xref: /titanic_44/usr/src/uts/common/fs/vfs.c (revision ab6fd898a4f8198d9657172ea3f2c92bcf2a5963)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 1988, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2013, Joyent, Inc. All rights reserved.
24  * Copyright 2017 RackTop Systems.
25  */
26 
27 /*	Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989 AT&T	*/
28 /*	  All Rights Reserved  	*/
29 
30 /*
31  * University Copyright- Copyright (c) 1982, 1986, 1988
32  * The Regents of the University of California
33  * All Rights Reserved
34  *
35  * University Acknowledgment- Portions of this document are derived from
36  * software developed by the University of California, Berkeley, and its
37  * contributors.
38  */
39 
40 #include <sys/types.h>
41 #include <sys/t_lock.h>
42 #include <sys/param.h>
43 #include <sys/errno.h>
44 #include <sys/user.h>
45 #include <sys/fstyp.h>
46 #include <sys/kmem.h>
47 #include <sys/systm.h>
48 #include <sys/proc.h>
49 #include <sys/mount.h>
50 #include <sys/vfs.h>
51 #include <sys/vfs_opreg.h>
52 #include <sys/fem.h>
53 #include <sys/mntent.h>
54 #include <sys/stat.h>
55 #include <sys/statvfs.h>
56 #include <sys/statfs.h>
57 #include <sys/cred.h>
58 #include <sys/vnode.h>
59 #include <sys/rwstlock.h>
60 #include <sys/dnlc.h>
61 #include <sys/file.h>
62 #include <sys/time.h>
63 #include <sys/atomic.h>
64 #include <sys/cmn_err.h>
65 #include <sys/buf.h>
66 #include <sys/swap.h>
67 #include <sys/debug.h>
68 #include <sys/vnode.h>
69 #include <sys/modctl.h>
70 #include <sys/ddi.h>
71 #include <sys/pathname.h>
72 #include <sys/bootconf.h>
73 #include <sys/dumphdr.h>
74 #include <sys/dc_ki.h>
75 #include <sys/poll.h>
76 #include <sys/sunddi.h>
77 #include <sys/sysmacros.h>
78 #include <sys/zone.h>
79 #include <sys/policy.h>
80 #include <sys/ctfs.h>
81 #include <sys/objfs.h>
82 #include <sys/console.h>
83 #include <sys/reboot.h>
84 #include <sys/attr.h>
85 #include <sys/zio.h>
86 #include <sys/spa.h>
87 #include <sys/lofi.h>
88 #include <sys/bootprops.h>
89 #include <sys/avl.h>
90 
91 #include <vm/page.h>
92 
93 #include <fs/fs_subr.h>
94 /* Private interfaces to create vopstats-related data structures */
95 extern void		initialize_vopstats(vopstats_t *);
96 extern vopstats_t	*get_fstype_vopstats(struct vfs *, struct vfssw *);
97 extern vsk_anchor_t	*get_vskstat_anchor(struct vfs *);
98 
99 static void vfs_clearmntopt_nolock(mntopts_t *, const char *, int);
100 static void vfs_setmntopt_nolock(mntopts_t *, const char *,
101     const char *, int, int);
102 static int  vfs_optionisset_nolock(const mntopts_t *, const char *, char **);
103 static void vfs_freemnttab(struct vfs *);
104 static void vfs_freeopt(mntopt_t *);
105 static void vfs_swapopttbl_nolock(mntopts_t *, mntopts_t *);
106 static void vfs_swapopttbl(mntopts_t *, mntopts_t *);
107 static void vfs_copyopttbl_extend(const mntopts_t *, mntopts_t *, int);
108 static void vfs_createopttbl_extend(mntopts_t *, const char *,
109     const mntopts_t *);
110 static char **vfs_copycancelopt_extend(char **const, int);
111 static void vfs_freecancelopt(char **);
112 static void getrootfs(char **, char **);
113 static int getmacpath(dev_info_t *, void *);
114 static void vfs_mnttabvp_setup(void);
115 
116 struct ipmnt {
117 	struct ipmnt	*mip_next;
118 	dev_t		mip_dev;
119 	struct vfs	*mip_vfsp;
120 };
121 
122 static kmutex_t		vfs_miplist_mutex;
123 static struct ipmnt	*vfs_miplist = NULL;
124 static struct ipmnt	*vfs_miplist_end = NULL;
125 
126 static kmem_cache_t *vfs_cache;	/* Pointer to VFS kmem cache */
127 
128 /*
129  * VFS global data.
130  */
131 vnode_t *rootdir;		/* pointer to root inode vnode. */
132 vnode_t *devicesdir;		/* pointer to inode of devices root */
133 vnode_t	*devdir;		/* pointer to inode of dev root */
134 
135 char *server_rootpath;		/* root path for diskless clients */
136 char *server_hostname;		/* hostname of diskless server */
137 
138 static struct vfs root;
139 static struct vfs devices;
140 static struct vfs dev;
141 struct vfs *rootvfs = &root;	/* pointer to root vfs; head of VFS list. */
142 avl_tree_t vfs_by_dev;		/* avl tree to index mounted VFSs by dev */
143 avl_tree_t vfs_by_mntpnt;	/* avl tree to index mounted VFSs by mntpnt */
144 uint64_t vfs_curr_mntix;	/* counter to provide a unique mntix for
145 				 * entries in the above avl trees.
146 				 * protected by vfslist lock */
147 rvfs_t *rvfs_list;		/* array of vfs ptrs for vfs hash list */
148 int vfshsz = 512;		/* # of heads/locks in vfs hash arrays */
149 				/* must be power of 2!	*/
150 timespec_t vfs_mnttab_ctime;	/* mnttab created time */
151 timespec_t vfs_mnttab_mtime;	/* mnttab last modified time */
152 char *vfs_dummyfstype = "\0";
153 struct pollhead vfs_pollhd;	/* for mnttab pollers */
154 struct vnode *vfs_mntdummyvp;	/* to fake mnttab read/write for file events */
155 int	mntfstype;		/* will be set once mnt fs is mounted */
156 
157 /*
158  * Table for generic options recognized in the VFS layer and acted
159  * on at this level before parsing file system specific options.
160  * The nosuid option is stronger than any of the devices and setuid
161  * options, so those are canceled when nosuid is seen.
162  *
163  * All options which are added here need to be added to the
164  * list of standard options in usr/src/cmd/fs.d/fslib.c as well.
