xref: /titanic_44/usr/src/uts/common/fs/vfs.c (revision ee88b7a2060ab0ecb98a928e0e0595b7274aec2a)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 1988, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2012, Joyent, Inc. All rights reserved.
24  */
25 
26 /*	Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989 AT&T	*/
27 /*	  All Rights Reserved  	*/
28 
29 /*
30  * University Copyright- Copyright (c) 1982, 1986, 1988
31  * The Regents of the University of California
32  * All Rights Reserved
33  *
34  * University Acknowledgment- Portions of this document are derived from
35  * software developed by the University of California, Berkeley, and its
36  * contributors.
37  */
38 
39 #include <sys/types.h>
40 #include <sys/t_lock.h>
41 #include <sys/param.h>
42 #include <sys/errno.h>
43 #include <sys/user.h>
44 #include <sys/fstyp.h>
45 #include <sys/kmem.h>
46 #include <sys/systm.h>
47 #include <sys/proc.h>
48 #include <sys/mount.h>
49 #include <sys/vfs.h>
50 #include <sys/vfs_opreg.h>
51 #include <sys/fem.h>
52 #include <sys/mntent.h>
53 #include <sys/stat.h>
54 #include <sys/statvfs.h>
55 #include <sys/statfs.h>
56 #include <sys/cred.h>
57 #include <sys/vnode.h>
58 #include <sys/rwstlock.h>
59 #include <sys/dnlc.h>
60 #include <sys/file.h>
61 #include <sys/time.h>
62 #include <sys/atomic.h>
63 #include <sys/cmn_err.h>
64 #include <sys/buf.h>
65 #include <sys/swap.h>
66 #include <sys/debug.h>
67 #include <sys/vnode.h>
68 #include <sys/modctl.h>
69 #include <sys/ddi.h>
70 #include <sys/pathname.h>
71 #include <sys/bootconf.h>
72 #include <sys/dumphdr.h>
73 #include <sys/dc_ki.h>
74 #include <sys/poll.h>
75 #include <sys/sunddi.h>
76 #include <sys/sysmacros.h>
77 #include <sys/zone.h>
78 #include <sys/policy.h>
79 #include <sys/ctfs.h>
80 #include <sys/objfs.h>
81 #include <sys/console.h>
82 #include <sys/reboot.h>
83 #include <sys/attr.h>
84 #include <sys/zio.h>
85 #include <sys/spa.h>
86 #include <sys/lofi.h>
87 #include <sys/bootprops.h>
88 #include <sys/avl.h>
89 
90 #include <vm/page.h>
91 
92 #include <fs/fs_subr.h>
93 /* Private interfaces to create vopstats-related data structures */
94 extern void		initialize_vopstats(vopstats_t *);
95 extern vopstats_t	*get_fstype_vopstats(struct vfs *, struct vfssw *);
96 extern vsk_anchor_t	*get_vskstat_anchor(struct vfs *);
97 
98 static void vfs_clearmntopt_nolock(mntopts_t *, const char *, int);
99 static void vfs_setmntopt_nolock(mntopts_t *, const char *,
100     const char *, int, int);
101 static int  vfs_optionisset_nolock(const mntopts_t *, const char *, char **);
102 static void vfs_freemnttab(struct vfs *);
103 static void vfs_freeopt(mntopt_t *);
104 static void vfs_swapopttbl_nolock(mntopts_t *, mntopts_t *);
105 static void vfs_swapopttbl(mntopts_t *, mntopts_t *);
106 static void vfs_copyopttbl_extend(const mntopts_t *, mntopts_t *, int);
107 static void vfs_createopttbl_extend(mntopts_t *, const char *,
108     const mntopts_t *);
109 static char **vfs_copycancelopt_extend(char **const, int);
110 static void vfs_freecancelopt(char **);
111 static void getrootfs(char **, char **);
112 static int getmacpath(dev_info_t *, void *);
113 static void vfs_mnttabvp_setup(void);
114 
115 struct ipmnt {
116 	struct ipmnt	*mip_next;
117 	dev_t		mip_dev;
118 	struct vfs	*mip_vfsp;
119 };
120 
121 static kmutex_t		vfs_miplist_mutex;
122 static struct ipmnt	*vfs_miplist = NULL;
123 static struct ipmnt	*vfs_miplist_end = NULL;
124 
125 static kmem_cache_t *vfs_cache;	/* Pointer to VFS kmem cache */
126 
127 /*
128  * VFS global data.
129  */
130 vnode_t *rootdir;		/* pointer to root inode vnode. */
131 vnode_t *devicesdir;		/* pointer to inode of devices root */
132 vnode_t	*devdir;		/* pointer to inode of dev root */
133 
134 char *server_rootpath;		/* root path for diskless clients */
135 char *server_hostname;		/* hostname of diskless server */
136 
137 static struct vfs root;
138 static struct vfs devices;
139 static struct vfs dev;
140 struct vfs *rootvfs = &root;	/* pointer to root vfs; head of VFS list. */
141 avl_tree_t vfs_by_dev;		/* avl tree to index mounted VFSs by dev */
142 avl_tree_t vfs_by_mntpnt;	/* avl tree to index mounted VFSs by mntpnt */
143 uint64_t vfs_curr_mntix;	/* counter to provide a unique mntix for
144 				 * entries in the above avl trees.
145 				 * protected by vfslist lock */
146 rvfs_t *rvfs_list;		/* array of vfs ptrs for vfs hash list */
147 int vfshsz = 512;		/* # of heads/locks in vfs hash arrays */
148 				/* must be power of 2!	*/
149 timespec_t vfs_mnttab_ctime;	/* mnttab created time */
150 timespec_t vfs_mnttab_mtime;	/* mnttab last modified time */
151 char *vfs_dummyfstype = "\0";
152 struct pollhead vfs_pollhd;	/* for mnttab pollers */
153 struct vnode *vfs_mntdummyvp;	/* to fake mnttab read/write for file events */
154 int	mntfstype;		/* will be set once mnt fs is mounted */
155 
156 /*
157  * Table for generic options recognized in the VFS layer and acted
158  * on at this level before parsing file system specific options.
159  * The nosuid option is stronger than any of the devices and setuid
160  * options, so those are canceled when nosuid is seen.
161  *
162  * All options which are added here need to be added to the
163  * list of standard options in usr/src/cmd/fs.d/fslib.c as well.
164  */
165 /*
166  * VFS Mount options table
167  */
168 static char *ro_cancel[] = { MNTOPT_RW, NULL };
169 static char *rw_cancel[] = { MNTOPT_RO, NULL };
170 static char *suid_cancel[] = { MNTOPT_NOSUID, NULL };
171 static char *nosuid_cancel[] = { MNTOPT_SUID, MNTOPT_DEVICES, MNTOPT_NODEVICES,
172     MNTOPT_NOSETUID, MNTOPT_SETUID, NULL };
173 static char *devices_cancel[] = { MNTOPT_NODEVICES, NULL };
174 static char *nodevices_cancel[] = { MNTOPT_DEVICES, NULL };
175 static char *setuid_cancel[] = { MNTOPT_NOSETUID, NULL };
176 static char *nosetuid_cancel[] = { MNTOPT_SETUID, NULL };
177 static char *nbmand_cancel[] = { MNTOPT_NONBMAND, NULL };
178 static char *nonbmand_cancel[] = { MNTOPT_NBMAND, NULL };
179 static char *exec_cancel[] = { MNTOPT_NOEXEC, NULL };
180 static char *noexec_cancel[] = { MNTOPT_EXEC, NULL };
181 
182 static const mntopt_t mntopts[] = {
183 /*
184  *	option name		cancel options		default arg	flags
185  */
186 	{ MNTOPT_REMOUNT,	NULL,			NULL,
187 		MO_NODISPLAY, (void *)0 },
188 	{ MNTOPT_RO,		ro_cancel,		NULL,		0,
189 		(void *)0 },
190 	{ MNTOPT_RW,		rw_cancel,		NULL,		0,
191 		(void *)0 },
192 	{ MNTOPT_SUID,		suid_cancel,		NULL,		0,
193 		(void *)0 },
194 	{ MNTOPT_NOSUID,	nosuid_cancel,		NULL,		0,
195 		(void *)0 },
196 	{ MNTOPT_DEVICES,	devices_cancel,		NULL,		0,
197 		(void *)0 },
198 	{ MNTOPT_NODEVICES,	nodevices_cancel,	NULL,		0,
199 		(void *)0 },
200 	{ MNTOPT_SETUID,	setuid_cancel,		NULL,		0,
201 		(void *)0 },
202 	{ MNTOPT_NOSETUID,	nosetuid_cancel,	NULL,		0,
203 		(void *)0 },
204 	{ MNTOPT_NBMAND,	nbmand_cancel,		NULL,		0,
205 		(void *)0 },
206 	{ MNTOPT_NONBMAND,	nonbmand_cancel,	NULL,		0,
207 		(void *)0 },
208 	{ MNTOPT_EXEC,		exec_cancel,		NULL,		0,
209 		(void *)0 },
210 	{ MNTOPT_NOEXEC,	noexec_cancel,		NULL,		0,
211 		(void *)0 },
212 };
213 
214 const mntopts_t vfs_mntopts = {
215 	sizeof (mntopts) / sizeof (mntopt_t),
216 	(mntopt_t *)&mntopts[0]
217 };
218 
219 /*
220  * File system operation dispatch functions.
221  */
222 
223 int
224 fsop_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr)
225 {
226 	return (*(vfsp)->vfs_op->vfs_mount)(vfsp, mvp, uap, cr);
227 }
228 
229 int
230 fsop_unmount(vfs_t *vfsp, int flag, cred_t *cr)
231 {
232 	return (*(vfsp)->vfs_op->vfs_unmount)(vfsp, flag, cr);
233 }
234 
235 int
236 fsop_root(vfs_t *vfsp, vnode_t **vpp)
237 {
238 	refstr_t *mntpt;
239 	int ret = (*(vfsp)->vfs_op->vfs_root)(vfsp, vpp);
240 	/*
241 	 * Make sure this root has a path.  With lofs, it is possible to have
242 	 * a NULL mountpoint.
243 	 */
244 	if (ret == 0 && vfsp->vfs_mntpt != NULL && (*vpp)->v_path == NULL) {
245 		mntpt = vfs_getmntpoint(vfsp);
246 		vn_setpath_str(*vpp, refstr_value(mntpt),
247 		    strlen(refstr_value(mntpt)));
248 		refstr_rele(mntpt);
249 	}
250 
251 	return (ret);
252 }
253 
254 int
255 fsop_statfs(vfs_t *vfsp, statvfs64_t *sp)
256 {
257 	return (*(vfsp)->vfs_op->vfs_statvfs)(vfsp, sp);
258 }
259 
260 int
261 fsop_sync(vfs_t *vfsp, short flag, cred_t *cr)
262 {
263 	return (*(vfsp)->vfs_op->vfs_sync)(vfsp, flag, cr);
264 }
265 
266 int
267 fsop_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp)
268 {
269 	/*
270 	 * In order to handle system attribute fids in a manner
271 	 * transparent to the underlying fs, we embed the fid for
272 	 * the sysattr parent object in the sysattr fid and tack on
273 	 * some extra bytes that only the sysattr layer knows about.
274 	 *
275 	 * This guarantees that sysattr fids are larger than other fids
276 	 * for this vfs. If the vfs supports the sysattr view interface
277 	 * (as indicated by VFSFT_SYSATTR_VIEWS), we cannot have a size
278 	 * collision with XATTR_FIDSZ.
279 	 */
280 	if (vfs_has_feature(vfsp, VFSFT_SYSATTR_VIEWS) &&
281 	    fidp->fid_len == XATTR_FIDSZ)
282 		return (xattr_dir_vget(vfsp, vpp, fidp));
283 
284 	return (*(vfsp)->vfs_op->vfs_vget)(vfsp, vpp, fidp);
285 }
286 
287 int
288 fsop_mountroot(vfs_t *vfsp, enum whymountroot reason)
289 {
290 	return (*(vfsp)->vfs_op->vfs_mountroot)(vfsp, reason);
291 }
292 
293 void
294 fsop_freefs(vfs_t *vfsp)
295 {
296 	(*(vfsp)->vfs_op->vfs_freevfs)(vfsp);
297 }
298 
299 int
300 fsop_vnstate(vfs_t *vfsp, vnode_t *vp, vntrans_t nstate)
301 {
302 	return ((*(vfsp)->vfs_op->vfs_vnstate)(vfsp, vp, nstate));
303 }
304 
305 int
306 fsop_sync_by_kind(int fstype, short flag, cred_t *cr)
307 {
308 	ASSERT((fstype >= 0) && (fstype < nfstype));
309 
310 	if (ALLOCATED_VFSSW(&vfssw[fstype]) && VFS_INSTALLED(&vfssw[fstype]))
311 		return (*vfssw[fstype].vsw_vfsops.vfs_sync) (NULL, flag, cr);
312 	else
313 		return (ENOTSUP);
314 }
315 
316 /*
317  * File system initialization.  vfs_setfsops() must be called from a file
318  * system's init routine.
319  */
320 
321 static int
322 fs_copyfsops(const fs_operation_def_t *template, vfsops_t *actual,
323     int *unused_ops)
324 {
325 	static const fs_operation_trans_def_t vfs_ops_table[] = {
326 		VFSNAME_MOUNT, offsetof(vfsops_t, vfs_mount),
327 			fs_nosys, fs_nosys,
328 
329 		VFSNAME_UNMOUNT, offsetof(vfsops_t, vfs_unmount),
330 			fs_nosys, fs_nosys,
331 
332 		VFSNAME_ROOT, offsetof(vfsops_t, vfs_root),
333 			fs_nosys, fs_nosys,
334 
335 		VFSNAME_STATVFS, offsetof(vfsops_t, vfs_statvfs),
336 			fs_nosys, fs_nosys,
337 
338 		VFSNAME_SYNC, offsetof(vfsops_t, vfs_sync),
339 			(fs_generic_func_p) fs_sync,
340 			(fs_generic_func_p) fs_sync,	/* No errors allowed */
341 
342 		VFSNAME_VGET, offsetof(vfsops_t, vfs_vget),
343 			fs_nosys, fs_nosys,
344 
345 		VFSNAME_MOUNTROOT, offsetof(vfsops_t, vfs_mountroot),
346 			fs_nosys, fs_nosys,
347 
348 		VFSNAME_FREEVFS, offsetof(vfsops_t, vfs_freevfs),
349 			(fs_generic_func_p)fs_freevfs,
350 			(fs_generic_func_p)fs_freevfs,	/* Shouldn't fail */
351 
352 		VFSNAME_VNSTATE, offsetof(vfsops_t, vfs_vnstate),
353 			(fs_generic_func_p)fs_nosys,
354 			(fs_generic_func_p)fs_nosys,
355 
356 		NULL, 0, NULL, NULL
357 	};
358 
359 	return (fs_build_vector(actual, unused_ops, vfs_ops_table, template));
360 }
361 
362 void
363 zfs_boot_init() {
364 
365 	if (strcmp(rootfs.bo_fstype, MNTTYPE_ZFS) == 0)
366 		spa_boot_init();
367 }
368 
369 int
370 vfs_setfsops(int fstype, const fs_operation_def_t *template, vfsops_t **actual)
371 {
372 	int error;
373 	int unused_ops;
374 
375 	/*
376 	 * Verify that fstype refers to a valid fs.  Note that
377 	 * 0 is valid since it's used to set "stray" ops.
378 	 */
379 	if ((fstype < 0) || (fstype >= nfstype))
380 		return (EINVAL);
381 
382 	if (!ALLOCATED_VFSSW(&vfssw[fstype]))
383 		return (EINVAL);
384 
385 	/* Set up the operations vector. */
386 
387 	error = fs_copyfsops(template, &vfssw[fstype].vsw_vfsops, &unused_ops);
388 
389 	if (error != 0)
390 		return (error);
391 
392 	vfssw[fstype].vsw_flag |= VSW_INSTALLED;
393 
394 	if (actual != NULL)
395 		*actual = &vfssw[fstype].vsw_vfsops;
396 
397 #if DEBUG
398 	if (unused_ops != 0)
399 		cmn_err(CE_WARN, "vfs_setfsops: %s: %d operations supplied "
400 		    "but not used", vfssw[fstype].vsw_name, unused_ops);
401 #endif
402 
403 	return (0);
404 }
405 
406 int
407 vfs_makefsops(const fs_operation_def_t *template, vfsops_t **actual)
408 {
409 	int error;
410 	int unused_ops;
411 
412 	*actual = (vfsops_t *)kmem_alloc(sizeof (vfsops_t), KM_SLEEP);
413 
414 	error = fs_copyfsops(template, *actual, &unused_ops);
415 	if (error != 0) {
416 		kmem_free(*actual, sizeof (vfsops_t));
417 		*actual = NULL;
418 		return (error);
419 	}
420 
421 	return (0);
422 }
423 
424 /*
425  * Free a vfsops structure created as a result of vfs_makefsops().
426  * NOTE: For a vfsops structure initialized by vfs_setfsops(), use
427  * vfs_freevfsops_by_type().
428  */
429 void
430 vfs_freevfsops(vfsops_t *vfsops)
431 {
432 	kmem_free(vfsops, sizeof (vfsops_t));
433 }
434 
435 /*
436  * Since the vfsops structure is part of the vfssw table and wasn't
437  * really allocated, we're not really freeing anything.  We keep
438  * the name for consistency with vfs_freevfsops().  We do, however,
439  * need to take care of a little bookkeeping.
440  * NOTE: For a vfsops structure created by vfs_setfsops(), use
441  * vfs_freevfsops_by_type().
442  */
443 int
444 vfs_freevfsops_by_type(int fstype)
445 {
446 
447 	/* Verify that fstype refers to a loaded fs (and not fsid 0). */
448 	if ((fstype <= 0) || (fstype >= nfstype))
449 		return (EINVAL);
450 
451 	WLOCK_VFSSW();
452 	if ((vfssw[fstype].vsw_flag & VSW_INSTALLED) == 0) {
453 		WUNLOCK_VFSSW();
454 		return (EINVAL);
455 	}
456 
457 	vfssw[fstype].vsw_flag &= ~VSW_INSTALLED;
458 	WUNLOCK_VFSSW();
459 
460 	return (0);
461 }
462 
463 /* Support routines used to reference vfs_op */
464 
465 /* Set the operations vector for a vfs */
466 void
467 vfs_setops(vfs_t *vfsp, vfsops_t *vfsops)
468 {
469 	vfsops_t	*op;
470 
471 	ASSERT(vfsp != NULL);
472 	ASSERT(vfsops != NULL);
473 
474 	op = vfsp->vfs_op;
475 	membar_consumer();
476 	if (vfsp->vfs_femhead == NULL &&
477 	    atomic_cas_ptr(&vfsp->vfs_op, op, vfsops) == op) {
478 		return;
479 	}
480 	fsem_setvfsops(vfsp, vfsops);
481 }
482 
483 /* Retrieve the operations vector for a vfs */
484 vfsops_t *
485 vfs_getops(vfs_t *vfsp)
486 {
487 	vfsops_t	*op;
488 
489 	ASSERT(vfsp != NULL);
490 
491 	op = vfsp->vfs_op;
492 	membar_consumer();
493 	if (vfsp->vfs_femhead == NULL && op == vfsp->vfs_op) {
494 		return (op);
495 	} else {
496 		return (fsem_getvfsops(vfsp));
497 	}
498 }
499 
500 /*
501  * Returns non-zero (1) if the vfsops matches that of the vfs.
502  * Returns zero (0) if not.
503  */
504 int
505 vfs_matchops(vfs_t *vfsp, vfsops_t *vfsops)
506 {
507 	return (vfs_getops(vfsp) == vfsops);
508 }
509 
510 /*
511  * Returns non-zero (1) if the file system has installed a non-default,
512  * non-error vfs_sync routine.  Returns zero (0) otherwise.
513  */
514 int
515 vfs_can_sync(vfs_t *vfsp)
516 {
517 	/* vfs_sync() routine is not the default/error function */
518 	return (vfs_getops(vfsp)->vfs_sync != fs_sync);
519 }
520 
521 /*
522  * Initialize a vfs structure.
523  */
524 void
525 vfs_init(vfs_t *vfsp, vfsops_t *op, void *data)
526 {
527 	/* Other initialization has been moved to vfs_alloc() */
528 	vfsp->vfs_count = 0;
529 	vfsp->vfs_next = vfsp;
530 	vfsp->vfs_prev = vfsp;
531 	vfsp->vfs_zone_next = vfsp;
532 	vfsp->vfs_zone_prev = vfsp;
533 	vfsp->vfs_lofi_minor = 0;
534 	sema_init(&vfsp->vfs_reflock, 1, NULL, SEMA_DEFAULT, NULL);
535 	vfsimpl_setup(vfsp);
536 	vfsp->vfs_data = (data);
537 	vfs_setops((vfsp), (op));
538 }
539 
540 /*
541  * Allocate and initialize the vfs implementation private data
542  * structure, vfs_impl_t.
543  */
544 void
545 vfsimpl_setup(vfs_t *vfsp)
546 {
547 	int i;
548 
549 	if (vfsp->vfs_implp != NULL) {
550 		return;
551 	}
552 
553 	vfsp->vfs_implp = kmem_alloc(sizeof (vfs_impl_t), KM_SLEEP);
554 	/* Note that these are #define'd in vfs.h */
555 	vfsp->vfs_vskap = NULL;
556 	vfsp->vfs_fstypevsp = NULL;
557 
558 	/* Set size of counted array, then zero the array */
559 	vfsp->vfs_featureset[0] = VFS_FEATURE_MAXSZ - 1;
560 	for (i = 1; i <  VFS_FEATURE_MAXSZ; i++) {
561 		vfsp->vfs_featureset[i] = 0;
562 	}
563 }
564 
565 /*
566  * Release the vfs_impl_t structure, if it exists. Some unbundled
567  * filesystems may not use the newer version of vfs and thus
568  * would not contain this implementation private data structure.
569  */
570 void
571 vfsimpl_teardown(vfs_t *vfsp)
572 {
573 	vfs_impl_t	*vip = vfsp->vfs_implp;
574 
575 	if (vip == NULL)
576 		return;
577 
578 	kmem_free(vfsp->vfs_implp, sizeof (vfs_impl_t));
579 	vfsp->vfs_implp = NULL;
580 }
581 
582 /*
583  * VFS system calls: mount, umount, syssync, statfs, fstatfs, statvfs,
584  * fstatvfs, and sysfs moved to common/syscall.
585  */
586 
587 /*
588  * Update every mounted file system.  We call the vfs_sync operation of
589  * each file system type, passing it a NULL vfsp to indicate that all
590  * mounted file systems of that type should be updated.
591  */
592 void
593 vfs_sync(int flag)
594 {
595 	struct vfssw *vswp;
596 	RLOCK_VFSSW();
597 	for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) {
598 		if (ALLOCATED_VFSSW(vswp) && VFS_INSTALLED(vswp)) {
599 			vfs_refvfssw(vswp);
600 			RUNLOCK_VFSSW();
601 			(void) (*vswp->vsw_vfsops.vfs_sync)(NULL, flag,
602 			    CRED());
603 			vfs_unrefvfssw(vswp);
604 			RLOCK_VFSSW();
605 		}
606 	}
607 	RUNLOCK_VFSSW();
608 }
609 
610 void
611 sync(void)
612 {
613 	vfs_sync(0);
614 }
615 
616 /*
617  * compare function for vfs_by_dev avl tree. compare dev first, then mntix
618  */
619 static int
620 vfs_cmp_dev(const void *aa, const void *bb)
621 {
622 	const vfs_t *a = aa;
623 	const vfs_t *b = bb;
624 
625 	if (a->vfs_dev < b->vfs_dev)
626 		return (-1);
627 	if (a->vfs_dev > b->vfs_dev)
628 		return (1);
629 	if (a->vfs_mntix < b->vfs_mntix)
630 		return (-1);
631 	if (a->vfs_mntix > b->vfs_mntix)
632 		return (1);
633 	return (0);
634 }
635 
636 /*
637  * compare function for vfs_by_mntpnt avl tree. compare mntpnt first, then mntix
638  */
639 static int
640 vfs_cmp_mntpnt(const void *aa, const void *bb)
641 {
642 	const vfs_t *a = aa;
643 	const vfs_t *b = bb;
644 	int ret;
645 
646 	ret = strcmp(refstr_value(a->vfs_mntpt), refstr_value(b->vfs_mntpt));
647 	if (ret < 0)
648 		return (-1);
649 	if (ret > 0)
650 		return (1);
651 	if (a->vfs_mntix < b->vfs_mntix)
652 		return (-1);
653 	if (a->vfs_mntix > b->vfs_mntix)
654 		return (1);
655 	return (0);
656 }
657 
658 /*
659  * External routines.
