xref: /titanic_44/usr/src/uts/common/fs/vfs.c (revision d1c5dc47e23888b05d4095e8983ccf62acbc69fa)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 1988, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2013, Joyent, Inc. All rights reserved.
25  * Copyright 2017 RackTop Systems.
26  * Copyright 2016 Nexenta Systems, Inc.
27  */
28 
29 /*	Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989 AT&T	*/
30 /*	  All Rights Reserved  	*/
31 
32 /*
33  * University Copyright- Copyright (c) 1982, 1986, 1988
34  * The Regents of the University of California
35  * All Rights Reserved
36  *
37  * University Acknowledgment- Portions of this document are derived from
38  * software developed by the University of California, Berkeley, and its
39  * contributors.
40  */
41 
42 #include <sys/types.h>
43 #include <sys/t_lock.h>
44 #include <sys/param.h>
45 #include <sys/errno.h>
46 #include <sys/user.h>
47 #include <sys/fstyp.h>
48 #include <sys/kmem.h>
49 #include <sys/systm.h>
50 #include <sys/proc.h>
51 #include <sys/mount.h>
52 #include <sys/vfs.h>
53 #include <sys/vfs_opreg.h>
54 #include <sys/fem.h>
55 #include <sys/mntent.h>
56 #include <sys/stat.h>
57 #include <sys/statvfs.h>
58 #include <sys/statfs.h>
59 #include <sys/cred.h>
60 #include <sys/vnode.h>
61 #include <sys/rwstlock.h>
62 #include <sys/dnlc.h>
63 #include <sys/file.h>
64 #include <sys/time.h>
65 #include <sys/atomic.h>
66 #include <sys/cmn_err.h>
67 #include <sys/buf.h>
68 #include <sys/swap.h>
69 #include <sys/debug.h>
70 #include <sys/vnode.h>
71 #include <sys/modctl.h>
72 #include <sys/ddi.h>
73 #include <sys/pathname.h>
74 #include <sys/bootconf.h>
75 #include <sys/dumphdr.h>
76 #include <sys/dc_ki.h>
77 #include <sys/poll.h>
78 #include <sys/sunddi.h>
79 #include <sys/sysmacros.h>
80 #include <sys/zone.h>
81 #include <sys/policy.h>
82 #include <sys/ctfs.h>
83 #include <sys/objfs.h>
84 #include <sys/console.h>
85 #include <sys/reboot.h>
86 #include <sys/attr.h>
87 #include <sys/zio.h>
88 #include <sys/spa.h>
89 #include <sys/lofi.h>
90 #include <sys/bootprops.h>
91 #include <sys/avl.h>
92 
93 #include <vm/page.h>
94 
95 #include <fs/fs_subr.h>
96 /* Private interfaces to create vopstats-related data structures */
97 extern void		initialize_vopstats(vopstats_t *);
98 extern vopstats_t	*get_fstype_vopstats(struct vfs *, struct vfssw *);
99 extern vsk_anchor_t	*get_vskstat_anchor(struct vfs *);
100 
101 static void vfs_clearmntopt_nolock(mntopts_t *, const char *, int);
102 static void vfs_setmntopt_nolock(mntopts_t *, const char *,
103     const char *, int, int);
104 static int  vfs_optionisset_nolock(const mntopts_t *, const char *, char **);
105 static void vfs_freemnttab(struct vfs *);
106 static void vfs_freeopt(mntopt_t *);
107 static void vfs_swapopttbl_nolock(mntopts_t *, mntopts_t *);
108 static void vfs_swapopttbl(mntopts_t *, mntopts_t *);
109 static void vfs_copyopttbl_extend(const mntopts_t *, mntopts_t *, int);
110 static void vfs_createopttbl_extend(mntopts_t *, const char *,
111     const mntopts_t *);
112 static char **vfs_copycancelopt_extend(char **const, int);
113 static void vfs_freecancelopt(char **);
114 static void getrootfs(char **, char **);
115 static int getmacpath(dev_info_t *, void *);
116 static void vfs_mnttabvp_setup(void);
117 
118 struct ipmnt {
119 	struct ipmnt	*mip_next;
120 	dev_t		mip_dev;
121 	struct vfs	*mip_vfsp;
122 };
123 
124 static kmutex_t		vfs_miplist_mutex;
125 static struct ipmnt	*vfs_miplist = NULL;
126 static struct ipmnt	*vfs_miplist_end = NULL;
127 
128 static kmem_cache_t *vfs_cache;	/* Pointer to VFS kmem cache */
129 
130 /*
131  * VFS global data.
132  */
133 vnode_t *rootdir;		/* pointer to root inode vnode. */
134 vnode_t *devicesdir;		/* pointer to inode of devices root */
135 vnode_t	*devdir;		/* pointer to inode of dev root */
136 
137 char *server_rootpath;		/* root path for diskless clients */
138 char *server_hostname;		/* hostname of diskless server */
139 
140 static struct vfs root;
141 static struct vfs devices;
142 static struct vfs dev;
143 struct vfs *rootvfs = &root;	/* pointer to root vfs; head of VFS list. */
144 avl_tree_t vfs_by_dev;		/* avl tree to index mounted VFSs by dev */
145 avl_tree_t vfs_by_mntpnt;	/* avl tree to index mounted VFSs by mntpnt */
146 uint64_t vfs_curr_mntix;	/* counter to provide a unique mntix for
147 				 * entries in the above avl trees.
148 				 * protected by vfslist lock */
149 rvfs_t *rvfs_list;		/* array of vfs ptrs for vfs hash list */
150 int vfshsz = 512;		/* # of heads/locks in vfs hash arrays */
151 				/* must be power of 2!	*/
152 timespec_t vfs_mnttab_ctime;	/* mnttab created time */
153 timespec_t vfs_mnttab_mtime;	/* mnttab last modified time */
154 char *vfs_dummyfstype = "\0";
155 struct pollhead vfs_pollhd;	/* for mnttab pollers */
156 struct vnode *vfs_mntdummyvp;	/* to fake mnttab read/write for file events */
157 int	mntfstype;		/* will be set once mnt fs is mounted */
158 
159 /*
160  * Table for generic options recognized in the VFS layer and acted
161  * on at this level before parsing file system specific options.
162  * The nosuid option is stronger than any of the devices and setuid
163  * options, so those are canceled when nosuid is seen.
164  *
165  * All options which are added here need to be added to the
166  * list of standard options in usr/src/cmd/fs.d/fslib.c as well.
167  */
168 /*
169  * VFS Mount options table
170  */
171 static char *ro_cancel[] = { MNTOPT_RW, NULL };
172 static char *rw_cancel[] = { MNTOPT_RO, NULL };
173 static char *suid_cancel[] = { MNTOPT_NOSUID, NULL };
174 static char *nosuid_cancel[] = { MNTOPT_SUID, MNTOPT_DEVICES, MNTOPT_NODEVICES,
175     MNTOPT_NOSETUID, MNTOPT_SETUID, NULL };
176 static char *devices_cancel[] = { MNTOPT_NODEVICES, NULL };
177 static char *nodevices_cancel[] = { MNTOPT_DEVICES, NULL };
178 static char *setuid_cancel[] = { MNTOPT_NOSETUID, NULL };
179 static char *nosetuid_cancel[] = { MNTOPT_SETUID, NULL };
180 static char *nbmand_cancel[] = { MNTOPT_NONBMAND, NULL };
181 static char *nonbmand_cancel[] = { MNTOPT_NBMAND, NULL };
182 static char *exec_cancel[] = { MNTOPT_NOEXEC, NULL };
183 static char *noexec_cancel[] = { MNTOPT_EXEC, NULL };
184 
185 static const mntopt_t mntopts[] = {
186 /*
187  *	option name		cancel options		default arg	flags
188  */
189 	{ MNTOPT_REMOUNT,	NULL,			NULL,
190 		MO_NODISPLAY, (void *)0 },
191 	{ MNTOPT_RO,		ro_cancel,		NULL,		0,
192 		(void *)0 },
193 	{ MNTOPT_RW,		rw_cancel,		NULL,		0,
194 		(void *)0 },
195 	{ MNTOPT_SUID,		suid_cancel,		NULL,		0,
196 		(void *)0 },
197 	{ MNTOPT_NOSUID,	nosuid_cancel,		NULL,		0,
198 		(void *)0 },
199 	{ MNTOPT_DEVICES,	devices_cancel,		NULL,		0,
200 		(void *)0 },
201 	{ MNTOPT_NODEVICES,	nodevices_cancel,	NULL,		0,
202 		(void *)0 },
203 	{ MNTOPT_SETUID,	setuid_cancel,		NULL,		0,
204 		(void *)0 },
205 	{ MNTOPT_NOSETUID,	nosetuid_cancel,	NULL,		0,
206 		(void *)0 },
207 	{ MNTOPT_NBMAND,	nbmand_cancel,		NULL,		0,
208 		(void *)0 },
209 	{ MNTOPT_NONBMAND,	nonbmand_cancel,	NULL,		0,
210 		(void *)0 },
211 	{ MNTOPT_EXEC,		exec_cancel,		NULL,		0,
212 		(void *)0 },
213 	{ MNTOPT_NOEXEC,	noexec_cancel,		NULL,		0,
214 		(void *)0 },
215 };
216 
217 const mntopts_t vfs_mntopts = {
218 	sizeof (mntopts) / sizeof (mntopt_t),
219 	(mntopt_t *)&mntopts[0]
220 };
221 
222 /*
223  * File system operation dispatch functions.
224  */
225 
226 int
227 fsop_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr)
228 {
229 	return (*(vfsp)->vfs_op->vfs_mount)(vfsp, mvp, uap, cr);
230 }
231 
232 int
233 fsop_unmount(vfs_t *vfsp, int flag, cred_t *cr)
234 {
235 	return (*(vfsp)->vfs_op->vfs_unmount)(vfsp, flag, cr);
236 }
237 
238 int
239 fsop_root(vfs_t *vfsp, vnode_t **vpp)
240 {
241 	refstr_t *mntpt;
242 	int ret = (*(vfsp)->vfs_op->vfs_root)(vfsp, vpp);
243 	/*
244 	 * Make sure this root has a path.  With lofs, it is possible to have
245 	 * a NULL mountpoint.
246 	 */
247 	if (ret == 0 && vfsp->vfs_mntpt != NULL && (*vpp)->v_path == NULL) {
248 		mntpt = vfs_getmntpoint(vfsp);
249 		vn_setpath_str(*vpp, refstr_value(mntpt),
250 		    strlen(refstr_value(mntpt)));
251 		refstr_rele(mntpt);
252 	}
253 
254 	return (ret);
255 }
256 
257 int
258 fsop_statfs(vfs_t *vfsp, statvfs64_t *sp)
259 {
260 	return (*(vfsp)->vfs_op->vfs_statvfs)(vfsp, sp);
261 }
262 
263 int
264 fsop_sync(vfs_t *vfsp, short flag, cred_t *cr)
265 {
266 	return (*(vfsp)->vfs_op->vfs_sync)(vfsp, flag, cr);
267 }
268 
269 int
270 fsop_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp)
271 {
272 	/*
273 	 * In order to handle system attribute fids in a manner
274 	 * transparent to the underlying fs, we embed the fid for
275 	 * the sysattr parent object in the sysattr fid and tack on
276 	 * some extra bytes that only the sysattr layer knows about.
277 	 *
278 	 * This guarantees that sysattr fids are larger than other fids
279 	 * for this vfs. If the vfs supports the sysattr view interface
280 	 * (as indicated by VFSFT_SYSATTR_VIEWS), we cannot have a size
281 	 * collision with XATTR_FIDSZ.
282 	 */
283 	if (vfs_has_feature(vfsp, VFSFT_SYSATTR_VIEWS) &&
284 	    fidp->fid_len == XATTR_FIDSZ)
285 		return (xattr_dir_vget(vfsp, vpp, fidp));
286 
287 	return (*(vfsp)->vfs_op->vfs_vget)(vfsp, vpp, fidp);
288 }
289 
290 int
291 fsop_mountroot(vfs_t *vfsp, enum whymountroot reason)
292 {
293 	return (*(vfsp)->vfs_op->vfs_mountroot)(vfsp, reason);
294 }
295 
296 void
297 fsop_freefs(vfs_t *vfsp)
298 {
299 	(*(vfsp)->vfs_op->vfs_freevfs)(vfsp);
300 }
301 
302 int
303 fsop_vnstate(vfs_t *vfsp, vnode_t *vp, vntrans_t nstate)
304 {
305 	return ((*(vfsp)->vfs_op->vfs_vnstate)(vfsp, vp, nstate));
306 }
307 
308 int
309 fsop_sync_by_kind(int fstype, short flag, cred_t *cr)
310 {
311 	ASSERT((fstype >= 0) && (fstype < nfstype));
312 
313 	if (ALLOCATED_VFSSW(&vfssw[fstype]) && VFS_INSTALLED(&vfssw[fstype]))
314 		return (*vfssw[fstype].vsw_vfsops.vfs_sync) (NULL, flag, cr);
315 	else
316 		return (ENOTSUP);
317 }
318 
319 /*
320  * File system initialization.  vfs_setfsops() must be called from a file
321  * system's init routine.
322  */
323 
324 static int
325 fs_copyfsops(const fs_operation_def_t *template, vfsops_t *actual,
326     int *unused_ops)
327 {
328 	static const fs_operation_trans_def_t vfs_ops_table[] = {
329 		VFSNAME_MOUNT, offsetof(vfsops_t, vfs_mount),
330 			fs_nosys, fs_nosys,
331 
332 		VFSNAME_UNMOUNT, offsetof(vfsops_t, vfs_unmount),
333 			fs_nosys, fs_nosys,
334 
335 		VFSNAME_ROOT, offsetof(vfsops_t, vfs_root),
336 			fs_nosys, fs_nosys,
337 
338 		VFSNAME_STATVFS, offsetof(vfsops_t, vfs_statvfs),
339 			fs_nosys, fs_nosys,
340 
341 		VFSNAME_SYNC, offsetof(vfsops_t, vfs_sync),
342 			(fs_generic_func_p) fs_sync,
343 			(fs_generic_func_p) fs_sync,	/* No errors allowed */
344 
345 		VFSNAME_VGET, offsetof(vfsops_t, vfs_vget),
346 			fs_nosys, fs_nosys,
347 
348 		VFSNAME_MOUNTROOT, offsetof(vfsops_t, vfs_mountroot),
349 			fs_nosys, fs_nosys,
350 
351 		VFSNAME_FREEVFS, offsetof(vfsops_t, vfs_freevfs),
352 			(fs_generic_func_p)fs_freevfs,
353 			(fs_generic_func_p)fs_freevfs,	/* Shouldn't fail */
354 
355 		VFSNAME_VNSTATE, offsetof(vfsops_t, vfs_vnstate),
356 			(fs_generic_func_p)fs_nosys,
357 			(fs_generic_func_p)fs_nosys,
358 
359 		NULL, 0, NULL, NULL
360 	};
361 
362 	return (fs_build_vector(actual, unused_ops, vfs_ops_table, template));
363 }
364 
365 void
366 zfs_boot_init() {
367 
368 	if (strcmp(rootfs.bo_fstype, MNTTYPE_ZFS) == 0)
369 		spa_boot_init();
370 }
371 
372 int
373 vfs_setfsops(int fstype, const fs_operation_def_t *template, vfsops_t **actual)
374 {
375 	int error;
376 	int unused_ops;
377 
378 	/*
379 	 * Verify that fstype refers to a valid fs.  Note that
380 	 * 0 is valid since it's used to set "stray" ops.
381 	 */
382 	if ((fstype < 0) || (fstype >= nfstype))
383 		return (EINVAL);
384 
385 	if (!ALLOCATED_VFSSW(&vfssw[fstype]))
386 		return (EINVAL);
387 
388 	/* Set up the operations vector. */
389 
390 	error = fs_copyfsops(template, &vfssw[fstype].vsw_vfsops, &unused_ops);
391 
392 	if (error != 0)
393 		return (error);
394 
395 	vfssw[fstype].vsw_flag |= VSW_INSTALLED;
396 
397 	if (actual != NULL)
398 		*actual = &vfssw[fstype].vsw_vfsops;
399 
400 #if DEBUG
401 	if (unused_ops != 0)
402 		cmn_err(CE_WARN, "vfs_setfsops: %s: %d operations supplied "
403 		    "but not used", vfssw[fstype].vsw_name, unused_ops);
404 #endif
405 
406 	return (0);
407 }
408 
409 int
410 vfs_makefsops(const fs_operation_def_t *template, vfsops_t **actual)
411 {
412 	int error;
413 	int unused_ops;
414 
415 	*actual = (vfsops_t *)kmem_alloc(sizeof (vfsops_t), KM_SLEEP);
416 
417 	error = fs_copyfsops(template, *actual, &unused_ops);
418 	if (error != 0) {
419 		kmem_free(*actual, sizeof (vfsops_t));
420 		*actual = NULL;
421 		return (error);
422 	}
423 
424 	return (0);
425 }
426 
427 /*
428  * Free a vfsops structure created as a result of vfs_makefsops().
429  * NOTE: For a vfsops structure initialized by vfs_setfsops(), use
430  * vfs_freevfsops_by_type().
431  */
432 void
433 vfs_freevfsops(vfsops_t *vfsops)
434 {
435 	kmem_free(vfsops, sizeof (vfsops_t));
436 }
437 
438 /*
439  * Since the vfsops structure is part of the vfssw table and wasn't
440  * really allocated, we're not really freeing anything.  We keep
441  * the name for consistency with vfs_freevfsops().  We do, however,
442  * need to take care of a little bookkeeping.
443  * NOTE: For a vfsops structure created by vfs_setfsops(), use
444  * vfs_freevfsops_by_type().
445  */
446 int
447 vfs_freevfsops_by_type(int fstype)
448 {
449 
450 	/* Verify that fstype refers to a loaded fs (and not fsid 0). */
451 	if ((fstype <= 0) || (fstype >= nfstype))
452 		return (EINVAL);
453 
454 	WLOCK_VFSSW();
455 	if ((vfssw[fstype].vsw_flag & VSW_INSTALLED) == 0) {
456 		WUNLOCK_VFSSW();
457 		return (EINVAL);
458 	}
459 
460 	vfssw[fstype].vsw_flag &= ~VSW_INSTALLED;
461 	WUNLOCK_VFSSW();
462 
463 	return (0);
464 }
465 
466 /* Support routines used to reference vfs_op */
467 
468 /* Set the operations vector for a vfs */
469 void
470 vfs_setops(vfs_t *vfsp, vfsops_t *vfsops)
471 {
472 	vfsops_t	*op;
473 
474 	ASSERT(vfsp != NULL);
475 	ASSERT(vfsops != NULL);
476 
477 	op = vfsp->vfs_op;
478 	membar_consumer();
479 	if (vfsp->vfs_femhead == NULL &&
480 	    atomic_cas_ptr(&vfsp->vfs_op, op, vfsops) == op) {
481 		return;
482 	}
483 	fsem_setvfsops(vfsp, vfsops);
484 }
485 
486 /* Retrieve the operations vector for a vfs */
487 vfsops_t *
488 vfs_getops(vfs_t *vfsp)
489 {
490 	vfsops_t	*op;
491 
492 	ASSERT(vfsp != NULL);
493 
494 	op = vfsp->vfs_op;
495 	membar_consumer();
496 	if (vfsp->vfs_femhead == NULL && op == vfsp->vfs_op) {
497 		return (op);
498 	} else {
499 		return (fsem_getvfsops(vfsp));
500 	}
501 }
502 
503 /*
504  * Returns non-zero (1) if the vfsops matches that of the vfs.
505  * Returns zero (0) if not.
506  */
507 int
508 vfs_matchops(vfs_t *vfsp, vfsops_t *vfsops)
509 {
510 	return (vfs_getops(vfsp) == vfsops);
511 }
512 
513 /*
514  * Returns non-zero (1) if the file system has installed a non-default,
515  * non-error vfs_sync routine.  Returns zero (0) otherwise.
516  */
517 int
518 vfs_can_sync(vfs_t *vfsp)
519 {
520 	/* vfs_sync() routine is not the default/error function */
521 	return (vfs_getops(vfsp)->vfs_sync != fs_sync);
522 }
523 
524 /*
525  * Initialize a vfs structure.
526  */
527 void
528 vfs_init(vfs_t *vfsp, vfsops_t *op, void *data)
529 {
530 	/* Other initialization has been moved to vfs_alloc() */
531 	vfsp->vfs_count = 0;
532 	vfsp->vfs_next = vfsp;
533 	vfsp->vfs_prev = vfsp;
534 	vfsp->vfs_zone_next = vfsp;
535 	vfsp->vfs_zone_prev = vfsp;
536 	vfsp->vfs_lofi_minor = 0;
537 	sema_init(&vfsp->vfs_reflock, 1, NULL, SEMA_DEFAULT, NULL);
538 	vfsimpl_setup(vfsp);
539 	vfsp->vfs_data = (data);
540 	vfs_setops((vfsp), (op));
541 }
542 
543 /*
544  * Allocate and initialize the vfs implementation private data
545  * structure, vfs_impl_t.
546  */
547 void
548 vfsimpl_setup(vfs_t *vfsp)
549 {
550 	int i;
551 
552 	if (vfsp->vfs_implp != NULL) {
553 		return;
554 	}
555 
556 	vfsp->vfs_implp = kmem_alloc(sizeof (vfs_impl_t), KM_SLEEP);
557 	/* Note that these are #define'd in vfs.h */
558 	vfsp->vfs_vskap = NULL;
559 	vfsp->vfs_fstypevsp = NULL;
560 
561 	/* Set size of counted array, then zero the array */
562 	vfsp->vfs_featureset[0] = VFS_FEATURE_MAXSZ - 1;
563 	for (i = 1; i <  VFS_FEATURE_MAXSZ; i++) {
564 		vfsp->vfs_featureset[i] = 0;
565 	}
566 }
567 
568 /*
569  * Release the vfs_impl_t structure, if it exists. Some unbundled
570  * filesystems may not use the newer version of vfs and thus
571  * would not contain this implementation private data structure.
572  */
573 void
574 vfsimpl_teardown(vfs_t *vfsp)
575 {
576 	vfs_impl_t	*vip = vfsp->vfs_implp;
577 
578 	if (vip == NULL)
579 		return;
580 
581 	kmem_free(vfsp->vfs_implp, sizeof (vfs_impl_t));
582 	vfsp->vfs_implp = NULL;
583 }
584 
585 /*
586  * VFS system calls: mount, umount, syssync, statfs, fstatfs, statvfs,
587  * fstatvfs, and sysfs moved to common/syscall.
588  */
589 
590 /*
591  * Update every mounted file system.  We call the vfs_sync operation of
592  * each file system type, passing it a NULL vfsp to indicate that all
593  * mounted file systems of that type should be updated.