165  */
166 /*
167  * VFS Mount options table
168  */
169 static char *ro_cancel[] = { MNTOPT_RW, NULL };
170 static char *rw_cancel[] = { MNTOPT_RO, NULL };
171 static char *suid_cancel[] = { MNTOPT_NOSUID, NULL };
172 static char *nosuid_cancel[] = { MNTOPT_SUID, MNTOPT_DEVICES, MNTOPT_NODEVICES,
173     MNTOPT_NOSETUID, MNTOPT_SETUID, NULL };
174 static char *devices_cancel[] = { MNTOPT_NODEVICES, NULL };
175 static char *nodevices_cancel[] = { MNTOPT_DEVICES, NULL };
176 static char *setuid_cancel[] = { MNTOPT_NOSETUID, NULL };
177 static char *nosetuid_cancel[] = { MNTOPT_SETUID, NULL };
178 static char *nbmand_cancel[] = { MNTOPT_NONBMAND, NULL };
179 static char *nonbmand_cancel[] = { MNTOPT_NBMAND, NULL };
180 static char *exec_cancel[] = { MNTOPT_NOEXEC, NULL };
181 static char *noexec_cancel[] = { MNTOPT_EXEC, NULL };
182 
183 static const mntopt_t mntopts[] = {
184 /*
185  *	option name		cancel options		default arg	flags
186  */
187 	{ MNTOPT_REMOUNT,	NULL,			NULL,
188 		MO_NODISPLAY, (void *)0 },
189 	{ MNTOPT_RO,		ro_cancel,		NULL,		0,
190 		(void *)0 },
191 	{ MNTOPT_RW,		rw_cancel,		NULL,		0,
192 		(void *)0 },
193 	{ MNTOPT_SUID,		suid_cancel,		NULL,		0,
194 		(void *)0 },
195 	{ MNTOPT_NOSUID,	nosuid_cancel,		NULL,		0,
196 		(void *)0 },
197 	{ MNTOPT_DEVICES,	devices_cancel,		NULL,		0,
198 		(void *)0 },
199 	{ MNTOPT_NODEVICES,	nodevices_cancel,	NULL,		0,
200 		(void *)0 },
201 	{ MNTOPT_SETUID,	setuid_cancel,		NULL,		0,
202 		(void *)0 },
203 	{ MNTOPT_NOSETUID,	nosetuid_cancel,	NULL,		0,
204 		(void *)0 },
205 	{ MNTOPT_NBMAND,	nbmand_cancel,		NULL,		0,
206 		(void *)0 },
207 	{ MNTOPT_NONBMAND,	nonbmand_cancel,	NULL,		0,
208 		(void *)0 },
209 	{ MNTOPT_EXEC,		exec_cancel,		NULL,		0,
210 		(void *)0 },
211 	{ MNTOPT_NOEXEC,	noexec_cancel,		NULL,		0,
212 		(void *)0 },
213 };
214 
215 const mntopts_t vfs_mntopts = {
216 	sizeof (mntopts) / sizeof (mntopt_t),
217 	(mntopt_t *)&mntopts[0]
218 };
219 
220 /*
221  * File system operation dispatch functions.
222  */
223 
224 int
225 fsop_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr)
226 {
227 	return (*(vfsp)->vfs_op->vfs_mount)(vfsp, mvp, uap, cr);
228 }
229 
230 int
231 fsop_unmount(vfs_t *vfsp, int flag, cred_t *cr)
232 {
233 	return (*(vfsp)->vfs_op->vfs_unmount)(vfsp, flag, cr);
234 }
235 
236 int
237 fsop_root(vfs_t *vfsp, vnode_t **vpp)
238 {
239 	refstr_t *mntpt;
240 	int ret = (*(vfsp)->vfs_op->vfs_root)(vfsp, vpp);
241 	/*
242 	 * Make sure this root has a path.  With lofs, it is possible to have
243 	 * a NULL mountpoint.
244 	 */
245 	if (ret == 0 && vfsp->vfs_mntpt != NULL && (*vpp)->v_path == NULL) {
246 		mntpt = vfs_getmntpoint(vfsp);
247 		vn_setpath_str(*vpp, refstr_value(mntpt),
248 		    strlen(refstr_value(mntpt)));
249 		refstr_rele(mntpt);
250 	}
251 
252 	return (ret);
253 }
254 
255 int
256 fsop_statfs(vfs_t *vfsp, statvfs64_t *sp)
257 {
258 	return (*(vfsp)->vfs_op->vfs_statvfs)(vfsp, sp);
259 }
260 
261 int
262 fsop_sync(vfs_t *vfsp, short flag, cred_t *cr)
263 {
264 	return (*(vfsp)->vfs_op->vfs_sync)(vfsp, flag, cr);
265 }
266 
267 int
268 fsop_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp)
269 {
270 	/*
271 	 * In order to handle system attribute fids in a manner
272 	 * transparent to the underlying fs, we embed the fid for
273 	 * the sysattr parent object in the sysattr fid and tack on
274 	 * some extra bytes that only the sysattr layer knows about.
275 	 *
276 	 * This guarantees that sysattr fids are larger than other fids
277 	 * for this vfs. If the vfs supports the sysattr view interface
278 	 * (as indicated by VFSFT_SYSATTR_VIEWS), we cannot have a size
279 	 * collision with XATTR_FIDSZ.
280 	 */
281 	if (vfs_has_feature(vfsp, VFSFT_SYSATTR_VIEWS) &&
282 	    fidp->fid_len == XATTR_FIDSZ)
283 		return (xattr_dir_vget(vfsp, vpp, fidp));
284 
285 	return (*(vfsp)->vfs_op->vfs_vget)(vfsp, vpp, fidp);
286 }
287 
288 int
289 fsop_mountroot(vfs_t *vfsp, enum whymountroot reason)
290 {
291 	return (*(vfsp)->vfs_op->vfs_mountroot)(vfsp, reason);
292 }
293 
294 void
295 fsop_freefs(vfs_t *vfsp)
296 {
297 	(*(vfsp)->vfs_op->vfs_freevfs)(vfsp);
298 }
299 
300 int
301 fsop_vnstate(vfs_t *vfsp, vnode_t *vp, vntrans_t nstate)
302 {
303 	return ((*(vfsp)->vfs_op->vfs_vnstate)(vfsp, vp, nstate));
304 }
305 
306 int
307 fsop_sync_by_kind(int fstype, short flag, cred_t *cr)
308 {
309 	ASSERT((fstype >= 0) && (fstype < nfstype));
310 
311 	if (ALLOCATED_VFSSW(&vfssw[fstype]) && VFS_INSTALLED(&vfssw[fstype]))
312 		return (*vfssw[fstype].vsw_vfsops.vfs_sync) (NULL, flag, cr);
313 	else
314 		return (ENOTSUP);
315 }
316 
317 /*
318  * File system initialization.  vfs_setfsops() must be called from a file
319  * system's init routine.
