1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989 AT&T */ 27 /* All Rights Reserved */ 28 29 /* 30 * University Copyright- Copyright (c) 1982, 1986, 1988 31 * The Regents of the University of California 32 * All Rights Reserved 33 * 34 * University Acknowledgment- Portions of this document are derived from 35 * software developed by the University of California, Berkeley, and its 36 * contributors. 37 */ 38 39 40 #pragma ident "%Z%%M% %I% %E% SMI" 41 42 #include <sys/types.h> 43 #include <sys/t_lock.h> 44 #include <sys/param.h> 45 #include <sys/errno.h> 46 #include <sys/user.h> 47 #include <sys/fstyp.h> 48 #include <sys/kmem.h> 49 #include <sys/systm.h> 50 #include <sys/proc.h> 51 #include <sys/mount.h> 52 #include <sys/vfs.h> 53 #include <sys/vfs_opreg.h> 54 #include <sys/fem.h> 55 #include <sys/mntent.h> 56 #include <sys/stat.h> 57 #include <sys/statvfs.h> 58 #include <sys/statfs.h> 59 #include <sys/cred.h> 60 #include <sys/vnode.h> 61 #include <sys/rwstlock.h> 62 #include <sys/dnlc.h> 63 #include <sys/file.h> 64 #include <sys/time.h> 65 #include <sys/atomic.h> 66 #include <sys/cmn_err.h> 67 #include <sys/buf.h> 68 #include <sys/swap.h> 69 #include <sys/debug.h> 70 #include <sys/vnode.h> 71 #include <sys/modctl.h> 72 #include <sys/ddi.h> 73 #include <sys/pathname.h> 74 #include <sys/bootconf.h> 75 #include <sys/dumphdr.h> 76 #include <sys/dc_ki.h> 77 #include <sys/poll.h> 78 #include <sys/sunddi.h> 79 #include <sys/sysmacros.h> 80 #include <sys/zone.h> 81 #include <sys/policy.h> 82 #include <sys/ctfs.h> 83 #include <sys/objfs.h> 84 #include <sys/console.h> 85 #include <sys/reboot.h> 86 87 #include <vm/page.h> 88 89 #include <fs/fs_subr.h> 90 91 /* Private interfaces to create vopstats-related data structures */ 92 extern void initialize_vopstats(vopstats_t *); 93 extern vopstats_t *get_fstype_vopstats(struct vfs *, struct vfssw *); 94 extern vsk_anchor_t *get_vskstat_anchor(struct vfs *); 95 96 static void vfs_clearmntopt_nolock(mntopts_t *, const char *, int); 97 static void vfs_setmntopt_nolock(mntopts_t *, const char *, 98 const char *, int, int); 99 static int vfs_optionisset_nolock(const mntopts_t *, const char *, char **); 100 static void vfs_freemnttab(struct vfs *); 101 static void vfs_freeopt(mntopt_t *); 102 static void vfs_swapopttbl_nolock(mntopts_t *, mntopts_t *); 103 static void vfs_swapopttbl(mntopts_t *, mntopts_t *); 104 static void vfs_copyopttbl_extend(const mntopts_t *, mntopts_t *, int); 105 static void vfs_createopttbl_extend(mntopts_t *, const char *, 106 const mntopts_t *); 107 static char **vfs_copycancelopt_extend(char **const, int); 108 static void vfs_freecancelopt(char **); 109 static char *getrootfs(void); 110 static int getmacpath(dev_info_t *, void *); 111 112 struct ipmnt { 113 struct ipmnt *mip_next; 114 dev_t mip_dev; 115 struct vfs *mip_vfsp; 116 }; 117 118 static kmutex_t vfs_miplist_mutex; 119 static struct ipmnt *vfs_miplist = NULL; 120 static struct ipmnt *vfs_miplist_end = NULL; 121 122 /* 123 * VFS global data. 124 */ 125 vnode_t *rootdir; /* pointer to root inode vnode. */ 126 vnode_t *devicesdir; /* pointer to inode of devices root */ 127 vnode_t *devdir; /* pointer to inode of dev root */ 128 129 char *server_rootpath; /* root path for diskless clients */ 130 char *server_hostname; /* hostname of diskless server */ 131 132 static struct vfs root; 133 static struct vfs devices; 134 static struct vfs dev; 135 struct vfs *rootvfs = &root; /* pointer to root vfs; head of VFS list. */ 136 rvfs_t *rvfs_list; /* array of vfs ptrs for vfs hash list */ 137 int vfshsz = 512; /* # of heads/locks in vfs hash arrays */ 138 /* must be power of 2! */ 139 timespec_t vfs_mnttab_ctime; /* mnttab created time */ 140 timespec_t vfs_mnttab_mtime; /* mnttab last modified time */ 141 char *vfs_dummyfstype = "\0"; 142 struct pollhead vfs_pollhd; /* for mnttab pollers */ 143 144 /* 145 * Table for generic options recognized in the VFS layer and acted 146 * on at this level before parsing file system specific options. 147 * The nosuid option is stronger than any of the devices and setuid 148 * options, so those are canceled when nosuid is seen. 149 * 150 * All options which are added here need to be added to the 151 * list of standard options in usr/src/cmd/fs.d/fslib.c as well. 152 */ 153 /* 154 * VFS Mount options table 155 */ 156 static char *ro_cancel[] = { MNTOPT_RW, NULL }; 157 static char *rw_cancel[] = { MNTOPT_RO, NULL }; 158 static char *suid_cancel[] = { MNTOPT_NOSUID, NULL }; 159 static char *nosuid_cancel[] = { MNTOPT_SUID, MNTOPT_DEVICES, MNTOPT_NODEVICES, 160 MNTOPT_NOSETUID, MNTOPT_SETUID, NULL }; 161 static char *devices_cancel[] = { MNTOPT_NODEVICES, NULL }; 162 static char *nodevices_cancel[] = { MNTOPT_DEVICES, NULL }; 163 static char *setuid_cancel[] = { MNTOPT_NOSETUID, NULL }; 164 static char *nosetuid_cancel[] = { MNTOPT_SETUID, NULL }; 165 static char *nbmand_cancel[] = { MNTOPT_NONBMAND, NULL }; 166 static char *nonbmand_cancel[] = { MNTOPT_NBMAND, NULL }; 167 static char *exec_cancel[] = { MNTOPT_NOEXEC, NULL }; 168 static char *noexec_cancel[] = { MNTOPT_EXEC, NULL }; 169 170 static const mntopt_t mntopts[] = { 171 /* 172 * option name cancel options default arg flags 173 */ 174 { MNTOPT_REMOUNT, NULL, NULL, 175 MO_NODISPLAY, (void *)0 }, 176 { MNTOPT_RO, ro_cancel, NULL, 0, 177 (void *)0 }, 178 { MNTOPT_RW, rw_cancel, NULL, 0, 179 (void *)0 }, 180 { MNTOPT_SUID, suid_cancel, NULL, 0, 181 (void *)0 }, 182 { MNTOPT_NOSUID, nosuid_cancel, NULL, 0, 183 (void *)0 }, 184 { MNTOPT_DEVICES, devices_cancel, NULL, 0, 185 (void *)0 }, 186 { MNTOPT_NODEVICES, nodevices_cancel, NULL, 0, 187 (void *)0 }, 188 { MNTOPT_SETUID, setuid_cancel, NULL, 0, 189 (void *)0 }, 190 { MNTOPT_NOSETUID, nosetuid_cancel, NULL, 0, 191 (void *)0 }, 192 { MNTOPT_NBMAND, nbmand_cancel, NULL, 0, 193 (void *)0 }, 194 { MNTOPT_NONBMAND, nonbmand_cancel, NULL, 0, 195 (void *)0 }, 196 { MNTOPT_EXEC, exec_cancel, NULL, 0, 197 (void *)0 }, 198 { MNTOPT_NOEXEC, noexec_cancel, NULL, 0, 199 (void *)0 }, 200 }; 201 202 const mntopts_t vfs_mntopts = { 203 sizeof (mntopts) / sizeof (mntopt_t), 204 (mntopt_t *)&mntopts[0] 205 }; 206 207 /* 208 * File system operation dispatch functions. 209 */ 210 211 int 212 fsop_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr) 213 { 214 return (*(vfsp)->vfs_op->vfs_mount)(vfsp, mvp, uap, cr); 215 } 216 217 int 218 fsop_unmount(vfs_t *vfsp, int flag, cred_t *cr) 219 { 220 return (*(vfsp)->vfs_op->vfs_unmount)(vfsp, flag, cr); 221 } 222 223 int 224 fsop_root(vfs_t *vfsp, vnode_t **vpp) 225 { 226 refstr_t *mntpt; 227 int ret = (*(vfsp)->vfs_op->vfs_root)(vfsp, vpp); 228 /* 229 * Make sure this root has a path. With lofs, it is possible to have 230 * a NULL mountpoint. 231 */ 232 if (ret == 0 && vfsp->vfs_mntpt != NULL && (*vpp)->v_path == NULL) { 233 mntpt = vfs_getmntpoint(vfsp); 234 vn_setpath_str(*vpp, refstr_value(mntpt), 235 strlen(refstr_value(mntpt))); 236 refstr_rele(mntpt); 237 } 238 239 return (ret); 240 } 241 242 int 243 fsop_statfs(vfs_t *vfsp, statvfs64_t *sp) 244 { 245 return (*(vfsp)->vfs_op->vfs_statvfs)(vfsp, sp); 246 } 247 248 int 249 fsop_sync(vfs_t *vfsp, short flag, cred_t *cr) 250 { 251 return (*(vfsp)->vfs_op->vfs_sync)(vfsp, flag, cr); 252 } 253 254 int 255 fsop_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp) 256 { 257 return (*(vfsp)->vfs_op->vfs_vget)(vfsp, vpp, fidp); 258 } 259 260 int 261 fsop_mountroot(vfs_t *vfsp, enum whymountroot reason) 262 { 263 return (*(vfsp)->vfs_op->vfs_mountroot)(vfsp, reason); 264 } 265 266 void 267 fsop_freefs(vfs_t *vfsp) 268 { 269 (*(vfsp)->vfs_op->vfs_freevfs)(vfsp); 270 } 271 272 int 273 fsop_vnstate(vfs_t *vfsp, vnode_t *vp, vntrans_t nstate) 274 { 275 return ((*(vfsp)->vfs_op->vfs_vnstate)(vfsp, vp, nstate)); 276 } 277 278 int 279 fsop_sync_by_kind(int fstype, short flag, cred_t *cr) 280 { 281 ASSERT((fstype >= 0) && (fstype < nfstype)); 282 283 if (ALLOCATED_VFSSW(&vfssw[fstype]) && VFS_INSTALLED(&vfssw[fstype])) 284 return (*vfssw[fstype].vsw_vfsops.vfs_sync) (NULL, flag, cr); 285 else 286 return (ENOTSUP); 287 } 288 289 /* 290 * File system initialization. vfs_setfsops() must be called from a file 291 * system's init routine. 292 */ 293 294 static int 295 fs_copyfsops(const fs_operation_def_t *template, vfsops_t *actual, 296 int *unused_ops) 297 { 298 static const fs_operation_trans_def_t vfs_ops_table[] = { 299 VFSNAME_MOUNT, offsetof(vfsops_t, vfs_mount), 300 fs_nosys, fs_nosys, 301 302 VFSNAME_UNMOUNT, offsetof(vfsops_t, vfs_unmount), 303 fs_nosys, fs_nosys, 304 305 VFSNAME_ROOT, offsetof(vfsops_t, vfs_root), 306 fs_nosys, fs_nosys, 307 308 VFSNAME_STATVFS, offsetof(vfsops_t, vfs_statvfs), 309 fs_nosys, fs_nosys, 310 311 VFSNAME_SYNC, offsetof(vfsops_t, vfs_sync), 312 (fs_generic_func_p) fs_sync, 313 (fs_generic_func_p) fs_sync, /* No errors allowed */ 314 315 VFSNAME_VGET, offsetof(vfsops_t, vfs_vget), 316 fs_nosys, fs_nosys, 317 318 VFSNAME_MOUNTROOT, offsetof(vfsops_t, vfs_mountroot), 319 fs_nosys, fs_nosys, 320 321 VFSNAME_FREEVFS, offsetof(vfsops_t, vfs_freevfs), 322 (fs_generic_func_p)fs_freevfs, 323 (fs_generic_func_p)fs_freevfs, /* Shouldn't fail */ 324 325 VFSNAME_VNSTATE, offsetof(vfsops_t, vfs_vnstate), 326 (fs_generic_func_p)fs_nosys, 327 (fs_generic_func_p)fs_nosys, 328 329 NULL, 0, NULL, NULL 330 }; 331 332 return (fs_build_vector(actual, unused_ops, vfs_ops_table, template)); 333 } 334 335 int 336 vfs_setfsops(int fstype, const fs_operation_def_t *template, vfsops_t **actual) 337 { 338 int error; 339 int unused_ops; 340 341 /* 342 * Verify that fstype refers to a valid fs. Note that 343 * 0 is valid since it's used to set "stray" ops. 344 */ 345 if ((fstype < 0) || (fstype >= nfstype)) 346 return (EINVAL); 347 348 if (!ALLOCATED_VFSSW(&vfssw[fstype])) 349 return (EINVAL); 350 351 /* Set up the operations vector. */ 352 353 error = fs_copyfsops(template, &vfssw[fstype].vsw_vfsops, &unused_ops); 354 355 if (error != 0) 356 return (error); 357 358 vfssw[fstype].vsw_flag |= VSW_INSTALLED; 359 360 if (actual != NULL) 361 *actual = &vfssw[fstype].vsw_vfsops; 362 363 #if DEBUG 364 if (unused_ops != 0) 365 cmn_err(CE_WARN, "vfs_setfsops: %s: %d operations supplied " 366 "but not used", vfssw[fstype].vsw_name, unused_ops); 367 #endif 368 369 return (0); 370 } 371 372 int 373 vfs_makefsops(const fs_operation_def_t *template, vfsops_t **actual) 374 { 375 int error; 376 int unused_ops; 377 378 *actual = (vfsops_t *)kmem_alloc(sizeof (vfsops_t), KM_SLEEP); 379 380 error = fs_copyfsops(template, *actual, &unused_ops); 381 if (error != 0) { 382 kmem_free(*actual, sizeof (vfsops_t)); 383 *actual = NULL; 384 return (error); 385 } 386 387 return (0); 388 } 389 390 /* 391 * Free a vfsops structure created as a result of vfs_makefsops(). 392 * NOTE: For a vfsops structure initialized by vfs_setfsops(), use 393 * vfs_freevfsops_by_type(). 394 */ 395 void 396 vfs_freevfsops(vfsops_t *vfsops) 397 { 398 kmem_free(vfsops, sizeof (vfsops_t)); 399 } 400 401 /* 402 * Since the vfsops structure is part of the vfssw table and wasn't 403 * really allocated, we're not really freeing anything. We keep 404 * the name for consistency with vfs_freevfsops(). We do, however, 405 * need to take care of a little bookkeeping. 406 * NOTE: For a vfsops structure created by vfs_setfsops(), use 407 * vfs_freevfsops_by_type(). 408 */ 409 int 410 vfs_freevfsops_by_type(int fstype) 411 { 412 413 /* Verify that fstype refers to a loaded fs (and not fsid 0). */ 414 if ((fstype <= 0) || (fstype >= nfstype)) 415 return (EINVAL); 416 417 WLOCK_VFSSW(); 418 if ((vfssw[fstype].vsw_flag & VSW_INSTALLED) == 0) { 419 WUNLOCK_VFSSW(); 420 return (EINVAL); 421 } 422 423 vfssw[fstype].vsw_flag &= ~VSW_INSTALLED; 424 WUNLOCK_VFSSW(); 425 426 return (0); 427 } 428 429 /* Support routines used to reference vfs_op */ 430 431 /* Set the operations vector for a vfs */ 432 void 433 vfs_setops(vfs_t *vfsp, vfsops_t *vfsops) 434 { 435 vfsops_t *op; 436 437 ASSERT(vfsp != NULL); 438 ASSERT(vfsops != NULL); 439 440 op = vfsp->vfs_op; 441 membar_consumer(); 442 if ((vfsp->vfs_implp == NULL || vfsp->vfs_femhead == NULL) && 443 casptr(&vfsp->vfs_op, op, vfsops) == op) { 444 return; 445 } 446 fsem_setvfsops(vfsp, vfsops); 447 } 448 449 /* Retrieve the operations vector for a vfs */ 450 vfsops_t * 451 vfs_getops(vfs_t *vfsp) 452 { 453 vfsops_t *op; 454 455 ASSERT(vfsp != NULL); 456 457 op = vfsp->vfs_op; 458 membar_consumer(); 459 if ((vfsp->vfs_implp == NULL || vfsp->vfs_femhead == NULL) && 460 op == vfsp->vfs_op) { 461 return (op); 462 } else { 463 return (fsem_getvfsops(vfsp)); 464 } 465 } 466 467 /* 468 * Returns non-zero (1) if the vfsops matches that of the vfs. 469 * Returns zero (0) if not. 470 */ 471 int 472 vfs_matchops(vfs_t *vfsp, vfsops_t *vfsops) 473 { 474 return (vfs_getops(vfsp) == vfsops); 475 } 476 477 /* 478 * Returns non-zero (1) if the file system has installed a non-default, 479 * non-error vfs_sync routine. Returns zero (0) otherwise. 480 */ 481 int 482 vfs_can_sync(vfs_t *vfsp) 483 { 484 /* vfs_sync() routine is not the default/error function */ 485 return (vfs_getops(vfsp)->vfs_sync != fs_sync); 486 } 487 488 /* 489 * Initialize a vfs structure. 490 */ 491 void 492 vfs_init(vfs_t *vfsp, vfsops_t *op, void *data) 493 { 494 vfsp->vfs_count = 0; 495 vfsp->vfs_next = vfsp; 496 vfsp->vfs_prev = vfsp; 497 vfsp->vfs_zone_next = vfsp; 498 vfsp->vfs_zone_prev = vfsp; 499 vfsp->vfs_flag = 0; 500 vfsp->vfs_data = (data); 501 vfsp->vfs_resource = NULL; 502 vfsp->vfs_mntpt = NULL; 503 vfsp->vfs_mntopts.mo_count = 0; 504 vfsp->vfs_mntopts.mo_list = NULL; 505 vfsp->vfs_implp = NULL; 506 vfsp->vfs_zone = NULL; 507 /* 508 * Note: Don't initialize any member of the vfs_impl_t structure 509 * here as it could be a problem for unbundled file systems. 510 */ 511 vfs_setops((vfsp), (op)); 512 sema_init(&vfsp->vfs_reflock, 1, NULL, SEMA_DEFAULT, NULL); 513 } 514 515 /* 516 * Allocate and initialize the vfs implementation private data 517 * structure, vfs_impl_t. 518 */ 519 void 520 vfsimpl_setup(vfs_t *vfsp) 521 { 522 vfsp->vfs_implp = kmem_alloc(sizeof (vfs_impl_t), KM_SLEEP); 523 /* Note that this are #define'd in vfs.h */ 524 vfsp->vfs_femhead = NULL; 525 vfsp->vfs_vskap = NULL; 526 vfsp->vfs_fstypevsp = NULL; 527 } 528 529 /* 530 * Release the vfs_impl_t structure, if it exists. Some unbundled 531 * filesystems may not use the newer version of vfs and thus 532 * would not contain this implementation private data structure. 