660  */
661 
662 krwlock_t vfssw_lock;	/* lock accesses to vfssw */
663 
664 /*
665  * Lock for accessing the vfs linked list.  Initialized in vfs_mountroot(),
666  * but otherwise should be accessed only via vfs_list_lock() and
667  * vfs_list_unlock().  Also used to protect the timestamp for mods to the list.
668  */
669 static krwlock_t vfslist;
670 
671 /*
672  * Mount devfs on /devices. This is done right after root is mounted
673  * to provide device access support for the system
674  */
675 static void
676 vfs_mountdevices(void)
677 {
678 	struct vfssw *vsw;
679 	struct vnode *mvp;
680 	struct mounta mounta = {	/* fake mounta for devfs_mount() */
681 		NULL,
682 		NULL,
683 		MS_SYSSPACE,
684 		NULL,
685 		NULL,
686 		0,
687 		NULL,
688 		0
689 	};
690 
691 	/*
692 	 * _init devfs module to fill in the vfssw
693 	 */
694 	if (modload("fs", "devfs") == -1)
695 		panic("Cannot _init devfs module");
696 
697 	/*
698 	 * Hold vfs
699 	 */
700 	RLOCK_VFSSW();
701 	vsw = vfs_getvfsswbyname("devfs");
702 	VFS_INIT(&devices, &vsw->vsw_vfsops, NULL);
703 	VFS_HOLD(&devices);
704 
705 	/*
706 	 * Locate mount point
707 	 */
708 	if (lookupname("/devices", UIO_SYSSPACE, FOLLOW, NULLVPP, &mvp))
709 		panic("Cannot find /devices");
710 
711 	/*
712 	 * Perform the mount of /devices
713 	 */
714 	if (VFS_MOUNT(&devices, mvp, &mounta, CRED()))
715 		panic("Cannot mount /devices");
716 
717 	RUNLOCK_VFSSW();
718 
719 	/*
720 	 * Set appropriate members and add to vfs list for mnttab display
721 	 */
722 	vfs_setresource(&devices, "/devices", 0);
723 	vfs_setmntpoint(&devices, "/devices", 0);
724 
725 	/*
726 	 * Hold the root of /devices so it won't go away
727 	 */
728 	if (VFS_ROOT(&devices, &devicesdir))
729 		panic("vfs_mountdevices: not devices root");
730 
731 	if (vfs_lock(&devices) != 0) {
732 		VN_RELE(devicesdir);
733 		cmn_err(CE_NOTE, "Cannot acquire vfs_lock of /devices");
734 		return;
735 	}
736 
737 	if (vn_vfswlock(mvp) != 0) {
738 		vfs_unlock(&devices);
739 		VN_RELE(devicesdir);
740 		cmn_err(CE_NOTE, "Cannot acquire vfswlock of /devices");
741 		return;
742 	}
743 
744 	vfs_add(mvp, &devices, 0);
745 	vn_vfsunlock(mvp);
746 	vfs_unlock(&devices);
747 	VN_RELE(devicesdir);
748 }
749 
750 /*
751  * mount the first instance of /dev  to root and remain mounted
752  */
753 static void
754 vfs_mountdev1(void)
755 {
756 	struct vfssw *vsw;
757 	struct vnode *mvp;
758 	struct mounta mounta = {	/* fake mounta for sdev_mount() */
759 		NULL,
760 		NULL,
761 		MS_SYSSPACE | MS_OVERLAY,
762 		NULL,
763 		NULL,
764 		0,
765 		NULL,
766 		0
767 	};
768 
769 	/*
770 	 * _init dev module to fill in the vfssw
771 	 */
772 	if (modload("fs", "dev") == -1)
773 		cmn_err(CE_PANIC, "Cannot _init dev module\n");
774 
775 	/*
776 	 * Hold vfs
777 	 */
778 	RLOCK_VFSSW();
779 	vsw = vfs_getvfsswbyname("dev");
780 	VFS_INIT(&dev, &vsw->vsw_vfsops, NULL);
781 	VFS_HOLD(&dev);
782 
783 	/*
784 	 * Locate mount point
785 	 */
786 	if (lookupname("/dev", UIO_SYSSPACE, FOLLOW, NULLVPP, &mvp))
787 		cmn_err(CE_PANIC, "Cannot find /dev\n");
788 
789 	/*
790 	 * Perform the mount of /dev
791 	 */
792 	if (VFS_MOUNT(&dev, mvp, &mounta, CRED()))
793 		cmn_err(CE_PANIC, "Cannot mount /dev 1\n");
794 
795 	RUNLOCK_VFSSW();
796 
797 	/*
798 	 * Set appropriate members and add to vfs list for mnttab display
799 	 */
800 	vfs_setresource(&dev, "/dev", 0);
801 	vfs_setmntpoint(&dev, "/dev", 0);
802 
803 	/*
804 	 * Hold the root of /dev so it won't go away
805 	 */
806 	if (VFS_ROOT(&dev, &devdir))
807 		cmn_err(CE_PANIC, "vfs_mountdev1: not dev root");
808 
809 	if (vfs_lock(&dev) != 0) {
810 		VN_RELE(devdir);
811 		cmn_err(CE_NOTE, "Cannot acquire vfs_lock of /dev");
812 		return;
813 	}
814 
815 	if (vn_vfswlock(mvp) != 0) {
816 		vfs_unlock(&dev);
817 		VN_RELE(devdir);
818 		cmn_err(CE_NOTE, "Cannot acquire vfswlock of /dev");
819 		return;
820 	}
821 
822 	vfs_add(mvp, &dev, 0);
823 	vn_vfsunlock(mvp);
824 	vfs_unlock(&dev);
825 	VN_RELE(devdir);
826 }
827 
828 /*
829  * Mount required filesystem. This is done right after root is mounted.
830  */
831 static void
832 vfs_mountfs(char *module, char *spec, char *path)
833 {
834 	struct vnode *mvp;
835 	struct mounta mounta;
836 	vfs_t *vfsp;
837 
838 	mounta.flags = MS_SYSSPACE | MS_DATA;
839 	mounta.fstype = module;
840 	mounta.spec = spec;
841 	mounta.dir = path;
842 	if (lookupname(path, UIO_SYSSPACE, FOLLOW, NULLVPP, &mvp)) {
843 		cmn_err(CE_WARN, "Cannot find %s", path);
844 		return;
845 	}
846 	if (domount(NULL, &mounta, mvp, CRED(), &vfsp))
847 		cmn_err(CE_WARN, "Cannot mount %s", path);
848 	else
849 		VFS_RELE(vfsp);
850 	VN_RELE(mvp);
851 }
852 
853 /*
854  * vfs_mountroot is called by main() to mount the root filesystem.
855  */
856 void
857 vfs_mountroot(void)
858 {
859 	struct vnode	*rvp = NULL;
860 	char		*path;
861 	size_t		plen;
862 	struct vfssw	*vswp;
863 	proc_t		*p;
864 
865 	rw_init(&vfssw_lock, NULL, RW_DEFAULT, NULL);
866 	rw_init(&vfslist, NULL, RW_DEFAULT, NULL);
867 
868 	/*
869 	 * Alloc the avl trees for quick indexing via dev and mountpoint
870 	 */
871 	avl_create(&vfs_by_dev, vfs_cmp_dev, sizeof(vfs_t),
872 	    offsetof(vfs_t, vfs_avldev));
873 	avl_create(&vfs_by_mntpnt, vfs_cmp_mntpnt, sizeof(vfs_t),
874 	    offsetof(vfs_t, vfs_avlmntpnt));
875 
876 	/*
877 	 * Alloc the vfs hash bucket array and locks
878 	 */
879 	rvfs_list = kmem_zalloc(vfshsz * sizeof (rvfs_t), KM_SLEEP);
880 
881 	/*
882 	 * Call machine-dependent routine "rootconf" to choose a root
883 	 * file system type.
884 	 */
885 	if (rootconf())
886 		panic("vfs_mountroot: cannot mount root");
887 	/*
888 	 * Get vnode for '/'.  Set up rootdir, u.u_rdir and u.u_cdir
889 	 * to point to it.  These are used by lookuppn() so that it
890 	 * knows where to start from ('/' or '.').
891 	 */
892 	vfs_setmntpoint(rootvfs, "/", 0);
893 	if (VFS_ROOT(rootvfs, &rootdir))
894 		panic("vfs_mountroot: no root vnode");
895 
896 	/*
897 	 * At this point, the process tree consists of p0 and possibly some
898 	 * direct children of p0.  (i.e. there are no grandchildren)
899 	 *
900 	 * Walk through them all, setting their current directory.
901 	 */
902 	mutex_enter(&pidlock);
903 	for (p = practive; p != NULL; p = p->p_next) {
904 		ASSERT(p == &p0 || p->p_parent == &p0);
905 
906 		PTOU(p)->u_cdir = rootdir;
907 		VN_HOLD(PTOU(p)->u_cdir);
908 		PTOU(p)->u_rdir = NULL;
909 	}
910 	mutex_exit(&pidlock);
911 
912 	/*
913 	 * Setup the global zone's rootvp, now that it exists.
914 	 */
915 	global_zone->zone_rootvp = rootdir;
916 	VN_HOLD(global_zone->zone_rootvp);
917 
918 	/*
919 	 * Notify the module code that it can begin using the
920 	 * root filesystem instead of the boot program's services.
921 	 */
922 	modrootloaded = 1;
923 
924 	/*
925 	 * Special handling for a ZFS root file system.
926 	 */
927 	zfs_boot_init();
928 
929 	/*
930 	 * Set up mnttab information for root
931 	 */
932 	vfs_setresource(rootvfs, rootfs.bo_name, 0);
933 
934 	/*
935 	 * Notify cluster software that the root filesystem is available.
936 	 */
937 	clboot_mountroot();
938 
939 	/* Now that we're all done with the root FS, set up its vopstats */
940 	if ((vswp = vfs_getvfsswbyvfsops(vfs_getops(rootvfs))) != NULL) {
941 		/* Set flag for statistics collection */
942 		if (vswp->vsw_flag & VSW_STATS) {
943 			initialize_vopstats(&rootvfs->vfs_vopstats);
944 			rootvfs->vfs_flag |= VFS_STATS;
945 			rootvfs->vfs_fstypevsp =
946 			    get_fstype_vopstats(rootvfs, vswp);
947 			rootvfs->vfs_vskap = get_vskstat_anchor(rootvfs);
948 		}
949 		vfs_unrefvfssw(vswp);
950 	}
951 
952 	/*
953 	 * Mount /devices, /dev instance 1, /system/contract, /etc/mnttab,
954 	 * /etc/svc/volatile, /etc/dfs/sharetab, /system/object, and /proc.
955 	 */
956 	vfs_mountdevices();
957 	vfs_mountdev1();
958 
959 	vfs_mountfs("ctfs", "ctfs", CTFS_ROOT);
960 	vfs_mountfs("proc", "/proc", "/proc");
961 	vfs_mountfs("mntfs", "/etc/mnttab", "/etc/mnttab");
962 	vfs_mountfs("tmpfs", "/etc/svc/volatile", "/etc/svc/volatile");
963 	vfs_mountfs("objfs", "objfs", OBJFS_ROOT);
964 
965 	if (getzoneid() == GLOBAL_ZONEID) {
966 		vfs_mountfs("sharefs", "sharefs", "/etc/dfs/sharetab");
967 	}
968 
969 #ifdef __sparc
970 	/*
971 	 * This bit of magic can go away when we convert sparc to
972 	 * the new boot architecture based on ramdisk.
973 	 *
974 	 * Booting off a mirrored root volume:
975 	 * At this point, we have booted and mounted root on a
976 	 * single component of the mirror.  Complete the boot
977 	 * by configuring SVM and converting the root to the
978 	 * dev_t of the mirrored root device.  This dev_t conversion
979 	 * only works because the underlying device doesn't change.
980 	 */
981 	if (root_is_svm) {
982 		if (svm_rootconf()) {
983 			panic("vfs_mountroot: cannot remount root");
984 		}
985 
986 		/*
987 		 * mnttab should reflect the new root device
988 		 */
989 		vfs_lock_wait(rootvfs);
990 		vfs_setresource(rootvfs, rootfs.bo_name, 0);
991 		vfs_unlock(rootvfs);
992 	}
993 #endif /* __sparc */
994 
995 	if (strcmp(rootfs.bo_fstype, "zfs") != 0) {
996 		/*
997 		 * Look up the root device via devfs so that a dv_node is
998 		 * created for it. The vnode is never VN_RELE()ed.
999 		 * We allocate more than MAXPATHLEN so that the
1000 		 * buffer passed to i_ddi_prompath_to_devfspath() is
1001 		 * exactly MAXPATHLEN (the function expects a buffer
1002 		 * of that length).
1003 		 */
1004 		plen = strlen("/devices");
1005 		path = kmem_alloc(plen + MAXPATHLEN, KM_SLEEP);
1006 		(void) strcpy(path, "/devices");
1007 
1008 		if (i_ddi_prompath_to_devfspath(rootfs.bo_name, path + plen)
1009 		    != DDI_SUCCESS ||
1010 		    lookupname(path, UIO_SYSSPACE, FOLLOW, NULLVPP, &rvp)) {
1011 
1012 			/* NUL terminate in case "path" has garbage */
1013 			path[plen + MAXPATHLEN - 1] = '\0';
1014 #ifdef	DEBUG
1015 			cmn_err(CE_WARN, "!Cannot lookup root device: %s",
1016 			    path);
1017 #endif
1018 		}
1019 		kmem_free(path, plen + MAXPATHLEN);
1020 	}
1021 
1022 	vfs_mnttabvp_setup();
1023 }
1024 
1025 /*
1026  * Check to see if our "block device" is actually a file.  If so,
1027  * automatically add a lofi device, and keep track of this fact.
1028  */
1029 static int
1030 lofi_add(const char *fsname, struct vfs *vfsp,
1031     mntopts_t *mntopts, struct mounta *uap)
1032 {
1033 	int fromspace = (uap->flags & MS_SYSSPACE) ?
1034 	    UIO_SYSSPACE : UIO_USERSPACE;
1035 	struct lofi_ioctl *li = NULL;
1036 	struct vnode *vp = NULL;
1037 	struct pathname	pn = { NULL };
1038 	ldi_ident_t ldi_id;
1039 	ldi_handle_t ldi_hdl;
1040 	vfssw_t *vfssw;
1041 	int minor;
1042 	int err = 0;
1043 
1044 	if ((vfssw = vfs_getvfssw(fsname)) == NULL)
1045 		return (0);
1046 
1047 	if (!(vfssw->vsw_flag & VSW_CANLOFI)) {
1048 		vfs_unrefvfssw(vfssw);
1049 		return (0);
1050 	}
1051 
1052 	vfs_unrefvfssw(vfssw);
1053 	vfssw = NULL;
1054 
1055 	if (pn_get(uap->spec, fromspace, &pn) != 0)
1056 		return (0);
1057 
1058 	if (lookupname(uap->spec, fromspace, FOLLOW, NULL, &vp) != 0)
1059 		goto out;
1060 
1061 	if (vp->v_type != VREG)
1062 		goto out;
1063 
1064 	/* OK, this is a lofi mount. */
1065 
1066 	if ((uap->flags & (MS_REMOUNT|MS_GLOBAL)) ||
1067 	    vfs_optionisset_nolock(mntopts, MNTOPT_SUID, NULL) ||
1068 	    vfs_optionisset_nolock(mntopts, MNTOPT_SETUID, NULL) ||
1069 	    vfs_optionisset_nolock(mntopts, MNTOPT_DEVICES, NULL)) {
1070 		err = EINVAL;
1071 		goto out;
1072 	}
1073 
1074 	ldi_id = ldi_ident_from_anon();
1075 	li = kmem_zalloc(sizeof (*li), KM_SLEEP);
1076 	(void) strlcpy(li->li_filename, pn.pn_path, MAXPATHLEN);
1077 
1078 	err = ldi_open_by_name("/dev/lofictl", FREAD | FWRITE, kcred,
1079 	    &ldi_hdl, ldi_id);
1080 
1081 	if (err)
1082 		goto out2;
1083 
1084 	err = ldi_ioctl(ldi_hdl, LOFI_MAP_FILE, (intptr_t)li,
1085 	    FREAD | FWRITE | FKIOCTL, kcred, &minor);
1086 
1087 	(void) ldi_close(ldi_hdl, FREAD | FWRITE, kcred);
1088 
1089 	if (!err)
1090 		vfsp->vfs_lofi_minor = minor;
1091 
1092 out2:
1093 	ldi_ident_release(ldi_id);
1094 out:
1095 	if (li != NULL)
1096 		kmem_free(li, sizeof (*li));
1097 	if (vp != NULL)
1098 		VN_RELE(vp);
1099 	pn_free(&pn);
1100 	return (err);
1101 }
1102 
1103 static void
1104 lofi_remove(struct vfs *vfsp)
1105 {
1106 	struct lofi_ioctl *li = NULL;
1107 	ldi_ident_t ldi_id;
1108 	ldi_handle_t ldi_hdl;
1109 	int err;
1110 
1111 	if (vfsp->vfs_lofi_minor == 0)
1112 		return;
1113 
1114 	ldi_id = ldi_ident_from_anon();
1115 
1116 	li = kmem_zalloc(sizeof (*li), KM_SLEEP);
1117 	li->li_minor = vfsp->vfs_lofi_minor;
1118 	li->li_cleanup = B_TRUE;
1119 
1120 	err = ldi_open_by_name("/dev/lofictl", FREAD | FWRITE, kcred,
1121 	    &ldi_hdl, ldi_id);
1122 
1123 	if (err)
1124 		goto out;
1125 
1126 	err = ldi_ioctl(ldi_hdl, LOFI_UNMAP_FILE_MINOR, (intptr_t)li,
1127 	    FREAD | FWRITE | FKIOCTL, kcred, NULL);
1128 
1129 	(void) ldi_close(ldi_hdl, FREAD | FWRITE, kcred);
1130 
1131 	if (!err)
1132 		vfsp->vfs_lofi_minor = 0;
1133 
1134 out:
1135 	ldi_ident_release(ldi_id);
1136 	if (li != NULL)
1137 		kmem_free(li, sizeof (*li));
1138 }
1139 
1140 /*
1141  * Common mount code.  Called from the system call entry point, from autofs,
1142  * nfsv4 trigger mounts, and from pxfs.
1143  *
1144  * Takes the effective file system type, mount arguments, the mount point
1145  * vnode, flags specifying whether the mount is a remount and whether it
1146  * should be entered into the vfs list, and credentials.  Fills in its vfspp
1147  * parameter with the mounted file system instance's vfs.
1148  *
1149  * Note that the effective file system type is specified as a string.  It may
1150  * be null, in which case it's determined from the mount arguments, and may
1151  * differ from the type specified in the mount arguments; this is a hook to
1152  * allow interposition when instantiating file system instances.
1153  *
1154  * The caller is responsible for releasing its own hold on the mount point
1155  * vp (this routine does its own hold when necessary).
1156  * Also note that for remounts, the mount point vp should be the vnode for
1157  * the root of the file system rather than the vnode that the file system
1158  * is mounted on top of.
1159  */
1160 int
1161 domount(char *fsname, struct mounta *uap, vnode_t *vp, struct cred *credp,
1162 	struct vfs **vfspp)
1163 {
1164 	struct vfssw	*vswp;
1165 	vfsops_t	*vfsops;
1166 	struct vfs	*vfsp;
1167 	struct vnode	*bvp;
1168 	dev_t		bdev = 0;
1169 	mntopts_t	mnt_mntopts;
1170 	int		error = 0;
1171 	int		copyout_error = 0;
1172 	int		ovflags;
1173 	char		*opts = uap->optptr;
1174 	char		*inargs = opts;
1175 	int		optlen = uap->optlen;
1176 	int		remount;
1177 	int		rdonly;
1178 	int		nbmand = 0;
1179 	int		delmip = 0;
1180 	int		addmip = 0;
1181 	int		splice = ((uap->flags & MS_NOSPLICE) == 0);
1182 	int		fromspace = (uap->flags & MS_SYSSPACE) ?
1183 	    UIO_SYSSPACE : UIO_USERSPACE;
1184 	char		*resource = NULL, *mountpt = NULL;
1185 	refstr_t	*oldresource, *oldmntpt;
1186 	struct pathname	pn, rpn;
1187 	vsk_anchor_t	*vskap;
1188 	char fstname[FSTYPSZ];
1189 	zone_t		*zone;
1190 
1191 	/*
1192 	 * The v_flag value for the mount point vp is permanently set
1193 	 * to VVFSLOCK so that no one bypasses the vn_vfs*locks routine
1194 	 * for mount point locking.
1195 	 */
1196 	mutex_enter(&vp->v_lock);
1197 	vp->v_flag |= VVFSLOCK;
1198 	mutex_exit(&vp->v_lock);
1199 
1200 	mnt_mntopts.mo_count = 0;
1201 	/*
1202 	 * Find the ops vector to use to invoke the file system-specific mount
1203 	 * method.  If the fsname argument is non-NULL, use it directly.
1204 	 * Otherwise, dig the file system type information out of the mount
1205 	 * arguments.
1206 	 *
1207 	 * A side effect is to hold the vfssw entry.
1208 	 *
1209 	 * Mount arguments can be specified in several ways, which are
1210 	 * distinguished by flag bit settings.  The preferred way is to set
1211 	 * MS_OPTIONSTR, indicating an 8 argument mount with the file system
1212 	 * type supplied as a character string and the last two arguments
1213 	 * being a pointer to a character buffer and the size of the buffer.
1214 	 * On entry, the buffer holds a null terminated list of options; on
1215 	 * return, the string is the list of options the file system
1216 	 * recognized. If MS_DATA is set arguments five and six point to a
1217 	 * block of binary data which the file system interprets.
1218 	 * A further wrinkle is that some callers don't set MS_FSS and MS_DATA
1219 	 * consistently with these conventions.  To handle them, we check to
1220 	 * see whether the pointer to the file system name has a numeric value
1221 	 * less than 256.  If so, we treat it as an index.
1222 	 */
1223 	if (fsname != NULL) {
1224 		if ((vswp = vfs_getvfssw(fsname)) == NULL) {
1225 			return (EINVAL);
1226 		}
1227 	} else if (uap->flags & (MS_OPTIONSTR | MS_DATA | MS_FSS)) {
1228 		size_t n;
1229 		uint_t fstype;
1230 
1231 		fsname = fstname;
1232 
1233 		if ((fstype = (uintptr_t)uap->fstype) < 256) {
1234 			RLOCK_VFSSW();
1235 			if (fstype == 0 || fstype >= nfstype ||
1236 			    !ALLOCATED_VFSSW(&vfssw[fstype])) {
1237 				RUNLOCK_VFSSW();
1238 				return (EINVAL);
1239 			}
1240 			(void) strcpy(fsname, vfssw[fstype].vsw_name);
1241 			RUNLOCK_VFSSW();
1242 			if ((vswp = vfs_getvfssw(fsname)) == NULL)
1243 				return (EINVAL);
1244 		} else {
1245 			/*
1246 			 * Handle either kernel or user address space.