594  */
595 void
596 vfs_sync(int flag)
597 {
598 	struct vfssw *vswp;
599 	RLOCK_VFSSW();
600 	for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) {
601 		if (ALLOCATED_VFSSW(vswp) && VFS_INSTALLED(vswp)) {
602 			vfs_refvfssw(vswp);
603 			RUNLOCK_VFSSW();
604 			(void) (*vswp->vsw_vfsops.vfs_sync)(NULL, flag,
605 			    CRED());
606 			vfs_unrefvfssw(vswp);
607 			RLOCK_VFSSW();
608 		}
609 	}
610 	RUNLOCK_VFSSW();
611 }
612 
613 void
614 sync(void)
615 {
616 	vfs_sync(0);
617 }
618 
619 /*
620  * compare function for vfs_by_dev avl tree. compare dev first, then mntix
621  */
622 static int
623 vfs_cmp_dev(const void *aa, const void *bb)
624 {
625 	const vfs_t *a = aa;
626 	const vfs_t *b = bb;
627 
628 	if (a->vfs_dev < b->vfs_dev)
629 		return (-1);
630 	if (a->vfs_dev > b->vfs_dev)
631 		return (1);
632 	if (a->vfs_mntix < b->vfs_mntix)
633 		return (-1);
634 	if (a->vfs_mntix > b->vfs_mntix)
635 		return (1);
636 	return (0);
637 }
638 
639 /*
640  * compare function for vfs_by_mntpnt avl tree. compare mntpnt first, then mntix
641  */
642 static int
643 vfs_cmp_mntpnt(const void *aa, const void *bb)
644 {
645 	const vfs_t *a = aa;
646 	const vfs_t *b = bb;
647 	int ret;
648 
649 	ret = strcmp(refstr_value(a->vfs_mntpt), refstr_value(b->vfs_mntpt));
650 	if (ret < 0)
651 		return (-1);
652 	if (ret > 0)
653 		return (1);
654 	if (a->vfs_mntix < b->vfs_mntix)
655 		return (-1);
656 	if (a->vfs_mntix > b->vfs_mntix)
657 		return (1);
658 	return (0);
659 }
660 
661 /*
662  * External routines.
663  */
664 
665 krwlock_t vfssw_lock;	/* lock accesses to vfssw */
666 
667 /*
668  * Lock for accessing the vfs linked list.  Initialized in vfs_mountroot(),
669  * but otherwise should be accessed only via vfs_list_lock() and
670  * vfs_list_unlock().  Also used to protect the timestamp for mods to the list.
671  */
672 static krwlock_t vfslist;
673 
674 /*
675  * Mount devfs on /devices. This is done right after root is mounted
676  * to provide device access support for the system
677  */
678 static void
679 vfs_mountdevices(void)
680 {
681 	struct vfssw *vsw;
682 	struct vnode *mvp;
683 	struct mounta mounta = {	/* fake mounta for devfs_mount() */
684 		NULL,
685 		NULL,
686 		MS_SYSSPACE,
687 		NULL,
688 		NULL,
689 		0,
690 		NULL,
691 		0
692 	};
693 
694 	/*
695 	 * _init devfs module to fill in the vfssw
696 	 */
697 	if (modload("fs", "devfs") == -1)
698 		panic("Cannot _init devfs module");
699 
700 	/*
701 	 * Hold vfs
702 	 */
703 	RLOCK_VFSSW();
704 	vsw = vfs_getvfsswbyname("devfs");
705 	VFS_INIT(&devices, &vsw->vsw_vfsops, NULL);
706 	VFS_HOLD(&devices);
707 
708 	/*
709 	 * Locate mount point
710 	 */
711 	if (lookupname("/devices", UIO_SYSSPACE, FOLLOW, NULLVPP, &mvp))
712 		panic("Cannot find /devices");
713 
714 	/*
715 	 * Perform the mount of /devices
716 	 */
717 	if (VFS_MOUNT(&devices, mvp, &mounta, CRED()))
718 		panic("Cannot mount /devices");
719 
720 	RUNLOCK_VFSSW();
721 
722 	/*
723 	 * Set appropriate members and add to vfs list for mnttab display
724 	 */
725 	vfs_setresource(&devices, "/devices", 0);
726 	vfs_setmntpoint(&devices, "/devices", 0);
727 
728 	/*
729 	 * Hold the root of /devices so it won't go away
730 	 */
731 	if (VFS_ROOT(&devices, &devicesdir))
732 		panic("vfs_mountdevices: not devices root");
733 
734 	if (vfs_lock(&devices) != 0) {
735 		VN_RELE(devicesdir);
736 		cmn_err(CE_NOTE, "Cannot acquire vfs_lock of /devices");
737 		return;
738 	}
739 
740 	if (vn_vfswlock(mvp) != 0) {
741 		vfs_unlock(&devices);
742 		VN_RELE(devicesdir);
743 		cmn_err(CE_NOTE, "Cannot acquire vfswlock of /devices");
744 		return;
745 	}
746 
747 	vfs_add(mvp, &devices, 0);
748 	vn_vfsunlock(mvp);
749 	vfs_unlock(&devices);
750 	VN_RELE(devicesdir);
751 }
752 
753 /*
754  * mount the first instance of /dev  to root and remain mounted
755  */
756 static void
757 vfs_mountdev1(void)
758 {
759 	struct vfssw *vsw;
760 	struct vnode *mvp;
761 	struct mounta mounta = {	/* fake mounta for sdev_mount() */
762 		NULL,
763 		NULL,
764 		MS_SYSSPACE | MS_OVERLAY,
765 		NULL,
766 		NULL,
767 		0,
768 		NULL,
769 		0
770 	};
771 
772 	/*
773 	 * _init dev module to fill in the vfssw
774 	 */
775 	if (modload("fs", "dev") == -1)
776 		cmn_err(CE_PANIC, "Cannot _init dev module\n");
777 
778 	/*
779 	 * Hold vfs
780 	 */
781 	RLOCK_VFSSW();
782 	vsw = vfs_getvfsswbyname("dev");
783 	VFS_INIT(&dev, &vsw->vsw_vfsops, NULL);
784 	VFS_HOLD(&dev);
785 
786 	/*
787 	 * Locate mount point
788 	 */
789 	if (lookupname("/dev", UIO_SYSSPACE, FOLLOW, NULLVPP, &mvp))
790 		cmn_err(CE_PANIC, "Cannot find /dev\n");
791 
792 	/*
793 	 * Perform the mount of /dev
794 	 */
795 	if (VFS_MOUNT(&dev, mvp, &mounta, CRED()))
796 		cmn_err(CE_PANIC, "Cannot mount /dev 1\n");
797 
798 	RUNLOCK_VFSSW();
799 
800 	/*
801 	 * Set appropriate members and add to vfs list for mnttab display
802 	 */
803 	vfs_setresource(&dev, "/dev", 0);
804 	vfs_setmntpoint(&dev, "/dev", 0);
805 
806 	/*
807 	 * Hold the root of /dev so it won't go away
808 	 */
809 	if (VFS_ROOT(&dev, &devdir))
810 		cmn_err(CE_PANIC, "vfs_mountdev1: not dev root");
811 
812 	if (vfs_lock(&dev) != 0) {
813 		VN_RELE(devdir);
814 		cmn_err(CE_NOTE, "Cannot acquire vfs_lock of /dev");
815 		return;
816 	}
817 
818 	if (vn_vfswlock(mvp) != 0) {
819 		vfs_unlock(&dev);
820 		VN_RELE(devdir);
821 		cmn_err(CE_NOTE, "Cannot acquire vfswlock of /dev");
822 		return;
823 	}
824 
825 	vfs_add(mvp, &dev, 0);
826 	vn_vfsunlock(mvp);
827 	vfs_unlock(&dev);
828 	VN_RELE(devdir);
829 }
830 
831 /*
832  * Mount required filesystem. This is done right after root is mounted.
833  */
834 static void
835 vfs_mountfs(char *module, char *spec, char *path)
836 {
837 	struct vnode *mvp;
838 	struct mounta mounta;
839 	vfs_t *vfsp;
840 
841 	bzero(&mounta, sizeof (mounta));
842 	mounta.flags = MS_SYSSPACE | MS_DATA;
843 	mounta.fstype = module;
844 	mounta.spec = spec;
845 	mounta.dir = path;
846 	if (lookupname(path, UIO_SYSSPACE, FOLLOW, NULLVPP, &mvp)) {
847 		cmn_err(CE_WARN, "Cannot find %s", path);
848 		return;
849 	}
850 	if (domount(NULL, &mounta, mvp, CRED(), &vfsp))
851 		cmn_err(CE_WARN, "Cannot mount %s", path);
852 	else
853 		VFS_RELE(vfsp);
854 	VN_RELE(mvp);
855 }
856 
857 /*
858  * vfs_mountroot is called by main() to mount the root filesystem.
859  */
860 void
861 vfs_mountroot(void)
862 {
863 	struct vnode	*rvp = NULL;
864 	char		*path;
865 	size_t		plen;
866 	struct vfssw	*vswp;
867 	proc_t		*p;
868 
869 	rw_init(&vfssw_lock, NULL, RW_DEFAULT, NULL);
870 	rw_init(&vfslist, NULL, RW_DEFAULT, NULL);
871 
872 	/*
873 	 * Alloc the avl trees for quick indexing via dev and mountpoint
874 	 */
875 	avl_create(&vfs_by_dev, vfs_cmp_dev, sizeof(vfs_t),
876 	    offsetof(vfs_t, vfs_avldev));
877 	avl_create(&vfs_by_mntpnt, vfs_cmp_mntpnt, sizeof(vfs_t),
878 	    offsetof(vfs_t, vfs_avlmntpnt));
879 
880 	/*
881 	 * Alloc the vfs hash bucket array and locks
882 	 */
883 	rvfs_list = kmem_zalloc(vfshsz * sizeof (rvfs_t), KM_SLEEP);
884 
885 	/*
886 	 * Call machine-dependent routine "rootconf" to choose a root
887 	 * file system type.
888 	 */
889 	if (rootconf())
890 		panic("vfs_mountroot: cannot mount root");
891 	/*
892 	 * Get vnode for '/'.  Set up rootdir, u.u_rdir and u.u_cdir
893 	 * to point to it.  These are used by lookuppn() so that it
894 	 * knows where to start from ('/' or '.').
895 	 */
896 	vfs_setmntpoint(rootvfs, "/", 0);
897 	if (VFS_ROOT(rootvfs, &rootdir))
898 		panic("vfs_mountroot: no root vnode");
899 
900 	/*
901 	 * At this point, the process tree consists of p0 and possibly some
902 	 * direct children of p0.  (i.e. there are no grandchildren)
903 	 *
904 	 * Walk through them all, setting their current directory.
905 	 */
906 	mutex_enter(&pidlock);
907 	for (p = practive; p != NULL; p = p->p_next) {
908 		ASSERT(p == &p0 || p->p_parent == &p0);
909 
910 		PTOU(p)->u_cdir = rootdir;
911 		VN_HOLD(PTOU(p)->u_cdir);
912 		PTOU(p)->u_rdir = NULL;
913 	}
914 	mutex_exit(&pidlock);
915 
916 	/*
917 	 * Setup the global zone's rootvp, now that it exists.
918 	 */
919 	global_zone->zone_rootvp = rootdir;
920 	VN_HOLD(global_zone->zone_rootvp);
921 
922 	/*
923 	 * Notify the module code that it can begin using the
924 	 * root filesystem instead of the boot program's services.
925 	 */
926 	modrootloaded = 1;
927 
928 	/*
929 	 * Special handling for a ZFS root file system.
930 	 */
931 	zfs_boot_init();
932 
933 	/*
934 	 * Set up mnttab information for root
935 	 */
936 	vfs_setresource(rootvfs, rootfs.bo_name, 0);
937 
938 	/*
939 	 * Notify cluster software that the root filesystem is available.
940 	 */
941 	clboot_mountroot();
942 
943 	/* Now that we're all done with the root FS, set up its vopstats */
944 	if ((vswp = vfs_getvfsswbyvfsops(vfs_getops(rootvfs))) != NULL) {
945 		/* Set flag for statistics collection */
946 		if (vswp->vsw_flag & VSW_STATS) {
947 			initialize_vopstats(&rootvfs->vfs_vopstats);
948 			rootvfs->vfs_flag |= VFS_STATS;
949 			rootvfs->vfs_fstypevsp =
950 			    get_fstype_vopstats(rootvfs, vswp);
951 			rootvfs->vfs_vskap = get_vskstat_anchor(rootvfs);
952 		}
953 		vfs_unrefvfssw(vswp);
954 	}
955 
956 	/*
957 	 * Mount /devices, /dev instance 1, /system/contract, /etc/mnttab,
958 	 * /etc/svc/volatile, /etc/dfs/sharetab, /system/object, and /proc.
959 	 */
960 	vfs_mountdevices();
961 	vfs_mountdev1();
962 
963 	vfs_mountfs("ctfs", "ctfs", CTFS_ROOT);
964 	vfs_mountfs("proc", "/proc", "/proc");
965 	vfs_mountfs("mntfs", "/etc/mnttab", "/etc/mnttab");
966 	vfs_mountfs("tmpfs", "/etc/svc/volatile", "/etc/svc/volatile");
967 	vfs_mountfs("objfs", "objfs", OBJFS_ROOT);
968 
969 	if (getzoneid() == GLOBAL_ZONEID) {
970 		vfs_mountfs("sharefs", "sharefs", "/etc/dfs/sharetab");
971 	}
972 
973 	if (strcmp(rootfs.bo_fstype, "zfs") != 0) {
974 		/*
975 		 * Look up the root device via devfs so that a dv_node is
976 		 * created for it. The vnode is never VN_RELE()ed.
977 		 * We allocate more than MAXPATHLEN so that the
978 		 * buffer passed to i_ddi_prompath_to_devfspath() is
979 		 * exactly MAXPATHLEN (the function expects a buffer
980 		 * of that length).
981 		 */
982 		plen = strlen("/devices");
983 		path = kmem_alloc(plen + MAXPATHLEN, KM_SLEEP);
984 		(void) strcpy(path, "/devices");
985 
986 		if (i_ddi_prompath_to_devfspath(rootfs.bo_name, path + plen)
987 		    != DDI_SUCCESS ||
988 		    lookupname(path, UIO_SYSSPACE, FOLLOW, NULLVPP, &rvp)) {
989 
990 			/* NUL terminate in case "path" has garbage */
991 			path[plen + MAXPATHLEN - 1] = '\0';
992 #ifdef	DEBUG
993 			cmn_err(CE_WARN, "!Cannot lookup root device: %s",
994 			    path);
995 #endif
996 		}
997 		kmem_free(path, plen + MAXPATHLEN);
998 	}
999 
1000 	vfs_mnttabvp_setup();
1001 }
1002 
1003 /*
1004  * Check to see if our "block device" is actually a file.  If so,
1005  * automatically add a lofi device, and keep track of this fact.
1006  */
1007 static int
1008 lofi_add(const char *fsname, struct vfs *vfsp,
1009     mntopts_t *mntopts, struct mounta *uap)
1010 {
1011 	int fromspace = (uap->flags & MS_SYSSPACE) ?
1012 	    UIO_SYSSPACE : UIO_USERSPACE;
1013 	struct lofi_ioctl *li = NULL;
1014 	struct vnode *vp = NULL;
1015 	struct pathname	pn = { NULL };
1016 	ldi_ident_t ldi_id;
1017 	ldi_handle_t ldi_hdl;
1018 	vfssw_t *vfssw;
1019 	int minor;
1020 	int err = 0;
1021 
1022 	if ((vfssw = vfs_getvfssw(fsname)) == NULL)
1023 		return (0);
1024 
1025 	if (!(vfssw->vsw_flag & VSW_CANLOFI)) {
1026 		vfs_unrefvfssw(vfssw);
1027 		return (0);
1028 	}
1029 
1030 	vfs_unrefvfssw(vfssw);
1031 	vfssw = NULL;
1032 
1033 	if (pn_get(uap->spec, fromspace, &pn) != 0)
1034 		return (0);
1035 
1036 	if (lookupname(uap->spec, fromspace, FOLLOW, NULL, &vp) != 0)
1037 		goto out;
1038 
1039 	if (vp->v_type != VREG)
1040 		goto out;
1041 
1042 	/* OK, this is a lofi mount. */
1043 
1044 	if ((uap->flags & (MS_REMOUNT|MS_GLOBAL)) ||
1045 	    vfs_optionisset_nolock(mntopts, MNTOPT_SUID, NULL) ||
1046 	    vfs_optionisset_nolock(mntopts, MNTOPT_SETUID, NULL) ||
1047 	    vfs_optionisset_nolock(mntopts, MNTOPT_DEVICES, NULL)) {
1048 		err = EINVAL;
1049 		goto out;
1050 	}
1051 
1052 	ldi_id = ldi_ident_from_anon();
1053 	li = kmem_zalloc(sizeof (*li), KM_SLEEP);
1054 	(void) strlcpy(li->li_filename, pn.pn_path, MAXPATHLEN);
1055 
1056 	err = ldi_open_by_name("/dev/lofictl", FREAD | FWRITE, kcred,
1057 	    &ldi_hdl, ldi_id);
1058 
1059 	if (err)
1060 		goto out2;
1061 
1062 	err = ldi_ioctl(ldi_hdl, LOFI_MAP_FILE, (intptr_t)li,
1063 	    FREAD | FWRITE | FKIOCTL, kcred, &minor);
1064 
1065 	(void) ldi_close(ldi_hdl, FREAD | FWRITE, kcred);
1066 
1067 	if (!err)
1068 		vfsp->vfs_lofi_minor = minor;
1069 
1070 out2:
1071 	ldi_ident_release(ldi_id);
1072 out:
1073 	if (li != NULL)
1074 		kmem_free(li, sizeof (*li));
1075 	if (vp != NULL)
1076 		VN_RELE(vp);
1077 	pn_free(&pn);
1078 	return (err);
1079 }
1080 
1081 static void
1082 lofi_remove(struct vfs *vfsp)
1083 {
1084 	struct lofi_ioctl *li = NULL;
1085 	ldi_ident_t ldi_id;
1086 	ldi_handle_t ldi_hdl;
1087 	int err;
1088 
1089 	if (vfsp->vfs_lofi_minor == 0)
1090 		return;
1091 
1092 	ldi_id = ldi_ident_from_anon();
1093 
1094 	li = kmem_zalloc(sizeof (*li), KM_SLEEP);
1095 	li->li_minor = vfsp->vfs_lofi_minor;
1096 	li->li_cleanup = B_TRUE;
1097 
1098 	err = ldi_open_by_name("/dev/lofictl", FREAD | FWRITE, kcred,
1099 	    &ldi_hdl, ldi_id);
1100 
1101 	if (err)
1102 		goto out;
1103 
1104 	err = ldi_ioctl(ldi_hdl, LOFI_UNMAP_FILE_MINOR, (intptr_t)li,
1105 	    FREAD | FWRITE | FKIOCTL, kcred, NULL);
1106 
1107 	(void) ldi_close(ldi_hdl, FREAD | FWRITE, kcred);
1108 
1109 	if (!err)
1110 		vfsp->vfs_lofi_minor = 0;
1111 
1112 out:
1113 	ldi_ident_release(ldi_id);
1114 	if (li != NULL)
1115 		kmem_free(li, sizeof (*li));
1116 }
1117 
1118 /*
1119  * Common mount code.  Called from the system call entry point, from autofs,
1120  * nfsv4 trigger mounts, and from pxfs.
1121  *
1122  * Takes the effective file system type, mount arguments, the mount point
1123  * vnode, flags specifying whether the mount is a remount and whether it
1124  * should be entered into the vfs list, and credentials.  Fills in its vfspp
1125  * parameter with the mounted file system instance's vfs.
1126  *
1127  * Note that the effective file system type is specified as a string.  It may
1128  * be null, in which case it's determined from the mount arguments, and may
1129  * differ from the type specified in the mount arguments; this is a hook to
1130  * allow interposition when instantiating file system instances.
1131  *
1132  * The caller is responsible for releasing its own hold on the mount point
1133  * vp (this routine does its own hold when necessary).
1134  * Also note that for remounts, the mount point vp should be the vnode for
1135  * the root of the file system rather than the vnode that the file system
1136  * is mounted on top of.
1137  */
1138 int
1139 domount(char *fsname, struct mounta *uap, vnode_t *vp, struct cred *credp,
1140 	struct vfs **vfspp)
1141 {
1142 	struct vfssw	*vswp;
1143 	vfsops_t	*vfsops;
1144 	struct vfs	*vfsp;
1145 	struct vnode	*bvp;
1146 	dev_t		bdev = 0;
1147 	mntopts_t	mnt_mntopts;
1148 	int		error = 0;
1149 	int		copyout_error = 0;
1150 	int		ovflags;
1151 	char		*opts = uap->optptr;
1152 	char		*inargs = opts;
1153 	int		optlen = uap->optlen;
1154 	int		remount;
1155 	int		rdonly;
1156 	int		nbmand = 0;
1157 	int		delmip = 0;
1158 	int		addmip = 0;
1159 	int		splice = ((uap->flags & MS_NOSPLICE) == 0);
1160 	int		fromspace = (uap->flags & MS_SYSSPACE) ?
1161 	    UIO_SYSSPACE : UIO_USERSPACE;
1162 	char		*resource = NULL, *mountpt = NULL;
1163 	refstr_t	*oldresource, *oldmntpt;
1164 	struct pathname	pn, rpn;
1165 	vsk_anchor_t	*vskap;
1166 	char fstname[FSTYPSZ];
1167 	zone_t		*zone;
1168 
1169 	/*
1170 	 * The v_flag value for the mount point vp is permanently set
1171 	 * to VVFSLOCK so that no one bypasses the vn_vfs*locks routine
1172 	 * for mount point locking.
1173 	 */
1174 	mutex_enter(&vp->v_lock);
1175 	vp->v_flag |= VVFSLOCK;
1176 	mutex_exit(&vp->v_lock);
1177 
1178 	mnt_mntopts.mo_count = 0;
1179 	/*
1180 	 * Find the ops vector to use to invoke the file system-specific mount
1181 	 * method.  If the fsname argument is non-NULL, use it directly.
1182 	 * Otherwise, dig the file system type information out of the mount
1183 	 * arguments.
1184 	 *
1185 	 * A side effect is to hold the vfssw entry.
1186 	 *
1187 	 * Mount arguments can be specified in several ways, which are
1188 	 * distinguished by flag bit settings.  The preferred way is to set
1189 	 * MS_OPTIONSTR, indicating an 8 argument mount with the file system
1190 	 * type supplied as a character string and the last two arguments
1191 	 * being a pointer to a character buffer and the size of the buffer.
1192 	 * On entry, the buffer holds a null terminated list of options; on
1193 	 * return, the string is the list of options the file system
1194 	 * recognized. If MS_DATA is set arguments five and six point to a
1195 	 * block of binary data which the file system interprets.
1196 	 * A further wrinkle is that some callers don't set MS_FSS and MS_DATA
1197 	 * consistently with these conventions.  To handle them, we check to
1198 	 * see whether the pointer to the file system name has a numeric value
1199 	 * less than 256.  If so, we treat it as an index.
1200 	 */
1201 	if (fsname != NULL) {
1202 		if ((vswp = vfs_getvfssw(fsname)) == NULL) {
1203 			return (EINVAL);
1204 		}
1205 	} else if (uap->flags & (MS_OPTIONSTR | MS_DATA | MS_FSS)) {
1206 		size_t n;
1207 		uint_t fstype;
1208 
1209 		fsname = fstname;
1210 
1211 		if ((fstype = (uintptr_t)uap->fstype) < 256) {
1212 			RLOCK_VFSSW();
1213 			if (fstype == 0 || fstype >= nfstype ||
1214 			    !ALLOCATED_VFSSW(&vfssw[fstype])) {
1215 				RUNLOCK_VFSSW();
1216 				return (EINVAL);
1217 			}
1218 			(void) strcpy(fsname, vfssw[fstype].vsw_name);
1219 			RUNLOCK_VFSSW();
1220 			if ((vswp = vfs_getvfssw(fsname)) == NULL)
1221 				return (EINVAL);
1222 		} else {
1223 			/*
1224 			 * Handle either kernel or user address space.