320  */
321 
322 static int
323 fs_copyfsops(const fs_operation_def_t *template, vfsops_t *actual,
324     int *unused_ops)
325 {
326 	static const fs_operation_trans_def_t vfs_ops_table[] = {
327 		VFSNAME_MOUNT, offsetof(vfsops_t, vfs_mount),
328 			fs_nosys, fs_nosys,
329 
330 		VFSNAME_UNMOUNT, offsetof(vfsops_t, vfs_unmount),
331 			fs_nosys, fs_nosys,
332 
333 		VFSNAME_ROOT, offsetof(vfsops_t, vfs_root),
334 			fs_nosys, fs_nosys,
335 
336 		VFSNAME_STATVFS, offsetof(vfsops_t, vfs_statvfs),
337 			fs_nosys, fs_nosys,
338 
339 		VFSNAME_SYNC, offsetof(vfsops_t, vfs_sync),
340 			(fs_generic_func_p) fs_sync,
341 			(fs_generic_func_p) fs_sync,	/* No errors allowed */
342 
343 		VFSNAME_VGET, offsetof(vfsops_t, vfs_vget),
344 			fs_nosys, fs_nosys,
345 
346 		VFSNAME_MOUNTROOT, offsetof(vfsops_t, vfs_mountroot),
347 			fs_nosys, fs_nosys,
348 
349 		VFSNAME_FREEVFS, offsetof(vfsops_t, vfs_freevfs),
350 			(fs_generic_func_p)fs_freevfs,
351 			(fs_generic_func_p)fs_freevfs,	/* Shouldn't fail */
352 
353 		VFSNAME_VNSTATE, offsetof(vfsops_t, vfs_vnstate),
354 			(fs_generic_func_p)fs_nosys,
355 			(fs_generic_func_p)fs_nosys,
356 
357 		NULL, 0, NULL, NULL
358 	};
359 
360 	return (fs_build_vector(actual, unused_ops, vfs_ops_table, template));
361 }
362 
363 void
364 zfs_boot_init() {
365 
366 	if (strcmp(rootfs.bo_fstype, MNTTYPE_ZFS) == 0)
367 		spa_boot_init();
368 }
369 
370 int
371 vfs_setfsops(int fstype, const fs_operation_def_t *template, vfsops_t **actual)
372 {
373 	int error;
374 	int unused_ops;
375 
376 	/*
377 	 * Verify that fstype refers to a valid fs.  Note that
378 	 * 0 is valid since it's used to set "stray" ops.
379 	 */
380 	if ((fstype < 0) || (fstype >= nfstype))
381 		return (EINVAL);
382 
383 	if (!ALLOCATED_VFSSW(&vfssw[fstype]))
384 		return (EINVAL);
385 
386 	/* Set up the operations vector. */
387 
388 	error = fs_copyfsops(template, &vfssw[fstype].vsw_vfsops, &unused_ops);
389 
390 	if (error != 0)
391 		return (error);
392 
393 	vfssw[fstype].vsw_flag |= VSW_INSTALLED;
394 
395 	if (actual != NULL)
396 		*actual = &vfssw[fstype].vsw_vfsops;
397 
398 #if DEBUG
399 	if (unused_ops != 0)
400 		cmn_err(CE_WARN, "vfs_setfsops: %s: %d operations supplied "
401 		    "but not used", vfssw[fstype].vsw_name, unused_ops);
402 #endif
403 
404 	return (0);
405 }
406 
407 int
408 vfs_makefsops(const fs_operation_def_t *template, vfsops_t **actual)
409 {
410 	int error;
411 	int unused_ops;
412 
413 	*actual = (vfsops_t *)kmem_alloc(sizeof (vfsops_t), KM_SLEEP);
414 
415 	error = fs_copyfsops(template, *actual, &unused_ops);
416 	if (error != 0) {
417 		kmem_free(*actual, sizeof (vfsops_t));
418 		*actual = NULL;
419 		return (error);
420 	}
421 
422 	return (0);
423 }
424 
425 /*
426  * Free a vfsops structure created as a result of vfs_makefsops().
427  * NOTE: For a vfsops structure initialized by vfs_setfsops(), use
428  * vfs_freevfsops_by_type().
429  */
430 void
431 vfs_freevfsops(vfsops_t *vfsops)
432 {
433 	kmem_free(vfsops, sizeof (vfsops_t));
434 }
435 
436 /*
437  * Since the vfsops structure is part of the vfssw table and wasn't
438  * really allocated, we're not really freeing anything.  We keep
439  * the name for consistency with vfs_freevfsops().  We do, however,
440  * need to take care of a little bookkeeping.
441  * NOTE: For a vfsops structure created by vfs_setfsops(), use
442  * vfs_freevfsops_by_type().
443  */
444 int
445 vfs_freevfsops_by_type(int fstype)
446 {
447 
448 	/* Verify that fstype refers to a loaded fs (and not fsid 0). */
449 	if ((fstype <= 0) || (fstype >= nfstype))
450 		return (EINVAL);
451 
452 	WLOCK_VFSSW();
453 	if ((vfssw[fstype].vsw_flag & VSW_INSTALLED) == 0) {
454 		WUNLOCK_VFSSW();
455 		return (EINVAL);
456 	}
457 
458 	vfssw[fstype].vsw_flag &= ~VSW_INSTALLED;
459 	WUNLOCK_VFSSW();
460 
461 	return (0);
462 }
463 
464 /* Support routines used to reference vfs_op */
465 
466 /* Set the operations vector for a vfs */
467 void
468 vfs_setops(vfs_t *vfsp, vfsops_t *vfsops)
469 {
470 	vfsops_t	*op;
471 
472 	ASSERT(vfsp != NULL);
473 	ASSERT(vfsops != NULL);
474 
475 	op = vfsp->vfs_op;
476 	membar_consumer();
477 	if (vfsp->vfs_femhead == NULL &&
478 	    atomic_cas_ptr(&vfsp->vfs_op, op, vfsops) == op) {
479 		return;
480 	}
481 	fsem_setvfsops(vfsp, vfsops);
482 }
483 
484 /* Retrieve the operations vector for a vfs */
485 vfsops_t *
486 vfs_getops(vfs_t *vfsp)
487 {
488 	vfsops_t	*op;
489 
490 	ASSERT(vfsp != NULL);
491 
492 	op = vfsp->vfs_op;
493 	membar_consumer();
494 	if (vfsp->vfs_femhead == NULL && op == vfsp->vfs_op) {
495 		return (op);
496 	} else {
497 		return (fsem_getvfsops(vfsp));
498 	}
499 }
500 
501 /*
502  * Returns non-zero (1) if the vfsops matches that of the vfs.
503  * Returns zero (0) if not.
504  */
505 int
506 vfs_matchops(vfs_t *vfsp, vfsops_t *vfsops)
507 {
508 	return (vfs_getops(vfsp) == vfsops);
509 }
510 
511 /*
512  * Returns non-zero (1) if the file system has installed a non-default,
513  * non-error vfs_sync routine.  Returns zero (0) otherwise.