1247 			 */
1248 			if (uap->flags & MS_SYSSPACE) {
1249 				error = copystr(uap->fstype, fsname,
1250 				    FSTYPSZ, &n);
1251 			} else {
1252 				error = copyinstr(uap->fstype, fsname,
1253 				    FSTYPSZ, &n);
1254 			}
1255 			if (error) {
1256 				if (error == ENAMETOOLONG)
1257 					return (EINVAL);
1258 				return (error);
1259 			}
1260 			if ((vswp = vfs_getvfssw(fsname)) == NULL)
1261 				return (EINVAL);
1262 		}
1263 	} else {
1264 		if ((vswp = vfs_getvfsswbyvfsops(vfs_getops(rootvfs))) == NULL)
1265 			return (EINVAL);
1266 		fsname = vswp->vsw_name;
1267 	}
1268 	if (!VFS_INSTALLED(vswp))
1269 		return (EINVAL);
1270 
1271 	if ((error = secpolicy_fs_allowed_mount(fsname)) != 0)  {
1272 		vfs_unrefvfssw(vswp);
1273 		return (error);
1274 	}
1275 
1276 	vfsops = &vswp->vsw_vfsops;
1277 
1278 	vfs_copyopttbl(&vswp->vsw_optproto, &mnt_mntopts);
1279 	/*
1280 	 * Fetch mount options and parse them for generic vfs options
1281 	 */
1282 	if (uap->flags & MS_OPTIONSTR) {
1283 		/*
1284 		 * Limit the buffer size
1285 		 */
1286 		if (optlen < 0 || optlen > MAX_MNTOPT_STR) {
1287 			error = EINVAL;
1288 			goto errout;
1289 		}
1290 		if ((uap->flags & MS_SYSSPACE) == 0) {
1291 			inargs = kmem_alloc(MAX_MNTOPT_STR, KM_SLEEP);
1292 			inargs[0] = '\0';
1293 			if (optlen) {
1294 				error = copyinstr(opts, inargs, (size_t)optlen,
1295 				    NULL);
1296 				if (error) {
1297 					goto errout;
1298 				}
1299 			}
1300 		}
1301 		vfs_parsemntopts(&mnt_mntopts, inargs, 0);
1302 	}
1303 	/*
1304 	 * Flag bits override the options string.
1305 	 */
1306 	if (uap->flags & MS_REMOUNT)
1307 		vfs_setmntopt_nolock(&mnt_mntopts, MNTOPT_REMOUNT, NULL, 0, 0);
1308 	if (uap->flags & MS_RDONLY)
1309 		vfs_setmntopt_nolock(&mnt_mntopts, MNTOPT_RO, NULL, 0, 0);
1310 	if (uap->flags & MS_NOSUID)
1311 		vfs_setmntopt_nolock(&mnt_mntopts, MNTOPT_NOSUID, NULL, 0, 0);
1312 
1313 	/*
1314 	 * Check if this is a remount; must be set in the option string and
1315 	 * the file system must support a remount option.
1316 	 */
1317 	if (remount = vfs_optionisset_nolock(&mnt_mntopts,
1318 	    MNTOPT_REMOUNT, NULL)) {
1319 		if (!(vswp->vsw_flag & VSW_CANREMOUNT)) {
1320 			error = ENOTSUP;
1321 			goto errout;
1322 		}
1323 		uap->flags |= MS_REMOUNT;
1324 	}
1325 
1326 	/*
1327 	 * uap->flags and vfs_optionisset() should agree.
1328 	 */
1329 	if (rdonly = vfs_optionisset_nolock(&mnt_mntopts, MNTOPT_RO, NULL)) {
1330 		uap->flags |= MS_RDONLY;
1331 	}
1332 	if (vfs_optionisset_nolock(&mnt_mntopts, MNTOPT_NOSUID, NULL)) {
1333 		uap->flags |= MS_NOSUID;
1334 	}
1335 	nbmand = vfs_optionisset_nolock(&mnt_mntopts, MNTOPT_NBMAND, NULL);
1336 	ASSERT(splice || !remount);
1337 	/*
1338 	 * If we are splicing the fs into the namespace,
1339 	 * perform mount point checks.
1340 	 *
1341 	 * We want to resolve the path for the mount point to eliminate
1342 	 * '.' and ".." and symlinks in mount points; we can't do the
1343 	 * same for the resource string, since it would turn
1344 	 * "/dev/dsk/c0t0d0s0" into "/devices/pci@...".  We need to do
1345 	 * this before grabbing vn_vfswlock(), because otherwise we
1346 	 * would deadlock with lookuppn().
1347 	 */
1348 	if (splice) {
1349 		ASSERT(vp->v_count > 0);
1350 
1351 		/*
1352 		 * Pick up mount point and device from appropriate space.
1353 		 */
1354 		if (pn_get(uap->spec, fromspace, &pn) == 0) {
1355 			resource = kmem_alloc(pn.pn_pathlen + 1,
1356 			    KM_SLEEP);
1357 			(void) strcpy(resource, pn.pn_path);
1358 			pn_free(&pn);
1359 		}
1360 		/*
1361 		 * Do a lookupname prior to taking the
1362 		 * writelock. Mark this as completed if
1363 		 * successful for later cleanup and addition to
1364 		 * the mount in progress table.
1365 		 */
1366 		if ((uap->flags & MS_GLOBAL) == 0 &&
1367 		    lookupname(uap->spec, fromspace,
1368 		    FOLLOW, NULL, &bvp) == 0) {
1369 			addmip = 1;
1370 		}
1371 
1372 		if ((error = pn_get(uap->dir, fromspace, &pn)) == 0) {
1373 			pathname_t *pnp;
1374 
1375 			if (*pn.pn_path != '/') {
1376 				error = EINVAL;
1377 				pn_free(&pn);
1378 				goto errout;
1379 			}
1380 			pn_alloc(&rpn);
1381 			/*
1382 			 * Kludge to prevent autofs from deadlocking with
1383 			 * itself when it calls domount().
1384 			 *
1385 			 * If autofs is calling, it is because it is doing
1386 			 * (autofs) mounts in the process of an NFS mount.  A
1387 			 * lookuppn() here would cause us to block waiting for
1388 			 * said NFS mount to complete, which can't since this
1389 			 * is the thread that was supposed to doing it.
1390 			 */
1391 			if (fromspace == UIO_USERSPACE) {
1392 				if ((error = lookuppn(&pn, &rpn, FOLLOW, NULL,
1393 				    NULL)) == 0) {
1394 					pnp = &rpn;
1395 				} else {
1396 					/*
1397 					 * The file disappeared or otherwise
1398 					 * became inaccessible since we opened
1399 					 * it; might as well fail the mount
1400 					 * since the mount point is no longer
1401 					 * accessible.
1402 					 */
1403 					pn_free(&rpn);
1404 					pn_free(&pn);
1405 					goto errout;
1406 				}
1407 			} else {
1408 				pnp = &pn;
1409 			}
1410 			mountpt = kmem_alloc(pnp->pn_pathlen + 1, KM_SLEEP);
1411 			(void) strcpy(mountpt, pnp->pn_path);
1412 
1413 			/*
1414 			 * If the addition of the zone's rootpath
1415 			 * would push us over a total path length
1416 			 * of MAXPATHLEN, we fail the mount with
1417 			 * ENAMETOOLONG, which is what we would have
1418 			 * gotten if we were trying to perform the same
1419 			 * mount in the global zone.
1420 			 *
1421 			 * strlen() doesn't count the trailing
1422 			 * '\0', but zone_rootpathlen counts both a
1423 			 * trailing '/' and the terminating '\0'.
1424 			 */
1425 			if ((curproc->p_zone->zone_rootpathlen - 1 +
1426 			    strlen(mountpt)) > MAXPATHLEN ||
1427 			    (resource != NULL &&
1428 			    (curproc->p_zone->zone_rootpathlen - 1 +
1429 			    strlen(resource)) > MAXPATHLEN)) {
1430 				error = ENAMETOOLONG;
1431 			}
1432 
1433 			pn_free(&rpn);
1434 			pn_free(&pn);
1435 		}
1436 
1437 		if (error)
1438 			goto errout;
1439 
1440 		/*
1441 		 * Prevent path name resolution from proceeding past
1442 		 * the mount point.
1443 		 */
1444 		if (vn_vfswlock(vp) != 0) {
1445 			error = EBUSY;
1446 			goto errout;
1447 		}
1448 
1449 		/*
1450 		 * Verify that it's legitimate to establish a mount on
1451 		 * the prospective mount point.
1452 		 */
1453 		if (vn_mountedvfs(vp) != NULL) {
1454 			/*
1455 			 * The mount point lock was obtained after some
1456 			 * other thread raced through and established a mount.
1457 			 */
1458 			vn_vfsunlock(vp);
1459 			error = EBUSY;
1460 			goto errout;
1461 		}
1462 		if (vp->v_flag & VNOMOUNT) {
1463 			vn_vfsunlock(vp);
1464 			error = EINVAL;
1465 			goto errout;
1466 		}
1467 	}
1468 	if ((uap->flags & (MS_DATA | MS_OPTIONSTR)) == 0) {
1469 		uap->dataptr = NULL;
1470 		uap->datalen = 0;
1471 	}
1472 
1473 	/*
1474 	 * If this is a remount, we don't want to create a new VFS.
1475 	 * Instead, we pass the existing one with a remount flag.
1476 	 */
1477 	if (remount) {
1478 		/*
1479 		 * Confirm that the mount point is the root vnode of the
1480 		 * file system that is being remounted.
1481 		 * This can happen if the user specifies a different
1482 		 * mount point directory pathname in the (re)mount command.
1483 		 *
1484 		 * Code below can only be reached if splice is true, so it's
1485 		 * safe to do vn_vfsunlock() here.
1486 		 */
1487 		if ((vp->v_flag & VROOT) == 0) {
1488 			vn_vfsunlock(vp);
1489 			error = ENOENT;
1490 			goto errout;
1491 		}
1492 		/*
1493 		 * Disallow making file systems read-only unless file system
1494 		 * explicitly allows it in its vfssw.  Ignore other flags.
1495 		 */
1496 		if (rdonly && vn_is_readonly(vp) == 0 &&
1497 		    (vswp->vsw_flag & VSW_CANRWRO) == 0) {
1498 			vn_vfsunlock(vp);
1499 			error = EINVAL;
1500 			goto errout;
1501 		}
1502 		/*
1503 		 * Disallow changing the NBMAND disposition of the file
1504 		 * system on remounts.
1505 		 */
1506 		if ((nbmand && ((vp->v_vfsp->vfs_flag & VFS_NBMAND) == 0)) ||
1507 		    (!nbmand && (vp->v_vfsp->vfs_flag & VFS_NBMAND))) {
1508 			vn_vfsunlock(vp);
1509 			error = EINVAL;
1510 			goto errout;
1511 		}
1512 		vfsp = vp->v_vfsp;
1513 		ovflags = vfsp->vfs_flag;
1514 		vfsp->vfs_flag |= VFS_REMOUNT;
1515 		vfsp->vfs_flag &= ~VFS_RDONLY;
1516 	} else {
1517 		vfsp = vfs_alloc(KM_SLEEP);
1518 		VFS_INIT(vfsp, vfsops, NULL);
1519 	}
1520 
1521 	VFS_HOLD(vfsp);
1522 
1523 	if ((error = lofi_add(fsname, vfsp, &mnt_mntopts, uap)) != 0) {
1524 		if (!remount) {
1525 			if (splice)
1526 				vn_vfsunlock(vp);
1527 			vfs_free(vfsp);
1528 		} else {
1529 			vn_vfsunlock(vp);
1530 			VFS_RELE(vfsp);
1531 		}
1532 		goto errout;
1533 	}
1534 
1535 	/*
1536 	 * PRIV_SYS_MOUNT doesn't mean you can become root.
1537 	 */
1538 	if (vfsp->vfs_lofi_minor != 0) {
1539 		uap->flags |= MS_NOSUID;
1540 		vfs_setmntopt_nolock(&mnt_mntopts, MNTOPT_NOSUID, NULL, 0, 0);
1541 	}
1542 
1543 	/*
1544 	 * The vfs_reflock is not used anymore the code below explicitly
1545 	 * holds it preventing others accesing it directly.
1546 	 */
1547 	if ((sema_tryp(&vfsp->vfs_reflock) == 0) &&
1548 	    !(vfsp->vfs_flag & VFS_REMOUNT))
1549 		cmn_err(CE_WARN,
1550 		    "mount type %s couldn't get vfs_reflock", vswp->vsw_name);
1551 
1552 	/*
1553 	 * Lock the vfs. If this is a remount we want to avoid spurious umount
1554 	 * failures that happen as a side-effect of fsflush() and other mount
1555 	 * and unmount operations that might be going on simultaneously and
1556 	 * may have locked the vfs currently. To not return EBUSY immediately
1557 	 * here we use vfs_lock_wait() instead vfs_lock() for the remount case.
1558 	 */
1559 	if (!remount) {
1560 		if (error = vfs_lock(vfsp)) {
1561 			vfsp->vfs_flag = ovflags;
1562 
1563 			lofi_remove(vfsp);
1564 
1565 			if (splice)
1566 				vn_vfsunlock(vp);
1567 			vfs_free(vfsp);
1568 			goto errout;
1569 		}
1570 	} else {
1571 		vfs_lock_wait(vfsp);
1572 	}
1573 
1574 	/*
1575 	 * Add device to mount in progress table, global mounts require special
1576 	 * handling. It is possible that we have already done the lookupname
1577 	 * on a spliced, non-global fs. If so, we don't want to do it again
1578 	 * since we cannot do a lookupname after taking the
1579 	 * wlock above. This case is for a non-spliced, non-global filesystem.
1580 	 */
1581 	if (!addmip) {
1582 		if ((uap->flags & MS_GLOBAL) == 0 &&
1583 		    lookupname(uap->spec, fromspace, FOLLOW, NULL, &bvp) == 0) {
1584 			addmip = 1;
1585 		}
1586 	}
1587 
1588 	if (addmip) {
1589 		vnode_t *lvp = NULL;
1590 
1591 		error = vfs_get_lofi(vfsp, &lvp);
1592 		if (error > 0) {
1593 			lofi_remove(vfsp);
1594 
1595 			if (splice)
1596 				vn_vfsunlock(vp);
1597 			vfs_unlock(vfsp);
1598 
1599 			if (remount) {
1600 				VFS_RELE(vfsp);
1601 			} else {
1602 				vfs_free(vfsp);
1603 			}
1604 
1605 			goto errout;
1606 		} else if (error == -1) {
1607 			bdev = bvp->v_rdev;
1608 			VN_RELE(bvp);
1609 		} else {
1610 			bdev = lvp->v_rdev;
1611 			VN_RELE(lvp);
1612 			VN_RELE(bvp);
1613 		}
1614 
1615 		vfs_addmip(bdev, vfsp);
1616 		addmip = 0;
1617 		delmip = 1;
1618 	}
1619 	/*
1620 	 * Invalidate cached entry for the mount point.
1621 	 */
1622 	if (splice)
1623 		dnlc_purge_vp(vp);
1624 
1625 	/*
1626 	 * If have an option string but the filesystem doesn't supply a
1627 	 * prototype options table, create a table with the global
1628 	 * options and sufficient room to accept all the options in the
1629 	 * string.  Then parse the passed in option string
1630 	 * accepting all the options in the string.  This gives us an
1631 	 * option table with all the proper cancel properties for the
1632 	 * global options.
1633 	 *
1634 	 * Filesystems that supply a prototype options table are handled
1635 	 * earlier in this function.
1636 	 */
1637 	if (uap->flags & MS_OPTIONSTR) {
1638 		if (!(vswp->vsw_flag & VSW_HASPROTO)) {
1639 			mntopts_t tmp_mntopts;
1640 
1641 			tmp_mntopts.mo_count = 0;
1642 			vfs_createopttbl_extend(&tmp_mntopts, inargs,
1643 			    &mnt_mntopts);
1644 			vfs_parsemntopts(&tmp_mntopts, inargs, 1);
1645 			vfs_swapopttbl_nolock(&mnt_mntopts, &tmp_mntopts);
1646 			vfs_freeopttbl(&tmp_mntopts);
1647 		}
1648 	}
1649 
1650 	/*
1651 	 * Serialize with zone state transitions.
1652 	 * See vfs_list_add; zone mounted into is:
1653 	 * 	zone_find_by_path(refstr_value(vfsp->vfs_mntpt))
1654 	 * not the zone doing the mount (curproc->p_zone), but if we're already
1655 	 * inside a NGZ, then we know what zone we are.
1656 	 */
1657 	if (INGLOBALZONE(curproc)) {
1658 		zone = zone_find_by_path(mountpt);
1659 		ASSERT(zone != NULL);
1660 	} else {
1661 		zone = curproc->p_zone;
1662 		/*
1663 		 * zone_find_by_path does a hold, so do one here too so that
1664 		 * we can do a zone_rele after mount_completed.
1665 		 */
1666 		zone_hold(zone);
1667 	}
1668 	mount_in_progress(zone);
1669 	/*
1670 	 * Instantiate (or reinstantiate) the file system.  If appropriate,
1671 	 * splice it into the file system name space.
1672 	 *
1673 	 * We want VFS_MOUNT() to be able to override the vfs_resource
1674 	 * string if necessary (ie, mntfs), and also for a remount to
1675 	 * change the same (necessary when remounting '/' during boot).
1676 	 * So we set up vfs_mntpt and vfs_resource to what we think they
1677 	 * should be, then hand off control to VFS_MOUNT() which can
1678 	 * override this.
1679 	 *
1680 	 * For safety's sake, when changing vfs_resource or vfs_mntpt of
1681 	 * a vfs which is on the vfs list (i.e. during a remount), we must
1682 	 * never set those fields to NULL. Several bits of code make
1683 	 * assumptions that the fields are always valid.
1684 	 */
1685 	vfs_swapopttbl(&mnt_mntopts, &vfsp->vfs_mntopts);
1686 	if (remount) {
1687 		if ((oldresource = vfsp->vfs_resource) != NULL)
1688 			refstr_hold(oldresource);
1689 		if ((oldmntpt = vfsp->vfs_mntpt) != NULL)
1690 			refstr_hold(oldmntpt);
1691 	}
1692 	vfs_setresource(vfsp, resource, 0);
1693 	vfs_setmntpoint(vfsp, mountpt, 0);
1694 
1695 	/*
1696 	 * going to mount on this vnode, so notify.
1697 	 */
1698 	vnevent_mountedover(vp, NULL);
1699 	error = VFS_MOUNT(vfsp, vp, uap, credp);
1700 
1701 	if (uap->flags & MS_RDONLY)
1702 		vfs_setmntopt(vfsp, MNTOPT_RO, NULL, 0);
1703 	if (uap->flags & MS_NOSUID)
1704 		vfs_setmntopt(vfsp, MNTOPT_NOSUID, NULL, 0);
1705 	if (uap->flags & MS_GLOBAL)
1706 		vfs_setmntopt(vfsp, MNTOPT_GLOBAL, NULL, 0);
1707 
1708 	if (error) {
1709 		lofi_remove(vfsp);
1710 
1711 		if (remount) {
1712 			/* put back pre-remount options */
1713 			vfs_swapopttbl(&mnt_mntopts, &vfsp->vfs_mntopts);
1714 			vfs_setmntpoint(vfsp, refstr_value(oldmntpt),
1715 			    VFSSP_VERBATIM);
1716 			if (oldmntpt)
1717 				refstr_rele(oldmntpt);
1718 			vfs_setresource(vfsp, refstr_value(oldresource),
1719 			    VFSSP_VERBATIM);
1720 			if (oldresource)
1721 				refstr_rele(oldresource);
1722 			vfsp->vfs_flag = ovflags;
1723 			vfs_unlock(vfsp);
1724 			VFS_RELE(vfsp);
1725 		} else {
1726 			vfs_unlock(vfsp);
1727 			vfs_freemnttab(vfsp);
1728 			vfs_free(vfsp);
1729 		}
1730 	} else {
1731 		/*
1732 		 * Set the mount time to now
1733 		 */
1734 		vfsp->vfs_mtime = ddi_get_time();
1735 		if (remount) {
1736 			vfsp->vfs_flag &= ~VFS_REMOUNT;
1737 			if (oldresource)
1738 				refstr_rele(oldresource);
1739 			if (oldmntpt)
1740 				refstr_rele(oldmntpt);
1741 		} else if (splice) {
1742 			/*
1743 			 * Link vfsp into the name space at the mount
1744 			 * point. Vfs_add() is responsible for
1745 			 * holding the mount point which will be
1746 			 * released when vfs_remove() is called.
1747 			 */
1748 			vfs_add(vp, vfsp, uap->flags);
1749 		} else {
1750 			/*
1751 			 * Hold the reference to file system which is
1752 			 * not linked into the name space.
1753 			 */
1754 			vfsp->vfs_zone = NULL;
1755 			VFS_HOLD(vfsp);
1756 			vfsp->vfs_vnodecovered = NULL;
1757 		}
1758 		/*
1759 		 * Set flags for global options encountered
1760 		 */
1761 		if (vfs_optionisset(vfsp, MNTOPT_RO, NULL))
1762 			vfsp->vfs_flag |= VFS_RDONLY;
1763 		else
1764 			vfsp->vfs_flag &= ~VFS_RDONLY;
1765 		if (vfs_optionisset(vfsp, MNTOPT_NOSUID, NULL)) {
1766 			vfsp->vfs_flag |= (VFS_NOSETUID|VFS_NODEVICES);
1767 		} else {
1768 			if (vfs_optionisset(vfsp, MNTOPT_NODEVICES, NULL))
1769 				vfsp->vfs_flag |= VFS_NODEVICES;
1770 			else
1771 				vfsp->vfs_flag &= ~VFS_NODEVICES;
1772 			if (vfs_optionisset(vfsp, MNTOPT_NOSETUID, NULL))
1773 				vfsp->vfs_flag |= VFS_NOSETUID;
1774 			else
1775 				vfsp->vfs_flag &= ~VFS_NOSETUID;
1776 		}
1777 		if (vfs_optionisset(vfsp, MNTOPT_NBMAND, NULL))
1778 			vfsp->vfs_flag |= VFS_NBMAND;
1779 		else
1780 			vfsp->vfs_flag &= ~VFS_NBMAND;
1781 
1782 		if (vfs_optionisset(vfsp, MNTOPT_XATTR, NULL))
1783 			vfsp->vfs_flag |= VFS_XATTR;
1784 		else
1785 			vfsp->vfs_flag &= ~VFS_XATTR;
1786 
1787 		if (vfs_optionisset(vfsp, MNTOPT_NOEXEC, NULL))
1788 			vfsp->vfs_flag |= VFS_NOEXEC;
1789 		else
1790 			vfsp->vfs_flag &= ~VFS_NOEXEC;
1791 
1792 		/*
1793 		 * Now construct the output option string of options
1794 		 * we recognized.
1795 		 */
1796 		if (uap->flags & MS_OPTIONSTR) {
1797 			vfs_list_read_lock();
1798 			copyout_error = vfs_buildoptionstr(
1799 			    &vfsp->vfs_mntopts, inargs, optlen);
1800 			vfs_list_unlock();
1801 			if (copyout_error == 0 &&
1802 			    (uap->flags & MS_SYSSPACE) == 0) {
1803 				copyout_error = copyoutstr(inargs, opts,
1804 				    optlen, NULL);
1805 			}
1806 		}
1807 
1808 		/*
1809 		 * If this isn't a remount, set up the vopstats before
1810 		 * anyone can touch this. We only allow spliced file
1811 		 * systems (file systems which are in the namespace) to
1812 		 * have the VFS_STATS flag set.