533 */ 534 void 535 vfsimpl_teardown(vfs_t *vfsp) 536 { 537 vfs_impl_t *vip = vfsp->vfs_implp; 538 539 if (vip == NULL) 540 return; 541 542 if (vip->vi_femhead) { 543 ASSERT(vip->vi_femhead->femh_list == NULL); 544 mutex_destroy(&vip->vi_femhead->femh_lock); 545 kmem_free(vip->vi_femhead, sizeof (*(vip->vi_femhead))); 546 vip->vi_femhead = NULL; 547 } 548 549 kmem_free(vfsp->vfs_implp, sizeof (vfs_impl_t)); 550 vfsp->vfs_implp = NULL; 551 } 552 553 /* 554 * VFS system calls: mount, umount, syssync, statfs, fstatfs, statvfs, 555 * fstatvfs, and sysfs moved to common/syscall. 556 */ 557 558 /* 559 * Update every mounted file system. We call the vfs_sync operation of 560 * each file system type, passing it a NULL vfsp to indicate that all 561 * mounted file systems of that type should be updated. 562 */ 563 void 564 vfs_sync(int flag) 565 { 566 struct vfssw *vswp; 567 RLOCK_VFSSW(); 568 for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) { 569 if (ALLOCATED_VFSSW(vswp) && VFS_INSTALLED(vswp)) { 570 vfs_refvfssw(vswp); 571 RUNLOCK_VFSSW(); 572 (void) (*vswp->vsw_vfsops.vfs_sync)(NULL, flag, 573 CRED()); 574 vfs_unrefvfssw(vswp); 575 RLOCK_VFSSW(); 576 } 577 } 578 RUNLOCK_VFSSW(); 579 } 580 581 void 582 sync(void) 583 { 584 vfs_sync(0); 585 } 586 587 /* 588 * External routines. 589 */ 590 591 krwlock_t vfssw_lock; /* lock accesses to vfssw */ 592 593 /* 594 * Lock for accessing the vfs linked list. Initialized in vfs_mountroot(), 595 * but otherwise should be accessed only via vfs_list_lock() and 596 * vfs_list_unlock(). Also used to protect the timestamp for mods to the list. 597 */ 598 static krwlock_t vfslist; 599 600 /* 601 * Mount devfs on /devices. This is done right after root is mounted 602 * to provide device access support for the system 603 */ 604 static void 605 vfs_mountdevices(void) 606 { 607 struct vfssw *vsw; 608 struct vnode *mvp; 609 struct mounta mounta = { /* fake mounta for devfs_mount() */ 610 NULL, 611 NULL, 612 MS_SYSSPACE, 613 NULL, 614 NULL, 615 0, 616 NULL, 617 0 618 }; 619 620 /* 621 * _init devfs module to fill in the vfssw 622 */ 623 if (modload("fs", "devfs") == -1) 624 panic("Cannot _init devfs module"); 625 626 /* 627 * Hold vfs 628 */ 629 RLOCK_VFSSW(); 630 vsw = vfs_getvfsswbyname("devfs"); 631 VFS_INIT(&devices, &vsw->vsw_vfsops, NULL); 632 VFS_HOLD(&devices); 633 634 /* 635 * Locate mount point 636 */ 637 if (lookupname("/devices", UIO_SYSSPACE, FOLLOW, NULLVPP, &mvp)) 638 panic("Cannot find /devices"); 639 640 /* 641 * Perform the mount of /devices 642 */ 643 if (VFS_MOUNT(&devices, mvp, &mounta, CRED())) 644 panic("Cannot mount /devices"); 645 646 RUNLOCK_VFSSW(); 647 648 /* 649 * Set appropriate members and add to vfs list for mnttab display 650 */ 651 vfs_setresource(&devices, "/devices"); 652 vfs_setmntpoint(&devices, "/devices"); 653 654 /* 655 * Hold the root of /devices so it won't go away 656 */ 657 if (VFS_ROOT(&devices, &devicesdir)) 658 panic("vfs_mountdevices: not devices root"); 659 660 if (vfs_lock(&devices) != 0) { 661 VN_RELE(devicesdir); 662 cmn_err(CE_NOTE, "Cannot acquire vfs_lock of /devices"); 663 return; 664 } 665 666 if (vn_vfswlock(mvp) != 0) { 667 vfs_unlock(&devices); 668 VN_RELE(devicesdir); 669 cmn_err(CE_NOTE, "Cannot acquire vfswlock of /devices"); 670 return; 671 } 672 673 vfs_add(mvp, &devices, 0); 674 vn_vfsunlock(mvp); 675 vfs_unlock(&devices); 676 VN_RELE(devicesdir); 677 } 678 679 /* 680 * mount the first instance of /dev to root and remain mounted 681 */ 682 static void 683 vfs_mountdev1(void) 684 { 685 struct vfssw *vsw; 686 struct vnode *mvp; 687 struct mounta mounta = { /* fake mounta for sdev_mount() */ 688 NULL, 689 NULL, 690 MS_SYSSPACE | MS_OVERLAY, 691 NULL, 692 NULL, 693 0, 694 NULL, 695 0 696 }; 697 698 /* 699 * _init dev module to fill in the vfssw 700 */ 701 if (modload("fs", "dev") == -1) 702 cmn_err(CE_PANIC, "Cannot _init dev module\n"); 703 704 /* 705 * Hold vfs 706 */ 707 RLOCK_VFSSW(); 708 vsw = vfs_getvfsswbyname("dev"); 709 VFS_INIT(&dev, &vsw->vsw_vfsops, NULL); 710 VFS_HOLD(&dev); 711 712 /* 713 * Locate mount point 714 */ 715 if (lookupname("/dev", UIO_SYSSPACE, FOLLOW, NULLVPP, &mvp)) 716 cmn_err(CE_PANIC, "Cannot find /dev\n"); 717 718 /* 719 * Perform the mount of /dev 720 */ 721 if (VFS_MOUNT(&dev, mvp, &mounta, CRED())) 722 cmn_err(CE_PANIC, "Cannot mount /dev 1\n"); 723 724 RUNLOCK_VFSSW(); 725 726 /* 727 * Set appropriate members and add to vfs list for mnttab display 728 */ 729 vfs_setresource(&dev, "/dev"); 730 vfs_setmntpoint(&dev, "/dev"); 731 732 /* 733 * Hold the root of /dev so it won't go away 734 */ 735 if (VFS_ROOT(&dev, &devdir)) 736 cmn_err(CE_PANIC, "vfs_mountdev1: not dev root"); 737 738 if (vfs_lock(&dev) != 0) { 739 VN_RELE(devdir); 740 cmn_err(CE_NOTE, "Cannot acquire vfs_lock of /dev"); 741 return; 742 } 743 744 if (vn_vfswlock(mvp) != 0) { 745 vfs_unlock(&dev); 746 VN_RELE(devdir); 747 cmn_err(CE_NOTE, "Cannot acquire vfswlock of /dev"); 748 return; 749 } 750 751 vfs_add(mvp, &dev, 0); 752 vn_vfsunlock(mvp); 753 vfs_unlock(&dev); 754 VN_RELE(devdir); 755 } 756 757 /* 758 * Mount required filesystem. This is done right after root is mounted. 759 */ 760 static void 761 vfs_mountfs(char *module, char *spec, char *path) 762 { 763 struct vnode *mvp; 764 struct mounta mounta; 765 vfs_t *vfsp; 766 767 mounta.flags = MS_SYSSPACE | MS_DATA; 768 mounta.fstype = module; 769 mounta.spec = spec; 770 mounta.dir = path; 771 if (lookupname(path, UIO_SYSSPACE, FOLLOW, NULLVPP, &mvp)) { 772 cmn_err(CE_WARN, "Cannot find %s", path); 773 return; 774 } 775 if (domount(NULL, &mounta, mvp, CRED(), &vfsp)) 776 cmn_err(CE_WARN, "Cannot mount %s", path); 777 else 778 VFS_RELE(vfsp); 779 VN_RELE(mvp); 780 } 781 782 /* 783 * vfs_mountroot is called by main() to mount the root filesystem. 784 */ 785 void 786 vfs_mountroot(void) 787 { 788 struct vnode *rvp = NULL; 789 char *path; 790 size_t plen; 791 struct vfssw *vswp; 792 793 rw_init(&vfssw_lock, NULL, RW_DEFAULT, NULL); 794 rw_init(&vfslist, NULL, RW_DEFAULT, NULL); 795 796 /* 797 * Alloc the vfs hash bucket array and locks 798 */ 799 rvfs_list = kmem_zalloc(vfshsz * sizeof (rvfs_t), KM_SLEEP); 800 801 /* 802 * Call machine-dependent routine "rootconf" to choose a root 803 * file system type. 804 */ 805 if (rootconf()) 806 panic("vfs_mountroot: cannot mount root"); 807 /* 808 * Get vnode for '/'. Set up rootdir, u.u_rdir and u.u_cdir 809 * to point to it. These are used by lookuppn() so that it 810 * knows where to start from ('/' or '.'). 811 */ 812 vfs_setmntpoint(rootvfs, "/"); 813 if (VFS_ROOT(rootvfs, &rootdir)) 814 panic("vfs_mountroot: no root vnode"); 815 PTOU(curproc)->u_cdir = rootdir; 816 VN_HOLD(PTOU(curproc)->u_cdir); 817 PTOU(curproc)->u_rdir = NULL; 818 819 /* 820 * Setup the global zone's rootvp, now that it exists. 821 */ 822 global_zone->zone_rootvp = rootdir; 823 VN_HOLD(global_zone->zone_rootvp); 824 825 /* 826 * Notify the module code that it can begin using the 827 * root filesystem instead of the boot program's services. 828 */ 829 modrootloaded = 1; 830 /* 831 * Set up mnttab information for root 832 */ 833 vfs_setresource(rootvfs, rootfs.bo_name); 834 835 /* 836 * Notify cluster software that the root filesystem is available. 837 */ 838 clboot_mountroot(); 839 840 /* Now that we're all done with the root FS, set up its vopstats */ 841 if ((vswp = vfs_getvfsswbyvfsops(vfs_getops(rootvfs))) != NULL) { 842 /* Set flag for statistics collection */ 843 if (vswp->vsw_flag & VSW_STATS) { 844 initialize_vopstats(&rootvfs->vfs_vopstats); 845 rootvfs->vfs_flag |= VFS_STATS; 846 rootvfs->vfs_fstypevsp = 847 get_fstype_vopstats(rootvfs, vswp); 848 rootvfs->vfs_vskap = get_vskstat_anchor(rootvfs); 849 } 850 vfs_unrefvfssw(vswp); 851 } 852 853 /* 854 * Mount /devices, /dev instance 1, /system/contract, /etc/mnttab, 855 * /etc/svc/volatile, /etc/dfs/sharetab, /system/object, and /proc. 856 */ 857 vfs_mountdevices(); 858 vfs_mountdev1(); 859 860 vfs_mountfs("ctfs", "ctfs", CTFS_ROOT); 861 vfs_mountfs("proc", "/proc", "/proc"); 862 vfs_mountfs("mntfs", "/etc/mnttab", "/etc/mnttab"); 863 vfs_mountfs("tmpfs", "/etc/svc/volatile", "/etc/svc/volatile"); 864 vfs_mountfs("objfs", "objfs", OBJFS_ROOT); 865 866 if (getzoneid() == GLOBAL_ZONEID) { 867 vfs_mountfs("sharefs", "sharefs", "/etc/dfs/sharetab"); 868 } 869 870 #ifdef __sparc 871 /* 872 * This bit of magic can go away when we convert sparc to 873 * the new boot architecture based on ramdisk. 874 * 875 * Booting off a mirrored root volume: 876 * At this point, we have booted and mounted root on a 877 * single component of the mirror. Complete the boot 878 * by configuring SVM and converting the root to the 879 * dev_t of the mirrored root device. This dev_t conversion 880 * only works because the underlying device doesn't change. 881 */ 882 if (root_is_svm) { 883 if (svm_rootconf()) { 884 panic("vfs_mountroot: cannot remount root"); 885 } 886 887 /* 888 * mnttab should reflect the new root device 889 */ 890 vfs_lock_wait(rootvfs); 891 vfs_setresource(rootvfs, rootfs.bo_name); 892 vfs_unlock(rootvfs); 893 } 894 #endif /* __sparc */ 895 896 /* 897 * Look up the root device via devfs so that a dv_node is 898 * created for it. The vnode is never VN_RELE()ed. 899 * We allocate more than MAXPATHLEN so that the 900 * buffer passed to i_ddi_prompath_to_devfspath() is 901 * exactly MAXPATHLEN (the function expects a buffer 902 * of that length). 903 */ 904 plen = strlen("/devices"); 905 path = kmem_alloc(plen + MAXPATHLEN, KM_SLEEP); 906 (void) strcpy(path, "/devices"); 907 908 if (i_ddi_prompath_to_devfspath(rootfs.bo_name, path + plen) 909 != DDI_SUCCESS || 910 lookupname(path, UIO_SYSSPACE, FOLLOW, NULLVPP, &rvp)) { 911 912 /* NUL terminate in case "path" has garbage */ 913 path[plen + MAXPATHLEN - 1] = '\0'; 914 #ifdef DEBUG 915 cmn_err(CE_WARN, "!Cannot lookup root device: %s", path); 916 #endif 917 } 918 kmem_free(path, plen + MAXPATHLEN); 919 } 920 921 /* 922 * If remount failed and we're in a zone we need to check for the zone 923 * root path and strip it before the call to vfs_setpath(). 924 * 925 * If strpath doesn't begin with the zone_rootpath the original 926 * strpath is returned unchanged. 927 */ 928 static const char * 929 stripzonepath(const char *strpath) 930 { 931 char *str1, *str2; 932 int i; 933 zone_t *zonep = curproc->p_zone; 934 935 if (zonep->zone_rootpath == NULL || strpath == NULL) { 936 return (NULL); 937 } 938 939 /* 940 * we check for the end of the string at one past the 941 * current position because the zone_rootpath always 942 * ends with "/" but we don't want to strip that off. 943 */ 944 str1 = zonep->zone_rootpath; 945 str2 = (char *)strpath; 946 ASSERT(str1[0] != '\0'); 947 for (i = 0; str1[i + 1] != '\0'; i++) { 948 if (str1[i] != str2[i]) 949 return ((char *)strpath); 950 } 951 return (&str2[i]); 952 } 953 954 /* 955 * Common mount code. Called from the system call entry point, from autofs, 956 * and from pxfs. 957 * 958 * Takes the effective file system type, mount arguments, the mount point 959 * vnode, flags specifying whether the mount is a remount and whether it 960 * should be entered into the vfs list, and credentials. Fills in its vfspp 961 * parameter with the mounted file system instance's vfs. 962 * 963 * Note that the effective file system type is specified as a string. It may 964 * be null, in which case it's determined from the mount arguments, and may 965 * differ from the type specified in the mount arguments; this is a hook to 966 * allow interposition when instantiating file system instances. 967 * 968 * The caller is responsible for releasing its own hold on the mount point 969 * vp (this routine does its own hold when necessary). 970 * Also note that for remounts, the mount point vp should be the vnode for 971 * the root of the file system rather than the vnode that the file system 972 * is mounted on top of. 973 */ 974 int 975 domount(char *fsname, struct mounta *uap, vnode_t *vp, struct cred *credp, 976 struct vfs **vfspp) 977 { 978 struct vfssw *vswp; 979 vfsops_t *vfsops; 980 struct vfs *vfsp; 981 struct vnode *bvp; 982 dev_t bdev = 0; 983 mntopts_t mnt_mntopts; 984 int error = 0; 985 int copyout_error = 0; 986 int ovflags; 987 char *opts = uap->optptr; 988 char *inargs = opts; 989 int optlen = uap->optlen; 990 int remount; 991 int rdonly; 992 int nbmand = 0; 993 int delmip = 0; 994 int addmip = 0; 995 int splice = ((uap->flags & MS_NOSPLICE) == 0); 996 int fromspace = (uap->flags & MS_SYSSPACE) ? 997 UIO_SYSSPACE : UIO_USERSPACE; 998 char *resource = NULL, *mountpt = NULL; 999 refstr_t *oldresource, *oldmntpt; 1000 struct pathname pn, rpn; 1001 vsk_anchor_t *vskap; 1002 1003 /* 1004 * The v_flag value for the mount point vp is permanently set 1005 * to VVFSLOCK so that no one bypasses the vn_vfs*locks routine 1006 * for mount point locking. 1007 */ 1008 mutex_enter(&vp->v_lock); 1009 vp->v_flag |= VVFSLOCK; 1010 mutex_exit(&vp->v_lock); 1011 1012 mnt_mntopts.mo_count = 0; 1013 /* 1014 * Find the ops vector to use to invoke the file system-specific mount 1015 * method. If the fsname argument is non-NULL, use it directly. 1016 * Otherwise, dig the file system type information out of the mount 1017 * arguments. 1018 * 1019 * A side effect is to hold the vfssw entry. 1020 * 1021 * Mount arguments can be specified in several ways, which are 1022 * distinguished by flag bit settings. The preferred way is to set 1023 * MS_OPTIONSTR, indicating an 8 argument mount with the file system 1024 * type supplied as a character string and the last two arguments 1025 * being a pointer to a character buffer and the size of the buffer. 1026 * On entry, the buffer holds a null terminated list of options; on 1027 * return, the string is the list of options the file system 1028 * recognized. If MS_DATA is set arguments five and six point to a 1029 * block of binary data which the file system interprets. 1030 * A further wrinkle is that some callers don't set MS_FSS and MS_DATA 1031 * consistently with these conventions. To handle them, we check to 1032 * see whether the pointer to the file system name has a numeric value 1033 * less than 256. If so, we treat it as an index. 1034 */ 1035 if (fsname != NULL) { 1036 if ((vswp = vfs_getvfssw(fsname)) == NULL) { 1037 return (EINVAL); 1038 } 1039 } else if (uap->flags & (MS_OPTIONSTR | MS_DATA | MS_FSS)) { 1040 size_t n; 1041 uint_t fstype; 1042 char name[FSTYPSZ]; 1043 1044 if ((fstype = (uintptr_t)uap->fstype) < 256) { 1045 RLOCK_VFSSW(); 1046 if (fstype == 0 || fstype >= nfstype || 1047 !ALLOCATED_VFSSW(&vfssw[fstype])) { 1048 RUNLOCK_VFSSW(); 1049 return (EINVAL); 1050 } 1051 (void) strcpy(name, vfssw[fstype].vsw_name); 1052 RUNLOCK_VFSSW(); 1053 if ((vswp = vfs_getvfssw(name)) == NULL) 1054 return (EINVAL); 1055 } else { 1056 /* 1057 * Handle either kernel or user address space. 