514  */
515 int
516 vfs_can_sync(vfs_t *vfsp)
517 {
518 	/* vfs_sync() routine is not the default/error function */
519 	return (vfs_getops(vfsp)->vfs_sync != fs_sync);
520 }
521 
522 /*
523  * Initialize a vfs structure.
524  */
525 void
526 vfs_init(vfs_t *vfsp, vfsops_t *op, void *data)
527 {
528 	/* Other initialization has been moved to vfs_alloc() */
529 	vfsp->vfs_count = 0;
530 	vfsp->vfs_next = vfsp;
531 	vfsp->vfs_prev = vfsp;
532 	vfsp->vfs_zone_next = vfsp;
533 	vfsp->vfs_zone_prev = vfsp;
534 	vfsp->vfs_lofi_minor = 0;
535 	sema_init(&vfsp->vfs_reflock, 1, NULL, SEMA_DEFAULT, NULL);
536 	vfsimpl_setup(vfsp);
537 	vfsp->vfs_data = (data);
538 	vfs_setops((vfsp), (op));
539 }
540 
541 /*
542  * Allocate and initialize the vfs implementation private data
543  * structure, vfs_impl_t.
544  */
545 void
546 vfsimpl_setup(vfs_t *vfsp)
547 {
548 	int i;
549 
550 	if (vfsp->vfs_implp != NULL) {
551 		return;
552 	}
553 
554 	vfsp->vfs_implp = kmem_alloc(sizeof (vfs_impl_t), KM_SLEEP);
555 	/* Note that these are #define'd in vfs.h */
556 	vfsp->vfs_vskap = NULL;
557 	vfsp->vfs_fstypevsp = NULL;
558 
559 	/* Set size of counted array, then zero the array */
560 	vfsp->vfs_featureset[0] = VFS_FEATURE_MAXSZ - 1;
561 	for (i = 1; i <  VFS_FEATURE_MAXSZ; i++) {
562 		vfsp->vfs_featureset[i] = 0;
563 	}
564 }
565 
566 /*
567  * Release the vfs_impl_t structure, if it exists. Some unbundled
568  * filesystems may not use the newer version of vfs and thus
569  * would not contain this implementation private data structure.
570  */
571 void
572 vfsimpl_teardown(vfs_t *vfsp)
573 {
574 	vfs_impl_t	*vip = vfsp->vfs_implp;
575 
576 	if (vip == NULL)
577 		return;
578 
579 	kmem_free(vfsp->vfs_implp, sizeof (vfs_impl_t));
580 	vfsp->vfs_implp = NULL;
581 }
582 
583 /*
584  * VFS system calls: mount, umount, syssync, statfs, fstatfs, statvfs,
585  * fstatvfs, and sysfs moved to common/syscall.
586  */
587 
588 /*
589  * Update every mounted file system.  We call the vfs_sync operation of
590  * each file system type, passing it a NULL vfsp to indicate that all
591  * mounted file systems of that type should be updated.
592  */
593 void
594 vfs_sync(int flag)
595 {
596 	struct vfssw *vswp;
597 	RLOCK_VFSSW();
598 	for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) {
599 		if (ALLOCATED_VFSSW(vswp) && VFS_INSTALLED(vswp)) {
600 			vfs_refvfssw(vswp);
601 			RUNLOCK_VFSSW();
602 			(void) (*vswp->vsw_vfsops.vfs_sync)(NULL, flag,
603 			    CRED());
604 			vfs_unrefvfssw(vswp);
605 			RLOCK_VFSSW();
606 		}
607 	}
608 	RUNLOCK_VFSSW();
609 }
610 
611 void
612 sync(void)
613 {
614 	vfs_sync(0);
615 }
616 
617 /*
618  * compare function for vfs_by_dev avl tree. compare dev first, then mntix
619  */
620 static int
621 vfs_cmp_dev(const void *aa, const void *bb)
622 {
623 	const vfs_t *a = aa;
624 	const vfs_t *b = bb;
625 
626 	if (a->vfs_dev < b->vfs_dev)
627 		return (-1);
628 	if (a->vfs_dev > b->vfs_dev)
629 		return (1);
630 	if (a->vfs_mntix < b->vfs_mntix)
631 		return (-1);
632 	if (a->vfs_mntix > b->vfs_mntix)
633 		return (1);
634 	return (0);
635 }
636 
637 /*
638  * compare function for vfs_by_mntpnt avl tree. compare mntpnt first, then mntix
639  */
640 static int
641 vfs_cmp_mntpnt(const void *aa, const void *bb)
642 {
643 	const vfs_t *a = aa;
644 	const vfs_t *b = bb;
645 	int ret;
646 
647 	ret = strcmp(refstr_value(a->vfs_mntpt), refstr_value(b->vfs_mntpt));
648 	if (ret < 0)
649 		return (-1);
650 	if (ret > 0)
651 		return (1);
652 	if (a->vfs_mntix < b->vfs_mntix)
653 		return (-1);
654 	if (a->vfs_mntix > b->vfs_mntix)
655 		return (1);
656 	return (0);
657 }
658 
659 /*
660  * External routines.
661  */
662 
663 krwlock_t vfssw_lock;	/* lock accesses to vfssw */
664 
665 /*
666  * Lock for accessing the vfs linked list.  Initialized in vfs_mountroot(),
667  * but otherwise should be accessed only via vfs_list_lock() and
668  * vfs_list_unlock().  Also used to protect the timestamp for mods to the list.