1813 		 * NOTE: PxFS mounts the underlying file system with
1814 		 * MS_NOSPLICE set and copies those vfs_flags to its private
1815 		 * vfs structure. As a result, PxFS should never have
1816 		 * the VFS_STATS flag or else we might access the vfs
1817 		 * statistics-related fields prior to them being
1818 		 * properly initialized.
1819 		 */
1820 		if (!remount && (vswp->vsw_flag & VSW_STATS) && splice) {
1821 			initialize_vopstats(&vfsp->vfs_vopstats);
1822 			/*
1823 			 * We need to set vfs_vskap to NULL because there's
1824 			 * a chance it won't be set below.  This is checked
1825 			 * in teardown_vopstats() so we can't have garbage.
1826 			 */
1827 			vfsp->vfs_vskap = NULL;
1828 			vfsp->vfs_flag |= VFS_STATS;
1829 			vfsp->vfs_fstypevsp = get_fstype_vopstats(vfsp, vswp);
1830 		}
1831 
1832 		if (vswp->vsw_flag & VSW_XID)
1833 			vfsp->vfs_flag |= VFS_XID;
1834 
1835 		vfs_unlock(vfsp);
1836 	}
1837 	mount_completed(zone);
1838 	zone_rele(zone);
1839 	if (splice)
1840 		vn_vfsunlock(vp);
1841 
1842 	if ((error == 0) && (copyout_error == 0)) {
1843 		if (!remount) {
1844 			/*
1845 			 * Don't call get_vskstat_anchor() while holding
1846 			 * locks since it allocates memory and calls
1847 			 * VFS_STATVFS().  For NFS, the latter can generate
1848 			 * an over-the-wire call.
1849 			 */
1850 			vskap = get_vskstat_anchor(vfsp);
1851 			/* Only take the lock if we have something to do */
1852 			if (vskap != NULL) {
1853 				vfs_lock_wait(vfsp);
1854 				if (vfsp->vfs_flag & VFS_STATS) {
1855 					vfsp->vfs_vskap = vskap;
1856 				}
1857 				vfs_unlock(vfsp);
1858 			}
1859 		}
1860 		/* Return vfsp to caller. */
1861 		*vfspp = vfsp;
1862 	}
1863 errout:
1864 	vfs_freeopttbl(&mnt_mntopts);
1865 	if (resource != NULL)
1866 		kmem_free(resource, strlen(resource) + 1);
1867 	if (mountpt != NULL)
1868 		kmem_free(mountpt, strlen(mountpt) + 1);
1869 	/*
1870 	 * It is possible we errored prior to adding to mount in progress
1871 	 * table. Must free vnode we acquired with successful lookupname.
1872 	 */
1873 	if (addmip)
1874 		VN_RELE(bvp);
1875 	if (delmip)
1876 		vfs_delmip(vfsp);
1877 	ASSERT(vswp != NULL);
1878 	vfs_unrefvfssw(vswp);
1879 	if (inargs != opts)
1880 		kmem_free(inargs, MAX_MNTOPT_STR);
1881 	if (copyout_error) {
1882 		lofi_remove(vfsp);
1883 		VFS_RELE(vfsp);
1884 		error = copyout_error;
1885 	}
1886 	return (error);
1887 }
1888 
1889 static void
1890 vfs_setpath(
1891     struct vfs *vfsp,		/* vfs being updated */
1892     refstr_t **refp,		/* Ref-count string to contain the new path */
1893     const char *newpath,	/* Path to add to refp (above) */
1894     uint32_t flag)		/* flag */
1895 {
1896 	size_t len;
1897 	refstr_t *ref;
1898 	zone_t *zone = curproc->p_zone;
1899 	char *sp;
1900 	int have_list_lock = 0;
1901 
1902 	ASSERT(!VFS_ON_LIST(vfsp) || vfs_lock_held(vfsp));
1903 
1904 	/*
1905 	 * New path must be less than MAXPATHLEN because mntfs
1906 	 * will only display up to MAXPATHLEN bytes. This is currently
1907 	 * safe, because domount() uses pn_get(), and other callers
1908 	 * similarly cap the size to fewer than MAXPATHLEN bytes.
1909 	 */
1910 
1911 	ASSERT(strlen(newpath) < MAXPATHLEN);
1912 
1913 	/* mntfs requires consistency while vfs list lock is held */
1914 
1915 	if (VFS_ON_LIST(vfsp)) {
1916 		have_list_lock = 1;
1917 		vfs_list_lock();
1918 	}
1919 
1920 	if (*refp != NULL)
1921 		refstr_rele(*refp);
1922 
1923 	/*
1924 	 * If we are in a non-global zone then we prefix the supplied path,
1925 	 * newpath, with the zone's root path, with two exceptions. The first
1926 	 * is where we have been explicitly directed to avoid doing so; this
1927 	 * will be the case following a failed remount, where the path supplied
1928 	 * will be a saved version which must now be restored. The second
1929 	 * exception is where newpath is not a pathname but a descriptive name,
1930 	 * e.g. "procfs".
1931 	 */
1932 	if (zone == global_zone || (flag & VFSSP_VERBATIM) || *newpath != '/') {
1933 		ref = refstr_alloc(newpath);
1934 		goto out;
1935 	}
1936 
1937 	/*
1938 	 * Truncate the trailing '/' in the zoneroot, and merge
1939 	 * in the zone's rootpath with the "newpath" (resource
1940 	 * or mountpoint) passed in.
1941 	 *
1942 	 * The size of the required buffer is thus the size of
1943 	 * the buffer required for the passed-in newpath
1944 	 * (strlen(newpath) + 1), plus the size of the buffer
1945 	 * required to hold zone_rootpath (zone_rootpathlen)
1946 	 * minus one for one of the now-superfluous NUL
1947 	 * terminations, minus one for the trailing '/'.
1948 	 *
1949 	 * That gives us:
1950 	 *
1951 	 * (strlen(newpath) + 1) + zone_rootpathlen - 1 - 1
1952 	 *
1953 	 * Which is what we have below.
1954 	 */
1955 
1956 	len = strlen(newpath) + zone->zone_rootpathlen - 1;
1957 	sp = kmem_alloc(len, KM_SLEEP);
1958 
1959 	/*
1960 	 * Copy everything including the trailing slash, which
1961 	 * we then overwrite with the NUL character.
1962 	 */
1963 
1964 	(void) strcpy(sp, zone->zone_rootpath);
1965 	sp[zone->zone_rootpathlen - 2] = '\0';
1966 	(void) strcat(sp, newpath);
1967 
1968 	ref = refstr_alloc(sp);
1969 	kmem_free(sp, len);
1970 out:
1971 	*refp = ref;
1972 
1973 	if (have_list_lock) {
1974 		vfs_mnttab_modtimeupd();
1975 		vfs_list_unlock();
1976 	}
1977 }
1978 
1979 /*
1980  * Record a mounted resource name in a vfs structure.
1981  * If vfsp is already mounted, caller must hold the vfs lock.
1982  */
1983 void
1984 vfs_setresource(struct vfs *vfsp, const char *resource, uint32_t flag)
1985 {
1986 	if (resource == NULL || resource[0] == '\0')
1987 		resource = VFS_NORESOURCE;
1988 	vfs_setpath(vfsp, &vfsp->vfs_resource, resource, flag);
1989 }
1990 
1991 /*
1992  * Record a mount point name in a vfs structure.
1993  * If vfsp is already mounted, caller must hold the vfs lock.
1994  */
1995 void
1996 vfs_setmntpoint(struct vfs *vfsp, const char *mntpt, uint32_t flag)
1997 {
1998 	if (mntpt == NULL || mntpt[0] == '\0')
1999 		mntpt = VFS_NOMNTPT;
2000 	vfs_setpath(vfsp, &vfsp->vfs_mntpt, mntpt, flag);
2001 }
2002 
2003 /* Returns the vfs_resource. Caller must call refstr_rele() when finished. */
2004 
2005 refstr_t *
2006 vfs_getresource(const struct vfs *vfsp)
2007 {
2008 	refstr_t *resource;
2009 
2010 	vfs_list_read_lock();
2011 	resource = vfsp->vfs_resource;
2012 	refstr_hold(resource);
2013 	vfs_list_unlock();
2014 
2015 	return (resource);
2016 }
2017 
2018 /* Returns the vfs_mntpt. Caller must call refstr_rele() when finished. */
2019 
2020 refstr_t *
2021 vfs_getmntpoint(const struct vfs *vfsp)
2022 {
2023 	refstr_t *mntpt;
2024 
2025 	vfs_list_read_lock();
2026 	mntpt = vfsp->vfs_mntpt;
2027 	refstr_hold(mntpt);
2028 	vfs_list_unlock();
2029 
2030 	return (mntpt);
2031 }
2032 
2033 /*
2034  * Create an empty options table with enough empty slots to hold all
2035  * The options in the options string passed as an argument.
2036  * Potentially prepend another options table.
2037  *
2038  * Note: caller is responsible for locking the vfs list, if needed,
2039  *       to protect mops.
2040  */
2041 static void
2042 vfs_createopttbl_extend(mntopts_t *mops, const char *opts,
2043     const mntopts_t *mtmpl)
2044 {
2045 	const char *s = opts;
2046 	uint_t count;
2047 
2048 	if (opts == NULL || *opts == '\0') {
2049 		count = 0;
2050 	} else {
2051 		count = 1;
2052 
2053 		/*
2054 		 * Count number of options in the string
2055 		 */
2056 		for (s = strchr(s, ','); s != NULL; s = strchr(s, ',')) {
2057 			count++;
2058 			s++;
2059 		}
2060 	}
2061 	vfs_copyopttbl_extend(mtmpl, mops, count);
2062 }
2063 
2064 /*
2065  * Create an empty options table with enough empty slots to hold all
2066  * The options in the options string passed as an argument.
2067  *
2068  * This function is *not* for general use by filesystems.
2069  *
2070  * Note: caller is responsible for locking the vfs list, if needed,
2071  *       to protect mops.
2072  */
2073 void
2074 vfs_createopttbl(mntopts_t *mops, const char *opts)
2075 {
2076 	vfs_createopttbl_extend(mops, opts, NULL);
2077 }
2078 
2079 
2080 /*
2081  * Swap two mount options tables
2082  */
2083 static void
2084 vfs_swapopttbl_nolock(mntopts_t *optbl1, mntopts_t *optbl2)
2085 {
2086 	uint_t tmpcnt;
2087 	mntopt_t *tmplist;
2088 
2089 	tmpcnt = optbl2->mo_count;
2090 	tmplist = optbl2->mo_list;
2091 	optbl2->mo_count = optbl1->mo_count;
2092 	optbl2->mo_list = optbl1->mo_list;
2093 	optbl1->mo_count = tmpcnt;
2094 	optbl1->mo_list = tmplist;
2095 }
2096 
2097 static void
2098 vfs_swapopttbl(mntopts_t *optbl1, mntopts_t *optbl2)
2099 {
2100 	vfs_list_lock();
2101 	vfs_swapopttbl_nolock(optbl1, optbl2);
2102 	vfs_mnttab_modtimeupd();
2103 	vfs_list_unlock();
2104 }
2105 
2106 static char **
2107 vfs_copycancelopt_extend(char **const moc, int extend)
2108 {
2109 	int i = 0;
2110 	int j;
2111 	char **result;
2112 
2113 	if (moc != NULL) {
2114 		for (; moc[i] != NULL; i++)
2115 			/* count number of options to cancel */;
2116 	}
2117 
2118 	if (i + extend == 0)
2119 		return (NULL);
2120 
2121 	result = kmem_alloc((i + extend + 1) * sizeof (char *), KM_SLEEP);
2122 
2123 	for (j = 0; j < i; j++) {
2124 		result[j] = kmem_alloc(strlen(moc[j]) + 1, KM_SLEEP);
2125 		(void) strcpy(result[j], moc[j]);
2126 	}
2127 	for (; j <= i + extend; j++)
2128 		result[j] = NULL;
2129 
2130 	return (result);
2131 }
2132 
2133 static void
2134 vfs_copyopt(const mntopt_t *s, mntopt_t *d)
2135 {
2136 	char *sp, *dp;
2137 
2138 	d->mo_flags = s->mo_flags;
2139 	d->mo_data = s->mo_data;
2140 	sp = s->mo_name;
2141 	if (sp != NULL) {
2142 		dp = kmem_alloc(strlen(sp) + 1, KM_SLEEP);
2143 		(void) strcpy(dp, sp);
2144 		d->mo_name = dp;
2145 	} else {
2146 		d->mo_name = NULL; /* should never happen */
2147 	}
2148 
2149 	d->mo_cancel = vfs_copycancelopt_extend(s->mo_cancel, 0);
2150 
2151 	sp = s->mo_arg;
2152 	if (sp != NULL) {
2153 		dp = kmem_alloc(strlen(sp) + 1, KM_SLEEP);
2154 		(void) strcpy(dp, sp);
2155 		d->mo_arg = dp;
2156 	} else {
2157 		d->mo_arg = NULL;
2158 	}
2159 }
2160 
2161 /*
2162  * Copy a mount options table, possibly allocating some spare
2163  * slots at the end.  It is permissible to copy_extend the NULL table.
2164  */
2165 static void
2166 vfs_copyopttbl_extend(const mntopts_t *smo, mntopts_t *dmo, int extra)
2167 {
2168 	uint_t i, count;
2169 	mntopt_t *motbl;
2170 
2171 	/*
2172 	 * Clear out any existing stuff in the options table being initialized
2173 	 */
2174 	vfs_freeopttbl(dmo);
2175 	count = (smo == NULL) ? 0 : smo->mo_count;
2176 	if ((count + extra) == 0)	/* nothing to do */
2177 		return;
2178 	dmo->mo_count = count + extra;
2179 	motbl = kmem_zalloc((count + extra) * sizeof (mntopt_t), KM_SLEEP);
2180 	dmo->mo_list = motbl;
2181 	for (i = 0; i < count; i++) {
2182 		vfs_copyopt(&smo->mo_list[i], &motbl[i]);
2183 	}
2184 	for (i = count; i < count + extra; i++) {
2185 		motbl[i].mo_flags = MO_EMPTY;
2186 	}
2187 }
2188 
2189 /*
2190  * Copy a mount options table.
2191  *
2192  * This function is *not* for general use by filesystems.
2193  *
2194  * Note: caller is responsible for locking the vfs list, if needed,
2195  *       to protect smo and dmo.
2196  */
2197 void
2198 vfs_copyopttbl(const mntopts_t *smo, mntopts_t *dmo)
2199 {
2200 	vfs_copyopttbl_extend(smo, dmo, 0);
2201 }
2202 
2203 static char **
2204 vfs_mergecancelopts(const mntopt_t *mop1, const mntopt_t *mop2)
2205 {
2206 	int c1 = 0;
2207 	int c2 = 0;
2208 	char **result;
2209 	char **sp1, **sp2, **dp;
2210 
2211 	/*
2212 	 * First we count both lists of cancel options.
2213 	 * If either is NULL or has no elements, we return a copy of
2214 	 * the other.
2215 	 */
2216 	if (mop1->mo_cancel != NULL) {
2217 		for (; mop1->mo_cancel[c1] != NULL; c1++)
2218 			/* count cancel options in mop1 */;
2219 	}
2220 
2221 	if (c1 == 0)
2222 		return (vfs_copycancelopt_extend(mop2->mo_cancel, 0));
2223 
2224 	if (mop2->mo_cancel != NULL) {
2225 		for (; mop2->mo_cancel[c2] != NULL; c2++)
2226 			/* count cancel options in mop2 */;
2227 	}
2228 
2229 	result = vfs_copycancelopt_extend(mop1->mo_cancel, c2);
2230 
2231 	if (c2 == 0)
2232 		return (result);
2233 
2234 	/*
2235 	 * When we get here, we've got two sets of cancel options;
2236 	 * we need to merge the two sets.  We know that the result
2237 	 * array has "c1+c2+1" entries and in the end we might shrink
2238 	 * it.
2239 	 * Result now has a copy of the c1 entries from mop1; we'll
2240 	 * now lookup all the entries of mop2 in mop1 and copy it if
2241 	 * it is unique.
2242 	 * This operation is O(n^2) but it's only called once per
2243 	 * filesystem per duplicate option.  This is a situation
2244 	 * which doesn't arise with the filesystems in ON and
2245 	 * n is generally 1.
2246 	 */
2247 
2248 	dp = &result[c1];
2249 	for (sp2 = mop2->mo_cancel; *sp2 != NULL; sp2++) {
2250 		for (sp1 = mop1->mo_cancel; *sp1 != NULL; sp1++) {
2251 			if (strcmp(*sp1, *sp2) == 0)
2252 				break;
2253 		}
2254 		if (*sp1 == NULL) {
2255 			/*
2256 			 * Option *sp2 not found in mop1, so copy it.
2257 			 * The calls to vfs_copycancelopt_extend()
2258 			 * guarantee that there's enough room.
2259 			 */
2260 			*dp = kmem_alloc(strlen(*sp2) + 1, KM_SLEEP);
2261 			(void) strcpy(*dp++, *sp2);
2262 		}
2263 	}
2264 	if (dp != &result[c1+c2]) {
2265 		size_t bytes = (dp - result + 1) * sizeof (char *);
2266 		char **nres = kmem_alloc(bytes, KM_SLEEP);
2267 
2268 		bcopy(result, nres, bytes);
2269 		kmem_free(result, (c1 + c2 + 1) * sizeof (char *));
2270 		result = nres;
2271 	}
2272 	return (result);
2273 }
2274 
2275 /*
2276  * Merge two mount option tables (outer and inner) into one.  This is very
2277  * similar to "merging" global variables and automatic variables in C.
2278  *
2279  * This isn't (and doesn't have to be) fast.
2280  *
2281  * This function is *not* for general use by filesystems.
2282  *
2283  * Note: caller is responsible for locking the vfs list, if needed,
2284  *       to protect omo, imo & dmo.
2285  */
2286 void
2287 vfs_mergeopttbl(const mntopts_t *omo, const mntopts_t *imo, mntopts_t *dmo)
2288 {
2289 	uint_t i, count;
2290 	mntopt_t *mop, *motbl;
2291 	uint_t freeidx;
2292 
2293 	/*
2294 	 * First determine how much space we need to allocate.
2295 	 */
2296 	count = omo->mo_count;
2297 	for (i = 0; i < imo->mo_count; i++) {
2298 		if (imo->mo_list[i].mo_flags & MO_EMPTY)
2299 			continue;
2300 		if (vfs_hasopt(omo, imo->mo_list[i].mo_name) == NULL)
2301 			count++;
2302 	}
2303 	ASSERT(count >= omo->mo_count &&
2304 	    count <= omo->mo_count + imo->mo_count);
2305 	motbl = kmem_alloc(count * sizeof (mntopt_t), KM_SLEEP);
2306 	for (i = 0; i < omo->mo_count; i++)
2307 		vfs_copyopt(&omo->mo_list[i], &motbl[i]);
2308 	freeidx = omo->mo_count;
2309 	for (i = 0; i < imo->mo_count; i++) {
2310 		if (imo->mo_list[i].mo_flags & MO_EMPTY)
2311 			continue;
2312 		if ((mop = vfs_hasopt(omo, imo->mo_list[i].mo_name)) != NULL) {
2313 			char **newcanp;
2314 			uint_t index = mop - omo->mo_list;
2315 
2316 			newcanp = vfs_mergecancelopts(mop, &motbl[index]);
2317 
2318 			vfs_freeopt(&motbl[index]);
2319 			vfs_copyopt(&imo->mo_list[i], &motbl[index]);
2320 
2321 			vfs_freecancelopt(motbl[index].mo_cancel);
2322 			motbl[index].mo_cancel = newcanp;
2323 		} else {
2324 			/*
2325 			 * If it's a new option, just copy it over to the first
2326 			 * free location.
2327 			 */
2328 			vfs_copyopt(&imo->mo_list[i], &motbl[freeidx++]);
2329 		}
2330 	}
2331 	dmo->mo_count = count;
2332 	dmo->mo_list = motbl;
2333 }
2334 
2335 /*
2336  * Functions to set and clear mount options in a mount options table.
2337  */
2338 
2339 /*
2340  * Clear a mount option, if it exists.
2341  *
2342  * The update_mnttab arg indicates whether mops is part of a vfs that is on
2343  * the vfs list.
2344  */
2345 static void
2346 vfs_clearmntopt_nolock(mntopts_t *mops, const char *opt, int update_mnttab)
2347 {
2348 	struct mntopt *mop;
2349 	uint_t i, count;
2350 
2351 	ASSERT(!update_mnttab || RW_WRITE_HELD(&vfslist));
2352 
2353 	count = mops->mo_count;
2354 	for (i = 0; i < count; i++) {
2355 		mop = &mops->mo_list[i];
2356 
2357 		if (mop->mo_flags & MO_EMPTY)
2358 			continue;
2359 		if (strcmp(opt, mop->mo_name))
2360 			continue;
2361 		mop->mo_flags &= ~MO_SET;
2362 		if (mop->mo_arg != NULL) {
2363 			kmem_free(mop->mo_arg, strlen(mop->mo_arg) + 1);
2364 		}
2365 		mop->mo_arg = NULL;
2366 		if (update_mnttab)
2367 			vfs_mnttab_modtimeupd();
2368 		break;
2369 	}
2370 }
2371 
2372 void
2373 vfs_clearmntopt(struct vfs *vfsp, const char *opt)
2374 {
2375 	int gotlock = 0;
2376 
2377 	if (VFS_ON_LIST(vfsp)) {
2378 		gotlock = 1;
2379 		vfs_list_lock();
2380 	}
2381 	vfs_clearmntopt_nolock(&vfsp->vfs_mntopts, opt, gotlock);
2382 	if (gotlock)
2383 		vfs_list_unlock();
2384 }
2385 
2386 
2387 /*
2388  * Set a mount option on.  If it's not found in the table, it's silently
2389  * ignored.  If the option has MO_IGNORE set, it is still set unless the
2390  * VFS_NOFORCEOPT bit is set in the flags.  Also, VFS_DISPLAY/VFS_NODISPLAY flag
2391  * bits can be used to toggle the MO_NODISPLAY bit for the option.
2392  * If the VFS_CREATEOPT flag bit is set then the first option slot with
2393  * MO_EMPTY set is created as the option passed in.
2394  *
2395  * The update_mnttab arg indicates whether mops is part of a vfs that is on
2396  * the vfs list.