1058 */ 1059 if (uap->flags & MS_SYSSPACE) { 1060 error = copystr(uap->fstype, name, 1061 FSTYPSZ, &n); 1062 } else { 1063 error = copyinstr(uap->fstype, name, 1064 FSTYPSZ, &n); 1065 } 1066 if (error) { 1067 if (error == ENAMETOOLONG) 1068 return (EINVAL); 1069 return (error); 1070 } 1071 if ((vswp = vfs_getvfssw(name)) == NULL) 1072 return (EINVAL); 1073 } 1074 } else { 1075 if ((vswp = vfs_getvfsswbyvfsops(vfs_getops(rootvfs))) == NULL) 1076 return (EINVAL); 1077 } 1078 if (!VFS_INSTALLED(vswp)) 1079 return (EINVAL); 1080 vfsops = &vswp->vsw_vfsops; 1081 1082 vfs_copyopttbl(&vswp->vsw_optproto, &mnt_mntopts); 1083 /* 1084 * Fetch mount options and parse them for generic vfs options 1085 */ 1086 if (uap->flags & MS_OPTIONSTR) { 1087 /* 1088 * Limit the buffer size 1089 */ 1090 if (optlen < 0 || optlen > MAX_MNTOPT_STR) { 1091 error = EINVAL; 1092 goto errout; 1093 } 1094 if ((uap->flags & MS_SYSSPACE) == 0) { 1095 inargs = kmem_alloc(MAX_MNTOPT_STR, KM_SLEEP); 1096 inargs[0] = '\0'; 1097 if (optlen) { 1098 error = copyinstr(opts, inargs, (size_t)optlen, 1099 NULL); 1100 if (error) { 1101 goto errout; 1102 } 1103 } 1104 } 1105 vfs_parsemntopts(&mnt_mntopts, inargs, 0); 1106 } 1107 /* 1108 * Flag bits override the options string. 1109 */ 1110 if (uap->flags & MS_REMOUNT) 1111 vfs_setmntopt_nolock(&mnt_mntopts, MNTOPT_REMOUNT, NULL, 0, 0); 1112 if (uap->flags & MS_RDONLY) 1113 vfs_setmntopt_nolock(&mnt_mntopts, MNTOPT_RO, NULL, 0, 0); 1114 if (uap->flags & MS_NOSUID) 1115 vfs_setmntopt_nolock(&mnt_mntopts, MNTOPT_NOSUID, NULL, 0, 0); 1116 1117 /* 1118 * Check if this is a remount; must be set in the option string and 1119 * the file system must support a remount option. 1120 */ 1121 if (remount = vfs_optionisset_nolock(&mnt_mntopts, 1122 MNTOPT_REMOUNT, NULL)) { 1123 if (!(vswp->vsw_flag & VSW_CANREMOUNT)) { 1124 error = ENOTSUP; 1125 goto errout; 1126 } 1127 uap->flags |= MS_REMOUNT; 1128 } 1129 1130 /* 1131 * uap->flags and vfs_optionisset() should agree. 1132 */ 1133 if (rdonly = vfs_optionisset_nolock(&mnt_mntopts, MNTOPT_RO, NULL)) { 1134 uap->flags |= MS_RDONLY; 1135 } 1136 if (vfs_optionisset_nolock(&mnt_mntopts, MNTOPT_NOSUID, NULL)) { 1137 uap->flags |= MS_NOSUID; 1138 } 1139 nbmand = vfs_optionisset_nolock(&mnt_mntopts, MNTOPT_NBMAND, NULL); 1140 ASSERT(splice || !remount); 1141 /* 1142 * If we are splicing the fs into the namespace, 1143 * perform mount point checks. 1144 * 1145 * We want to resolve the path for the mount point to eliminate 1146 * '.' and ".." and symlinks in mount points; we can't do the 1147 * same for the resource string, since it would turn 1148 * "/dev/dsk/c0t0d0s0" into "/devices/pci@...". We need to do 1149 * this before grabbing vn_vfswlock(), because otherwise we 1150 * would deadlock with lookuppn(). 1151 */ 1152 if (splice) { 1153 ASSERT(vp->v_count > 0); 1154 1155 /* 1156 * Pick up mount point and device from appropriate space. 1157 */ 1158 if (pn_get(uap->spec, fromspace, &pn) == 0) { 1159 resource = kmem_alloc(pn.pn_pathlen + 1, 1160 KM_SLEEP); 1161 (void) strcpy(resource, pn.pn_path); 1162 pn_free(&pn); 1163 } 1164 /* 1165 * Do a lookupname prior to taking the 1166 * writelock. Mark this as completed if 1167 * successful for later cleanup and addition to 1168 * the mount in progress table. 1169 */ 1170 if ((uap->flags & MS_GLOBAL) == 0 && 1171 lookupname(uap->spec, fromspace, 1172 FOLLOW, NULL, &bvp) == 0) { 1173 addmip = 1; 1174 } 1175 1176 if ((error = pn_get(uap->dir, fromspace, &pn)) == 0) { 1177 pathname_t *pnp; 1178 1179 if (*pn.pn_path != '/') { 1180 error = EINVAL; 1181 pn_free(&pn); 1182 goto errout; 1183 } 1184 pn_alloc(&rpn); 1185 /* 1186 * Kludge to prevent autofs from deadlocking with 1187 * itself when it calls domount(). 1188 * 1189 * If autofs is calling, it is because it is doing 1190 * (autofs) mounts in the process of an NFS mount. A 1191 * lookuppn() here would cause us to block waiting for 1192 * said NFS mount to complete, which can't since this 1193 * is the thread that was supposed to doing it. 1194 */ 1195 if (fromspace == UIO_USERSPACE) { 1196 if ((error = lookuppn(&pn, &rpn, FOLLOW, NULL, 1197 NULL)) == 0) { 1198 pnp = &rpn; 1199 } else { 1200 /* 1201 * The file disappeared or otherwise 1202 * became inaccessible since we opened 1203 * it; might as well fail the mount 1204 * since the mount point is no longer 1205 * accessible. 1206 */ 1207 pn_free(&rpn); 1208 pn_free(&pn); 1209 goto errout; 1210 } 1211 } else { 1212 pnp = &pn; 1213 } 1214 mountpt = kmem_alloc(pnp->pn_pathlen + 1, KM_SLEEP); 1215 (void) strcpy(mountpt, pnp->pn_path); 1216 1217 /* 1218 * If the addition of the zone's rootpath 1219 * would push us over a total path length 1220 * of MAXPATHLEN, we fail the mount with 1221 * ENAMETOOLONG, which is what we would have 1222 * gotten if we were trying to perform the same 1223 * mount in the global zone. 1224 * 1225 * strlen() doesn't count the trailing 1226 * '\0', but zone_rootpathlen counts both a 1227 * trailing '/' and the terminating '\0'. 1228 */ 1229 if ((curproc->p_zone->zone_rootpathlen - 1 + 1230 strlen(mountpt)) > MAXPATHLEN || 1231 (resource != NULL && 1232 (curproc->p_zone->zone_rootpathlen - 1 + 1233 strlen(resource)) > MAXPATHLEN)) { 1234 error = ENAMETOOLONG; 1235 } 1236 1237 pn_free(&rpn); 1238 pn_free(&pn); 1239 } 1240 1241 if (error) 1242 goto errout; 1243 1244 /* 1245 * Prevent path name resolution from proceeding past 1246 * the mount point. 1247 */ 1248 if (vn_vfswlock(vp) != 0) { 1249 error = EBUSY; 1250 goto errout; 1251 } 1252 1253 /* 1254 * Verify that it's legitimate to establish a mount on 1255 * the prospective mount point. 1256 */ 1257 if (vn_mountedvfs(vp) != NULL) { 1258 /* 1259 * The mount point lock was obtained after some 1260 * other thread raced through and established a mount. 1261 */ 1262 vn_vfsunlock(vp); 1263 error = EBUSY; 1264 goto errout; 1265 } 1266 if (vp->v_flag & VNOMOUNT) { 1267 vn_vfsunlock(vp); 1268 error = EINVAL; 1269 goto errout; 1270 } 1271 } 1272 if ((uap->flags & (MS_DATA | MS_OPTIONSTR)) == 0) { 1273 uap->dataptr = NULL; 1274 uap->datalen = 0; 1275 } 1276 1277 /* 1278 * If this is a remount, we don't want to create a new VFS. 1279 * Instead, we pass the existing one with a remount flag. 1280 */ 1281 if (remount) { 1282 /* 1283 * Confirm that the mount point is the root vnode of the 1284 * file system that is being remounted. 1285 * This can happen if the user specifies a different 1286 * mount point directory pathname in the (re)mount command. 1287 * 1288 * Code below can only be reached if splice is true, so it's 1289 * safe to do vn_vfsunlock() here. 1290 */ 1291 if ((vp->v_flag & VROOT) == 0) { 1292 vn_vfsunlock(vp); 1293 error = ENOENT; 1294 goto errout; 1295 } 1296 /* 1297 * Disallow making file systems read-only unless file system 1298 * explicitly allows it in its vfssw. Ignore other flags. 1299 */ 1300 if (rdonly && vn_is_readonly(vp) == 0 && 1301 (vswp->vsw_flag & VSW_CANRWRO) == 0) { 1302 vn_vfsunlock(vp); 1303 error = EINVAL; 1304 goto errout; 1305 } 1306 /* 1307 * Changing the NBMAND setting on remounts is permitted 1308 * but logged since it can lead to unexpected behavior. 1309 * We also counsel against using it for / and /usr. 1310 */ 1311 if ((nbmand && ((vp->v_vfsp->vfs_flag & VFS_NBMAND) == 0)) || 1312 (!nbmand && (vp->v_vfsp->vfs_flag & VFS_NBMAND))) { 1313 cmn_err(CE_WARN, "domount: nbmand turned %s via " 1314 "remounting %s", nbmand ? "on" : "off", 1315 refstr_value(vp->v_vfsp->vfs_mntpt)); 1316 } 1317 vfsp = vp->v_vfsp; 1318 ovflags = vfsp->vfs_flag; 1319 vfsp->vfs_flag |= VFS_REMOUNT; 1320 vfsp->vfs_flag &= ~VFS_RDONLY; 1321 } else { 1322 vfsp = kmem_alloc(sizeof (vfs_t), KM_SLEEP); 1323 VFS_INIT(vfsp, vfsops, NULL); 1324 } 1325 1326 VFS_HOLD(vfsp); 1327 1328 /* 1329 * The vfs_reflock is not used anymore the code below explicitly 1330 * holds it preventing others accesing it directly. 1331 */ 1332 if ((sema_tryp(&vfsp->vfs_reflock) == 0) && 1333 !(vfsp->vfs_flag & VFS_REMOUNT)) 1334 cmn_err(CE_WARN, 1335 "mount type %s couldn't get vfs_reflock", vswp->vsw_name); 1336 1337 /* 1338 * Lock the vfs. If this is a remount we want to avoid spurious umount 1339 * failures that happen as a side-effect of fsflush() and other mount 1340 * and unmount operations that might be going on simultaneously and 1341 * may have locked the vfs currently. To not return EBUSY immediately 1342 * here we use vfs_lock_wait() instead vfs_lock() for the remount case. 1343 */ 1344 if (!remount) { 1345 if (error = vfs_lock(vfsp)) { 1346 vfsp->vfs_flag = ovflags; 1347 if (splice) 1348 vn_vfsunlock(vp); 1349 if (vfsp->vfs_implp) 1350 vfsimpl_teardown(vfsp); 1351 kmem_free(vfsp, sizeof (struct vfs)); 1352 goto errout; 1353 } 1354 } else { 1355 vfs_lock_wait(vfsp); 1356 } 1357 1358 /* 1359 * Add device to mount in progress table, global mounts require special 1360 * handling. It is possible that we have already done the lookupname 1361 * on a spliced, non-global fs. If so, we don't want to do it again 1362 * since we cannot do a lookupname after taking the 1363 * wlock above. This case is for a non-spliced, non-global filesystem. 1364 */ 1365 if (!addmip) { 1366 if ((uap->flags & MS_GLOBAL) == 0 && 1367 lookupname(uap->spec, fromspace, FOLLOW, NULL, &bvp) == 0) { 1368 addmip = 1; 1369 } 1370 } 1371 1372 if (addmip) { 1373 bdev = bvp->v_rdev; 1374 VN_RELE(bvp); 1375 vfs_addmip(bdev, vfsp); 1376 addmip = 0; 1377 delmip = 1; 1378 } 1379 /* 1380 * Invalidate cached entry for the mount point. 1381 */ 1382 if (splice) 1383 dnlc_purge_vp(vp); 1384 1385 /* 1386 * If have an option string but the filesystem doesn't supply a 1387 * prototype options table, create a table with the global 1388 * options and sufficient room to accept all the options in the 1389 * string. Then parse the passed in option string 1390 * accepting all the options in the string. This gives us an 1391 * option table with all the proper cancel properties for the 1392 * global options. 1393 * 1394 * Filesystems that supply a prototype options table are handled 1395 * earlier in this function. 1396 */ 1397 if (uap->flags & MS_OPTIONSTR) { 1398 if (!(vswp->vsw_flag & VSW_HASPROTO)) { 1399 mntopts_t tmp_mntopts; 1400 1401 tmp_mntopts.mo_count = 0; 1402 vfs_createopttbl_extend(&tmp_mntopts, inargs, 1403 &mnt_mntopts); 1404 vfs_parsemntopts(&tmp_mntopts, inargs, 1); 1405 vfs_swapopttbl_nolock(&mnt_mntopts, &tmp_mntopts); 1406 vfs_freeopttbl(&tmp_mntopts); 1407 } 1408 } 1409 1410 /* 1411 * Serialize with zone creations. 1412 */ 1413 mount_in_progress(); 1414 /* 1415 * Instantiate (or reinstantiate) the file system. If appropriate, 1416 * splice it into the file system name space. 1417 * 1418 * We want VFS_MOUNT() to be able to override the vfs_resource 1419 * string if necessary (ie, mntfs), and also for a remount to 1420 * change the same (necessary when remounting '/' during boot). 1421 * So we set up vfs_mntpt and vfs_resource to what we think they 1422 * should be, then hand off control to VFS_MOUNT() which can 1423 * override this. 1424 * 1425 * For safety's sake, when changing vfs_resource or vfs_mntpt of 1426 * a vfs which is on the vfs list (i.e. during a remount), we must 1427 * never set those fields to NULL. Several bits of code make 1428 * assumptions that the fields are always valid. 1429 */ 1430 vfs_swapopttbl(&mnt_mntopts, &vfsp->vfs_mntopts); 1431 if (remount) { 1432 if ((oldresource = vfsp->vfs_resource) != NULL) 1433 refstr_hold(oldresource); 1434 if ((oldmntpt = vfsp->vfs_mntpt) != NULL) 1435 refstr_hold(oldmntpt); 1436 } 1437 vfs_setresource(vfsp, resource); 1438 vfs_setmntpoint(vfsp, mountpt); 1439 1440 error = VFS_MOUNT(vfsp, vp, uap, credp); 1441 1442 if (uap->flags & MS_RDONLY) 1443 vfs_setmntopt(vfsp, MNTOPT_RO, NULL, 0); 1444 if (uap->flags & MS_NOSUID) 1445 vfs_setmntopt(vfsp, MNTOPT_NOSUID, NULL, 0); 1446 if (uap->flags & MS_GLOBAL) 1447 vfs_setmntopt(vfsp, MNTOPT_GLOBAL, NULL, 0); 1448 1449 if (error) { 1450 if (remount) { 1451 /* put back pre-remount options */ 1452 vfs_swapopttbl(&mnt_mntopts, &vfsp->vfs_mntopts); 1453 vfs_setmntpoint(vfsp, (stripzonepath( 1454 refstr_value(oldmntpt)))); 1455 if (oldmntpt) 1456 refstr_rele(oldmntpt); 1457 vfs_setresource(vfsp, (stripzonepath( 1458 refstr_value(oldresource)))); 1459 if (oldresource) 1460 refstr_rele(oldresource); 1461 vfsp->vfs_flag = ovflags; 1462 vfs_unlock(vfsp); 1463 VFS_RELE(vfsp); 1464 } else { 1465 vfs_unlock(vfsp); 1466 vfs_freemnttab(vfsp); 1467 if (vfsp->vfs_implp) 1468 vfsimpl_teardown(vfsp); 1469 kmem_free(vfsp, sizeof (struct vfs)); 1470 } 1471 } else { 1472 /* 1473 * Set the mount time to now 1474 */ 1475 vfsp->vfs_mtime = ddi_get_time(); 1476 if (remount) { 1477 vfsp->vfs_flag &= ~VFS_REMOUNT; 1478 if (oldresource) 1479 refstr_rele(oldresource); 1480 if (oldmntpt) 1481 refstr_rele(oldmntpt); 1482 } else if (splice) { 1483 /* 1484 * Link vfsp into the name space at the mount 1485 * point. Vfs_add() is responsible for 1486 * holding the mount point which will be 1487 * released when vfs_remove() is called. 1488 */ 1489 vfs_add(vp, vfsp, uap->flags); 1490 } else { 1491 /* 1492 * Hold the reference to file system which is 1493 * not linked into the name space. 1494 */ 1495 vfsp->vfs_zone = NULL; 1496 VFS_HOLD(vfsp); 1497 vfsp->vfs_vnodecovered = NULL; 1498 } 1499 /* 1500 * Set flags for global options encountered 1501 */ 1502 if (vfs_optionisset(vfsp, MNTOPT_RO, NULL)) 1503 vfsp->vfs_flag |= VFS_RDONLY; 1504 else 1505 vfsp->vfs_flag &= ~VFS_RDONLY; 1506 if (vfs_optionisset(vfsp, MNTOPT_NOSUID, NULL)) { 1507 vfsp->vfs_flag |= (VFS_NOSETUID|VFS_NODEVICES); 1508 } else { 1509 if (vfs_optionisset(vfsp, MNTOPT_NODEVICES, NULL)) 1510 vfsp->vfs_flag |= VFS_NODEVICES; 1511 else 1512 vfsp->vfs_flag &= ~VFS_NODEVICES; 1513 if (vfs_optionisset(vfsp, MNTOPT_NOSETUID, NULL)) 1514 vfsp->vfs_flag |= VFS_NOSETUID; 1515 else 1516 vfsp->vfs_flag &= ~VFS_NOSETUID; 1517 } 1518 if (vfs_optionisset(vfsp, MNTOPT_NBMAND, NULL)) 1519 vfsp->vfs_flag |= VFS_NBMAND; 1520 else 1521 vfsp->vfs_flag &= ~VFS_NBMAND; 1522 1523 if (vfs_optionisset(vfsp, MNTOPT_XATTR, NULL)) 1524 vfsp->vfs_flag |= VFS_XATTR; 1525 else 1526 vfsp->vfs_flag &= ~VFS_XATTR; 1527 1528 if (vfs_optionisset(vfsp, MNTOPT_NOEXEC, NULL)) 1529 vfsp->vfs_flag |= VFS_NOEXEC; 1530 else 1531 vfsp->vfs_flag &= ~VFS_NOEXEC; 1532 1533 /* 1534 * Now construct the output option string of options 1535 * we recognized. 