1225 			 */
1226 			if (uap->flags & MS_SYSSPACE) {
1227 				error = copystr(uap->fstype, fsname,
1228 				    FSTYPSZ, &n);
1229 			} else {
1230 				error = copyinstr(uap->fstype, fsname,
1231 				    FSTYPSZ, &n);
1232 			}
1233 			if (error) {
1234 				if (error == ENAMETOOLONG)
1235 					return (EINVAL);
1236 				return (error);
1237 			}
1238 			if ((vswp = vfs_getvfssw(fsname)) == NULL)
1239 				return (EINVAL);
1240 		}
1241 	} else {
1242 		if ((vswp = vfs_getvfsswbyvfsops(vfs_getops(rootvfs))) == NULL)
1243 			return (EINVAL);
1244 		fsname = vswp->vsw_name;
1245 	}
1246 	if (!VFS_INSTALLED(vswp))
1247 		return (EINVAL);
1248 
1249 	if ((error = secpolicy_fs_allowed_mount(fsname)) != 0)  {
1250 		vfs_unrefvfssw(vswp);
1251 		return (error);
1252 	}
1253 
1254 	vfsops = &vswp->vsw_vfsops;
1255 
1256 	vfs_copyopttbl(&vswp->vsw_optproto, &mnt_mntopts);
1257 	/*
1258 	 * Fetch mount options and parse them for generic vfs options
1259 	 */
1260 	if (uap->flags & MS_OPTIONSTR) {
1261 		/*
1262 		 * Limit the buffer size
1263 		 */
1264 		if (optlen < 0 || optlen > MAX_MNTOPT_STR) {
1265 			error = EINVAL;
1266 			goto errout;
1267 		}
1268 		if ((uap->flags & MS_SYSSPACE) == 0) {
1269 			inargs = kmem_alloc(MAX_MNTOPT_STR, KM_SLEEP);
1270 			inargs[0] = '\0';
1271 			if (optlen) {
1272 				error = copyinstr(opts, inargs, (size_t)optlen,
1273 				    NULL);
1274 				if (error) {
1275 					goto errout;
1276 				}
1277 			}
1278 		}
1279 		vfs_parsemntopts(&mnt_mntopts, inargs, 0);
1280 	}
1281 	/*
1282 	 * Flag bits override the options string.
1283 	 */
1284 	if (uap->flags & MS_REMOUNT)
1285 		vfs_setmntopt_nolock(&mnt_mntopts, MNTOPT_REMOUNT, NULL, 0, 0);
1286 	if (uap->flags & MS_RDONLY)
1287 		vfs_setmntopt_nolock(&mnt_mntopts, MNTOPT_RO, NULL, 0, 0);
1288 	if (uap->flags & MS_NOSUID)
1289 		vfs_setmntopt_nolock(&mnt_mntopts, MNTOPT_NOSUID, NULL, 0, 0);
1290 
1291 	/*
1292 	 * Check if this is a remount; must be set in the option string and
1293 	 * the file system must support a remount option.
1294 	 */
1295 	if (remount = vfs_optionisset_nolock(&mnt_mntopts,
1296 	    MNTOPT_REMOUNT, NULL)) {
1297 		if (!(vswp->vsw_flag & VSW_CANREMOUNT)) {
1298 			error = ENOTSUP;
1299 			goto errout;
1300 		}
1301 		uap->flags |= MS_REMOUNT;
1302 	}
1303 
1304 	/*
1305 	 * uap->flags and vfs_optionisset() should agree.
1306 	 */
1307 	if (rdonly = vfs_optionisset_nolock(&mnt_mntopts, MNTOPT_RO, NULL)) {
1308 		uap->flags |= MS_RDONLY;
1309 	}
1310 	if (vfs_optionisset_nolock(&mnt_mntopts, MNTOPT_NOSUID, NULL)) {
1311 		uap->flags |= MS_NOSUID;
1312 	}
1313 	nbmand = vfs_optionisset_nolock(&mnt_mntopts, MNTOPT_NBMAND, NULL);
1314 	ASSERT(splice || !remount);
1315 	/*
1316 	 * If we are splicing the fs into the namespace,
1317 	 * perform mount point checks.
1318 	 *
1319 	 * We want to resolve the path for the mount point to eliminate
1320 	 * '.' and ".." and symlinks in mount points; we can't do the
1321 	 * same for the resource string, since it would turn
1322 	 * "/dev/dsk/c0t0d0s0" into "/devices/pci@...".  We need to do
1323 	 * this before grabbing vn_vfswlock(), because otherwise we
1324 	 * would deadlock with lookuppn().
1325 	 */
1326 	if (splice) {
1327 		ASSERT(vp->v_count > 0);
1328 
1329 		/*
1330 		 * Pick up mount point and device from appropriate space.
1331 		 */
1332 		if (pn_get(uap->spec, fromspace, &pn) == 0) {
1333 			resource = kmem_alloc(pn.pn_pathlen + 1,
1334 			    KM_SLEEP);
1335 			(void) strcpy(resource, pn.pn_path);
1336 			pn_free(&pn);
1337 		}
1338 		/*
1339 		 * Do a lookupname prior to taking the
1340 		 * writelock. Mark this as completed if
1341 		 * successful for later cleanup and addition to
1342 		 * the mount in progress table.
1343 		 */
1344 		if ((uap->flags & MS_GLOBAL) == 0 &&
1345 		    lookupname(uap->spec, fromspace,
1346 		    FOLLOW, NULL, &bvp) == 0) {
1347 			addmip = 1;
1348 		}
1349 
1350 		if ((error = pn_get(uap->dir, fromspace, &pn)) == 0) {
1351 			pathname_t *pnp;
1352 
1353 			if (*pn.pn_path != '/') {
1354 				error = EINVAL;
1355 				pn_free(&pn);
1356 				goto errout;
1357 			}
1358 			pn_alloc(&rpn);
1359 			/*
1360 			 * Kludge to prevent autofs from deadlocking with
1361 			 * itself when it calls domount().
1362 			 *
1363 			 * If autofs is calling, it is because it is doing
1364 			 * (autofs) mounts in the process of an NFS mount.  A
1365 			 * lookuppn() here would cause us to block waiting for
1366 			 * said NFS mount to complete, which can't since this
1367 			 * is the thread that was supposed to doing it.
1368 			 */
1369 			if (fromspace == UIO_USERSPACE) {
1370 				if ((error = lookuppn(&pn, &rpn, FOLLOW, NULL,
1371 				    NULL)) == 0) {
1372 					pnp = &rpn;
1373 				} else {
1374 					/*
1375 					 * The file disappeared or otherwise
1376 					 * became inaccessible since we opened
1377 					 * it; might as well fail the mount
1378 					 * since the mount point is no longer
1379 					 * accessible.
1380 					 */
1381 					pn_free(&rpn);
1382 					pn_free(&pn);
1383 					goto errout;
1384 				}
1385 			} else {
1386 				pnp = &pn;
1387 			}
1388 			mountpt = kmem_alloc(pnp->pn_pathlen + 1, KM_SLEEP);
1389 			(void) strcpy(mountpt, pnp->pn_path);
1390 
1391 			/*
1392 			 * If the addition of the zone's rootpath
1393 			 * would push us over a total path length
1394 			 * of MAXPATHLEN, we fail the mount with
1395 			 * ENAMETOOLONG, which is what we would have
1396 			 * gotten if we were trying to perform the same
1397 			 * mount in the global zone.
1398 			 *
1399 			 * strlen() doesn't count the trailing
1400 			 * '\0', but zone_rootpathlen counts both a
1401 			 * trailing '/' and the terminating '\0'.
1402 			 */
1403 			if ((curproc->p_zone->zone_rootpathlen - 1 +
1404 			    strlen(mountpt)) > MAXPATHLEN ||
1405 			    (resource != NULL &&
1406 			    (curproc->p_zone->zone_rootpathlen - 1 +
1407 			    strlen(resource)) > MAXPATHLEN)) {
1408 				error = ENAMETOOLONG;
1409 			}
1410 
1411 			pn_free(&rpn);
1412 			pn_free(&pn);
1413 		}
1414 
1415 		if (error)
1416 			goto errout;
1417 
1418 		/*
1419 		 * Prevent path name resolution from proceeding past
1420 		 * the mount point.
1421 		 */
1422 		if (vn_vfswlock(vp) != 0) {
1423 			error = EBUSY;
1424 			goto errout;
1425 		}
1426 
1427 		/*
1428 		 * Verify that it's legitimate to establish a mount on
1429 		 * the prospective mount point.
1430 		 */
1431 		if (vn_mountedvfs(vp) != NULL) {
1432 			/*
1433 			 * The mount point lock was obtained after some
1434 			 * other thread raced through and established a mount.
1435 			 */
1436 			vn_vfsunlock(vp);
1437 			error = EBUSY;
1438 			goto errout;
1439 		}
1440 		if (vp->v_flag & VNOMOUNT) {
1441 			vn_vfsunlock(vp);
1442 			error = EINVAL;
1443 			goto errout;
1444 		}
1445 	}
1446 	if ((uap->flags & (MS_DATA | MS_OPTIONSTR)) == 0) {
1447 		uap->dataptr = NULL;
1448 		uap->datalen = 0;
1449 	}
1450 
1451 	/*
1452 	 * If this is a remount, we don't want to create a new VFS.
1453 	 * Instead, we pass the existing one with a remount flag.
1454 	 */
1455 	if (remount) {
1456 		/*
1457 		 * Confirm that the mount point is the root vnode of the
1458 		 * file system that is being remounted.
1459 		 * This can happen if the user specifies a different
1460 		 * mount point directory pathname in the (re)mount command.
1461 		 *
1462 		 * Code below can only be reached if splice is true, so it's
1463 		 * safe to do vn_vfsunlock() here.
1464 		 */
1465 		if ((vp->v_flag & VROOT) == 0) {
1466 			vn_vfsunlock(vp);
1467 			error = ENOENT;
1468 			goto errout;
1469 		}
1470 		/*
1471 		 * Disallow making file systems read-only unless file system
1472 		 * explicitly allows it in its vfssw.  Ignore other flags.
1473 		 */
1474 		if (rdonly && vn_is_readonly(vp) == 0 &&
1475 		    (vswp->vsw_flag & VSW_CANRWRO) == 0) {
1476 			vn_vfsunlock(vp);
1477 			error = EINVAL;
1478 			goto errout;
1479 		}
1480 		/*
1481 		 * Disallow changing the NBMAND disposition of the file
1482 		 * system on remounts.
1483 		 */
1484 		if ((nbmand && ((vp->v_vfsp->vfs_flag & VFS_NBMAND) == 0)) ||
1485 		    (!nbmand && (vp->v_vfsp->vfs_flag & VFS_NBMAND))) {
1486 			vn_vfsunlock(vp);
1487 			error = EINVAL;
1488 			goto errout;
1489 		}
1490 		vfsp = vp->v_vfsp;
1491 		ovflags = vfsp->vfs_flag;
1492 		vfsp->vfs_flag |= VFS_REMOUNT;
1493 		vfsp->vfs_flag &= ~VFS_RDONLY;
1494 	} else {
1495 		vfsp = vfs_alloc(KM_SLEEP);
1496 		VFS_INIT(vfsp, vfsops, NULL);
1497 	}
1498 
1499 	VFS_HOLD(vfsp);
1500 
1501 	if ((error = lofi_add(fsname, vfsp, &mnt_mntopts, uap)) != 0) {
1502 		if (!remount) {
1503 			if (splice)
1504 				vn_vfsunlock(vp);
1505 			vfs_free(vfsp);
1506 		} else {
1507 			vn_vfsunlock(vp);
1508 			VFS_RELE(vfsp);
1509 		}
1510 		goto errout;
1511 	}
1512 
1513 	/*
1514 	 * PRIV_SYS_MOUNT doesn't mean you can become root.
1515 	 */
1516 	if (vfsp->vfs_lofi_minor != 0) {
1517 		uap->flags |= MS_NOSUID;
1518 		vfs_setmntopt_nolock(&mnt_mntopts, MNTOPT_NOSUID, NULL, 0, 0);
1519 	}
1520 
1521 	/*
1522 	 * The vfs_reflock is not used anymore the code below explicitly
1523 	 * holds it preventing others accesing it directly.
1524 	 */
1525 	if ((sema_tryp(&vfsp->vfs_reflock) == 0) &&
1526 	    !(vfsp->vfs_flag & VFS_REMOUNT))
1527 		cmn_err(CE_WARN,
1528 		    "mount type %s couldn't get vfs_reflock", vswp->vsw_name);
1529 
1530 	/*
1531 	 * Lock the vfs. If this is a remount we want to avoid spurious umount
1532 	 * failures that happen as a side-effect of fsflush() and other mount
1533 	 * and unmount operations that might be going on simultaneously and
1534 	 * may have locked the vfs currently. To not return EBUSY immediately
1535 	 * here we use vfs_lock_wait() instead vfs_lock() for the remount case.
1536 	 */
1537 	if (!remount) {
1538 		if (error = vfs_lock(vfsp)) {
1539 			vfsp->vfs_flag = ovflags;
1540 
1541 			lofi_remove(vfsp);
1542 
1543 			if (splice)
1544 				vn_vfsunlock(vp);
1545 			vfs_free(vfsp);
1546 			goto errout;
1547 		}
1548 	} else {
1549 		vfs_lock_wait(vfsp);
1550 	}
1551 
1552 	/*
1553 	 * Add device to mount in progress table, global mounts require special
1554 	 * handling. It is possible that we have already done the lookupname
1555 	 * on a spliced, non-global fs. If so, we don't want to do it again
1556 	 * since we cannot do a lookupname after taking the
1557 	 * wlock above. This case is for a non-spliced, non-global filesystem.
1558 	 */
1559 	if (!addmip) {
1560 		if ((uap->flags & MS_GLOBAL) == 0 &&
1561 		    lookupname(uap->spec, fromspace, FOLLOW, NULL, &bvp) == 0) {
1562 			addmip = 1;
1563 		}
1564 	}
1565 
1566 	if (addmip) {
1567 		vnode_t *lvp = NULL;
1568 
1569 		error = vfs_get_lofi(vfsp, &lvp);
1570 		if (error > 0) {
1571 			lofi_remove(vfsp);
1572 
1573 			if (splice)
1574 				vn_vfsunlock(vp);
1575 			vfs_unlock(vfsp);
1576 
1577 			if (remount) {
1578 				VFS_RELE(vfsp);
1579 			} else {
1580 				vfs_free(vfsp);
1581 			}
1582 
1583 			goto errout;
1584 		} else if (error == -1) {
1585 			bdev = bvp->v_rdev;
1586 			VN_RELE(bvp);
1587 		} else {
1588 			bdev = lvp->v_rdev;
1589 			VN_RELE(lvp);
1590 			VN_RELE(bvp);
1591 		}
1592 
1593 		vfs_addmip(bdev, vfsp);
1594 		addmip = 0;
1595 		delmip = 1;
1596 	}
1597 	/*
1598 	 * Invalidate cached entry for the mount point.
1599 	 */
1600 	if (splice)
1601 		dnlc_purge_vp(vp);
1602 
1603 	/*
1604 	 * If have an option string but the filesystem doesn't supply a
1605 	 * prototype options table, create a table with the global
1606 	 * options and sufficient room to accept all the options in the
1607 	 * string.  Then parse the passed in option string
1608 	 * accepting all the options in the string.  This gives us an
1609 	 * option table with all the proper cancel properties for the
1610 	 * global options.
1611 	 *
1612 	 * Filesystems that supply a prototype options table are handled
1613 	 * earlier in this function.
1614 	 */
1615 	if (uap->flags & MS_OPTIONSTR) {
1616 		if (!(vswp->vsw_flag & VSW_HASPROTO)) {
1617 			mntopts_t tmp_mntopts;
1618 
1619 			tmp_mntopts.mo_count = 0;
1620 			vfs_createopttbl_extend(&tmp_mntopts, inargs,
1621 			    &mnt_mntopts);
1622 			vfs_parsemntopts(&tmp_mntopts, inargs, 1);
1623 			vfs_swapopttbl_nolock(&mnt_mntopts, &tmp_mntopts);
1624 			vfs_freeopttbl(&tmp_mntopts);
1625 		}
1626 	}
1627 
1628 	/*
1629 	 * Serialize with zone state transitions.
1630 	 * See vfs_list_add; zone mounted into is:
1631 	 * 	zone_find_by_path(refstr_value(vfsp->vfs_mntpt))
1632 	 * not the zone doing the mount (curproc->p_zone), but if we're already
1633 	 * inside a NGZ, then we know what zone we are.
1634 	 */
1635 	if (INGLOBALZONE(curproc)) {
1636 		zone = zone_find_by_path(mountpt);
1637 		ASSERT(zone != NULL);
1638 	} else {
1639 		zone = curproc->p_zone;
1640 		/*
1641 		 * zone_find_by_path does a hold, so do one here too so that
1642 		 * we can do a zone_rele after mount_completed.
1643 		 */
1644 		zone_hold(zone);
1645 	}
1646 	mount_in_progress(zone);
1647 	/*
1648 	 * Instantiate (or reinstantiate) the file system.  If appropriate,
1649 	 * splice it into the file system name space.
1650 	 *
1651 	 * We want VFS_MOUNT() to be able to override the vfs_resource
1652 	 * string if necessary (ie, mntfs), and also for a remount to
1653 	 * change the same (necessary when remounting '/' during boot).
1654 	 * So we set up vfs_mntpt and vfs_resource to what we think they
1655 	 * should be, then hand off control to VFS_MOUNT() which can
1656 	 * override this.
1657 	 *
1658 	 * For safety's sake, when changing vfs_resource or vfs_mntpt of
1659 	 * a vfs which is on the vfs list (i.e. during a remount), we must
1660 	 * never set those fields to NULL. Several bits of code make
1661 	 * assumptions that the fields are always valid.
1662 	 */
1663 	vfs_swapopttbl(&mnt_mntopts, &vfsp->vfs_mntopts);
1664 	if (remount) {
1665 		if ((oldresource = vfsp->vfs_resource) != NULL)
1666 			refstr_hold(oldresource);
1667 		if ((oldmntpt = vfsp->vfs_mntpt) != NULL)
1668 			refstr_hold(oldmntpt);
1669 	}
1670 	vfs_setresource(vfsp, resource, 0);
1671 	vfs_setmntpoint(vfsp, mountpt, 0);
1672 
1673 	/*
1674 	 * going to mount on this vnode, so notify.
1675 	 */
1676 	vnevent_mountedover(vp, NULL);
1677 	error = VFS_MOUNT(vfsp, vp, uap, credp);
1678 
1679 	if (uap->flags & MS_RDONLY)
1680 		vfs_setmntopt(vfsp, MNTOPT_RO, NULL, 0);
1681 	if (uap->flags & MS_NOSUID)
1682 		vfs_setmntopt(vfsp, MNTOPT_NOSUID, NULL, 0);
1683 	if (uap->flags & MS_GLOBAL)
1684 		vfs_setmntopt(vfsp, MNTOPT_GLOBAL, NULL, 0);
1685 
1686 	if (error) {
1687 		lofi_remove(vfsp);
1688 
1689 		if (remount) {
1690 			/* put back pre-remount options */
1691 			vfs_swapopttbl(&mnt_mntopts, &vfsp->vfs_mntopts);
1692 			vfs_setmntpoint(vfsp, refstr_value(oldmntpt),
1693 			    VFSSP_VERBATIM);
1694 			if (oldmntpt)
1695 				refstr_rele(oldmntpt);
1696 			vfs_setresource(vfsp, refstr_value(oldresource),
1697 			    VFSSP_VERBATIM);
1698 			if (oldresource)
1699 				refstr_rele(oldresource);
1700 			vfsp->vfs_flag = ovflags;
1701 			vfs_unlock(vfsp);
1702 			VFS_RELE(vfsp);
1703 		} else {
1704 			vfs_unlock(vfsp);
1705 			vfs_freemnttab(vfsp);
1706 			vfs_free(vfsp);
1707 		}
1708 	} else {
1709 		/*
1710 		 * Set the mount time to now
1711 		 */
1712 		vfsp->vfs_mtime = ddi_get_time();
1713 		if (remount) {
1714 			vfsp->vfs_flag &= ~VFS_REMOUNT;
1715 			if (oldresource)
1716 				refstr_rele(oldresource);
1717 			if (oldmntpt)
1718 				refstr_rele(oldmntpt);
1719 		} else if (splice) {
1720 			/*
1721 			 * Link vfsp into the name space at the mount
1722 			 * point. Vfs_add() is responsible for
1723 			 * holding the mount point which will be
1724 			 * released when vfs_remove() is called.
1725 			 */
1726 			vfs_add(vp, vfsp, uap->flags);
1727 		} else {
1728 			/*
1729 			 * Hold the reference to file system which is
1730 			 * not linked into the name space.
1731 			 */
1732 			vfsp->vfs_zone = NULL;
1733 			VFS_HOLD(vfsp);
1734 			vfsp->vfs_vnodecovered = NULL;
1735 		}
1736 		/*
1737 		 * Set flags for global options encountered
1738 		 */
1739 		if (vfs_optionisset(vfsp, MNTOPT_RO, NULL))
1740 			vfsp->vfs_flag |= VFS_RDONLY;
1741 		else
1742 			vfsp->vfs_flag &= ~VFS_RDONLY;
1743 		if (vfs_optionisset(vfsp, MNTOPT_NOSUID, NULL)) {
1744 			vfsp->vfs_flag |= (VFS_NOSETUID|VFS_NODEVICES);
1745 		} else {
1746 			if (vfs_optionisset(vfsp, MNTOPT_NODEVICES, NULL))
1747 				vfsp->vfs_flag |= VFS_NODEVICES;
1748 			else
1749 				vfsp->vfs_flag &= ~VFS_NODEVICES;
1750 			if (vfs_optionisset(vfsp, MNTOPT_NOSETUID, NULL))
1751 				vfsp->vfs_flag |= VFS_NOSETUID;
1752 			else
1753 				vfsp->vfs_flag &= ~VFS_NOSETUID;
1754 		}
1755 		if (vfs_optionisset(vfsp, MNTOPT_NBMAND, NULL))
1756 			vfsp->vfs_flag |= VFS_NBMAND;
1757 		else
1758 			vfsp->vfs_flag &= ~VFS_NBMAND;
1759 
1760 		if (vfs_optionisset(vfsp, MNTOPT_XATTR, NULL))
1761 			vfsp->vfs_flag |= VFS_XATTR;
1762 		else
1763 			vfsp->vfs_flag &= ~VFS_XATTR;
1764 
1765 		if (vfs_optionisset(vfsp, MNTOPT_NOEXEC, NULL))
1766 			vfsp->vfs_flag |= VFS_NOEXEC;
1767 		else
1768 			vfsp->vfs_flag &= ~VFS_NOEXEC;
1769 
1770 		/*
1771 		 * Now construct the output option string of options
1772 		 * we recognized.
1773 		 */
1774 		if (uap->flags & MS_OPTIONSTR) {
1775 			vfs_list_read_lock();
1776 			copyout_error = vfs_buildoptionstr(
1777 			    &vfsp->vfs_mntopts, inargs, optlen);
1778 			vfs_list_unlock();
1779 			if (copyout_error == 0 &&
1780 			    (uap->flags & MS_SYSSPACE) == 0) {
1781 				copyout_error = copyoutstr(inargs, opts,
1782 				    optlen, NULL);
1783 			}
1784 		}
1785 
1786 		/*
1787 		 * If this isn't a remount, set up the vopstats before
1788 		 * anyone can touch this. We only allow spliced file
1789 		 * systems (file systems which are in the namespace) to
1790 		 * have the VFS_STATS flag set.
1791 		 * NOTE: PxFS mounts the underlying file system with
1792 		 * MS_NOSPLICE set and copies those vfs_flags to its private
1793 		 * vfs structure. As a result, PxFS should never have
1794 		 * the VFS_STATS flag or else we might access the vfs
1795 		 * statistics-related fields prior to them being
1796 		 * properly initialized.