2397  */
2398 static void
2399 vfs_setmntopt_nolock(mntopts_t *mops, const char *opt,
2400     const char *arg, int flags, int update_mnttab)
2401 {
2402 	mntopt_t *mop;
2403 	uint_t i, count;
2404 	char *sp;
2405 
2406 	ASSERT(!update_mnttab || RW_WRITE_HELD(&vfslist));
2407 
2408 	if (flags & VFS_CREATEOPT) {
2409 		if (vfs_hasopt(mops, opt) != NULL) {
2410 			flags &= ~VFS_CREATEOPT;
2411 		}
2412 	}
2413 	count = mops->mo_count;
2414 	for (i = 0; i < count; i++) {
2415 		mop = &mops->mo_list[i];
2416 
2417 		if (mop->mo_flags & MO_EMPTY) {
2418 			if ((flags & VFS_CREATEOPT) == 0)
2419 				continue;
2420 			sp = kmem_alloc(strlen(opt) + 1, KM_SLEEP);
2421 			(void) strcpy(sp, opt);
2422 			mop->mo_name = sp;
2423 			if (arg != NULL)
2424 				mop->mo_flags = MO_HASVALUE;
2425 			else
2426 				mop->mo_flags = 0;
2427 		} else if (strcmp(opt, mop->mo_name)) {
2428 			continue;
2429 		}
2430 		if ((mop->mo_flags & MO_IGNORE) && (flags & VFS_NOFORCEOPT))
2431 			break;
2432 		if (arg != NULL && (mop->mo_flags & MO_HASVALUE) != 0) {
2433 			sp = kmem_alloc(strlen(arg) + 1, KM_SLEEP);
2434 			(void) strcpy(sp, arg);
2435 		} else {
2436 			sp = NULL;
2437 		}
2438 		if (mop->mo_arg != NULL)
2439 			kmem_free(mop->mo_arg, strlen(mop->mo_arg) + 1);
2440 		mop->mo_arg = sp;
2441 		if (flags & VFS_DISPLAY)
2442 			mop->mo_flags &= ~MO_NODISPLAY;
2443 		if (flags & VFS_NODISPLAY)
2444 			mop->mo_flags |= MO_NODISPLAY;
2445 		mop->mo_flags |= MO_SET;
2446 		if (mop->mo_cancel != NULL) {
2447 			char **cp;
2448 
2449 			for (cp = mop->mo_cancel; *cp != NULL; cp++)
2450 				vfs_clearmntopt_nolock(mops, *cp, 0);
2451 		}
2452 		if (update_mnttab)
2453 			vfs_mnttab_modtimeupd();
2454 		break;
2455 	}
2456 }
2457 
2458 void
2459 vfs_setmntopt(struct vfs *vfsp, const char *opt, const char *arg, int flags)
2460 {
2461 	int gotlock = 0;
2462 
2463 	if (VFS_ON_LIST(vfsp)) {
2464 		gotlock = 1;
2465 		vfs_list_lock();
2466 	}
2467 	vfs_setmntopt_nolock(&vfsp->vfs_mntopts, opt, arg, flags, gotlock);
2468 	if (gotlock)
2469 		vfs_list_unlock();
2470 }
2471 
2472 
2473 /*
2474  * Add a "tag" option to a mounted file system's options list.
2475  *
2476  * Note: caller is responsible for locking the vfs list, if needed,
2477  *       to protect mops.
2478  */
2479 static mntopt_t *
2480 vfs_addtag(mntopts_t *mops, const char *tag)
2481 {
2482 	uint_t count;
2483 	mntopt_t *mop, *motbl;
2484 
2485 	count = mops->mo_count + 1;
2486 	motbl = kmem_zalloc(count * sizeof (mntopt_t), KM_SLEEP);
2487 	if (mops->mo_count) {
2488 		size_t len = (count - 1) * sizeof (mntopt_t);
2489 
2490 		bcopy(mops->mo_list, motbl, len);
2491 		kmem_free(mops->mo_list, len);
2492 	}
2493 	mops->mo_count = count;
2494 	mops->mo_list = motbl;
2495 	mop = &motbl[count - 1];
2496 	mop->mo_flags = MO_TAG;
2497 	mop->mo_name = kmem_alloc(strlen(tag) + 1, KM_SLEEP);
2498 	(void) strcpy(mop->mo_name, tag);
2499 	return (mop);
2500 }
2501 
2502 /*
2503  * Allow users to set arbitrary "tags" in a vfs's mount options.
2504  * Broader use within the kernel is discouraged.
2505  */
2506 int
2507 vfs_settag(uint_t major, uint_t minor, const char *mntpt, const char *tag,
2508     cred_t *cr)
2509 {
2510 	vfs_t *vfsp;
2511 	mntopts_t *mops;
2512 	mntopt_t *mop;
2513 	int found = 0;
2514 	dev_t dev = makedevice(major, minor);
2515 	int err = 0;
2516 	char *buf = kmem_alloc(MAX_MNTOPT_STR, KM_SLEEP);
2517 
2518 	/*
2519 	 * Find the desired mounted file system
2520 	 */
2521 	vfs_list_lock();
2522 	vfsp = rootvfs;
2523 	do {
2524 		if (vfsp->vfs_dev == dev &&
2525 		    strcmp(mntpt, refstr_value(vfsp->vfs_mntpt)) == 0) {
2526 			found = 1;
2527 			break;
2528 		}
2529 		vfsp = vfsp->vfs_next;
2530 	} while (vfsp != rootvfs);
2531 
2532 	if (!found) {
2533 		err = EINVAL;
2534 		goto out;
2535 	}
2536 	err = secpolicy_fs_config(cr, vfsp);
2537 	if (err != 0)
2538 		goto out;
2539 
2540 	mops = &vfsp->vfs_mntopts;
2541 	/*
2542 	 * Add tag if it doesn't already exist
2543 	 */
2544 	if ((mop = vfs_hasopt(mops, tag)) == NULL) {
2545 		int len;
2546 
2547 		(void) vfs_buildoptionstr(mops, buf, MAX_MNTOPT_STR);
2548 		len = strlen(buf);
2549 		if (len + strlen(tag) + 2 > MAX_MNTOPT_STR) {
2550 			err = ENAMETOOLONG;
2551 			goto out;
2552 		}
2553 		mop = vfs_addtag(mops, tag);
2554 	}
2555 	if ((mop->mo_flags & MO_TAG) == 0) {
2556 		err = EINVAL;
2557 		goto out;
2558 	}
2559 	vfs_setmntopt_nolock(mops, tag, NULL, 0, 1);
2560 out:
2561 	vfs_list_unlock();
2562 	kmem_free(buf, MAX_MNTOPT_STR);
2563 	return (err);
2564 }
2565 
2566 /*
2567  * Allow users to remove arbitrary "tags" in a vfs's mount options.
2568  * Broader use within the kernel is discouraged.
2569  */
2570 int
2571 vfs_clrtag(uint_t major, uint_t minor, const char *mntpt, const char *tag,
2572     cred_t *cr)
2573 {
2574 	vfs_t *vfsp;
2575 	mntopt_t *mop;
2576 	int found = 0;
2577 	dev_t dev = makedevice(major, minor);
2578 	int err = 0;
2579 
2580 	/*
2581 	 * Find the desired mounted file system
2582 	 */
2583 	vfs_list_lock();
2584 	vfsp = rootvfs;
2585 	do {
2586 		if (vfsp->vfs_dev == dev &&
2587 		    strcmp(mntpt, refstr_value(vfsp->vfs_mntpt)) == 0) {
2588 			found = 1;
2589 			break;
2590 		}
2591 		vfsp = vfsp->vfs_next;
2592 	} while (vfsp != rootvfs);
2593 
2594 	if (!found) {
2595 		err = EINVAL;
2596 		goto out;
2597 	}
2598 	err = secpolicy_fs_config(cr, vfsp);
2599 	if (err != 0)
2600 		goto out;
2601 
2602 	if ((mop = vfs_hasopt(&vfsp->vfs_mntopts, tag)) == NULL) {
2603 		err = EINVAL;
2604 		goto out;
2605 	}
2606 	if ((mop->mo_flags & MO_TAG) == 0) {
2607 		err = EINVAL;
2608 		goto out;
2609 	}
2610 	vfs_clearmntopt_nolock(&vfsp->vfs_mntopts, tag, 1);
2611 out:
2612 	vfs_list_unlock();
2613 	return (err);
2614 }
2615 
2616 /*
2617  * Function to parse an option string and fill in a mount options table.
2618  * Unknown options are silently ignored.  The input option string is modified
2619  * by replacing separators with nulls.  If the create flag is set, options
2620  * not found in the table are just added on the fly.  The table must have
2621  * an option slot marked MO_EMPTY to add an option on the fly.
2622  *
2623  * This function is *not* for general use by filesystems.
2624  *
2625  * Note: caller is responsible for locking the vfs list, if needed,
2626  *       to protect mops..
2627  */
2628 void
2629 vfs_parsemntopts(mntopts_t *mops, char *osp, int create)
2630 {
2631 	char *s = osp, *p, *nextop, *valp, *cp, *ep;
2632 	int setflg = VFS_NOFORCEOPT;
2633 
2634 	if (osp == NULL)
2635 		return;
2636 	while (*s != '\0') {
2637 		p = strchr(s, ',');	/* find next option */
2638 		if (p == NULL) {
2639 			cp = NULL;
2640 			p = s + strlen(s);
2641 		} else {
2642 			cp = p;		/* save location of comma */
2643 			*p++ = '\0';	/* mark end and point to next option */
2644 		}
2645 		nextop = p;
2646 		p = strchr(s, '=');	/* look for value */
2647 		if (p == NULL) {
2648 			valp = NULL;	/* no value supplied */
2649 		} else {
2650 			ep = p;		/* save location of equals */
2651 			*p++ = '\0';	/* end option and point to value */
2652 			valp = p;
2653 		}
2654 		/*
2655 		 * set option into options table
2656 		 */
2657 		if (create)
2658 			setflg |= VFS_CREATEOPT;
2659 		vfs_setmntopt_nolock(mops, s, valp, setflg, 0);
2660 		if (cp != NULL)
2661 			*cp = ',';	/* restore the comma */
2662 		if (valp != NULL)
2663 			*ep = '=';	/* restore the equals */
2664 		s = nextop;
2665 	}
2666 }
2667 
2668 /*
2669  * Function to inquire if an option exists in a mount options table.
2670  * Returns a pointer to the option if it exists, else NULL.
2671  *
2672  * This function is *not* for general use by filesystems.
2673  *
2674  * Note: caller is responsible for locking the vfs list, if needed,
2675  *       to protect mops.
2676  */
2677 struct mntopt *
2678 vfs_hasopt(const mntopts_t *mops, const char *opt)
2679 {
2680 	struct mntopt *mop;
2681 	uint_t i, count;
2682 
2683 	count = mops->mo_count;
2684 	for (i = 0; i < count; i++) {
2685 		mop = &mops->mo_list[i];
2686 
2687 		if (mop->mo_flags & MO_EMPTY)
2688 			continue;
2689 		if (strcmp(opt, mop->mo_name) == 0)
2690 			return (mop);
2691 	}
2692 	return (NULL);
2693 }
2694 
2695 /*
2696  * Function to inquire if an option is set in a mount options table.
2697  * Returns non-zero if set and fills in the arg pointer with a pointer to
2698  * the argument string or NULL if there is no argument string.
2699  */
2700 static int
2701 vfs_optionisset_nolock(const mntopts_t *mops, const char *opt, char **argp)
2702 {
2703 	struct mntopt *mop;
2704 	uint_t i, count;
2705 
2706 	count = mops->mo_count;
2707 	for (i = 0; i < count; i++) {
2708 		mop = &mops->mo_list[i];
2709 
2710 		if (mop->mo_flags & MO_EMPTY)
2711 			continue;
2712 		if (strcmp(opt, mop->mo_name))
2713 			continue;
2714 		if ((mop->mo_flags & MO_SET) == 0)
2715 			return (0);
2716 		if (argp != NULL && (mop->mo_flags & MO_HASVALUE) != 0)
2717 			*argp = mop->mo_arg;
2718 		return (1);
2719 	}
2720 	return (0);
2721 }
2722 
2723 
2724 int
2725 vfs_optionisset(const struct vfs *vfsp, const char *opt, char **argp)
2726 {
2727 	int ret;
2728 
2729 	vfs_list_read_lock();
2730 	ret = vfs_optionisset_nolock(&vfsp->vfs_mntopts, opt, argp);
2731 	vfs_list_unlock();
2732 	return (ret);
2733 }
2734 
2735 
2736 /*
2737  * Construct a comma separated string of the options set in the given
2738  * mount table, return the string in the given buffer.  Return non-zero if
2739  * the buffer would overflow.
2740  *
2741  * This function is *not* for general use by filesystems.
2742  *
2743  * Note: caller is responsible for locking the vfs list, if needed,
2744  *       to protect mp.
2745  */
2746 int
2747 vfs_buildoptionstr(const mntopts_t *mp, char *buf, int len)
2748 {
2749 	char *cp;
2750 	uint_t i;
2751 
2752 	buf[0] = '\0';
2753 	cp = buf;
2754 	for (i = 0; i < mp->mo_count; i++) {
2755 		struct mntopt *mop;
2756 
2757 		mop = &mp->mo_list[i];
2758 		if (mop->mo_flags & MO_SET) {
2759 			int optlen, comma = 0;
2760 
2761 			if (buf[0] != '\0')
2762 				comma = 1;
2763 			optlen = strlen(mop->mo_name);
2764 			if (strlen(buf) + comma + optlen + 1 > len)
2765 				goto err;
2766 			if (comma)
2767 				*cp++ = ',';
2768 			(void) strcpy(cp, mop->mo_name);
2769 			cp += optlen;
2770 			/*
2771 			 * Append option value if there is one
2772 			 */
2773 			if (mop->mo_arg != NULL) {
2774 				int arglen;
2775 
2776 				arglen = strlen(mop->mo_arg);
2777 				if (strlen(buf) + arglen + 2 > len)
2778 					goto err;
2779 				*cp++ = '=';
2780 				(void) strcpy(cp, mop->mo_arg);
2781 				cp += arglen;
2782 			}
2783 		}
2784 	}
2785 	return (0);
2786 err:
2787 	return (EOVERFLOW);
2788 }
2789 
2790 static void
2791 vfs_freecancelopt(char **moc)
2792 {
2793 	if (moc != NULL) {
2794 		int ccnt = 0;
2795 		char **cp;
2796 
2797 		for (cp = moc; *cp != NULL; cp++) {
2798 			kmem_free(*cp, strlen(*cp) + 1);
2799 			ccnt++;
2800 		}
2801 		kmem_free(moc, (ccnt + 1) * sizeof (char *));
2802 	}
2803 }
2804 
2805 static void
2806 vfs_freeopt(mntopt_t *mop)
2807 {
2808 	if (mop->mo_name != NULL)
2809 		kmem_free(mop->mo_name, strlen(mop->mo_name) + 1);
2810 
2811 	vfs_freecancelopt(mop->mo_cancel);
2812 
2813 	if (mop->mo_arg != NULL)
2814 		kmem_free(mop->mo_arg, strlen(mop->mo_arg) + 1);
2815 }
2816 
2817 /*
2818  * Free a mount options table
2819  *
2820  * This function is *not* for general use by filesystems.
2821  *
2822  * Note: caller is responsible for locking the vfs list, if needed,
2823  *       to protect mp.
2824  */
2825 void
2826 vfs_freeopttbl(mntopts_t *mp)
2827 {
2828 	uint_t i, count;
2829 
2830 	count = mp->mo_count;
2831 	for (i = 0; i < count; i++) {
2832 		vfs_freeopt(&mp->mo_list[i]);
2833 	}
2834 	if (count) {
2835 		kmem_free(mp->mo_list, sizeof (mntopt_t) * count);
2836 		mp->mo_count = 0;
2837 		mp->mo_list = NULL;
2838 	}
2839 }
2840 
2841 
2842 /* ARGSUSED */
2843 static int
2844 vfs_mntdummyread(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cred,
2845 	caller_context_t *ct)
2846 {
2847 	return (0);
2848 }
2849 
2850 /* ARGSUSED */
2851 static int
2852 vfs_mntdummywrite(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cred,
2853 	caller_context_t *ct)
2854 {
2855 	return (0);
2856 }
2857 
2858 /*
2859  * The dummy vnode is currently used only by file events notification
2860  * module which is just interested in the timestamps.
2861  */
2862 /* ARGSUSED */
2863 static int
2864 vfs_mntdummygetattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr,
2865     caller_context_t *ct)
2866 {
2867 	bzero(vap, sizeof (vattr_t));
2868 	vap->va_type = VREG;
2869 	vap->va_nlink = 1;
2870 	vap->va_ctime = vfs_mnttab_ctime;
2871 	/*
2872 	 * it is ok to just copy mtime as the time will be monotonically
2873 	 * increasing.
2874 	 */
2875 	vap->va_mtime = vfs_mnttab_mtime;
2876 	vap->va_atime = vap->va_mtime;
2877 	return (0);
2878 }
2879 
2880 static void
2881 vfs_mnttabvp_setup(void)
2882 {
2883 	vnode_t *tvp;
2884 	vnodeops_t *vfs_mntdummyvnops;
2885 	const fs_operation_def_t mnt_dummyvnodeops_template[] = {
2886 		VOPNAME_READ, 		{ .vop_read = vfs_mntdummyread },
2887 		VOPNAME_WRITE, 		{ .vop_write = vfs_mntdummywrite },
2888 		VOPNAME_GETATTR,	{ .vop_getattr = vfs_mntdummygetattr },
2889 		VOPNAME_VNEVENT,	{ .vop_vnevent = fs_vnevent_support },
2890 		NULL,			NULL
2891 	};
2892 
2893 	if (vn_make_ops("mnttab", mnt_dummyvnodeops_template,
2894 	    &vfs_mntdummyvnops) != 0) {
2895 		cmn_err(CE_WARN, "vfs_mnttabvp_setup: vn_make_ops failed");
2896 		/* Shouldn't happen, but not bad enough to panic */
2897 		return;
2898 	}
2899 
2900 	/*
2901 	 * A global dummy vnode is allocated to represent mntfs files.
2902 	 * The mntfs file (/etc/mnttab) can be monitored for file events
2903 	 * and receive an event when mnttab changes. Dummy VOP calls
2904 	 * will be made on this vnode. The file events notification module
2905 	 * intercepts this vnode and delivers relevant events.
2906 	 */
2907 	tvp = vn_alloc(KM_SLEEP);
2908 	tvp->v_flag = VNOMOUNT|VNOMAP|VNOSWAP|VNOCACHE;
2909 	vn_setops(tvp, vfs_mntdummyvnops);
2910 	tvp->v_type = VREG;
2911 	/*
2912 	 * The mnt dummy ops do not reference v_data.
2913 	 * No other module intercepting this vnode should either.
2914 	 * Just set it to point to itself.
2915 	 */
2916 	tvp->v_data = (caddr_t)tvp;
2917 	tvp->v_vfsp = rootvfs;
2918 	vfs_mntdummyvp = tvp;
2919 }
2920 
2921 /*
2922  * performs fake read/write ops
2923  */
2924 static void
2925 vfs_mnttab_rwop(int rw)
2926 {
2927 	struct uio	uio;
2928 	struct iovec	iov;
2929 	char	buf[1];
2930 
2931 	if (vfs_mntdummyvp == NULL)
2932 		return;
2933 
2934 	bzero(&uio, sizeof (uio));
2935 	bzero(&iov, sizeof (iov));
2936 	iov.iov_base = buf;
2937 	iov.iov_len = 0;
2938 	uio.uio_iov = &iov;
2939 	uio.uio_iovcnt = 1;
2940 	uio.uio_loffset = 0;
2941 	uio.uio_segflg = UIO_SYSSPACE;
2942 	uio.uio_resid = 0;
2943 	if (rw) {
2944 		(void) VOP_WRITE(vfs_mntdummyvp, &uio, 0, kcred, NULL);
2945 	} else {
2946 		(void) VOP_READ(vfs_mntdummyvp, &uio, 0, kcred, NULL);
2947 	}
2948 }
2949 
2950 /*
2951  * Generate a write operation.
2952  */
2953 void
2954 vfs_mnttab_writeop(void)
2955 {
2956 	vfs_mnttab_rwop(1);
2957 }
2958 
2959 /*
2960  * Generate a read operation.
2961  */
2962 void
2963 vfs_mnttab_readop(void)
2964 {
2965 	vfs_mnttab_rwop(0);
2966 }
2967 
2968 /*
2969  * Free any mnttab information recorded in the vfs struct.
2970  * The vfs must not be on the vfs list.
2971  */
2972 static void
2973 vfs_freemnttab(struct vfs *vfsp)
2974 {
2975 	ASSERT(!VFS_ON_LIST(vfsp));
2976 
2977 	/*
2978 	 * Free device and mount point information
2979 	 */
2980 	if (vfsp->vfs_mntpt != NULL) {
2981 		refstr_rele(vfsp->vfs_mntpt);
2982 		vfsp->vfs_mntpt = NULL;
2983 	}
2984 	if (vfsp->vfs_resource != NULL) {
2985 		refstr_rele(vfsp->vfs_resource);
2986 		vfsp->vfs_resource = NULL;
2987 	}
2988 	/*
2989 	 * Now free mount options information
2990 	 */
2991 	vfs_freeopttbl(&vfsp->vfs_mntopts);
2992 }
2993 
2994 /*
2995  * Return the last mnttab modification time
2996  */
2997 void
2998 vfs_mnttab_modtime(timespec_t *ts)
2999 {
3000 	ASSERT(RW_LOCK_HELD(&vfslist));
3001 	*ts = vfs_mnttab_mtime;
3002 }
3003 
3004 /*
3005  * See if mnttab is changed
3006  */
3007 void
3008 vfs_mnttab_poll(timespec_t *old, struct pollhead **phpp)
3009 {
3010 	int changed;
3011 
3012 	*phpp = (struct pollhead *)NULL;
3013 
3014 	/*
3015 	 * Note: don't grab vfs list lock before accessing vfs_mnttab_mtime.
3016 	 * Can lead to deadlock against vfs_mnttab_modtimeupd(). It is safe
3017 	 * to not grab the vfs list lock because tv_sec is monotonically
3018 	 * increasing.
3019 	 */
3020 
3021 	changed = (old->tv_nsec != vfs_mnttab_mtime.tv_nsec) ||
3022 	    (old->tv_sec != vfs_mnttab_mtime.tv_sec);
3023 	if (!changed) {
3024 		*phpp = &vfs_pollhd;
3025 	}
3026 }
3027 
3028 /* Provide a unique and monotonically-increasing timestamp. */
3029 void
3030 vfs_mono_time(timespec_t *ts)
3031 {
3032 	static volatile hrtime_t hrt;		/* The saved time. */
3033 	hrtime_t	newhrt, oldhrt;		/* For effecting the CAS. */
3034 	timespec_t	newts;
3035 
3036 	/*
3037 	 * Try gethrestime() first, but be prepared to fabricate a sensible
3038 	 * answer at the first sign of any trouble.
3039 	 */
3040 	gethrestime(&newts);
3041 	newhrt = ts2hrt(&newts);
3042 	for (;;) {
3043 		oldhrt = hrt;
3044 		if (newhrt <= hrt)
3045 			newhrt = hrt + 1;
3046 		if (atomic_cas_64((uint64_t *)&hrt, oldhrt, newhrt) == oldhrt)
3047 			break;
3048 	}
3049 	hrt2ts(newhrt, ts);
3050 }
3051 
3052 /*
3053  * Update the mnttab modification time and wake up any waiters for
3054  * mnttab changes
3055  */
3056 void
3057 vfs_mnttab_modtimeupd()
3058 {
3059 	hrtime_t oldhrt, newhrt;
3060 
3061 	ASSERT(RW_WRITE_HELD(&vfslist));
3062 	oldhrt = ts2hrt(&vfs_mnttab_mtime);
3063 	gethrestime(&vfs_mnttab_mtime);
3064 	newhrt = ts2hrt(&vfs_mnttab_mtime);
3065 	if (oldhrt == (hrtime_t)0)
3066 		vfs_mnttab_ctime = vfs_mnttab_mtime;
3067 	/*
3068 	 * Attempt to provide unique mtime (like uniqtime but not).
3069 	 */
3070 	if (newhrt == oldhrt) {
3071 		newhrt++;
3072 		hrt2ts(newhrt, &vfs_mnttab_mtime);
3073 	}
3074 	pollwakeup(&vfs_pollhd, (short)POLLRDBAND);
3075 	vfs_mnttab_writeop();
3076 }
3077 
3078 int
3079 dounmount(struct vfs *vfsp, int flag, cred_t *cr)
3080 {
3081 	vnode_t *coveredvp;
3082 	int error;
3083 	extern void teardown_vopstats(vfs_t *);
3084 
3085 	/*
3086 	 * Get covered vnode. This will be NULL if the vfs is not linked
3087 	 * into the file system name space (i.e., domount() with MNT_NOSPICE).