1536 */ 1537 if (uap->flags & MS_OPTIONSTR) { 1538 vfs_list_read_lock(); 1539 copyout_error = vfs_buildoptionstr( 1540 &vfsp->vfs_mntopts, inargs, optlen); 1541 vfs_list_unlock(); 1542 if (copyout_error == 0 && 1543 (uap->flags & MS_SYSSPACE) == 0) { 1544 copyout_error = copyoutstr(inargs, opts, 1545 optlen, NULL); 1546 } 1547 } 1548 1549 /* 1550 * If this isn't a remount, set up the vopstats before 1551 * anyone can touch this. We only allow spliced file 1552 * systems (file systems which are in the namespace) to 1553 * have the VFS_STATS flag set. 1554 * NOTE: PxFS mounts the underlying file system with 1555 * MS_NOSPLICE set and copies those vfs_flags to its private 1556 * vfs structure. As a result, PxFS should never have 1557 * the VFS_STATS flag or else we might access the vfs 1558 * statistics-related fields prior to them being 1559 * properly initialized. 1560 */ 1561 if (!remount && (vswp->vsw_flag & VSW_STATS) && splice) { 1562 initialize_vopstats(&vfsp->vfs_vopstats); 1563 /* 1564 * We need to set vfs_vskap to NULL because there's 1565 * a chance it won't be set below. This is checked 1566 * in teardown_vopstats() so we can't have garbage. 1567 */ 1568 vfsp->vfs_vskap = NULL; 1569 vfsp->vfs_flag |= VFS_STATS; 1570 vfsp->vfs_fstypevsp = get_fstype_vopstats(vfsp, vswp); 1571 } 1572 1573 if (vswp->vsw_flag & VSW_XID) 1574 vfsp->vfs_flag |= VFS_XID; 1575 1576 vfs_unlock(vfsp); 1577 } 1578 mount_completed(); 1579 if (splice) 1580 vn_vfsunlock(vp); 1581 1582 if ((error == 0) && (copyout_error == 0)) { 1583 if (!remount) { 1584 /* 1585 * Don't call get_vskstat_anchor() while holding 1586 * locks since it allocates memory and calls 1587 * VFS_STATVFS(). For NFS, the latter can generate 1588 * an over-the-wire call. 1589 */ 1590 vskap = get_vskstat_anchor(vfsp); 1591 /* Only take the lock if we have something to do */ 1592 if (vskap != NULL) { 1593 vfs_lock_wait(vfsp); 1594 if (vfsp->vfs_flag & VFS_STATS) { 1595 vfsp->vfs_vskap = vskap; 1596 } 1597 vfs_unlock(vfsp); 1598 } 1599 } 1600 /* Return vfsp to caller. */ 1601 *vfspp = vfsp; 1602 } 1603 errout: 1604 vfs_freeopttbl(&mnt_mntopts); 1605 if (resource != NULL) 1606 kmem_free(resource, strlen(resource) + 1); 1607 if (mountpt != NULL) 1608 kmem_free(mountpt, strlen(mountpt) + 1); 1609 /* 1610 * It is possible we errored prior to adding to mount in progress 1611 * table. Must free vnode we acquired with successful lookupname. 1612 */ 1613 if (addmip) 1614 VN_RELE(bvp); 1615 if (delmip) 1616 vfs_delmip(vfsp); 1617 ASSERT(vswp != NULL); 1618 vfs_unrefvfssw(vswp); 1619 if (inargs != opts) 1620 kmem_free(inargs, MAX_MNTOPT_STR); 1621 if (copyout_error) { 1622 VFS_RELE(vfsp); 1623 error = copyout_error; 1624 } 1625 return (error); 1626 } 1627 1628 static void 1629 vfs_setpath(struct vfs *vfsp, refstr_t **refp, const char *newpath) 1630 { 1631 size_t len; 1632 refstr_t *ref; 1633 zone_t *zone = curproc->p_zone; 1634 char *sp; 1635 int have_list_lock = 0; 1636 1637 ASSERT(!VFS_ON_LIST(vfsp) || vfs_lock_held(vfsp)); 1638 1639 /* 1640 * New path must be less than MAXPATHLEN because mntfs 1641 * will only display up to MAXPATHLEN bytes. This is currently 1642 * safe, because domount() uses pn_get(), and other callers 1643 * similarly cap the size to fewer than MAXPATHLEN bytes. 1644 */ 1645 1646 ASSERT(strlen(newpath) < MAXPATHLEN); 1647 1648 /* mntfs requires consistency while vfs list lock is held */ 1649 1650 if (VFS_ON_LIST(vfsp)) { 1651 have_list_lock = 1; 1652 vfs_list_lock(); 1653 } 1654 1655 if (*refp != NULL) 1656 refstr_rele(*refp); 1657 1658 /* Do we need to modify the path? */ 1659 1660 if (zone == global_zone || *newpath != '/') { 1661 ref = refstr_alloc(newpath); 1662 goto out; 1663 } 1664 1665 /* 1666 * Truncate the trailing '/' in the zoneroot, and merge 1667 * in the zone's rootpath with the "newpath" (resource 1668 * or mountpoint) passed in. 1669 * 1670 * The size of the required buffer is thus the size of 1671 * the buffer required for the passed-in newpath 1672 * (strlen(newpath) + 1), plus the size of the buffer 1673 * required to hold zone_rootpath (zone_rootpathlen) 1674 * minus one for one of the now-superfluous NUL 1675 * terminations, minus one for the trailing '/'. 1676 * 1677 * That gives us: 1678 * 1679 * (strlen(newpath) + 1) + zone_rootpathlen - 1 - 1 1680 * 1681 * Which is what we have below. 1682 */ 1683 1684 len = strlen(newpath) + zone->zone_rootpathlen - 1; 1685 sp = kmem_alloc(len, KM_SLEEP); 1686 1687 /* 1688 * Copy everything including the trailing slash, which 1689 * we then overwrite with the NUL character. 1690 */ 1691 1692 (void) strcpy(sp, zone->zone_rootpath); 1693 sp[zone->zone_rootpathlen - 2] = '\0'; 1694 (void) strcat(sp, newpath); 1695 1696 ref = refstr_alloc(sp); 1697 kmem_free(sp, len); 1698 out: 1699 *refp = ref; 1700 1701 if (have_list_lock) { 1702 vfs_mnttab_modtimeupd(); 1703 vfs_list_unlock(); 1704 } 1705 } 1706 1707 /* 1708 * Record a mounted resource name in a vfs structure. 1709 * If vfsp is already mounted, caller must hold the vfs lock. 1710 */ 1711 void 1712 vfs_setresource(struct vfs *vfsp, const char *resource) 1713 { 1714 if (resource == NULL || resource[0] == '\0') 1715 resource = VFS_NORESOURCE; 1716 vfs_setpath(vfsp, &vfsp->vfs_resource, resource); 1717 } 1718 1719 /* 1720 * Record a mount point name in a vfs structure. 1721 * If vfsp is already mounted, caller must hold the vfs lock. 1722 */ 1723 void 1724 vfs_setmntpoint(struct vfs *vfsp, const char *mntpt) 1725 { 1726 if (mntpt == NULL || mntpt[0] == '\0') 1727 mntpt = VFS_NOMNTPT; 1728 vfs_setpath(vfsp, &vfsp->vfs_mntpt, mntpt); 1729 } 1730 1731 /* Returns the vfs_resource. Caller must call refstr_rele() when finished. */ 1732 1733 refstr_t * 1734 vfs_getresource(const struct vfs *vfsp) 1735 { 1736 refstr_t *resource; 1737 1738 vfs_list_read_lock(); 1739 resource = vfsp->vfs_resource; 1740 refstr_hold(resource); 1741 vfs_list_unlock(); 1742 1743 return (resource); 1744 } 1745 1746 /* Returns the vfs_mntpt. Caller must call refstr_rele() when finished. */ 1747 1748 refstr_t * 1749 vfs_getmntpoint(const struct vfs *vfsp) 1750 { 1751 refstr_t *mntpt; 1752 1753 vfs_list_read_lock(); 1754 mntpt = vfsp->vfs_mntpt; 1755 refstr_hold(mntpt); 1756 vfs_list_unlock(); 1757 1758 return (mntpt); 1759 } 1760 1761 /* 1762 * Create an empty options table with enough empty slots to hold all 1763 * The options in the options string passed as an argument. 1764 * Potentially prepend another options table. 1765 * 1766 * Note: caller is responsible for locking the vfs list, if needed, 1767 * to protect mops. 1768 */ 1769 static void 1770 vfs_createopttbl_extend(mntopts_t *mops, const char *opts, 1771 const mntopts_t *mtmpl) 1772 { 1773 const char *s = opts; 1774 uint_t count; 1775 1776 if (opts == NULL || *opts == '\0') { 1777 count = 0; 1778 } else { 1779 count = 1; 1780 1781 /* 1782 * Count number of options in the string 1783 */ 1784 for (s = strchr(s, ','); s != NULL; s = strchr(s, ',')) { 1785 count++; 1786 s++; 1787 } 1788 } 1789 vfs_copyopttbl_extend(mtmpl, mops, count); 1790 } 1791 1792 /* 1793 * Create an empty options table with enough empty slots to hold all 1794 * The options in the options string passed as an argument. 1795 * 1796 * This function is *not* for general use by filesystems. 1797 * 1798 * Note: caller is responsible for locking the vfs list, if needed, 1799 * to protect mops. 1800 */ 1801 void 1802 vfs_createopttbl(mntopts_t *mops, const char *opts) 1803 { 1804 vfs_createopttbl_extend(mops, opts, NULL); 1805 } 1806 1807 1808 /* 1809 * Swap two mount options tables 1810 */ 1811 static void 1812 vfs_swapopttbl_nolock(mntopts_t *optbl1, mntopts_t *optbl2) 1813 { 1814 uint_t tmpcnt; 1815 mntopt_t *tmplist; 1816 1817 tmpcnt = optbl2->mo_count; 1818 tmplist = optbl2->mo_list; 1819 optbl2->mo_count = optbl1->mo_count; 1820 optbl2->mo_list = optbl1->mo_list; 1821 optbl1->mo_count = tmpcnt; 1822 optbl1->mo_list = tmplist; 1823 } 1824 1825 static void 1826 vfs_swapopttbl(mntopts_t *optbl1, mntopts_t *optbl2) 1827 { 1828 vfs_list_lock(); 1829 vfs_swapopttbl_nolock(optbl1, optbl2); 1830 vfs_mnttab_modtimeupd(); 1831 vfs_list_unlock(); 1832 } 1833 1834 static char ** 1835 vfs_copycancelopt_extend(char **const moc, int extend) 1836 { 1837 int i = 0; 1838 int j; 1839 char **result; 1840 1841 if (moc != NULL) { 1842 for (; moc[i] != NULL; i++) 1843 /* count number of options to cancel */; 1844 } 1845 1846 if (i + extend == 0) 1847 return (NULL); 1848 1849 result = kmem_alloc((i + extend + 1) * sizeof (char *), KM_SLEEP); 1850 1851 for (j = 0; j < i; j++) { 1852 result[j] = kmem_alloc(strlen(moc[j]) + 1, KM_SLEEP); 1853 (void) strcpy(result[j], moc[j]); 1854 } 1855 for (; j <= i + extend; j++) 1856 result[j] = NULL; 1857 1858 return (result); 1859 } 1860 1861 static void 1862 vfs_copyopt(const mntopt_t *s, mntopt_t *d) 1863 { 1864 char *sp, *dp; 1865 1866 d->mo_flags = s->mo_flags; 1867 d->mo_data = s->mo_data; 1868 sp = s->mo_name; 1869 if (sp != NULL) { 1870 dp = kmem_alloc(strlen(sp) + 1, KM_SLEEP); 1871 (void) strcpy(dp, sp); 1872 d->mo_name = dp; 1873 } else { 1874 d->mo_name = NULL; /* should never happen */ 1875 } 1876 1877 d->mo_cancel = vfs_copycancelopt_extend(s->mo_cancel, 0); 1878 1879 sp = s->mo_arg; 1880 if (sp != NULL) { 1881 dp = kmem_alloc(strlen(sp) + 1, KM_SLEEP); 1882 (void) strcpy(dp, sp); 1883 d->mo_arg = dp; 1884 } else { 1885 d->mo_arg = NULL; 1886 } 1887 } 1888 1889 /* 1890 * Copy a mount options table, possibly allocating some spare 1891 * slots at the end. It is permissible to copy_extend the NULL table. 1892 */ 1893 static void 1894 vfs_copyopttbl_extend(const mntopts_t *smo, mntopts_t *dmo, int extra) 1895 { 1896 uint_t i, count; 1897 mntopt_t *motbl; 1898 1899 /* 1900 * Clear out any existing stuff in the options table being initialized 1901 */ 1902 vfs_freeopttbl(dmo); 1903 count = (smo == NULL) ? 0 : smo->mo_count; 1904 if ((count + extra) == 0) /* nothing to do */ 1905 return; 1906 dmo->mo_count = count + extra; 1907 motbl = kmem_zalloc((count + extra) * sizeof (mntopt_t), KM_SLEEP); 1908 dmo->mo_list = motbl; 1909 for (i = 0; i < count; i++) { 1910 vfs_copyopt(&smo->mo_list[i], &motbl[i]); 1911 } 1912 for (i = count; i < count + extra; i++) { 1913 motbl[i].mo_flags = MO_EMPTY; 1914 } 1915 } 1916 1917 /* 1918 * Copy a mount options table. 1919 * 1920 * This function is *not* for general use by filesystems. 1921 * 1922 * Note: caller is responsible for locking the vfs list, if needed, 1923 * to protect smo and dmo. 1924 */ 1925 void 1926 vfs_copyopttbl(const mntopts_t *smo, mntopts_t *dmo) 1927 { 1928 vfs_copyopttbl_extend(smo, dmo, 0); 1929 } 1930 1931 static char ** 1932 vfs_mergecancelopts(const mntopt_t *mop1, const mntopt_t *mop2) 1933 { 1934 int c1 = 0; 1935 int c2 = 0; 1936 char **result; 1937 char **sp1, **sp2, **dp; 1938 1939 /* 1940 * First we count both lists of cancel options. 1941 * If either is NULL or has no elements, we return a copy of 1942 * the other. 1943 */ 1944 if (mop1->mo_cancel != NULL) { 1945 for (; mop1->mo_cancel[c1] != NULL; c1++) 1946 /* count cancel options in mop1 */; 1947 } 1948 1949 if (c1 == 0) 1950 return (vfs_copycancelopt_extend(mop2->mo_cancel, 0)); 1951 1952 if (mop2->mo_cancel != NULL) { 1953 for (; mop2->mo_cancel[c2] != NULL; c2++) 1954 /* count cancel options in mop2 */; 1955 } 1956 1957 result = vfs_copycancelopt_extend(mop1->mo_cancel, c2); 1958 1959 if (c2 == 0) 1960 return (result); 1961 1962 /* 1963 * When we get here, we've got two sets of cancel options; 1964 * we need to merge the two sets. We know that the result 1965 * array has "c1+c2+1" entries and in the end we might shrink 1966 * it. 1967 * Result now has a copy of the c1 entries from mop1; we'll 1968 * now lookup all the entries of mop2 in mop1 and copy it if 1969 * it is unique. 1970 * This operation is O(n^2) but it's only called once per 1971 * filesystem per duplicate option. This is a situation 1972 * which doesn't arise with the filesystems in ON and 1973 * n is generally 1. 1974 */ 1975 1976 dp = &result[c1]; 1977 for (sp2 = mop2->mo_cancel; *sp2 != NULL; sp2++) { 1978 for (sp1 = mop1->mo_cancel; *sp1 != NULL; sp1++) { 1979 if (strcmp(*sp1, *sp2) == 0) 1980 break; 1981 } 1982 if (*sp1 == NULL) { 1983 /* 1984 * Option *sp2 not found in mop1, so copy it. 1985 * The calls to vfs_copycancelopt_extend() 1986 * guarantee that there's enough room. 1987 */ 1988 *dp = kmem_alloc(strlen(*sp2) + 1, KM_SLEEP); 1989 (void) strcpy(*dp++, *sp2); 1990 } 1991 } 1992 if (dp != &result[c1+c2]) { 1993 size_t bytes = (dp - result + 1) * sizeof (char *); 1994 char **nres = kmem_alloc(bytes, KM_SLEEP); 1995 1996 bcopy(result, nres, bytes); 1997 kmem_free(result, (c1 + c2 + 1) * sizeof (char *)); 1998 result = nres; 1999 } 2000 return (result); 2001 } 2002 2003 /* 2004 * Merge two mount option tables (outer and inner) into one. This is very 2005 * similar to "merging" global variables and automatic variables in C. 2006 * 2007 * This isn't (and doesn't have to be) fast. 2008 * 2009 * This function is *not* for general use by filesystems. 2010 * 2011 * Note: caller is responsible for locking the vfs list, if needed, 2012 * to protect omo, imo & dmo. 2013 */ 2014 void 2015 vfs_mergeopttbl(const mntopts_t *omo, const mntopts_t *imo, mntopts_t *dmo) 2016 { 2017 uint_t i, count; 2018 mntopt_t *mop, *motbl; 2019 uint_t freeidx; 2020 2021 /* 2022 * First determine how much space we need to allocate. 2023 */ 2024 count = omo->mo_count; 2025 for (i = 0; i < imo->mo_count; i++) { 2026 if (imo->mo_list[i].mo_flags & MO_EMPTY) 2027 continue; 2028 if (vfs_hasopt(omo, imo->mo_list[i].mo_name) == NULL) 2029 count++; 2030 } 2031 ASSERT(count >= omo->mo_count && 2032 count <= omo->mo_count + imo->mo_count); 2033 motbl = kmem_alloc(count * sizeof (mntopt_t), KM_SLEEP); 2034 for (i = 0; i < omo->mo_count; i++) 2035 vfs_copyopt(&omo->mo_list[i], &motbl[i]); 2036 freeidx = omo->mo_count; 2037 for (i = 0; i < imo->mo_count; i++) { 2038 if (imo->mo_list[i].mo_flags & MO_EMPTY) 2039 continue; 2040 if ((mop = vfs_hasopt(omo, imo->mo_list[i].mo_name)) != NULL) { 2041 char **newcanp; 2042 uint_t index = mop - omo->mo_list; 2043 2044 newcanp = vfs_mergecancelopts(mop, &motbl[index]); 2045 2046 vfs_freeopt(&motbl[index]); 2047 vfs_copyopt(&imo->mo_list[i], &motbl[index]); 2048 2049 vfs_freecancelopt(motbl[index].mo_cancel); 2050 motbl[index].mo_cancel = newcanp; 2051 } else { 2052 /* 2053 * If it's a new option, just copy it over to the first 2054 * free location. 