1797 		 */
1798 		if (!remount && (vswp->vsw_flag & VSW_STATS) && splice) {
1799 			initialize_vopstats(&vfsp->vfs_vopstats);
1800 			/*
1801 			 * We need to set vfs_vskap to NULL because there's
1802 			 * a chance it won't be set below.  This is checked
1803 			 * in teardown_vopstats() so we can't have garbage.
1804 			 */
1805 			vfsp->vfs_vskap = NULL;
1806 			vfsp->vfs_flag |= VFS_STATS;
1807 			vfsp->vfs_fstypevsp = get_fstype_vopstats(vfsp, vswp);
1808 		}
1809 
1810 		if (vswp->vsw_flag & VSW_XID)
1811 			vfsp->vfs_flag |= VFS_XID;
1812 
1813 		vfs_unlock(vfsp);
1814 	}
1815 	mount_completed(zone);
1816 	zone_rele(zone);
1817 	if (splice)
1818 		vn_vfsunlock(vp);
1819 
1820 	if ((error == 0) && (copyout_error == 0)) {
1821 		if (!remount) {
1822 			/*
1823 			 * Don't call get_vskstat_anchor() while holding
1824 			 * locks since it allocates memory and calls
1825 			 * VFS_STATVFS().  For NFS, the latter can generate
1826 			 * an over-the-wire call.
1827 			 */
1828 			vskap = get_vskstat_anchor(vfsp);
1829 			/* Only take the lock if we have something to do */
1830 			if (vskap != NULL) {
1831 				vfs_lock_wait(vfsp);
1832 				if (vfsp->vfs_flag & VFS_STATS) {
1833 					vfsp->vfs_vskap = vskap;
1834 				}
1835 				vfs_unlock(vfsp);
1836 			}
1837 		}
1838 		/* Return vfsp to caller. */
1839 		*vfspp = vfsp;
1840 	}
1841 errout:
1842 	vfs_freeopttbl(&mnt_mntopts);
1843 	if (resource != NULL)
1844 		kmem_free(resource, strlen(resource) + 1);
1845 	if (mountpt != NULL)
1846 		kmem_free(mountpt, strlen(mountpt) + 1);
1847 	/*
1848 	 * It is possible we errored prior to adding to mount in progress
1849 	 * table. Must free vnode we acquired with successful lookupname.
1850 	 */
1851 	if (addmip)
1852 		VN_RELE(bvp);
1853 	if (delmip)
1854 		vfs_delmip(vfsp);
1855 	ASSERT(vswp != NULL);
1856 	vfs_unrefvfssw(vswp);
1857 	if (inargs != opts)
1858 		kmem_free(inargs, MAX_MNTOPT_STR);
1859 	if (copyout_error) {
1860 		lofi_remove(vfsp);
1861 		VFS_RELE(vfsp);
1862 		error = copyout_error;
1863 	}
1864 	return (error);
1865 }
1866 
1867 static void
1868 vfs_setpath(
1869     struct vfs *vfsp,		/* vfs being updated */
1870     refstr_t **refp,		/* Ref-count string to contain the new path */
1871     const char *newpath,	/* Path to add to refp (above) */
1872     uint32_t flag)		/* flag */
1873 {
1874 	size_t len;
1875 	refstr_t *ref;
1876 	zone_t *zone = curproc->p_zone;
1877 	char *sp;
1878 	int have_list_lock = 0;
1879 
1880 	ASSERT(!VFS_ON_LIST(vfsp) || vfs_lock_held(vfsp));
1881 
1882 	/*
1883 	 * New path must be less than MAXPATHLEN because mntfs
1884 	 * will only display up to MAXPATHLEN bytes. This is currently
1885 	 * safe, because domount() uses pn_get(), and other callers
1886 	 * similarly cap the size to fewer than MAXPATHLEN bytes.
1887 	 */
1888 
1889 	ASSERT(strlen(newpath) < MAXPATHLEN);
1890 
1891 	/* mntfs requires consistency while vfs list lock is held */
1892 
1893 	if (VFS_ON_LIST(vfsp)) {
1894 		have_list_lock = 1;
1895 		vfs_list_lock();
1896 	}
1897 
1898 	if (*refp != NULL)
1899 		refstr_rele(*refp);
1900 
1901 	/*
1902 	 * If we are in a non-global zone then we prefix the supplied path,
1903 	 * newpath, with the zone's root path, with two exceptions. The first
1904 	 * is where we have been explicitly directed to avoid doing so; this
1905 	 * will be the case following a failed remount, where the path supplied
1906 	 * will be a saved version which must now be restored. The second
1907 	 * exception is where newpath is not a pathname but a descriptive name,
1908 	 * e.g. "procfs".
1909 	 */
1910 	if (zone == global_zone || (flag & VFSSP_VERBATIM) || *newpath != '/') {
1911 		ref = refstr_alloc(newpath);
1912 		goto out;
1913 	}
1914 
1915 	/*
1916 	 * Truncate the trailing '/' in the zoneroot, and merge
1917 	 * in the zone's rootpath with the "newpath" (resource
1918 	 * or mountpoint) passed in.
1919 	 *
1920 	 * The size of the required buffer is thus the size of
1921 	 * the buffer required for the passed-in newpath
1922 	 * (strlen(newpath) + 1), plus the size of the buffer
1923 	 * required to hold zone_rootpath (zone_rootpathlen)
1924 	 * minus one for one of the now-superfluous NUL
1925 	 * terminations, minus one for the trailing '/'.
1926 	 *
1927 	 * That gives us:
1928 	 *
1929 	 * (strlen(newpath) + 1) + zone_rootpathlen - 1 - 1
1930 	 *
1931 	 * Which is what we have below.
1932 	 */
1933 
1934 	len = strlen(newpath) + zone->zone_rootpathlen - 1;
1935 	sp = kmem_alloc(len, KM_SLEEP);
1936 
1937 	/*
1938 	 * Copy everything including the trailing slash, which
1939 	 * we then overwrite with the NUL character.
1940 	 */
1941 
1942 	(void) strcpy(sp, zone->zone_rootpath);
1943 	sp[zone->zone_rootpathlen - 2] = '\0';
1944 	(void) strcat(sp, newpath);
1945 
1946 	ref = refstr_alloc(sp);
1947 	kmem_free(sp, len);
1948 out:
1949 	*refp = ref;
1950 
1951 	if (have_list_lock) {
1952 		vfs_mnttab_modtimeupd();
1953 		vfs_list_unlock();
1954 	}
1955 }
1956 
1957 /*
1958  * Record a mounted resource name in a vfs structure.
1959  * If vfsp is already mounted, caller must hold the vfs lock.
1960  */
1961 void
1962 vfs_setresource(struct vfs *vfsp, const char *resource, uint32_t flag)
1963 {
1964 	if (resource == NULL || resource[0] == '\0')
1965 		resource = VFS_NORESOURCE;
1966 	vfs_setpath(vfsp, &vfsp->vfs_resource, resource, flag);
1967 }
1968 
1969 /*
1970  * Record a mount point name in a vfs structure.
1971  * If vfsp is already mounted, caller must hold the vfs lock.
1972  */
1973 void
1974 vfs_setmntpoint(struct vfs *vfsp, const char *mntpt, uint32_t flag)
1975 {
1976 	if (mntpt == NULL || mntpt[0] == '\0')
1977 		mntpt = VFS_NOMNTPT;
1978 	vfs_setpath(vfsp, &vfsp->vfs_mntpt, mntpt, flag);
1979 }
1980 
1981 /* Returns the vfs_resource. Caller must call refstr_rele() when finished. */
1982 
1983 refstr_t *
1984 vfs_getresource(const struct vfs *vfsp)
1985 {
1986 	refstr_t *resource;
1987 
1988 	vfs_list_read_lock();
1989 	resource = vfsp->vfs_resource;
1990 	refstr_hold(resource);
1991 	vfs_list_unlock();
1992 
1993 	return (resource);
1994 }
1995 
1996 /* Returns the vfs_mntpt. Caller must call refstr_rele() when finished. */
1997 
1998 refstr_t *
1999 vfs_getmntpoint(const struct vfs *vfsp)
2000 {
2001 	refstr_t *mntpt;
2002 
2003 	vfs_list_read_lock();
2004 	mntpt = vfsp->vfs_mntpt;
2005 	refstr_hold(mntpt);
2006 	vfs_list_unlock();
2007 
2008 	return (mntpt);
2009 }
2010 
2011 /*
2012  * Create an empty options table with enough empty slots to hold all
2013  * The options in the options string passed as an argument.
2014  * Potentially prepend another options table.
2015  *
2016  * Note: caller is responsible for locking the vfs list, if needed,
2017  *       to protect mops.
2018  */
2019 static void
2020 vfs_createopttbl_extend(mntopts_t *mops, const char *opts,
2021     const mntopts_t *mtmpl)
2022 {
2023 	const char *s = opts;
2024 	uint_t count;
2025 
2026 	if (opts == NULL || *opts == '\0') {
2027 		count = 0;
2028 	} else {
2029 		count = 1;
2030 
2031 		/*
2032 		 * Count number of options in the string
2033 		 */
2034 		for (s = strchr(s, ','); s != NULL; s = strchr(s, ',')) {
2035 			count++;
2036 			s++;
2037 		}
2038 	}
2039 	vfs_copyopttbl_extend(mtmpl, mops, count);
2040 }
2041 
2042 /*
2043  * Create an empty options table with enough empty slots to hold all
2044  * The options in the options string passed as an argument.
2045  *
2046  * This function is *not* for general use by filesystems.
2047  *
2048  * Note: caller is responsible for locking the vfs list, if needed,
2049  *       to protect mops.
2050  */
2051 void
2052 vfs_createopttbl(mntopts_t *mops, const char *opts)
2053 {
2054 	vfs_createopttbl_extend(mops, opts, NULL);
2055 }
2056 
2057 
2058 /*
2059  * Swap two mount options tables
2060  */
2061 static void
2062 vfs_swapopttbl_nolock(mntopts_t *optbl1, mntopts_t *optbl2)
2063 {
2064 	uint_t tmpcnt;
2065 	mntopt_t *tmplist;
2066 
2067 	tmpcnt = optbl2->mo_count;
2068 	tmplist = optbl2->mo_list;
2069 	optbl2->mo_count = optbl1->mo_count;
2070 	optbl2->mo_list = optbl1->mo_list;
2071 	optbl1->mo_count = tmpcnt;
2072 	optbl1->mo_list = tmplist;
2073 }
2074 
2075 static void
2076 vfs_swapopttbl(mntopts_t *optbl1, mntopts_t *optbl2)
2077 {
2078 	vfs_list_lock();
2079 	vfs_swapopttbl_nolock(optbl1, optbl2);
2080 	vfs_mnttab_modtimeupd();
2081 	vfs_list_unlock();
2082 }
2083 
2084 static char **
2085 vfs_copycancelopt_extend(char **const moc, int extend)
2086 {
2087 	int i = 0;
2088 	int j;
2089 	char **result;
2090 
2091 	if (moc != NULL) {
2092 		for (; moc[i] != NULL; i++)
2093 			/* count number of options to cancel */;
2094 	}
2095 
2096 	if (i + extend == 0)
2097 		return (NULL);
2098 
2099 	result = kmem_alloc((i + extend + 1) * sizeof (char *), KM_SLEEP);
2100 
2101 	for (j = 0; j < i; j++) {
2102 		result[j] = kmem_alloc(strlen(moc[j]) + 1, KM_SLEEP);
2103 		(void) strcpy(result[j], moc[j]);
2104 	}
2105 	for (; j <= i + extend; j++)
2106 		result[j] = NULL;
2107 
2108 	return (result);
2109 }
2110 
2111 static void
2112 vfs_copyopt(const mntopt_t *s, mntopt_t *d)
2113 {
2114 	char *sp, *dp;
2115 
2116 	d->mo_flags = s->mo_flags;
2117 	d->mo_data = s->mo_data;
2118 	sp = s->mo_name;
2119 	if (sp != NULL) {
2120 		dp = kmem_alloc(strlen(sp) + 1, KM_SLEEP);
2121 		(void) strcpy(dp, sp);
2122 		d->mo_name = dp;
2123 	} else {
2124 		d->mo_name = NULL; /* should never happen */
2125 	}
2126 
2127 	d->mo_cancel = vfs_copycancelopt_extend(s->mo_cancel, 0);
2128 
2129 	sp = s->mo_arg;
2130 	if (sp != NULL) {
2131 		dp = kmem_alloc(strlen(sp) + 1, KM_SLEEP);
2132 		(void) strcpy(dp, sp);
2133 		d->mo_arg = dp;
2134 	} else {
2135 		d->mo_arg = NULL;
2136 	}
2137 }
2138 
2139 /*
2140  * Copy a mount options table, possibly allocating some spare
2141  * slots at the end.  It is permissible to copy_extend the NULL table.
2142  */
2143 static void
2144 vfs_copyopttbl_extend(const mntopts_t *smo, mntopts_t *dmo, int extra)
2145 {
2146 	uint_t i, count;
2147 	mntopt_t *motbl;
2148 
2149 	/*
2150 	 * Clear out any existing stuff in the options table being initialized
2151 	 */
2152 	vfs_freeopttbl(dmo);
2153 	count = (smo == NULL) ? 0 : smo->mo_count;
2154 	if ((count + extra) == 0)	/* nothing to do */
2155 		return;
2156 	dmo->mo_count = count + extra;
2157 	motbl = kmem_zalloc((count + extra) * sizeof (mntopt_t), KM_SLEEP);
2158 	dmo->mo_list = motbl;
2159 	for (i = 0; i < count; i++) {
2160 		vfs_copyopt(&smo->mo_list[i], &motbl[i]);
2161 	}
2162 	for (i = count; i < count + extra; i++) {
2163 		motbl[i].mo_flags = MO_EMPTY;
2164 	}
2165 }
2166 
2167 /*
2168  * Copy a mount options table.
2169  *
2170  * This function is *not* for general use by filesystems.
2171  *
2172  * Note: caller is responsible for locking the vfs list, if needed,
2173  *       to protect smo and dmo.
2174  */
2175 void
2176 vfs_copyopttbl(const mntopts_t *smo, mntopts_t *dmo)
2177 {
2178 	vfs_copyopttbl_extend(smo, dmo, 0);
2179 }
2180 
2181 static char **
2182 vfs_mergecancelopts(const mntopt_t *mop1, const mntopt_t *mop2)
2183 {
2184 	int c1 = 0;
2185 	int c2 = 0;
2186 	char **result;
2187 	char **sp1, **sp2, **dp;
2188 
2189 	/*
2190 	 * First we count both lists of cancel options.
2191 	 * If either is NULL or has no elements, we return a copy of
2192 	 * the other.
2193 	 */
2194 	if (mop1->mo_cancel != NULL) {
2195 		for (; mop1->mo_cancel[c1] != NULL; c1++)
2196 			/* count cancel options in mop1 */;
2197 	}
2198 
2199 	if (c1 == 0)
2200 		return (vfs_copycancelopt_extend(mop2->mo_cancel, 0));
2201 
2202 	if (mop2->mo_cancel != NULL) {
2203 		for (; mop2->mo_cancel[c2] != NULL; c2++)
2204 			/* count cancel options in mop2 */;
2205 	}
2206 
2207 	result = vfs_copycancelopt_extend(mop1->mo_cancel, c2);
2208 
2209 	if (c2 == 0)
2210 		return (result);
2211 
2212 	/*
2213 	 * When we get here, we've got two sets of cancel options;
2214 	 * we need to merge the two sets.  We know that the result
2215 	 * array has "c1+c2+1" entries and in the end we might shrink
2216 	 * it.
2217 	 * Result now has a copy of the c1 entries from mop1; we'll
2218 	 * now lookup all the entries of mop2 in mop1 and copy it if
2219 	 * it is unique.
2220 	 * This operation is O(n^2) but it's only called once per
2221 	 * filesystem per duplicate option.  This is a situation
2222 	 * which doesn't arise with the filesystems in ON and
2223 	 * n is generally 1.
2224 	 */
2225 
2226 	dp = &result[c1];
2227 	for (sp2 = mop2->mo_cancel; *sp2 != NULL; sp2++) {
2228 		for (sp1 = mop1->mo_cancel; *sp1 != NULL; sp1++) {
2229 			if (strcmp(*sp1, *sp2) == 0)
2230 				break;
2231 		}
2232 		if (*sp1 == NULL) {
2233 			/*
2234 			 * Option *sp2 not found in mop1, so copy it.
2235 			 * The calls to vfs_copycancelopt_extend()
2236 			 * guarantee that there's enough room.
2237 			 */
2238 			*dp = kmem_alloc(strlen(*sp2) + 1, KM_SLEEP);
2239 			(void) strcpy(*dp++, *sp2);
2240 		}
2241 	}
2242 	if (dp != &result[c1+c2]) {
2243 		size_t bytes = (dp - result + 1) * sizeof (char *);
2244 		char **nres = kmem_alloc(bytes, KM_SLEEP);
2245 
2246 		bcopy(result, nres, bytes);
2247 		kmem_free(result, (c1 + c2 + 1) * sizeof (char *));
2248 		result = nres;
2249 	}
2250 	return (result);
2251 }
2252 
2253 /*
2254  * Merge two mount option tables (outer and inner) into one.  This is very
2255  * similar to "merging" global variables and automatic variables in C.
2256  *
2257  * This isn't (and doesn't have to be) fast.
2258  *
2259  * This function is *not* for general use by filesystems.
2260  *
2261  * Note: caller is responsible for locking the vfs list, if needed,
2262  *       to protect omo, imo & dmo.
2263  */
2264 void
2265 vfs_mergeopttbl(const mntopts_t *omo, const mntopts_t *imo, mntopts_t *dmo)
2266 {
2267 	uint_t i, count;
2268 	mntopt_t *mop, *motbl;
2269 	uint_t freeidx;
2270 
2271 	/*
2272 	 * First determine how much space we need to allocate.
2273 	 */
2274 	count = omo->mo_count;
2275 	for (i = 0; i < imo->mo_count; i++) {
2276 		if (imo->mo_list[i].mo_flags & MO_EMPTY)
2277 			continue;
2278 		if (vfs_hasopt(omo, imo->mo_list[i].mo_name) == NULL)
2279 			count++;
2280 	}
2281 	ASSERT(count >= omo->mo_count &&
2282 	    count <= omo->mo_count + imo->mo_count);
2283 	motbl = kmem_alloc(count * sizeof (mntopt_t), KM_SLEEP);
2284 	for (i = 0; i < omo->mo_count; i++)
2285 		vfs_copyopt(&omo->mo_list[i], &motbl[i]);
2286 	freeidx = omo->mo_count;
2287 	for (i = 0; i < imo->mo_count; i++) {
2288 		if (imo->mo_list[i].mo_flags & MO_EMPTY)
2289 			continue;
2290 		if ((mop = vfs_hasopt(omo, imo->mo_list[i].mo_name)) != NULL) {
2291 			char **newcanp;
2292 			uint_t index = mop - omo->mo_list;
2293 
2294 			newcanp = vfs_mergecancelopts(mop, &motbl[index]);
2295 
2296 			vfs_freeopt(&motbl[index]);
2297 			vfs_copyopt(&imo->mo_list[i], &motbl[index]);
2298 
2299 			vfs_freecancelopt(motbl[index].mo_cancel);
2300 			motbl[index].mo_cancel = newcanp;
2301 		} else {
2302 			/*
2303 			 * If it's a new option, just copy it over to the first
2304 			 * free location.
2305 			 */
2306 			vfs_copyopt(&imo->mo_list[i], &motbl[freeidx++]);
2307 		}
2308 	}
2309 	dmo->mo_count = count;
2310 	dmo->mo_list = motbl;
2311 }
2312 
2313 /*
2314  * Functions to set and clear mount options in a mount options table.
2315  */
2316 
2317 /*
2318  * Clear a mount option, if it exists.
2319  *
2320  * The update_mnttab arg indicates whether mops is part of a vfs that is on
2321  * the vfs list.
2322  */
2323 static void
2324 vfs_clearmntopt_nolock(mntopts_t *mops, const char *opt, int update_mnttab)
2325 {
2326 	struct mntopt *mop;
2327 	uint_t i, count;
2328 
2329 	ASSERT(!update_mnttab || RW_WRITE_HELD(&vfslist));
2330 
2331 	count = mops->mo_count;
2332 	for (i = 0; i < count; i++) {
2333 		mop = &mops->mo_list[i];
2334 
2335 		if (mop->mo_flags & MO_EMPTY)
2336 			continue;
2337 		if (strcmp(opt, mop->mo_name))
2338 			continue;
2339 		mop->mo_flags &= ~MO_SET;
2340 		if (mop->mo_arg != NULL) {
2341 			kmem_free(mop->mo_arg, strlen(mop->mo_arg) + 1);
2342 		}
2343 		mop->mo_arg = NULL;
2344 		if (update_mnttab)
2345 			vfs_mnttab_modtimeupd();
2346 		break;
2347 	}
2348 }
2349 
2350 void
2351 vfs_clearmntopt(struct vfs *vfsp, const char *opt)
2352 {
2353 	int gotlock = 0;
2354 
2355 	if (VFS_ON_LIST(vfsp)) {
2356 		gotlock = 1;
2357 		vfs_list_lock();
2358 	}
2359 	vfs_clearmntopt_nolock(&vfsp->vfs_mntopts, opt, gotlock);
2360 	if (gotlock)
2361 		vfs_list_unlock();
2362 }
2363 
2364 
2365 /*
2366  * Set a mount option on.  If it's not found in the table, it's silently
2367  * ignored.  If the option has MO_IGNORE set, it is still set unless the
2368  * VFS_NOFORCEOPT bit is set in the flags.  Also, VFS_DISPLAY/VFS_NODISPLAY flag
2369  * bits can be used to toggle the MO_NODISPLAY bit for the option.
2370  * If the VFS_CREATEOPT flag bit is set then the first option slot with
2371  * MO_EMPTY set is created as the option passed in.
2372  *
2373  * The update_mnttab arg indicates whether mops is part of a vfs that is on
2374  * the vfs list.