3088 	 */
3089 	coveredvp = vfsp->vfs_vnodecovered;
3090 	ASSERT(coveredvp == NULL || vn_vfswlock_held(coveredvp));
3091 
3092 	/*
3093 	 * Purge all dnlc entries for this vfs.
3094 	 */
3095 	(void) dnlc_purge_vfsp(vfsp, 0);
3096 
3097 	/* For forcible umount, skip VFS_SYNC() since it may hang */
3098 	if ((flag & MS_FORCE) == 0)
3099 		(void) VFS_SYNC(vfsp, 0, cr);
3100 
3101 	/*
3102 	 * Lock the vfs to maintain fs status quo during unmount.  This
3103 	 * has to be done after the sync because ufs_update tries to acquire
3104 	 * the vfs_reflock.
3105 	 */
3106 	vfs_lock_wait(vfsp);
3107 
3108 	if (error = VFS_UNMOUNT(vfsp, flag, cr)) {
3109 		vfs_unlock(vfsp);
3110 		if (coveredvp != NULL)
3111 			vn_vfsunlock(coveredvp);
3112 	} else if (coveredvp != NULL) {
3113 		teardown_vopstats(vfsp);
3114 		/*
3115 		 * vfs_remove() will do a VN_RELE(vfsp->vfs_vnodecovered)
3116 		 * when it frees vfsp so we do a VN_HOLD() so we can
3117 		 * continue to use coveredvp afterwards.
3118 		 */
3119 		VN_HOLD(coveredvp);
3120 		vfs_remove(vfsp);
3121 		vn_vfsunlock(coveredvp);
3122 		VN_RELE(coveredvp);
3123 	} else {
3124 		teardown_vopstats(vfsp);
3125 		/*
3126 		 * Release the reference to vfs that is not linked
3127 		 * into the name space.
3128 		 */
3129 		vfs_unlock(vfsp);
3130 		VFS_RELE(vfsp);
3131 	}
3132 	return (error);
3133 }
3134 
3135 
3136 /*
3137  * Vfs_unmountall() is called by uadmin() to unmount all
3138  * mounted file systems (except the root file system) during shutdown.
3139  * It follows the existing locking protocol when traversing the vfs list
3140  * to sync and unmount vfses. Even though there should be no
3141  * other thread running while the system is shutting down, it is prudent
3142  * to still follow the locking protocol.
3143  */
3144 void
3145 vfs_unmountall(void)
3146 {
3147 	struct vfs *vfsp;
3148 	struct vfs *prev_vfsp = NULL;
3149 	int error;
3150 
3151 	/*
3152 	 * Toss all dnlc entries now so that the per-vfs sync
3153 	 * and unmount operations don't have to slog through
3154 	 * a bunch of uninteresting vnodes over and over again.
3155 	 */
3156 	dnlc_purge();
3157 
3158 	vfs_list_lock();
3159 	for (vfsp = rootvfs->vfs_prev; vfsp != rootvfs; vfsp = prev_vfsp) {
3160 		prev_vfsp = vfsp->vfs_prev;
3161 
3162 		if (vfs_lock(vfsp) != 0)
3163 			continue;
3164 		error = vn_vfswlock(vfsp->vfs_vnodecovered);
3165 		vfs_unlock(vfsp);
3166 		if (error)
3167 			continue;
3168 
3169 		vfs_list_unlock();
3170 
3171 		(void) VFS_SYNC(vfsp, SYNC_CLOSE, CRED());
3172 		(void) dounmount(vfsp, 0, CRED());
3173 
3174 		/*
3175 		 * Since we dropped the vfslist lock above we must
3176 		 * verify that next_vfsp still exists, else start over.
3177 		 */
3178 		vfs_list_lock();
3179 		for (vfsp = rootvfs->vfs_prev;
3180 		    vfsp != rootvfs; vfsp = vfsp->vfs_prev)
3181 			if (vfsp == prev_vfsp)
3182 				break;
3183 		if (vfsp == rootvfs && prev_vfsp != rootvfs)
3184 			prev_vfsp = rootvfs->vfs_prev;
3185 	}
3186 	vfs_list_unlock();
3187 }
3188 
3189 /*
3190  * Called to add an entry to the end of the vfs mount in progress list
3191  */
3192 void
3193 vfs_addmip(dev_t dev, struct vfs *vfsp)
3194 {
3195 	struct ipmnt *mipp;
3196 
3197 	mipp = (struct ipmnt *)kmem_alloc(sizeof (struct ipmnt), KM_SLEEP);
3198 	mipp->mip_next = NULL;
3199 	mipp->mip_dev = dev;
3200 	mipp->mip_vfsp = vfsp;
3201 	mutex_enter(&vfs_miplist_mutex);
3202 	if (vfs_miplist_end != NULL)
3203 		vfs_miplist_end->mip_next = mipp;
3204 	else
3205 		vfs_miplist = mipp;
3206 	vfs_miplist_end = mipp;
3207 	mutex_exit(&vfs_miplist_mutex);
3208 }
3209 
3210 /*
3211  * Called to remove an entry from the mount in progress list
3212  * Either because the mount completed or it failed.
3213  */
3214 void
3215 vfs_delmip(struct vfs *vfsp)
3216 {
3217 	struct ipmnt *mipp, *mipprev;
3218 
3219 	mutex_enter(&vfs_miplist_mutex);
3220 	mipprev = NULL;
3221 	for (mipp = vfs_miplist;
3222 	    mipp && mipp->mip_vfsp != vfsp; mipp = mipp->mip_next) {
3223 		mipprev = mipp;
3224 	}
3225 	if (mipp == NULL)
3226 		return; /* shouldn't happen */
3227 	if (mipp == vfs_miplist_end)
3228 		vfs_miplist_end = mipprev;
3229 	if (mipprev == NULL)
3230 		vfs_miplist = mipp->mip_next;
3231 	else
3232 		mipprev->mip_next = mipp->mip_next;
3233 	mutex_exit(&vfs_miplist_mutex);
3234 	kmem_free(mipp, sizeof (struct ipmnt));
3235 }
3236 
3237 /*
3238  * vfs_add is called by a specific filesystem's mount routine to add
3239  * the new vfs into the vfs list/hash and to cover the mounted-on vnode.
3240  * The vfs should already have been locked by the caller.
3241  *
3242  * coveredvp is NULL if this is the root.
3243  */
3244 void
3245 vfs_add(vnode_t *coveredvp, struct vfs *vfsp, int mflag)
3246 {
3247 	int newflag;
3248 
3249 	ASSERT(vfs_lock_held(vfsp));
3250 	VFS_HOLD(vfsp);
3251 	newflag = vfsp->vfs_flag;
3252 	if (mflag & MS_RDONLY)
3253 		newflag |= VFS_RDONLY;
3254 	else
3255 		newflag &= ~VFS_RDONLY;
3256 	if (mflag & MS_NOSUID)
3257 		newflag |= (VFS_NOSETUID|VFS_NODEVICES);
3258 	else
3259 		newflag &= ~(VFS_NOSETUID|VFS_NODEVICES);
3260 	if (mflag & MS_NOMNTTAB)
3261 		newflag |= VFS_NOMNTTAB;
3262 	else
3263 		newflag &= ~VFS_NOMNTTAB;
3264 
3265 	if (coveredvp != NULL) {
3266 		ASSERT(vn_vfswlock_held(coveredvp));
3267 		coveredvp->v_vfsmountedhere = vfsp;
3268 		VN_HOLD(coveredvp);
3269 	}
3270 	vfsp->vfs_vnodecovered = coveredvp;
3271 	vfsp->vfs_flag = newflag;
3272 
3273 	vfs_list_add(vfsp);
3274 }
3275 
3276 /*
3277  * Remove a vfs from the vfs list, null out the pointer from the
3278  * covered vnode to the vfs (v_vfsmountedhere), and null out the pointer
3279  * from the vfs to the covered vnode (vfs_vnodecovered). Release the
3280  * reference to the vfs and to the covered vnode.
3281  *
3282  * Called from dounmount after it's confirmed with the file system
3283  * that the unmount is legal.
3284  */
3285 void
3286 vfs_remove(struct vfs *vfsp)
3287 {
3288 	vnode_t *vp;
3289 
3290 	ASSERT(vfs_lock_held(vfsp));
3291 
3292 	/*
3293 	 * Can't unmount root.  Should never happen because fs will
3294 	 * be busy.
3295 	 */
3296 	if (vfsp == rootvfs)
3297 		panic("vfs_remove: unmounting root");
3298 
3299 	vfs_list_remove(vfsp);
3300 
3301 	/*
3302 	 * Unhook from the file system name space.
3303 	 */
3304 	vp = vfsp->vfs_vnodecovered;
3305 	ASSERT(vn_vfswlock_held(vp));
3306 	vp->v_vfsmountedhere = NULL;
3307 	vfsp->vfs_vnodecovered = NULL;
3308 	VN_RELE(vp);
3309 
3310 	/*
3311 	 * Release lock and wakeup anybody waiting.
3312 	 */
3313 	vfs_unlock(vfsp);
3314 	VFS_RELE(vfsp);
3315 }
3316 
3317 /*
3318  * Lock a filesystem to prevent access to it while mounting,
3319  * unmounting and syncing.  Return EBUSY immediately if lock
3320  * can't be acquired.
3321  */
3322 int
3323 vfs_lock(vfs_t *vfsp)
3324 {
3325 	vn_vfslocks_entry_t *vpvfsentry;
3326 
3327 	vpvfsentry = vn_vfslocks_getlock(vfsp);
3328 	if (rwst_tryenter(&vpvfsentry->ve_lock, RW_WRITER))
3329 		return (0);
3330 
3331 	vn_vfslocks_rele(vpvfsentry);
3332 	return (EBUSY);
3333 }
3334 
3335 int
3336 vfs_rlock(vfs_t *vfsp)
3337 {
3338 	vn_vfslocks_entry_t *vpvfsentry;
3339 
3340 	vpvfsentry = vn_vfslocks_getlock(vfsp);
3341 
3342 	if (rwst_tryenter(&vpvfsentry->ve_lock, RW_READER))
3343 		return (0);
3344 
3345 	vn_vfslocks_rele(vpvfsentry);
3346 	return (EBUSY);
3347 }
3348 
3349 void
3350 vfs_lock_wait(vfs_t *vfsp)
3351 {
3352 	vn_vfslocks_entry_t *vpvfsentry;
3353 
3354 	vpvfsentry = vn_vfslocks_getlock(vfsp);
3355 	rwst_enter(&vpvfsentry->ve_lock, RW_WRITER);
3356 }
3357 
3358 void
3359 vfs_rlock_wait(vfs_t *vfsp)
3360 {
3361 	vn_vfslocks_entry_t *vpvfsentry;
3362 
3363 	vpvfsentry = vn_vfslocks_getlock(vfsp);
3364 	rwst_enter(&vpvfsentry->ve_lock, RW_READER);
3365 }
3366 
3367 /*
3368  * Unlock a locked filesystem.
3369  */
3370 void
3371 vfs_unlock(vfs_t *vfsp)
3372 {
3373 	vn_vfslocks_entry_t *vpvfsentry;
3374 
3375 	/*
3376 	 * vfs_unlock will mimic sema_v behaviour to fix 4748018.
3377 	 * And these changes should remain for the patch changes as it is.
3378 	 */
3379 	if (panicstr)
3380 		return;
3381 
3382 	/*
3383 	 * ve_refcount needs to be dropped twice here.
3384 	 * 1. To release refernce after a call to vfs_locks_getlock()
3385 	 * 2. To release the reference from the locking routines like
3386 	 *    vfs_rlock_wait/vfs_wlock_wait/vfs_wlock etc,.
3387 	 */
3388 
3389 	vpvfsentry = vn_vfslocks_getlock(vfsp);
3390 	vn_vfslocks_rele(vpvfsentry);
3391 
3392 	rwst_exit(&vpvfsentry->ve_lock);
3393 	vn_vfslocks_rele(vpvfsentry);
3394 }
3395 
3396 /*
3397  * Utility routine that allows a filesystem to construct its
3398  * fsid in "the usual way" - by munging some underlying dev_t and
3399  * the filesystem type number into the 64-bit fsid.  Note that
3400  * this implicitly relies on dev_t persistence to make filesystem
3401  * id's persistent.
3402  *
3403  * There's nothing to prevent an individual fs from constructing its
3404  * fsid in a different way, and indeed they should.
3405  *
3406  * Since we want fsids to be 32-bit quantities (so that they can be
3407  * exported identically by either 32-bit or 64-bit APIs, as well as
3408  * the fact that fsid's are "known" to NFS), we compress the device
3409  * number given down to 32-bits, and panic if that isn't possible.
3410  */
3411 void
3412 vfs_make_fsid(fsid_t *fsi, dev_t dev, int val)
3413 {
3414 	if (!cmpldev((dev32_t *)&fsi->val[0], dev))
3415 		panic("device number too big for fsid!");
3416 	fsi->val[1] = val;
3417 }
3418 
3419 int
3420 vfs_lock_held(vfs_t *vfsp)
3421 {
3422 	int held;
3423 	vn_vfslocks_entry_t *vpvfsentry;
3424 
3425 	/*
3426 	 * vfs_lock_held will mimic sema_held behaviour
3427 	 * if panicstr is set. And these changes should remain
3428 	 * for the patch changes as it is.
3429 	 */
3430 	if (panicstr)
3431 		return (1);
3432 
3433 	vpvfsentry = vn_vfslocks_getlock(vfsp);
3434 	held = rwst_lock_held(&vpvfsentry->ve_lock, RW_WRITER);
3435 
3436 	vn_vfslocks_rele(vpvfsentry);
3437 	return (held);
3438 }
3439 
3440 struct _kthread *
3441 vfs_lock_owner(vfs_t *vfsp)
3442 {
3443 	struct _kthread *owner;
3444 	vn_vfslocks_entry_t *vpvfsentry;
3445 
3446 	/*
3447 	 * vfs_wlock_held will mimic sema_held behaviour
3448 	 * if panicstr is set. And these changes should remain
3449 	 * for the patch changes as it is.
3450 	 */
3451 	if (panicstr)
3452 		return (NULL);
3453 
3454 	vpvfsentry = vn_vfslocks_getlock(vfsp);
3455 	owner = rwst_owner(&vpvfsentry->ve_lock);
3456 
3457 	vn_vfslocks_rele(vpvfsentry);
3458 	return (owner);
3459 }
3460 
3461 /*
3462  * vfs list locking.
3463  *
3464  * Rather than manipulate the vfslist lock directly, we abstract into lock
3465  * and unlock routines to allow the locking implementation to be changed for
3466  * clustering.
3467  *
3468  * Whenever the vfs list is modified through its hash links, the overall list
3469  * lock must be obtained before locking the relevant hash bucket.  But to see
3470  * whether a given vfs is on the list, it suffices to obtain the lock for the
3471  * hash bucket without getting the overall list lock.  (See getvfs() below.)
3472  */
3473 
3474 void
3475 vfs_list_lock()
3476 {
3477 	rw_enter(&vfslist, RW_WRITER);
3478 }
3479 
3480 void
3481 vfs_list_read_lock()
3482 {
3483 	rw_enter(&vfslist, RW_READER);
3484 }
3485 
3486 void
3487 vfs_list_unlock()
3488 {
3489 	rw_exit(&vfslist);
3490 }
3491 
3492 /*
3493  * Low level worker routines for adding entries to and removing entries from
3494  * the vfs list.
3495  */
3496 
3497 static void
3498 vfs_hash_add(struct vfs *vfsp, int insert_at_head)
3499 {
3500 	int vhno;
3501 	struct vfs **hp;
3502 	dev_t dev;
3503 
3504 	ASSERT(RW_WRITE_HELD(&vfslist));
3505 
3506 	dev = expldev(vfsp->vfs_fsid.val[0]);
3507 	vhno = VFSHASH(getmajor(dev), getminor(dev));
3508 
3509 	mutex_enter(&rvfs_list[vhno].rvfs_lock);
3510 
3511 	/*
3512 	 * Link into the hash table, inserting it at the end, so that LOFS
3513 	 * with the same fsid as UFS (or other) file systems will not hide the
3514 	 * UFS.
3515 	 */
3516 	if (insert_at_head) {
3517 		vfsp->vfs_hash = rvfs_list[vhno].rvfs_head;
3518 		rvfs_list[vhno].rvfs_head = vfsp;
3519 	} else {
3520 		for (hp = &rvfs_list[vhno].rvfs_head; *hp != NULL;
3521 		    hp = &(*hp)->vfs_hash)
3522 			continue;
3523 		/*
3524 		 * hp now contains the address of the pointer to update
3525 		 * to effect the insertion.
3526 		 */
3527 		vfsp->vfs_hash = NULL;
3528 		*hp = vfsp;
3529 	}
3530 
3531 	rvfs_list[vhno].rvfs_len++;
3532 	mutex_exit(&rvfs_list[vhno].rvfs_lock);
3533 }
3534 
3535 
3536 static void
3537 vfs_hash_remove(struct vfs *vfsp)
3538 {
3539 	int vhno;
3540 	struct vfs *tvfsp;
3541 	dev_t dev;
3542 
3543 	ASSERT(RW_WRITE_HELD(&vfslist));
3544 
3545 	dev = expldev(vfsp->vfs_fsid.val[0]);
3546 	vhno = VFSHASH(getmajor(dev), getminor(dev));
3547 
3548 	mutex_enter(&rvfs_list[vhno].rvfs_lock);
3549 
3550 	/*
3551 	 * Remove from hash.
3552 	 */
3553 	if (rvfs_list[vhno].rvfs_head == vfsp) {
3554 		rvfs_list[vhno].rvfs_head = vfsp->vfs_hash;
3555 		rvfs_list[vhno].rvfs_len--;
3556 		goto foundit;
3557 	}
3558 	for (tvfsp = rvfs_list[vhno].rvfs_head; tvfsp != NULL;
3559 	    tvfsp = tvfsp->vfs_hash) {
3560 		if (tvfsp->vfs_hash == vfsp) {
3561 			tvfsp->vfs_hash = vfsp->vfs_hash;
3562 			rvfs_list[vhno].rvfs_len--;
3563 			goto foundit;
3564 		}
3565 	}
3566 	cmn_err(CE_WARN, "vfs_list_remove: vfs not found in hash");
3567 
3568 foundit:
3569 
3570 	mutex_exit(&rvfs_list[vhno].rvfs_lock);
3571 }
3572 
3573 
3574 void
3575 vfs_list_add(struct vfs *vfsp)
3576 {
3577 	zone_t *zone;
3578 
3579 	/*
3580 	 * Typically, the vfs_t will have been created on behalf of the file
3581 	 * system in vfs_init, where it will have been provided with a
3582 	 * vfs_impl_t. This, however, might be lacking if the vfs_t was created
3583 	 * by an unbundled file system. We therefore check for such an example
3584 	 * before stamping the vfs_t with its creation time for the benefit of
3585 	 * mntfs.
3586 	 */
3587 	if (vfsp->vfs_implp == NULL)
3588 		vfsimpl_setup(vfsp);
3589 	vfs_mono_time(&vfsp->vfs_hrctime);
3590 
3591 	/*
3592 	 * The zone that owns the mount is the one that performed the mount.
3593 	 * Note that this isn't necessarily the same as the zone mounted into.
3594 	 * The corresponding zone_rele_ref() will be done when the vfs_t
3595 	 * is being free'd.
3596 	 */
3597 	vfsp->vfs_zone = curproc->p_zone;
3598 	zone_init_ref(&vfsp->vfs_implp->vi_zone_ref);
3599 	zone_hold_ref(vfsp->vfs_zone, &vfsp->vfs_implp->vi_zone_ref,
3600 	    ZONE_REF_VFS);
3601 
3602 	/*
3603 	 * Find the zone mounted into, and put this mount on its vfs list.
3604 	 */
3605 	zone = zone_find_by_path(refstr_value(vfsp->vfs_mntpt));
3606 	ASSERT(zone != NULL);
3607 	/*
3608 	 * Special casing for the root vfs.  This structure is allocated
3609 	 * statically and hooked onto rootvfs at link time.  During the
3610 	 * vfs_mountroot call at system startup time, the root file system's
3611 	 * VFS_MOUNTROOT routine will call vfs_add with this root vfs struct
3612 	 * as argument.  The code below must detect and handle this special
3613 	 * case.  The only apparent justification for this special casing is
3614 	 * to ensure that the root file system appears at the head of the
3615 	 * list.
3616 	 *
3617 	 * XXX:	I'm assuming that it's ok to do normal list locking when
3618 	 *	adding the entry for the root file system (this used to be
3619 	 *	done with no locks held).
3620 	 */
3621 	vfs_list_lock();
3622 	/*
3623 	 * Link into the vfs list proper.
3624 	 */
3625 	if (vfsp == &root) {
3626 		/*
3627 		 * Assert: This vfs is already on the list as its first entry.
3628 		 * Thus, there's nothing to do.
3629 		 */
3630 		ASSERT(rootvfs == vfsp);
3631 		/*
3632 		 * Add it to the head of the global zone's vfslist.
3633 		 */
3634 		ASSERT(zone == global_zone);
3635 		ASSERT(zone->zone_vfslist == NULL);
3636 		zone->zone_vfslist = vfsp;
3637 	} else {
3638 		/*
3639 		 * Link to end of list using vfs_prev (as rootvfs is now a
3640 		 * doubly linked circular list) so list is in mount order for
3641 		 * mnttab use.
3642 		 */
3643 		rootvfs->vfs_prev->vfs_next = vfsp;
3644 		vfsp->vfs_prev = rootvfs->vfs_prev;
3645 		rootvfs->vfs_prev = vfsp;
3646 		vfsp->vfs_next = rootvfs;
3647 
3648 		/*
3649 		 * Do it again for the zone-private list (which may be NULL).
3650 		 */
3651 		if (zone->zone_vfslist == NULL) {
3652 			ASSERT(zone != global_zone);
3653 			zone->zone_vfslist = vfsp;
3654 		} else {
3655 			zone->zone_vfslist->vfs_zone_prev->vfs_zone_next = vfsp;
3656 			vfsp->vfs_zone_prev = zone->zone_vfslist->vfs_zone_prev;
3657 			zone->zone_vfslist->vfs_zone_prev = vfsp;
3658 			vfsp->vfs_zone_next = zone->zone_vfslist;
3659 		}
3660 	}
3661 
3662 	/*
3663 	 * Link into the hash table, inserting it at the end, so that LOFS
3664 	 * with the same fsid as UFS (or other) file systems will not hide
3665 	 * the UFS.
3666 	 */
3667 	vfs_hash_add(vfsp, 0);
3668 
3669 	/*
3670 	 * Link into tree indexed by mntpoint, for vfs_mntpoint2vfsp
3671 	 * mntix discerns entries with the same key
3672 	 */
3673 	vfsp->vfs_mntix = ++vfs_curr_mntix;
3674 	avl_add(&vfs_by_dev, vfsp);
3675 
3676 	/*
3677 	 * Link into tree indexed by dev, for vfs_devismounted
3678 	 */
3679 	avl_add(&vfs_by_mntpnt, vfsp);
3680 
3681 	/*
3682 	 * update the mnttab modification time
3683 	 */
3684 	vfs_mnttab_modtimeupd();
3685 	vfs_list_unlock();
3686 	zone_rele(zone);
3687 }
3688 
3689 void
3690 vfs_list_remove(struct vfs *vfsp)
3691 {
3692 	zone_t *zone;
3693 
3694 	zone = zone_find_by_path(refstr_value(vfsp->vfs_mntpt));
3695 	ASSERT(zone != NULL);
3696 	/*
3697 	 * Callers are responsible for preventing attempts to unmount the
3698 	 * root.
