1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989 AT&T */ 27 /* All Rights Reserved */ 28 29 /* 30 * University Copyright- Copyright (c) 1982, 1986, 1988 31 * The Regents of the University of California 32 * All Rights Reserved 33 * 34 * University Acknowledgment- Portions of this document are derived from 35 * software developed by the University of California, Berkeley, and its 36 * contributors. 37 */ 38 39 40 #pragma ident "%Z%%M% %I% %E% SMI" 41 42 #include <sys/types.h> 43 #include <sys/t_lock.h> 44 #include <sys/param.h> 45 #include <sys/errno.h> 46 #include <sys/user.h> 47 #include <sys/fstyp.h> 48 #include <sys/kmem.h> 49 #include <sys/systm.h> 50 #include <sys/proc.h> 51 #include <sys/mount.h> 52 #include <sys/vfs.h> 53 #include <sys/vfs_opreg.h> 54 #include <sys/fem.h> 55 #include <sys/mntent.h> 56 #include <sys/stat.h> 57 #include <sys/statvfs.h> 58 #include <sys/statfs.h> 59 #include <sys/cred.h> 60 #include <sys/vnode.h> 61 #include <sys/rwstlock.h> 62 #include <sys/dnlc.h> 63 #include <sys/file.h> 64 #include <sys/time.h> 65 #include <sys/atomic.h> 66 #include <sys/cmn_err.h> 67 #include <sys/buf.h> 68 #include <sys/swap.h> 69 #include <sys/debug.h> 70 #include <sys/vnode.h> 71 #include <sys/modctl.h> 72 #include <sys/ddi.h> 73 #include <sys/pathname.h> 74 #include <sys/bootconf.h> 75 #include <sys/dumphdr.h> 76 #include <sys/dc_ki.h> 77 #include <sys/poll.h> 78 #include <sys/sunddi.h> 79 #include <sys/sysmacros.h> 80 #include <sys/zone.h> 81 #include <sys/policy.h> 82 #include <sys/ctfs.h> 83 #include <sys/objfs.h> 84 #include <sys/console.h> 85 #include <sys/reboot.h> 86 87 #include <vm/page.h> 88 89 #include <fs/fs_subr.h> 90 91 /* Private interfaces to create vopstats-related data structures */ 92 extern void initialize_vopstats(vopstats_t *); 93 extern vopstats_t *get_fstype_vopstats(struct vfs *, struct vfssw *); 94 extern vsk_anchor_t *get_vskstat_anchor(struct vfs *); 95 96 static void vfs_clearmntopt_nolock(mntopts_t *, const char *, int); 97 static void vfs_setmntopt_nolock(mntopts_t *, const char *, 98 const char *, int, int); 99 static int vfs_optionisset_nolock(const mntopts_t *, const char *, char **); 100 static void vfs_freemnttab(struct vfs *); 101 static void vfs_freeopt(mntopt_t *); 102 static void vfs_swapopttbl_nolock(mntopts_t *, mntopts_t *); 103 static void vfs_swapopttbl(mntopts_t *, mntopts_t *); 104 static void vfs_copyopttbl_extend(const mntopts_t *, mntopts_t *, int); 105 static void vfs_createopttbl_extend(mntopts_t *, const char *, 106 const mntopts_t *); 107 static char **vfs_copycancelopt_extend(char **const, int); 108 static void vfs_freecancelopt(char **); 109 static char *getrootfs(void); 110 static int getmacpath(dev_info_t *, void *); 111 112 struct ipmnt { 113 struct ipmnt *mip_next; 114 dev_t mip_dev; 115 struct vfs *mip_vfsp; 116 }; 117 118 static kmutex_t vfs_miplist_mutex; 119 static struct ipmnt *vfs_miplist = NULL; 120 static struct ipmnt *vfs_miplist_end = NULL; 121 122 /* 123 * VFS global data. 124 */ 125 vnode_t *rootdir; /* pointer to root inode vnode. */ 126 vnode_t *devicesdir; /* pointer to inode of devices root */ 127 vnode_t *devdir; /* pointer to inode of dev root */ 128 129 char *server_rootpath; /* root path for diskless clients */ 130 char *server_hostname; /* hostname of diskless server */ 131 132 static struct vfs root; 133 static struct vfs devices; 134 static struct vfs dev; 135 struct vfs *rootvfs = &root; /* pointer to root vfs; head of VFS list. */ 136 rvfs_t *rvfs_list; /* array of vfs ptrs for vfs hash list */ 137 int vfshsz = 512; /* # of heads/locks in vfs hash arrays */ 138 /* must be power of 2! */ 139 timespec_t vfs_mnttab_ctime; /* mnttab created time */ 140 timespec_t vfs_mnttab_mtime; /* mnttab last modified time */ 141 struct pollhead vfs_pollhd; /* for mnttab pollers */ 142 struct vnode *mntdummyvp; /* Will be set once mntfs is loaded */ 143 int mntfstype; /* will be set once mnt fs is mounted */ 144 145 /* 146 * Table for generic options recognized in the VFS layer and acted 147 * on at this level before parsing file system specific options. 148 * The nosuid option is stronger than any of the devices and setuid 149 * options, so those are canceled when nosuid is seen. 150 * 151 * All options which are added here need to be added to the 152 * list of standard options in usr/src/cmd/fs.d/fslib.c as well. 153 */ 154 /* 155 * VFS Mount options table 156 */ 157 static char *ro_cancel[] = { MNTOPT_RW, NULL }; 158 static char *rw_cancel[] = { MNTOPT_RO, NULL }; 159 static char *suid_cancel[] = { MNTOPT_NOSUID, NULL }; 160 static char *nosuid_cancel[] = { MNTOPT_SUID, MNTOPT_DEVICES, MNTOPT_NODEVICES, 161 MNTOPT_NOSETUID, MNTOPT_SETUID, NULL }; 162 static char *devices_cancel[] = { MNTOPT_NODEVICES, NULL }; 163 static char *nodevices_cancel[] = { MNTOPT_DEVICES, NULL }; 164 static char *setuid_cancel[] = { MNTOPT_NOSETUID, NULL }; 165 static char *nosetuid_cancel[] = { MNTOPT_SETUID, NULL }; 166 static char *nbmand_cancel[] = { MNTOPT_NONBMAND, NULL }; 167 static char *nonbmand_cancel[] = { MNTOPT_NBMAND, NULL }; 168 static char *exec_cancel[] = { MNTOPT_NOEXEC, NULL }; 169 static char *noexec_cancel[] = { MNTOPT_EXEC, NULL }; 170 171 static const mntopt_t mntopts[] = { 172 /* 173 * option name cancel options default arg flags 174 */ 175 { MNTOPT_REMOUNT, NULL, NULL, 176 MO_NODISPLAY, (void *)0 }, 177 { MNTOPT_RO, ro_cancel, NULL, 0, 178 (void *)0 }, 179 { MNTOPT_RW, rw_cancel, NULL, 0, 180 (void *)0 }, 181 { MNTOPT_SUID, suid_cancel, NULL, 0, 182 (void *)0 }, 183 { MNTOPT_NOSUID, nosuid_cancel, NULL, 0, 184 (void *)0 }, 185 { MNTOPT_DEVICES, devices_cancel, NULL, 0, 186 (void *)0 }, 187 { MNTOPT_NODEVICES, nodevices_cancel, NULL, 0, 188 (void *)0 }, 189 { MNTOPT_SETUID, setuid_cancel, NULL, 0, 190 (void *)0 }, 191 { MNTOPT_NOSETUID, nosetuid_cancel, NULL, 0, 192 (void *)0 }, 193 { MNTOPT_NBMAND, nbmand_cancel, NULL, 0, 194 (void *)0 }, 195 { MNTOPT_NONBMAND, nonbmand_cancel, NULL, 0, 196 (void *)0 }, 197 { MNTOPT_EXEC, exec_cancel, NULL, 0, 198 (void *)0 }, 199 { MNTOPT_NOEXEC, noexec_cancel, NULL, 0, 200 (void *)0 }, 201 }; 202 203 const mntopts_t vfs_mntopts = { 204 sizeof (mntopts) / sizeof (mntopt_t), 205 (mntopt_t *)&mntopts[0] 206 }; 207 208 /* 209 * File system operation dispatch functions. 210 */ 211 212 int 213 fsop_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr) 214 { 215 return (*(vfsp)->vfs_op->vfs_mount)(vfsp, mvp, uap, cr); 216 } 217 218 int 219 fsop_unmount(vfs_t *vfsp, int flag, cred_t *cr) 220 { 221 return (*(vfsp)->vfs_op->vfs_unmount)(vfsp, flag, cr); 222 } 223 224 int 225 fsop_root(vfs_t *vfsp, vnode_t **vpp) 226 { 227 refstr_t *mntpt; 228 int ret = (*(vfsp)->vfs_op->vfs_root)(vfsp, vpp); 229 /* 230 * Make sure this root has a path. With lofs, it is possible to have 231 * a NULL mountpoint. 232 */ 233 if (ret == 0 && vfsp->vfs_mntpt != NULL && (*vpp)->v_path == NULL) { 234 mntpt = vfs_getmntpoint(vfsp); 235 vn_setpath_str(*vpp, refstr_value(mntpt), 236 strlen(refstr_value(mntpt))); 237 refstr_rele(mntpt); 238 } 239 240 return (ret); 241 } 242 243 int 244 fsop_statfs(vfs_t *vfsp, statvfs64_t *sp) 245 { 246 return (*(vfsp)->vfs_op->vfs_statvfs)(vfsp, sp); 247 } 248 249 int 250 fsop_sync(vfs_t *vfsp, short flag, cred_t *cr) 251 { 252 return (*(vfsp)->vfs_op->vfs_sync)(vfsp, flag, cr); 253 } 254 255 int 256 fsop_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp) 257 { 258 return (*(vfsp)->vfs_op->vfs_vget)(vfsp, vpp, fidp); 259 } 260 261 int 262 fsop_mountroot(vfs_t *vfsp, enum whymountroot reason) 263 { 264 return (*(vfsp)->vfs_op->vfs_mountroot)(vfsp, reason); 265 } 266 267 void 268 fsop_freefs(vfs_t *vfsp) 269 { 270 (*(vfsp)->vfs_op->vfs_freevfs)(vfsp); 271 } 272 273 int 274 fsop_vnstate(vfs_t *vfsp, vnode_t *vp, vntrans_t nstate) 275 { 276 return ((*(vfsp)->vfs_op->vfs_vnstate)(vfsp, vp, nstate)); 277 } 278 279 int 280 fsop_sync_by_kind(int fstype, short flag, cred_t *cr) 281 { 282 ASSERT((fstype >= 0) && (fstype < nfstype)); 283 284 if (ALLOCATED_VFSSW(&vfssw[fstype]) && VFS_INSTALLED(&vfssw[fstype])) 285 return (*vfssw[fstype].vsw_vfsops.vfs_sync) (NULL, flag, cr); 286 else 287 return (ENOTSUP); 288 } 289 290 /* 291 * File system initialization. vfs_setfsops() must be called from a file 292 * system's init routine. 293 */ 294 295 static int 296 fs_copyfsops(const fs_operation_def_t *template, vfsops_t *actual, 297 int *unused_ops) 298 { 299 static const fs_operation_trans_def_t vfs_ops_table[] = { 300 VFSNAME_MOUNT, offsetof(vfsops_t, vfs_mount), 301 fs_nosys, fs_nosys, 302 303 VFSNAME_UNMOUNT, offsetof(vfsops_t, vfs_unmount), 304 fs_nosys, fs_nosys, 305 306 VFSNAME_ROOT, offsetof(vfsops_t, vfs_root), 307 fs_nosys, fs_nosys, 308 309 VFSNAME_STATVFS, offsetof(vfsops_t, vfs_statvfs), 310 fs_nosys, fs_nosys, 311 312 VFSNAME_SYNC, offsetof(vfsops_t, vfs_sync), 313 (fs_generic_func_p) fs_sync, 314 (fs_generic_func_p) fs_sync, /* No errors allowed */ 315 316 VFSNAME_VGET, offsetof(vfsops_t, vfs_vget), 317 fs_nosys, fs_nosys, 318 319 VFSNAME_MOUNTROOT, offsetof(vfsops_t, vfs_mountroot), 320 fs_nosys, fs_nosys, 321 322 VFSNAME_FREEVFS, offsetof(vfsops_t, vfs_freevfs), 323 (fs_generic_func_p)fs_freevfs, 324 (fs_generic_func_p)fs_freevfs, /* Shouldn't fail */ 325 326 VFSNAME_VNSTATE, offsetof(vfsops_t, vfs_vnstate), 327 (fs_generic_func_p)fs_nosys, 328 (fs_generic_func_p)fs_nosys, 329 330 NULL, 0, NULL, NULL 331 }; 332 333 return (fs_build_vector(actual, unused_ops, vfs_ops_table, template)); 334 } 335 336 int 337 vfs_setfsops(int fstype, const fs_operation_def_t *template, vfsops_t **actual) 338 { 339 int error; 340 int unused_ops; 341 342 /* 343 * Verify that fstype refers to a valid fs. Note that 344 * 0 is valid since it's used to set "stray" ops. 345 */ 346 if ((fstype < 0) || (fstype >= nfstype)) 347 return (EINVAL); 348 349 if (!ALLOCATED_VFSSW(&vfssw[fstype])) 350 return (EINVAL); 351 352 /* Set up the operations vector. */ 353 354 error = fs_copyfsops(template, &vfssw[fstype].vsw_vfsops, &unused_ops); 355 356 if (error != 0) 357 return (error); 358 359 vfssw[fstype].vsw_flag |= VSW_INSTALLED; 360 361 if (actual != NULL) 362 *actual = &vfssw[fstype].vsw_vfsops; 363 364 #if DEBUG 365 if (unused_ops != 0) 366 cmn_err(CE_WARN, "vfs_setfsops: %s: %d operations supplied " 367 "but not used", vfssw[fstype].vsw_name, unused_ops); 368 #endif 369 370 return (0); 371 } 372 373 int 374 vfs_makefsops(const fs_operation_def_t *template, vfsops_t **actual) 375 { 376 int error; 377 int unused_ops; 378 379 *actual = (vfsops_t *)kmem_alloc(sizeof (vfsops_t), KM_SLEEP); 380 381 error = fs_copyfsops(template, *actual, &unused_ops); 382 if (error != 0) { 383 kmem_free(*actual, sizeof (vfsops_t)); 384 *actual = NULL; 385 return (error); 386 } 387 388 return (0); 389 } 390 391 /* 392 * Free a vfsops structure created as a result of vfs_makefsops(). 393 * NOTE: For a vfsops structure initialized by vfs_setfsops(), use 394 * vfs_freevfsops_by_type(). 395 */ 396 void 397 vfs_freevfsops(vfsops_t *vfsops) 398 { 399 kmem_free(vfsops, sizeof (vfsops_t)); 400 } 401 402 /* 403 * Since the vfsops structure is part of the vfssw table and wasn't 404 * really allocated, we're not really freeing anything. We keep 405 * the name for consistency with vfs_freevfsops(). We do, however, 406 * need to take care of a little bookkeeping. 407 * NOTE: For a vfsops structure created by vfs_setfsops(), use 408 * vfs_freevfsops_by_type(). 409 */ 410 int 411 vfs_freevfsops_by_type(int fstype) 412 { 413 414 /* Verify that fstype refers to a loaded fs (and not fsid 0). */ 415 if ((fstype <= 0) || (fstype >= nfstype)) 416 return (EINVAL); 417 418 WLOCK_VFSSW(); 419 if ((vfssw[fstype].vsw_flag & VSW_INSTALLED) == 0) { 420 WUNLOCK_VFSSW(); 421 return (EINVAL); 422 } 423 424 vfssw[fstype].vsw_flag &= ~VSW_INSTALLED; 425 WUNLOCK_VFSSW(); 426 427 return (0); 428 } 429 430 /* Support routines used to reference vfs_op */ 431 432 /* Set the operations vector for a vfs */ 433 void 434 vfs_setops(vfs_t *vfsp, vfsops_t *vfsops) 435 { 436 vfsops_t *op; 437 438 ASSERT(vfsp != NULL); 439 ASSERT(vfsops != NULL); 440 441 op = vfsp->vfs_op; 442 membar_consumer(); 443 if ((vfsp->vfs_implp == NULL || vfsp->vfs_femhead == NULL) && 444 casptr(&vfsp->vfs_op, op, vfsops) == op) { 445 return; 446 } 447 fsem_setvfsops(vfsp, vfsops); 448 } 449 450 /* Retrieve the operations vector for a vfs */ 451 vfsops_t * 452 vfs_getops(vfs_t *vfsp) 453 { 454 vfsops_t *op; 455 456 ASSERT(vfsp != NULL); 457 458 op = vfsp->vfs_op; 459 membar_consumer(); 460 if ((vfsp->vfs_implp == NULL || vfsp->vfs_femhead == NULL) && 461 op == vfsp->vfs_op) { 462 return (op); 463 } else { 464 return (fsem_getvfsops(vfsp)); 465 } 466 } 467 468 /* 469 * Returns non-zero (1) if the vfsops matches that of the vfs. 470 * Returns zero (0) if not. 471 */ 472 int 473 vfs_matchops(vfs_t *vfsp, vfsops_t *vfsops) 474 { 475 return (vfs_getops(vfsp) == vfsops); 476 } 477 478 /* 479 * Returns non-zero (1) if the file system has installed a non-default, 480 * non-error vfs_sync routine. Returns zero (0) otherwise. 481 */ 482 int 483 vfs_can_sync(vfs_t *vfsp) 484 { 485 /* vfs_sync() routine is not the default/error function */ 486 return (vfs_getops(vfsp)->vfs_sync != fs_sync); 487 } 488 489 /* 490 * Initialize a vfs structure. 491 */ 492 void 493 vfs_init(vfs_t *vfsp, vfsops_t *op, void *data) 494 { 495 vfsp->vfs_count = 0; 496 vfsp->vfs_next = vfsp; 497 vfsp->vfs_prev = vfsp; 498 vfsp->vfs_zone_next = vfsp; 499 vfsp->vfs_zone_prev = vfsp; 500 vfsp->vfs_flag = 0; 501 vfsp->vfs_data = (data); 502 vfsp->vfs_resource = NULL; 503 vfsp->vfs_mntpt = NULL; 504 vfsp->vfs_mntopts.mo_count = 0; 505 vfsp->vfs_mntopts.mo_list = NULL; 506 vfsp->vfs_implp = NULL; 507 vfsp->vfs_zone = NULL; 508 /* 509 * Note: Don't initialize any member of the vfs_impl_t structure 510 * here as it could be a problem for unbundled file systems. 511 */ 512 vfs_setops((vfsp), (op)); 513 sema_init(&vfsp->vfs_reflock, 1, NULL, SEMA_DEFAULT, NULL); 514 } 515 516 /* 517 * Allocate and initialize the vfs implementation private data 518 * structure, vfs_impl_t. 519 */ 520 void 521 vfsimpl_setup(vfs_t *vfsp) 522 { 523 vfsp->vfs_implp = kmem_alloc(sizeof (vfs_impl_t), KM_SLEEP); 524 /* Note that this are #define'd in vfs.h */ 525 vfsp->vfs_femhead = NULL; 526 vfsp->vfs_vskap = NULL; 527 vfsp->vfs_fstypevsp = NULL; 528 } 529 530 /* 531 * Release the vfs_impl_t structure, if it exists. Some unbundled 532 * filesystems may not use the newer version of vfs and thus 533 * would not contain this implementation private data structure. 