2375  */
2376 static void
2377 vfs_setmntopt_nolock(mntopts_t *mops, const char *opt,
2378     const char *arg, int flags, int update_mnttab)
2379 {
2380 	mntopt_t *mop;
2381 	uint_t i, count;
2382 	char *sp;
2383 
2384 	ASSERT(!update_mnttab || RW_WRITE_HELD(&vfslist));
2385 
2386 	if (flags & VFS_CREATEOPT) {
2387 		if (vfs_hasopt(mops, opt) != NULL) {
2388 			flags &= ~VFS_CREATEOPT;
2389 		}
2390 	}
2391 	count = mops->mo_count;
2392 	for (i = 0; i < count; i++) {
2393 		mop = &mops->mo_list[i];
2394 
2395 		if (mop->mo_flags & MO_EMPTY) {
2396 			if ((flags & VFS_CREATEOPT) == 0)
2397 				continue;
2398 			sp = kmem_alloc(strlen(opt) + 1, KM_SLEEP);
2399 			(void) strcpy(sp, opt);
2400 			mop->mo_name = sp;
2401 			if (arg != NULL)
2402 				mop->mo_flags = MO_HASVALUE;
2403 			else
2404 				mop->mo_flags = 0;
2405 		} else if (strcmp(opt, mop->mo_name)) {
2406 			continue;
2407 		}
2408 		if ((mop->mo_flags & MO_IGNORE) && (flags & VFS_NOFORCEOPT))
2409 			break;
2410 		if (arg != NULL && (mop->mo_flags & MO_HASVALUE) != 0) {
2411 			sp = kmem_alloc(strlen(arg) + 1, KM_SLEEP);
2412 			(void) strcpy(sp, arg);
2413 		} else {
2414 			sp = NULL;
2415 		}
2416 		if (mop->mo_arg != NULL)
2417 			kmem_free(mop->mo_arg, strlen(mop->mo_arg) + 1);
2418 		mop->mo_arg = sp;
2419 		if (flags & VFS_DISPLAY)
2420 			mop->mo_flags &= ~MO_NODISPLAY;
2421 		if (flags & VFS_NODISPLAY)
2422 			mop->mo_flags |= MO_NODISPLAY;
2423 		mop->mo_flags |= MO_SET;
2424 		if (mop->mo_cancel != NULL) {
2425 			char **cp;
2426 
2427 			for (cp = mop->mo_cancel; *cp != NULL; cp++)
2428 				vfs_clearmntopt_nolock(mops, *cp, 0);
2429 		}
2430 		if (update_mnttab)
2431 			vfs_mnttab_modtimeupd();
2432 		break;
2433 	}
2434 }
2435 
2436 void
2437 vfs_setmntopt(struct vfs *vfsp, const char *opt, const char *arg, int flags)
2438 {
2439 	int gotlock = 0;
2440 
2441 	if (VFS_ON_LIST(vfsp)) {
2442 		gotlock = 1;
2443 		vfs_list_lock();
2444 	}
2445 	vfs_setmntopt_nolock(&vfsp->vfs_mntopts, opt, arg, flags, gotlock);
2446 	if (gotlock)
2447 		vfs_list_unlock();
2448 }
2449 
2450 
2451 /*
2452  * Add a "tag" option to a mounted file system's options list.
2453  *
2454  * Note: caller is responsible for locking the vfs list, if needed,
2455  *       to protect mops.
2456  */
2457 static mntopt_t *
2458 vfs_addtag(mntopts_t *mops, const char *tag)
2459 {
2460 	uint_t count;
2461 	mntopt_t *mop, *motbl;
2462 
2463 	count = mops->mo_count + 1;
2464 	motbl = kmem_zalloc(count * sizeof (mntopt_t), KM_SLEEP);
2465 	if (mops->mo_count) {
2466 		size_t len = (count - 1) * sizeof (mntopt_t);
2467 
2468 		bcopy(mops->mo_list, motbl, len);
2469 		kmem_free(mops->mo_list, len);
2470 	}
2471 	mops->mo_count = count;
2472 	mops->mo_list = motbl;
2473 	mop = &motbl[count - 1];
2474 	mop->mo_flags = MO_TAG;
2475 	mop->mo_name = kmem_alloc(strlen(tag) + 1, KM_SLEEP);
2476 	(void) strcpy(mop->mo_name, tag);
2477 	return (mop);
2478 }
2479 
2480 /*
2481  * Allow users to set arbitrary "tags" in a vfs's mount options.
2482  * Broader use within the kernel is discouraged.
2483  */
2484 int
2485 vfs_settag(uint_t major, uint_t minor, const char *mntpt, const char *tag,
2486     cred_t *cr)
2487 {
2488 	vfs_t *vfsp;
2489 	mntopts_t *mops;
2490 	mntopt_t *mop;
2491 	int found = 0;
2492 	dev_t dev = makedevice(major, minor);
2493 	int err = 0;
2494 	char *buf = kmem_alloc(MAX_MNTOPT_STR, KM_SLEEP);
2495 
2496 	/*
2497 	 * Find the desired mounted file system
2498 	 */
2499 	vfs_list_lock();
2500 	vfsp = rootvfs;
2501 	do {
2502 		if (vfsp->vfs_dev == dev &&
2503 		    strcmp(mntpt, refstr_value(vfsp->vfs_mntpt)) == 0) {
2504 			found = 1;
2505 			break;
2506 		}
2507 		vfsp = vfsp->vfs_next;
2508 	} while (vfsp != rootvfs);
2509 
2510 	if (!found) {
2511 		err = EINVAL;
2512 		goto out;
2513 	}
2514 	err = secpolicy_fs_config(cr, vfsp);
2515 	if (err != 0)
2516 		goto out;
2517 
2518 	mops = &vfsp->vfs_mntopts;
2519 	/*
2520 	 * Add tag if it doesn't already exist
2521 	 */
2522 	if ((mop = vfs_hasopt(mops, tag)) == NULL) {
2523 		int len;
2524 
2525 		(void) vfs_buildoptionstr(mops, buf, MAX_MNTOPT_STR);
2526 		len = strlen(buf);
2527 		if (len + strlen(tag) + 2 > MAX_MNTOPT_STR) {
2528 			err = ENAMETOOLONG;
2529 			goto out;
2530 		}
2531 		mop = vfs_addtag(mops, tag);
2532 	}
2533 	if ((mop->mo_flags & MO_TAG) == 0) {
2534 		err = EINVAL;
2535 		goto out;
2536 	}
2537 	vfs_setmntopt_nolock(mops, tag, NULL, 0, 1);
2538 out:
2539 	vfs_list_unlock();
2540 	kmem_free(buf, MAX_MNTOPT_STR);
2541 	return (err);
2542 }
2543 
2544 /*
2545  * Allow users to remove arbitrary "tags" in a vfs's mount options.
2546  * Broader use within the kernel is discouraged.
2547  */
2548 int
2549 vfs_clrtag(uint_t major, uint_t minor, const char *mntpt, const char *tag,
2550     cred_t *cr)
2551 {
2552 	vfs_t *vfsp;
2553 	mntopt_t *mop;
2554 	int found = 0;
2555 	dev_t dev = makedevice(major, minor);
2556 	int err = 0;
2557 
2558 	/*
2559 	 * Find the desired mounted file system
2560 	 */
2561 	vfs_list_lock();
2562 	vfsp = rootvfs;
2563 	do {
2564 		if (vfsp->vfs_dev == dev &&
2565 		    strcmp(mntpt, refstr_value(vfsp->vfs_mntpt)) == 0) {
2566 			found = 1;
2567 			break;
2568 		}
2569 		vfsp = vfsp->vfs_next;
2570 	} while (vfsp != rootvfs);
2571 
2572 	if (!found) {
2573 		err = EINVAL;
2574 		goto out;
2575 	}
2576 	err = secpolicy_fs_config(cr, vfsp);
2577 	if (err != 0)
2578 		goto out;
2579 
2580 	if ((mop = vfs_hasopt(&vfsp->vfs_mntopts, tag)) == NULL) {
2581 		err = EINVAL;
2582 		goto out;
2583 	}
2584 	if ((mop->mo_flags & MO_TAG) == 0) {
2585 		err = EINVAL;
2586 		goto out;
2587 	}
2588 	vfs_clearmntopt_nolock(&vfsp->vfs_mntopts, tag, 1);
2589 out:
2590 	vfs_list_unlock();
2591 	return (err);
2592 }
2593 
2594 /*
2595  * Function to parse an option string and fill in a mount options table.
2596  * Unknown options are silently ignored.  The input option string is modified
2597  * by replacing separators with nulls.  If the create flag is set, options
2598  * not found in the table are just added on the fly.  The table must have
2599  * an option slot marked MO_EMPTY to add an option on the fly.
2600  *
2601  * This function is *not* for general use by filesystems.
2602  *
2603  * Note: caller is responsible for locking the vfs list, if needed,
2604  *       to protect mops..
2605  */
2606 void
2607 vfs_parsemntopts(mntopts_t *mops, char *osp, int create)
2608 {
2609 	char *s = osp, *p, *nextop, *valp, *cp, *ep;
2610 	int setflg = VFS_NOFORCEOPT;
2611 
2612 	if (osp == NULL)
2613 		return;
2614 	while (*s != '\0') {
2615 		p = strchr(s, ',');	/* find next option */
2616 		if (p == NULL) {
2617 			cp = NULL;
2618 			p = s + strlen(s);
2619 		} else {
2620 			cp = p;		/* save location of comma */
2621 			*p++ = '\0';	/* mark end and point to next option */
2622 		}
2623 		nextop = p;
2624 		p = strchr(s, '=');	/* look for value */
2625 		if (p == NULL) {
2626 			valp = NULL;	/* no value supplied */
2627 		} else {
2628 			ep = p;		/* save location of equals */
2629 			*p++ = '\0';	/* end option and point to value */
2630 			valp = p;
2631 		}
2632 		/*
2633 		 * set option into options table
2634 		 */
2635 		if (create)
2636 			setflg |= VFS_CREATEOPT;
2637 		vfs_setmntopt_nolock(mops, s, valp, setflg, 0);
2638 		if (cp != NULL)
2639 			*cp = ',';	/* restore the comma */
2640 		if (valp != NULL)
2641 			*ep = '=';	/* restore the equals */
2642 		s = nextop;
2643 	}
2644 }
2645 
2646 /*
2647  * Function to inquire if an option exists in a mount options table.
2648  * Returns a pointer to the option if it exists, else NULL.
2649  *
2650  * This function is *not* for general use by filesystems.
2651  *
2652  * Note: caller is responsible for locking the vfs list, if needed,
2653  *       to protect mops.
2654  */
2655 struct mntopt *
2656 vfs_hasopt(const mntopts_t *mops, const char *opt)
2657 {
2658 	struct mntopt *mop;
2659 	uint_t i, count;
2660 
2661 	count = mops->mo_count;
2662 	for (i = 0; i < count; i++) {
2663 		mop = &mops->mo_list[i];
2664 
2665 		if (mop->mo_flags & MO_EMPTY)
2666 			continue;
2667 		if (strcmp(opt, mop->mo_name) == 0)
2668 			return (mop);
2669 	}
2670 	return (NULL);
2671 }
2672 
2673 /*
2674  * Function to inquire if an option is set in a mount options table.
2675  * Returns non-zero if set and fills in the arg pointer with a pointer to
2676  * the argument string or NULL if there is no argument string.
2677  */
2678 static int
2679 vfs_optionisset_nolock(const mntopts_t *mops, const char *opt, char **argp)
2680 {
2681 	struct mntopt *mop;
2682 	uint_t i, count;
2683 
2684 	count = mops->mo_count;
2685 	for (i = 0; i < count; i++) {
2686 		mop = &mops->mo_list[i];
2687 
2688 		if (mop->mo_flags & MO_EMPTY)
2689 			continue;
2690 		if (strcmp(opt, mop->mo_name))
2691 			continue;
2692 		if ((mop->mo_flags & MO_SET) == 0)
2693 			return (0);
2694 		if (argp != NULL && (mop->mo_flags & MO_HASVALUE) != 0)
2695 			*argp = mop->mo_arg;
2696 		return (1);
2697 	}
2698 	return (0);
2699 }
2700 
2701 
2702 int
2703 vfs_optionisset(const struct vfs *vfsp, const char *opt, char **argp)
2704 {
2705 	int ret;
2706 
2707 	vfs_list_read_lock();
2708 	ret = vfs_optionisset_nolock(&vfsp->vfs_mntopts, opt, argp);
2709 	vfs_list_unlock();
2710 	return (ret);
2711 }
2712 
2713 
2714 /*
2715  * Construct a comma separated string of the options set in the given
2716  * mount table, return the string in the given buffer.  Return non-zero if
2717  * the buffer would overflow.
2718  *
2719  * This function is *not* for general use by filesystems.
2720  *
2721  * Note: caller is responsible for locking the vfs list, if needed,
2722  *       to protect mp.
2723  */
2724 int
2725 vfs_buildoptionstr(const mntopts_t *mp, char *buf, int len)
2726 {
2727 	char *cp;
2728 	uint_t i;
2729 
2730 	buf[0] = '\0';
2731 	cp = buf;
2732 	for (i = 0; i < mp->mo_count; i++) {
2733 		struct mntopt *mop;
2734 
2735 		mop = &mp->mo_list[i];
2736 		if (mop->mo_flags & MO_SET) {
2737 			int optlen, comma = 0;
2738 
2739 			if (buf[0] != '\0')
2740 				comma = 1;
2741 			optlen = strlen(mop->mo_name);
2742 			if (strlen(buf) + comma + optlen + 1 > len)
2743 				goto err;
2744 			if (comma)
2745 				*cp++ = ',';
2746 			(void) strcpy(cp, mop->mo_name);
2747 			cp += optlen;
2748 			/*
2749 			 * Append option value if there is one
2750 			 */
2751 			if (mop->mo_arg != NULL) {
2752 				int arglen;
2753 
2754 				arglen = strlen(mop->mo_arg);
2755 				if (strlen(buf) + arglen + 2 > len)
2756 					goto err;
2757 				*cp++ = '=';
2758 				(void) strcpy(cp, mop->mo_arg);
2759 				cp += arglen;
2760 			}
2761 		}
2762 	}
2763 	return (0);
2764 err:
2765 	return (EOVERFLOW);
2766 }
2767 
2768 static void
2769 vfs_freecancelopt(char **moc)
2770 {
2771 	if (moc != NULL) {
2772 		int ccnt = 0;
2773 		char **cp;
2774 
2775 		for (cp = moc; *cp != NULL; cp++) {
2776 			kmem_free(*cp, strlen(*cp) + 1);
2777 			ccnt++;
2778 		}
2779 		kmem_free(moc, (ccnt + 1) * sizeof (char *));
2780 	}
2781 }
2782 
2783 static void
2784 vfs_freeopt(mntopt_t *mop)
2785 {
2786 	if (mop->mo_name != NULL)
2787 		kmem_free(mop->mo_name, strlen(mop->mo_name) + 1);
2788 
2789 	vfs_freecancelopt(mop->mo_cancel);
2790 
2791 	if (mop->mo_arg != NULL)
2792 		kmem_free(mop->mo_arg, strlen(mop->mo_arg) + 1);
2793 }
2794 
2795 /*
2796  * Free a mount options table
2797  *
2798  * This function is *not* for general use by filesystems.
2799  *
2800  * Note: caller is responsible for locking the vfs list, if needed,
2801  *       to protect mp.
2802  */
2803 void
2804 vfs_freeopttbl(mntopts_t *mp)
2805 {
2806 	uint_t i, count;
2807 
2808 	count = mp->mo_count;
2809 	for (i = 0; i < count; i++) {
2810 		vfs_freeopt(&mp->mo_list[i]);
2811 	}
2812 	if (count) {
2813 		kmem_free(mp->mo_list, sizeof (mntopt_t) * count);
2814 		mp->mo_count = 0;
2815 		mp->mo_list = NULL;
2816 	}
2817 }
2818 
2819 
2820 /* ARGSUSED */
2821 static int
2822 vfs_mntdummyread(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cred,
2823 	caller_context_t *ct)
2824 {
2825 	return (0);
2826 }
2827 
2828 /* ARGSUSED */
2829 static int
2830 vfs_mntdummywrite(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cred,
2831 	caller_context_t *ct)
2832 {
2833 	return (0);
2834 }
2835 
2836 /*
2837  * The dummy vnode is currently used only by file events notification
2838  * module which is just interested in the timestamps.
2839  */
2840 /* ARGSUSED */
2841 static int
2842 vfs_mntdummygetattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr,
2843     caller_context_t *ct)
2844 {
2845 	bzero(vap, sizeof (vattr_t));
2846 	vap->va_type = VREG;
2847 	vap->va_nlink = 1;
2848 	vap->va_ctime = vfs_mnttab_ctime;
2849 	/*
2850 	 * it is ok to just copy mtime as the time will be monotonically
2851 	 * increasing.
2852 	 */
2853 	vap->va_mtime = vfs_mnttab_mtime;
2854 	vap->va_atime = vap->va_mtime;
2855 	return (0);
2856 }
2857 
2858 static void
2859 vfs_mnttabvp_setup(void)
2860 {
2861 	vnode_t *tvp;
2862 	vnodeops_t *vfs_mntdummyvnops;
2863 	const fs_operation_def_t mnt_dummyvnodeops_template[] = {
2864 		VOPNAME_READ, 		{ .vop_read = vfs_mntdummyread },
2865 		VOPNAME_WRITE, 		{ .vop_write = vfs_mntdummywrite },
2866 		VOPNAME_GETATTR,	{ .vop_getattr = vfs_mntdummygetattr },
2867 		VOPNAME_VNEVENT,	{ .vop_vnevent = fs_vnevent_support },
2868 		NULL,			NULL
2869 	};
2870 
2871 	if (vn_make_ops("mnttab", mnt_dummyvnodeops_template,
2872 	    &vfs_mntdummyvnops) != 0) {
2873 		cmn_err(CE_WARN, "vfs_mnttabvp_setup: vn_make_ops failed");
2874 		/* Shouldn't happen, but not bad enough to panic */
2875 		return;
2876 	}
2877 
2878 	/*
2879 	 * A global dummy vnode is allocated to represent mntfs files.
2880 	 * The mntfs file (/etc/mnttab) can be monitored for file events
2881 	 * and receive an event when mnttab changes. Dummy VOP calls
2882 	 * will be made on this vnode. The file events notification module
2883 	 * intercepts this vnode and delivers relevant events.
2884 	 */
2885 	tvp = vn_alloc(KM_SLEEP);
2886 	tvp->v_flag = VNOMOUNT|VNOMAP|VNOSWAP|VNOCACHE;
2887 	vn_setops(tvp, vfs_mntdummyvnops);
2888 	tvp->v_type = VREG;
2889 	/*
2890 	 * The mnt dummy ops do not reference v_data.
2891 	 * No other module intercepting this vnode should either.
2892 	 * Just set it to point to itself.
2893 	 */
2894 	tvp->v_data = (caddr_t)tvp;
2895 	tvp->v_vfsp = rootvfs;
2896 	vfs_mntdummyvp = tvp;
2897 }
2898 
2899 /*
2900  * performs fake read/write ops
2901  */
2902 static void
2903 vfs_mnttab_rwop(int rw)
2904 {
2905 	struct uio	uio;
2906 	struct iovec	iov;
2907 	char	buf[1];
2908 
2909 	if (vfs_mntdummyvp == NULL)
2910 		return;
2911 
2912 	bzero(&uio, sizeof (uio));
2913 	bzero(&iov, sizeof (iov));
2914 	iov.iov_base = buf;
2915 	iov.iov_len = 0;
2916 	uio.uio_iov = &iov;
2917 	uio.uio_iovcnt = 1;
2918 	uio.uio_loffset = 0;
2919 	uio.uio_segflg = UIO_SYSSPACE;
2920 	uio.uio_resid = 0;
2921 	if (rw) {
2922 		(void) VOP_WRITE(vfs_mntdummyvp, &uio, 0, kcred, NULL);
2923 	} else {
2924 		(void) VOP_READ(vfs_mntdummyvp, &uio, 0, kcred, NULL);
2925 	}
2926 }
2927 
2928 /*
2929  * Generate a write operation.
2930  */
2931 void
2932 vfs_mnttab_writeop(void)
2933 {
2934 	vfs_mnttab_rwop(1);
2935 }
2936 
2937 /*
2938  * Generate a read operation.
2939  */
2940 void
2941 vfs_mnttab_readop(void)
2942 {
2943 	vfs_mnttab_rwop(0);
2944 }
2945 
2946 /*
2947  * Free any mnttab information recorded in the vfs struct.
2948  * The vfs must not be on the vfs list.
2949  */
2950 static void
2951 vfs_freemnttab(struct vfs *vfsp)
2952 {
2953 	ASSERT(!VFS_ON_LIST(vfsp));
2954 
2955 	/*
2956 	 * Free device and mount point information
2957 	 */
2958 	if (vfsp->vfs_mntpt != NULL) {
2959 		refstr_rele(vfsp->vfs_mntpt);
2960 		vfsp->vfs_mntpt = NULL;
2961 	}
2962 	if (vfsp->vfs_resource != NULL) {
2963 		refstr_rele(vfsp->vfs_resource);
2964 		vfsp->vfs_resource = NULL;
2965 	}
2966 	/*
2967 	 * Now free mount options information
2968 	 */
2969 	vfs_freeopttbl(&vfsp->vfs_mntopts);
2970 }
2971 
2972 /*
2973  * Return the last mnttab modification time
2974  */
2975 void
2976 vfs_mnttab_modtime(timespec_t *ts)
2977 {
2978 	ASSERT(RW_LOCK_HELD(&vfslist));
2979 	*ts = vfs_mnttab_mtime;
2980 }
2981 
2982 /*
2983  * See if mnttab is changed
2984  */
2985 void
2986 vfs_mnttab_poll(timespec_t *old, struct pollhead **phpp)
2987 {
2988 	int changed;
2989 
2990 	*phpp = (struct pollhead *)NULL;
2991 
2992 	/*
2993 	 * Note: don't grab vfs list lock before accessing vfs_mnttab_mtime.
2994 	 * Can lead to deadlock against vfs_mnttab_modtimeupd(). It is safe
2995 	 * to not grab the vfs list lock because tv_sec is monotonically
2996 	 * increasing.
2997 	 */
2998 
2999 	changed = (old->tv_nsec != vfs_mnttab_mtime.tv_nsec) ||
3000 	    (old->tv_sec != vfs_mnttab_mtime.tv_sec);
3001 	if (!changed) {
3002 		*phpp = &vfs_pollhd;
3003 	}
3004 }
3005 
3006 /* Provide a unique and monotonically-increasing timestamp. */
3007 void
3008 vfs_mono_time(timespec_t *ts)
3009 {
3010 	static volatile hrtime_t hrt;		/* The saved time. */
3011 	hrtime_t	newhrt, oldhrt;		/* For effecting the CAS. */
3012 	timespec_t	newts;
3013 
3014 	/*
3015 	 * Try gethrestime() first, but be prepared to fabricate a sensible
3016 	 * answer at the first sign of any trouble.
3017 	 */
3018 	gethrestime(&newts);
3019 	newhrt = ts2hrt(&newts);
3020 	for (;;) {
3021 		oldhrt = hrt;
3022 		if (newhrt <= hrt)
3023 			newhrt = hrt + 1;
3024 		if (atomic_cas_64((uint64_t *)&hrt, oldhrt, newhrt) == oldhrt)
3025 			break;
3026 	}
3027 	hrt2ts(newhrt, ts);
3028 }
3029 
3030 /*
3031  * Update the mnttab modification time and wake up any waiters for
3032  * mnttab changes
3033  */
3034 void
3035 vfs_mnttab_modtimeupd()
3036 {
3037 	hrtime_t oldhrt, newhrt;
3038 
3039 	ASSERT(RW_WRITE_HELD(&vfslist));
3040 	oldhrt = ts2hrt(&vfs_mnttab_mtime);
3041 	gethrestime(&vfs_mnttab_mtime);
3042 	newhrt = ts2hrt(&vfs_mnttab_mtime);
3043 	if (oldhrt == (hrtime_t)0)
3044 		vfs_mnttab_ctime = vfs_mnttab_mtime;
3045 	/*
3046 	 * Attempt to provide unique mtime (like uniqtime but not).
3047 	 */
3048 	if (newhrt == oldhrt) {
3049 		newhrt++;
3050 		hrt2ts(newhrt, &vfs_mnttab_mtime);
3051 	}
3052 	pollwakeup(&vfs_pollhd, (short)POLLRDBAND);
3053 	vfs_mnttab_writeop();
3054 }
3055 
3056 int
3057 dounmount(struct vfs *vfsp, int flag, cred_t *cr)
3058 {
3059 	vnode_t *coveredvp;
3060 	int error;
3061 	extern void teardown_vopstats(vfs_t *);
3062 
3063 	/*
3064 	 * Get covered vnode. This will be NULL if the vfs is not linked
3065 	 * into the file system name space (i.e., domount() with MNT_NOSPICE).