2055 */ 2056 vfs_copyopt(&imo->mo_list[i], &motbl[freeidx++]); 2057 } 2058 } 2059 dmo->mo_count = count; 2060 dmo->mo_list = motbl; 2061 } 2062 2063 /* 2064 * Functions to set and clear mount options in a mount options table. 2065 */ 2066 2067 /* 2068 * Clear a mount option, if it exists. 2069 * 2070 * The update_mnttab arg indicates whether mops is part of a vfs that is on 2071 * the vfs list. 2072 */ 2073 static void 2074 vfs_clearmntopt_nolock(mntopts_t *mops, const char *opt, int update_mnttab) 2075 { 2076 struct mntopt *mop; 2077 uint_t i, count; 2078 2079 ASSERT(!update_mnttab || RW_WRITE_HELD(&vfslist)); 2080 2081 count = mops->mo_count; 2082 for (i = 0; i < count; i++) { 2083 mop = &mops->mo_list[i]; 2084 2085 if (mop->mo_flags & MO_EMPTY) 2086 continue; 2087 if (strcmp(opt, mop->mo_name)) 2088 continue; 2089 mop->mo_flags &= ~MO_SET; 2090 if (mop->mo_arg != NULL) { 2091 kmem_free(mop->mo_arg, strlen(mop->mo_arg) + 1); 2092 } 2093 mop->mo_arg = NULL; 2094 if (update_mnttab) 2095 vfs_mnttab_modtimeupd(); 2096 break; 2097 } 2098 } 2099 2100 void 2101 vfs_clearmntopt(struct vfs *vfsp, const char *opt) 2102 { 2103 int gotlock = 0; 2104 2105 if (VFS_ON_LIST(vfsp)) { 2106 gotlock = 1; 2107 vfs_list_lock(); 2108 } 2109 vfs_clearmntopt_nolock(&vfsp->vfs_mntopts, opt, gotlock); 2110 if (gotlock) 2111 vfs_list_unlock(); 2112 } 2113 2114 2115 /* 2116 * Set a mount option on. If it's not found in the table, it's silently 2117 * ignored. If the option has MO_IGNORE set, it is still set unless the 2118 * VFS_NOFORCEOPT bit is set in the flags. Also, VFS_DISPLAY/VFS_NODISPLAY flag 2119 * bits can be used to toggle the MO_NODISPLAY bit for the option. 2120 * If the VFS_CREATEOPT flag bit is set then the first option slot with 2121 * MO_EMPTY set is created as the option passed in. 2122 * 2123 * The update_mnttab arg indicates whether mops is part of a vfs that is on 2124 * the vfs list. 2125 */ 2126 static void 2127 vfs_setmntopt_nolock(mntopts_t *mops, const char *opt, 2128 const char *arg, int flags, int update_mnttab) 2129 { 2130 mntopt_t *mop; 2131 uint_t i, count; 2132 char *sp; 2133 2134 ASSERT(!update_mnttab || RW_WRITE_HELD(&vfslist)); 2135 2136 if (flags & VFS_CREATEOPT) { 2137 if (vfs_hasopt(mops, opt) != NULL) { 2138 flags &= ~VFS_CREATEOPT; 2139 } 2140 } 2141 count = mops->mo_count; 2142 for (i = 0; i < count; i++) { 2143 mop = &mops->mo_list[i]; 2144 2145 if (mop->mo_flags & MO_EMPTY) { 2146 if ((flags & VFS_CREATEOPT) == 0) 2147 continue; 2148 sp = kmem_alloc(strlen(opt) + 1, KM_SLEEP); 2149 (void) strcpy(sp, opt); 2150 mop->mo_name = sp; 2151 if (arg != NULL) 2152 mop->mo_flags = MO_HASVALUE; 2153 else 2154 mop->mo_flags = 0; 2155 } else if (strcmp(opt, mop->mo_name)) { 2156 continue; 2157 } 2158 if ((mop->mo_flags & MO_IGNORE) && (flags & VFS_NOFORCEOPT)) 2159 break; 2160 if (arg != NULL && (mop->mo_flags & MO_HASVALUE) != 0) { 2161 sp = kmem_alloc(strlen(arg) + 1, KM_SLEEP); 2162 (void) strcpy(sp, arg); 2163 } else { 2164 sp = NULL; 2165 } 2166 if (mop->mo_arg != NULL) 2167 kmem_free(mop->mo_arg, strlen(mop->mo_arg) + 1); 2168 mop->mo_arg = sp; 2169 if (flags & VFS_DISPLAY) 2170 mop->mo_flags &= ~MO_NODISPLAY; 2171 if (flags & VFS_NODISPLAY) 2172 mop->mo_flags |= MO_NODISPLAY; 2173 mop->mo_flags |= MO_SET; 2174 if (mop->mo_cancel != NULL) { 2175 char **cp; 2176 2177 for (cp = mop->mo_cancel; *cp != NULL; cp++) 2178 vfs_clearmntopt_nolock(mops, *cp, 0); 2179 } 2180 if (update_mnttab) 2181 vfs_mnttab_modtimeupd(); 2182 break; 2183 } 2184 } 2185 2186 void 2187 vfs_setmntopt(struct vfs *vfsp, const char *opt, const char *arg, int flags) 2188 { 2189 int gotlock = 0; 2190 2191 if (VFS_ON_LIST(vfsp)) { 2192 gotlock = 1; 2193 vfs_list_lock(); 2194 } 2195 vfs_setmntopt_nolock(&vfsp->vfs_mntopts, opt, arg, flags, gotlock); 2196 if (gotlock) 2197 vfs_list_unlock(); 2198 } 2199 2200 2201 /* 2202 * Add a "tag" option to a mounted file system's options list. 2203 * 2204 * Note: caller is responsible for locking the vfs list, if needed, 2205 * to protect mops. 2206 */ 2207 static mntopt_t * 2208 vfs_addtag(mntopts_t *mops, const char *tag) 2209 { 2210 uint_t count; 2211 mntopt_t *mop, *motbl; 2212 2213 count = mops->mo_count + 1; 2214 motbl = kmem_zalloc(count * sizeof (mntopt_t), KM_SLEEP); 2215 if (mops->mo_count) { 2216 size_t len = (count - 1) * sizeof (mntopt_t); 2217 2218 bcopy(mops->mo_list, motbl, len); 2219 kmem_free(mops->mo_list, len); 2220 } 2221 mops->mo_count = count; 2222 mops->mo_list = motbl; 2223 mop = &motbl[count - 1]; 2224 mop->mo_flags = MO_TAG; 2225 mop->mo_name = kmem_alloc(strlen(tag) + 1, KM_SLEEP); 2226 (void) strcpy(mop->mo_name, tag); 2227 return (mop); 2228 } 2229 2230 /* 2231 * Allow users to set arbitrary "tags" in a vfs's mount options. 2232 * Broader use within the kernel is discouraged. 2233 */ 2234 int 2235 vfs_settag(uint_t major, uint_t minor, const char *mntpt, const char *tag, 2236 cred_t *cr) 2237 { 2238 vfs_t *vfsp; 2239 mntopts_t *mops; 2240 mntopt_t *mop; 2241 int found = 0; 2242 dev_t dev = makedevice(major, minor); 2243 int err = 0; 2244 char *buf = kmem_alloc(MAX_MNTOPT_STR, KM_SLEEP); 2245 2246 /* 2247 * Find the desired mounted file system 2248 */ 2249 vfs_list_lock(); 2250 vfsp = rootvfs; 2251 do { 2252 if (vfsp->vfs_dev == dev && 2253 strcmp(mntpt, refstr_value(vfsp->vfs_mntpt)) == 0) { 2254 found = 1; 2255 break; 2256 } 2257 vfsp = vfsp->vfs_next; 2258 } while (vfsp != rootvfs); 2259 2260 if (!found) { 2261 err = EINVAL; 2262 goto out; 2263 } 2264 err = secpolicy_fs_config(cr, vfsp); 2265 if (err != 0) 2266 goto out; 2267 2268 mops = &vfsp->vfs_mntopts; 2269 /* 2270 * Add tag if it doesn't already exist 2271 */ 2272 if ((mop = vfs_hasopt(mops, tag)) == NULL) { 2273 int len; 2274 2275 (void) vfs_buildoptionstr(mops, buf, MAX_MNTOPT_STR); 2276 len = strlen(buf); 2277 if (len + strlen(tag) + 2 > MAX_MNTOPT_STR) { 2278 err = ENAMETOOLONG; 2279 goto out; 2280 } 2281 mop = vfs_addtag(mops, tag); 2282 } 2283 if ((mop->mo_flags & MO_TAG) == 0) { 2284 err = EINVAL; 2285 goto out; 2286 } 2287 vfs_setmntopt_nolock(mops, tag, NULL, 0, 1); 2288 out: 2289 vfs_list_unlock(); 2290 kmem_free(buf, MAX_MNTOPT_STR); 2291 return (err); 2292 } 2293 2294 /* 2295 * Allow users to remove arbitrary "tags" in a vfs's mount options. 2296 * Broader use within the kernel is discouraged. 2297 */ 2298 int 2299 vfs_clrtag(uint_t major, uint_t minor, const char *mntpt, const char *tag, 2300 cred_t *cr) 2301 { 2302 vfs_t *vfsp; 2303 mntopt_t *mop; 2304 int found = 0; 2305 dev_t dev = makedevice(major, minor); 2306 int err = 0; 2307 2308 /* 2309 * Find the desired mounted file system 2310 */ 2311 vfs_list_lock(); 2312 vfsp = rootvfs; 2313 do { 2314 if (vfsp->vfs_dev == dev && 2315 strcmp(mntpt, refstr_value(vfsp->vfs_mntpt)) == 0) { 2316 found = 1; 2317 break; 2318 } 2319 vfsp = vfsp->vfs_next; 2320 } while (vfsp != rootvfs); 2321 2322 if (!found) { 2323 err = EINVAL; 2324 goto out; 2325 } 2326 err = secpolicy_fs_config(cr, vfsp); 2327 if (err != 0) 2328 goto out; 2329 2330 if ((mop = vfs_hasopt(&vfsp->vfs_mntopts, tag)) == NULL) { 2331 err = EINVAL; 2332 goto out; 2333 } 2334 if ((mop->mo_flags & MO_TAG) == 0) { 2335 err = EINVAL; 2336 goto out; 2337 } 2338 vfs_clearmntopt_nolock(&vfsp->vfs_mntopts, tag, 1); 2339 out: 2340 vfs_list_unlock(); 2341 return (err); 2342 } 2343 2344 /* 2345 * Function to parse an option string and fill in a mount options table. 2346 * Unknown options are silently ignored. The input option string is modified 2347 * by replacing separators with nulls. If the create flag is set, options 2348 * not found in the table are just added on the fly. The table must have 2349 * an option slot marked MO_EMPTY to add an option on the fly. 2350 * 2351 * This function is *not* for general use by filesystems. 2352 * 2353 * Note: caller is responsible for locking the vfs list, if needed, 2354 * to protect mops.. 2355 */ 2356 void 2357 vfs_parsemntopts(mntopts_t *mops, char *osp, int create) 2358 { 2359 char *s = osp, *p, *nextop, *valp, *cp, *ep; 2360 int setflg = VFS_NOFORCEOPT; 2361 2362 if (osp == NULL) 2363 return; 2364 while (*s != '\0') { 2365 p = strchr(s, ','); /* find next option */ 2366 if (p == NULL) { 2367 cp = NULL; 2368 p = s + strlen(s); 2369 } else { 2370 cp = p; /* save location of comma */ 2371 *p++ = '\0'; /* mark end and point to next option */ 2372 } 2373 nextop = p; 2374 p = strchr(s, '='); /* look for value */ 2375 if (p == NULL) { 2376 valp = NULL; /* no value supplied */ 2377 } else { 2378 ep = p; /* save location of equals */ 2379 *p++ = '\0'; /* end option and point to value */ 2380 valp = p; 2381 } 2382 /* 2383 * set option into options table 2384 */ 2385 if (create) 2386 setflg |= VFS_CREATEOPT; 2387 vfs_setmntopt_nolock(mops, s, valp, setflg, 0); 2388 if (cp != NULL) 2389 *cp = ','; /* restore the comma */ 2390 if (valp != NULL) 2391 *ep = '='; /* restore the equals */ 2392 s = nextop; 2393 } 2394 } 2395 2396 /* 2397 * Function to inquire if an option exists in a mount options table. 2398 * Returns a pointer to the option if it exists, else NULL. 2399 * 2400 * This function is *not* for general use by filesystems. 2401 * 2402 * Note: caller is responsible for locking the vfs list, if needed, 2403 * to protect mops. 2404 */ 2405 struct mntopt * 2406 vfs_hasopt(const mntopts_t *mops, const char *opt) 2407 { 2408 struct mntopt *mop; 2409 uint_t i, count; 2410 2411 count = mops->mo_count; 2412 for (i = 0; i < count; i++) { 2413 mop = &mops->mo_list[i]; 2414 2415 if (mop->mo_flags & MO_EMPTY) 2416 continue; 2417 if (strcmp(opt, mop->mo_name) == 0) 2418 return (mop); 2419 } 2420 return (NULL); 2421 } 2422 2423 /* 2424 * Function to inquire if an option is set in a mount options table. 2425 * Returns non-zero if set and fills in the arg pointer with a pointer to 2426 * the argument string or NULL if there is no argument string. 2427 */ 2428 static int 2429 vfs_optionisset_nolock(const mntopts_t *mops, const char *opt, char **argp) 2430 { 2431 struct mntopt *mop; 2432 uint_t i, count; 2433 2434 count = mops->mo_count; 2435 for (i = 0; i < count; i++) { 2436 mop = &mops->mo_list[i]; 2437 2438 if (mop->mo_flags & MO_EMPTY) 2439 continue; 2440 if (strcmp(opt, mop->mo_name)) 2441 continue; 2442 if ((mop->mo_flags & MO_SET) == 0) 2443 return (0); 2444 if (argp != NULL && (mop->mo_flags & MO_HASVALUE) != 0) 2445 *argp = mop->mo_arg; 2446 return (1); 2447 } 2448 return (0); 2449 } 2450 2451 2452 int 2453 vfs_optionisset(const struct vfs *vfsp, const char *opt, char **argp) 2454 { 2455 int ret; 2456 2457 vfs_list_read_lock(); 2458 ret = vfs_optionisset_nolock(&vfsp->vfs_mntopts, opt, argp); 2459 vfs_list_unlock(); 2460 return (ret); 2461 } 2462 2463 2464 /* 2465 * Construct a comma separated string of the options set in the given 2466 * mount table, return the string in the given buffer. Return non-zero if 2467 * the buffer would overflow. 2468 * 2469 * This function is *not* for general use by filesystems. 2470 * 2471 * Note: caller is responsible for locking the vfs list, if needed, 2472 * to protect mp. 2473 */ 2474 int 2475 vfs_buildoptionstr(const mntopts_t *mp, char *buf, int len) 2476 { 2477 char *cp; 2478 uint_t i; 2479 2480 buf[0] = '\0'; 2481 cp = buf; 2482 for (i = 0; i < mp->mo_count; i++) { 2483 struct mntopt *mop; 2484 2485 mop = &mp->mo_list[i]; 2486 if (mop->mo_flags & MO_SET) { 2487 int optlen, comma = 0; 2488 2489 if (buf[0] != '\0') 2490 comma = 1; 2491 optlen = strlen(mop->mo_name); 2492 if (strlen(buf) + comma + optlen + 1 > len) 2493 goto err; 2494 if (comma) 2495 *cp++ = ','; 2496 (void) strcpy(cp, mop->mo_name); 2497 cp += optlen; 2498 /* 2499 * Append option value if there is one 2500 */ 2501 if (mop->mo_arg != NULL) { 2502 int arglen; 2503 2504 arglen = strlen(mop->mo_arg); 2505 if (strlen(buf) + arglen + 2 > len) 2506 goto err; 2507 *cp++ = '='; 2508 (void) strcpy(cp, mop->mo_arg); 2509 cp += arglen; 2510 } 2511 } 2512 } 2513 return (0); 2514 err: 2515 return (EOVERFLOW); 2516 } 2517 2518 static void 2519 vfs_freecancelopt(char **moc) 2520 { 2521 if (moc != NULL) { 2522 int ccnt = 0; 2523 char **cp; 2524 2525 for (cp = moc; *cp != NULL; cp++) { 2526 kmem_free(*cp, strlen(*cp) + 1); 2527 ccnt++; 2528 } 2529 kmem_free(moc, (ccnt + 1) * sizeof (char *)); 2530 } 2531 } 2532 2533 static void 2534 vfs_freeopt(mntopt_t *mop) 2535 { 2536 if (mop->mo_name != NULL) 2537 kmem_free(mop->mo_name, strlen(mop->mo_name) + 1); 2538 2539 vfs_freecancelopt(mop->mo_cancel); 2540 2541 if (mop->mo_arg != NULL) 2542 kmem_free(mop->mo_arg, strlen(mop->mo_arg) + 1); 2543 } 2544 2545 /* 2546 * Free a mount options table 2547 * 2548 * This function is *not* for general use by filesystems. 2549 * 2550 * Note: caller is responsible for locking the vfs list, if needed, 2551 * to protect mp. 2552 */ 2553 void 2554 vfs_freeopttbl(mntopts_t *mp) 2555 { 2556 uint_t i, count; 2557 2558 count = mp->mo_count; 2559 for (i = 0; i < count; i++) { 2560 vfs_freeopt(&mp->mo_list[i]); 2561 } 2562 if (count) { 2563 kmem_free(mp->mo_list, sizeof (mntopt_t) * count); 2564 mp->mo_count = 0; 2565 mp->mo_list = NULL; 2566 } 2567 } 2568 2569 /* 2570 * Free any mnttab information recorded in the vfs struct. 2571 * The vfs must not be on the vfs list. 2572 */ 2573 static void 2574 vfs_freemnttab(struct vfs *vfsp) 2575 { 2576 ASSERT(!VFS_ON_LIST(vfsp)); 2577 2578 /* 2579 * Free device and mount point information 2580 */ 2581 if (vfsp->vfs_mntpt != NULL) { 2582 refstr_rele(vfsp->vfs_mntpt); 2583 vfsp->vfs_mntpt = NULL; 2584 } 2585 if (vfsp->vfs_resource != NULL) { 2586 refstr_rele(vfsp->vfs_resource); 2587 vfsp->vfs_resource = NULL; 2588 } 2589 /* 2590 * Now free mount options information 2591 */ 2592 vfs_freeopttbl(&vfsp->vfs_mntopts); 2593 } 2594 2595 /* 2596 * Return the last mnttab modification time 2597 */ 2598 void 2599 vfs_mnttab_modtime(timespec_t *ts) 2600 { 2601 ASSERT(RW_LOCK_HELD(&vfslist)); 2602 *ts = vfs_mnttab_mtime; 2603 } 2604 2605 /* 2606 * See if mnttab is changed 2607 */ 2608 void 2609 vfs_mnttab_poll(timespec_t *old, struct pollhead **phpp) 2610 { 2611 int changed; 2612 2613 *phpp = (struct pollhead *)NULL; 2614 2615 /* 2616 * Note: don't grab vfs list lock before accessing vfs_mnttab_mtime. 2617 * Can lead to deadlock against vfs_mnttab_modtimeupd(). It is safe 2618 * to not grab the vfs list lock because tv_sec is monotonically 2619 * increasing. 