534 */ 535 void 536 vfsimpl_teardown(vfs_t *vfsp) 537 { 538 vfs_impl_t *vip = vfsp->vfs_implp; 539 540 if (vip == NULL) 541 return; 542 543 if (vip->vi_femhead) { 544 ASSERT(vip->vi_femhead->femh_list == NULL); 545 mutex_destroy(&vip->vi_femhead->femh_lock); 546 kmem_free(vip->vi_femhead, sizeof (*(vip->vi_femhead))); 547 vip->vi_femhead = NULL; 548 } 549 550 kmem_free(vfsp->vfs_implp, sizeof (vfs_impl_t)); 551 vfsp->vfs_implp = NULL; 552 } 553 554 /* 555 * VFS system calls: mount, umount, syssync, statfs, fstatfs, statvfs, 556 * fstatvfs, and sysfs moved to common/syscall. 557 */ 558 559 /* 560 * Update every mounted file system. We call the vfs_sync operation of 561 * each file system type, passing it a NULL vfsp to indicate that all 562 * mounted file systems of that type should be updated. 563 */ 564 void 565 vfs_sync(int flag) 566 { 567 struct vfssw *vswp; 568 RLOCK_VFSSW(); 569 for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) { 570 if (ALLOCATED_VFSSW(vswp) && VFS_INSTALLED(vswp)) { 571 vfs_refvfssw(vswp); 572 RUNLOCK_VFSSW(); 573 (void) (*vswp->vsw_vfsops.vfs_sync)(NULL, flag, 574 CRED()); 575 vfs_unrefvfssw(vswp); 576 RLOCK_VFSSW(); 577 } 578 } 579 RUNLOCK_VFSSW(); 580 } 581 582 void 583 sync(void) 584 { 585 vfs_sync(0); 586 } 587 588 /* 589 * External routines. 590 */ 591 592 krwlock_t vfssw_lock; /* lock accesses to vfssw */ 593 594 /* 595 * Lock for accessing the vfs linked list. Initialized in vfs_mountroot(), 596 * but otherwise should be accessed only via vfs_list_lock() and 597 * vfs_list_unlock(). Also used to protect the timestamp for mods to the list. 598 */ 599 static krwlock_t vfslist; 600 601 /* 602 * Mount devfs on /devices. This is done right after root is mounted 603 * to provide device access support for the system 604 */ 605 static void 606 vfs_mountdevices(void) 607 { 608 struct vfssw *vsw; 609 struct vnode *mvp; 610 struct mounta mounta = { /* fake mounta for devfs_mount() */ 611 NULL, 612 NULL, 613 MS_SYSSPACE, 614 NULL, 615 NULL, 616 0, 617 NULL, 618 0 619 }; 620 621 /* 622 * _init devfs module to fill in the vfssw 623 */ 624 if (modload("fs", "devfs") == -1) 625 panic("Cannot _init devfs module"); 626 627 /* 628 * Hold vfs 629 */ 630 RLOCK_VFSSW(); 631 vsw = vfs_getvfsswbyname("devfs"); 632 VFS_INIT(&devices, &vsw->vsw_vfsops, NULL); 633 VFS_HOLD(&devices); 634 635 /* 636 * Locate mount point 637 */ 638 if (lookupname("/devices", UIO_SYSSPACE, FOLLOW, NULLVPP, &mvp)) 639 panic("Cannot find /devices"); 640 641 /* 642 * Perform the mount of /devices 643 */ 644 if (VFS_MOUNT(&devices, mvp, &mounta, CRED())) 645 panic("Cannot mount /devices"); 646 647 RUNLOCK_VFSSW(); 648 649 /* 650 * Set appropriate members and add to vfs list for mnttab display 651 */ 652 vfs_setresource(&devices, "/devices"); 653 vfs_setmntpoint(&devices, "/devices"); 654 655 /* 656 * Hold the root of /devices so it won't go away 657 */ 658 if (VFS_ROOT(&devices, &devicesdir)) 659 panic("vfs_mountdevices: not devices root"); 660 661 if (vfs_lock(&devices) != 0) { 662 VN_RELE(devicesdir); 663 cmn_err(CE_NOTE, "Cannot acquire vfs_lock of /devices"); 664 return; 665 } 666 667 if (vn_vfswlock(mvp) != 0) { 668 vfs_unlock(&devices); 669 VN_RELE(devicesdir); 670 cmn_err(CE_NOTE, "Cannot acquire vfswlock of /devices"); 671 return; 672 } 673 674 vfs_add(mvp, &devices, 0); 675 vn_vfsunlock(mvp); 676 vfs_unlock(&devices); 677 VN_RELE(devicesdir); 678 } 679 680 /* 681 * mount the first instance of /dev to root and remain mounted 682 */ 683 static void 684 vfs_mountdev1(void) 685 { 686 struct vfssw *vsw; 687 struct vnode *mvp; 688 struct mounta mounta = { /* fake mounta for sdev_mount() */ 689 NULL, 690 NULL, 691 MS_SYSSPACE | MS_OVERLAY, 692 NULL, 693 NULL, 694 0, 695 NULL, 696 0 697 }; 698 699 /* 700 * _init dev module to fill in the vfssw 701 */ 702 if (modload("fs", "dev") == -1) 703 cmn_err(CE_PANIC, "Cannot _init dev module\n"); 704 705 /* 706 * Hold vfs 707 */ 708 RLOCK_VFSSW(); 709 vsw = vfs_getvfsswbyname("dev"); 710 VFS_INIT(&dev, &vsw->vsw_vfsops, NULL); 711 VFS_HOLD(&dev); 712 713 /* 714 * Locate mount point 715 */ 716 if (lookupname("/dev", UIO_SYSSPACE, FOLLOW, NULLVPP, &mvp)) 717 cmn_err(CE_PANIC, "Cannot find /dev\n"); 718 719 /* 720 * Perform the mount of /dev 721 */ 722 if (VFS_MOUNT(&dev, mvp, &mounta, CRED())) 723 cmn_err(CE_PANIC, "Cannot mount /dev 1\n"); 724 725 RUNLOCK_VFSSW(); 726 727 /* 728 * Set appropriate members and add to vfs list for mnttab display 729 */ 730 vfs_setresource(&dev, "/dev"); 731 vfs_setmntpoint(&dev, "/dev"); 732 733 /* 734 * Hold the root of /dev so it won't go away 735 */ 736 if (VFS_ROOT(&dev, &devdir)) 737 cmn_err(CE_PANIC, "vfs_mountdev1: not dev root"); 738 739 if (vfs_lock(&dev) != 0) { 740 VN_RELE(devdir); 741 cmn_err(CE_NOTE, "Cannot acquire vfs_lock of /dev"); 742 return; 743 } 744 745 if (vn_vfswlock(mvp) != 0) { 746 vfs_unlock(&dev); 747 VN_RELE(devdir); 748 cmn_err(CE_NOTE, "Cannot acquire vfswlock of /dev"); 749 return; 750 } 751 752 vfs_add(mvp, &dev, 0); 753 vn_vfsunlock(mvp); 754 vfs_unlock(&dev); 755 VN_RELE(devdir); 756 } 757 758 /* 759 * Mount required filesystem. This is done right after root is mounted. 760 */ 761 static void 762 vfs_mountfs(char *module, char *spec, char *path) 763 { 764 struct vnode *mvp; 765 struct mounta mounta; 766 vfs_t *vfsp; 767 768 mounta.flags = MS_SYSSPACE | MS_DATA; 769 mounta.fstype = module; 770 mounta.spec = spec; 771 mounta.dir = path; 772 if (lookupname(path, UIO_SYSSPACE, FOLLOW, NULLVPP, &mvp)) { 773 cmn_err(CE_WARN, "Cannot find %s", path); 774 return; 775 } 776 if (domount(NULL, &mounta, mvp, CRED(), &vfsp)) 777 cmn_err(CE_WARN, "Cannot mount %s", path); 778 else 779 VFS_RELE(vfsp); 780 VN_RELE(mvp); 781 } 782 783 /* 784 * vfs_mountroot is called by main() to mount the root filesystem. 785 */ 786 void 787 vfs_mountroot(void) 788 { 789 struct vnode *rvp = NULL; 790 char *path; 791 size_t plen; 792 struct vfssw *vswp; 793 794 rw_init(&vfssw_lock, NULL, RW_DEFAULT, NULL); 795 rw_init(&vfslist, NULL, RW_DEFAULT, NULL); 796 797 /* 798 * Alloc the vfs hash bucket array and locks 799 */ 800 rvfs_list = kmem_zalloc(vfshsz * sizeof (rvfs_t), KM_SLEEP); 801 802 /* 803 * Call machine-dependent routine "rootconf" to choose a root 804 * file system type. 805 */ 806 if (rootconf()) 807 panic("vfs_mountroot: cannot mount root"); 808 /* 809 * Get vnode for '/'. Set up rootdir, u.u_rdir and u.u_cdir 810 * to point to it. These are used by lookuppn() so that it 811 * knows where to start from ('/' or '.'). 812 */ 813 vfs_setmntpoint(rootvfs, "/"); 814 if (VFS_ROOT(rootvfs, &rootdir)) 815 panic("vfs_mountroot: no root vnode"); 816 PTOU(curproc)->u_cdir = rootdir; 817 VN_HOLD(PTOU(curproc)->u_cdir); 818 PTOU(curproc)->u_rdir = NULL; 819 820 /* 821 * Setup the global zone's rootvp, now that it exists. 822 */ 823 global_zone->zone_rootvp = rootdir; 824 VN_HOLD(global_zone->zone_rootvp); 825 826 /* 827 * Notify the module code that it can begin using the 828 * root filesystem instead of the boot program's services. 829 */ 830 modrootloaded = 1; 831 /* 832 * Set up mnttab information for root 833 */ 834 vfs_setresource(rootvfs, rootfs.bo_name); 835 836 /* 837 * Notify cluster software that the root filesystem is available. 838 */ 839 clboot_mountroot(); 840 841 /* Now that we're all done with the root FS, set up its vopstats */ 842 if ((vswp = vfs_getvfsswbyvfsops(vfs_getops(rootvfs))) != NULL) { 843 /* Set flag for statistics collection */ 844 if (vswp->vsw_flag & VSW_STATS) { 845 initialize_vopstats(&rootvfs->vfs_vopstats); 846 rootvfs->vfs_flag |= VFS_STATS; 847 rootvfs->vfs_fstypevsp = 848 get_fstype_vopstats(rootvfs, vswp); 849 rootvfs->vfs_vskap = get_vskstat_anchor(rootvfs); 850 } 851 vfs_unrefvfssw(vswp); 852 } 853 854 /* 855 * Mount /devices, /dev instance 1, /system/contract, /etc/mnttab, 856 * /etc/svc/volatile, /etc/dfs/sharetab, /system/object, and /proc. 857 */ 858 vfs_mountdevices(); 859 vfs_mountdev1(); 860 861 vfs_mountfs("ctfs", "ctfs", CTFS_ROOT); 862 vfs_mountfs("proc", "/proc", "/proc"); 863 vfs_mountfs("mntfs", "/etc/mnttab", "/etc/mnttab"); 864 vfs_mountfs("tmpfs", "/etc/svc/volatile", "/etc/svc/volatile"); 865 vfs_mountfs("objfs", "objfs", OBJFS_ROOT); 866 867 if (getzoneid() == GLOBAL_ZONEID) { 868 vfs_mountfs("sharefs", "sharefs", "/etc/dfs/sharetab"); 869 } 870 871 #ifdef __sparc 872 /* 873 * This bit of magic can go away when we convert sparc to 874 * the new boot architecture based on ramdisk. 875 * 876 * Booting off a mirrored root volume: 877 * At this point, we have booted and mounted root on a 878 * single component of the mirror. Complete the boot 879 * by configuring SVM and converting the root to the 880 * dev_t of the mirrored root device. This dev_t conversion 881 * only works because the underlying device doesn't change. 882 */ 883 if (root_is_svm) { 884 if (svm_rootconf()) { 885 panic("vfs_mountroot: cannot remount root"); 886 } 887 888 /* 889 * mnttab should reflect the new root device 890 */ 891 vfs_lock_wait(rootvfs); 892 vfs_setresource(rootvfs, rootfs.bo_name); 893 vfs_unlock(rootvfs); 894 } 895 #endif /* __sparc */ 896 897 /* 898 * Look up the root device via devfs so that a dv_node is 899 * created for it. The vnode is never VN_RELE()ed. 900 * We allocate more than MAXPATHLEN so that the 901 * buffer passed to i_ddi_prompath_to_devfspath() is 902 * exactly MAXPATHLEN (the function expects a buffer 903 * of that length). 904 */ 905 plen = strlen("/devices"); 906 path = kmem_alloc(plen + MAXPATHLEN, KM_SLEEP); 907 (void) strcpy(path, "/devices"); 908 909 if (i_ddi_prompath_to_devfspath(rootfs.bo_name, path + plen) 910 != DDI_SUCCESS || 911 lookupname(path, UIO_SYSSPACE, FOLLOW, NULLVPP, &rvp)) { 912 913 /* NUL terminate in case "path" has garbage */ 914 path[plen + MAXPATHLEN - 1] = '\0'; 915 #ifdef DEBUG 916 cmn_err(CE_WARN, "!Cannot lookup root device: %s", path); 917 #endif 918 } 919 kmem_free(path, plen + MAXPATHLEN); 920 } 921 922 /* 923 * If remount failed and we're in a zone we need to check for the zone 924 * root path and strip it before the call to vfs_setpath(). 925 * 926 * If strpath doesn't begin with the zone_rootpath the original 927 * strpath is returned unchanged. 928 */ 929 static const char * 930 stripzonepath(const char *strpath) 931 { 932 char *str1, *str2; 933 int i; 934 zone_t *zonep = curproc->p_zone; 935 936 if (zonep->zone_rootpath == NULL || strpath == NULL) { 937 return (NULL); 938 } 939 940 /* 941 * we check for the end of the string at one past the 942 * current position because the zone_rootpath always 943 * ends with "/" but we don't want to strip that off. 944 */ 945 str1 = zonep->zone_rootpath; 946 str2 = (char *)strpath; 947 ASSERT(str1[0] != '\0'); 948 for (i = 0; str1[i + 1] != '\0'; i++) { 949 if (str1[i] != str2[i]) 950 return ((char *)strpath); 951 } 952 return (&str2[i]); 953 } 954 955 /* 956 * Common mount code. Called from the system call entry point, from autofs, 957 * and from pxfs. 958 * 959 * Takes the effective file system type, mount arguments, the mount point 960 * vnode, flags specifying whether the mount is a remount and whether it 961 * should be entered into the vfs list, and credentials. Fills in its vfspp 962 * parameter with the mounted file system instance's vfs. 963 * 964 * Note that the effective file system type is specified as a string. It may 965 * be null, in which case it's determined from the mount arguments, and may 966 * differ from the type specified in the mount arguments; this is a hook to 967 * allow interposition when instantiating file system instances. 968 * 969 * The caller is responsible for releasing its own hold on the mount point 970 * vp (this routine does its own hold when necessary). 971 * Also note that for remounts, the mount point vp should be the vnode for 972 * the root of the file system rather than the vnode that the file system 973 * is mounted on top of. 974 */ 975 int 976 domount(char *fsname, struct mounta *uap, vnode_t *vp, struct cred *credp, 977 struct vfs **vfspp) 978 { 979 struct vfssw *vswp; 980 vfsops_t *vfsops; 981 struct vfs *vfsp; 982 struct vnode *bvp; 983 dev_t bdev = 0; 984 mntopts_t mnt_mntopts; 985 int error = 0; 986 int copyout_error = 0; 987 int ovflags; 988 char *opts = uap->optptr; 989 char *inargs = opts; 990 int optlen = uap->optlen; 991 int remount; 992 int rdonly; 993 int nbmand = 0; 994 int delmip = 0; 995 int addmip = 0; 996 int splice = ((uap->flags & MS_NOSPLICE) == 0); 997 int fromspace = (uap->flags & MS_SYSSPACE) ? 998 UIO_SYSSPACE : UIO_USERSPACE; 999 char *resource = NULL, *mountpt = NULL; 1000 refstr_t *oldresource, *oldmntpt; 1001 struct pathname pn, rpn; 1002 vsk_anchor_t *vskap; 1003 1004 /* 1005 * The v_flag value for the mount point vp is permanently set 1006 * to VVFSLOCK so that no one bypasses the vn_vfs*locks routine 1007 * for mount point locking. 1008 */ 1009 mutex_enter(&vp->v_lock); 1010 vp->v_flag |= VVFSLOCK; 1011 mutex_exit(&vp->v_lock); 1012 1013 mnt_mntopts.mo_count = 0; 1014 /* 1015 * Find the ops vector to use to invoke the file system-specific mount 1016 * method. If the fsname argument is non-NULL, use it directly. 1017 * Otherwise, dig the file system type information out of the mount 1018 * arguments. 1019 * 1020 * A side effect is to hold the vfssw entry. 1021 * 1022 * Mount arguments can be specified in several ways, which are 1023 * distinguished by flag bit settings. The preferred way is to set 1024 * MS_OPTIONSTR, indicating an 8 argument mount with the file system 1025 * type supplied as a character string and the last two arguments 1026 * being a pointer to a character buffer and the size of the buffer. 1027 * On entry, the buffer holds a null terminated list of options; on 1028 * return, the string is the list of options the file system 1029 * recognized. If MS_DATA is set arguments five and six point to a 1030 * block of binary data which the file system interprets. 1031 * A further wrinkle is that some callers don't set MS_FSS and MS_DATA 1032 * consistently with these conventions. To handle them, we check to 1033 * see whether the pointer to the file system name has a numeric value 1034 * less than 256. If so, we treat it as an index. 1035 */ 1036 if (fsname != NULL) { 1037 if ((vswp = vfs_getvfssw(fsname)) == NULL) { 1038 return (EINVAL); 1039 } 1040 } else if (uap->flags & (MS_OPTIONSTR | MS_DATA | MS_FSS)) { 1041 size_t n; 1042 uint_t fstype; 1043 char name[FSTYPSZ]; 1044 1045 if ((fstype = (uintptr_t)uap->fstype) < 256) { 1046 RLOCK_VFSSW(); 1047 if (fstype == 0 || fstype >= nfstype || 1048 !ALLOCATED_VFSSW(&vfssw[fstype])) { 1049 RUNLOCK_VFSSW(); 1050 return (EINVAL); 1051 } 1052 (void) strcpy(name, vfssw[fstype].vsw_name); 1053 RUNLOCK_VFSSW(); 1054 if ((vswp = vfs_getvfssw(name)) == NULL) 1055 return (EINVAL); 1056 } else { 1057 /* 1058 * Handle either kernel or user address space. 