669  */
670 static krwlock_t vfslist;
671 
672 /*
673  * Mount devfs on /devices. This is done right after root is mounted
674  * to provide device access support for the system
675  */
676 static void
677 vfs_mountdevices(void)
678 {
679 	struct vfssw *vsw;
680 	struct vnode *mvp;
681 	struct mounta mounta = {	/* fake mounta for devfs_mount() */
682 		NULL,
683 		NULL,
684 		MS_SYSSPACE,
685 		NULL,
686 		NULL,
687 		0,
688 		NULL,
689 		0
690 	};
691 
692 	/*
693 	 * _init devfs module to fill in the vfssw
694 	 */
695 	if (modload("fs", "devfs") == -1)
696 		panic("Cannot _init devfs module");
697 
698 	/*
699 	 * Hold vfs
700 	 */
701 	RLOCK_VFSSW();
702 	vsw = vfs_getvfsswbyname("devfs");
703 	VFS_INIT(&devices, &vsw->vsw_vfsops, NULL);
704 	VFS_HOLD(&devices);
705 
706 	/*
707 	 * Locate mount point
708 	 */
709 	if (lookupname("/devices", UIO_SYSSPACE, FOLLOW, NULLVPP, &mvp))
710 		panic("Cannot find /devices");
711 
712 	/*
713 	 * Perform the mount of /devices
714 	 */
715 	if (VFS_MOUNT(&devices, mvp, &mounta, CRED()))
716 		panic("Cannot mount /devices");
717 
718 	RUNLOCK_VFSSW();
719 
720 	/*
721 	 * Set appropriate members and add to vfs list for mnttab display
722 	 */
723 	vfs_setresource(&devices, "/devices", 0);
724 	vfs_setmntpoint(&devices, "/devices", 0);
725 
726 	/*
727 	 * Hold the root of /devices so it won't go away
728 	 */
729 	if (VFS_ROOT(&devices, &devicesdir))
730 		panic("vfs_mountdevices: not devices root");
731 
732 	if (vfs_lock(&devices) != 0) {
733 		VN_RELE(devicesdir);
734 		cmn_err(CE_NOTE, "Cannot acquire vfs_lock of /devices");
735 		return;
736 	}
737 
738 	if (vn_vfswlock(mvp) != 0) {
739 		vfs_unlock(&devices);
740 		VN_RELE(devicesdir);
741 		cmn_err(CE_NOTE, "Cannot acquire vfswlock of /devices");
742 		return;
743 	}
744 
745 	vfs_add(mvp, &devices, 0);
746 	vn_vfsunlock(mvp);
747 	vfs_unlock(&devices);
748 	VN_RELE(devicesdir);
749 }
750 
751 /*
752  * mount the first instance of /dev  to root and remain mounted
753  */
754 static void
755 vfs_mountdev1(void)
756 {
757 	struct vfssw *vsw;
758 	struct vnode *mvp;
759 	struct mounta mounta = {	/* fake mounta for sdev_mount() */
760 		NULL,
761 		NULL,
762 		MS_SYSSPACE | MS_OVERLAY,
763 		NULL,
764 		NULL,
765 		0,
766 		NULL,
767 		0
768 	};
769 
770 	/*
771 	 * _init dev module to fill in the vfssw
772 	 */
773 	if (modload("fs", "dev") == -1)
774 		cmn_err(CE_PANIC, "Cannot _init dev module\n");
775 
776 	/*
777 	 * Hold vfs
778 	 */
779 	RLOCK_VFSSW();
780 	vsw = vfs_getvfsswbyname("dev");
781 	VFS_INIT(&dev, &vsw->vsw_vfsops, NULL);
782 	VFS_HOLD(&dev);
783 
784 	/*
785 	 * Locate mount point
786 	 */
787 	if (lookupname("/dev", UIO_SYSSPACE, FOLLOW, NULLVPP, &mvp))
788 		cmn_err(CE_PANIC, "Cannot find /dev\n");
789 
790 	/*
791 	 * Perform the mount of /dev
792 	 */
793 	if (VFS_MOUNT(&dev, mvp, &mounta, CRED()))
794 		cmn_err(CE_PANIC, "Cannot mount /dev 1\n");
795 
796 	RUNLOCK_VFSSW();
797 
798 	/*
799 	 * Set appropriate members and add to vfs list for mnttab display
800 	 */
801 	vfs_setresource(&dev, "/dev", 0);
802 	vfs_setmntpoint(&dev, "/dev", 0);
803 
804 	/*
805 	 * Hold the root of /dev so it won't go away
806 	 */
807 	if (VFS_ROOT(&dev, &devdir))
808 		cmn_err(CE_PANIC, "vfs_mountdev1: not dev root");
809 
810 	if (vfs_lock(&dev) != 0) {
811 		VN_RELE(devdir);
812 		cmn_err(CE_NOTE, "Cannot acquire vfs_lock of /dev");
813 		return;
814 	}
815 
816 	if (vn_vfswlock(mvp) != 0) {
817 		vfs_unlock(&dev);
818 		VN_RELE(devdir);
819 		cmn_err(CE_NOTE, "Cannot acquire vfswlock of /dev");
820 		return;
821 	}
822 
823 	vfs_add(mvp, &dev, 0);
824 	vn_vfsunlock(mvp);
825 	vfs_unlock(&dev);
826 	VN_RELE(devdir);
827 }
828 
829 /*
830  * Mount required filesystem. This is done right after root is mounted.
831  */
832 static void
833 vfs_mountfs(char *module, char *spec, char *path)
834 {
835 	struct vnode *mvp;
836 	struct mounta mounta;
837 	vfs_t *vfsp;
838 
839 	bzero(&mounta, sizeof (mounta));
840 	mounta.flags = MS_SYSSPACE | MS_DATA;
841 	mounta.fstype = module;
842 	mounta.spec = spec;
843 	mounta.dir = path;
844 	if (lookupname(path, UIO_SYSSPACE, FOLLOW, NULLVPP, &mvp)) {
845 		cmn_err(CE_WARN, "Cannot find %s", path);
846 		return;
847 	}
848 	if (domount(NULL, &mounta, mvp, CRED(), &vfsp))
849 		cmn_err(CE_WARN, "Cannot mount %s", path);
850 	else
851 		VFS_RELE(vfsp);
852 	VN_RELE(mvp);
853 }
854 
855 /*
856  * vfs_mountroot is called by main() to mount the root filesystem.
857  */
858 void
859 vfs_mountroot(void)
860 {
861 	struct vnode	*rvp = NULL;
862 	char		*path;
863 	size_t		plen;
864 	struct vfssw	*vswp;
865 	proc_t		*p;
866 
867 	rw_init(&vfssw_lock, NULL, RW_DEFAULT, NULL);
868 	rw_init(&vfslist, NULL, RW_DEFAULT, NULL);
869 
870 	/*
871 	 * Alloc the avl trees for quick indexing via dev and mountpoint
872 	 */
873 	avl_create(&vfs_by_dev, vfs_cmp_dev, sizeof(vfs_t),
874 	    offsetof(vfs_t, vfs_avldev));
875 	avl_create(&vfs_by_mntpnt, vfs_cmp_mntpnt, sizeof(vfs_t),
876 	    offsetof(vfs_t, vfs_avlmntpnt));
877 
878 	/*
879 	 * Alloc the vfs hash bucket array and locks
880 	 */
881 	rvfs_list = kmem_zalloc(vfshsz * sizeof (rvfs_t), KM_SLEEP);
882 
883 	/*
884 	 * Call machine-dependent routine "rootconf" to choose a root
885 	 * file system type.
886 	 */
887 	if (rootconf())
888 		panic("vfs_mountroot: cannot mount root");
889 	/*
890 	 * Get vnode for '/'.  Set up rootdir, u.u_rdir and u.u_cdir
891 	 * to point to it.  These are used by lookuppn() so that it
892 	 * knows where to start from ('/' or '.').
