx); 5113 list_insert_head(l2arc_dev_list, adddev); 5114 atomic_inc_64(&l2arc_ndev); 5115 mutex_exit(&l2arc_dev_mtx); 5116 } 5117 5118 /* 5119 * Remove a vdev from the L2ARC. 5120 */ 5121 void 5122 l2arc_remove_vdev(vdev_t *vd) 5123 { 5124 l2arc_dev_t *dev, *nextdev, *remdev = NULL; 5125 5126 /* 5127 * Find the device by vdev 5128 */ 5129 mutex_enter(&l2arc_dev_mtx); 5130 for (dev = list_head(l2arc_dev_list); dev; dev = nextdev) { 5131 nextdev = list_next(l2arc_dev_list, dev); 5132 if (vd == dev->l2ad_vdev) { 5133 remdev = dev; 5134 break; 5135 } 5136 } 5137 ASSERT(remdev != NULL); 5138 5139 /* 5140 * Remove device from global list 5141 */ 5142 list_remove(l2arc_dev_list, remdev); 5143 l2arc_dev_last = NULL; /* may have been invalidated */ 5144 atomic_dec_64(&l2arc_ndev); 5145 mutex_exit(&l2arc_dev_mtx); 5146 5147 /* 5148 * Clear all buflists and ARC references. L2ARC device flush. 5149 */ 5150 l2arc_evict(remdev, 0, B_TRUE); 5151 list_destroy(remdev->l2ad_buflist); 5152 kmem_free(remdev->l2ad_buflist, sizeof (list_t)); 5153 kmem_free(remdev, sizeof (l2arc_dev_t)); 5154 } 5155 5156 void 5157 l2arc_init(void) 5158 { 5159 l2arc_thread_exit = 0; 5160 l2arc_ndev = 0; 5161 l2arc_writes_sent = 0; 5162 l2arc_writes_done = 0; 5163 5164 mutex_init(&l2arc_feed_thr_lock, NULL, MUTEX_DEFAULT, NULL); 5165 cv_init(&l2arc_feed_thr_cv, NULL, CV_DEFAULT, NULL); 5166 mutex_init(&l2arc_dev_mtx, NULL, MUTEX_DEFAULT, NULL); 5167 mutex_init(&l2arc_buflist_mtx, NULL, MUTEX_DEFAULT, NULL); 5168 mutex_init(&l2arc_free_on_write_mtx, NULL, MUTEX_DEFAULT, NULL); 5169 5170 l2arc_dev_list = &L2ARC_dev_list; 5171 l2arc_free_on_write = &L2ARC_free_on_write; 5172 list_create(l2arc_dev_list, sizeof (l2arc_dev_t), 5173 offsetof(l2arc_dev_t, l2ad_node)); 5174 list_create(l2arc_free_on_write, sizeof (l2arc_data_free_t), 5175 offsetof(l2arc_data_free_t, l2df_list_node)); 5176 } 5177 5178 void 5179 l2arc_fini(void) 5180 { 5181 /* 5182 * This is called from dmu_fini(), which is called from spa_fini(); 5183 * Because of this, we can assume that all l2arc devices have 5184 * already been removed when the pools themselves were removed. 5185 */ 5186 5187 l2arc_do_free_on_write(); 5188 5189 mutex_destroy(&l2arc_feed_thr_lock); 5190 cv_destroy(&l2arc_feed_thr_cv); 5191 mutex_destroy(&l2arc_dev_mtx); 5192 mutex_destroy(&l2arc_buflist_mtx); 5193 mutex_destroy(&l2arc_free_on_write_mtx); 5194 5195 list_destroy(l2arc_dev_list); 5196 list_destroy(l2arc_free_on_write); 5197 } 5198 5199 void 5200 l2arc_start(void) 5201 { 5202 if (!(spa_mode_global & FWRITE)) 5203 return; 5204 5205 (void) thread_create(NULL, 0, l2arc_feed_thread, NULL, 0, &p0, 5206 TS_RUN, minclsyspri); 5207 } 5208 5209 void 5210 l2arc_stop(void) 5211 { 5212 if (!(spa_mode_global & FWRITE)) 5213 return; 5214 5215 mutex_enter(&l2arc_feed_thr_lock); 5216 cv_signal(&l2arc_feed_thr_cv); /* kick thread out of startup */ 5217 l2arc_thread_exit = 1; 5218 while (l2arc_thread_exit != 0) 5219 cv_wait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock); 5220 mutex_exit(&l2arc_feed_thr_lock); 5221 } 5222