1059 */ 1060 if (uap->flags & MS_SYSSPACE) { 1061 error = copystr(uap->fstype, name, 1062 FSTYPSZ, &n); 1063 } else { 1064 error = copyinstr(uap->fstype, name, 1065 FSTYPSZ, &n); 1066 } 1067 if (error) { 1068 if (error == ENAMETOOLONG) 1069 return (EINVAL); 1070 return (error); 1071 } 1072 if ((vswp = vfs_getvfssw(name)) == NULL) 1073 return (EINVAL); 1074 } 1075 } else { 1076 if ((vswp = vfs_getvfsswbyvfsops(vfs_getops(rootvfs))) == NULL) 1077 return (EINVAL); 1078 } 1079 if (!VFS_INSTALLED(vswp)) 1080 return (EINVAL); 1081 vfsops = &vswp->vsw_vfsops; 1082 1083 vfs_copyopttbl(&vswp->vsw_optproto, &mnt_mntopts); 1084 /* 1085 * Fetch mount options and parse them for generic vfs options 1086 */ 1087 if (uap->flags & MS_OPTIONSTR) { 1088 /* 1089 * Limit the buffer size 1090 */ 1091 if (optlen < 0 || optlen > MAX_MNTOPT_STR) { 1092 error = EINVAL; 1093 goto errout; 1094 } 1095 if ((uap->flags & MS_SYSSPACE) == 0) { 1096 inargs = kmem_alloc(MAX_MNTOPT_STR, KM_SLEEP); 1097 inargs[0] = '\0'; 1098 if (optlen) { 1099 error = copyinstr(opts, inargs, (size_t)optlen, 1100 NULL); 1101 if (error) { 1102 goto errout; 1103 } 1104 } 1105 } 1106 vfs_parsemntopts(&mnt_mntopts, inargs, 0); 1107 } 1108 /* 1109 * Flag bits override the options string. 1110 */ 1111 if (uap->flags & MS_REMOUNT) 1112 vfs_setmntopt_nolock(&mnt_mntopts, MNTOPT_REMOUNT, NULL, 0, 0); 1113 if (uap->flags & MS_RDONLY) 1114 vfs_setmntopt_nolock(&mnt_mntopts, MNTOPT_RO, NULL, 0, 0); 1115 if (uap->flags & MS_NOSUID) 1116 vfs_setmntopt_nolock(&mnt_mntopts, MNTOPT_NOSUID, NULL, 0, 0); 1117 1118 /* 1119 * Check if this is a remount; must be set in the option string and 1120 * the file system must support a remount option. 1121 */ 1122 if (remount = vfs_optionisset_nolock(&mnt_mntopts, 1123 MNTOPT_REMOUNT, NULL)) { 1124 if (!(vswp->vsw_flag & VSW_CANREMOUNT)) { 1125 error = ENOTSUP; 1126 goto errout; 1127 } 1128 uap->flags |= MS_REMOUNT; 1129 } 1130 1131 /* 1132 * uap->flags and vfs_optionisset() should agree. 1133 */ 1134 if (rdonly = vfs_optionisset_nolock(&mnt_mntopts, MNTOPT_RO, NULL)) { 1135 uap->flags |= MS_RDONLY; 1136 } 1137 if (vfs_optionisset_nolock(&mnt_mntopts, MNTOPT_NOSUID, NULL)) { 1138 uap->flags |= MS_NOSUID; 1139 } 1140 nbmand = vfs_optionisset_nolock(&mnt_mntopts, MNTOPT_NBMAND, NULL); 1141 ASSERT(splice || !remount); 1142 /* 1143 * If we are splicing the fs into the namespace, 1144 * perform mount point checks. 1145 * 1146 * We want to resolve the path for the mount point to eliminate 1147 * '.' and ".." and symlinks in mount points; we can't do the 1148 * same for the resource string, since it would turn 1149 * "/dev/dsk/c0t0d0s0" into "/devices/pci@...". We need to do 1150 * this before grabbing vn_vfswlock(), because otherwise we 1151 * would deadlock with lookuppn(). 1152 */ 1153 if (splice) { 1154 ASSERT(vp->v_count > 0); 1155 1156 /* 1157 * Pick up mount point and device from appropriate space. 1158 */ 1159 if (pn_get(uap->spec, fromspace, &pn) == 0) { 1160 resource = kmem_alloc(pn.pn_pathlen + 1, 1161 KM_SLEEP); 1162 (void) strcpy(resource, pn.pn_path); 1163 pn_free(&pn); 1164 } 1165 /* 1166 * Do a lookupname prior to taking the 1167 * writelock. Mark this as completed if 1168 * successful for later cleanup and addition to 1169 * the mount in progress table. 1170 */ 1171 if ((uap->flags & MS_GLOBAL) == 0 && 1172 lookupname(uap->spec, fromspace, 1173 FOLLOW, NULL, &bvp) == 0) { 1174 addmip = 1; 1175 } 1176 1177 if ((error = pn_get(uap->dir, fromspace, &pn)) == 0) { 1178 pathname_t *pnp; 1179 1180 if (*pn.pn_path != '/') { 1181 error = EINVAL; 1182 pn_free(&pn); 1183 goto errout; 1184 } 1185 pn_alloc(&rpn); 1186 /* 1187 * Kludge to prevent autofs from deadlocking with 1188 * itself when it calls domount(). 1189 * 1190 * If autofs is calling, it is because it is doing 1191 * (autofs) mounts in the process of an NFS mount. A 1192 * lookuppn() here would cause us to block waiting for 1193 * said NFS mount to complete, which can't since this 1194 * is the thread that was supposed to doing it. 1195 */ 1196 if (fromspace == UIO_USERSPACE) { 1197 if ((error = lookuppn(&pn, &rpn, FOLLOW, NULL, 1198 NULL)) == 0) { 1199 pnp = &rpn; 1200 } else { 1201 /* 1202 * The file disappeared or otherwise 1203 * became inaccessible since we opened 1204 * it; might as well fail the mount 1205 * since the mount point is no longer 1206 * accessible. 1207 */ 1208 pn_free(&rpn); 1209 pn_free(&pn); 1210 goto errout; 1211 } 1212 } else { 1213 pnp = &pn; 1214 } 1215 mountpt = kmem_alloc(pnp->pn_pathlen + 1, KM_SLEEP); 1216 (void) strcpy(mountpt, pnp->pn_path); 1217 1218 /* 1219 * If the addition of the zone's rootpath 1220 * would push us over a total path length 1221 * of MAXPATHLEN, we fail the mount with 1222 * ENAMETOOLONG, which is what we would have 1223 * gotten if we were trying to perform the same 1224 * mount in the global zone. 1225 * 1226 * strlen() doesn't count the trailing 1227 * '\0', but zone_rootpathlen counts both a 1228 * trailing '/' and the terminating '\0'. 1229 */ 1230 if ((curproc->p_zone->zone_rootpathlen - 1 + 1231 strlen(mountpt)) > MAXPATHLEN || 1232 (resource != NULL && 1233 (curproc->p_zone->zone_rootpathlen - 1 + 1234 strlen(resource)) > MAXPATHLEN)) { 1235 error = ENAMETOOLONG; 1236 } 1237 1238 pn_free(&rpn); 1239 pn_free(&pn); 1240 } 1241 1242 if (error) 1243 goto errout; 1244 1245 /* 1246 * Prevent path name resolution from proceeding past 1247 * the mount point. 1248 */ 1249 if (vn_vfswlock(vp) != 0) { 1250 error = EBUSY; 1251 goto errout; 1252 } 1253 1254 /* 1255 * Verify that it's legitimate to establish a mount on 1256 * the prospective mount point. 1257 */ 1258 if (vn_mountedvfs(vp) != NULL) { 1259 /* 1260 * The mount point lock was obtained after some 1261 * other thread raced through and established a mount. 1262 */ 1263 vn_vfsunlock(vp); 1264 error = EBUSY; 1265 goto errout; 1266 } 1267 if (vp->v_flag & VNOMOUNT) { 1268 vn_vfsunlock(vp); 1269 error = EINVAL; 1270 goto errout; 1271 } 1272 } 1273 if ((uap->flags & (MS_DATA | MS_OPTIONSTR)) == 0) { 1274 uap->dataptr = NULL; 1275 uap->datalen = 0; 1276 } 1277 1278 /* 1279 * If this is a remount, we don't want to create a new VFS. 1280 * Instead, we pass the existing one with a remount flag. 1281 */ 1282 if (remount) { 1283 /* 1284 * Confirm that the mount point is the root vnode of the 1285 * file system that is being remounted. 1286 * This can happen if the user specifies a different 1287 * mount point directory pathname in the (re)mount command. 1288 * 1289 * Code below can only be reached if splice is true, so it's 1290 * safe to do vn_vfsunlock() here. 1291 */ 1292 if ((vp->v_flag & VROOT) == 0) { 1293 vn_vfsunlock(vp); 1294 error = ENOENT; 1295 goto errout; 1296 } 1297 /* 1298 * Disallow making file systems read-only unless file system 1299 * explicitly allows it in its vfssw. Ignore other flags. 1300 */ 1301 if (rdonly && vn_is_readonly(vp) == 0 && 1302 (vswp->vsw_flag & VSW_CANRWRO) == 0) { 1303 vn_vfsunlock(vp); 1304 error = EINVAL; 1305 goto errout; 1306 } 1307 /* 1308 * Changing the NBMAND setting on remounts is permitted 1309 * but logged since it can lead to unexpected behavior. 1310 * We also counsel against using it for / and /usr. 1311 */ 1312 if ((nbmand && ((vp->v_vfsp->vfs_flag & VFS_NBMAND) == 0)) || 1313 (!nbmand && (vp->v_vfsp->vfs_flag & VFS_NBMAND))) { 1314 cmn_err(CE_WARN, "domount: nbmand turned %s via " 1315 "remounting %s", nbmand ? "on" : "off", 1316 refstr_value(vp->v_vfsp->vfs_mntpt)); 1317 } 1318 vfsp = vp->v_vfsp; 1319 ovflags = vfsp->vfs_flag; 1320 vfsp->vfs_flag |= VFS_REMOUNT; 1321 vfsp->vfs_flag &= ~VFS_RDONLY; 1322 } else { 1323 vfsp = kmem_alloc(sizeof (vfs_t), KM_SLEEP); 1324 VFS_INIT(vfsp, vfsops, NULL); 1325 } 1326 1327 VFS_HOLD(vfsp); 1328 1329 /* 1330 * The vfs_reflock is not used anymore the code below explicitly 1331 * holds it preventing others accesing it directly. 1332 */ 1333 if ((sema_tryp(&vfsp->vfs_reflock) == 0) && 1334 !(vfsp->vfs_flag & VFS_REMOUNT)) 1335 cmn_err(CE_WARN, 1336 "mount type %s couldn't get vfs_reflock", vswp->vsw_name); 1337 1338 /* 1339 * Lock the vfs. If this is a remount we want to avoid spurious umount 1340 * failures that happen as a side-effect of fsflush() and other mount 1341 * and unmount operations that might be going on simultaneously and 1342 * may have locked the vfs currently. To not return EBUSY immediately 1343 * here we use vfs_lock_wait() instead vfs_lock() for the remount case. 1344 */ 1345 if (!remount) { 1346 if (error = vfs_lock(vfsp)) { 1347 vfsp->vfs_flag = ovflags; 1348 if (splice) 1349 vn_vfsunlock(vp); 1350 if (vfsp->vfs_implp) 1351 vfsimpl_teardown(vfsp); 1352 kmem_free(vfsp, sizeof (struct vfs)); 1353 goto errout; 1354 } 1355 } else { 1356 vfs_lock_wait(vfsp); 1357 } 1358 1359 /* 1360 * Add device to mount in progress table, global mounts require special 1361 * handling. It is possible that we have already done the lookupname 1362 * on a spliced, non-global fs. If so, we don't want to do it again 1363 * since we cannot do a lookupname after taking the 1364 * wlock above. This case is for a non-spliced, non-global filesystem. 1365 */ 1366 if (!addmip) { 1367 if ((uap->flags & MS_GLOBAL) == 0 && 1368 lookupname(uap->spec, fromspace, FOLLOW, NULL, &bvp) == 0) { 1369 addmip = 1; 1370 } 1371 } 1372 1373 if (addmip) { 1374 bdev = bvp->v_rdev; 1375 VN_RELE(bvp); 1376 vfs_addmip(bdev, vfsp); 1377 addmip = 0; 1378 delmip = 1; 1379 } 1380 /* 1381 * Invalidate cached entry for the mount point. 1382 */ 1383 if (splice) 1384 dnlc_purge_vp(vp); 1385 1386 /* 1387 * If have an option string but the filesystem doesn't supply a 1388 * prototype options table, create a table with the global 1389 * options and sufficient room to accept all the options in the 1390 * string. Then parse the passed in option string 1391 * accepting all the options in the string. This gives us an 1392 * option table with all the proper cancel properties for the 1393 * global options. 1394 * 1395 * Filesystems that supply a prototype options table are handled 1396 * earlier in this function. 1397 */ 1398 if (uap->flags & MS_OPTIONSTR) { 1399 if (!(vswp->vsw_flag & VSW_HASPROTO)) { 1400 mntopts_t tmp_mntopts; 1401 1402 tmp_mntopts.mo_count = 0; 1403 vfs_createopttbl_extend(&tmp_mntopts, inargs, 1404 &mnt_mntopts); 1405 vfs_parsemntopts(&tmp_mntopts, inargs, 1); 1406 vfs_swapopttbl_nolock(&mnt_mntopts, &tmp_mntopts); 1407 vfs_freeopttbl(&tmp_mntopts); 1408 } 1409 } 1410 1411 /* 1412 * Serialize with zone creations. 1413 */ 1414 mount_in_progress(); 1415 /* 1416 * Instantiate (or reinstantiate) the file system. If appropriate, 1417 * splice it into the file system name space. 1418 * 1419 * We want VFS_MOUNT() to be able to override the vfs_resource 1420 * string if necessary (ie, mntfs), and also for a remount to 1421 * change the same (necessary when remounting '/' during boot). 1422 * So we set up vfs_mntpt and vfs_resource to what we think they 1423 * should be, then hand off control to VFS_MOUNT() which can 1424 * override this. 1425 * 1426 * For safety's sake, when changing vfs_resource or vfs_mntpt of 1427 * a vfs which is on the vfs list (i.e. during a remount), we must 1428 * never set those fields to NULL. Several bits of code make 1429 * assumptions that the fields are always valid. 1430 */ 1431 vfs_swapopttbl(&mnt_mntopts, &vfsp->vfs_mntopts); 1432 if (remount) { 1433 if ((oldresource = vfsp->vfs_resource) != NULL) 1434 refstr_hold(oldresource); 1435 if ((oldmntpt = vfsp->vfs_mntpt) != NULL) 1436 refstr_hold(oldmntpt); 1437 } 1438 vfs_setresource(vfsp, resource); 1439 vfs_setmntpoint(vfsp, mountpt); 1440 1441 /* 1442 * going to mount on this vnode, so notify. 1443 */ 1444 vnevent_mountedover(vp); 1445 error = VFS_MOUNT(vfsp, vp, uap, credp); 1446 1447 if (uap->flags & MS_RDONLY) 1448 vfs_setmntopt(vfsp, MNTOPT_RO, NULL, 0); 1449 if (uap->flags & MS_NOSUID) 1450 vfs_setmntopt(vfsp, MNTOPT_NOSUID, NULL, 0); 1451 if (uap->flags & MS_GLOBAL) 1452 vfs_setmntopt(vfsp, MNTOPT_GLOBAL, NULL, 0); 1453 1454 if (error) { 1455 if (remount) { 1456 /* put back pre-remount options */ 1457 vfs_swapopttbl(&mnt_mntopts, &vfsp->vfs_mntopts); 1458 vfs_setmntpoint(vfsp, (stripzonepath( 1459 refstr_value(oldmntpt)))); 1460 if (oldmntpt) 1461 refstr_rele(oldmntpt); 1462 vfs_setresource(vfsp, (stripzonepath( 1463 refstr_value(oldresource)))); 1464 if (oldresource) 1465 refstr_rele(oldresource); 1466 vfsp->vfs_flag = ovflags; 1467 vfs_unlock(vfsp); 1468 VFS_RELE(vfsp); 1469 } else { 1470 vfs_unlock(vfsp); 1471 vfs_freemnttab(vfsp); 1472 if (vfsp->vfs_implp) 1473 vfsimpl_teardown(vfsp); 1474 kmem_free(vfsp, sizeof (struct vfs)); 1475 } 1476 } else { 1477 /* 1478 * Set the mount time to now 1479 */ 1480 vfsp->vfs_mtime = ddi_get_time(); 1481 if (remount) { 1482 vfsp->vfs_flag &= ~VFS_REMOUNT; 1483 if (oldresource) 1484 refstr_rele(oldresource); 1485 if (oldmntpt) 1486 refstr_rele(oldmntpt); 1487 } else if (splice) { 1488 /* 1489 * Link vfsp into the name space at the mount 1490 * point. Vfs_add() is responsible for 1491 * holding the mount point which will be 1492 * released when vfs_remove() is called. 1493 */ 1494 vfs_add(vp, vfsp, uap->flags); 1495 } else { 1496 /* 1497 * Hold the reference to file system which is 1498 * not linked into the name space. 1499 */ 1500 vfsp->vfs_zone = NULL; 1501 VFS_HOLD(vfsp); 1502 vfsp->vfs_vnodecovered = NULL; 1503 } 1504 /* 1505 * Set flags for global options encountered 1506 */ 1507 if (vfs_optionisset(vfsp, MNTOPT_RO, NULL)) 1508 vfsp->vfs_flag |= VFS_RDONLY; 1509 else 1510 vfsp->vfs_flag &= ~VFS_RDONLY; 1511 if (vfs_optionisset(vfsp, MNTOPT_NOSUID, NULL)) { 1512 vfsp->vfs_flag |= (VFS_NOSETUID|VFS_NODEVICES); 1513 } else { 1514 if (vfs_optionisset(vfsp, MNTOPT_NODEVICES, NULL)) 1515 vfsp->vfs_flag |= VFS_NODEVICES; 1516 else 1517 vfsp->vfs_flag &= ~VFS_NODEVICES; 1518 if (vfs_optionisset(vfsp, MNTOPT_NOSETUID, NULL)) 1519 vfsp->vfs_flag |= VFS_NOSETUID; 1520 else 1521 vfsp->vfs_flag &= ~VFS_NOSETUID; 1522 } 1523 if (vfs_optionisset(vfsp, MNTOPT_NBMAND, NULL)) 1524 vfsp->vfs_flag |= VFS_NBMAND; 1525 else 1526 vfsp->vfs_flag &= ~VFS_NBMAND; 1527 1528 if (vfs_optionisset(vfsp, MNTOPT_XATTR, NULL)) 1529 vfsp->vfs_flag |= VFS_XATTR; 1530 else 1531 vfsp->vfs_flag &= ~VFS_XATTR; 1532 1533 if (vfs_optionisset(vfsp, MNTOPT_NOEXEC, NULL)) 1534 vfsp->vfs_flag |= VFS_NOEXEC; 1535 else 1536 vfsp->vfs_flag &= ~VFS_NOEXEC; 1537 1538 /* 1539 * Now construct the output option string of options 1540 * we recognized. 