3699 	 */
3700 	ASSERT(vfsp != rootvfs);
3701 
3702 	vfs_list_lock();
3703 
3704 	/*
3705 	 * Remove from avl trees
3706 	 */
3707 	avl_remove(&vfs_by_mntpnt, vfsp);
3708 	avl_remove(&vfs_by_dev, vfsp);
3709 
3710 	/*
3711 	 * Remove from hash.
3712 	 */
3713 	vfs_hash_remove(vfsp);
3714 
3715 	/*
3716 	 * Remove from vfs list.
3717 	 */
3718 	vfsp->vfs_prev->vfs_next = vfsp->vfs_next;
3719 	vfsp->vfs_next->vfs_prev = vfsp->vfs_prev;
3720 	vfsp->vfs_next = vfsp->vfs_prev = NULL;
3721 
3722 	/*
3723 	 * Remove from zone-specific vfs list.
3724 	 */
3725 	if (zone->zone_vfslist == vfsp)
3726 		zone->zone_vfslist = vfsp->vfs_zone_next;
3727 
3728 	if (vfsp->vfs_zone_next == vfsp) {
3729 		ASSERT(vfsp->vfs_zone_prev == vfsp);
3730 		ASSERT(zone->zone_vfslist == vfsp);
3731 		zone->zone_vfslist = NULL;
3732 	}
3733 
3734 	vfsp->vfs_zone_prev->vfs_zone_next = vfsp->vfs_zone_next;
3735 	vfsp->vfs_zone_next->vfs_zone_prev = vfsp->vfs_zone_prev;
3736 	vfsp->vfs_zone_next = vfsp->vfs_zone_prev = NULL;
3737 
3738 	/*
3739 	 * update the mnttab modification time
3740 	 */
3741 	vfs_mnttab_modtimeupd();
3742 	vfs_list_unlock();
3743 	zone_rele(zone);
3744 }
3745 
3746 struct vfs *
3747 getvfs(fsid_t *fsid)
3748 {
3749 	struct vfs *vfsp;
3750 	int val0 = fsid->val[0];
3751 	int val1 = fsid->val[1];
3752 	dev_t dev = expldev(val0);
3753 	int vhno = VFSHASH(getmajor(dev), getminor(dev));
3754 	kmutex_t *hmp = &rvfs_list[vhno].rvfs_lock;
3755 
3756 	mutex_enter(hmp);
3757 	for (vfsp = rvfs_list[vhno].rvfs_head; vfsp; vfsp = vfsp->vfs_hash) {
3758 		if (vfsp->vfs_fsid.val[0] == val0 &&
3759 		    vfsp->vfs_fsid.val[1] == val1) {
3760 			VFS_HOLD(vfsp);
3761 			mutex_exit(hmp);
3762 			return (vfsp);
3763 		}
3764 	}
3765 	mutex_exit(hmp);
3766 	return (NULL);
3767 }
3768 
3769 /*
3770  * Search the vfs mount in progress list for a specified device/vfs entry.
3771  * Returns 0 if the first entry in the list that the device matches has the
3772  * given vfs pointer as well.  If the device matches but a different vfs
3773  * pointer is encountered in the list before the given vfs pointer then
3774  * a 1 is returned.
3775  */
3776 
3777 int
3778 vfs_devmounting(dev_t dev, struct vfs *vfsp)
3779 {
3780 	int retval = 0;
3781 	struct ipmnt *mipp;
3782 
3783 	mutex_enter(&vfs_miplist_mutex);
3784 	for (mipp = vfs_miplist; mipp != NULL; mipp = mipp->mip_next) {
3785 		if (mipp->mip_dev == dev) {
3786 			if (mipp->mip_vfsp != vfsp)
3787 				retval = 1;
3788 			break;
3789 		}
3790 	}
3791 	mutex_exit(&vfs_miplist_mutex);
3792 	return (retval);
3793 }
3794 
3795 /*
3796  * Search the vfs list for a specified device.  Returns 1, if entry is found
3797  * or 0 if no suitable entry is found.
3798  */
3799 
3800 int
3801 vfs_devismounted(dev_t dev)
3802 {
3803 	struct vfs *vfsp;
3804 	int found = 0;
3805 	struct vfs search;
3806 	avl_index_t index;
3807 
3808 	search.vfs_dev = dev;
3809 	search.vfs_mntix = 0;
3810 
3811 	vfs_list_read_lock();
3812 
3813 	/*
3814 	 * there might be several entries with the same dev in the tree,
3815 	 * only discerned by mntix. To find the first, we start with a mntix
3816 	 * of 0. The search will fail. The following avl_nearest will give
3817 	 * us the actual first entry.
3818 	 */
3819 	VERIFY(avl_find(&vfs_by_dev, &search, &index) == NULL);
3820 	vfsp = avl_nearest(&vfs_by_dev, index, AVL_AFTER);
3821 
3822 	if (vfsp != NULL && vfsp->vfs_dev == dev)
3823 		found = 1;
3824 
3825 	vfs_list_unlock();
3826 	return (found);
3827 }
3828 
3829 /*
3830  * Search the vfs list for a specified device.  Returns a pointer to it
3831  * or NULL if no suitable entry is found. The caller of this routine
3832  * is responsible for releasing the returned vfs pointer.
3833  */
3834 struct vfs *
3835 vfs_dev2vfsp(dev_t dev)
3836 {
3837 	struct vfs *vfsp;
3838 	int found;
3839 	struct vfs search;
3840 	avl_index_t index;
3841 
3842 	search.vfs_dev = dev;
3843 	search.vfs_mntix = 0;
3844 
3845 	vfs_list_read_lock();
3846 
3847 	/*
3848 	 * there might be several entries with the same dev in the tree,
3849 	 * only discerned by mntix. To find the first, we start with a mntix
3850 	 * of 0. The search will fail. The following avl_nearest will give
3851 	 * us the actual first entry.
3852 	 */
3853 	VERIFY(avl_find(&vfs_by_dev, &search, &index) == NULL);
3854 	vfsp = avl_nearest(&vfs_by_dev, index, AVL_AFTER);
3855 
3856 	found = 0;
3857 	while (vfsp != NULL && vfsp->vfs_dev == dev) {
3858 		/*
3859 		 * The following could be made more efficient by making
3860 		 * the entire loop use vfs_zone_next if the call is from
3861 		 * a zone.  The only callers, however, ustat(2) and
3862 		 * umount2(2), don't seem to justify the added
3863 		 * complexity at present.
3864 		 */
3865 		if (ZONE_PATH_VISIBLE(refstr_value(vfsp->vfs_mntpt),
3866 		    curproc->p_zone)) {
3867 			VFS_HOLD(vfsp);
3868 			found = 1;
3869 			break;
3870 		}
3871 		vfsp = AVL_NEXT(&vfs_by_dev, vfsp);
3872 	}
3873 	vfs_list_unlock();
3874 	return (found ? vfsp : NULL);
3875 }
3876 
3877 /*
3878  * Search the vfs list for a specified mntpoint.  Returns a pointer to it
3879  * or NULL if no suitable entry is found. The caller of this routine
3880  * is responsible for releasing the returned vfs pointer.
3881  *
3882  * Note that if multiple mntpoints match, the last one matching is
3883  * returned in an attempt to return the "top" mount when overlay
3884  * mounts are covering the same mount point.  This is accomplished by starting
3885  * at the end of the list and working our way backwards, stopping at the first
3886  * matching mount.
3887  */
3888 struct vfs *
3889 vfs_mntpoint2vfsp(const char *mp)
3890 {
3891 	struct vfs *vfsp;
3892 	struct vfs *retvfsp = NULL;
3893 	zone_t *zone = curproc->p_zone;
3894 	struct vfs *list;
3895 
3896 	vfs_list_read_lock();
3897 	if (getzoneid() == GLOBAL_ZONEID) {
3898 		/*
3899 		 * The global zone may see filesystems in any zone.
3900 		 */
3901 		struct vfs search;
3902 		search.vfs_mntpt = refstr_alloc(mp);
3903 		search.vfs_mntix = UINT64_MAX;
3904 		avl_index_t index;
3905 
3906 		/*
3907 		 * there might be several entries with the same mntpnt in the
3908 		 * tree, only discerned by mntix. To find the last, we start
3909 		 * with a mntix of UINT64_MAX. The search will fail. The
3910 		 * following avl_nearest will give  us the actual last entry
3911 		 * matching the mntpnt.
3912 		 */
3913 		VERIFY(avl_find(&vfs_by_mntpnt, &search, &index) == 0);
3914 		vfsp = avl_nearest(&vfs_by_mntpnt, index, AVL_BEFORE);
3915 
3916 		refstr_rele(search.vfs_mntpt);
3917 
3918 		if (vfsp != NULL &&
3919 		    strcmp(refstr_value(vfsp->vfs_mntpt), mp) == 0)
3920 			retvfsp = vfsp;
3921 	} else if ((list = zone->zone_vfslist) != NULL) {
3922 		const char *mntpt;
3923 
3924 		vfsp = list->vfs_zone_prev;
3925 		do {
3926 			mntpt = refstr_value(vfsp->vfs_mntpt);
3927 			mntpt = ZONE_PATH_TRANSLATE(mntpt, zone);
3928 			if (strcmp(mntpt, mp) == 0) {
3929 				retvfsp = vfsp;
3930 				break;
3931 			}
3932 			vfsp = vfsp->vfs_zone_prev;
3933 		} while (vfsp != list->vfs_zone_prev);
3934 	}
3935 	if (retvfsp)
3936 		VFS_HOLD(retvfsp);
3937 	vfs_list_unlock();
3938 	return (retvfsp);
3939 }
3940 
3941 /*
3942  * Search the vfs list for a specified vfsops.
3943  * if vfs entry is found then return 1, else 0.
3944  */
3945 int
3946 vfs_opsinuse(vfsops_t *ops)
3947 {
3948 	struct vfs *vfsp;
3949 	int found;
3950 
3951 	vfs_list_read_lock();
3952 	vfsp = rootvfs;
3953 	found = 0;
3954 	do {
3955 		if (vfs_getops(vfsp) == ops) {
3956 			found = 1;
3957 			break;
3958 		}
3959 		vfsp = vfsp->vfs_next;
3960 	} while (vfsp != rootvfs);
3961 	vfs_list_unlock();
3962 	return (found);
3963 }
3964 
3965 /*
3966  * Allocate an entry in vfssw for a file system type
3967  */
3968 struct vfssw *
3969 allocate_vfssw(const char *type)
3970 {
3971 	struct vfssw *vswp;
3972 
3973 	if (type[0] == '\0' || strlen(type) + 1 > _ST_FSTYPSZ) {
3974 		/*
3975 		 * The vfssw table uses the empty string to identify an
3976 		 * available entry; we cannot add any type which has
3977 		 * a leading NUL. The string length is limited to
3978 		 * the size of the st_fstype array in struct stat.
3979 		 */
3980 		return (NULL);
3981 	}
3982 
3983 	ASSERT(VFSSW_WRITE_LOCKED());
3984 	for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++)
3985 		if (!ALLOCATED_VFSSW(vswp)) {
3986 			vswp->vsw_name = kmem_alloc(strlen(type) + 1, KM_SLEEP);
3987 			(void) strcpy(vswp->vsw_name, type);
3988 			ASSERT(vswp->vsw_count == 0);
3989 			vswp->vsw_count = 1;
3990 			mutex_init(&vswp->vsw_lock, NULL, MUTEX_DEFAULT, NULL);
3991 			return (vswp);
3992 		}
3993 	return (NULL);
3994 }
3995 
3996 /*
3997  * Impose additional layer of translation between vfstype names
3998  * and module names in the filesystem.
3999  */
4000 static const char *
4001 vfs_to_modname(const char *vfstype)
4002 {
4003 	if (strcmp(vfstype, "proc") == 0) {
4004 		vfstype = "procfs";
4005 	} else if (strcmp(vfstype, "fd") == 0) {
4006 		vfstype = "fdfs";
4007 	} else if (strncmp(vfstype, "nfs", 3) == 0) {
4008 		vfstype = "nfs";
4009 	}
4010 
4011 	return (vfstype);
4012 }
4013 
4014 /*
4015  * Find a vfssw entry given a file system type name.
4016  * Try to autoload the filesystem if it's not found.
4017  * If it's installed, return the vfssw locked to prevent unloading.
4018  */
4019 struct vfssw *
4020 vfs_getvfssw(const char *type)
4021 {
4022 	struct vfssw *vswp;
4023 	const char *modname;
4024 
4025 	RLOCK_VFSSW();
4026 	vswp = vfs_getvfsswbyname(type);
4027 	modname = vfs_to_modname(type);
4028 
4029 	if (rootdir == NULL) {
4030 		/*
4031 		 * If we haven't yet loaded the root file system, then our
4032 		 * _init won't be called until later. Allocate vfssw entry,
4033 		 * because mod_installfs won't be called.
4034 		 */
4035 		if (vswp == NULL) {
4036 			RUNLOCK_VFSSW();
4037 			WLOCK_VFSSW();
4038 			if ((vswp = vfs_getvfsswbyname(type)) == NULL) {
4039 				if ((vswp = allocate_vfssw(type)) == NULL) {
4040 					WUNLOCK_VFSSW();
4041 					return (NULL);
4042 				}
4043 			}
4044 			WUNLOCK_VFSSW();
4045 			RLOCK_VFSSW();
4046 		}
4047 		if (!VFS_INSTALLED(vswp)) {
4048 			RUNLOCK_VFSSW();
4049 			(void) modloadonly("fs", modname);
4050 		} else
4051 			RUNLOCK_VFSSW();
4052 		return (vswp);
4053 	}
4054 
4055 	/*
4056 	 * Try to load the filesystem.  Before calling modload(), we drop
4057 	 * our lock on the VFS switch table, and pick it up after the
4058 	 * module is loaded.  However, there is a potential race:  the
4059 	 * module could be unloaded after the call to modload() completes
4060 	 * but before we pick up the lock and drive on.  Therefore,
4061 	 * we keep reloading the module until we've loaded the module
4062 	 * _and_ we have the lock on the VFS switch table.
4063 	 */
4064 	while (vswp == NULL || !VFS_INSTALLED(vswp)) {
4065 		RUNLOCK_VFSSW();
4066 		if (modload("fs", modname) == -1)
4067 			return (NULL);
4068 		RLOCK_VFSSW();
4069 		if (vswp == NULL)
4070 			if ((vswp = vfs_getvfsswbyname(type)) == NULL)
4071 				break;
4072 	}
4073 	RUNLOCK_VFSSW();
4074 
4075 	return (vswp);
4076 }
4077 
4078 /*
4079  * Find a vfssw entry given a file system type name.
4080  */
4081 struct vfssw *
4082 vfs_getvfsswbyname(const char *type)
4083 {
4084 	struct vfssw *vswp;
4085 
4086 	ASSERT(VFSSW_LOCKED());
4087 	if (type == NULL || *type == '\0')
4088 		return (NULL);
4089 
4090 	for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) {
4091 		if (strcmp(type, vswp->vsw_name) == 0) {
4092 			vfs_refvfssw(vswp);
4093 			return (vswp);
4094 		}
4095 	}
4096 
4097 	return (NULL);
4098 }
4099 
4100 /*
4101  * Find a vfssw entry given a set of vfsops.
4102  */
4103 struct vfssw *
4104 vfs_getvfsswbyvfsops(vfsops_t *vfsops)
4105 {
4106 	struct vfssw *vswp;
4107 
4108 	RLOCK_VFSSW();
4109 	for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) {
4110 		if (ALLOCATED_VFSSW(vswp) && &vswp->vsw_vfsops == vfsops) {
4111 			vfs_refvfssw(vswp);
4112 			RUNLOCK_VFSSW();
4113 			return (vswp);
4114 		}
4115 	}
4116 	RUNLOCK_VFSSW();
4117 
4118 	return (NULL);
4119 }
4120 
4121 /*
4122  * Reference a vfssw entry.
4123  */
4124 void
4125 vfs_refvfssw(struct vfssw *vswp)
4126 {
4127 
4128 	mutex_enter(&vswp->vsw_lock);
4129 	vswp->vsw_count++;
4130 	mutex_exit(&vswp->vsw_lock);
4131 }
4132 
4133 /*
4134  * Unreference a vfssw entry.
4135  */
4136 void
4137 vfs_unrefvfssw(struct vfssw *vswp)
4138 {
4139 
4140 	mutex_enter(&vswp->vsw_lock);
4141 	vswp->vsw_count--;
4142 	mutex_exit(&vswp->vsw_lock);
4143 }
4144 
4145 int sync_timeout = 30;		/* timeout for syncing a page during panic */
4146 int sync_timeleft;		/* portion of sync_timeout remaining */
4147 
4148 static int sync_retries = 20;	/* number of retries when not making progress */
4149 static int sync_triesleft;	/* portion of sync_retries remaining */
4150 
4151 static pgcnt_t old_pgcnt, new_pgcnt;
4152 static int new_bufcnt, old_bufcnt;
4153 
4154 /*
4155  * Sync all of the mounted filesystems, and then wait for the actual i/o to
4156  * complete.  We wait by counting the number of dirty pages and buffers,
4157  * pushing them out using bio_busy() and page_busy(), and then counting again.
4158  * This routine is used during both the uadmin A_SHUTDOWN code as well as
4159  * the SYNC phase of the panic code (see comments in panic.c).  It should only
4160  * be used after some higher-level mechanism has quiesced the system so that
4161  * new writes are not being initiated while we are waiting for completion.
4162  *
4163  * To ensure finite running time, our algorithm uses two timeout mechanisms:
4164  * sync_timeleft (a timer implemented by the omnipresent deadman() cyclic), and
4165  * sync_triesleft (a progress counter used by the vfs_syncall() loop below).
4166  * Together these ensure that syncing completes if our i/o paths are stuck.
4167  * The counters are declared above so they can be found easily in the debugger.
4168  *
4169  * The sync_timeleft counter is reset by bio_busy() and page_busy() using the
4170  * vfs_syncprogress() subroutine whenever we make progress through the lists of
4171  * pages and buffers.  It is decremented and expired by the deadman() cyclic.
4172  * When vfs_syncall() decides it is done, we disable the deadman() counter by
4173  * setting sync_timeleft to zero.  This timer guards against vfs_syncall()
4174  * deadlocking or hanging inside of a broken filesystem or driver routine.
4175  *
4176  * The sync_triesleft counter is updated by vfs_syncall() itself.  If we make
4177  * sync_retries consecutive calls to bio_busy() and page_busy() without
4178  * decreasing either the number of dirty buffers or dirty pages below the
4179  * lowest count we have seen so far, we give up and return from vfs_syncall().
4180  *
4181  * Each loop iteration ends with a call to delay() one second to allow time for
4182  * i/o completion and to permit the user time to read our progress messages.
4183  */
4184 void
4185 vfs_syncall(void)
4186 {
4187 	if (rootdir == NULL && !modrootloaded)
4188 		return; /* panic during boot - no filesystems yet */
4189 
4190 	printf("syncing file systems...");
4191 	vfs_syncprogress();
4192 	sync();
4193 
4194 	vfs_syncprogress();
4195 	sync_triesleft = sync_retries;
4196 
4197 	old_bufcnt = new_bufcnt = INT_MAX;
4198 	old_pgcnt = new_pgcnt = ULONG_MAX;
4199 
4200 	while (sync_triesleft > 0) {
4201 		old_bufcnt = MIN(old_bufcnt, new_bufcnt);
4202 		old_pgcnt = MIN(old_pgcnt, new_pgcnt);
4203 
4204 		new_bufcnt = bio_busy(B_TRUE);
4205 		new_pgcnt = page_busy(B_TRUE);
4206 		vfs_syncprogress();
4207 
4208 		if (new_bufcnt == 0 && new_pgcnt == 0)
4209 			break;
4210 
4211 		if (new_bufcnt < old_bufcnt || new_pgcnt < old_pgcnt)
4212 			sync_triesleft = sync_retries;
4213 		else
4214 			sync_triesleft--;
4215 
4216 		if (new_bufcnt)
4217 			printf(" [%d]", new_bufcnt);
4218 		if (new_pgcnt)
4219 			printf(" %lu", new_pgcnt);
4220 
4221 		delay(hz);
4222 	}
4223 
4224 	if (new_bufcnt != 0 || new_pgcnt != 0)
4225 		printf(" done (not all i/o completed)\n");
4226 	else
4227 		printf(" done\n");
4228 
4229 	sync_timeleft = 0;
4230 	delay(hz);
4231 }
4232 
4233 /*
4234  * If we are in the middle of the sync phase of panic, reset sync_timeleft to
4235  * sync_timeout to indicate that we are making progress and the deadman()
4236  * omnipresent cyclic should not yet time us out.  Note that it is safe to
4237  * store to sync_timeleft here since the deadman() is firing at high-level
4238  * on top of us.  If we are racing with the deadman(), either the deadman()
4239  * will decrement the old value and then we will reset it, or we will
4240  * reset it and then the deadman() will immediately decrement it.  In either
4241  * case, correct behavior results.
4242  */
4243 void
4244 vfs_syncprogress(void)
4245 {
4246 	if (panicstr)
4247 		sync_timeleft = sync_timeout;
4248 }
4249 
4250 /*
4251  * Map VFS flags to statvfs flags.  These shouldn't really be separate
4252  * flags at all.
4253  */
4254 uint_t
4255 vf_to_stf(uint_t vf)
4256 {
4257 	uint_t stf = 0;
4258 
4259 	if (vf & VFS_RDONLY)
4260 		stf |= ST_RDONLY;
4261 	if (vf & VFS_NOSETUID)
4262 		stf |= ST_NOSUID;
4263 	if (vf & VFS_NOTRUNC)
4264 		stf |= ST_NOTRUNC;
4265 
4266 	return (stf);
4267 }
4268 
4269 /*
4270  * Entries for (illegal) fstype 0.
4271  */
4272 /* ARGSUSED */
4273 int
4274 vfsstray_sync(struct vfs *vfsp, short arg, struct cred *cr)
4275 {
4276 	cmn_err(CE_PANIC, "stray vfs operation");
4277 	return (0);
4278 }
4279 
4280 /*
4281  * Entries for (illegal) fstype 0.
4282  */
4283 int
4284 vfsstray(void)
4285 {
4286 	cmn_err(CE_PANIC, "stray vfs operation");
4287 	return (0);
4288 }
4289 
4290 /*
4291  * Support for dealing with forced UFS unmount and its interaction with
4292  * LOFS. Could be used by any filesystem.
4293  * See bug 1203132.
4294  */
4295 int
4296 vfs_EIO(void)
4297 {
4298 	return (EIO);
4299 }
4300 
4301 /*
4302  * We've gotta define the op for sync separately, since the compiler gets
4303  * confused if we mix and match ANSI and normal style prototypes when
4304  * a "short" argument is present and spits out a warning.