893 	 */
894 	vfs_setmntpoint(rootvfs, "/", 0);
895 	if (VFS_ROOT(rootvfs, &rootdir))
896 		panic("vfs_mountroot: no root vnode");
897 
898 	/*
899 	 * At this point, the process tree consists of p0 and possibly some
900 	 * direct children of p0.  (i.e. there are no grandchildren)
901 	 *
902 	 * Walk through them all, setting their current directory.
903 	 */
904 	mutex_enter(&pidlock);
905 	for (p = practive; p != NULL; p = p->p_next) {
906 		ASSERT(p == &p0 || p->p_parent == &p0);
907 
908 		PTOU(p)->u_cdir = rootdir;
909 		VN_HOLD(PTOU(p)->u_cdir);
910 		PTOU(p)->u_rdir = NULL;
911 	}
912 	mutex_exit(&pidlock);
913 
914 	/*
915 	 * Setup the global zone's rootvp, now that it exists.
916 	 */
917 	global_zone->zone_rootvp = rootdir;
918 	VN_HOLD(global_zone->zone_rootvp);
919 
920 	/*
921 	 * Notify the module code that it can begin using the
922 	 * root filesystem instead of the boot program's services.
923 	 */
924 	modrootloaded = 1;
925 
926 	/*
927 	 * Special handling for a ZFS root file system.
928 	 */
929 	zfs_boot_init();
930 
931 	/*
932 	 * Set up mnttab information for root
933 	 */
934 	vfs_setresource(rootvfs, rootfs.bo_name, 0);
935 
936 	/*
937 	 * Notify cluster software that the root filesystem is available.
938 	 */
939 	clboot_mountroot();
940 
941 	/* Now that we're all done with the root FS, set up its vopstats */
942 	if ((vswp = vfs_getvfsswbyvfsops(vfs_getops(rootvfs))) != NULL) {
943 		/* Set flag for statistics collection */
944 		if (vswp->vsw_flag & VSW_STATS) {
945 			initialize_vopstats(&rootvfs->vfs_vopstats);
946 			rootvfs->vfs_flag |= VFS_STATS;
947 			rootvfs->vfs_fstypevsp =
948 			    get_fstype_vopstats(rootvfs, vswp);
949 			rootvfs->vfs_vskap = get_vskstat_anchor(rootvfs);
950 		}
951 		vfs_unrefvfssw(vswp);
952 	}
953 
954 	/*
955 	 * Mount /devices, /dev instance 1, /system/contract, /etc/mnttab,
956 	 * /etc/svc/volatile, /etc/dfs/sharetab, /system/object, and /proc.
957 	 */
958 	vfs_mountdevices();
959 	vfs_mountdev1();
960 
961 	vfs_mountfs("ctfs", "ctfs", CTFS_ROOT);
962 	vfs_mountfs("proc", "/proc", "/proc");
963 	vfs_mountfs("mntfs", "/etc/mnttab", "/etc/mnttab");
964 	vfs_mountfs("tmpfs", "/etc/svc/volatile", "/etc/svc/volatile");
965 	vfs_mountfs("objfs", "objfs", OBJFS_ROOT);
966 
967 	if (getzoneid() == GLOBAL_ZONEID) {
968 		vfs_mountfs("sharefs", "sharefs", "/etc/dfs/sharetab");
969 	}
970 
971 #ifdef __sparc
972 	/*
973 	 * This bit of magic can go away when we convert sparc to
974 	 * the new boot architecture based on ramdisk.
975 	 *
976 	 * Booting off a mirrored root volume:
977 	 * At this point, we have booted and mounted root on a
978 	 * single component of the mirror.  Complete the boot
979 	 * by configuring SVM and converting the root to the
980 	 * dev_t of the mirrored root device.  This dev_t conversion
981 	 * only works because the underlying device doesn't change.
982 	 */
983 	if (root_is_svm) {
984 		if (svm_rootconf()) {
985 			panic("vfs_mountroot: cannot remount root");
986 		}
987 
988 		/*
989 		 * mnttab should reflect the new root device
990 		 */
991 		vfs_lock_wait(rootvfs);
992 		vfs_setresource(rootvfs, rootfs.bo_name, 0);
993 		vfs_unlock(rootvfs);
994 	}
995 #endif /* __sparc */
996 
997 	if (strcmp(rootfs.bo_fstype, "zfs") != 0) {
998 		/*
999 		 * Look up the root device via devfs so that a dv_node is
1000 		 * created for it. The vnode is never VN_RELE()ed.
1001 		 * We allocate more than MAXPATHLEN so that the
1002 		 * buffer passed to i_ddi_prompath_to_devfspath() is
1003 		 * exactly MAXPATHLEN (the function expects a buffer
1004 		 * of that length).
1005 		 */
1006 		plen = strlen("/devices");
1007 		path = kmem_alloc(plen + MAXPATHLEN, KM_SLEEP);
1008 		(void) strcpy(path, "/devices");
1009 
1010 		if (i_ddi_prompath_to_devfspath(rootfs.bo_name, path + plen)
1011 		    != DDI_SUCCESS ||
1012 		    lookupname(path, UIO_SYSSPACE, FOLLOW, NULLVPP, &rvp)) {
1013 
1014 			/* NUL terminate in case "path" has garbage */
1015 			path[plen + MAXPATHLEN - 1] = '\0';
1016 #ifdef	DEBUG
1017 			cmn_err(CE_WARN, "!Cannot lookup root device: %s",
1018 			    path);
1019 #endif
1020 		}
1021 		kmem_free(path, plen + MAXPATHLEN);
1022 	}
1023 
1024 	vfs_mnttabvp_setup();
1025 }
1026 
1027 /*
1028  * Check to see if our "block device" is actually a file.  If so,
1029  * automatically add a lofi device, and keep track of this fact.
1030  */
1031 static int
1032 lofi_add(const char *fsname, struct vfs *vfsp,
1033     mntopts_t *mntopts, struct mounta *uap)
1034 {
1035 	int fromspace = (uap->flags & MS_SYSSPACE) ?