1541 */ 1542 if (uap->flags & MS_OPTIONSTR) { 1543 vfs_list_read_lock(); 1544 copyout_error = vfs_buildoptionstr( 1545 &vfsp->vfs_mntopts, inargs, optlen); 1546 vfs_list_unlock(); 1547 if (copyout_error == 0 && 1548 (uap->flags & MS_SYSSPACE) == 0) { 1549 copyout_error = copyoutstr(inargs, opts, 1550 optlen, NULL); 1551 } 1552 } 1553 1554 /* 1555 * If this isn't a remount, set up the vopstats before 1556 * anyone can touch this. We only allow spliced file 1557 * systems (file systems which are in the namespace) to 1558 * have the VFS_STATS flag set. 1559 * NOTE: PxFS mounts the underlying file system with 1560 * MS_NOSPLICE set and copies those vfs_flags to its private 1561 * vfs structure. As a result, PxFS should never have 1562 * the VFS_STATS flag or else we might access the vfs 1563 * statistics-related fields prior to them being 1564 * properly initialized. 1565 */ 1566 if (!remount && (vswp->vsw_flag & VSW_STATS) && splice) { 1567 initialize_vopstats(&vfsp->vfs_vopstats); 1568 /* 1569 * We need to set vfs_vskap to NULL because there's 1570 * a chance it won't be set below. This is checked 1571 * in teardown_vopstats() so we can't have garbage. 1572 */ 1573 vfsp->vfs_vskap = NULL; 1574 vfsp->vfs_flag |= VFS_STATS; 1575 vfsp->vfs_fstypevsp = get_fstype_vopstats(vfsp, vswp); 1576 } 1577 1578 if (vswp->vsw_flag & VSW_XID) 1579 vfsp->vfs_flag |= VFS_XID; 1580 1581 vfs_unlock(vfsp); 1582 } 1583 mount_completed(); 1584 if (splice) 1585 vn_vfsunlock(vp); 1586 1587 if ((error == 0) && (copyout_error == 0)) { 1588 if (!remount) { 1589 /* 1590 * Don't call get_vskstat_anchor() while holding 1591 * locks since it allocates memory and calls 1592 * VFS_STATVFS(). For NFS, the latter can generate 1593 * an over-the-wire call. 1594 */ 1595 vskap = get_vskstat_anchor(vfsp); 1596 /* Only take the lock if we have something to do */ 1597 if (vskap != NULL) { 1598 vfs_lock_wait(vfsp); 1599 if (vfsp->vfs_flag & VFS_STATS) { 1600 vfsp->vfs_vskap = vskap; 1601 } 1602 vfs_unlock(vfsp); 1603 } 1604 } 1605 /* Return vfsp to caller. */ 1606 *vfspp = vfsp; 1607 } 1608 errout: 1609 vfs_freeopttbl(&mnt_mntopts); 1610 if (resource != NULL) 1611 kmem_free(resource, strlen(resource) + 1); 1612 if (mountpt != NULL) 1613 kmem_free(mountpt, strlen(mountpt) + 1); 1614 /* 1615 * It is possible we errored prior to adding to mount in progress 1616 * table. Must free vnode we acquired with successful lookupname. 1617 */ 1618 if (addmip) 1619 VN_RELE(bvp); 1620 if (delmip) 1621 vfs_delmip(vfsp); 1622 ASSERT(vswp != NULL); 1623 vfs_unrefvfssw(vswp); 1624 if (inargs != opts) 1625 kmem_free(inargs, MAX_MNTOPT_STR); 1626 if (copyout_error) { 1627 VFS_RELE(vfsp); 1628 error = copyout_error; 1629 } 1630 return (error); 1631 } 1632 1633 static void 1634 vfs_setpath(struct vfs *vfsp, refstr_t **refp, const char *newpath) 1635 { 1636 size_t len; 1637 refstr_t *ref; 1638 zone_t *zone = curproc->p_zone; 1639 char *sp; 1640 int have_list_lock = 0; 1641 1642 ASSERT(!VFS_ON_LIST(vfsp) || vfs_lock_held(vfsp)); 1643 1644 /* 1645 * New path must be less than MAXPATHLEN because mntfs 1646 * will only display up to MAXPATHLEN bytes. This is currently 1647 * safe, because domount() uses pn_get(), and other callers 1648 * similarly cap the size to fewer than MAXPATHLEN bytes. 1649 */ 1650 1651 ASSERT(strlen(newpath) < MAXPATHLEN); 1652 1653 /* mntfs requires consistency while vfs list lock is held */ 1654 1655 if (VFS_ON_LIST(vfsp)) { 1656 have_list_lock = 1; 1657 vfs_list_lock(); 1658 } 1659 1660 if (*refp != NULL) 1661 refstr_rele(*refp); 1662 1663 /* Do we need to modify the path? */ 1664 1665 if (zone == global_zone || *newpath != '/') { 1666 ref = refstr_alloc(newpath); 1667 goto out; 1668 } 1669 1670 /* 1671 * Truncate the trailing '/' in the zoneroot, and merge 1672 * in the zone's rootpath with the "newpath" (resource 1673 * or mountpoint) passed in. 1674 * 1675 * The size of the required buffer is thus the size of 1676 * the buffer required for the passed-in newpath 1677 * (strlen(newpath) + 1), plus the size of the buffer 1678 * required to hold zone_rootpath (zone_rootpathlen) 1679 * minus one for one of the now-superfluous NUL 1680 * terminations, minus one for the trailing '/'. 1681 * 1682 * That gives us: 1683 * 1684 * (strlen(newpath) + 1) + zone_rootpathlen - 1 - 1 1685 * 1686 * Which is what we have below. 1687 */ 1688 1689 len = strlen(newpath) + zone->zone_rootpathlen - 1; 1690 sp = kmem_alloc(len, KM_SLEEP); 1691 1692 /* 1693 * Copy everything including the trailing slash, which 1694 * we then overwrite with the NUL character. 1695 */ 1696 1697 (void) strcpy(sp, zone->zone_rootpath); 1698 sp[zone->zone_rootpathlen - 2] = '\0'; 1699 (void) strcat(sp, newpath); 1700 1701 ref = refstr_alloc(sp); 1702 kmem_free(sp, len); 1703 out: 1704 *refp = ref; 1705 1706 if (have_list_lock) { 1707 vfs_mnttab_modtimeupd(); 1708 vfs_list_unlock(); 1709 } 1710 } 1711 1712 /* 1713 * Record a mounted resource name in a vfs structure. 1714 * If vfsp is already mounted, caller must hold the vfs lock. 1715 */ 1716 void 1717 vfs_setresource(struct vfs *vfsp, const char *resource) 1718 { 1719 if (resource == NULL || resource[0] == '\0') 1720 resource = VFS_NORESOURCE; 1721 vfs_setpath(vfsp, &vfsp->vfs_resource, resource); 1722 } 1723 1724 /* 1725 * Record a mount point name in a vfs structure. 1726 * If vfsp is already mounted, caller must hold the vfs lock. 1727 */ 1728 void 1729 vfs_setmntpoint(struct vfs *vfsp, const char *mntpt) 1730 { 1731 if (mntpt == NULL || mntpt[0] == '\0') 1732 mntpt = VFS_NOMNTPT; 1733 vfs_setpath(vfsp, &vfsp->vfs_mntpt, mntpt); 1734 } 1735 1736 /* Returns the vfs_resource. Caller must call refstr_rele() when finished. */ 1737 1738 refstr_t * 1739 vfs_getresource(const struct vfs *vfsp) 1740 { 1741 refstr_t *resource; 1742 1743 vfs_list_read_lock(); 1744 resource = vfsp->vfs_resource; 1745 refstr_hold(resource); 1746 vfs_list_unlock(); 1747 1748 return (resource); 1749 } 1750 1751 /* Returns the vfs_mntpt. Caller must call refstr_rele() when finished. */ 1752 1753 refstr_t * 1754 vfs_getmntpoint(const struct vfs *vfsp) 1755 { 1756 refstr_t *mntpt; 1757 1758 vfs_list_read_lock(); 1759 mntpt = vfsp->vfs_mntpt; 1760 refstr_hold(mntpt); 1761 vfs_list_unlock(); 1762 1763 return (mntpt); 1764 } 1765 1766 /* 1767 * Create an empty options table with enough empty slots to hold all 1768 * The options in the options string passed as an argument. 1769 * Potentially prepend another options table. 1770 * 1771 * Note: caller is responsible for locking the vfs list, if needed, 1772 * to protect mops. 1773 */ 1774 static void 1775 vfs_createopttbl_extend(mntopts_t *mops, const char *opts, 1776 const mntopts_t *mtmpl) 1777 { 1778 const char *s = opts; 1779 uint_t count; 1780 1781 if (opts == NULL || *opts == '\0') { 1782 count = 0; 1783 } else { 1784 count = 1; 1785 1786 /* 1787 * Count number of options in the string 1788 */ 1789 for (s = strchr(s, ','); s != NULL; s = strchr(s, ',')) { 1790 count++; 1791 s++; 1792 } 1793 } 1794 vfs_copyopttbl_extend(mtmpl, mops, count); 1795 } 1796 1797 /* 1798 * Create an empty options table with enough empty slots to hold all 1799 * The options in the options string passed as an argument. 1800 * 1801 * This function is *not* for general use by filesystems. 1802 * 1803 * Note: caller is responsible for locking the vfs list, if needed, 1804 * to protect mops. 1805 */ 1806 void 1807 vfs_createopttbl(mntopts_t *mops, const char *opts) 1808 { 1809 vfs_createopttbl_extend(mops, opts, NULL); 1810 } 1811 1812 1813 /* 1814 * Swap two mount options tables 1815 */ 1816 static void 1817 vfs_swapopttbl_nolock(mntopts_t *optbl1, mntopts_t *optbl2) 1818 { 1819 uint_t tmpcnt; 1820 mntopt_t *tmplist; 1821 1822 tmpcnt = optbl2->mo_count; 1823 tmplist = optbl2->mo_list; 1824 optbl2->mo_count = optbl1->mo_count; 1825 optbl2->mo_list = optbl1->mo_list; 1826 optbl1->mo_count = tmpcnt; 1827 optbl1->mo_list = tmplist; 1828 } 1829 1830 static void 1831 vfs_swapopttbl(mntopts_t *optbl1, mntopts_t *optbl2) 1832 { 1833 vfs_list_lock(); 1834 vfs_swapopttbl_nolock(optbl1, optbl2); 1835 vfs_mnttab_modtimeupd(); 1836 vfs_list_unlock(); 1837 } 1838 1839 static char ** 1840 vfs_copycancelopt_extend(char **const moc, int extend) 1841 { 1842 int i = 0; 1843 int j; 1844 char **result; 1845 1846 if (moc != NULL) { 1847 for (; moc[i] != NULL; i++) 1848 /* count number of options to cancel */; 1849 } 1850 1851 if (i + extend == 0) 1852 return (NULL); 1853 1854 result = kmem_alloc((i + extend + 1) * sizeof (char *), KM_SLEEP); 1855 1856 for (j = 0; j < i; j++) { 1857 result[j] = kmem_alloc(strlen(moc[j]) + 1, KM_SLEEP); 1858 (void) strcpy(result[j], moc[j]); 1859 } 1860 for (; j <= i + extend; j++) 1861 result[j] = NULL; 1862 1863 return (result); 1864 } 1865 1866 static void 1867 vfs_copyopt(const mntopt_t *s, mntopt_t *d) 1868 { 1869 char *sp, *dp; 1870 1871 d->mo_flags = s->mo_flags; 1872 d->mo_data = s->mo_data; 1873 sp = s->mo_name; 1874 if (sp != NULL) { 1875 dp = kmem_alloc(strlen(sp) + 1, KM_SLEEP); 1876 (void) strcpy(dp, sp); 1877 d->mo_name = dp; 1878 } else { 1879 d->mo_name = NULL; /* should never happen */ 1880 } 1881 1882 d->mo_cancel = vfs_copycancelopt_extend(s->mo_cancel, 0); 1883 1884 sp = s->mo_arg; 1885 if (sp != NULL) { 1886 dp = kmem_alloc(strlen(sp) + 1, KM_SLEEP); 1887 (void) strcpy(dp, sp); 1888 d->mo_arg = dp; 1889 } else { 1890 d->mo_arg = NULL; 1891 } 1892 } 1893 1894 /* 1895 * Copy a mount options table, possibly allocating some spare 1896 * slots at the end. It is permissible to copy_extend the NULL table. 1897 */ 1898 static void 1899 vfs_copyopttbl_extend(const mntopts_t *smo, mntopts_t *dmo, int extra) 1900 { 1901 uint_t i, count; 1902 mntopt_t *motbl; 1903 1904 /* 1905 * Clear out any existing stuff in the options table being initialized 1906 */ 1907 vfs_freeopttbl(dmo); 1908 count = (smo == NULL) ? 0 : smo->mo_count; 1909 if ((count + extra) == 0) /* nothing to do */ 1910 return; 1911 dmo->mo_count = count + extra; 1912 motbl = kmem_zalloc((count + extra) * sizeof (mntopt_t), KM_SLEEP); 1913 dmo->mo_list = motbl; 1914 for (i = 0; i < count; i++) { 1915 vfs_copyopt(&smo->mo_list[i], &motbl[i]); 1916 } 1917 for (i = count; i < count + extra; i++) { 1918 motbl[i].mo_flags = MO_EMPTY; 1919 } 1920 } 1921 1922 /* 1923 * Copy a mount options table. 1924 * 1925 * This function is *not* for general use by filesystems. 1926 * 1927 * Note: caller is responsible for locking the vfs list, if needed, 1928 * to protect smo and dmo. 1929 */ 1930 void 1931 vfs_copyopttbl(const mntopts_t *smo, mntopts_t *dmo) 1932 { 1933 vfs_copyopttbl_extend(smo, dmo, 0); 1934 } 1935 1936 static char ** 1937 vfs_mergecancelopts(const mntopt_t *mop1, const mntopt_t *mop2) 1938 { 1939 int c1 = 0; 1940 int c2 = 0; 1941 char **result; 1942 char **sp1, **sp2, **dp; 1943 1944 /* 1945 * First we count both lists of cancel options. 1946 * If either is NULL or has no elements, we return a copy of 1947 * the other. 1948 */ 1949 if (mop1->mo_cancel != NULL) { 1950 for (; mop1->mo_cancel[c1] != NULL; c1++) 1951 /* count cancel options in mop1 */; 1952 } 1953 1954 if (c1 == 0) 1955 return (vfs_copycancelopt_extend(mop2->mo_cancel, 0)); 1956 1957 if (mop2->mo_cancel != NULL) { 1958 for (; mop2->mo_cancel[c2] != NULL; c2++) 1959 /* count cancel options in mop2 */; 1960 } 1961 1962 result = vfs_copycancelopt_extend(mop1->mo_cancel, c2); 1963 1964 if (c2 == 0) 1965 return (result); 1966 1967 /* 1968 * When we get here, we've got two sets of cancel options; 1969 * we need to merge the two sets. We know that the result 1970 * array has "c1+c2+1" entries and in the end we might shrink 1971 * it. 1972 * Result now has a copy of the c1 entries from mop1; we'll 1973 * now lookup all the entries of mop2 in mop1 and copy it if 1974 * it is unique. 1975 * This operation is O(n^2) but it's only called once per 1976 * filesystem per duplicate option. This is a situation 1977 * which doesn't arise with the filesystems in ON and 1978 * n is generally 1. 1979 */ 1980 1981 dp = &result[c1]; 1982 for (sp2 = mop2->mo_cancel; *sp2 != NULL; sp2++) { 1983 for (sp1 = mop1->mo_cancel; *sp1 != NULL; sp1++) { 1984 if (strcmp(*sp1, *sp2) == 0) 1985 break; 1986 } 1987 if (*sp1 == NULL) { 1988 /* 1989 * Option *sp2 not found in mop1, so copy it. 1990 * The calls to vfs_copycancelopt_extend() 1991 * guarantee that there's enough room. 1992 */ 1993 *dp = kmem_alloc(strlen(*sp2) + 1, KM_SLEEP); 1994 (void) strcpy(*dp++, *sp2); 1995 } 1996 } 1997 if (dp != &result[c1+c2]) { 1998 size_t bytes = (dp - result + 1) * sizeof (char *); 1999 char **nres = kmem_alloc(bytes, KM_SLEEP); 2000 2001 bcopy(result, nres, bytes); 2002 kmem_free(result, (c1 + c2 + 1) * sizeof (char *)); 2003 result = nres; 2004 } 2005 return (result); 2006 } 2007 2008 /* 2009 * Merge two mount option tables (outer and inner) into one. This is very 2010 * similar to "merging" global variables and automatic variables in C. 2011 * 2012 * This isn't (and doesn't have to be) fast. 2013 * 2014 * This function is *not* for general use by filesystems. 2015 * 2016 * Note: caller is responsible for locking the vfs list, if needed, 2017 * to protect omo, imo & dmo. 2018 */ 2019 void 2020 vfs_mergeopttbl(const mntopts_t *omo, const mntopts_t *imo, mntopts_t *dmo) 2021 { 2022 uint_t i, count; 2023 mntopt_t *mop, *motbl; 2024 uint_t freeidx; 2025 2026 /* 2027 * First determine how much space we need to allocate. 2028 */ 2029 count = omo->mo_count; 2030 for (i = 0; i < imo->mo_count; i++) { 2031 if (imo->mo_list[i].mo_flags & MO_EMPTY) 2032 continue; 2033 if (vfs_hasopt(omo, imo->mo_list[i].mo_name) == NULL) 2034 count++; 2035 } 2036 ASSERT(count >= omo->mo_count && 2037 count <= omo->mo_count + imo->mo_count); 2038 motbl = kmem_alloc(count * sizeof (mntopt_t), KM_SLEEP); 2039 for (i = 0; i < omo->mo_count; i++) 2040 vfs_copyopt(&omo->mo_list[i], &motbl[i]); 2041 freeidx = omo->mo_count; 2042 for (i = 0; i < imo->mo_count; i++) { 2043 if (imo->mo_list[i].mo_flags & MO_EMPTY) 2044 continue; 2045 if ((mop = vfs_hasopt(omo, imo->mo_list[i].mo_name)) != NULL) { 2046 char **newcanp; 2047 uint_t index = mop - omo->mo_list; 2048 2049 newcanp = vfs_mergecancelopts(mop, &motbl[index]); 2050 2051 vfs_freeopt(&motbl[index]); 2052 vfs_copyopt(&imo->mo_list[i], &motbl[index]); 2053 2054 vfs_freecancelopt(motbl[index].mo_cancel); 2055 motbl[index].mo_cancel = newcanp; 2056 } else { 2057 /* 2058 * If it's a new option, just copy it over to the first 2059 * free location. 2060 */ 2061 vfs_copyopt(&imo->mo_list[i], &motbl[freeidx++]); 2062 } 2063 } 2064 dmo->mo_count = count; 2065 dmo->mo_list = motbl; 2066 } 2067 2068 /* 2069 * Functions to set and clear mount options in a mount options table. 2070 */ 2071 2072 /* 2073 * Clear a mount option, if it exists. 