3066 	 */
3067 	coveredvp = vfsp->vfs_vnodecovered;
3068 	ASSERT(coveredvp == NULL || vn_vfswlock_held(coveredvp));
3069 
3070 	/*
3071 	 * Purge all dnlc entries for this vfs.
3072 	 */
3073 	(void) dnlc_purge_vfsp(vfsp, 0);
3074 
3075 	/* For forcible umount, skip VFS_SYNC() since it may hang */
3076 	if ((flag & MS_FORCE) == 0)
3077 		(void) VFS_SYNC(vfsp, 0, cr);
3078 
3079 	/*
3080 	 * Lock the vfs to maintain fs status quo during unmount.  This
3081 	 * has to be done after the sync because ufs_update tries to acquire
3082 	 * the vfs_reflock.
3083 	 */
3084 	vfs_lock_wait(vfsp);
3085 
3086 	if (error = VFS_UNMOUNT(vfsp, flag, cr)) {
3087 		vfs_unlock(vfsp);
3088 		if (coveredvp != NULL)
3089 			vn_vfsunlock(coveredvp);
3090 	} else if (coveredvp != NULL) {
3091 		teardown_vopstats(vfsp);
3092 		/*
3093 		 * vfs_remove() will do a VN_RELE(vfsp->vfs_vnodecovered)
3094 		 * when it frees vfsp so we do a VN_HOLD() so we can
3095 		 * continue to use coveredvp afterwards.
3096 		 */
3097 		VN_HOLD(coveredvp);
3098 		vfs_remove(vfsp);
3099 		vn_vfsunlock(coveredvp);
3100 		VN_RELE(coveredvp);
3101 	} else {
3102 		teardown_vopstats(vfsp);
3103 		/*
3104 		 * Release the reference to vfs that is not linked
3105 		 * into the name space.
3106 		 */
3107 		vfs_unlock(vfsp);
3108 		VFS_RELE(vfsp);
3109 	}
3110 	return (error);
3111 }
3112 
3113 
3114 /*
3115  * Vfs_unmountall() is called by uadmin() to unmount all
3116  * mounted file systems (except the root file system) during shutdown.
3117  * It follows the existing locking protocol when traversing the vfs list
3118  * to sync and unmount vfses. Even though there should be no
3119  * other thread running while the system is shutting down, it is prudent
3120  * to still follow the locking protocol.
3121  */
3122 void
3123 vfs_unmountall(void)
3124 {
3125 	struct vfs *vfsp;
3126 	struct vfs *prev_vfsp = NULL;
3127 	int error;
3128 
3129 	/*
3130 	 * Toss all dnlc entries now so that the per-vfs sync
3131 	 * and unmount operations don't have to slog through
3132 	 * a bunch of uninteresting vnodes over and over again.
3133 	 */
3134 	dnlc_purge();
3135 
3136 	vfs_list_lock();
3137 	for (vfsp = rootvfs->vfs_prev; vfsp != rootvfs; vfsp = prev_vfsp) {
3138 		prev_vfsp = vfsp->vfs_prev;
3139 
3140 		if (vfs_lock(vfsp) != 0)
3141 			continue;
3142 		error = vn_vfswlock(vfsp->vfs_vnodecovered);
3143 		vfs_unlock(vfsp);
3144 		if (error)
3145 			continue;
3146 
3147 		vfs_list_unlock();
3148 
3149 		(void) VFS_SYNC(vfsp, SYNC_CLOSE, CRED());
3150 		(void) dounmount(vfsp, 0, CRED());
3151 
3152 		/*
3153 		 * Since we dropped the vfslist lock above we must
3154 		 * verify that next_vfsp still exists, else start over.
3155 		 */
3156 		vfs_list_lock();
3157 		for (vfsp = rootvfs->vfs_prev;
3158 		    vfsp != rootvfs; vfsp = vfsp->vfs_prev)
3159 			if (vfsp == prev_vfsp)
3160 				break;
3161 		if (vfsp == rootvfs && prev_vfsp != rootvfs)
3162 			prev_vfsp = rootvfs->vfs_prev;
3163 	}
3164 	vfs_list_unlock();
3165 }
3166 
3167 /*
3168  * Called to add an entry to the end of the vfs mount in progress list
3169  */
3170 void
3171 vfs_addmip(dev_t dev, struct vfs *vfsp)
3172 {
3173 	struct ipmnt *mipp;
3174 
3175 	mipp = (struct ipmnt *)kmem_alloc(sizeof (struct ipmnt), KM_SLEEP);
3176 	mipp->mip_next = NULL;
3177 	mipp->mip_dev = dev;
3178 	mipp->mip_vfsp = vfsp;
3179 	mutex_enter(&vfs_miplist_mutex);
3180 	if (vfs_miplist_end != NULL)
3181 		vfs_miplist_end->mip_next = mipp;
3182 	else
3183 		vfs_miplist = mipp;
3184 	vfs_miplist_end = mipp;
3185 	mutex_exit(&vfs_miplist_mutex);
3186 }
3187 
3188 /*
3189  * Called to remove an entry from the mount in progress list
3190  * Either because the mount completed or it failed.
3191  */
3192 void
3193 vfs_delmip(struct vfs *vfsp)
3194 {
3195 	struct ipmnt *mipp, *mipprev;
3196 
3197 	mutex_enter(&vfs_miplist_mutex);
3198 	mipprev = NULL;
3199 	for (mipp = vfs_miplist;
3200 	    mipp && mipp->mip_vfsp != vfsp; mipp = mipp->mip_next) {
3201 		mipprev = mipp;
3202 	}
3203 	if (mipp == NULL)
3204 		return; /* shouldn't happen */
3205 	if (mipp == vfs_miplist_end)
3206 		vfs_miplist_end = mipprev;
3207 	if (mipprev == NULL)
3208 		vfs_miplist = mipp->mip_next;
3209 	else
3210 		mipprev->mip_next = mipp->mip_next;
3211 	mutex_exit(&vfs_miplist_mutex);
3212 	kmem_free(mipp, sizeof (struct ipmnt));
3213 }
3214 
3215 /*
3216  * vfs_add is called by a specific filesystem's mount routine to add
3217  * the new vfs into the vfs list/hash and to cover the mounted-on vnode.
3218  * The vfs should already have been locked by the caller.
3219  *
3220  * coveredvp is NULL if this is the root.
3221  */
3222 void
3223 vfs_add(vnode_t *coveredvp, struct vfs *vfsp, int mflag)
3224 {
3225 	int newflag;
3226 
3227 	ASSERT(vfs_lock_held(vfsp));
3228 	VFS_HOLD(vfsp);
3229 	newflag = vfsp->vfs_flag;
3230 	if (mflag & MS_RDONLY)
3231 		newflag |= VFS_RDONLY;
3232 	else
3233 		newflag &= ~VFS_RDONLY;
3234 	if (mflag & MS_NOSUID)
3235 		newflag |= (VFS_NOSETUID|VFS_NODEVICES);
3236 	else
3237 		newflag &= ~(VFS_NOSETUID|VFS_NODEVICES);
3238 	if (mflag & MS_NOMNTTAB)
3239 		newflag |= VFS_NOMNTTAB;
3240 	else
3241 		newflag &= ~VFS_NOMNTTAB;
3242 
3243 	if (coveredvp != NULL) {
3244 		ASSERT(vn_vfswlock_held(coveredvp));
3245 		coveredvp->v_vfsmountedhere = vfsp;
3246 		VN_HOLD(coveredvp);
3247 	}
3248 	vfsp->vfs_vnodecovered = coveredvp;
3249 	vfsp->vfs_flag = newflag;
3250 
3251 	vfs_list_add(vfsp);
3252 }
3253 
3254 /*
3255  * Remove a vfs from the vfs list, null out the pointer from the
3256  * covered vnode to the vfs (v_vfsmountedhere), and null out the pointer
3257  * from the vfs to the covered vnode (vfs_vnodecovered). Release the
3258  * reference to the vfs and to the covered vnode.
3259  *
3260  * Called from dounmount after it's confirmed with the file system
3261  * that the unmount is legal.
3262  */
3263 void
3264 vfs_remove(struct vfs *vfsp)
3265 {
3266 	vnode_t *vp;
3267 
3268 	ASSERT(vfs_lock_held(vfsp));
3269 
3270 	/*
3271 	 * Can't unmount root.  Should never happen because fs will
3272 	 * be busy.
3273 	 */
3274 	if (vfsp == rootvfs)
3275 		panic("vfs_remove: unmounting root");
3276 
3277 	vfs_list_remove(vfsp);
3278 
3279 	/*
3280 	 * Unhook from the file system name space.
3281 	 */
3282 	vp = vfsp->vfs_vnodecovered;
3283 	ASSERT(vn_vfswlock_held(vp));
3284 	vp->v_vfsmountedhere = NULL;
3285 	vfsp->vfs_vnodecovered = NULL;
3286 	VN_RELE(vp);
3287 
3288 	/*
3289 	 * Release lock and wakeup anybody waiting.
3290 	 */
3291 	vfs_unlock(vfsp);
3292 	VFS_RELE(vfsp);
3293 }
3294 
3295 /*
3296  * Lock a filesystem to prevent access to it while mounting,
3297  * unmounting and syncing.  Return EBUSY immediately if lock
3298  * can't be acquired.
3299  */
3300 int
3301 vfs_lock(vfs_t *vfsp)
3302 {
3303 	vn_vfslocks_entry_t *vpvfsentry;
3304 
3305 	vpvfsentry = vn_vfslocks_getlock(vfsp);
3306 	if (rwst_tryenter(&vpvfsentry->ve_lock, RW_WRITER))
3307 		return (0);
3308 
3309 	vn_vfslocks_rele(vpvfsentry);
3310 	return (EBUSY);
3311 }
3312 
3313 int
3314 vfs_rlock(vfs_t *vfsp)
3315 {
3316 	vn_vfslocks_entry_t *vpvfsentry;
3317 
3318 	vpvfsentry = vn_vfslocks_getlock(vfsp);
3319 
3320 	if (rwst_tryenter(&vpvfsentry->ve_lock, RW_READER))
3321 		return (0);
3322 
3323 	vn_vfslocks_rele(vpvfsentry);
3324 	return (EBUSY);
3325 }
3326 
3327 void
3328 vfs_lock_wait(vfs_t *vfsp)
3329 {
3330 	vn_vfslocks_entry_t *vpvfsentry;
3331 
3332 	vpvfsentry = vn_vfslocks_getlock(vfsp);
3333 	rwst_enter(&vpvfsentry->ve_lock, RW_WRITER);
3334 }
3335 
3336 void
3337 vfs_rlock_wait(vfs_t *vfsp)
3338 {
3339 	vn_vfslocks_entry_t *vpvfsentry;
3340 
3341 	vpvfsentry = vn_vfslocks_getlock(vfsp);
3342 	rwst_enter(&vpvfsentry->ve_lock, RW_READER);
3343 }
3344 
3345 /*
3346  * Unlock a locked filesystem.
3347  */
3348 void
3349 vfs_unlock(vfs_t *vfsp)
3350 {
3351 	vn_vfslocks_entry_t *vpvfsentry;
3352 
3353 	/*
3354 	 * vfs_unlock will mimic sema_v behaviour to fix 4748018.
3355 	 * And these changes should remain for the patch changes as it is.
3356 	 */
3357 	if (panicstr)
3358 		return;
3359 
3360 	/*
3361 	 * ve_refcount needs to be dropped twice here.
3362 	 * 1. To release refernce after a call to vfs_locks_getlock()
3363 	 * 2. To release the reference from the locking routines like
3364 	 *    vfs_rlock_wait/vfs_wlock_wait/vfs_wlock etc,.
3365 	 */
3366 
3367 	vpvfsentry = vn_vfslocks_getlock(vfsp);
3368 	vn_vfslocks_rele(vpvfsentry);
3369 
3370 	rwst_exit(&vpvfsentry->ve_lock);
3371 	vn_vfslocks_rele(vpvfsentry);
3372 }
3373 
3374 /*
3375  * Utility routine that allows a filesystem to construct its
3376  * fsid in "the usual way" - by munging some underlying dev_t and
3377  * the filesystem type number into the 64-bit fsid.  Note that
3378  * this implicitly relies on dev_t persistence to make filesystem
3379  * id's persistent.
3380  *
3381  * There's nothing to prevent an individual fs from constructing its
3382  * fsid in a different way, and indeed they should.
3383  *
3384  * Since we want fsids to be 32-bit quantities (so that they can be
3385  * exported identically by either 32-bit or 64-bit APIs, as well as
3386  * the fact that fsid's are "known" to NFS), we compress the device
3387  * number given down to 32-bits, and panic if that isn't possible.
3388  */
3389 void
3390 vfs_make_fsid(fsid_t *fsi, dev_t dev, int val)
3391 {
3392 	if (!cmpldev((dev32_t *)&fsi->val[0], dev))
3393 		panic("device number too big for fsid!");
3394 	fsi->val[1] = val;
3395 }
3396 
3397 int
3398 vfs_lock_held(vfs_t *vfsp)
3399 {
3400 	int held;
3401 	vn_vfslocks_entry_t *vpvfsentry;
3402 
3403 	/*
3404 	 * vfs_lock_held will mimic sema_held behaviour
3405 	 * if panicstr is set. And these changes should remain
3406 	 * for the patch changes as it is.
3407 	 */
3408 	if (panicstr)
3409 		return (1);
3410 
3411 	vpvfsentry = vn_vfslocks_getlock(vfsp);
3412 	held = rwst_lock_held(&vpvfsentry->ve_lock, RW_WRITER);
3413 
3414 	vn_vfslocks_rele(vpvfsentry);
3415 	return (held);
3416 }
3417 
3418 struct _kthread *
3419 vfs_lock_owner(vfs_t *vfsp)
3420 {
3421 	struct _kthread *owner;
3422 	vn_vfslocks_entry_t *vpvfsentry;
3423 
3424 	/*
3425 	 * vfs_wlock_held will mimic sema_held behaviour
3426 	 * if panicstr is set. And these changes should remain
3427 	 * for the patch changes as it is.
3428 	 */
3429 	if (panicstr)
3430 		return (NULL);
3431 
3432 	vpvfsentry = vn_vfslocks_getlock(vfsp);
3433 	owner = rwst_owner(&vpvfsentry->ve_lock);
3434 
3435 	vn_vfslocks_rele(vpvfsentry);
3436 	return (owner);
3437 }
3438 
3439 /*
3440  * vfs list locking.
3441  *
3442  * Rather than manipulate the vfslist lock directly, we abstract into lock
3443  * and unlock routines to allow the locking implementation to be changed for
3444  * clustering.
3445  *
3446  * Whenever the vfs list is modified through its hash links, the overall list
3447  * lock must be obtained before locking the relevant hash bucket.  But to see
3448  * whether a given vfs is on the list, it suffices to obtain the lock for the
3449  * hash bucket without getting the overall list lock.  (See getvfs() below.)
3450  */
3451 
3452 void
3453 vfs_list_lock()
3454 {
3455 	rw_enter(&vfslist, RW_WRITER);
3456 }
3457 
3458 void
3459 vfs_list_read_lock()
3460 {
3461 	rw_enter(&vfslist, RW_READER);
3462 }
3463 
3464 void
3465 vfs_list_unlock()
3466 {
3467 	rw_exit(&vfslist);
3468 }
3469 
3470 /*
3471  * Low level worker routines for adding entries to and removing entries from
3472  * the vfs list.
3473  */
3474 
3475 static void
3476 vfs_hash_add(struct vfs *vfsp, int insert_at_head)
3477 {
3478 	int vhno;
3479 	struct vfs **hp;
3480 	dev_t dev;
3481 
3482 	ASSERT(RW_WRITE_HELD(&vfslist));
3483 
3484 	dev = expldev(vfsp->vfs_fsid.val[0]);
3485 	vhno = VFSHASH(getmajor(dev), getminor(dev));
3486 
3487 	mutex_enter(&rvfs_list[vhno].rvfs_lock);
3488 
3489 	/*
3490 	 * Link into the hash table, inserting it at the end, so that LOFS
3491 	 * with the same fsid as UFS (or other) file systems will not hide the
3492 	 * UFS.
3493 	 */
3494 	if (insert_at_head) {
3495 		vfsp->vfs_hash = rvfs_list[vhno].rvfs_head;
3496 		rvfs_list[vhno].rvfs_head = vfsp;
3497 	} else {
3498 		for (hp = &rvfs_list[vhno].rvfs_head; *hp != NULL;
3499 		    hp = &(*hp)->vfs_hash)
3500 			continue;
3501 		/*
3502 		 * hp now contains the address of the pointer to update
3503 		 * to effect the insertion.
3504 		 */
3505 		vfsp->vfs_hash = NULL;
3506 		*hp = vfsp;
3507 	}
3508 
3509 	rvfs_list[vhno].rvfs_len++;
3510 	mutex_exit(&rvfs_list[vhno].rvfs_lock);
3511 }
3512 
3513 
3514 static void
3515 vfs_hash_remove(struct vfs *vfsp)
3516 {
3517 	int vhno;
3518 	struct vfs *tvfsp;
3519 	dev_t dev;
3520 
3521 	ASSERT(RW_WRITE_HELD(&vfslist));
3522 
3523 	dev = expldev(vfsp->vfs_fsid.val[0]);
3524 	vhno = VFSHASH(getmajor(dev), getminor(dev));
3525 
3526 	mutex_enter(&rvfs_list[vhno].rvfs_lock);
3527 
3528 	/*
3529 	 * Remove from hash.
3530 	 */
3531 	if (rvfs_list[vhno].rvfs_head == vfsp) {
3532 		rvfs_list[vhno].rvfs_head = vfsp->vfs_hash;
3533 		rvfs_list[vhno].rvfs_len--;
3534 		goto foundit;
3535 	}
3536 	for (tvfsp = rvfs_list[vhno].rvfs_head; tvfsp != NULL;
3537 	    tvfsp = tvfsp->vfs_hash) {
3538 		if (tvfsp->vfs_hash == vfsp) {
3539 			tvfsp->vfs_hash = vfsp->vfs_hash;
3540 			rvfs_list[vhno].rvfs_len--;
3541 			goto foundit;
3542 		}
3543 	}
3544 	cmn_err(CE_WARN, "vfs_list_remove: vfs not found in hash");
3545 
3546 foundit:
3547 
3548 	mutex_exit(&rvfs_list[vhno].rvfs_lock);
3549 }
3550 
3551 
3552 void
3553 vfs_list_add(struct vfs *vfsp)
3554 {
3555 	zone_t *zone;
3556 
3557 	/*
3558 	 * Typically, the vfs_t will have been created on behalf of the file
3559 	 * system in vfs_init, where it will have been provided with a
3560 	 * vfs_impl_t. This, however, might be lacking if the vfs_t was created
3561 	 * by an unbundled file system. We therefore check for such an example
3562 	 * before stamping the vfs_t with its creation time for the benefit of
3563 	 * mntfs.
3564 	 */
3565 	if (vfsp->vfs_implp == NULL)
3566 		vfsimpl_setup(vfsp);
3567 	vfs_mono_time(&vfsp->vfs_hrctime);
3568 
3569 	/*
3570 	 * The zone that owns the mount is the one that performed the mount.
3571 	 * Note that this isn't necessarily the same as the zone mounted into.
3572 	 * The corresponding zone_rele_ref() will be done when the vfs_t
3573 	 * is being free'd.
3574 	 */
3575 	vfsp->vfs_zone = curproc->p_zone;
3576 	zone_init_ref(&vfsp->vfs_implp->vi_zone_ref);
3577 	zone_hold_ref(vfsp->vfs_zone, &vfsp->vfs_implp->vi_zone_ref,
3578 	    ZONE_REF_VFS);
3579 
3580 	/*
3581 	 * Find the zone mounted into, and put this mount on its vfs list.
3582 	 */
3583 	zone = zone_find_by_path(refstr_value(vfsp->vfs_mntpt));
3584 	ASSERT(zone != NULL);
3585 	/*
3586 	 * Special casing for the root vfs.  This structure is allocated
3587 	 * statically and hooked onto rootvfs at link time.  During the
3588 	 * vfs_mountroot call at system startup time, the root file system's
3589 	 * VFS_MOUNTROOT routine will call vfs_add with this root vfs struct
3590 	 * as argument.  The code below must detect and handle this special
3591 	 * case.  The only apparent justification for this special casing is
3592 	 * to ensure that the root file system appears at the head of the
3593 	 * list.
3594 	 *
3595 	 * XXX:	I'm assuming that it's ok to do normal list locking when
3596 	 *	adding the entry for the root file system (this used to be
3597 	 *	done with no locks held).
3598 	 */
3599 	vfs_list_lock();
3600 	/*
3601 	 * Link into the vfs list proper.
3602 	 */
3603 	if (vfsp == &root) {
3604 		/*
3605 		 * Assert: This vfs is already on the list as its first entry.
3606 		 * Thus, there's nothing to do.
3607 		 */
3608 		ASSERT(rootvfs == vfsp);
3609 		/*
3610 		 * Add it to the head of the global zone's vfslist.
3611 		 */
3612 		ASSERT(zone == global_zone);
3613 		ASSERT(zone->zone_vfslist == NULL);
3614 		zone->zone_vfslist = vfsp;
3615 	} else {
3616 		/*
3617 		 * Link to end of list using vfs_prev (as rootvfs is now a
3618 		 * doubly linked circular list) so list is in mount order for
3619 		 * mnttab use.
3620 		 */
3621 		rootvfs->vfs_prev->vfs_next = vfsp;
3622 		vfsp->vfs_prev = rootvfs->vfs_prev;
3623 		rootvfs->vfs_prev = vfsp;
3624 		vfsp->vfs_next = rootvfs;
3625 
3626 		/*
3627 		 * Do it again for the zone-private list (which may be NULL).
3628 		 */
3629 		if (zone->zone_vfslist == NULL) {
3630 			ASSERT(zone != global_zone);
3631 			zone->zone_vfslist = vfsp;
3632 		} else {
3633 			zone->zone_vfslist->vfs_zone_prev->vfs_zone_next = vfsp;
3634 			vfsp->vfs_zone_prev = zone->zone_vfslist->vfs_zone_prev;
3635 			zone->zone_vfslist->vfs_zone_prev = vfsp;
3636 			vfsp->vfs_zone_next = zone->zone_vfslist;
3637 		}
3638 	}
3639 
3640 	/*
3641 	 * Link into the hash table, inserting it at the end, so that LOFS
3642 	 * with the same fsid as UFS (or other) file systems will not hide
3643 	 * the UFS.
3644 	 */
3645 	vfs_hash_add(vfsp, 0);
3646 
3647 	/*
3648 	 * Link into tree indexed by mntpoint, for vfs_mntpoint2vfsp
3649 	 * mntix discerns entries with the same key
3650 	 */
3651 	vfsp->vfs_mntix = ++vfs_curr_mntix;
3652 	avl_add(&vfs_by_dev, vfsp);
3653 
3654 	/*
3655 	 * Link into tree indexed by dev, for vfs_devismounted
3656 	 */
3657 	avl_add(&vfs_by_mntpnt, vfsp);
3658 
3659 	/*
3660 	 * update the mnttab modification time
3661 	 */
3662 	vfs_mnttab_modtimeupd();
3663 	vfs_list_unlock();
3664 	zone_rele(zone);
3665 }
3666 
3667 void
3668 vfs_list_remove(struct vfs *vfsp)
3669 {
3670 	zone_t *zone;
3671 
3672 	zone = zone_find_by_path(refstr_value(vfsp->vfs_mntpt));
3673 	ASSERT(zone != NULL);
3674 	/*
3675 	 * Callers are responsible for preventing attempts to unmount the
3676 	 * root.