1036 	    UIO_SYSSPACE : UIO_USERSPACE;
1037 	struct lofi_ioctl *li = NULL;
1038 	struct vnode *vp = NULL;
1039 	struct pathname	pn = { NULL };
1040 	ldi_ident_t ldi_id;
1041 	ldi_handle_t ldi_hdl;
1042 	vfssw_t *vfssw;
1043 	int minor;
1044 	int err = 0;
1045 
1046 	if ((vfssw = vfs_getvfssw(fsname)) == NULL)
1047 		return (0);
1048 
1049 	if (!(vfssw->vsw_flag & VSW_CANLOFI)) {
1050 		vfs_unrefvfssw(vfssw);
1051 		return (0);
1052 	}
1053 
1054 	vfs_unrefvfssw(vfssw);
1055 	vfssw = NULL;
1056 
1057 	if (pn_get(uap->spec, fromspace, &pn) != 0)
1058 		return (0);
1059 
1060 	if (lookupname(uap->spec, fromspace, FOLLOW, NULL, &vp) != 0)
1061 		goto out;
1062 
1063 	if (vp->v_type != VREG)
1064 		goto out;
1065 
1066 	/* OK, this is a lofi mount. */
1067 
1068 	if ((uap->flags & (MS_REMOUNT|MS_GLOBAL)) ||
1069 	    vfs_optionisset_nolock(mntopts, MNTOPT_SUID, NULL) ||
1070 	    vfs_optionisset_nolock(mntopts, MNTOPT_SETUID, NULL) ||
1071 	    vfs_optionisset_nolock(mntopts, MNTOPT_DEVICES, NULL)) {
1072 		err = EINVAL;
1073 		goto out;
1074 	}
1075 
1076 	ldi_id = ldi_ident_from_anon();
1077 	li = kmem_zalloc(sizeof (*li), KM_SLEEP);
1078 	(void) strlcpy(li->li_filename, pn.pn_path, MAXPATHLEN);
1079 
1080 	err = ldi_open_by_name("/dev/lofictl", FREAD | FWRITE, kcred,
1081 	    &ldi_hdl, ldi_id);
1082 
1083 	if (err)
1084 		goto out2;
1085 
1086 	err = ldi_ioctl(ldi_hdl, LOFI_MAP_FILE, (intptr_t)li,
1087 	    FREAD | FWRITE | FKIOCTL, kcred, &minor);
1088 
1089 	(void) ldi_close(ldi_hdl, FREAD | FWRITE, kcred);
1090 
1091 	if (!err)
1092 		vfsp->vfs_lofi_minor = minor;
1093 
1094 out2:
1095 	ldi_ident_release(ldi_id);
1096 out:
1097 	if (li != NULL)
1098 		kmem_free(li, sizeof (*li));
1099 	if (vp != NULL)
1100 		VN_RELE(vp);
1101 	pn_free(&pn);
1102 	return (err);
1103 }
1104 
1105 static void
1106 lofi_remove(struct vfs *vfsp)
1107 {
1108 	struct lofi_ioctl *li = NULL;
1109 	ldi_ident_t ldi_id;
1110 	ldi_handle_t ldi_hdl;
1111 	int err;
1112 
1113 	if (vfsp->vfs_lofi_minor == 0)
1114 		return;
1115 
1116 	ldi_id = ldi_ident_from_anon();
1117 
1118 	li = kmem_zalloc(sizeof (*li), KM_SLEEP);
1119 	li->li_minor = vfsp->vfs_lofi_minor;
1120 	li->li_cleanup = B_TRUE;
1121 
1122 	err = ldi_open_by_name("/dev/lofictl", FREAD | FWRITE, kcred,
1123 	    &ldi_hdl, ldi_id);
1124 
1125 	if (err)
1126 		goto out;
1127 
1128 	err = ldi_ioctl(ldi_hdl, LOFI_UNMAP_FILE_MINOR, (intptr_t)li,
1129 	    FREAD | FWRITE | FKIOCTL, kcred, NULL);
1130 
1131 	(void) ldi_close(ldi_hdl, FREAD | FWRITE, kcred);
1132 
1133 	if (!err)
1134 		vfsp->vfs_lofi_minor = 0;
1135 
1136 out:
1137 	ldi_ident_release(ldi_id);
1138 	if (li != NULL)
1139 		kmem_free(li, sizeof (*li));
1140 }
1141 
1142 /*
1143  * Common mount code.  Called from the system call entry point, from autofs,
1144  * nfsv4 trigger mounts, and from pxfs.
1145  *
1146  * Takes the effective file system type, mount arguments, the mount point
1147  * vnode, flags specifying whether the mount is a remount and whether it
1148  * should be entered into the vfs list, and credentials.  Fills in its vfspp
1149  * parameter with the mounted file system instance's vfs.
1150  *
1151  * Note that the effective file system type is specified as a string.  It may
1152  * be null, in which case it's determined from the mount arguments, and may
1153  * differ from the type specified in the mount arguments; this is a hook to
1154  * allow interposition when instantiating file system instances.
1155  *
1156  * The caller is responsible for releasing its own hold on the mount point
1157  * vp (this routine does its own hold when necessary).
1158  * Also note that for remounts, the mount point vp should be the vnode for
1159  * the root of the file system rather than the vnode that the file system
1160  * is mounted on top of.
1161  */
1162 int
1163 domount(char *fsname, struct mounta *uap, vnode_t *vp, struct cred *credp,
1164 	struct vfs **vfspp)
1165 {
1166 	struct vfssw	*vswp;
1167 	vfsops_t	*vfsops;
1168 	struct vfs	*vfsp;
1169 	struct vnode	*bvp;
1170 	dev_t		bdev = 0;
1171 	mntopts_t	mnt_mntopts;
1172 	int		error = 0;
1173 	int		copyout_error = 0;
1174 	int		ovflags;
1175 	char		*opts = uap->optptr;
1176 	char		*inargs = opts;
1177 	int		optlen = uap->optlen;
1178 	int		remount;
1179 	int		rdonly;
1180 	int		nbmand = 0;
1181 	int		delmip = 0;
1182 	int		addmip = 0;
1183 	int		splice = ((uap->flags & MS_NOSPLICE) == 0);
1184 	int		fromspace = (uap->flags & MS_SYSSPACE) ?
1185 	    UIO_SYSSPACE : UIO_USERSPACE;
1186 	char		*resource = NULL, *mountpt = NULL;
1187 	refstr_t	*oldresource, *oldmntpt;
1188 	struct pathname	pn, rpn;
1189 	vsk_anchor_t	*vskap;
1190 	char fstname[FSTYPSZ];
1191 	zone_t		*zone;
1192 
1193 	/*
1194 	 * The v_flag value for the mount point vp is permanently set
1195 	 * to VVFSLOCK so that no one bypasses the vn_vfs*locks routine
1196 	 * for mount point locking.
1197 	 */
1198 	mutex_enter(&vp->v_lock);
1199 	vp->v_flag |= VVFSLOCK;
1200 	mutex_exit(&vp->v_lock);
1201 
1202 	mnt_mntopts.mo_count = 0;
1203 	/*
1204 	 * Find the ops vector to use to invoke the file system-specific mount
1205 	 * method.  If the fsname argument is non-NULL, use it directly.
1206 	 * Otherwise, dig the file system type information out of the mount
1207 	 * arguments.
1208 	 *
1209 	 * A side effect is to hold the vfssw entry.