2074 * 2075 * The update_mnttab arg indicates whether mops is part of a vfs that is on 2076 * the vfs list. 2077 */ 2078 static void 2079 vfs_clearmntopt_nolock(mntopts_t *mops, const char *opt, int update_mnttab) 2080 { 2081 struct mntopt *mop; 2082 uint_t i, count; 2083 2084 ASSERT(!update_mnttab || RW_WRITE_HELD(&vfslist)); 2085 2086 count = mops->mo_count; 2087 for (i = 0; i < count; i++) { 2088 mop = &mops->mo_list[i]; 2089 2090 if (mop->mo_flags & MO_EMPTY) 2091 continue; 2092 if (strcmp(opt, mop->mo_name)) 2093 continue; 2094 mop->mo_flags &= ~MO_SET; 2095 if (mop->mo_arg != NULL) { 2096 kmem_free(mop->mo_arg, strlen(mop->mo_arg) + 1); 2097 } 2098 mop->mo_arg = NULL; 2099 if (update_mnttab) 2100 vfs_mnttab_modtimeupd(); 2101 break; 2102 } 2103 } 2104 2105 void 2106 vfs_clearmntopt(struct vfs *vfsp, const char *opt) 2107 { 2108 int gotlock = 0; 2109 2110 if (VFS_ON_LIST(vfsp)) { 2111 gotlock = 1; 2112 vfs_list_lock(); 2113 } 2114 vfs_clearmntopt_nolock(&vfsp->vfs_mntopts, opt, gotlock); 2115 if (gotlock) 2116 vfs_list_unlock(); 2117 } 2118 2119 2120 /* 2121 * Set a mount option on. If it's not found in the table, it's silently 2122 * ignored. If the option has MO_IGNORE set, it is still set unless the 2123 * VFS_NOFORCEOPT bit is set in the flags. Also, VFS_DISPLAY/VFS_NODISPLAY flag 2124 * bits can be used to toggle the MO_NODISPLAY bit for the option. 2125 * If the VFS_CREATEOPT flag bit is set then the first option slot with 2126 * MO_EMPTY set is created as the option passed in. 2127 * 2128 * The update_mnttab arg indicates whether mops is part of a vfs that is on 2129 * the vfs list. 2130 */ 2131 static void 2132 vfs_setmntopt_nolock(mntopts_t *mops, const char *opt, 2133 const char *arg, int flags, int update_mnttab) 2134 { 2135 mntopt_t *mop; 2136 uint_t i, count; 2137 char *sp; 2138 2139 ASSERT(!update_mnttab || RW_WRITE_HELD(&vfslist)); 2140 2141 if (flags & VFS_CREATEOPT) { 2142 if (vfs_hasopt(mops, opt) != NULL) { 2143 flags &= ~VFS_CREATEOPT; 2144 } 2145 } 2146 count = mops->mo_count; 2147 for (i = 0; i < count; i++) { 2148 mop = &mops->mo_list[i]; 2149 2150 if (mop->mo_flags & MO_EMPTY) { 2151 if ((flags & VFS_CREATEOPT) == 0) 2152 continue; 2153 sp = kmem_alloc(strlen(opt) + 1, KM_SLEEP); 2154 (void) strcpy(sp, opt); 2155 mop->mo_name = sp; 2156 if (arg != NULL) 2157 mop->mo_flags = MO_HASVALUE; 2158 else 2159 mop->mo_flags = 0; 2160 } else if (strcmp(opt, mop->mo_name)) { 2161 continue; 2162 } 2163 if ((mop->mo_flags & MO_IGNORE) && (flags & VFS_NOFORCEOPT)) 2164 break; 2165 if (arg != NULL && (mop->mo_flags & MO_HASVALUE) != 0) { 2166 sp = kmem_alloc(strlen(arg) + 1, KM_SLEEP); 2167 (void) strcpy(sp, arg); 2168 } else { 2169 sp = NULL; 2170 } 2171 if (mop->mo_arg != NULL) 2172 kmem_free(mop->mo_arg, strlen(mop->mo_arg) + 1); 2173 mop->mo_arg = sp; 2174 if (flags & VFS_DISPLAY) 2175 mop->mo_flags &= ~MO_NODISPLAY; 2176 if (flags & VFS_NODISPLAY) 2177 mop->mo_flags |= MO_NODISPLAY; 2178 mop->mo_flags |= MO_SET; 2179 if (mop->mo_cancel != NULL) { 2180 char **cp; 2181 2182 for (cp = mop->mo_cancel; *cp != NULL; cp++) 2183 vfs_clearmntopt_nolock(mops, *cp, 0); 2184 } 2185 if (update_mnttab) 2186 vfs_mnttab_modtimeupd(); 2187 break; 2188 } 2189 } 2190 2191 void 2192 vfs_setmntopt(struct vfs *vfsp, const char *opt, const char *arg, int flags) 2193 { 2194 int gotlock = 0; 2195 2196 if (VFS_ON_LIST(vfsp)) { 2197 gotlock = 1; 2198 vfs_list_lock(); 2199 } 2200 vfs_setmntopt_nolock(&vfsp->vfs_mntopts, opt, arg, flags, gotlock); 2201 if (gotlock) 2202 vfs_list_unlock(); 2203 } 2204 2205 2206 /* 2207 * Add a "tag" option to a mounted file system's options list. 2208 * 2209 * Note: caller is responsible for locking the vfs list, if needed, 2210 * to protect mops. 2211 */ 2212 static mntopt_t * 2213 vfs_addtag(mntopts_t *mops, const char *tag) 2214 { 2215 uint_t count; 2216 mntopt_t *mop, *motbl; 2217 2218 count = mops->mo_count + 1; 2219 motbl = kmem_zalloc(count * sizeof (mntopt_t), KM_SLEEP); 2220 if (mops->mo_count) { 2221 size_t len = (count - 1) * sizeof (mntopt_t); 2222 2223 bcopy(mops->mo_list, motbl, len); 2224 kmem_free(mops->mo_list, len); 2225 } 2226 mops->mo_count = count; 2227 mops->mo_list = motbl; 2228 mop = &motbl[count - 1]; 2229 mop->mo_flags = MO_TAG; 2230 mop->mo_name = kmem_alloc(strlen(tag) + 1, KM_SLEEP); 2231 (void) strcpy(mop->mo_name, tag); 2232 return (mop); 2233 } 2234 2235 /* 2236 * Allow users to set arbitrary "tags" in a vfs's mount options. 2237 * Broader use within the kernel is discouraged. 2238 */ 2239 int 2240 vfs_settag(uint_t major, uint_t minor, const char *mntpt, const char *tag, 2241 cred_t *cr) 2242 { 2243 vfs_t *vfsp; 2244 mntopts_t *mops; 2245 mntopt_t *mop; 2246 int found = 0; 2247 dev_t dev = makedevice(major, minor); 2248 int err = 0; 2249 char *buf = kmem_alloc(MAX_MNTOPT_STR, KM_SLEEP); 2250 2251 /* 2252 * Find the desired mounted file system 2253 */ 2254 vfs_list_lock(); 2255 vfsp = rootvfs; 2256 do { 2257 if (vfsp->vfs_dev == dev && 2258 strcmp(mntpt, refstr_value(vfsp->vfs_mntpt)) == 0) { 2259 found = 1; 2260 break; 2261 } 2262 vfsp = vfsp->vfs_next; 2263 } while (vfsp != rootvfs); 2264 2265 if (!found) { 2266 err = EINVAL; 2267 goto out; 2268 } 2269 err = secpolicy_fs_config(cr, vfsp); 2270 if (err != 0) 2271 goto out; 2272 2273 mops = &vfsp->vfs_mntopts; 2274 /* 2275 * Add tag if it doesn't already exist 2276 */ 2277 if ((mop = vfs_hasopt(mops, tag)) == NULL) { 2278 int len; 2279 2280 (void) vfs_buildoptionstr(mops, buf, MAX_MNTOPT_STR); 2281 len = strlen(buf); 2282 if (len + strlen(tag) + 2 > MAX_MNTOPT_STR) { 2283 err = ENAMETOOLONG; 2284 goto out; 2285 } 2286 mop = vfs_addtag(mops, tag); 2287 } 2288 if ((mop->mo_flags & MO_TAG) == 0) { 2289 err = EINVAL; 2290 goto out; 2291 } 2292 vfs_setmntopt_nolock(mops, tag, NULL, 0, 1); 2293 out: 2294 vfs_list_unlock(); 2295 kmem_free(buf, MAX_MNTOPT_STR); 2296 return (err); 2297 } 2298 2299 /* 2300 * Allow users to remove arbitrary "tags" in a vfs's mount options. 2301 * Broader use within the kernel is discouraged. 2302 */ 2303 int 2304 vfs_clrtag(uint_t major, uint_t minor, const char *mntpt, const char *tag, 2305 cred_t *cr) 2306 { 2307 vfs_t *vfsp; 2308 mntopt_t *mop; 2309 int found = 0; 2310 dev_t dev = makedevice(major, minor); 2311 int err = 0; 2312 2313 /* 2314 * Find the desired mounted file system 2315 */ 2316 vfs_list_lock(); 2317 vfsp = rootvfs; 2318 do { 2319 if (vfsp->vfs_dev == dev && 2320 strcmp(mntpt, refstr_value(vfsp->vfs_mntpt)) == 0) { 2321 found = 1; 2322 break; 2323 } 2324 vfsp = vfsp->vfs_next; 2325 } while (vfsp != rootvfs); 2326 2327 if (!found) { 2328 err = EINVAL; 2329 goto out; 2330 } 2331 err = secpolicy_fs_config(cr, vfsp); 2332 if (err != 0) 2333 goto out; 2334 2335 if ((mop = vfs_hasopt(&vfsp->vfs_mntopts, tag)) == NULL) { 2336 err = EINVAL; 2337 goto out; 2338 } 2339 if ((mop->mo_flags & MO_TAG) == 0) { 2340 err = EINVAL; 2341 goto out; 2342 } 2343 vfs_clearmntopt_nolock(&vfsp->vfs_mntopts, tag, 1); 2344 out: 2345 vfs_list_unlock(); 2346 return (err); 2347 } 2348 2349 /* 2350 * Function to parse an option string and fill in a mount options table. 2351 * Unknown options are silently ignored. The input option string is modified 2352 * by replacing separators with nulls. If the create flag is set, options 2353 * not found in the table are just added on the fly. The table must have 2354 * an option slot marked MO_EMPTY to add an option on the fly. 2355 * 2356 * This function is *not* for general use by filesystems. 2357 * 2358 * Note: caller is responsible for locking the vfs list, if needed, 2359 * to protect mops.. 2360 */ 2361 void 2362 vfs_parsemntopts(mntopts_t *mops, char *osp, int create) 2363 { 2364 char *s = osp, *p, *nextop, *valp, *cp, *ep; 2365 int setflg = VFS_NOFORCEOPT; 2366 2367 if (osp == NULL) 2368 return; 2369 while (*s != '\0') { 2370 p = strchr(s, ','); /* find next option */ 2371 if (p == NULL) { 2372 cp = NULL; 2373 p = s + strlen(s); 2374 } else { 2375 cp = p; /* save location of comma */ 2376 *p++ = '\0'; /* mark end and point to next option */ 2377 } 2378 nextop = p; 2379 p = strchr(s, '='); /* look for value */ 2380 if (p == NULL) { 2381 valp = NULL; /* no value supplied */ 2382 } else { 2383 ep = p; /* save location of equals */ 2384 *p++ = '\0'; /* end option and point to value */ 2385 valp = p; 2386 } 2387 /* 2388 * set option into options table 2389 */ 2390 if (create) 2391 setflg |= VFS_CREATEOPT; 2392 vfs_setmntopt_nolock(mops, s, valp, setflg, 0); 2393 if (cp != NULL) 2394 *cp = ','; /* restore the comma */ 2395 if (valp != NULL) 2396 *ep = '='; /* restore the equals */ 2397 s = nextop; 2398 } 2399 } 2400 2401 /* 2402 * Function to inquire if an option exists in a mount options table. 2403 * Returns a pointer to the option if it exists, else NULL. 2404 * 2405 * This function is *not* for general use by filesystems. 2406 * 2407 * Note: caller is responsible for locking the vfs list, if needed, 2408 * to protect mops. 2409 */ 2410 struct mntopt * 2411 vfs_hasopt(const mntopts_t *mops, const char *opt) 2412 { 2413 struct mntopt *mop; 2414 uint_t i, count; 2415 2416 count = mops->mo_count; 2417 for (i = 0; i < count; i++) { 2418 mop = &mops->mo_list[i]; 2419 2420 if (mop->mo_flags & MO_EMPTY) 2421 continue; 2422 if (strcmp(opt, mop->mo_name) == 0) 2423 return (mop); 2424 } 2425 return (NULL); 2426 } 2427 2428 /* 2429 * Function to inquire if an option is set in a mount options table. 2430 * Returns non-zero if set and fills in the arg pointer with a pointer to 2431 * the argument string or NULL if there is no argument string. 2432 */ 2433 static int 2434 vfs_optionisset_nolock(const mntopts_t *mops, const char *opt, char **argp) 2435 { 2436 struct mntopt *mop; 2437 uint_t i, count; 2438 2439 count = mops->mo_count; 2440 for (i = 0; i < count; i++) { 2441 mop = &mops->mo_list[i]; 2442 2443 if (mop->mo_flags & MO_EMPTY) 2444 continue; 2445 if (strcmp(opt, mop->mo_name)) 2446 continue; 2447 if ((mop->mo_flags & MO_SET) == 0) 2448 return (0); 2449 if (argp != NULL && (mop->mo_flags & MO_HASVALUE) != 0) 2450 *argp = mop->mo_arg; 2451 return (1); 2452 } 2453 return (0); 2454 } 2455 2456 2457 int 2458 vfs_optionisset(const struct vfs *vfsp, const char *opt, char **argp) 2459 { 2460 int ret; 2461 2462 vfs_list_read_lock(); 2463 ret = vfs_optionisset_nolock(&vfsp->vfs_mntopts, opt, argp); 2464 vfs_list_unlock(); 2465 return (ret); 2466 } 2467 2468 2469 /* 2470 * Construct a comma separated string of the options set in the given 2471 * mount table, return the string in the given buffer. Return non-zero if 2472 * the buffer would overflow. 2473 * 2474 * This function is *not* for general use by filesystems. 2475 * 2476 * Note: caller is responsible for locking the vfs list, if needed, 2477 * to protect mp. 2478 */ 2479 int 2480 vfs_buildoptionstr(const mntopts_t *mp, char *buf, int len) 2481 { 2482 char *cp; 2483 uint_t i; 2484 2485 buf[0] = '\0'; 2486 cp = buf; 2487 for (i = 0; i < mp->mo_count; i++) { 2488 struct mntopt *mop; 2489 2490 mop = &mp->mo_list[i]; 2491 if (mop->mo_flags & MO_SET) { 2492 int optlen, comma = 0; 2493 2494 if (buf[0] != '\0') 2495 comma = 1; 2496 optlen = strlen(mop->mo_name); 2497 if (strlen(buf) + comma + optlen + 1 > len) 2498 goto err; 2499 if (comma) 2500 *cp++ = ','; 2501 (void) strcpy(cp, mop->mo_name); 2502 cp += optlen; 2503 /* 2504 * Append option value if there is one 2505 */ 2506 if (mop->mo_arg != NULL) { 2507 int arglen; 2508 2509 arglen = strlen(mop->mo_arg); 2510 if (strlen(buf) + arglen + 2 > len) 2511 goto err; 2512 *cp++ = '='; 2513 (void) strcpy(cp, mop->mo_arg); 2514 cp += arglen; 2515 } 2516 } 2517 } 2518 return (0); 2519 err: 2520 return (EOVERFLOW); 2521 } 2522 2523 static void 2524 vfs_freecancelopt(char **moc) 2525 { 2526 if (moc != NULL) { 2527 int ccnt = 0; 2528 char **cp; 2529 2530 for (cp = moc; *cp != NULL; cp++) { 2531 kmem_free(*cp, strlen(*cp) + 1); 2532 ccnt++; 2533 } 2534 kmem_free(moc, (ccnt + 1) * sizeof (char *)); 2535 } 2536 } 2537 2538 static void 2539 vfs_freeopt(mntopt_t *mop) 2540 { 2541 if (mop->mo_name != NULL) 2542 kmem_free(mop->mo_name, strlen(mop->mo_name) + 1); 2543 2544 vfs_freecancelopt(mop->mo_cancel); 2545 2546 if (mop->mo_arg != NULL) 2547 kmem_free(mop->mo_arg, strlen(mop->mo_arg) + 1); 2548 } 2549 2550 /* 2551 * Free a mount options table 2552 * 2553 * This function is *not* for general use by filesystems. 2554 * 2555 * Note: caller is responsible for locking the vfs list, if needed, 2556 * to protect mp. 2557 */ 2558 void 2559 vfs_freeopttbl(mntopts_t *mp) 2560 { 2561 uint_t i, count; 2562 2563 count = mp->mo_count; 2564 for (i = 0; i < count; i++) { 2565 vfs_freeopt(&mp->mo_list[i]); 2566 } 2567 if (count) { 2568 kmem_free(mp->mo_list, sizeof (mntopt_t) * count); 2569 mp->mo_count = 0; 2570 mp->mo_list = NULL; 2571 } 2572 } 2573 2574 /* 2575 * Free any mnttab information recorded in the vfs struct. 2576 * The vfs must not be on the vfs list. 2577 */ 2578 static void 2579 vfs_freemnttab(struct vfs *vfsp) 2580 { 2581 ASSERT(!VFS_ON_LIST(vfsp)); 2582 2583 /* 2584 * Free device and mount point information 2585 */ 2586 if (vfsp->vfs_mntpt != NULL) { 2587 refstr_rele(vfsp->vfs_mntpt); 2588 vfsp->vfs_mntpt = NULL; 2589 } 2590 if (vfsp->vfs_resource != NULL) { 2591 refstr_rele(vfsp->vfs_resource); 2592 vfsp->vfs_resource = NULL; 2593 } 2594 /* 2595 * Now free mount options information 2596 */ 2597 vfs_freeopttbl(&vfsp->vfs_mntopts); 2598 } 2599 2600 /* 2601 * Return the last mnttab modification time 2602 */ 2603 void 2604 vfs_mnttab_modtime(timespec_t *ts) 2605 { 2606 ASSERT(RW_LOCK_HELD(&vfslist)); 2607 *ts = vfs_mnttab_mtime; 2608 } 2609 2610 /* 2611 * See if mnttab is changed 2612 */ 2613 void 2614 vfs_mnttab_poll(timespec_t *old, struct pollhead **phpp) 2615 { 2616 int changed; 2617 2618 *phpp = (struct pollhead *)NULL; 2619 2620 /* 2621 * Note: don't grab vfs list lock before accessing vfs_mnttab_mtime. 2622 * Can lead to deadlock against vfs_mnttab_modtimeupd(). It is safe 2623 * to not grab the vfs list lock because tv_sec is monotonically 2624 * increasing. 2625 */ 2626 2627 changed = (old->tv_nsec != vfs_mnttab_mtime.tv_nsec) || 2628 (old->tv_sec != vfs_mnttab_mtime.tv_sec); 2629 if (!changed) { 2630 *phpp = &vfs_pollhd; 2631 } 2632 } 2633 2634 /* 2635 * Update the mnttab modification time and wake up any waiters for 2636 * mnttab changes 2637 */ 2638 void 2639 vfs_mnttab_modtimeupd() 2640 { 2641 hrtime_t oldhrt, newhrt; 2642 struct uio uio; 2643 struct iovec iov; 2644 char buf[1]; 2645 2646 ASSERT(RW_WRITE_HELD(&vfslist)); 2647 oldhrt = ts2hrt(&vfs_mnttab_mtime); 2648 gethrestime(&vfs_mnttab_mtime); 2649 newhrt = ts2hrt(&vfs_mnttab_mtime); 2650 if (oldhrt == (hrtime_t)0) 2651 vfs_mnttab_ctime = vfs_mnttab_mtime; 2652 /* 2653 * Attempt to provide unique mtime (like uniqtime but not). 