4305  */
4306 /*ARGSUSED*/
4307 int
4308 vfs_EIO_sync(struct vfs *vfsp, short arg, struct cred *cr)
4309 {
4310 	return (EIO);
4311 }
4312 
4313 vfs_t EIO_vfs;
4314 vfsops_t *EIO_vfsops;
4315 
4316 /*
4317  * Called from startup() to initialize all loaded vfs's
4318  */
4319 void
4320 vfsinit(void)
4321 {
4322 	struct vfssw *vswp;
4323 	int error;
4324 	extern int vopstats_enabled;
4325 	extern void vopstats_startup();
4326 
4327 	static const fs_operation_def_t EIO_vfsops_template[] = {
4328 		VFSNAME_MOUNT,		{ .error = vfs_EIO },
4329 		VFSNAME_UNMOUNT,	{ .error = vfs_EIO },
4330 		VFSNAME_ROOT,		{ .error = vfs_EIO },
4331 		VFSNAME_STATVFS,	{ .error = vfs_EIO },
4332 		VFSNAME_SYNC, 		{ .vfs_sync = vfs_EIO_sync },
4333 		VFSNAME_VGET,		{ .error = vfs_EIO },
4334 		VFSNAME_MOUNTROOT,	{ .error = vfs_EIO },
4335 		VFSNAME_FREEVFS,	{ .error = vfs_EIO },
4336 		VFSNAME_VNSTATE,	{ .error = vfs_EIO },
4337 		NULL, NULL
4338 	};
4339 
4340 	static const fs_operation_def_t stray_vfsops_template[] = {
4341 		VFSNAME_MOUNT,		{ .error = vfsstray },
4342 		VFSNAME_UNMOUNT,	{ .error = vfsstray },
4343 		VFSNAME_ROOT,		{ .error = vfsstray },
4344 		VFSNAME_STATVFS,	{ .error = vfsstray },
4345 		VFSNAME_SYNC, 		{ .vfs_sync = vfsstray_sync },
4346 		VFSNAME_VGET,		{ .error = vfsstray },
4347 		VFSNAME_MOUNTROOT,	{ .error = vfsstray },
4348 		VFSNAME_FREEVFS,	{ .error = vfsstray },
4349 		VFSNAME_VNSTATE,	{ .error = vfsstray },
4350 		NULL, NULL
4351 	};
4352 
4353 	/* Create vfs cache */
4354 	vfs_cache = kmem_cache_create("vfs_cache", sizeof (struct vfs),
4355 	    sizeof (uintptr_t), NULL, NULL, NULL, NULL, NULL, 0);
4356 
4357 	/* Initialize the vnode cache (file systems may use it during init). */
4358 	vn_create_cache();
4359 
4360 	/* Setup event monitor framework */
4361 	fem_init();
4362 
4363 	/* Initialize the dummy stray file system type. */
4364 	error = vfs_setfsops(0, stray_vfsops_template, NULL);
4365 
4366 	/* Initialize the dummy EIO file system. */
4367 	error = vfs_makefsops(EIO_vfsops_template, &EIO_vfsops);
4368 	if (error != 0) {
4369 		cmn_err(CE_WARN, "vfsinit: bad EIO vfs ops template");
4370 		/* Shouldn't happen, but not bad enough to panic */
4371 	}
4372 
4373 	VFS_INIT(&EIO_vfs, EIO_vfsops, (caddr_t)NULL);
4374 
4375 	/*
4376 	 * Default EIO_vfs.vfs_flag to VFS_UNMOUNTED so a lookup
4377 	 * on this vfs can immediately notice it's invalid.
4378 	 */
4379 	EIO_vfs.vfs_flag |= VFS_UNMOUNTED;
4380 
4381 	/*
4382 	 * Call the init routines of non-loadable filesystems only.
4383 	 * Filesystems which are loaded as separate modules will be
4384 	 * initialized by the module loading code instead.
4385 	 */
4386 
4387 	for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) {
4388 		RLOCK_VFSSW();
4389 		if (vswp->vsw_init != NULL)
4390 			(*vswp->vsw_init)(vswp - vfssw, vswp->vsw_name);
4391 		RUNLOCK_VFSSW();
4392 	}
4393 
4394 	vopstats_startup();
4395 
4396 	if (vopstats_enabled) {
4397 		/* EIO_vfs can collect stats, but we don't retrieve them */
4398 		initialize_vopstats(&EIO_vfs.vfs_vopstats);
4399 		EIO_vfs.vfs_fstypevsp = NULL;
4400 		EIO_vfs.vfs_vskap = NULL;
4401 		EIO_vfs.vfs_flag |= VFS_STATS;
4402 	}
4403 
4404 	xattr_init();
4405 
4406 	reparse_point_init();
4407 }
4408 
4409 vfs_t *
4410 vfs_alloc(int kmflag)
4411 {
4412 	vfs_t *vfsp;
4413 
4414 	vfsp = kmem_cache_alloc(vfs_cache, kmflag);
4415 
4416 	/*
4417 	 * Do the simplest initialization here.
4418 	 * Everything else gets done in vfs_init()
4419 	 */
4420 	bzero(vfsp, sizeof (vfs_t));
4421 	return (vfsp);
4422 }
4423 
4424 void
4425 vfs_free(vfs_t *vfsp)
4426 {
4427 	/*
4428 	 * One would be tempted to assert that "vfsp->vfs_count == 0".
4429 	 * The problem is that this gets called out of domount() with
4430 	 * a partially initialized vfs and a vfs_count of 1.  This is
4431 	 * also called from vfs_rele() with a vfs_count of 0.  We can't
4432 	 * call VFS_RELE() from domount() if VFS_MOUNT() hasn't successfully
4433 	 * returned.  This is because VFS_MOUNT() fully initializes the
4434 	 * vfs structure and its associated data.  VFS_RELE() will call
4435 	 * VFS_FREEVFS() which may panic the system if the data structures
4436 	 * aren't fully initialized from a successful VFS_MOUNT()).
4437 	 */
4438 
4439 	/* If FEM was in use, make sure everything gets cleaned up */
4440 	if (vfsp->vfs_femhead) {
4441 		ASSERT(vfsp->vfs_femhead->femh_list == NULL);
4442 		mutex_destroy(&vfsp->vfs_femhead->femh_lock);
4443 		kmem_free(vfsp->vfs_femhead, sizeof (*(vfsp->vfs_femhead)));
4444 		vfsp->vfs_femhead = NULL;
4445 	}
4446 
4447 	if (vfsp->vfs_implp)
4448 		vfsimpl_teardown(vfsp);
4449 	sema_destroy(&vfsp->vfs_reflock);
4450 	kmem_cache_free(vfs_cache, vfsp);
4451 }
4452 
4453 /*
4454  * Increments the vfs reference count by one atomically.
4455  */
4456 void
4457 vfs_hold(vfs_t *vfsp)
4458 {
4459 	atomic_inc_32(&vfsp->vfs_count);
4460 	ASSERT(vfsp->vfs_count != 0);
4461 }
4462 
4463 /*
4464  * Decrements the vfs reference count by one atomically. When
4465  * vfs reference count becomes zero, it calls the file system
4466  * specific vfs_freevfs() to free up the resources.
4467  */
4468 void
4469 vfs_rele(vfs_t *vfsp)
4470 {
4471 	ASSERT(vfsp->vfs_count != 0);
4472 	if (atomic_dec_32_nv(&vfsp->vfs_count) == 0) {
4473 		VFS_FREEVFS(vfsp);
4474 		lofi_remove(vfsp);
4475 		if (vfsp->vfs_zone)
4476 			zone_rele_ref(&vfsp->vfs_implp->vi_zone_ref,
4477 			    ZONE_REF_VFS);
4478 		vfs_freemnttab(vfsp);
4479 		vfs_free(vfsp);
4480 	}
4481 }
4482 
4483 /*
4484  * Generic operations vector support.
4485  *
4486  * This is used to build operations vectors for both the vfs and vnode.
4487  * It's normally called only when a file system is loaded.
4488  *
4489  * There are many possible algorithms for this, including the following:
4490  *
4491  *   (1) scan the list of known operations; for each, see if the file system
4492  *       includes an entry for it, and fill it in as appropriate.
4493  *
4494  *   (2) set up defaults for all known operations.  scan the list of ops
4495  *       supplied by the file system; for each which is both supplied and
4496  *       known, fill it in.
4497  *
4498  *   (3) sort the lists of known ops & supplied ops; scan the list, filling
4499  *       in entries as we go.
4500  *
4501  * we choose (1) for simplicity, and because performance isn't critical here.
4502  * note that (2) could be sped up using a precomputed hash table on known ops.
4503  * (3) could be faster than either, but only if the lists were very large or
4504  * supplied in sorted order.
4505  *
4506  */
4507 
4508 int
4509 fs_build_vector(void *vector, int *unused_ops,
4510     const fs_operation_trans_def_t *translation,
4511     const fs_operation_def_t *operations)
4512 {
4513 	int i, num_trans, num_ops, used;
4514 
4515 	/*
4516 	 * Count the number of translations and the number of supplied
4517 	 * operations.
4518 	 */
4519 
4520 	{
4521 		const fs_operation_trans_def_t *p;
4522 
4523 		for (num_trans = 0, p = translation;
4524 		    p->name != NULL;
4525 		    num_trans++, p++)
4526 			;
4527 	}
4528 
4529 	{
4530 		const fs_operation_def_t *p;
4531 
4532 		for (num_ops = 0, p = operations;
4533 		    p->name != NULL;
4534 		    num_ops++, p++)
4535 			;
4536 	}
4537 
4538 	/* Walk through each operation known to our caller.  There will be */
4539 	/* one entry in the supplied "translation table" for each. */
4540 
4541 	used = 0;
4542 
4543 	for (i = 0; i < num_trans; i++) {
4544 		int j, found;
4545 		char *curname;
4546 		fs_generic_func_p result;
4547 		fs_generic_func_p *location;
4548 
4549 		curname = translation[i].name;
4550 
4551 		/* Look for a matching operation in the list supplied by the */
4552 		/* file system. */
4553 
4554 		found = 0;
4555 
4556 		for (j = 0; j < num_ops; j++) {
4557 			if (strcmp(operations[j].name, curname) == 0) {
4558 				used++;
4559 				found = 1;
4560 				break;
4561 			}
4562 		}
4563 
4564 		/*
4565 		 * If the file system is using a "placeholder" for default
4566 		 * or error functions, grab the appropriate function out of
4567 		 * the translation table.  If the file system didn't supply
4568 		 * this operation at all, use the default function.
4569 		 */
4570 
4571 		if (found) {
4572 			result = operations[j].func.fs_generic;
4573 			if (result == fs_default) {
4574 				result = translation[i].defaultFunc;
4575 			} else if (result == fs_error) {
4576 				result = translation[i].errorFunc;
4577 			} else if (result == NULL) {
4578 				/* Null values are PROHIBITED */
4579 				return (EINVAL);
4580 			}
4581 		} else {
4582 			result = translation[i].defaultFunc;
4583 		}
4584 
4585 		/* Now store the function into the operations vector. */
4586 
4587 		location = (fs_generic_func_p *)
4588 		    (((char *)vector) + translation[i].offset);
4589 
4590 		*location = result;
4591 	}
4592 
4593 	*unused_ops = num_ops - used;
4594 
4595 	return (0);
4596 }
4597 
4598 /* Placeholder functions, should never be called. */
4599 
4600 int
4601 fs_error(void)
4602 {
4603 	cmn_err(CE_PANIC, "fs_error called");
4604 	return (0);
4605 }
4606 
4607 int
4608 fs_default(void)
4609 {
4610 	cmn_err(CE_PANIC, "fs_default called");
4611 	return (0);
4612 }
4613 
4614 #ifdef __sparc
4615 
4616 /*
4617  * Part of the implementation of booting off a mirrored root
4618  * involves a change of dev_t for the root device.  To
4619  * accomplish this, first remove the existing hash table
4620  * entry for the root device, convert to the new dev_t,
4621  * then re-insert in the hash table at the head of the list.
4622  */
4623 void
4624 vfs_root_redev(vfs_t *vfsp, dev_t ndev, int fstype)
4625 {
4626 	vfs_list_lock();
4627 
4628 	vfs_hash_remove(vfsp);
4629 
4630 	vfsp->vfs_dev = ndev;
4631 	vfs_make_fsid(&vfsp->vfs_fsid, ndev, fstype);
4632 
4633 	vfs_hash_add(vfsp, 1);
4634 
4635 	vfs_list_unlock();
4636 }
4637 
4638 #else /* x86 NEWBOOT */
4639 
4640 #if defined(__x86)
4641 extern int hvmboot_rootconf();
4642 #endif /* __x86 */
4643 
4644 extern ib_boot_prop_t *iscsiboot_prop;
4645 
4646 int
4647 rootconf()
4648 {
4649 	int error;
4650 	struct vfssw *vsw;
4651 	extern void pm_init();
4652 	char *fstyp, *fsmod;
4653 	int ret = -1;
4654 
4655 	getrootfs(&fstyp, &fsmod);
4656 
4657 #if defined(__x86)
4658 	/*
4659 	 * hvmboot_rootconf() is defined in the hvm_bootstrap misc module,
4660 	 * which lives in /platform/i86hvm, and hence is only available when
4661 	 * booted in an x86 hvm environment.  If the hvm_bootstrap misc module
4662 	 * is not available then the modstub for this function will return 0.
4663 	 * If the hvm_bootstrap misc module is available it will be loaded
4664 	 * and hvmboot_rootconf() will be invoked.
4665 	 */
4666 	if (error = hvmboot_rootconf())
4667 		return (error);
4668 #endif /* __x86 */
4669 
4670 	if (error = clboot_rootconf())
4671 		return (error);
4672 
4673 	if (modload("fs", fsmod) == -1)
4674 		panic("Cannot _init %s module", fsmod);
4675 
4676 	RLOCK_VFSSW();
4677 	vsw = vfs_getvfsswbyname(fstyp);
4678 	RUNLOCK_VFSSW();
4679 	if (vsw == NULL) {
4680 		cmn_err(CE_CONT, "Cannot find %s filesystem\n", fstyp);
4681 		return (ENXIO);
4682 	}
4683 	VFS_INIT(rootvfs, &vsw->vsw_vfsops, 0);
4684 	VFS_HOLD(rootvfs);
4685 
4686 	/* always mount readonly first */
4687 	rootvfs->vfs_flag |= VFS_RDONLY;
4688 
4689 	pm_init();
4690 
4691 	if (netboot && iscsiboot_prop) {
4692 		cmn_err(CE_WARN, "NFS boot and iSCSI boot"
4693 		    " shouldn't happen in the same time");
4694 		return (EINVAL);
4695 	}
4696 
4697 	if (netboot || iscsiboot_prop) {
4698 		ret = strplumb();
4699 		if (ret != 0) {
4700 			cmn_err(CE_WARN, "Cannot plumb network device %d", ret);
4701 			return (EFAULT);
4702 		}
4703 	}
4704 
4705 	if ((ret == 0) && iscsiboot_prop) {
4706 		ret = modload("drv", "iscsi");
4707 		/* -1 indicates fail */
4708 		if (ret == -1) {
4709 			cmn_err(CE_WARN, "Failed to load iscsi module");
4710 			iscsi_boot_prop_free();
4711 			return (EINVAL);
4712 		} else {
4713 			if (!i_ddi_attach_pseudo_node("iscsi")) {
4714 				cmn_err(CE_WARN,
4715 				    "Failed to attach iscsi driver");
4716 				iscsi_boot_prop_free();
4717 				return (ENODEV);
4718 			}
4719 		}
4720 	}
4721 
4722 	error = VFS_MOUNTROOT(rootvfs, ROOT_INIT);
4723 	vfs_unrefvfssw(vsw);
4724 	rootdev = rootvfs->vfs_dev;
4725 
4726 	if (error)
4727 		cmn_err(CE_CONT, "Cannot mount root on %s fstype %s\n",
4728 		    rootfs.bo_name, fstyp);
4729 	else
4730 		cmn_err(CE_CONT, "?root on %s fstype %s\n",
4731 		    rootfs.bo_name, fstyp);
4732 	return (error);
4733 }
4734 
4735 /*
4736  * XXX this is called by nfs only and should probably be removed
4737  * If booted with ASKNAME, prompt on the console for a filesystem
4738  * name and return it.
4739  */
4740 void
4741 getfsname(char *askfor, char *name, size_t namelen)
4742 {
4743 	if (boothowto & RB_ASKNAME) {
4744 		printf("%s name: ", askfor);
4745 		console_gets(name, namelen);
4746 	}
4747 }
4748 
4749 /*
4750  * Init the root filesystem type (rootfs.bo_fstype) from the "fstype"
4751  * property.
4752  *
4753  * Filesystem types starting with the prefix "nfs" are diskless clients;
4754  * init the root filename name (rootfs.bo_name), too.
4755  *
4756  * If we are booting via NFS we currently have these options:
4757  *	nfs -	dynamically choose NFS V2, V3, or V4 (default)
4758  *	nfs2 -	force NFS V2
4759  *	nfs3 -	force NFS V3
4760  *	nfs4 -	force NFS V4
4761  * Because we need to maintain backward compatibility with the naming
4762  * convention that the NFS V2 filesystem name is "nfs" (see vfs_conf.c)
4763  * we need to map "nfs" => "nfsdyn" and "nfs2" => "nfs".  The dynamic
4764  * nfs module will map the type back to either "nfs", "nfs3", or "nfs4".
4765  * This is only for root filesystems, all other uses such as cachefs
4766  * will expect that "nfs" == NFS V2.
4767  */
4768 static void
4769 getrootfs(char **fstypp, char **fsmodp)
4770 {
4771 	extern char *strplumb_get_netdev_path(void);
4772 	char *propstr = NULL;
4773 
4774 	/*
4775 	 * Check fstype property; for diskless it should be one of "nfs",
4776 	 * "nfs2", "nfs3" or "nfs4".
4777 	 */
4778 	if (ddi_prop_lookup_string(DDI_DEV_T_ANY, ddi_root_node(),
4779 	    DDI_PROP_DONTPASS, "fstype", &propstr)
4780 	    == DDI_SUCCESS) {
4781 		(void) strncpy(rootfs.bo_fstype, propstr, BO_MAXFSNAME);
4782 		ddi_prop_free(propstr);
4783 
4784 	/*
4785 	 * if the boot property 'fstype' is not set, but 'zfs-bootfs' is set,
4786 	 * assume the type of this root filesystem is 'zfs'.
4787 	 */
4788 	} else if (ddi_prop_lookup_string(DDI_DEV_T_ANY, ddi_root_node(),
4789 	    DDI_PROP_DONTPASS, "zfs-bootfs", &propstr)
4790 	    == DDI_SUCCESS) {
4791 		(void) strncpy(rootfs.bo_fstype, "zfs", BO_MAXFSNAME);
4792 		ddi_prop_free(propstr);
4793 	}
4794 
4795 	if (strncmp(rootfs.bo_fstype, "nfs", 3) != 0) {
4796 		*fstypp = *fsmodp = rootfs.bo_fstype;
4797 		return;
4798 	}
4799 
4800 	++netboot;
4801 
4802 	if (strcmp(rootfs.bo_fstype, "nfs2") == 0)
4803 		(void) strcpy(rootfs.bo_fstype, "nfs");
4804 	else if (strcmp(rootfs.bo_fstype, "nfs") == 0)
4805 		(void) strcpy(rootfs.bo_fstype, "nfsdyn");
4806 
4807 	/*
4808 	 * check if path to network interface is specified in bootpath
4809 	 * or by a hypervisor domain configuration file.
4810 	 * XXPV - enable strlumb_get_netdev_path()
4811 	 */
4812 	if (ddi_prop_exists(DDI_DEV_T_ANY, ddi_root_node(), DDI_PROP_DONTPASS,
4813 	    "xpv-nfsroot")) {
4814 		(void) strcpy(rootfs.bo_name, "/xpvd/xnf@0");
4815 	} else if (ddi_prop_lookup_string(DDI_DEV_T_ANY, ddi_root_node(),
4816 	    DDI_PROP_DONTPASS, "bootpath", &propstr)
4817 	    == DDI_SUCCESS) {
4818 		(void) strncpy(rootfs.bo_name, propstr, BO_MAXOBJNAME);
4819 		ddi_prop_free(propstr);
4820 	} else {
4821 		/* attempt to determine netdev_path via boot_mac address */
4822 		netdev_path = strplumb_get_netdev_path();
4823 		if (netdev_path == NULL)
4824 			panic("cannot find boot network interface");
4825 		(void) strncpy(rootfs.bo_name, netdev_path, BO_MAXOBJNAME);
4826 	}
4827 	*fstypp = rootfs.bo_fstype;
4828 	*fsmodp = "nfs";
4829 }
4830 #endif
4831 
4832 /*
4833  * VFS feature routines
4834  */
4835 
4836 #define	VFTINDEX(feature)	(((feature) >> 32) & 0xFFFFFFFF)
4837 #define	VFTBITS(feature)	((feature) & 0xFFFFFFFFLL)
4838 
4839 /* Register a feature in the vfs */
4840 void
4841 vfs_set_feature(vfs_t *vfsp, vfs_feature_t feature)
4842 {
4843 	/* Note that vfs_featureset[] is found in *vfsp->vfs_implp */
4844 	if (vfsp->vfs_implp == NULL)
4845 		return;
4846 
4847 	vfsp->vfs_featureset[VFTINDEX(feature)] |= VFTBITS(feature);
4848 }
4849 
4850 void
4851 vfs_clear_feature(vfs_t *vfsp, vfs_feature_t feature)
4852 {
4853 	/* Note that vfs_featureset[] is found in *vfsp->vfs_implp */
4854 	if (vfsp->vfs_implp == NULL)
4855 		return;
4856 	vfsp->vfs_featureset[VFTINDEX(feature)] &= VFTBITS(~feature);
4857 }
4858 
4859 /*
4860  * Query a vfs for a feature.
4861  * Returns 1 if feature is present, 0 if not
4862  */
4863 int
4864 vfs_has_feature(vfs_t *vfsp, vfs_feature_t feature)
4865 {
4866 	int	ret = 0;
4867 
4868 	/* Note that vfs_featureset[] is found in *vfsp->vfs_implp */
4869 	if (vfsp->vfs_implp == NULL)
4870 		return (ret);
4871 
4872 	if (vfsp->vfs_featureset[VFTINDEX(feature)] & VFTBITS(feature))
4873 		ret = 1;
4874 
4875 	return (ret);
4876 }
4877 
4878 /*
4879  * Propagate feature set from one vfs to another
4880  */
4881 void
4882 vfs_propagate_features(vfs_t *from, vfs_t *to)
4883 {
4884 	int i;
4885 
4886 	if (to->vfs_implp == NULL || from->vfs_implp == NULL)
4887 		return;
4888 
4889 	for (i = 1; i <= to->vfs_featureset[0]; i++) {
4890 		to->vfs_featureset[i] = from->vfs_featureset[i];
4891 	}
4892 }
4893 
4894 #define	LOFINODE_PATH "/dev/lofi/%d"
4895 
4896 /*
4897  * Return the vnode for the lofi node if there's a lofi mount in place.
4898  * Returns -1 when there's no lofi node, 0 on success, and > 0 on
4899  * failure.
4900  */
4901 int
4902 vfs_get_lofi(vfs_t *vfsp, vnode_t **vpp)
4903 {
4904 	char *path = NULL;
4905 	int strsize;
4906 	int err;
4907 
4908 	if (vfsp->vfs_lofi_minor == 0) {
4909 		*vpp = NULL;
4910 		return (-1);
4911 	}
4912 
4913 	strsize = snprintf(NULL, 0, LOFINODE_PATH, vfsp->vfs_lofi_minor);
4914 	path = kmem_alloc(strsize + 1, KM_SLEEP);
4915 	(void) snprintf(path, strsize + 1, LOFINODE_PATH, vfsp->vfs_lofi_minor);
4916 
4917 	/*
4918 	 * We may be inside a zone, so we need to use the /dev path, but
4919 	 * it's created asynchronously, so we wait here.
4920 	 */
4921 	for (;;) {
4922 		err = lookupname(path, UIO_SYSSPACE, FOLLOW, NULLVPP, vpp);
4923 
4924 		if (err != ENOENT)
4925 			break;
4926 
4927 		if ((err = delay_sig(hz / 8)) == EINTR)
4928 			break;
4929 	}
4930 
4931 	if (err)
4932 		*vpp = NULL;
4933 
4934 	kmem_free(path, strsize + 1);
4935 	return (err);
4936 }
4937