3677 	 */
3678 	ASSERT(vfsp != rootvfs);
3679 
3680 	vfs_list_lock();
3681 
3682 	/*
3683 	 * Remove from avl trees
3684 	 */
3685 	avl_remove(&vfs_by_mntpnt, vfsp);
3686 	avl_remove(&vfs_by_dev, vfsp);
3687 
3688 	/*
3689 	 * Remove from hash.
3690 	 */
3691 	vfs_hash_remove(vfsp);
3692 
3693 	/*
3694 	 * Remove from vfs list.
3695 	 */
3696 	vfsp->vfs_prev->vfs_next = vfsp->vfs_next;
3697 	vfsp->vfs_next->vfs_prev = vfsp->vfs_prev;
3698 	vfsp->vfs_next = vfsp->vfs_prev = NULL;
3699 
3700 	/*
3701 	 * Remove from zone-specific vfs list.
3702 	 */
3703 	if (zone->zone_vfslist == vfsp)
3704 		zone->zone_vfslist = vfsp->vfs_zone_next;
3705 
3706 	if (vfsp->vfs_zone_next == vfsp) {
3707 		ASSERT(vfsp->vfs_zone_prev == vfsp);
3708 		ASSERT(zone->zone_vfslist == vfsp);
3709 		zone->zone_vfslist = NULL;
3710 	}
3711 
3712 	vfsp->vfs_zone_prev->vfs_zone_next = vfsp->vfs_zone_next;
3713 	vfsp->vfs_zone_next->vfs_zone_prev = vfsp->vfs_zone_prev;
3714 	vfsp->vfs_zone_next = vfsp->vfs_zone_prev = NULL;
3715 
3716 	/*
3717 	 * update the mnttab modification time
3718 	 */
3719 	vfs_mnttab_modtimeupd();
3720 	vfs_list_unlock();
3721 	zone_rele(zone);
3722 }
3723 
3724 struct vfs *
3725 getvfs(fsid_t *fsid)
3726 {
3727 	struct vfs *vfsp;
3728 	int val0 = fsid->val[0];
3729 	int val1 = fsid->val[1];
3730 	dev_t dev = expldev(val0);
3731 	int vhno = VFSHASH(getmajor(dev), getminor(dev));
3732 	kmutex_t *hmp = &rvfs_list[vhno].rvfs_lock;
3733 
3734 	mutex_enter(hmp);
3735 	for (vfsp = rvfs_list[vhno].rvfs_head; vfsp; vfsp = vfsp->vfs_hash) {
3736 		if (vfsp->vfs_fsid.val[0] == val0 &&
3737 		    vfsp->vfs_fsid.val[1] == val1) {
3738 			VFS_HOLD(vfsp);
3739 			mutex_exit(hmp);
3740 			return (vfsp);
3741 		}
3742 	}
3743 	mutex_exit(hmp);
3744 	return (NULL);
3745 }
3746 
3747 /*
3748  * Search the vfs mount in progress list for a specified device/vfs entry.
3749  * Returns 0 if the first entry in the list that the device matches has the
3750  * given vfs pointer as well.  If the device matches but a different vfs
3751  * pointer is encountered in the list before the given vfs pointer then
3752  * a 1 is returned.
3753  */
3754 
3755 int
3756 vfs_devmounting(dev_t dev, struct vfs *vfsp)
3757 {
3758 	int retval = 0;
3759 	struct ipmnt *mipp;
3760 
3761 	mutex_enter(&vfs_miplist_mutex);
3762 	for (mipp = vfs_miplist; mipp != NULL; mipp = mipp->mip_next) {
3763 		if (mipp->mip_dev == dev) {
3764 			if (mipp->mip_vfsp != vfsp)
3765 				retval = 1;
3766 			break;
3767 		}
3768 	}
3769 	mutex_exit(&vfs_miplist_mutex);
3770 	return (retval);
3771 }
3772 
3773 /*
3774  * Search the vfs list for a specified device.  Returns 1, if entry is found
3775  * or 0 if no suitable entry is found.
3776  */
3777 
3778 int
3779 vfs_devismounted(dev_t dev)
3780 {
3781 	struct vfs *vfsp;
3782 	int found = 0;
3783 	struct vfs search;
3784 	avl_index_t index;
3785 
3786 	search.vfs_dev = dev;
3787 	search.vfs_mntix = 0;
3788 
3789 	vfs_list_read_lock();
3790 
3791 	/*
3792 	 * there might be several entries with the same dev in the tree,
3793 	 * only discerned by mntix. To find the first, we start with a mntix
3794 	 * of 0. The search will fail. The following avl_nearest will give
3795 	 * us the actual first entry.
3796 	 */
3797 	VERIFY(avl_find(&vfs_by_dev, &search, &index) == NULL);
3798 	vfsp = avl_nearest(&vfs_by_dev, index, AVL_AFTER);
3799 
3800 	if (vfsp != NULL && vfsp->vfs_dev == dev)
3801 		found = 1;
3802 
3803 	vfs_list_unlock();
3804 	return (found);
3805 }
3806 
3807 /*
3808  * Search the vfs list for a specified device.  Returns a pointer to it
3809  * or NULL if no suitable entry is found. The caller of this routine
3810  * is responsible for releasing the returned vfs pointer.
3811  */
3812 struct vfs *
3813 vfs_dev2vfsp(dev_t dev)
3814 {
3815 	struct vfs *vfsp;
3816 	int found;
3817 	struct vfs search;
3818 	avl_index_t index;
3819 
3820 	search.vfs_dev = dev;
3821 	search.vfs_mntix = 0;
3822 
3823 	vfs_list_read_lock();
3824 
3825 	/*
3826 	 * there might be several entries with the same dev in the tree,
3827 	 * only discerned by mntix. To find the first, we start with a mntix
3828 	 * of 0. The search will fail. The following avl_nearest will give
3829 	 * us the actual first entry.
3830 	 */
3831 	VERIFY(avl_find(&vfs_by_dev, &search, &index) == NULL);
3832 	vfsp = avl_nearest(&vfs_by_dev, index, AVL_AFTER);
3833 
3834 	found = 0;
3835 	while (vfsp != NULL && vfsp->vfs_dev == dev) {
3836 		/*
3837 		 * The following could be made more efficient by making
3838 		 * the entire loop use vfs_zone_next if the call is from
3839 		 * a zone.  The only callers, however, ustat(2) and
3840 		 * umount2(2), don't seem to justify the added
3841 		 * complexity at present.
3842 		 */
3843 		if (ZONE_PATH_VISIBLE(refstr_value(vfsp->vfs_mntpt),
3844 		    curproc->p_zone)) {
3845 			VFS_HOLD(vfsp);
3846 			found = 1;
3847 			break;
3848 		}
3849 		vfsp = AVL_NEXT(&vfs_by_dev, vfsp);
3850 	}
3851 	vfs_list_unlock();
3852 	return (found ? vfsp : NULL);
3853 }
3854 
3855 /*
3856  * Search the vfs list for a specified mntpoint.  Returns a pointer to it
3857  * or NULL if no suitable entry is found. The caller of this routine
3858  * is responsible for releasing the returned vfs pointer.
3859  *
3860  * Note that if multiple mntpoints match, the last one matching is
3861  * returned in an attempt to return the "top" mount when overlay
3862  * mounts are covering the same mount point.  This is accomplished by starting
3863  * at the end of the list and working our way backwards, stopping at the first
3864  * matching mount.
3865  */
3866 struct vfs *
3867 vfs_mntpoint2vfsp(const char *mp)
3868 {
3869 	struct vfs *vfsp;
3870 	struct vfs *retvfsp = NULL;
3871 	zone_t *zone = curproc->p_zone;
3872 	struct vfs *list;
3873 
3874 	vfs_list_read_lock();
3875 	if (getzoneid() == GLOBAL_ZONEID) {
3876 		/*
3877 		 * The global zone may see filesystems in any zone.
3878 		 */
3879 		struct vfs search;
3880 		search.vfs_mntpt = refstr_alloc(mp);
3881 		search.vfs_mntix = UINT64_MAX;
3882 		avl_index_t index;
3883 
3884 		/*
3885 		 * there might be several entries with the same mntpnt in the
3886 		 * tree, only discerned by mntix. To find the last, we start
3887 		 * with a mntix of UINT64_MAX. The search will fail. The
3888 		 * following avl_nearest will give  us the actual last entry
3889 		 * matching the mntpnt.
3890 		 */
3891 		VERIFY(avl_find(&vfs_by_mntpnt, &search, &index) == 0);
3892 		vfsp = avl_nearest(&vfs_by_mntpnt, index, AVL_BEFORE);
3893 
3894 		refstr_rele(search.vfs_mntpt);
3895 
3896 		if (vfsp != NULL &&
3897 		    strcmp(refstr_value(vfsp->vfs_mntpt), mp) == 0)
3898 			retvfsp = vfsp;
3899 	} else if ((list = zone->zone_vfslist) != NULL) {
3900 		const char *mntpt;
3901 
3902 		vfsp = list->vfs_zone_prev;
3903 		do {
3904 			mntpt = refstr_value(vfsp->vfs_mntpt);
3905 			mntpt = ZONE_PATH_TRANSLATE(mntpt, zone);
3906 			if (strcmp(mntpt, mp) == 0) {
3907 				retvfsp = vfsp;
3908 				break;
3909 			}
3910 			vfsp = vfsp->vfs_zone_prev;
3911 		} while (vfsp != list->vfs_zone_prev);
3912 	}
3913 	if (retvfsp)
3914 		VFS_HOLD(retvfsp);
3915 	vfs_list_unlock();
3916 	return (retvfsp);
3917 }
3918 
3919 /*
3920  * Search the vfs list for a specified vfsops.
3921  * if vfs entry is found then return 1, else 0.
3922  */
3923 int
3924 vfs_opsinuse(vfsops_t *ops)
3925 {
3926 	struct vfs *vfsp;
3927 	int found;
3928 
3929 	vfs_list_read_lock();
3930 	vfsp = rootvfs;
3931 	found = 0;
3932 	do {
3933 		if (vfs_getops(vfsp) == ops) {
3934 			found = 1;
3935 			break;
3936 		}
3937 		vfsp = vfsp->vfs_next;
3938 	} while (vfsp != rootvfs);
3939 	vfs_list_unlock();
3940 	return (found);
3941 }
3942 
3943 /*
3944  * Allocate an entry in vfssw for a file system type
3945  */
3946 struct vfssw *
3947 allocate_vfssw(const char *type)
3948 {
3949 	struct vfssw *vswp;
3950 
3951 	if (type[0] == '\0' || strlen(type) + 1 > _ST_FSTYPSZ) {
3952 		/*
3953 		 * The vfssw table uses the empty string to identify an
3954 		 * available entry; we cannot add any type which has
3955 		 * a leading NUL. The string length is limited to
3956 		 * the size of the st_fstype array in struct stat.
3957 		 */
3958 		return (NULL);
3959 	}
3960 
3961 	ASSERT(VFSSW_WRITE_LOCKED());
3962 	for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++)
3963 		if (!ALLOCATED_VFSSW(vswp)) {
3964 			vswp->vsw_name = kmem_alloc(strlen(type) + 1, KM_SLEEP);
3965 			(void) strcpy(vswp->vsw_name, type);
3966 			ASSERT(vswp->vsw_count == 0);
3967 			vswp->vsw_count = 1;
3968 			mutex_init(&vswp->vsw_lock, NULL, MUTEX_DEFAULT, NULL);
3969 			return (vswp);
3970 		}
3971 	return (NULL);
3972 }
3973 
3974 /*
3975  * Impose additional layer of translation between vfstype names
3976  * and module names in the filesystem.
3977  */
3978 static const char *
3979 vfs_to_modname(const char *vfstype)
3980 {
3981 	if (strcmp(vfstype, "proc") == 0) {
3982 		vfstype = "procfs";
3983 	} else if (strcmp(vfstype, "fd") == 0) {
3984 		vfstype = "fdfs";
3985 	} else if (strncmp(vfstype, "nfs", 3) == 0) {
3986 		vfstype = "nfs";
3987 	}
3988 
3989 	return (vfstype);
3990 }
3991 
3992 /*
3993  * Find a vfssw entry given a file system type name.
3994  * Try to autoload the filesystem if it's not found.
3995  * If it's installed, return the vfssw locked to prevent unloading.
3996  */
3997 struct vfssw *
3998 vfs_getvfssw(const char *type)
3999 {
4000 	struct vfssw *vswp;
4001 	const char *modname;
4002 
4003 	RLOCK_VFSSW();
4004 	vswp = vfs_getvfsswbyname(type);
4005 	modname = vfs_to_modname(type);
4006 
4007 	if (rootdir == NULL) {
4008 		/*
4009 		 * If we haven't yet loaded the root file system, then our
4010 		 * _init won't be called until later. Allocate vfssw entry,
4011 		 * because mod_installfs won't be called.
4012 		 */
4013 		if (vswp == NULL) {
4014 			RUNLOCK_VFSSW();
4015 			WLOCK_VFSSW();
4016 			if ((vswp = vfs_getvfsswbyname(type)) == NULL) {
4017 				if ((vswp = allocate_vfssw(type)) == NULL) {
4018 					WUNLOCK_VFSSW();
4019 					return (NULL);
4020 				}
4021 			}
4022 			WUNLOCK_VFSSW();
4023 			RLOCK_VFSSW();
4024 		}
4025 		if (!VFS_INSTALLED(vswp)) {
4026 			RUNLOCK_VFSSW();
4027 			(void) modloadonly("fs", modname);
4028 		} else
4029 			RUNLOCK_VFSSW();
4030 		return (vswp);
4031 	}
4032 
4033 	/*
4034 	 * Try to load the filesystem.  Before calling modload(), we drop
4035 	 * our lock on the VFS switch table, and pick it up after the
4036 	 * module is loaded.  However, there is a potential race:  the
4037 	 * module could be unloaded after the call to modload() completes
4038 	 * but before we pick up the lock and drive on.  Therefore,
4039 	 * we keep reloading the module until we've loaded the module
4040 	 * _and_ we have the lock on the VFS switch table.
4041 	 */
4042 	while (vswp == NULL || !VFS_INSTALLED(vswp)) {
4043 		RUNLOCK_VFSSW();
4044 		if (modload("fs", modname) == -1)
4045 			return (NULL);
4046 		RLOCK_VFSSW();
4047 		if (vswp == NULL)
4048 			if ((vswp = vfs_getvfsswbyname(type)) == NULL)
4049 				break;
4050 	}
4051 	RUNLOCK_VFSSW();
4052 
4053 	return (vswp);
4054 }
4055 
4056 /*
4057  * Find a vfssw entry given a file system type name.
4058  */
4059 struct vfssw *
4060 vfs_getvfsswbyname(const char *type)
4061 {
4062 	struct vfssw *vswp;
4063 
4064 	ASSERT(VFSSW_LOCKED());
4065 	if (type == NULL || *type == '\0')
4066 		return (NULL);
4067 
4068 	for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) {
4069 		if (strcmp(type, vswp->vsw_name) == 0) {
4070 			vfs_refvfssw(vswp);
4071 			return (vswp);
4072 		}
4073 	}
4074 
4075 	return (NULL);
4076 }
4077 
4078 /*
4079  * Find a vfssw entry given a set of vfsops.
4080  */
4081 struct vfssw *
4082 vfs_getvfsswbyvfsops(vfsops_t *vfsops)
4083 {
4084 	struct vfssw *vswp;
4085 
4086 	RLOCK_VFSSW();
4087 	for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) {
4088 		if (ALLOCATED_VFSSW(vswp) && &vswp->vsw_vfsops == vfsops) {
4089 			vfs_refvfssw(vswp);
4090 			RUNLOCK_VFSSW();
4091 			return (vswp);
4092 		}
4093 	}
4094 	RUNLOCK_VFSSW();
4095 
4096 	return (NULL);
4097 }
4098 
4099 /*
4100  * Reference a vfssw entry.
4101  */
4102 void
4103 vfs_refvfssw(struct vfssw *vswp)
4104 {
4105 
4106 	mutex_enter(&vswp->vsw_lock);
4107 	vswp->vsw_count++;
4108 	mutex_exit(&vswp->vsw_lock);
4109 }
4110 
4111 /*
4112  * Unreference a vfssw entry.
4113  */
4114 void
4115 vfs_unrefvfssw(struct vfssw *vswp)
4116 {
4117 
4118 	mutex_enter(&vswp->vsw_lock);
4119 	vswp->vsw_count--;
4120 	mutex_exit(&vswp->vsw_lock);
4121 }
4122 
4123 int sync_timeout = 30;		/* timeout for syncing a page during panic */
4124 int sync_timeleft;		/* portion of sync_timeout remaining */
4125 
4126 static int sync_retries = 20;	/* number of retries when not making progress */
4127 static int sync_triesleft;	/* portion of sync_retries remaining */
4128 
4129 static pgcnt_t old_pgcnt, new_pgcnt;
4130 static int new_bufcnt, old_bufcnt;
4131 
4132 /*
4133  * Sync all of the mounted filesystems, and then wait for the actual i/o to
4134  * complete.  We wait by counting the number of dirty pages and buffers,
4135  * pushing them out using bio_busy() and page_busy(), and then counting again.
4136  * This routine is used during both the uadmin A_SHUTDOWN code as well as
4137  * the SYNC phase of the panic code (see comments in panic.c).  It should only
4138  * be used after some higher-level mechanism has quiesced the system so that
4139  * new writes are not being initiated while we are waiting for completion.
4140  *
4141  * To ensure finite running time, our algorithm uses two timeout mechanisms:
4142  * sync_timeleft (a timer implemented by the omnipresent deadman() cyclic), and
4143  * sync_triesleft (a progress counter used by the vfs_syncall() loop below).
4144  * Together these ensure that syncing completes if our i/o paths are stuck.
4145  * The counters are declared above so they can be found easily in the debugger.
4146  *
4147  * The sync_timeleft counter is reset by bio_busy() and page_busy() using the
4148  * vfs_syncprogress() subroutine whenever we make progress through the lists of
4149  * pages and buffers.  It is decremented and expired by the deadman() cyclic.
4150  * When vfs_syncall() decides it is done, we disable the deadman() counter by
4151  * setting sync_timeleft to zero.  This timer guards against vfs_syncall()
4152  * deadlocking or hanging inside of a broken filesystem or driver routine.
4153  *
4154  * The sync_triesleft counter is updated by vfs_syncall() itself.  If we make
4155  * sync_retries consecutive calls to bio_busy() and page_busy() without
4156  * decreasing either the number of dirty buffers or dirty pages below the
4157  * lowest count we have seen so far, we give up and return from vfs_syncall().
4158  *
4159  * Each loop iteration ends with a call to delay() one second to allow time for
4160  * i/o completion and to permit the user time to read our progress messages.
4161  */
4162 void
4163 vfs_syncall(void)
4164 {
4165 	if (rootdir == NULL && !modrootloaded)
4166 		return; /* panic during boot - no filesystems yet */
4167 
4168 	printf("syncing file systems...");
4169 	vfs_syncprogress();
4170 	sync();
4171 
4172 	vfs_syncprogress();
4173 	sync_triesleft = sync_retries;
4174 
4175 	old_bufcnt = new_bufcnt = INT_MAX;
4176 	old_pgcnt = new_pgcnt = ULONG_MAX;
4177 
4178 	while (sync_triesleft > 0) {
4179 		old_bufcnt = MIN(old_bufcnt, new_bufcnt);
4180 		old_pgcnt = MIN(old_pgcnt, new_pgcnt);
4181 
4182 		new_bufcnt = bio_busy(B_TRUE);
4183 		new_pgcnt = page_busy(B_TRUE);
4184 		vfs_syncprogress();
4185 
4186 		if (new_bufcnt == 0 && new_pgcnt == 0)
4187 			break;
4188 
4189 		if (new_bufcnt < old_bufcnt || new_pgcnt < old_pgcnt)
4190 			sync_triesleft = sync_retries;
4191 		else
4192 			sync_triesleft--;
4193 
4194 		if (new_bufcnt)
4195 			printf(" [%d]", new_bufcnt);
4196 		if (new_pgcnt)
4197 			printf(" %lu", new_pgcnt);
4198 
4199 		delay(hz);
4200 	}
4201 
4202 	if (new_bufcnt != 0 || new_pgcnt != 0)
4203 		printf(" done (not all i/o completed)\n");
4204 	else
4205 		printf(" done\n");
4206 
4207 	sync_timeleft = 0;
4208 	delay(hz);
4209 }
4210 
4211 /*
4212  * If we are in the middle of the sync phase of panic, reset sync_timeleft to
4213  * sync_timeout to indicate that we are making progress and the deadman()
4214  * omnipresent cyclic should not yet time us out.  Note that it is safe to
4215  * store to sync_timeleft here since the deadman() is firing at high-level
4216  * on top of us.  If we are racing with the deadman(), either the deadman()
4217  * will decrement the old value and then we will reset it, or we will
4218  * reset it and then the deadman() will immediately decrement it.  In either
4219  * case, correct behavior results.
4220  */
4221 void
4222 vfs_syncprogress(void)
4223 {
4224 	if (panicstr)
4225 		sync_timeleft = sync_timeout;
4226 }
4227 
4228 /*
4229  * Map VFS flags to statvfs flags.  These shouldn't really be separate
4230  * flags at all.
4231  */
4232 uint_t
4233 vf_to_stf(uint_t vf)
4234 {
4235 	uint_t stf = 0;
4236 
4237 	if (vf & VFS_RDONLY)
4238 		stf |= ST_RDONLY;
4239 	if (vf & VFS_NOSETUID)
4240 		stf |= ST_NOSUID;
4241 	if (vf & VFS_NOTRUNC)
4242 		stf |= ST_NOTRUNC;
4243 
4244 	return (stf);
4245 }
4246 
4247 /*
4248  * Entries for (illegal) fstype 0.
4249  */
4250 /* ARGSUSED */
4251 int
4252 vfsstray_sync(struct vfs *vfsp, short arg, struct cred *cr)
4253 {
4254 	cmn_err(CE_PANIC, "stray vfs operation");
4255 	return (0);
4256 }
4257 
4258 /*
4259  * Entries for (illegal) fstype 0.
4260  */
4261 int
4262 vfsstray(void)
4263 {
4264 	cmn_err(CE_PANIC, "stray vfs operation");
4265 	return (0);
4266 }
4267 
4268 /*
4269  * Support for dealing with forced UFS unmount and its interaction with
4270  * LOFS. Could be used by any filesystem.
4271  * See bug 1203132.
4272  */
4273 int
4274 vfs_EIO(void)
4275 {
4276 	return (EIO);
4277 }
4278 
4279 /*
4280  * We've gotta define the op for sync separately, since the compiler gets
4281  * confused if we mix and match ANSI and normal style prototypes when
4282  * a "short" argument is present and spits out a warning.