2620 */ 2621 2622 changed = (old->tv_nsec != vfs_mnttab_mtime.tv_nsec) || 2623 (old->tv_sec != vfs_mnttab_mtime.tv_sec); 2624 if (!changed) { 2625 *phpp = &vfs_pollhd; 2626 } 2627 } 2628 2629 /* 2630 * Update the mnttab modification time and wake up any waiters for 2631 * mnttab changes 2632 */ 2633 void 2634 vfs_mnttab_modtimeupd() 2635 { 2636 hrtime_t oldhrt, newhrt; 2637 2638 ASSERT(RW_WRITE_HELD(&vfslist)); 2639 oldhrt = ts2hrt(&vfs_mnttab_mtime); 2640 gethrestime(&vfs_mnttab_mtime); 2641 newhrt = ts2hrt(&vfs_mnttab_mtime); 2642 if (oldhrt == (hrtime_t)0) 2643 vfs_mnttab_ctime = vfs_mnttab_mtime; 2644 /* 2645 * Attempt to provide unique mtime (like uniqtime but not). 2646 */ 2647 if (newhrt == oldhrt) { 2648 newhrt++; 2649 hrt2ts(newhrt, &vfs_mnttab_mtime); 2650 } 2651 pollwakeup(&vfs_pollhd, (short)POLLRDBAND); 2652 } 2653 2654 int 2655 dounmount(struct vfs *vfsp, int flag, cred_t *cr) 2656 { 2657 vnode_t *coveredvp; 2658 int error; 2659 extern void teardown_vopstats(vfs_t *); 2660 2661 /* 2662 * Get covered vnode. This will be NULL if the vfs is not linked 2663 * into the file system name space (i.e., domount() with MNT_NOSPICE). 2664 */ 2665 coveredvp = vfsp->vfs_vnodecovered; 2666 ASSERT(coveredvp == NULL || vn_vfswlock_held(coveredvp)); 2667 2668 /* 2669 * Purge all dnlc entries for this vfs. 2670 */ 2671 (void) dnlc_purge_vfsp(vfsp, 0); 2672 2673 /* For forcible umount, skip VFS_SYNC() since it may hang */ 2674 if ((flag & MS_FORCE) == 0) 2675 (void) VFS_SYNC(vfsp, 0, cr); 2676 2677 /* 2678 * Lock the vfs to maintain fs status quo during unmount. This 2679 * has to be done after the sync because ufs_update tries to acquire 2680 * the vfs_reflock. 2681 */ 2682 vfs_lock_wait(vfsp); 2683 2684 if (error = VFS_UNMOUNT(vfsp, flag, cr)) { 2685 vfs_unlock(vfsp); 2686 if (coveredvp != NULL) 2687 vn_vfsunlock(coveredvp); 2688 } else if (coveredvp != NULL) { 2689 teardown_vopstats(vfsp); 2690 /* 2691 * vfs_remove() will do a VN_RELE(vfsp->vfs_vnodecovered) 2692 * when it frees vfsp so we do a VN_HOLD() so we can 2693 * continue to use coveredvp afterwards. 2694 */ 2695 VN_HOLD(coveredvp); 2696 vfs_remove(vfsp); 2697 vn_vfsunlock(coveredvp); 2698 VN_RELE(coveredvp); 2699 } else { 2700 teardown_vopstats(vfsp); 2701 /* 2702 * Release the reference to vfs that is not linked 2703 * into the name space. 2704 */ 2705 vfs_unlock(vfsp); 2706 VFS_RELE(vfsp); 2707 } 2708 return (error); 2709 } 2710 2711 2712 /* 2713 * Vfs_unmountall() is called by uadmin() to unmount all 2714 * mounted file systems (except the root file system) during shutdown. 2715 * It follows the existing locking protocol when traversing the vfs list 2716 * to sync and unmount vfses. Even though there should be no 2717 * other thread running while the system is shutting down, it is prudent 2718 * to still follow the locking protocol. 2719 */ 2720 void 2721 vfs_unmountall(void) 2722 { 2723 struct vfs *vfsp; 2724 struct vfs *prev_vfsp = NULL; 2725 int error; 2726 2727 /* 2728 * Toss all dnlc entries now so that the per-vfs sync 2729 * and unmount operations don't have to slog through 2730 * a bunch of uninteresting vnodes over and over again. 2731 */ 2732 dnlc_purge(); 2733 2734 vfs_list_lock(); 2735 for (vfsp = rootvfs->vfs_prev; vfsp != rootvfs; vfsp = prev_vfsp) { 2736 prev_vfsp = vfsp->vfs_prev; 2737 2738 if (vfs_lock(vfsp) != 0) 2739 continue; 2740 error = vn_vfswlock(vfsp->vfs_vnodecovered); 2741 vfs_unlock(vfsp); 2742 if (error) 2743 continue; 2744 2745 vfs_list_unlock(); 2746 2747 (void) VFS_SYNC(vfsp, SYNC_CLOSE, CRED()); 2748 (void) dounmount(vfsp, 0, CRED()); 2749 2750 /* 2751 * Since we dropped the vfslist lock above we must 2752 * verify that next_vfsp still exists, else start over. 2753 */ 2754 vfs_list_lock(); 2755 for (vfsp = rootvfs->vfs_prev; 2756 vfsp != rootvfs; vfsp = vfsp->vfs_prev) 2757 if (vfsp == prev_vfsp) 2758 break; 2759 if (vfsp == rootvfs && prev_vfsp != rootvfs) 2760 prev_vfsp = rootvfs->vfs_prev; 2761 } 2762 vfs_list_unlock(); 2763 } 2764 2765 /* 2766 * Called to add an entry to the end of the vfs mount in progress list 2767 */ 2768 void 2769 vfs_addmip(dev_t dev, struct vfs *vfsp) 2770 { 2771 struct ipmnt *mipp; 2772 2773 mipp = (struct ipmnt *)kmem_alloc(sizeof (struct ipmnt), KM_SLEEP); 2774 mipp->mip_next = NULL; 2775 mipp->mip_dev = dev; 2776 mipp->mip_vfsp = vfsp; 2777 mutex_enter(&vfs_miplist_mutex); 2778 if (vfs_miplist_end != NULL) 2779 vfs_miplist_end->mip_next = mipp; 2780 else 2781 vfs_miplist = mipp; 2782 vfs_miplist_end = mipp; 2783 mutex_exit(&vfs_miplist_mutex); 2784 } 2785 2786 /* 2787 * Called to remove an entry from the mount in progress list 2788 * Either because the mount completed or it failed. 2789 */ 2790 void 2791 vfs_delmip(struct vfs *vfsp) 2792 { 2793 struct ipmnt *mipp, *mipprev; 2794 2795 mutex_enter(&vfs_miplist_mutex); 2796 mipprev = NULL; 2797 for (mipp = vfs_miplist; 2798 mipp && mipp->mip_vfsp != vfsp; mipp = mipp->mip_next) { 2799 mipprev = mipp; 2800 } 2801 if (mipp == NULL) 2802 return; /* shouldn't happen */ 2803 if (mipp == vfs_miplist_end) 2804 vfs_miplist_end = mipprev; 2805 if (mipprev == NULL) 2806 vfs_miplist = mipp->mip_next; 2807 else 2808 mipprev->mip_next = mipp->mip_next; 2809 mutex_exit(&vfs_miplist_mutex); 2810 kmem_free(mipp, sizeof (struct ipmnt)); 2811 } 2812 2813 /* 2814 * vfs_add is called by a specific filesystem's mount routine to add 2815 * the new vfs into the vfs list/hash and to cover the mounted-on vnode. 2816 * The vfs should already have been locked by the caller. 2817 * 2818 * coveredvp is NULL if this is the root. 2819 */ 2820 void 2821 vfs_add(vnode_t *coveredvp, struct vfs *vfsp, int mflag) 2822 { 2823 int newflag; 2824 2825 ASSERT(vfs_lock_held(vfsp)); 2826 VFS_HOLD(vfsp); 2827 newflag = vfsp->vfs_flag; 2828 if (mflag & MS_RDONLY) 2829 newflag |= VFS_RDONLY; 2830 else 2831 newflag &= ~VFS_RDONLY; 2832 if (mflag & MS_NOSUID) 2833 newflag |= (VFS_NOSETUID|VFS_NODEVICES); 2834 else 2835 newflag &= ~(VFS_NOSETUID|VFS_NODEVICES); 2836 if (mflag & MS_NOMNTTAB) 2837 newflag |= VFS_NOMNTTAB; 2838 else 2839 newflag &= ~VFS_NOMNTTAB; 2840 2841 if (coveredvp != NULL) { 2842 ASSERT(vn_vfswlock_held(coveredvp)); 2843 coveredvp->v_vfsmountedhere = vfsp; 2844 VN_HOLD(coveredvp); 2845 } 2846 vfsp->vfs_vnodecovered = coveredvp; 2847 vfsp->vfs_flag = newflag; 2848 2849 vfs_list_add(vfsp); 2850 } 2851 2852 /* 2853 * Remove a vfs from the vfs list, null out the pointer from the 2854 * covered vnode to the vfs (v_vfsmountedhere), and null out the pointer 2855 * from the vfs to the covered vnode (vfs_vnodecovered). Release the 2856 * reference to the vfs and to the covered vnode. 2857 * 2858 * Called from dounmount after it's confirmed with the file system 2859 * that the unmount is legal. 2860 */ 2861 void 2862 vfs_remove(struct vfs *vfsp) 2863 { 2864 vnode_t *vp; 2865 2866 ASSERT(vfs_lock_held(vfsp)); 2867 2868 /* 2869 * Can't unmount root. Should never happen because fs will 2870 * be busy. 2871 */ 2872 if (vfsp == rootvfs) 2873 panic("vfs_remove: unmounting root"); 2874 2875 vfs_list_remove(vfsp); 2876 2877 /* 2878 * Unhook from the file system name space. 2879 */ 2880 vp = vfsp->vfs_vnodecovered; 2881 ASSERT(vn_vfswlock_held(vp)); 2882 vp->v_vfsmountedhere = NULL; 2883 vfsp->vfs_vnodecovered = NULL; 2884 VN_RELE(vp); 2885 2886 /* 2887 * Release lock and wakeup anybody waiting. 2888 */ 2889 vfs_unlock(vfsp); 2890 VFS_RELE(vfsp); 2891 } 2892 2893 /* 2894 * Lock a filesystem to prevent access to it while mounting, 2895 * unmounting and syncing. Return EBUSY immediately if lock 2896 * can't be acquired. 2897 */ 2898 int 2899 vfs_lock(vfs_t *vfsp) 2900 { 2901 vn_vfslocks_entry_t *vpvfsentry; 2902 2903 vpvfsentry = vn_vfslocks_getlock(vfsp); 2904 if (rwst_tryenter(&vpvfsentry->ve_lock, RW_WRITER)) 2905 return (0); 2906 2907 vn_vfslocks_rele(vpvfsentry); 2908 return (EBUSY); 2909 } 2910 2911 int 2912 vfs_rlock(vfs_t *vfsp) 2913 { 2914 vn_vfslocks_entry_t *vpvfsentry; 2915 2916 vpvfsentry = vn_vfslocks_getlock(vfsp); 2917 2918 if (rwst_tryenter(&vpvfsentry->ve_lock, RW_READER)) 2919 return (0); 2920 2921 vn_vfslocks_rele(vpvfsentry); 2922 return (EBUSY); 2923 } 2924 2925 void 2926 vfs_lock_wait(vfs_t *vfsp) 2927 { 2928 vn_vfslocks_entry_t *vpvfsentry; 2929 2930 vpvfsentry = vn_vfslocks_getlock(vfsp); 2931 rwst_enter(&vpvfsentry->ve_lock, RW_WRITER); 2932 } 2933 2934 void 2935 vfs_rlock_wait(vfs_t *vfsp) 2936 { 2937 vn_vfslocks_entry_t *vpvfsentry; 2938 2939 vpvfsentry = vn_vfslocks_getlock(vfsp); 2940 rwst_enter(&vpvfsentry->ve_lock, RW_READER); 2941 } 2942 2943 /* 2944 * Unlock a locked filesystem. 2945 */ 2946 void 2947 vfs_unlock(vfs_t *vfsp) 2948 { 2949 vn_vfslocks_entry_t *vpvfsentry; 2950 2951 /* 2952 * vfs_unlock will mimic sema_v behaviour to fix 4748018. 2953 * And these changes should remain for the patch changes as it is. 2954 */ 2955 if (panicstr) 2956 return; 2957 2958 /* 2959 * ve_refcount needs to be dropped twice here. 2960 * 1. To release refernce after a call to vfs_locks_getlock() 2961 * 2. To release the reference from the locking routines like 2962 * vfs_rlock_wait/vfs_wlock_wait/vfs_wlock etc,. 2963 */ 2964 2965 vpvfsentry = vn_vfslocks_getlock(vfsp); 2966 vn_vfslocks_rele(vpvfsentry); 2967 2968 rwst_exit(&vpvfsentry->ve_lock); 2969 vn_vfslocks_rele(vpvfsentry); 2970 } 2971 2972 /* 2973 * Utility routine that allows a filesystem to construct its 2974 * fsid in "the usual way" - by munging some underlying dev_t and 2975 * the filesystem type number into the 64-bit fsid. Note that 2976 * this implicitly relies on dev_t persistence to make filesystem 2977 * id's persistent. 2978 * 2979 * There's nothing to prevent an individual fs from constructing its 2980 * fsid in a different way, and indeed they should. 2981 * 2982 * Since we want fsids to be 32-bit quantities (so that they can be 2983 * exported identically by either 32-bit or 64-bit APIs, as well as 2984 * the fact that fsid's are "known" to NFS), we compress the device 2985 * number given down to 32-bits, and panic if that isn't possible. 2986 */ 2987 void 2988 vfs_make_fsid(fsid_t *fsi, dev_t dev, int val) 2989 { 2990 if (!cmpldev((dev32_t *)&fsi->val[0], dev)) 2991 panic("device number too big for fsid!"); 2992 fsi->val[1] = val; 2993 } 2994 2995 int 2996 vfs_lock_held(vfs_t *vfsp) 2997 { 2998 int held; 2999 vn_vfslocks_entry_t *vpvfsentry; 3000 3001 /* 3002 * vfs_lock_held will mimic sema_held behaviour 3003 * if panicstr is set. And these changes should remain 3004 * for the patch changes as it is. 3005 */ 3006 if (panicstr) 3007 return (1); 3008 3009 vpvfsentry = vn_vfslocks_getlock(vfsp); 3010 held = rwst_lock_held(&vpvfsentry->ve_lock, RW_WRITER); 3011 3012 vn_vfslocks_rele(vpvfsentry); 3013 return (held); 3014 } 3015 3016 struct _kthread * 3017 vfs_lock_owner(vfs_t *vfsp) 3018 { 3019 struct _kthread *owner; 3020 vn_vfslocks_entry_t *vpvfsentry; 3021 3022 /* 3023 * vfs_wlock_held will mimic sema_held behaviour 3024 * if panicstr is set. And these changes should remain 3025 * for the patch changes as it is. 3026 */ 3027 if (panicstr) 3028 return (NULL); 3029 3030 vpvfsentry = vn_vfslocks_getlock(vfsp); 3031 owner = rwst_owner(&vpvfsentry->ve_lock); 3032 3033 vn_vfslocks_rele(vpvfsentry); 3034 return (owner); 3035 } 3036 3037 /* 3038 * vfs list locking. 3039 * 3040 * Rather than manipulate the vfslist lock directly, we abstract into lock 3041 * and unlock routines to allow the locking implementation to be changed for 3042 * clustering. 3043 * 3044 * Whenever the vfs list is modified through its hash links, the overall list 3045 * lock must be obtained before locking the relevant hash bucket. But to see 3046 * whether a given vfs is on the list, it suffices to obtain the lock for the 3047 * hash bucket without getting the overall list lock. (See getvfs() below.) 3048 */ 3049 3050 void 3051 vfs_list_lock() 3052 { 3053 rw_enter(&vfslist, RW_WRITER); 3054 } 3055 3056 void 3057 vfs_list_read_lock() 3058 { 3059 rw_enter(&vfslist, RW_READER); 3060 } 3061 3062 void 3063 vfs_list_unlock() 3064 { 3065 rw_exit(&vfslist); 3066 } 3067 3068 /* 3069 * Low level worker routines for adding entries to and removing entries from 3070 * the vfs list. 3071 */ 3072 3073 static void 3074 vfs_hash_add(struct vfs *vfsp, int insert_at_head) 3075 { 3076 int vhno; 3077 struct vfs **hp; 3078 dev_t dev; 3079 3080 ASSERT(RW_WRITE_HELD(&vfslist)); 3081 3082 dev = expldev(vfsp->vfs_fsid.val[0]); 3083 vhno = VFSHASH(getmajor(dev), getminor(dev)); 3084 3085 mutex_enter(&rvfs_list[vhno].rvfs_lock); 3086 3087 /* 3088 * Link into the hash table, inserting it at the end, so that LOFS 3089 * with the same fsid as UFS (or other) file systems will not hide the 3090 * UFS. 3091 */ 3092 if (insert_at_head) { 3093 vfsp->vfs_hash = rvfs_list[vhno].rvfs_head; 3094 rvfs_list[vhno].rvfs_head = vfsp; 3095 } else { 3096 for (hp = &rvfs_list[vhno].rvfs_head; *hp != NULL; 3097 hp = &(*hp)->vfs_hash) 3098 continue; 3099 /* 3100 * hp now contains the address of the pointer to update 3101 * to effect the insertion. 3102 */ 3103 vfsp->vfs_hash = NULL; 3104 *hp = vfsp; 3105 } 3106 3107 rvfs_list[vhno].rvfs_len++; 3108 mutex_exit(&rvfs_list[vhno].rvfs_lock); 3109 } 3110 3111 3112 static void 3113 vfs_hash_remove(struct vfs *vfsp) 3114 { 3115 int vhno; 3116 struct vfs *tvfsp; 3117 dev_t dev; 3118 3119 ASSERT(RW_WRITE_HELD(&vfslist)); 3120 3121 dev = expldev(vfsp->vfs_fsid.val[0]); 3122 vhno = VFSHASH(getmajor(dev), getminor(dev)); 3123 3124 mutex_enter(&rvfs_list[vhno].rvfs_lock); 3125 3126 /* 3127 * Remove from hash. 3128 */ 3129 if (rvfs_list[vhno].rvfs_head == vfsp) { 3130 rvfs_list[vhno].rvfs_head = vfsp->vfs_hash; 3131 rvfs_list[vhno].rvfs_len--; 3132 goto foundit; 3133 } 3134 for (tvfsp = rvfs_list[vhno].rvfs_head; tvfsp != NULL; 3135 tvfsp = tvfsp->vfs_hash) { 3136 if (tvfsp->vfs_hash == vfsp) { 3137 tvfsp->vfs_hash = vfsp->vfs_hash; 3138 rvfs_list[vhno].rvfs_len--; 3139 goto foundit; 3140 } 3141 } 3142 cmn_err(CE_WARN, "vfs_list_remove: vfs not found in hash"); 3143 3144 foundit: 3145 3146 mutex_exit(&rvfs_list[vhno].rvfs_lock); 3147 } 3148 3149 3150 void 3151 vfs_list_add(struct vfs *vfsp) 3152 { 3153 zone_t *zone; 3154 3155 /* 3156 * The zone that owns the mount is the one that performed the mount. 