2654 */ 2655 if (newhrt == oldhrt) { 2656 newhrt++; 2657 hrt2ts(newhrt, &vfs_mnttab_mtime); 2658 } 2659 pollwakeup(&vfs_pollhd, (short)POLLRDBAND); 2660 2661 if (mntdummyvp != NULL) { 2662 /* 2663 * Make a VOP_WRITE call on the dummy vnode so that any 2664 * module interested in mnttab getting modified could 2665 * intercept this vnode and capture the event. 2666 * 2667 * Pass a dummy uio struct. Nobody should reference the 2668 * buffer. We need to pass a valid uio struct pointer to take 2669 * care of any module intercepting this vnode which could 2670 * attempt to look at it. Currently only the file events 2671 * notification module intercepts this vnode. 2672 */ 2673 bzero(&uio, sizeof (uio)); 2674 bzero(&iov, sizeof (iov)); 2675 iov.iov_base = buf; 2676 iov.iov_len = 0; 2677 uio.uio_iov = &iov; 2678 uio.uio_iovcnt = 1; 2679 uio.uio_loffset = 0; 2680 uio.uio_segflg = UIO_SYSSPACE; 2681 uio.uio_resid = 0; 2682 (void) VOP_WRITE(mntdummyvp, &uio, 0, kcred, NULL); 2683 } 2684 } 2685 2686 int 2687 dounmount(struct vfs *vfsp, int flag, cred_t *cr) 2688 { 2689 vnode_t *coveredvp; 2690 int error; 2691 extern void teardown_vopstats(vfs_t *); 2692 2693 /* 2694 * Get covered vnode. This will be NULL if the vfs is not linked 2695 * into the file system name space (i.e., domount() with MNT_NOSPICE). 2696 */ 2697 coveredvp = vfsp->vfs_vnodecovered; 2698 ASSERT(coveredvp == NULL || vn_vfswlock_held(coveredvp)); 2699 2700 /* 2701 * Purge all dnlc entries for this vfs. 2702 */ 2703 (void) dnlc_purge_vfsp(vfsp, 0); 2704 2705 /* For forcible umount, skip VFS_SYNC() since it may hang */ 2706 if ((flag & MS_FORCE) == 0) 2707 (void) VFS_SYNC(vfsp, 0, cr); 2708 2709 /* 2710 * Lock the vfs to maintain fs status quo during unmount. This 2711 * has to be done after the sync because ufs_update tries to acquire 2712 * the vfs_reflock. 2713 */ 2714 vfs_lock_wait(vfsp); 2715 2716 if (error = VFS_UNMOUNT(vfsp, flag, cr)) { 2717 vfs_unlock(vfsp); 2718 if (coveredvp != NULL) 2719 vn_vfsunlock(coveredvp); 2720 } else if (coveredvp != NULL) { 2721 teardown_vopstats(vfsp); 2722 /* 2723 * vfs_remove() will do a VN_RELE(vfsp->vfs_vnodecovered) 2724 * when it frees vfsp so we do a VN_HOLD() so we can 2725 * continue to use coveredvp afterwards. 2726 */ 2727 VN_HOLD(coveredvp); 2728 vfs_remove(vfsp); 2729 vn_vfsunlock(coveredvp); 2730 VN_RELE(coveredvp); 2731 } else { 2732 teardown_vopstats(vfsp); 2733 /* 2734 * Release the reference to vfs that is not linked 2735 * into the name space. 2736 */ 2737 vfs_unlock(vfsp); 2738 VFS_RELE(vfsp); 2739 } 2740 return (error); 2741 } 2742 2743 2744 /* 2745 * Vfs_unmountall() is called by uadmin() to unmount all 2746 * mounted file systems (except the root file system) during shutdown. 2747 * It follows the existing locking protocol when traversing the vfs list 2748 * to sync and unmount vfses. Even though there should be no 2749 * other thread running while the system is shutting down, it is prudent 2750 * to still follow the locking protocol. 2751 */ 2752 void 2753 vfs_unmountall(void) 2754 { 2755 struct vfs *vfsp; 2756 struct vfs *prev_vfsp = NULL; 2757 int error; 2758 2759 /* 2760 * Toss all dnlc entries now so that the per-vfs sync 2761 * and unmount operations don't have to slog through 2762 * a bunch of uninteresting vnodes over and over again. 2763 */ 2764 dnlc_purge(); 2765 2766 vfs_list_lock(); 2767 for (vfsp = rootvfs->vfs_prev; vfsp != rootvfs; vfsp = prev_vfsp) { 2768 prev_vfsp = vfsp->vfs_prev; 2769 2770 if (vfs_lock(vfsp) != 0) 2771 continue; 2772 error = vn_vfswlock(vfsp->vfs_vnodecovered); 2773 vfs_unlock(vfsp); 2774 if (error) 2775 continue; 2776 2777 vfs_list_unlock(); 2778 2779 (void) VFS_SYNC(vfsp, SYNC_CLOSE, CRED()); 2780 (void) dounmount(vfsp, 0, CRED()); 2781 2782 /* 2783 * Since we dropped the vfslist lock above we must 2784 * verify that next_vfsp still exists, else start over. 2785 */ 2786 vfs_list_lock(); 2787 for (vfsp = rootvfs->vfs_prev; 2788 vfsp != rootvfs; vfsp = vfsp->vfs_prev) 2789 if (vfsp == prev_vfsp) 2790 break; 2791 if (vfsp == rootvfs && prev_vfsp != rootvfs) 2792 prev_vfsp = rootvfs->vfs_prev; 2793 } 2794 vfs_list_unlock(); 2795 } 2796 2797 /* 2798 * Called to add an entry to the end of the vfs mount in progress list 2799 */ 2800 void 2801 vfs_addmip(dev_t dev, struct vfs *vfsp) 2802 { 2803 struct ipmnt *mipp; 2804 2805 mipp = (struct ipmnt *)kmem_alloc(sizeof (struct ipmnt), KM_SLEEP); 2806 mipp->mip_next = NULL; 2807 mipp->mip_dev = dev; 2808 mipp->mip_vfsp = vfsp; 2809 mutex_enter(&vfs_miplist_mutex); 2810 if (vfs_miplist_end != NULL) 2811 vfs_miplist_end->mip_next = mipp; 2812 else 2813 vfs_miplist = mipp; 2814 vfs_miplist_end = mipp; 2815 mutex_exit(&vfs_miplist_mutex); 2816 } 2817 2818 /* 2819 * Called to remove an entry from the mount in progress list 2820 * Either because the mount completed or it failed. 2821 */ 2822 void 2823 vfs_delmip(struct vfs *vfsp) 2824 { 2825 struct ipmnt *mipp, *mipprev; 2826 2827 mutex_enter(&vfs_miplist_mutex); 2828 mipprev = NULL; 2829 for (mipp = vfs_miplist; 2830 mipp && mipp->mip_vfsp != vfsp; mipp = mipp->mip_next) { 2831 mipprev = mipp; 2832 } 2833 if (mipp == NULL) 2834 return; /* shouldn't happen */ 2835 if (mipp == vfs_miplist_end) 2836 vfs_miplist_end = mipprev; 2837 if (mipprev == NULL) 2838 vfs_miplist = mipp->mip_next; 2839 else 2840 mipprev->mip_next = mipp->mip_next; 2841 mutex_exit(&vfs_miplist_mutex); 2842 kmem_free(mipp, sizeof (struct ipmnt)); 2843 } 2844 2845 /* 2846 * vfs_add is called by a specific filesystem's mount routine to add 2847 * the new vfs into the vfs list/hash and to cover the mounted-on vnode. 2848 * The vfs should already have been locked by the caller. 2849 * 2850 * coveredvp is NULL if this is the root. 2851 */ 2852 void 2853 vfs_add(vnode_t *coveredvp, struct vfs *vfsp, int mflag) 2854 { 2855 int newflag; 2856 2857 ASSERT(vfs_lock_held(vfsp)); 2858 VFS_HOLD(vfsp); 2859 newflag = vfsp->vfs_flag; 2860 if (mflag & MS_RDONLY) 2861 newflag |= VFS_RDONLY; 2862 else 2863 newflag &= ~VFS_RDONLY; 2864 if (mflag & MS_NOSUID) 2865 newflag |= (VFS_NOSETUID|VFS_NODEVICES); 2866 else 2867 newflag &= ~(VFS_NOSETUID|VFS_NODEVICES); 2868 if (mflag & MS_NOMNTTAB) 2869 newflag |= VFS_NOMNTTAB; 2870 else 2871 newflag &= ~VFS_NOMNTTAB; 2872 2873 if (coveredvp != NULL) { 2874 ASSERT(vn_vfswlock_held(coveredvp)); 2875 coveredvp->v_vfsmountedhere = vfsp; 2876 VN_HOLD(coveredvp); 2877 } 2878 vfsp->vfs_vnodecovered = coveredvp; 2879 vfsp->vfs_flag = newflag; 2880 2881 vfs_list_add(vfsp); 2882 } 2883 2884 /* 2885 * Remove a vfs from the vfs list, null out the pointer from the 2886 * covered vnode to the vfs (v_vfsmountedhere), and null out the pointer 2887 * from the vfs to the covered vnode (vfs_vnodecovered). Release the 2888 * reference to the vfs and to the covered vnode. 2889 * 2890 * Called from dounmount after it's confirmed with the file system 2891 * that the unmount is legal. 2892 */ 2893 void 2894 vfs_remove(struct vfs *vfsp) 2895 { 2896 vnode_t *vp; 2897 2898 ASSERT(vfs_lock_held(vfsp)); 2899 2900 /* 2901 * Can't unmount root. Should never happen because fs will 2902 * be busy. 2903 */ 2904 if (vfsp == rootvfs) 2905 panic("vfs_remove: unmounting root"); 2906 2907 vfs_list_remove(vfsp); 2908 2909 /* 2910 * Unhook from the file system name space. 2911 */ 2912 vp = vfsp->vfs_vnodecovered; 2913 ASSERT(vn_vfswlock_held(vp)); 2914 vp->v_vfsmountedhere = NULL; 2915 vfsp->vfs_vnodecovered = NULL; 2916 VN_RELE(vp); 2917 2918 /* 2919 * Release lock and wakeup anybody waiting. 2920 */ 2921 vfs_unlock(vfsp); 2922 VFS_RELE(vfsp); 2923 } 2924 2925 /* 2926 * Lock a filesystem to prevent access to it while mounting, 2927 * unmounting and syncing. Return EBUSY immediately if lock 2928 * can't be acquired. 2929 */ 2930 int 2931 vfs_lock(vfs_t *vfsp) 2932 { 2933 vn_vfslocks_entry_t *vpvfsentry; 2934 2935 vpvfsentry = vn_vfslocks_getlock(vfsp); 2936 if (rwst_tryenter(&vpvfsentry->ve_lock, RW_WRITER)) 2937 return (0); 2938 2939 vn_vfslocks_rele(vpvfsentry); 2940 return (EBUSY); 2941 } 2942 2943 int 2944 vfs_rlock(vfs_t *vfsp) 2945 { 2946 vn_vfslocks_entry_t *vpvfsentry; 2947 2948 vpvfsentry = vn_vfslocks_getlock(vfsp); 2949 2950 if (rwst_tryenter(&vpvfsentry->ve_lock, RW_READER)) 2951 return (0); 2952 2953 vn_vfslocks_rele(vpvfsentry); 2954 return (EBUSY); 2955 } 2956 2957 void 2958 vfs_lock_wait(vfs_t *vfsp) 2959 { 2960 vn_vfslocks_entry_t *vpvfsentry; 2961 2962 vpvfsentry = vn_vfslocks_getlock(vfsp); 2963 rwst_enter(&vpvfsentry->ve_lock, RW_WRITER); 2964 } 2965 2966 void 2967 vfs_rlock_wait(vfs_t *vfsp) 2968 { 2969 vn_vfslocks_entry_t *vpvfsentry; 2970 2971 vpvfsentry = vn_vfslocks_getlock(vfsp); 2972 rwst_enter(&vpvfsentry->ve_lock, RW_READER); 2973 } 2974 2975 /* 2976 * Unlock a locked filesystem. 2977 */ 2978 void 2979 vfs_unlock(vfs_t *vfsp) 2980 { 2981 vn_vfslocks_entry_t *vpvfsentry; 2982 2983 /* 2984 * vfs_unlock will mimic sema_v behaviour to fix 4748018. 2985 * And these changes should remain for the patch changes as it is. 2986 */ 2987 if (panicstr) 2988 return; 2989 2990 /* 2991 * ve_refcount needs to be dropped twice here. 2992 * 1. To release refernce after a call to vfs_locks_getlock() 2993 * 2. To release the reference from the locking routines like 2994 * vfs_rlock_wait/vfs_wlock_wait/vfs_wlock etc,. 2995 */ 2996 2997 vpvfsentry = vn_vfslocks_getlock(vfsp); 2998 vn_vfslocks_rele(vpvfsentry); 2999 3000 rwst_exit(&vpvfsentry->ve_lock); 3001 vn_vfslocks_rele(vpvfsentry); 3002 } 3003 3004 /* 3005 * Utility routine that allows a filesystem to construct its 3006 * fsid in "the usual way" - by munging some underlying dev_t and 3007 * the filesystem type number into the 64-bit fsid. Note that 3008 * this implicitly relies on dev_t persistence to make filesystem 3009 * id's persistent. 3010 * 3011 * There's nothing to prevent an individual fs from constructing its 3012 * fsid in a different way, and indeed they should. 3013 * 3014 * Since we want fsids to be 32-bit quantities (so that they can be 3015 * exported identically by either 32-bit or 64-bit APIs, as well as 3016 * the fact that fsid's are "known" to NFS), we compress the device 3017 * number given down to 32-bits, and panic if that isn't possible. 3018 */ 3019 void 3020 vfs_make_fsid(fsid_t *fsi, dev_t dev, int val) 3021 { 3022 if (!cmpldev((dev32_t *)&fsi->val[0], dev)) 3023 panic("device number too big for fsid!"); 3024 fsi->val[1] = val; 3025 } 3026 3027 int 3028 vfs_lock_held(vfs_t *vfsp) 3029 { 3030 int held; 3031 vn_vfslocks_entry_t *vpvfsentry; 3032 3033 /* 3034 * vfs_lock_held will mimic sema_held behaviour 3035 * if panicstr is set. And these changes should remain 3036 * for the patch changes as it is. 3037 */ 3038 if (panicstr) 3039 return (1); 3040 3041 vpvfsentry = vn_vfslocks_getlock(vfsp); 3042 held = rwst_lock_held(&vpvfsentry->ve_lock, RW_WRITER); 3043 3044 vn_vfslocks_rele(vpvfsentry); 3045 return (held); 3046 } 3047 3048 struct _kthread * 3049 vfs_lock_owner(vfs_t *vfsp) 3050 { 3051 struct _kthread *owner; 3052 vn_vfslocks_entry_t *vpvfsentry; 3053 3054 /* 3055 * vfs_wlock_held will mimic sema_held behaviour 3056 * if panicstr is set. And these changes should remain 3057 * for the patch changes as it is. 3058 */ 3059 if (panicstr) 3060 return (NULL); 3061 3062 vpvfsentry = vn_vfslocks_getlock(vfsp); 3063 owner = rwst_owner(&vpvfsentry->ve_lock); 3064 3065 vn_vfslocks_rele(vpvfsentry); 3066 return (owner); 3067 } 3068 3069 /* 3070 * vfs list locking. 3071 * 3072 * Rather than manipulate the vfslist lock directly, we abstract into lock 3073 * and unlock routines to allow the locking implementation to be changed for 3074 * clustering. 3075 * 3076 * Whenever the vfs list is modified through its hash links, the overall list 3077 * lock must be obtained before locking the relevant hash bucket. But to see 3078 * whether a given vfs is on the list, it suffices to obtain the lock for the 3079 * hash bucket without getting the overall list lock. (See getvfs() below.) 3080 */ 3081 3082 void 3083 vfs_list_lock() 3084 { 3085 rw_enter(&vfslist, RW_WRITER); 3086 } 3087 3088 void 3089 vfs_list_read_lock() 3090 { 3091 rw_enter(&vfslist, RW_READER); 3092 } 3093 3094 void 3095 vfs_list_unlock() 3096 { 3097 rw_exit(&vfslist); 3098 } 3099 3100 /* 3101 * Low level worker routines for adding entries to and removing entries from 3102 * the vfs list. 3103 */ 3104 3105 static void 3106 vfs_hash_add(struct vfs *vfsp, int insert_at_head) 3107 { 3108 int vhno; 3109 struct vfs **hp; 3110 dev_t dev; 3111 3112 ASSERT(RW_WRITE_HELD(&vfslist)); 3113 3114 dev = expldev(vfsp->vfs_fsid.val[0]); 3115 vhno = VFSHASH(getmajor(dev), getminor(dev)); 3116 3117 mutex_enter(&rvfs_list[vhno].rvfs_lock); 3118 3119 /* 3120 * Link into the hash table, inserting it at the end, so that LOFS 3121 * with the same fsid as UFS (or other) file systems will not hide the 3122 * UFS. 3123 */ 3124 if (insert_at_head) { 3125 vfsp->vfs_hash = rvfs_list[vhno].rvfs_head; 3126 rvfs_list[vhno].rvfs_head = vfsp; 3127 } else { 3128 for (hp = &rvfs_list[vhno].rvfs_head; *hp != NULL; 3129 hp = &(*hp)->vfs_hash) 3130 continue; 3131 /* 3132 * hp now contains the address of the pointer to update 3133 * to effect the insertion. 3134 */ 3135 vfsp->vfs_hash = NULL; 3136 *hp = vfsp; 3137 } 3138 3139 rvfs_list[vhno].rvfs_len++; 3140 mutex_exit(&rvfs_list[vhno].rvfs_lock); 3141 } 3142 3143 3144 static void 3145 vfs_hash_remove(struct vfs *vfsp) 3146 { 3147 int vhno; 3148 struct vfs *tvfsp; 3149 dev_t dev; 3150 3151 ASSERT(RW_WRITE_HELD(&vfslist)); 3152 3153 dev = expldev(vfsp->vfs_fsid.val[0]); 3154 vhno = VFSHASH(getmajor(dev), getminor(dev)); 3155 3156 mutex_enter(&rvfs_list[vhno].rvfs_lock); 3157 3158 /* 3159 * Remove from hash. 3160 */ 3161 if (rvfs_list[vhno].rvfs_head == vfsp) { 3162 rvfs_list[vhno].rvfs_head = vfsp->vfs_hash; 3163 rvfs_list[vhno].rvfs_len--; 3164 goto foundit; 3165 } 3166 for (tvfsp = rvfs_list[vhno].rvfs_head; tvfsp != NULL; 3167 tvfsp = tvfsp->vfs_hash) { 3168 if (tvfsp->vfs_hash == vfsp) { 3169 tvfsp->vfs_hash = vfsp->vfs_hash; 3170 rvfs_list[vhno].rvfs_len--; 3171 goto foundit; 3172 } 3173 } 3174 cmn_err(CE_WARN, "vfs_list_remove: vfs not found in hash"); 3175 3176 foundit: 3177 3178 mutex_exit(&rvfs_list[vhno].rvfs_lock); 3179 } 3180 3181 3182 void 3183 vfs_list_add(struct vfs *vfsp) 3184 { 3185 zone_t *zone; 3186 3187 /* 3188 * The zone that owns the mount is the one that performed the mount. 