4283  */
4284 /*ARGSUSED*/
4285 int
4286 vfs_EIO_sync(struct vfs *vfsp, short arg, struct cred *cr)
4287 {
4288 	return (EIO);
4289 }
4290 
4291 vfs_t EIO_vfs;
4292 vfsops_t *EIO_vfsops;
4293 
4294 /*
4295  * Called from startup() to initialize all loaded vfs's
4296  */
4297 void
4298 vfsinit(void)
4299 {
4300 	struct vfssw *vswp;
4301 	int error;
4302 	extern int vopstats_enabled;
4303 	extern void vopstats_startup();
4304 
4305 	static const fs_operation_def_t EIO_vfsops_template[] = {
4306 		VFSNAME_MOUNT,		{ .error = vfs_EIO },
4307 		VFSNAME_UNMOUNT,	{ .error = vfs_EIO },
4308 		VFSNAME_ROOT,		{ .error = vfs_EIO },
4309 		VFSNAME_STATVFS,	{ .error = vfs_EIO },
4310 		VFSNAME_SYNC, 		{ .vfs_sync = vfs_EIO_sync },
4311 		VFSNAME_VGET,		{ .error = vfs_EIO },
4312 		VFSNAME_MOUNTROOT,	{ .error = vfs_EIO },
4313 		VFSNAME_FREEVFS,	{ .error = vfs_EIO },
4314 		VFSNAME_VNSTATE,	{ .error = vfs_EIO },
4315 		NULL, NULL
4316 	};
4317 
4318 	static const fs_operation_def_t stray_vfsops_template[] = {
4319 		VFSNAME_MOUNT,		{ .error = vfsstray },
4320 		VFSNAME_UNMOUNT,	{ .error = vfsstray },
4321 		VFSNAME_ROOT,		{ .error = vfsstray },
4322 		VFSNAME_STATVFS,	{ .error = vfsstray },
4323 		VFSNAME_SYNC, 		{ .vfs_sync = vfsstray_sync },
4324 		VFSNAME_VGET,		{ .error = vfsstray },
4325 		VFSNAME_MOUNTROOT,	{ .error = vfsstray },
4326 		VFSNAME_FREEVFS,	{ .error = vfsstray },
4327 		VFSNAME_VNSTATE,	{ .error = vfsstray },
4328 		NULL, NULL
4329 	};
4330 
4331 	/* Create vfs cache */
4332 	vfs_cache = kmem_cache_create("vfs_cache", sizeof (struct vfs),
4333 	    sizeof (uintptr_t), NULL, NULL, NULL, NULL, NULL, 0);
4334 
4335 	/* Initialize the vnode cache (file systems may use it during init). */
4336 	vn_create_cache();
4337 
4338 	/* Setup event monitor framework */
4339 	fem_init();
4340 
4341 	/* Initialize the dummy stray file system type. */
4342 	error = vfs_setfsops(0, stray_vfsops_template, NULL);
4343 
4344 	/* Initialize the dummy EIO file system. */
4345 	error = vfs_makefsops(EIO_vfsops_template, &EIO_vfsops);
4346 	if (error != 0) {
4347 		cmn_err(CE_WARN, "vfsinit: bad EIO vfs ops template");
4348 		/* Shouldn't happen, but not bad enough to panic */
4349 	}
4350 
4351 	VFS_INIT(&EIO_vfs, EIO_vfsops, (caddr_t)NULL);
4352 
4353 	/*
4354 	 * Default EIO_vfs.vfs_flag to VFS_UNMOUNTED so a lookup
4355 	 * on this vfs can immediately notice it's invalid.
4356 	 */
4357 	EIO_vfs.vfs_flag |= VFS_UNMOUNTED;
4358 
4359 	/*
4360 	 * Call the init routines of non-loadable filesystems only.
4361 	 * Filesystems which are loaded as separate modules will be
4362 	 * initialized by the module loading code instead.
4363 	 */
4364 
4365 	for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) {
4366 		RLOCK_VFSSW();
4367 		if (vswp->vsw_init != NULL)
4368 			(*vswp->vsw_init)(vswp - vfssw, vswp->vsw_name);
4369 		RUNLOCK_VFSSW();
4370 	}
4371 
4372 	vopstats_startup();
4373 
4374 	if (vopstats_enabled) {
4375 		/* EIO_vfs can collect stats, but we don't retrieve them */
4376 		initialize_vopstats(&EIO_vfs.vfs_vopstats);
4377 		EIO_vfs.vfs_fstypevsp = NULL;
4378 		EIO_vfs.vfs_vskap = NULL;
4379 		EIO_vfs.vfs_flag |= VFS_STATS;
4380 	}
4381 
4382 	xattr_init();
4383 
4384 	reparse_point_init();
4385 }
4386 
4387 vfs_t *
4388 vfs_alloc(int kmflag)
4389 {
4390 	vfs_t *vfsp;
4391 
4392 	vfsp = kmem_cache_alloc(vfs_cache, kmflag);
4393 
4394 	/*
4395 	 * Do the simplest initialization here.
4396 	 * Everything else gets done in vfs_init()
4397 	 */
4398 	bzero(vfsp, sizeof (vfs_t));
4399 	return (vfsp);
4400 }
4401 
4402 void
4403 vfs_free(vfs_t *vfsp)
4404 {
4405 	/*
4406 	 * One would be tempted to assert that "vfsp->vfs_count == 0".
4407 	 * The problem is that this gets called out of domount() with
4408 	 * a partially initialized vfs and a vfs_count of 1.  This is
4409 	 * also called from vfs_rele() with a vfs_count of 0.  We can't
4410 	 * call VFS_RELE() from domount() if VFS_MOUNT() hasn't successfully
4411 	 * returned.  This is because VFS_MOUNT() fully initializes the
4412 	 * vfs structure and its associated data.  VFS_RELE() will call
4413 	 * VFS_FREEVFS() which may panic the system if the data structures
4414 	 * aren't fully initialized from a successful VFS_MOUNT()).
4415 	 */
4416 
4417 	/* If FEM was in use, make sure everything gets cleaned up */
4418 	if (vfsp->vfs_femhead) {
4419 		ASSERT(vfsp->vfs_femhead->femh_list == NULL);
4420 		mutex_destroy(&vfsp->vfs_femhead->femh_lock);
4421 		kmem_free(vfsp->vfs_femhead, sizeof (*(vfsp->vfs_femhead)));
4422 		vfsp->vfs_femhead = NULL;
4423 	}
4424 
4425 	if (vfsp->vfs_implp)
4426 		vfsimpl_teardown(vfsp);
4427 	sema_destroy(&vfsp->vfs_reflock);
4428 	kmem_cache_free(vfs_cache, vfsp);
4429 }
4430 
4431 /*
4432  * Increments the vfs reference count by one atomically.
4433  */
4434 void
4435 vfs_hold(vfs_t *vfsp)
4436 {
4437 	atomic_inc_32(&vfsp->vfs_count);
4438 	ASSERT(vfsp->vfs_count != 0);
4439 }
4440 
4441 /*
4442  * Decrements the vfs reference count by one atomically. When
4443  * vfs reference count becomes zero, it calls the file system
4444  * specific vfs_freevfs() to free up the resources.
4445  */
4446 void
4447 vfs_rele(vfs_t *vfsp)
4448 {
4449 	ASSERT(vfsp->vfs_count != 0);
4450 	if (atomic_dec_32_nv(&vfsp->vfs_count) == 0) {
4451 		VFS_FREEVFS(vfsp);
4452 		lofi_remove(vfsp);
4453 		if (vfsp->vfs_zone)
4454 			zone_rele_ref(&vfsp->vfs_implp->vi_zone_ref,
4455 			    ZONE_REF_VFS);
4456 		vfs_freemnttab(vfsp);
4457 		vfs_free(vfsp);
4458 	}
4459 }
4460 
4461 /*
4462  * Generic operations vector support.
4463  *
4464  * This is used to build operations vectors for both the vfs and vnode.
4465  * It's normally called only when a file system is loaded.
4466  *
4467  * There are many possible algorithms for this, including the following:
4468  *
4469  *   (1) scan the list of known operations; for each, see if the file system
4470  *       includes an entry for it, and fill it in as appropriate.
4471  *
4472  *   (2) set up defaults for all known operations.  scan the list of ops
4473  *       supplied by the file system; for each which is both supplied and
4474  *       known, fill it in.
4475  *
4476  *   (3) sort the lists of known ops & supplied ops; scan the list, filling
4477  *       in entries as we go.
4478  *
4479  * we choose (1) for simplicity, and because performance isn't critical here.
4480  * note that (2) could be sped up using a precomputed hash table on known ops.
4481  * (3) could be faster than either, but only if the lists were very large or
4482  * supplied in sorted order.
4483  *
4484  */
4485 
4486 int
4487 fs_build_vector(void *vector, int *unused_ops,
4488     const fs_operation_trans_def_t *translation,
4489     const fs_operation_def_t *operations)
4490 {
4491 	int i, num_trans, num_ops, used;
4492 
4493 	/*
4494 	 * Count the number of translations and the number of supplied
4495 	 * operations.
4496 	 */
4497 
4498 	{
4499 		const fs_operation_trans_def_t *p;
4500 
4501 		for (num_trans = 0, p = translation;
4502 		    p->name != NULL;
4503 		    num_trans++, p++)
4504 			;
4505 	}
4506 
4507 	{
4508 		const fs_operation_def_t *p;
4509 
4510 		for (num_ops = 0, p = operations;
4511 		    p->name != NULL;
4512 		    num_ops++, p++)
4513 			;
4514 	}
4515 
4516 	/* Walk through each operation known to our caller.  There will be */
4517 	/* one entry in the supplied "translation table" for each. */
4518 
4519 	used = 0;
4520 
4521 	for (i = 0; i < num_trans; i++) {
4522 		int j, found;
4523 		char *curname;
4524 		fs_generic_func_p result;
4525 		fs_generic_func_p *location;
4526 
4527 		curname = translation[i].name;
4528 
4529 		/* Look for a matching operation in the list supplied by the */
4530 		/* file system. */
4531 
4532 		found = 0;
4533 
4534 		for (j = 0; j < num_ops; j++) {
4535 			if (strcmp(operations[j].name, curname) == 0) {
4536 				used++;
4537 				found = 1;
4538 				break;
4539 			}
4540 		}
4541 
4542 		/*
4543 		 * If the file system is using a "placeholder" for default
4544 		 * or error functions, grab the appropriate function out of
4545 		 * the translation table.  If the file system didn't supply
4546 		 * this operation at all, use the default function.
4547 		 */
4548 
4549 		if (found) {
4550 			result = operations[j].func.fs_generic;
4551 			if (result == fs_default) {
4552 				result = translation[i].defaultFunc;
4553 			} else if (result == fs_error) {
4554 				result = translation[i].errorFunc;
4555 			} else if (result == NULL) {
4556 				/* Null values are PROHIBITED */
4557 				return (EINVAL);
4558 			}
4559 		} else {
4560 			result = translation[i].defaultFunc;
4561 		}
4562 
4563 		/* Now store the function into the operations vector. */
4564 
4565 		location = (fs_generic_func_p *)
4566 		    (((char *)vector) + translation[i].offset);
4567 
4568 		*location = result;
4569 	}
4570 
4571 	*unused_ops = num_ops - used;
4572 
4573 	return (0);
4574 }
4575 
4576 /* Placeholder functions, should never be called. */
4577 
4578 int
4579 fs_error(void)
4580 {
4581 	cmn_err(CE_PANIC, "fs_error called");
4582 	return (0);
4583 }
4584 
4585 int
4586 fs_default(void)
4587 {
4588 	cmn_err(CE_PANIC, "fs_default called");
4589 	return (0);
4590 }
4591 
4592 #ifdef __sparc
4593 
4594 /*
4595  * Part of the implementation of booting off a mirrored root
4596  * involves a change of dev_t for the root device.  To
4597  * accomplish this, first remove the existing hash table
4598  * entry for the root device, convert to the new dev_t,
4599  * then re-insert in the hash table at the head of the list.
4600  */
4601 void
4602 vfs_root_redev(vfs_t *vfsp, dev_t ndev, int fstype)
4603 {
4604 	vfs_list_lock();
4605 
4606 	vfs_hash_remove(vfsp);
4607 
4608 	vfsp->vfs_dev = ndev;
4609 	vfs_make_fsid(&vfsp->vfs_fsid, ndev, fstype);
4610 
4611 	vfs_hash_add(vfsp, 1);
4612 
4613 	vfs_list_unlock();
4614 }
4615 
4616 #else /* x86 NEWBOOT */
4617 
4618 #if defined(__x86)
4619 extern int hvmboot_rootconf();
4620 #endif /* __x86 */
4621 
4622 extern ib_boot_prop_t *iscsiboot_prop;
4623 
4624 int
4625 rootconf()
4626 {
4627 	int error;
4628 	struct vfssw *vsw;
4629 	extern void pm_init();
4630 	char *fstyp, *fsmod;
4631 	int ret = -1;
4632 
4633 	getrootfs(&fstyp, &fsmod);
4634 
4635 #if defined(__x86)
4636 	/*
4637 	 * hvmboot_rootconf() is defined in the hvm_bootstrap misc module,
4638 	 * which lives in /platform/i86hvm, and hence is only available when
4639 	 * booted in an x86 hvm environment.  If the hvm_bootstrap misc module
4640 	 * is not available then the modstub for this function will return 0.
4641 	 * If the hvm_bootstrap misc module is available it will be loaded
4642 	 * and hvmboot_rootconf() will be invoked.
4643 	 */
4644 	if (error = hvmboot_rootconf())
4645 		return (error);
4646 #endif /* __x86 */
4647 
4648 	if (error = clboot_rootconf())
4649 		return (error);
4650 
4651 	if (modload("fs", fsmod) == -1)
4652 		panic("Cannot _init %s module", fsmod);
4653 
4654 	RLOCK_VFSSW();
4655 	vsw = vfs_getvfsswbyname(fstyp);
4656 	RUNLOCK_VFSSW();
4657 	if (vsw == NULL) {
4658 		cmn_err(CE_CONT, "Cannot find %s filesystem\n", fstyp);
4659 		return (ENXIO);
4660 	}
4661 	VFS_INIT(rootvfs, &vsw->vsw_vfsops, 0);
4662 	VFS_HOLD(rootvfs);
4663 
4664 	/* always mount readonly first */
4665 	rootvfs->vfs_flag |= VFS_RDONLY;
4666 
4667 	pm_init();
4668 
4669 	if (netboot && iscsiboot_prop) {
4670 		cmn_err(CE_WARN, "NFS boot and iSCSI boot"
4671 		    " shouldn't happen in the same time");
4672 		return (EINVAL);
4673 	}
4674 
4675 	if (netboot || iscsiboot_prop) {
4676 		ret = strplumb();
4677 		if (ret != 0) {
4678 			cmn_err(CE_WARN, "Cannot plumb network device %d", ret);
4679 			return (EFAULT);
4680 		}
4681 	}
4682 
4683 	if ((ret == 0) && iscsiboot_prop) {
4684 		ret = modload("drv", "iscsi");
4685 		/* -1 indicates fail */
4686 		if (ret == -1) {
4687 			cmn_err(CE_WARN, "Failed to load iscsi module");
4688 			iscsi_boot_prop_free();
4689 			return (EINVAL);
4690 		} else {
4691 			if (!i_ddi_attach_pseudo_node("iscsi")) {
4692 				cmn_err(CE_WARN,
4693 				    "Failed to attach iscsi driver");
4694 				iscsi_boot_prop_free();
4695 				return (ENODEV);
4696 			}
4697 		}
4698 	}
4699 
4700 	error = VFS_MOUNTROOT(rootvfs, ROOT_INIT);
4701 	vfs_unrefvfssw(vsw);
4702 	rootdev = rootvfs->vfs_dev;
4703 
4704 	if (error)
4705 		cmn_err(CE_CONT, "Cannot mount root on %s fstype %s\n",
4706 		    rootfs.bo_name, fstyp);
4707 	else
4708 		cmn_err(CE_CONT, "?root on %s fstype %s\n",
4709 		    rootfs.bo_name, fstyp);
4710 	return (error);
4711 }
4712 
4713 /*
4714  * XXX this is called by nfs only and should probably be removed
4715  * If booted with ASKNAME, prompt on the console for a filesystem
4716  * name and return it.
4717  */
4718 void
4719 getfsname(char *askfor, char *name, size_t namelen)
4720 {
4721 	if (boothowto & RB_ASKNAME) {
4722 		printf("%s name: ", askfor);
4723 		console_gets(name, namelen);
4724 	}
4725 }
4726 
4727 /*
4728  * Init the root filesystem type (rootfs.bo_fstype) from the "fstype"
4729  * property.
4730  *
4731  * Filesystem types starting with the prefix "nfs" are diskless clients;
4732  * init the root filename name (rootfs.bo_name), too.
4733  *
4734  * If we are booting via NFS we currently have these options:
4735  *	nfs -	dynamically choose NFS V2, V3, or V4 (default)
4736  *	nfs2 -	force NFS V2
4737  *	nfs3 -	force NFS V3
4738  *	nfs4 -	force NFS V4
4739  * Because we need to maintain backward compatibility with the naming
4740  * convention that the NFS V2 filesystem name is "nfs" (see vfs_conf.c)
4741  * we need to map "nfs" => "nfsdyn" and "nfs2" => "nfs".  The dynamic
4742  * nfs module will map the type back to either "nfs", "nfs3", or "nfs4".
4743  * This is only for root filesystems, all other uses such as cachefs
4744  * will expect that "nfs" == NFS V2.
4745  */
4746 static void
4747 getrootfs(char **fstypp, char **fsmodp)
4748 {
4749 	extern char *strplumb_get_netdev_path(void);
4750 	char *propstr = NULL;
4751 
4752 	/*
4753 	 * Check fstype property; for diskless it should be one of "nfs",
4754 	 * "nfs2", "nfs3" or "nfs4".
4755 	 */
4756 	if (ddi_prop_lookup_string(DDI_DEV_T_ANY, ddi_root_node(),
4757 	    DDI_PROP_DONTPASS, "fstype", &propstr)
4758 	    == DDI_SUCCESS) {
4759 		(void) strncpy(rootfs.bo_fstype, propstr, BO_MAXFSNAME);
4760 		ddi_prop_free(propstr);
4761 
4762 	/*
4763 	 * if the boot property 'fstype' is not set, but 'zfs-bootfs' is set,
4764 	 * assume the type of this root filesystem is 'zfs'.
4765 	 */
4766 	} else if (ddi_prop_lookup_string(DDI_DEV_T_ANY, ddi_root_node(),
4767 	    DDI_PROP_DONTPASS, "zfs-bootfs", &propstr)
4768 	    == DDI_SUCCESS) {
4769 		(void) strncpy(rootfs.bo_fstype, "zfs", BO_MAXFSNAME);
4770 		ddi_prop_free(propstr);
4771 	}
4772 
4773 	if (strncmp(rootfs.bo_fstype, "nfs", 3) != 0) {
4774 		*fstypp = *fsmodp = rootfs.bo_fstype;
4775 		return;
4776 	}
4777 
4778 	++netboot;
4779 
4780 	if (strcmp(rootfs.bo_fstype, "nfs2") == 0)
4781 		(void) strcpy(rootfs.bo_fstype, "nfs");
4782 	else if (strcmp(rootfs.bo_fstype, "nfs") == 0)
4783 		(void) strcpy(rootfs.bo_fstype, "nfsdyn");
4784 
4785 	/*
4786 	 * check if path to network interface is specified in bootpath
4787 	 * or by a hypervisor domain configuration file.
4788 	 * XXPV - enable strlumb_get_netdev_path()
4789 	 */
4790 	if (ddi_prop_exists(DDI_DEV_T_ANY, ddi_root_node(), DDI_PROP_DONTPASS,
4791 	    "xpv-nfsroot")) {
4792 		(void) strcpy(rootfs.bo_name, "/xpvd/xnf@0");
4793 	} else if (ddi_prop_lookup_string(DDI_DEV_T_ANY, ddi_root_node(),
4794 	    DDI_PROP_DONTPASS, "bootpath", &propstr)
4795 	    == DDI_SUCCESS) {
4796 		(void) strncpy(rootfs.bo_name, propstr, BO_MAXOBJNAME);
4797 		ddi_prop_free(propstr);
4798 	} else {
4799 		/* attempt to determine netdev_path via boot_mac address */
4800 		netdev_path = strplumb_get_netdev_path();
4801 		if (netdev_path == NULL)
4802 			panic("cannot find boot network interface");
4803 		(void) strncpy(rootfs.bo_name, netdev_path, BO_MAXOBJNAME);
4804 	}
4805 	*fstypp = rootfs.bo_fstype;
4806 	*fsmodp = "nfs";
4807 }
4808 #endif
4809 
4810 /*
4811  * VFS feature routines
4812  */
4813 
4814 #define	VFTINDEX(feature)	(((feature) >> 32) & 0xFFFFFFFF)
4815 #define	VFTBITS(feature)	((feature) & 0xFFFFFFFFLL)
4816 
4817 /* Register a feature in the vfs */
4818 void
4819 vfs_set_feature(vfs_t *vfsp, vfs_feature_t feature)
4820 {
4821 	/* Note that vfs_featureset[] is found in *vfsp->vfs_implp */
4822 	if (vfsp->vfs_implp == NULL)
4823 		return;
4824 
4825 	vfsp->vfs_featureset[VFTINDEX(feature)] |= VFTBITS(feature);
4826 }
4827 
4828 void
4829 vfs_clear_feature(vfs_t *vfsp, vfs_feature_t feature)
4830 {
4831 	/* Note that vfs_featureset[] is found in *vfsp->vfs_implp */
4832 	if (vfsp->vfs_implp == NULL)
4833 		return;
4834 	vfsp->vfs_featureset[VFTINDEX(feature)] &= VFTBITS(~feature);
4835 }
4836 
4837 /*
4838  * Query a vfs for a feature.
4839  * Returns 1 if feature is present, 0 if not
4840  */
4841 int
4842 vfs_has_feature(vfs_t *vfsp, vfs_feature_t feature)
4843 {
4844 	int	ret = 0;
4845 
4846 	/* Note that vfs_featureset[] is found in *vfsp->vfs_implp */
4847 	if (vfsp->vfs_implp == NULL)
4848 		return (ret);
4849 
4850 	if (vfsp->vfs_featureset[VFTINDEX(feature)] & VFTBITS(feature))
4851 		ret = 1;
4852 
4853 	return (ret);
4854 }
4855 
4856 /*
4857  * Propagate feature set from one vfs to another
4858  */
4859 void
4860 vfs_propagate_features(vfs_t *from, vfs_t *to)
4861 {
4862 	int i;
4863 
4864 	if (to->vfs_implp == NULL || from->vfs_implp == NULL)
4865 		return;
4866 
4867 	for (i = 1; i <= to->vfs_featureset[0]; i++) {
4868 		to->vfs_featureset[i] = from->vfs_featureset[i];
4869 	}
4870 }
4871 
4872 #define	LOFINODE_PATH "/dev/lofi/%d"
4873 
4874 /*
4875  * Return the vnode for the lofi node if there's a lofi mount in place.
4876  * Returns -1 when there's no lofi node, 0 on success, and > 0 on
4877  * failure.
4878  */
4879 int
4880 vfs_get_lofi(vfs_t *vfsp, vnode_t **vpp)
4881 {
4882 	char *path = NULL;
4883 	int strsize;
4884 	int err;
4885 
4886 	if (vfsp->vfs_lofi_minor == 0) {
4887 		*vpp = NULL;
4888 		return (-1);
4889 	}
4890 
4891 	strsize = snprintf(NULL, 0, LOFINODE_PATH, vfsp->vfs_lofi_minor);
4892 	path = kmem_alloc(strsize + 1, KM_SLEEP);
4893 	(void) snprintf(path, strsize + 1, LOFINODE_PATH, vfsp->vfs_lofi_minor);
4894 
4895 	/*
4896 	 * We may be inside a zone, so we need to use the /dev path, but
4897 	 * it's created asynchronously, so we wait here.
4898 	 */
4899 	for (;;) {
4900 		err = lookupname(path, UIO_SYSSPACE, FOLLOW, NULLVPP, vpp);
4901 
4902 		if (err != ENOENT)
4903 			break;
4904 
4905 		if ((err = delay_sig(hz / 8)) == EINTR)
4906 			break;
4907 	}
4908 
4909 	if (err)
4910 		*vpp = NULL;
4911 
4912 	kmem_free(path, strsize + 1);
4913 	return (err);
4914 }
4915