3157 * Note that this isn't necessarily the same as the zone mounted into. 3158 * The corresponding zone_rele() will be done when the vfs_t is 3159 * being free'd. 3160 */ 3161 vfsp->vfs_zone = curproc->p_zone; 3162 zone_hold(vfsp->vfs_zone); 3163 3164 /* 3165 * Find the zone mounted into, and put this mount on its vfs list. 3166 */ 3167 zone = zone_find_by_path(refstr_value(vfsp->vfs_mntpt)); 3168 ASSERT(zone != NULL); 3169 /* 3170 * Special casing for the root vfs. This structure is allocated 3171 * statically and hooked onto rootvfs at link time. During the 3172 * vfs_mountroot call at system startup time, the root file system's 3173 * VFS_MOUNTROOT routine will call vfs_add with this root vfs struct 3174 * as argument. The code below must detect and handle this special 3175 * case. The only apparent justification for this special casing is 3176 * to ensure that the root file system appears at the head of the 3177 * list. 3178 * 3179 * XXX: I'm assuming that it's ok to do normal list locking when 3180 * adding the entry for the root file system (this used to be 3181 * done with no locks held). 3182 */ 3183 vfs_list_lock(); 3184 /* 3185 * Link into the vfs list proper. 3186 */ 3187 if (vfsp == &root) { 3188 /* 3189 * Assert: This vfs is already on the list as its first entry. 3190 * Thus, there's nothing to do. 3191 */ 3192 ASSERT(rootvfs == vfsp); 3193 /* 3194 * Add it to the head of the global zone's vfslist. 3195 */ 3196 ASSERT(zone == global_zone); 3197 ASSERT(zone->zone_vfslist == NULL); 3198 zone->zone_vfslist = vfsp; 3199 } else { 3200 /* 3201 * Link to end of list using vfs_prev (as rootvfs is now a 3202 * doubly linked circular list) so list is in mount order for 3203 * mnttab use. 3204 */ 3205 rootvfs->vfs_prev->vfs_next = vfsp; 3206 vfsp->vfs_prev = rootvfs->vfs_prev; 3207 rootvfs->vfs_prev = vfsp; 3208 vfsp->vfs_next = rootvfs; 3209 3210 /* 3211 * Do it again for the zone-private list (which may be NULL). 3212 */ 3213 if (zone->zone_vfslist == NULL) { 3214 ASSERT(zone != global_zone); 3215 zone->zone_vfslist = vfsp; 3216 } else { 3217 zone->zone_vfslist->vfs_zone_prev->vfs_zone_next = vfsp; 3218 vfsp->vfs_zone_prev = zone->zone_vfslist->vfs_zone_prev; 3219 zone->zone_vfslist->vfs_zone_prev = vfsp; 3220 vfsp->vfs_zone_next = zone->zone_vfslist; 3221 } 3222 } 3223 3224 /* 3225 * Link into the hash table, inserting it at the end, so that LOFS 3226 * with the same fsid as UFS (or other) file systems will not hide 3227 * the UFS. 3228 */ 3229 vfs_hash_add(vfsp, 0); 3230 3231 /* 3232 * update the mnttab modification time 3233 */ 3234 vfs_mnttab_modtimeupd(); 3235 vfs_list_unlock(); 3236 zone_rele(zone); 3237 } 3238 3239 void 3240 vfs_list_remove(struct vfs *vfsp) 3241 { 3242 zone_t *zone; 3243 3244 zone = zone_find_by_path(refstr_value(vfsp->vfs_mntpt)); 3245 ASSERT(zone != NULL); 3246 /* 3247 * Callers are responsible for preventing attempts to unmount the 3248 * root. 3249 */ 3250 ASSERT(vfsp != rootvfs); 3251 3252 vfs_list_lock(); 3253 3254 /* 3255 * Remove from hash. 3256 */ 3257 vfs_hash_remove(vfsp); 3258 3259 /* 3260 * Remove from vfs list. 3261 */ 3262 vfsp->vfs_prev->vfs_next = vfsp->vfs_next; 3263 vfsp->vfs_next->vfs_prev = vfsp->vfs_prev; 3264 vfsp->vfs_next = vfsp->vfs_prev = NULL; 3265 3266 /* 3267 * Remove from zone-specific vfs list. 3268 */ 3269 if (zone->zone_vfslist == vfsp) 3270 zone->zone_vfslist = vfsp->vfs_zone_next; 3271 3272 if (vfsp->vfs_zone_next == vfsp) { 3273 ASSERT(vfsp->vfs_zone_prev == vfsp); 3274 ASSERT(zone->zone_vfslist == vfsp); 3275 zone->zone_vfslist = NULL; 3276 } 3277 3278 vfsp->vfs_zone_prev->vfs_zone_next = vfsp->vfs_zone_next; 3279 vfsp->vfs_zone_next->vfs_zone_prev = vfsp->vfs_zone_prev; 3280 vfsp->vfs_zone_next = vfsp->vfs_zone_prev = NULL; 3281 3282 /* 3283 * update the mnttab modification time 3284 */ 3285 vfs_mnttab_modtimeupd(); 3286 vfs_list_unlock(); 3287 zone_rele(zone); 3288 } 3289 3290 struct vfs * 3291 getvfs(fsid_t *fsid) 3292 { 3293 struct vfs *vfsp; 3294 int val0 = fsid->val[0]; 3295 int val1 = fsid->val[1]; 3296 dev_t dev = expldev(val0); 3297 int vhno = VFSHASH(getmajor(dev), getminor(dev)); 3298 kmutex_t *hmp = &rvfs_list[vhno].rvfs_lock; 3299 3300 mutex_enter(hmp); 3301 for (vfsp = rvfs_list[vhno].rvfs_head; vfsp; vfsp = vfsp->vfs_hash) { 3302 if (vfsp->vfs_fsid.val[0] == val0 && 3303 vfsp->vfs_fsid.val[1] == val1) { 3304 VFS_HOLD(vfsp); 3305 mutex_exit(hmp); 3306 return (vfsp); 3307 } 3308 } 3309 mutex_exit(hmp); 3310 return (NULL); 3311 } 3312 3313 /* 3314 * Search the vfs mount in progress list for a specified device/vfs entry. 3315 * Returns 0 if the first entry in the list that the device matches has the 3316 * given vfs pointer as well. If the device matches but a different vfs 3317 * pointer is encountered in the list before the given vfs pointer then 3318 * a 1 is returned. 3319 */ 3320 3321 int 3322 vfs_devmounting(dev_t dev, struct vfs *vfsp) 3323 { 3324 int retval = 0; 3325 struct ipmnt *mipp; 3326 3327 mutex_enter(&vfs_miplist_mutex); 3328 for (mipp = vfs_miplist; mipp != NULL; mipp = mipp->mip_next) { 3329 if (mipp->mip_dev == dev) { 3330 if (mipp->mip_vfsp != vfsp) 3331 retval = 1; 3332 break; 3333 } 3334 } 3335 mutex_exit(&vfs_miplist_mutex); 3336 return (retval); 3337 } 3338 3339 /* 3340 * Search the vfs list for a specified device. Returns 1, if entry is found 3341 * or 0 if no suitable entry is found. 3342 */ 3343 3344 int 3345 vfs_devismounted(dev_t dev) 3346 { 3347 struct vfs *vfsp; 3348 int found; 3349 3350 vfs_list_read_lock(); 3351 vfsp = rootvfs; 3352 found = 0; 3353 do { 3354 if (vfsp->vfs_dev == dev) { 3355 found = 1; 3356 break; 3357 } 3358 vfsp = vfsp->vfs_next; 3359 } while (vfsp != rootvfs); 3360 3361 vfs_list_unlock(); 3362 return (found); 3363 } 3364 3365 /* 3366 * Search the vfs list for a specified device. Returns a pointer to it 3367 * or NULL if no suitable entry is found. The caller of this routine 3368 * is responsible for releasing the returned vfs pointer. 3369 */ 3370 struct vfs * 3371 vfs_dev2vfsp(dev_t dev) 3372 { 3373 struct vfs *vfsp; 3374 int found; 3375 3376 vfs_list_read_lock(); 3377 vfsp = rootvfs; 3378 found = 0; 3379 do { 3380 /* 3381 * The following could be made more efficient by making 3382 * the entire loop use vfs_zone_next if the call is from 3383 * a zone. The only callers, however, ustat(2) and 3384 * umount2(2), don't seem to justify the added 3385 * complexity at present. 3386 */ 3387 if (vfsp->vfs_dev == dev && 3388 ZONE_PATH_VISIBLE(refstr_value(vfsp->vfs_mntpt), 3389 curproc->p_zone)) { 3390 VFS_HOLD(vfsp); 3391 found = 1; 3392 break; 3393 } 3394 vfsp = vfsp->vfs_next; 3395 } while (vfsp != rootvfs); 3396 vfs_list_unlock(); 3397 return (found ? vfsp: NULL); 3398 } 3399 3400 /* 3401 * Search the vfs list for a specified mntpoint. Returns a pointer to it 3402 * or NULL if no suitable entry is found. The caller of this routine 3403 * is responsible for releasing the returned vfs pointer. 3404 * 3405 * Note that if multiple mntpoints match, the last one matching is 3406 * returned in an attempt to return the "top" mount when overlay 3407 * mounts are covering the same mount point. This is accomplished by starting 3408 * at the end of the list and working our way backwards, stopping at the first 3409 * matching mount. 3410 */ 3411 struct vfs * 3412 vfs_mntpoint2vfsp(const char *mp) 3413 { 3414 struct vfs *vfsp; 3415 struct vfs *retvfsp = NULL; 3416 zone_t *zone = curproc->p_zone; 3417 struct vfs *list; 3418 3419 vfs_list_read_lock(); 3420 if (getzoneid() == GLOBAL_ZONEID) { 3421 /* 3422 * The global zone may see filesystems in any zone. 3423 */ 3424 vfsp = rootvfs->vfs_prev; 3425 do { 3426 if (strcmp(refstr_value(vfsp->vfs_mntpt), mp) == 0) { 3427 retvfsp = vfsp; 3428 break; 3429 } 3430 vfsp = vfsp->vfs_prev; 3431 } while (vfsp != rootvfs->vfs_prev); 3432 } else if ((list = zone->zone_vfslist) != NULL) { 3433 const char *mntpt; 3434 3435 vfsp = list->vfs_zone_prev; 3436 do { 3437 mntpt = refstr_value(vfsp->vfs_mntpt); 3438 mntpt = ZONE_PATH_TRANSLATE(mntpt, zone); 3439 if (strcmp(mntpt, mp) == 0) { 3440 retvfsp = vfsp; 3441 break; 3442 } 3443 vfsp = vfsp->vfs_zone_prev; 3444 } while (vfsp != list->vfs_zone_prev); 3445 } 3446 if (retvfsp) 3447 VFS_HOLD(retvfsp); 3448 vfs_list_unlock(); 3449 return (retvfsp); 3450 } 3451 3452 /* 3453 * Search the vfs list for a specified vfsops. 3454 * if vfs entry is found then return 1, else 0. 3455 */ 3456 int 3457 vfs_opsinuse(vfsops_t *ops) 3458 { 3459 struct vfs *vfsp; 3460 int found; 3461 3462 vfs_list_read_lock(); 3463 vfsp = rootvfs; 3464 found = 0; 3465 do { 3466 if (vfs_getops(vfsp) == ops) { 3467 found = 1; 3468 break; 3469 } 3470 vfsp = vfsp->vfs_next; 3471 } while (vfsp != rootvfs); 3472 vfs_list_unlock(); 3473 return (found); 3474 } 3475 3476 /* 3477 * Allocate an entry in vfssw for a file system type 3478 */ 3479 struct vfssw * 3480 allocate_vfssw(char *type) 3481 { 3482 struct vfssw *vswp; 3483 3484 if (type[0] == '\0' || strlen(type) + 1 > _ST_FSTYPSZ) { 3485 /* 3486 * The vfssw table uses the empty string to identify an 3487 * available entry; we cannot add any type which has 3488 * a leading NUL. The string length is limited to 3489 * the size of the st_fstype array in struct stat. 3490 */ 3491 return (NULL); 3492 } 3493 3494 ASSERT(VFSSW_WRITE_LOCKED()); 3495 for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) 3496 if (!ALLOCATED_VFSSW(vswp)) { 3497 vswp->vsw_name = kmem_alloc(strlen(type) + 1, KM_SLEEP); 3498 (void) strcpy(vswp->vsw_name, type); 3499 ASSERT(vswp->vsw_count == 0); 3500 vswp->vsw_count = 1; 3501 mutex_init(&vswp->vsw_lock, NULL, MUTEX_DEFAULT, NULL); 3502 return (vswp); 3503 } 3504 return (NULL); 3505 } 3506 3507 /* 3508 * Impose additional layer of translation between vfstype names 3509 * and module names in the filesystem. 3510 */ 3511 static char * 3512 vfs_to_modname(char *vfstype) 3513 { 3514 if (strcmp(vfstype, "proc") == 0) { 3515 vfstype = "procfs"; 3516 } else if (strcmp(vfstype, "fd") == 0) { 3517 vfstype = "fdfs"; 3518 } else if (strncmp(vfstype, "nfs", 3) == 0) { 3519 vfstype = "nfs"; 3520 } 3521 3522 return (vfstype); 3523 } 3524 3525 /* 3526 * Find a vfssw entry given a file system type name. 3527 * Try to autoload the filesystem if it's not found. 3528 * If it's installed, return the vfssw locked to prevent unloading. 3529 */ 3530 struct vfssw * 3531 vfs_getvfssw(char *type) 3532 { 3533 struct vfssw *vswp; 3534 char *modname; 3535 3536 RLOCK_VFSSW(); 3537 vswp = vfs_getvfsswbyname(type); 3538 modname = vfs_to_modname(type); 3539 3540 if (rootdir == NULL) { 3541 /* 3542 * If we haven't yet loaded the root file system, then our 3543 * _init won't be called until later. Allocate vfssw entry, 3544 * because mod_installfs won't be called. 3545 */ 3546 if (vswp == NULL) { 3547 RUNLOCK_VFSSW(); 3548 WLOCK_VFSSW(); 3549 if ((vswp = vfs_getvfsswbyname(type)) == NULL) { 3550 if ((vswp = allocate_vfssw(type)) == NULL) { 3551 WUNLOCK_VFSSW(); 3552 return (NULL); 3553 } 3554 } 3555 WUNLOCK_VFSSW(); 3556 RLOCK_VFSSW(); 3557 } 3558 if (!VFS_INSTALLED(vswp)) { 3559 RUNLOCK_VFSSW(); 3560 (void) modloadonly("fs", modname); 3561 } else 3562 RUNLOCK_VFSSW(); 3563 return (vswp); 3564 } 3565 3566 /* 3567 * Try to load the filesystem. Before calling modload(), we drop 3568 * our lock on the VFS switch table, and pick it up after the 3569 * module is loaded. However, there is a potential race: the 3570 * module could be unloaded after the call to modload() completes 3571 * but before we pick up the lock and drive on. Therefore, 3572 * we keep reloading the module until we've loaded the module 3573 * _and_ we have the lock on the VFS switch table. 3574 */ 3575 while (vswp == NULL || !VFS_INSTALLED(vswp)) { 3576 RUNLOCK_VFSSW(); 3577 if (modload("fs", modname) == -1) 3578 return (NULL); 3579 RLOCK_VFSSW(); 3580 if (vswp == NULL) 3581 if ((vswp = vfs_getvfsswbyname(type)) == NULL) 3582 break; 3583 } 3584 RUNLOCK_VFSSW(); 3585 3586 return (vswp); 3587 } 3588 3589 /* 3590 * Find a vfssw entry given a file system type name. 3591 */ 3592 struct vfssw * 3593 vfs_getvfsswbyname(char *type) 3594 { 3595 struct vfssw *vswp; 3596 3597 ASSERT(VFSSW_LOCKED()); 3598 if (type == NULL || *type == '\0') 3599 return (NULL); 3600 3601 for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) { 3602 if (strcmp(type, vswp->vsw_name) == 0) { 3603 vfs_refvfssw(vswp); 3604 return (vswp); 3605 } 3606 } 3607 3608 return (NULL); 3609 } 3610 3611 /* 3612 * Find a vfssw entry given a set of vfsops. 3613 */ 3614 struct vfssw * 3615 vfs_getvfsswbyvfsops(vfsops_t *vfsops) 3616 { 3617 struct vfssw *vswp; 3618 3619 RLOCK_VFSSW(); 3620 for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) { 3621 if (ALLOCATED_VFSSW(vswp) && &vswp->vsw_vfsops == vfsops) { 3622 vfs_refvfssw(vswp); 3623 RUNLOCK_VFSSW(); 3624 return (vswp); 3625 } 3626 } 3627 RUNLOCK_VFSSW(); 3628 3629 return (NULL); 3630 } 3631 3632 /* 3633 * Reference a vfssw entry. 3634 */ 3635 void 3636 vfs_refvfssw(struct vfssw *vswp) 3637 { 3638 3639 mutex_enter(&vswp->vsw_lock); 3640 vswp->vsw_count++; 3641 mutex_exit(&vswp->vsw_lock); 3642 } 3643 3644 /* 3645 * Unreference a vfssw entry. 3646 */ 3647 void 3648 vfs_unrefvfssw(struct vfssw *vswp) 3649 { 3650 3651 mutex_enter(&vswp->vsw_lock); 3652 vswp->vsw_count--; 3653 mutex_exit(&vswp->vsw_lock); 3654 } 3655 3656 int sync_timeout = 30; /* timeout for syncing a page during panic */ 3657 int sync_timeleft; /* portion of sync_timeout remaining */ 3658 3659 static int sync_retries = 20; /* number of retries when not making progress */ 3660 static int sync_triesleft; /* portion of sync_retries remaining */ 3661 3662 static pgcnt_t old_pgcnt, new_pgcnt; 3663 static int new_bufcnt, old_bufcnt; 3664 3665 /* 3666 * Sync all of the mounted filesystems, and then wait for the actual i/o to 3667 * complete. We wait by counting the number of dirty pages and buffers, 3668 * pushing them out using bio_busy() and page_busy(), and then counting again. 3669 * This routine is used during both the uadmin A_SHUTDOWN code as well as 3670 * the SYNC phase of the panic code (see comments in panic.c). It should only 3671 * be used after some higher-level mechanism has quiesced the system so that 3672 * new writes are not being initiated while we are waiting for completion. 3673 * 3674 * To ensure finite running time, our algorithm uses two timeout mechanisms: 3675 * sync_timeleft (a timer implemented by the omnipresent deadman() cyclic), and 3676 * sync_triesleft (a progress counter used by the vfs_syncall() loop below). 3677 * Together these ensure that syncing completes if our i/o paths are stuck. 3678 * The counters are declared above so they can be found easily in the debugger. 3679 * 3680 * The sync_timeleft counter is reset by bio_busy() and page_busy() using the 3681 * vfs_syncprogress() subroutine whenever we make progress through the lists of 3682 * pages and buffers. It is decremented and expired by the deadman() cyclic. 