3189 * Note that this isn't necessarily the same as the zone mounted into. 3190 * The corresponding zone_rele() will be done when the vfs_t is 3191 * being free'd. 3192 */ 3193 vfsp->vfs_zone = curproc->p_zone; 3194 zone_hold(vfsp->vfs_zone); 3195 3196 /* 3197 * Find the zone mounted into, and put this mount on its vfs list. 3198 */ 3199 zone = zone_find_by_path(refstr_value(vfsp->vfs_mntpt)); 3200 ASSERT(zone != NULL); 3201 /* 3202 * Special casing for the root vfs. This structure is allocated 3203 * statically and hooked onto rootvfs at link time. During the 3204 * vfs_mountroot call at system startup time, the root file system's 3205 * VFS_MOUNTROOT routine will call vfs_add with this root vfs struct 3206 * as argument. The code below must detect and handle this special 3207 * case. The only apparent justification for this special casing is 3208 * to ensure that the root file system appears at the head of the 3209 * list. 3210 * 3211 * XXX: I'm assuming that it's ok to do normal list locking when 3212 * adding the entry for the root file system (this used to be 3213 * done with no locks held). 3214 */ 3215 vfs_list_lock(); 3216 /* 3217 * Link into the vfs list proper. 3218 */ 3219 if (vfsp == &root) { 3220 /* 3221 * Assert: This vfs is already on the list as its first entry. 3222 * Thus, there's nothing to do. 3223 */ 3224 ASSERT(rootvfs == vfsp); 3225 /* 3226 * Add it to the head of the global zone's vfslist. 3227 */ 3228 ASSERT(zone == global_zone); 3229 ASSERT(zone->zone_vfslist == NULL); 3230 zone->zone_vfslist = vfsp; 3231 } else { 3232 /* 3233 * Link to end of list using vfs_prev (as rootvfs is now a 3234 * doubly linked circular list) so list is in mount order for 3235 * mnttab use. 3236 */ 3237 rootvfs->vfs_prev->vfs_next = vfsp; 3238 vfsp->vfs_prev = rootvfs->vfs_prev; 3239 rootvfs->vfs_prev = vfsp; 3240 vfsp->vfs_next = rootvfs; 3241 3242 /* 3243 * Do it again for the zone-private list (which may be NULL). 3244 */ 3245 if (zone->zone_vfslist == NULL) { 3246 ASSERT(zone != global_zone); 3247 zone->zone_vfslist = vfsp; 3248 } else { 3249 zone->zone_vfslist->vfs_zone_prev->vfs_zone_next = vfsp; 3250 vfsp->vfs_zone_prev = zone->zone_vfslist->vfs_zone_prev; 3251 zone->zone_vfslist->vfs_zone_prev = vfsp; 3252 vfsp->vfs_zone_next = zone->zone_vfslist; 3253 } 3254 } 3255 3256 /* 3257 * Link into the hash table, inserting it at the end, so that LOFS 3258 * with the same fsid as UFS (or other) file systems will not hide 3259 * the UFS. 3260 */ 3261 vfs_hash_add(vfsp, 0); 3262 3263 /* 3264 * update the mnttab modification time 3265 */ 3266 vfs_mnttab_modtimeupd(); 3267 vfs_list_unlock(); 3268 zone_rele(zone); 3269 } 3270 3271 void 3272 vfs_list_remove(struct vfs *vfsp) 3273 { 3274 zone_t *zone; 3275 3276 zone = zone_find_by_path(refstr_value(vfsp->vfs_mntpt)); 3277 ASSERT(zone != NULL); 3278 /* 3279 * Callers are responsible for preventing attempts to unmount the 3280 * root. 3281 */ 3282 ASSERT(vfsp != rootvfs); 3283 3284 vfs_list_lock(); 3285 3286 /* 3287 * Remove from hash. 3288 */ 3289 vfs_hash_remove(vfsp); 3290 3291 /* 3292 * Remove from vfs list. 3293 */ 3294 vfsp->vfs_prev->vfs_next = vfsp->vfs_next; 3295 vfsp->vfs_next->vfs_prev = vfsp->vfs_prev; 3296 vfsp->vfs_next = vfsp->vfs_prev = NULL; 3297 3298 /* 3299 * Remove from zone-specific vfs list. 3300 */ 3301 if (zone->zone_vfslist == vfsp) 3302 zone->zone_vfslist = vfsp->vfs_zone_next; 3303 3304 if (vfsp->vfs_zone_next == vfsp) { 3305 ASSERT(vfsp->vfs_zone_prev == vfsp); 3306 ASSERT(zone->zone_vfslist == vfsp); 3307 zone->zone_vfslist = NULL; 3308 } 3309 3310 vfsp->vfs_zone_prev->vfs_zone_next = vfsp->vfs_zone_next; 3311 vfsp->vfs_zone_next->vfs_zone_prev = vfsp->vfs_zone_prev; 3312 vfsp->vfs_zone_next = vfsp->vfs_zone_prev = NULL; 3313 3314 /* 3315 * update the mnttab modification time 3316 */ 3317 vfs_mnttab_modtimeupd(); 3318 vfs_list_unlock(); 3319 zone_rele(zone); 3320 } 3321 3322 struct vfs * 3323 getvfs(fsid_t *fsid) 3324 { 3325 struct vfs *vfsp; 3326 int val0 = fsid->val[0]; 3327 int val1 = fsid->val[1]; 3328 dev_t dev = expldev(val0); 3329 int vhno = VFSHASH(getmajor(dev), getminor(dev)); 3330 kmutex_t *hmp = &rvfs_list[vhno].rvfs_lock; 3331 3332 mutex_enter(hmp); 3333 for (vfsp = rvfs_list[vhno].rvfs_head; vfsp; vfsp = vfsp->vfs_hash) { 3334 if (vfsp->vfs_fsid.val[0] == val0 && 3335 vfsp->vfs_fsid.val[1] == val1) { 3336 VFS_HOLD(vfsp); 3337 mutex_exit(hmp); 3338 return (vfsp); 3339 } 3340 } 3341 mutex_exit(hmp); 3342 return (NULL); 3343 } 3344 3345 /* 3346 * Search the vfs mount in progress list for a specified device/vfs entry. 3347 * Returns 0 if the first entry in the list that the device matches has the 3348 * given vfs pointer as well. If the device matches but a different vfs 3349 * pointer is encountered in the list before the given vfs pointer then 3350 * a 1 is returned. 3351 */ 3352 3353 int 3354 vfs_devmounting(dev_t dev, struct vfs *vfsp) 3355 { 3356 int retval = 0; 3357 struct ipmnt *mipp; 3358 3359 mutex_enter(&vfs_miplist_mutex); 3360 for (mipp = vfs_miplist; mipp != NULL; mipp = mipp->mip_next) { 3361 if (mipp->mip_dev == dev) { 3362 if (mipp->mip_vfsp != vfsp) 3363 retval = 1; 3364 break; 3365 } 3366 } 3367 mutex_exit(&vfs_miplist_mutex); 3368 return (retval); 3369 } 3370 3371 /* 3372 * Search the vfs list for a specified device. Returns 1, if entry is found 3373 * or 0 if no suitable entry is found. 3374 */ 3375 3376 int 3377 vfs_devismounted(dev_t dev) 3378 { 3379 struct vfs *vfsp; 3380 int found; 3381 3382 vfs_list_read_lock(); 3383 vfsp = rootvfs; 3384 found = 0; 3385 do { 3386 if (vfsp->vfs_dev == dev) { 3387 found = 1; 3388 break; 3389 } 3390 vfsp = vfsp->vfs_next; 3391 } while (vfsp != rootvfs); 3392 3393 vfs_list_unlock(); 3394 return (found); 3395 } 3396 3397 /* 3398 * Search the vfs list for a specified device. Returns a pointer to it 3399 * or NULL if no suitable entry is found. The caller of this routine 3400 * is responsible for releasing the returned vfs pointer. 3401 */ 3402 struct vfs * 3403 vfs_dev2vfsp(dev_t dev) 3404 { 3405 struct vfs *vfsp; 3406 int found; 3407 3408 vfs_list_read_lock(); 3409 vfsp = rootvfs; 3410 found = 0; 3411 do { 3412 /* 3413 * The following could be made more efficient by making 3414 * the entire loop use vfs_zone_next if the call is from 3415 * a zone. The only callers, however, ustat(2) and 3416 * umount2(2), don't seem to justify the added 3417 * complexity at present. 3418 */ 3419 if (vfsp->vfs_dev == dev && 3420 ZONE_PATH_VISIBLE(refstr_value(vfsp->vfs_mntpt), 3421 curproc->p_zone)) { 3422 VFS_HOLD(vfsp); 3423 found = 1; 3424 break; 3425 } 3426 vfsp = vfsp->vfs_next; 3427 } while (vfsp != rootvfs); 3428 vfs_list_unlock(); 3429 return (found ? vfsp: NULL); 3430 } 3431 3432 /* 3433 * Search the vfs list for a specified mntpoint. Returns a pointer to it 3434 * or NULL if no suitable entry is found. The caller of this routine 3435 * is responsible for releasing the returned vfs pointer. 3436 * 3437 * Note that if multiple mntpoints match, the last one matching is 3438 * returned in an attempt to return the "top" mount when overlay 3439 * mounts are covering the same mount point. This is accomplished by starting 3440 * at the end of the list and working our way backwards, stopping at the first 3441 * matching mount. 3442 */ 3443 struct vfs * 3444 vfs_mntpoint2vfsp(const char *mp) 3445 { 3446 struct vfs *vfsp; 3447 struct vfs *retvfsp = NULL; 3448 zone_t *zone = curproc->p_zone; 3449 struct vfs *list; 3450 3451 vfs_list_read_lock(); 3452 if (getzoneid() == GLOBAL_ZONEID) { 3453 /* 3454 * The global zone may see filesystems in any zone. 3455 */ 3456 vfsp = rootvfs->vfs_prev; 3457 do { 3458 if (strcmp(refstr_value(vfsp->vfs_mntpt), mp) == 0) { 3459 retvfsp = vfsp; 3460 break; 3461 } 3462 vfsp = vfsp->vfs_prev; 3463 } while (vfsp != rootvfs->vfs_prev); 3464 } else if ((list = zone->zone_vfslist) != NULL) { 3465 const char *mntpt; 3466 3467 vfsp = list->vfs_zone_prev; 3468 do { 3469 mntpt = refstr_value(vfsp->vfs_mntpt); 3470 mntpt = ZONE_PATH_TRANSLATE(mntpt, zone); 3471 if (strcmp(mntpt, mp) == 0) { 3472 retvfsp = vfsp; 3473 break; 3474 } 3475 vfsp = vfsp->vfs_zone_prev; 3476 } while (vfsp != list->vfs_zone_prev); 3477 } 3478 if (retvfsp) 3479 VFS_HOLD(retvfsp); 3480 vfs_list_unlock(); 3481 return (retvfsp); 3482 } 3483 3484 /* 3485 * Search the vfs list for a specified vfsops. 3486 * if vfs entry is found then return 1, else 0. 3487 */ 3488 int 3489 vfs_opsinuse(vfsops_t *ops) 3490 { 3491 struct vfs *vfsp; 3492 int found; 3493 3494 vfs_list_read_lock(); 3495 vfsp = rootvfs; 3496 found = 0; 3497 do { 3498 if (vfs_getops(vfsp) == ops) { 3499 found = 1; 3500 break; 3501 } 3502 vfsp = vfsp->vfs_next; 3503 } while (vfsp != rootvfs); 3504 vfs_list_unlock(); 3505 return (found); 3506 } 3507 3508 /* 3509 * Allocate an entry in vfssw for a file system type 3510 */ 3511 struct vfssw * 3512 allocate_vfssw(char *type) 3513 { 3514 struct vfssw *vswp; 3515 3516 if (type[0] == '\0' || strlen(type) + 1 > _ST_FSTYPSZ) { 3517 /* 3518 * The vfssw table uses the empty string to identify an 3519 * available entry; we cannot add any type which has 3520 * a leading NUL. The string length is limited to 3521 * the size of the st_fstype array in struct stat. 3522 */ 3523 return (NULL); 3524 } 3525 3526 ASSERT(VFSSW_WRITE_LOCKED()); 3527 for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) 3528 if (!ALLOCATED_VFSSW(vswp)) { 3529 vswp->vsw_name = kmem_alloc(strlen(type) + 1, KM_SLEEP); 3530 (void) strcpy(vswp->vsw_name, type); 3531 ASSERT(vswp->vsw_count == 0); 3532 vswp->vsw_count = 1; 3533 mutex_init(&vswp->vsw_lock, NULL, MUTEX_DEFAULT, NULL); 3534 return (vswp); 3535 } 3536 return (NULL); 3537 } 3538 3539 /* 3540 * Impose additional layer of translation between vfstype names 3541 * and module names in the filesystem. 3542 */ 3543 static char * 3544 vfs_to_modname(char *vfstype) 3545 { 3546 if (strcmp(vfstype, "proc") == 0) { 3547 vfstype = "procfs"; 3548 } else if (strcmp(vfstype, "fd") == 0) { 3549 vfstype = "fdfs"; 3550 } else if (strncmp(vfstype, "nfs", 3) == 0) { 3551 vfstype = "nfs"; 3552 } 3553 3554 return (vfstype); 3555 } 3556 3557 /* 3558 * Find a vfssw entry given a file system type name. 3559 * Try to autoload the filesystem if it's not found. 3560 * If it's installed, return the vfssw locked to prevent unloading. 3561 */ 3562 struct vfssw * 3563 vfs_getvfssw(char *type) 3564 { 3565 struct vfssw *vswp; 3566 char *modname; 3567 3568 RLOCK_VFSSW(); 3569 vswp = vfs_getvfsswbyname(type); 3570 modname = vfs_to_modname(type); 3571 3572 if (rootdir == NULL) { 3573 /* 3574 * If we haven't yet loaded the root file system, then our 3575 * _init won't be called until later. Allocate vfssw entry, 3576 * because mod_installfs won't be called. 3577 */ 3578 if (vswp == NULL) { 3579 RUNLOCK_VFSSW(); 3580 WLOCK_VFSSW(); 3581 if ((vswp = vfs_getvfsswbyname(type)) == NULL) { 3582 if ((vswp = allocate_vfssw(type)) == NULL) { 3583 WUNLOCK_VFSSW(); 3584 return (NULL); 3585 } 3586 } 3587 WUNLOCK_VFSSW(); 3588 RLOCK_VFSSW(); 3589 } 3590 if (!VFS_INSTALLED(vswp)) { 3591 RUNLOCK_VFSSW(); 3592 (void) modloadonly("fs", modname); 3593 } else 3594 RUNLOCK_VFSSW(); 3595 return (vswp); 3596 } 3597 3598 /* 3599 * Try to load the filesystem. Before calling modload(), we drop 3600 * our lock on the VFS switch table, and pick it up after the 3601 * module is loaded. However, there is a potential race: the 3602 * module could be unloaded after the call to modload() completes 3603 * but before we pick up the lock and drive on. Therefore, 3604 * we keep reloading the module until we've loaded the module 3605 * _and_ we have the lock on the VFS switch table. 3606 */ 3607 while (vswp == NULL || !VFS_INSTALLED(vswp)) { 3608 RUNLOCK_VFSSW(); 3609 if (modload("fs", modname) == -1) 3610 return (NULL); 3611 RLOCK_VFSSW(); 3612 if (vswp == NULL) 3613 if ((vswp = vfs_getvfsswbyname(type)) == NULL) 3614 break; 3615 } 3616 RUNLOCK_VFSSW(); 3617 3618 return (vswp); 3619 } 3620 3621 /* 3622 * Find a vfssw entry given a file system type name. 3623 */ 3624 struct vfssw * 3625 vfs_getvfsswbyname(char *type) 3626 { 3627 struct vfssw *vswp; 3628 3629 ASSERT(VFSSW_LOCKED()); 3630 if (type == NULL || *type == '\0') 3631 return (NULL); 3632 3633 for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) { 3634 if (strcmp(type, vswp->vsw_name) == 0) { 3635 vfs_refvfssw(vswp); 3636 return (vswp); 3637 } 3638 } 3639 3640 return (NULL); 3641 } 3642 3643 /* 3644 * Find a vfssw entry given a set of vfsops. 3645 */ 3646 struct vfssw * 3647 vfs_getvfsswbyvfsops(vfsops_t *vfsops) 3648 { 3649 struct vfssw *vswp; 3650 3651 RLOCK_VFSSW(); 3652 for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) { 3653 if (ALLOCATED_VFSSW(vswp) && &vswp->vsw_vfsops == vfsops) { 3654 vfs_refvfssw(vswp); 3655 RUNLOCK_VFSSW(); 3656 return (vswp); 3657 } 3658 } 3659 RUNLOCK_VFSSW(); 3660 3661 return (NULL); 3662 } 3663 3664 /* 3665 * Reference a vfssw entry. 3666 */ 3667 void 3668 vfs_refvfssw(struct vfssw *vswp) 3669 { 3670 3671 mutex_enter(&vswp->vsw_lock); 3672 vswp->vsw_count++; 3673 mutex_exit(&vswp->vsw_lock); 3674 } 3675 3676 /* 3677 * Unreference a vfssw entry. 3678 */ 3679 void 3680 vfs_unrefvfssw(struct vfssw *vswp) 3681 { 3682 3683 mutex_enter(&vswp->vsw_lock); 3684 vswp->vsw_count--; 3685 mutex_exit(&vswp->vsw_lock); 3686 } 3687 3688 int sync_timeout = 30; /* timeout for syncing a page during panic */ 3689 int sync_timeleft; /* portion of sync_timeout remaining */ 3690 3691 static int sync_retries = 20; /* number of retries when not making progress */ 3692 static int sync_triesleft; /* portion of sync_retries remaining */ 3693 3694 static pgcnt_t old_pgcnt, new_pgcnt; 3695 static int new_bufcnt, old_bufcnt; 3696 3697 /* 3698 * Sync all of the mounted filesystems, and then wait for the actual i/o to 3699 * complete. We wait by counting the number of dirty pages and buffers, 3700 * pushing them out using bio_busy() and page_busy(), and then counting again. 3701 * This routine is used during both the uadmin A_SHUTDOWN code as well as 3702 * the SYNC phase of the panic code (see comments in panic.c). It should only 3703 * be used after some higher-level mechanism has quiesced the system so that 3704 * new writes are not being initiated while we are waiting for completion. 3705 * 3706 * To ensure finite running time, our algorithm uses two timeout mechanisms: 3707 * sync_timeleft (a timer implemented by the omnipresent deadman() cyclic), and 3708 * sync_triesleft (a progress counter used by the vfs_syncall() loop below). 3709 * Together these ensure that syncing completes if our i/o paths are stuck. 3710 * The counters are declared above so they can be found easily in the debugger. 3711 * 3712 * The sync_timeleft counter is reset by bio_busy() and page_busy() using the 3713 * vfs_syncprogress() subroutine whenever we make progress through the lists of 3714 * pages and buffers. It is decremented and expired by the deadman() cyclic. 