3683 * When vfs_syncall() decides it is done, we disable the deadman() counter by 3684 * setting sync_timeleft to zero. This timer guards against vfs_syncall() 3685 * deadlocking or hanging inside of a broken filesystem or driver routine. 3686 * 3687 * The sync_triesleft counter is updated by vfs_syncall() itself. If we make 3688 * sync_retries consecutive calls to bio_busy() and page_busy() without 3689 * decreasing either the number of dirty buffers or dirty pages below the 3690 * lowest count we have seen so far, we give up and return from vfs_syncall(). 3691 * 3692 * Each loop iteration ends with a call to delay() one second to allow time for 3693 * i/o completion and to permit the user time to read our progress messages. 3694 */ 3695 void 3696 vfs_syncall(void) 3697 { 3698 if (rootdir == NULL && !modrootloaded) 3699 return; /* panic during boot - no filesystems yet */ 3700 3701 printf("syncing file systems..."); 3702 vfs_syncprogress(); 3703 sync(); 3704 3705 vfs_syncprogress(); 3706 sync_triesleft = sync_retries; 3707 3708 old_bufcnt = new_bufcnt = INT_MAX; 3709 old_pgcnt = new_pgcnt = ULONG_MAX; 3710 3711 while (sync_triesleft > 0) { 3712 old_bufcnt = MIN(old_bufcnt, new_bufcnt); 3713 old_pgcnt = MIN(old_pgcnt, new_pgcnt); 3714 3715 new_bufcnt = bio_busy(B_TRUE); 3716 new_pgcnt = page_busy(B_TRUE); 3717 vfs_syncprogress(); 3718 3719 if (new_bufcnt == 0 && new_pgcnt == 0) 3720 break; 3721 3722 if (new_bufcnt < old_bufcnt || new_pgcnt < old_pgcnt) 3723 sync_triesleft = sync_retries; 3724 else 3725 sync_triesleft--; 3726 3727 if (new_bufcnt) 3728 printf(" [%d]", new_bufcnt); 3729 if (new_pgcnt) 3730 printf(" %lu", new_pgcnt); 3731 3732 delay(hz); 3733 } 3734 3735 if (new_bufcnt != 0 || new_pgcnt != 0) 3736 printf(" done (not all i/o completed)\n"); 3737 else 3738 printf(" done\n"); 3739 3740 sync_timeleft = 0; 3741 delay(hz); 3742 } 3743 3744 /* 3745 * If we are in the middle of the sync phase of panic, reset sync_timeleft to 3746 * sync_timeout to indicate that we are making progress and the deadman() 3747 * omnipresent cyclic should not yet time us out. Note that it is safe to 3748 * store to sync_timeleft here since the deadman() is firing at high-level 3749 * on top of us. If we are racing with the deadman(), either the deadman() 3750 * will decrement the old value and then we will reset it, or we will 3751 * reset it and then the deadman() will immediately decrement it. In either 3752 * case, correct behavior results. 3753 */ 3754 void 3755 vfs_syncprogress(void) 3756 { 3757 if (panicstr) 3758 sync_timeleft = sync_timeout; 3759 } 3760 3761 /* 3762 * Map VFS flags to statvfs flags. These shouldn't really be separate 3763 * flags at all. 3764 */ 3765 uint_t 3766 vf_to_stf(uint_t vf) 3767 { 3768 uint_t stf = 0; 3769 3770 if (vf & VFS_RDONLY) 3771 stf |= ST_RDONLY; 3772 if (vf & VFS_NOSETUID) 3773 stf |= ST_NOSUID; 3774 if (vf & VFS_NOTRUNC) 3775 stf |= ST_NOTRUNC; 3776 3777 return (stf); 3778 } 3779 3780 /* 3781 * Entries for (illegal) fstype 0. 3782 */ 3783 /* ARGSUSED */ 3784 int 3785 vfsstray_sync(struct vfs *vfsp, short arg, struct cred *cr) 3786 { 3787 cmn_err(CE_PANIC, "stray vfs operation"); 3788 return (0); 3789 } 3790 3791 /* 3792 * Entries for (illegal) fstype 0. 3793 */ 3794 int 3795 vfsstray(void) 3796 { 3797 cmn_err(CE_PANIC, "stray vfs operation"); 3798 return (0); 3799 } 3800 3801 /* 3802 * Support for dealing with forced UFS unmount and its interaction with 3803 * LOFS. Could be used by any filesystem. 3804 * See bug 1203132. 3805 */ 3806 int 3807 vfs_EIO(void) 3808 { 3809 return (EIO); 3810 } 3811 3812 /* 3813 * We've gotta define the op for sync separately, since the compiler gets 3814 * confused if we mix and match ANSI and normal style prototypes when 3815 * a "short" argument is present and spits out a warning. 3816 */ 3817 /*ARGSUSED*/ 3818 int 3819 vfs_EIO_sync(struct vfs *vfsp, short arg, struct cred *cr) 3820 { 3821 return (EIO); 3822 } 3823 3824 vfs_t EIO_vfs; 3825 vfsops_t *EIO_vfsops; 3826 3827 /* 3828 * Called from startup() to initialize all loaded vfs's 3829 */ 3830 void 3831 vfsinit(void) 3832 { 3833 struct vfssw *vswp; 3834 int error; 3835 extern int vopstats_enabled; 3836 extern void vopstats_startup(); 3837 3838 static const fs_operation_def_t EIO_vfsops_template[] = { 3839 VFSNAME_MOUNT, { .error = vfs_EIO }, 3840 VFSNAME_UNMOUNT, { .error = vfs_EIO }, 3841 VFSNAME_ROOT, { .error = vfs_EIO }, 3842 VFSNAME_STATVFS, { .error = vfs_EIO }, 3843 VFSNAME_SYNC, { .vfs_sync = vfs_EIO_sync }, 3844 VFSNAME_VGET, { .error = vfs_EIO }, 3845 VFSNAME_MOUNTROOT, { .error = vfs_EIO }, 3846 VFSNAME_FREEVFS, { .error = vfs_EIO }, 3847 VFSNAME_VNSTATE, { .error = vfs_EIO }, 3848 NULL, NULL 3849 }; 3850 3851 static const fs_operation_def_t stray_vfsops_template[] = { 3852 VFSNAME_MOUNT, { .error = vfsstray }, 3853 VFSNAME_UNMOUNT, { .error = vfsstray }, 3854 VFSNAME_ROOT, { .error = vfsstray }, 3855 VFSNAME_STATVFS, { .error = vfsstray }, 3856 VFSNAME_SYNC, { .vfs_sync = vfsstray_sync }, 3857 VFSNAME_VGET, { .error = vfsstray }, 3858 VFSNAME_MOUNTROOT, { .error = vfsstray }, 3859 VFSNAME_FREEVFS, { .error = vfsstray }, 3860 VFSNAME_VNSTATE, { .error = vfsstray }, 3861 NULL, NULL 3862 }; 3863 3864 /* Initialize the vnode cache (file systems may use it during init). */ 3865 3866 vn_create_cache(); 3867 3868 /* Setup event monitor framework */ 3869 3870 fem_init(); 3871 3872 /* Initialize the dummy stray file system type. */ 3873 error = vfs_setfsops(0, stray_vfsops_template, NULL); 3874 3875 /* Initialize the dummy EIO file system. */ 3876 error = vfs_makefsops(EIO_vfsops_template, &EIO_vfsops); 3877 if (error != 0) { 3878 cmn_err(CE_WARN, "vfsinit: bad EIO vfs ops template"); 3879 /* Shouldn't happen, but not bad enough to panic */ 3880 } 3881 3882 VFS_INIT(&EIO_vfs, EIO_vfsops, (caddr_t)NULL); 3883 3884 /* 3885 * Default EIO_vfs.vfs_flag to VFS_UNMOUNTED so a lookup 3886 * on this vfs can immediately notice it's invalid. 3887 */ 3888 EIO_vfs.vfs_flag |= VFS_UNMOUNTED; 3889 3890 /* 3891 * Call the init routines of non-loadable filesystems only. 3892 * Filesystems which are loaded as separate modules will be 3893 * initialized by the module loading code instead. 3894 */ 3895 3896 for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) { 3897 RLOCK_VFSSW(); 3898 if (vswp->vsw_init != NULL) 3899 (*vswp->vsw_init)(vswp - vfssw, vswp->vsw_name); 3900 RUNLOCK_VFSSW(); 3901 } 3902 3903 vopstats_startup(); 3904 3905 if (vopstats_enabled) { 3906 /* EIO_vfs can collect stats, but we don't retrieve them */ 3907 initialize_vopstats(&EIO_vfs.vfs_vopstats); 3908 EIO_vfs.vfs_fstypevsp = NULL; 3909 EIO_vfs.vfs_vskap = NULL; 3910 EIO_vfs.vfs_flag |= VFS_STATS; 3911 } 3912 } 3913 3914 /* 3915 * Increments the vfs reference count by one atomically. 3916 */ 3917 void 3918 vfs_hold(vfs_t *vfsp) 3919 { 3920 atomic_add_32(&vfsp->vfs_count, 1); 3921 ASSERT(vfsp->vfs_count != 0); 3922 } 3923 3924 /* 3925 * Decrements the vfs reference count by one atomically. When 3926 * vfs reference count becomes zero, it calls the file system 3927 * specific vfs_freevfs() to free up the resources. 3928 */ 3929 void 3930 vfs_rele(vfs_t *vfsp) 3931 { 3932 ASSERT(vfsp->vfs_count != 0); 3933 if (atomic_add_32_nv(&vfsp->vfs_count, -1) == 0) { 3934 VFS_FREEVFS(vfsp); 3935 if (vfsp->vfs_zone) 3936 zone_rele(vfsp->vfs_zone); 3937 vfs_freemnttab(vfsp); 3938 if (vfsp->vfs_implp) 3939 vfsimpl_teardown(vfsp); 3940 sema_destroy(&vfsp->vfs_reflock); 3941 kmem_free(vfsp, sizeof (*vfsp)); 3942 } 3943 } 3944 3945 /* 3946 * Generic operations vector support. 3947 * 3948 * This is used to build operations vectors for both the vfs and vnode. 3949 * It's normally called only when a file system is loaded. 3950 * 3951 * There are many possible algorithms for this, including the following: 3952 * 3953 * (1) scan the list of known operations; for each, see if the file system 3954 * includes an entry for it, and fill it in as appropriate. 3955 * 3956 * (2) set up defaults for all known operations. scan the list of ops 3957 * supplied by the file system; for each which is both supplied and 3958 * known, fill it in. 3959 * 3960 * (3) sort the lists of known ops & supplied ops; scan the list, filling 3961 * in entries as we go. 3962 * 3963 * we choose (1) for simplicity, and because performance isn't critical here. 3964 * note that (2) could be sped up using a precomputed hash table on known ops. 3965 * (3) could be faster than either, but only if the lists were very large or 3966 * supplied in sorted order. 3967 * 3968 */ 3969 3970 int 3971 fs_build_vector(void *vector, int *unused_ops, 3972 const fs_operation_trans_def_t *translation, 3973 const fs_operation_def_t *operations) 3974 { 3975 int i, num_trans, num_ops, used; 3976 3977 /* 3978 * Count the number of translations and the number of supplied 3979 * operations. 3980 */ 3981 3982 { 3983 const fs_operation_trans_def_t *p; 3984 3985 for (num_trans = 0, p = translation; 3986 p->name != NULL; 3987 num_trans++, p++) 3988 ; 3989 } 3990 3991 { 3992 const fs_operation_def_t *p; 3993 3994 for (num_ops = 0, p = operations; 3995 p->name != NULL; 3996 num_ops++, p++) 3997 ; 3998 } 3999 4000 /* Walk through each operation known to our caller. There will be */ 4001 /* one entry in the supplied "translation table" for each. */ 4002 4003 used = 0; 4004 4005 for (i = 0; i < num_trans; i++) { 4006 int j, found; 4007 char *curname; 4008 fs_generic_func_p result; 4009 fs_generic_func_p *location; 4010 4011 curname = translation[i].name; 4012 4013 /* Look for a matching operation in the list supplied by the */ 4014 /* file system. */ 4015 4016 found = 0; 4017 4018 for (j = 0; j < num_ops; j++) { 4019 if (strcmp(operations[j].name, curname) == 0) { 4020 used++; 4021 found = 1; 4022 break; 4023 } 4024 } 4025 4026 /* 4027 * If the file system is using a "placeholder" for default 4028 * or error functions, grab the appropriate function out of 4029 * the translation table. If the file system didn't supply 4030 * this operation at all, use the default function. 4031 */ 4032 4033 if (found) { 4034 result = operations[j].func.fs_generic; 4035 if (result == fs_default) { 4036 result = translation[i].defaultFunc; 4037 } else if (result == fs_error) { 4038 result = translation[i].errorFunc; 4039 } else if (result == NULL) { 4040 /* Null values are PROHIBITED */ 4041 return (EINVAL); 4042 } 4043 } else { 4044 result = translation[i].defaultFunc; 4045 } 4046 4047 /* Now store the function into the operations vector. */ 4048 4049 location = (fs_generic_func_p *) 4050 (((char *)vector) + translation[i].offset); 4051 4052 *location = result; 4053 } 4054 4055 *unused_ops = num_ops - used; 4056 4057 return (0); 4058 } 4059 4060 /* Placeholder functions, should never be called. */ 4061 4062 int 4063 fs_error(void) 4064 { 4065 cmn_err(CE_PANIC, "fs_error called"); 4066 return (0); 4067 } 4068 4069 int 4070 fs_default(void) 4071 { 4072 cmn_err(CE_PANIC, "fs_default called"); 4073 return (0); 4074 } 4075 4076 #ifdef __sparc 4077 4078 /* 4079 * Part of the implementation of booting off a mirrored root 4080 * involves a change of dev_t for the root device. To 4081 * accomplish this, first remove the existing hash table 4082 * entry for the root device, convert to the new dev_t, 4083 * then re-insert in the hash table at the head of the list. 4084 */ 4085 void 4086 vfs_root_redev(vfs_t *vfsp, dev_t ndev, int fstype) 4087 { 4088 vfs_list_lock(); 4089 4090 vfs_hash_remove(vfsp); 4091 4092 vfsp->vfs_dev = ndev; 4093 vfs_make_fsid(&vfsp->vfs_fsid, ndev, fstype); 4094 4095 vfs_hash_add(vfsp, 1); 4096 4097 vfs_list_unlock(); 4098 } 4099 4100 #else /* x86 NEWBOOT */ 4101 4102 int 4103 rootconf() 4104 { 4105 int error; 4106 struct vfssw *vsw; 4107 extern void pm_init(); 4108 char *fstyp; 4109 4110 fstyp = getrootfs(); 4111 4112 if (error = clboot_rootconf()) 4113 return (error); 4114 4115 if (modload("fs", fstyp) == -1) 4116 panic("Cannot _init %s module", fstyp); 4117 4118 RLOCK_VFSSW(); 4119 vsw = vfs_getvfsswbyname(fstyp); 4120 RUNLOCK_VFSSW(); 4121 VFS_INIT(rootvfs, &vsw->vsw_vfsops, 0); 4122 VFS_HOLD(rootvfs); 4123 4124 /* always mount readonly first */ 4125 rootvfs->vfs_flag |= VFS_RDONLY; 4126 4127 pm_init(); 4128 4129 if (netboot) 4130 (void) strplumb(); 4131 4132 error = VFS_MOUNTROOT(rootvfs, ROOT_INIT); 4133 vfs_unrefvfssw(vsw); 4134 rootdev = rootvfs->vfs_dev; 4135 4136 if (error) 4137 panic("cannot mount root path %s", rootfs.bo_name); 4138 return (error); 4139 } 4140 4141 /* 4142 * XXX this is called by nfs only and should probably be removed 4143 * If booted with ASKNAME, prompt on the console for a filesystem 4144 * name and return it. 4145 */ 4146 void 4147 getfsname(char *askfor, char *name, size_t namelen) 4148 { 4149 if (boothowto & RB_ASKNAME) { 4150 printf("%s name: ", askfor); 4151 console_gets(name, namelen); 4152 } 4153 } 4154 4155 /* 4156 * If server_path exists, then we are booting a diskless 4157 * client. Otherwise, we default to ufs. Zfs should perhaps be 4158 * another property. 4159 */ 4160 static char * 4161 getrootfs(void) 4162 { 4163 extern char *strplumb_get_netdev_path(void); 4164 char *propstr = NULL; 4165 4166 /* check fstype property; it should be nfsdyn for diskless */ 4167 if (ddi_prop_lookup_string(DDI_DEV_T_ANY, ddi_root_node(), 4168 DDI_PROP_DONTPASS, "fstype", &propstr) 4169 == DDI_SUCCESS) { 4170 (void) strncpy(rootfs.bo_fstype, propstr, BO_MAXFSNAME); 4171 ddi_prop_free(propstr); 4172 4173 /* 4174 * if the boot property 'fstype' is not set, but 'zfs-bootfs' is set, 4175 * assume the type of this root filesystem is 'zfs'. 4176 */ 4177 } else if (ddi_prop_lookup_string(DDI_DEV_T_ANY, ddi_root_node(), 4178 DDI_PROP_DONTPASS, "zfs-bootfs", &propstr) 4179 == DDI_SUCCESS) { 4180 (void) strncpy(rootfs.bo_fstype, "zfs", BO_MAXFSNAME); 4181 ddi_prop_free(propstr); 4182 } 4183 4184 if (strncmp(rootfs.bo_fstype, "nfs", 3) != 0) 4185 return (rootfs.bo_fstype); 4186 4187 ++netboot; 4188 /* check if path to network interface is specified in bootpath */ 4189 if (ddi_prop_lookup_string(DDI_DEV_T_ANY, ddi_root_node(), 4190 DDI_PROP_DONTPASS, "bootpath", &propstr) 4191 == DDI_SUCCESS) { 4192 (void) strncpy(rootfs.bo_name, propstr, BO_MAXOBJNAME); 4193 ddi_prop_free(propstr); 4194 } else { 4195 /* attempt to determine netdev_path via boot_mac address */ 4196 netdev_path = strplumb_get_netdev_path(); 4197 if (netdev_path == NULL) 4198 panic("cannot find boot network interface"); 4199 (void) strncpy(rootfs.bo_name, netdev_path, BO_MAXOBJNAME); 4200 } 4201 return ("nfs"); 4202 } 4203 #endif 4204