3715 * When vfs_syncall() decides it is done, we disable the deadman() counter by 3716 * setting sync_timeleft to zero. This timer guards against vfs_syncall() 3717 * deadlocking or hanging inside of a broken filesystem or driver routine. 3718 * 3719 * The sync_triesleft counter is updated by vfs_syncall() itself. If we make 3720 * sync_retries consecutive calls to bio_busy() and page_busy() without 3721 * decreasing either the number of dirty buffers or dirty pages below the 3722 * lowest count we have seen so far, we give up and return from vfs_syncall(). 3723 * 3724 * Each loop iteration ends with a call to delay() one second to allow time for 3725 * i/o completion and to permit the user time to read our progress messages. 3726 */ 3727 void 3728 vfs_syncall(void) 3729 { 3730 if (rootdir == NULL && !modrootloaded) 3731 return; /* panic during boot - no filesystems yet */ 3732 3733 printf("syncing file systems..."); 3734 vfs_syncprogress(); 3735 sync(); 3736 3737 vfs_syncprogress(); 3738 sync_triesleft = sync_retries; 3739 3740 old_bufcnt = new_bufcnt = INT_MAX; 3741 old_pgcnt = new_pgcnt = ULONG_MAX; 3742 3743 while (sync_triesleft > 0) { 3744 old_bufcnt = MIN(old_bufcnt, new_bufcnt); 3745 old_pgcnt = MIN(old_pgcnt, new_pgcnt); 3746 3747 new_bufcnt = bio_busy(B_TRUE); 3748 new_pgcnt = page_busy(B_TRUE); 3749 vfs_syncprogress(); 3750 3751 if (new_bufcnt == 0 && new_pgcnt == 0) 3752 break; 3753 3754 if (new_bufcnt < old_bufcnt || new_pgcnt < old_pgcnt) 3755 sync_triesleft = sync_retries; 3756 else 3757 sync_triesleft--; 3758 3759 if (new_bufcnt) 3760 printf(" [%d]", new_bufcnt); 3761 if (new_pgcnt) 3762 printf(" %lu", new_pgcnt); 3763 3764 delay(hz); 3765 } 3766 3767 if (new_bufcnt != 0 || new_pgcnt != 0) 3768 printf(" done (not all i/o completed)\n"); 3769 else 3770 printf(" done\n"); 3771 3772 sync_timeleft = 0; 3773 delay(hz); 3774 } 3775 3776 /* 3777 * If we are in the middle of the sync phase of panic, reset sync_timeleft to 3778 * sync_timeout to indicate that we are making progress and the deadman() 3779 * omnipresent cyclic should not yet time us out. Note that it is safe to 3780 * store to sync_timeleft here since the deadman() is firing at high-level 3781 * on top of us. If we are racing with the deadman(), either the deadman() 3782 * will decrement the old value and then we will reset it, or we will 3783 * reset it and then the deadman() will immediately decrement it. In either 3784 * case, correct behavior results. 3785 */ 3786 void 3787 vfs_syncprogress(void) 3788 { 3789 if (panicstr) 3790 sync_timeleft = sync_timeout; 3791 } 3792 3793 /* 3794 * Map VFS flags to statvfs flags. These shouldn't really be separate 3795 * flags at all. 3796 */ 3797 uint_t 3798 vf_to_stf(uint_t vf) 3799 { 3800 uint_t stf = 0; 3801 3802 if (vf & VFS_RDONLY) 3803 stf |= ST_RDONLY; 3804 if (vf & VFS_NOSETUID) 3805 stf |= ST_NOSUID; 3806 if (vf & VFS_NOTRUNC) 3807 stf |= ST_NOTRUNC; 3808 3809 return (stf); 3810 } 3811 3812 /* 3813 * Entries for (illegal) fstype 0. 3814 */ 3815 /* ARGSUSED */ 3816 int 3817 vfsstray_sync(struct vfs *vfsp, short arg, struct cred *cr) 3818 { 3819 cmn_err(CE_PANIC, "stray vfs operation"); 3820 return (0); 3821 } 3822 3823 /* 3824 * Entries for (illegal) fstype 0. 3825 */ 3826 int 3827 vfsstray(void) 3828 { 3829 cmn_err(CE_PANIC, "stray vfs operation"); 3830 return (0); 3831 } 3832 3833 /* 3834 * Support for dealing with forced UFS unmount and its interaction with 3835 * LOFS. Could be used by any filesystem. 3836 * See bug 1203132. 3837 */ 3838 int 3839 vfs_EIO(void) 3840 { 3841 return (EIO); 3842 } 3843 3844 /* 3845 * We've gotta define the op for sync separately, since the compiler gets 3846 * confused if we mix and match ANSI and normal style prototypes when 3847 * a "short" argument is present and spits out a warning. 3848 */ 3849 /*ARGSUSED*/ 3850 int 3851 vfs_EIO_sync(struct vfs *vfsp, short arg, struct cred *cr) 3852 { 3853 return (EIO); 3854 } 3855 3856 vfs_t EIO_vfs; 3857 vfsops_t *EIO_vfsops; 3858 3859 /* 3860 * Called from startup() to initialize all loaded vfs's 3861 */ 3862 void 3863 vfsinit(void) 3864 { 3865 struct vfssw *vswp; 3866 int error; 3867 extern int vopstats_enabled; 3868 extern void vopstats_startup(); 3869 3870 static const fs_operation_def_t EIO_vfsops_template[] = { 3871 VFSNAME_MOUNT, { .error = vfs_EIO }, 3872 VFSNAME_UNMOUNT, { .error = vfs_EIO }, 3873 VFSNAME_ROOT, { .error = vfs_EIO }, 3874 VFSNAME_STATVFS, { .error = vfs_EIO }, 3875 VFSNAME_SYNC, { .vfs_sync = vfs_EIO_sync }, 3876 VFSNAME_VGET, { .error = vfs_EIO }, 3877 VFSNAME_MOUNTROOT, { .error = vfs_EIO }, 3878 VFSNAME_FREEVFS, { .error = vfs_EIO }, 3879 VFSNAME_VNSTATE, { .error = vfs_EIO }, 3880 NULL, NULL 3881 }; 3882 3883 static const fs_operation_def_t stray_vfsops_template[] = { 3884 VFSNAME_MOUNT, { .error = vfsstray }, 3885 VFSNAME_UNMOUNT, { .error = vfsstray }, 3886 VFSNAME_ROOT, { .error = vfsstray }, 3887 VFSNAME_STATVFS, { .error = vfsstray }, 3888 VFSNAME_SYNC, { .vfs_sync = vfsstray_sync }, 3889 VFSNAME_VGET, { .error = vfsstray }, 3890 VFSNAME_MOUNTROOT, { .error = vfsstray }, 3891 VFSNAME_FREEVFS, { .error = vfsstray }, 3892 VFSNAME_VNSTATE, { .error = vfsstray }, 3893 NULL, NULL 3894 }; 3895 3896 /* Initialize the vnode cache (file systems may use it during init). */ 3897 3898 vn_create_cache(); 3899 3900 /* Setup event monitor framework */ 3901 3902 fem_init(); 3903 3904 /* Initialize the dummy stray file system type. */ 3905 error = vfs_setfsops(0, stray_vfsops_template, NULL); 3906 3907 /* Initialize the dummy EIO file system. */ 3908 error = vfs_makefsops(EIO_vfsops_template, &EIO_vfsops); 3909 if (error != 0) { 3910 cmn_err(CE_WARN, "vfsinit: bad EIO vfs ops template"); 3911 /* Shouldn't happen, but not bad enough to panic */ 3912 } 3913 3914 VFS_INIT(&EIO_vfs, EIO_vfsops, (caddr_t)NULL); 3915 3916 /* 3917 * Default EIO_vfs.vfs_flag to VFS_UNMOUNTED so a lookup 3918 * on this vfs can immediately notice it's invalid. 3919 */ 3920 EIO_vfs.vfs_flag |= VFS_UNMOUNTED; 3921 3922 /* 3923 * Call the init routines of non-loadable filesystems only. 3924 * Filesystems which are loaded as separate modules will be 3925 * initialized by the module loading code instead. 3926 */ 3927 3928 for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) { 3929 RLOCK_VFSSW(); 3930 if (vswp->vsw_init != NULL) 3931 (*vswp->vsw_init)(vswp - vfssw, vswp->vsw_name); 3932 RUNLOCK_VFSSW(); 3933 } 3934 3935 vopstats_startup(); 3936 3937 if (vopstats_enabled) { 3938 /* EIO_vfs can collect stats, but we don't retrieve them */ 3939 initialize_vopstats(&EIO_vfs.vfs_vopstats); 3940 EIO_vfs.vfs_fstypevsp = NULL; 3941 EIO_vfs.vfs_vskap = NULL; 3942 EIO_vfs.vfs_flag |= VFS_STATS; 3943 } 3944 } 3945 3946 /* 3947 * Increments the vfs reference count by one atomically. 3948 */ 3949 void 3950 vfs_hold(vfs_t *vfsp) 3951 { 3952 atomic_add_32(&vfsp->vfs_count, 1); 3953 ASSERT(vfsp->vfs_count != 0); 3954 } 3955 3956 /* 3957 * Decrements the vfs reference count by one atomically. When 3958 * vfs reference count becomes zero, it calls the file system 3959 * specific vfs_freevfs() to free up the resources. 3960 */ 3961 void 3962 vfs_rele(vfs_t *vfsp) 3963 { 3964 ASSERT(vfsp->vfs_count != 0); 3965 if (atomic_add_32_nv(&vfsp->vfs_count, -1) == 0) { 3966 VFS_FREEVFS(vfsp); 3967 if (vfsp->vfs_zone) 3968 zone_rele(vfsp->vfs_zone); 3969 vfs_freemnttab(vfsp); 3970 if (vfsp->vfs_implp) 3971 vfsimpl_teardown(vfsp); 3972 sema_destroy(&vfsp->vfs_reflock); 3973 kmem_free(vfsp, sizeof (*vfsp)); 3974 } 3975 } 3976 3977 /* 3978 * Generic operations vector support. 3979 * 3980 * This is used to build operations vectors for both the vfs and vnode. 3981 * It's normally called only when a file system is loaded. 3982 * 3983 * There are many possible algorithms for this, including the following: 3984 * 3985 * (1) scan the list of known operations; for each, see if the file system 3986 * includes an entry for it, and fill it in as appropriate. 3987 * 3988 * (2) set up defaults for all known operations. scan the list of ops 3989 * supplied by the file system; for each which is both supplied and 3990 * known, fill it in. 3991 * 3992 * (3) sort the lists of known ops & supplied ops; scan the list, filling 3993 * in entries as we go. 3994 * 3995 * we choose (1) for simplicity, and because performance isn't critical here. 3996 * note that (2) could be sped up using a precomputed hash table on known ops. 3997 * (3) could be faster than either, but only if the lists were very large or 3998 * supplied in sorted order. 3999 * 4000 */ 4001 4002 int 4003 fs_build_vector(void *vector, int *unused_ops, 4004 const fs_operation_trans_def_t *translation, 4005 const fs_operation_def_t *operations) 4006 { 4007 int i, num_trans, num_ops, used; 4008 4009 /* 4010 * Count the number of translations and the number of supplied 4011 * operations. 4012 */ 4013 4014 { 4015 const fs_operation_trans_def_t *p; 4016 4017 for (num_trans = 0, p = translation; 4018 p->name != NULL; 4019 num_trans++, p++) 4020 ; 4021 } 4022 4023 { 4024 const fs_operation_def_t *p; 4025 4026 for (num_ops = 0, p = operations; 4027 p->name != NULL; 4028 num_ops++, p++) 4029 ; 4030 } 4031 4032 /* Walk through each operation known to our caller. There will be */ 4033 /* one entry in the supplied "translation table" for each. */ 4034 4035 used = 0; 4036 4037 for (i = 0; i < num_trans; i++) { 4038 int j, found; 4039 char *curname; 4040 fs_generic_func_p result; 4041 fs_generic_func_p *location; 4042 4043 curname = translation[i].name; 4044 4045 /* Look for a matching operation in the list supplied by the */ 4046 /* file system. */ 4047 4048 found = 0; 4049 4050 for (j = 0; j < num_ops; j++) { 4051 if (strcmp(operations[j].name, curname) == 0) { 4052 used++; 4053 found = 1; 4054 break; 4055 } 4056 } 4057 4058 /* 4059 * If the file system is using a "placeholder" for default 4060 * or error functions, grab the appropriate function out of 4061 * the translation table. If the file system didn't supply 4062 * this operation at all, use the default function. 4063 */ 4064 4065 if (found) { 4066 result = operations[j].func.fs_generic; 4067 if (result == fs_default) { 4068 result = translation[i].defaultFunc; 4069 } else if (result == fs_error) { 4070 result = translation[i].errorFunc; 4071 } else if (result == NULL) { 4072 /* Null values are PROHIBITED */ 4073 return (EINVAL); 4074 } 4075 } else { 4076 result = translation[i].defaultFunc; 4077 } 4078 4079 /* Now store the function into the operations vector. */ 4080 4081 location = (fs_generic_func_p *) 4082 (((char *)vector) + translation[i].offset); 4083 4084 *location = result; 4085 } 4086 4087 *unused_ops = num_ops - used; 4088 4089 return (0); 4090 } 4091 4092 /* Placeholder functions, should never be called. */ 4093 4094 int 4095 fs_error(void) 4096 { 4097 cmn_err(CE_PANIC, "fs_error called"); 4098 return (0); 4099 } 4100 4101 int 4102 fs_default(void) 4103 { 4104 cmn_err(CE_PANIC, "fs_default called"); 4105 return (0); 4106 } 4107 4108 #ifdef __sparc 4109 4110 /* 4111 * Part of the implementation of booting off a mirrored root 4112 * involves a change of dev_t for the root device. To 4113 * accomplish this, first remove the existing hash table 4114 * entry for the root device, convert to the new dev_t, 4115 * then re-insert in the hash table at the head of the list. 4116 */ 4117 void 4118 vfs_root_redev(vfs_t *vfsp, dev_t ndev, int fstype) 4119 { 4120 vfs_list_lock(); 4121 4122 vfs_hash_remove(vfsp); 4123 4124 vfsp->vfs_dev = ndev; 4125 vfs_make_fsid(&vfsp->vfs_fsid, ndev, fstype); 4126 4127 vfs_hash_add(vfsp, 1); 4128 4129 vfs_list_unlock(); 4130 } 4131 4132 #else /* x86 NEWBOOT */ 4133 4134 int 4135 rootconf() 4136 { 4137 int error; 4138 struct vfssw *vsw; 4139 extern void pm_init(); 4140 char *fstyp; 4141 4142 fstyp = getrootfs(); 4143 4144 if (error = clboot_rootconf()) 4145 return (error); 4146 4147 if (modload("fs", fstyp) == -1) 4148 panic("Cannot _init %s module", fstyp); 4149 4150 RLOCK_VFSSW(); 4151 vsw = vfs_getvfsswbyname(fstyp); 4152 RUNLOCK_VFSSW(); 4153 VFS_INIT(rootvfs, &vsw->vsw_vfsops, 0); 4154 VFS_HOLD(rootvfs); 4155 4156 /* always mount readonly first */ 4157 rootvfs->vfs_flag |= VFS_RDONLY; 4158 4159 pm_init(); 4160 4161 if (netboot) 4162 (void) strplumb(); 4163 4164 error = VFS_MOUNTROOT(rootvfs, ROOT_INIT); 4165 vfs_unrefvfssw(vsw); 4166 rootdev = rootvfs->vfs_dev; 4167 4168 if (error) 4169 panic("cannot mount root path %s", rootfs.bo_name); 4170 return (error); 4171 } 4172 4173 /* 4174 * XXX this is called by nfs only and should probably be removed 4175 * If booted with ASKNAME, prompt on the console for a filesystem 4176 * name and return it. 4177 */ 4178 void 4179 getfsname(char *askfor, char *name, size_t namelen) 4180 { 4181 if (boothowto & RB_ASKNAME) { 4182 printf("%s name: ", askfor); 4183 console_gets(name, namelen); 4184 } 4185 } 4186 4187 /* 4188 * If server_path exists, then we are booting a diskless 4189 * client. Otherwise, we default to ufs. Zfs should perhaps be 4190 * another property. 4191 */ 4192 static char * 4193 getrootfs(void) 4194 { 4195 extern char *strplumb_get_netdev_path(void); 4196 char *propstr = NULL; 4197 4198 /* check fstype property; it should be nfsdyn for diskless */ 4199 if (ddi_prop_lookup_string(DDI_DEV_T_ANY, ddi_root_node(), 4200 DDI_PROP_DONTPASS, "fstype", &propstr) 4201 == DDI_SUCCESS) { 4202 (void) strncpy(rootfs.bo_fstype, propstr, BO_MAXFSNAME); 4203 ddi_prop_free(propstr); 4204 4205 /* 4206 * if the boot property 'fstype' is not set, but 'zfs-bootfs' is set, 4207 * assume the type of this root filesystem is 'zfs'. 4208 */ 4209 } else if (ddi_prop_lookup_string(DDI_DEV_T_ANY, ddi_root_node(), 4210 DDI_PROP_DONTPASS, "zfs-bootfs", &propstr) 4211 == DDI_SUCCESS) { 4212 (void) strncpy(rootfs.bo_fstype, "zfs", BO_MAXFSNAME); 4213 ddi_prop_free(propstr); 4214 } 4215 4216 if (strncmp(rootfs.bo_fstype, "nfs", 3) != 0) 4217 return (rootfs.bo_fstype); 4218 4219 ++netboot; 4220 /* check if path to network interface is specified in bootpath */ 4221 if (ddi_prop_lookup_string(DDI_DEV_T_ANY, ddi_root_node(), 4222 DDI_PROP_DONTPASS, "bootpath", &propstr) 4223 == DDI_SUCCESS) { 4224 (void) strncpy(rootfs.bo_name, propstr, BO_MAXOBJNAME); 4225 ddi_prop_free(propstr); 4226 } else { 4227 /* attempt to determine netdev_path via boot_mac address */ 4228 netdev_path = strplumb_get_netdev_path(); 4229 if (netdev_path == NULL) 4230 panic("cannot find boot network interface"); 4231 (void) strncpy(rootfs.bo_name, netdev_path, BO_MAXOBJNAME); 4232 } 4233 return ("nfs"); 4234 } 4235 #endif 4236