1210 	 *
1211 	 * Mount arguments can be specified in several ways, which are
1212 	 * distinguished by flag bit settings.  The preferred way is to set
1213 	 * MS_OPTIONSTR, indicating an 8 argument mount with the file system
1214 	 * type supplied as a character string and the last two arguments
1215 	 * being a pointer to a character buffer and the size of the buffer.
1216 	 * On entry, the buffer holds a null terminated list of options; on
1217 	 * return, the string is the list of options the file system
1218 	 * recognized. If MS_DATA is set arguments five and six point to a
1219 	 * block of binary data which the file system interprets.
1220 	 * A further wrinkle is that some callers don't set MS_FSS and MS_DATA
1221 	 * consistently with these conventions.  To handle them, we check to
1222 	 * see whether the pointer to the file system name has a numeric value
1223 	 * less than 256.  If so, we treat it as an index.
1224 	 */
1225 	if (fsname != NULL) {
1226 		if ((vswp = vfs_getvfssw(fsname)) == NULL) {
1227 			return (EINVAL);
1228 		}
1229 	} else if (uap->flags & (MS_OPTIONSTR | MS_DATA | MS_FSS)) {
1230 		size_t n;
1231 		uint_t fstype;
1232 
1233 		fsname = fstname;
1234 
1235 		if ((fstype = (uintptr_t)uap->fstype) < 256) {
1236 			RLOCK_VFSSW();
1237 			if (fstype == 0 || fstype >= nfstype ||
1238 			    !ALLOCATED_VFSSW(&vfssw[fstype])) {
1239 				RUNLOCK_VFSSW();
1240 				return (EINVAL);
1241 			}
1242 			(void) strcpy(fsname, vfssw[fstype].vsw_name);
1243 			RUNLOCK_VFSSW();
1244 			if ((vswp = vfs_getvfssw(fsname)) == NULL)
1245 				return (EINVAL);
1246 		} else {
1247 			/*
1248 			 * Handle either kernel or user address space.
1249 			 */
1250 			if (uap->flags & MS_SYSSPACE) {
1251 				error = copystr(uap->fstype, fsname,
1252 				    FSTYPSZ, &n);
1253 			} else {
1254 				error = copyinstr(uap->fstype, fsname,
1255 				    FSTYPSZ, &n);
1256 			}
1257 			if (error) {
1258 				if (error == ENAMETOOLONG)
1259 					return (EINVAL);
1260 				return (error);
1261 			}
1262 			if ((vswp = vfs_getvfssw(fsname)) == NULL)
1263 				return (EINVAL);
1264 		}
1265 	} else {
1266 		if ((vswp = vfs_getvfsswbyvfsops(vfs_getops(rootvfs))) == NULL)
1267 			return (EINVAL);
1268 		fsname = vswp->vsw_name;
1269 	}
1270 	if (!VFS_INSTALLED(vswp))
1271 		return (EINVAL);
1272 
1273 	if ((error = secpolicy_fs_allowed_mount(fsname)) != 0)  {
1274 		vfs_unrefvfssw(vswp);
1275 		return (error);
1276 	}
1277 
1278 	vfsops = &vswp->vsw_vfsops;
1279 
1280 	vfs_copyopttbl(&vswp->vsw_optproto, &mnt_mntopts);
1281 	/*
1282 	 * Fetch mount options and parse them for generic vfs options
1283 	 */
1284 	if (uap->flags & MS_OPTIONSTR) {
1285 		/*
1286 		 * Limit the buffer size
1287 		 */
1288 		if (optlen < 0 || optlen > MAX_MNTOPT_STR) {
1289 			error = EINVAL;
1290 			goto errout;
1291 		}
1292 		if ((uap->flags & MS_SYSSPACE) == 0) {
1293 			inargs = kmem_alloc(MAX_MNTOPT_STR, KM_SLEEP);
1294 			inargs[0] = '\0';
1295 			if (optlen) {
1296 				error = copyinstr(opts, inargs, (size_t)optlen,
1297 				    NULL);
1298 				if (error) {
1299 					goto errout;
1300 				}
1301 			}
1302 		}
1303 		vfs_parsemntopts(&mnt_mntopts, inargs, 0);
1304 	}
1305 	/*
1306 	 * Flag bits override the options string.
1307 	 */
1308 	if (uap->flags & MS_REMOUNT)
1309 		vfs_setmntopt_nolock(&mnt_mntopts, MNTOPT_REMOUNT, NULL, 0, 0);
1310 	if (uap->flags & MS_RDONLY)
1311 		vfs_setmntopt_nolock(&mnt_mntopts, MNTOPT_RO, NULL, 0, 0);
1312 	if (uap->flags & MS_NOSUID)
1313 		vfs_setmntopt_nolock(&mnt_mntopts, MNTOPT_NOSUID, NULL, 0, 0);
1314 
1315 	/*
1316 	 * Check if this is a remount; must be set in the option string and
1317 	 * the file system must support a remount option.
1318 	 */
1319 	if (remount = vfs_optionisset_nolock(&mnt_mntopts,
1320 	    MNTOPT_REMOUNT, NULL)) {
1321 		if (!(vswp->vsw_flag & VSW_CANREMOUNT)) {
1322 			error = ENOTSUP;
1323 			goto errout;
1324 		}
1325 		uap->flags |= MS_REMOUNT;
1326 	}
1327 
1328 	/*
1329 	 * uap->flags and vfs_optionisset() should agree.
1330 	 */
1331 	if (rdonly = vfs_optionisset_nolock(&mnt_mntopts, MNTOPT_RO, NULL)) {
1332 		uap->flags |= MS_RDONLY;
1333 	}
1334 	if (vfs_optionisset_nolock(&mnt_mntopts, MNTOPT_NOSUID, NULL)) {
1335 		uap->flags |= MS_NOSUID;
1336 	}
1337 	nbmand = vfs_optionisset_nolock(&mnt_mntopts, MNTOPT_NBMAND, NULL);
1338 	ASSERT(splice || !remount);
1339 	/*
1340 	 * If we are splicing the fs into the namespace,
1341 	 * perform mount point checks.
1342 	 *
1343 	 * We want to resolve the path for the mount point to eliminate
1344 	 * '.' and ".." and symlinks in mount points; we can't do the
1345 	 * same for the resource string, since it would turn
1346 	 * "/dev/dsk/c0t0d0s0" into "/devices/pci@...".  We need to do
1347 	 * this before grabbing vn_vfswlock(), because otherwise we
1348 	 * would deadlock with lookuppn().
1349 	 */
1350 	if (splice) {
1351 		ASSERT(vp->v_count > 0);
1352 
1353 		/*
1354 		 * Pick up mount point and device from appropriate space.
1355 		 */
1356 		if (pn_get(uap->spec, fromspace, &pn) == 0) {
1357 			resource = kmem_alloc(pn.pn_pathlen + 1,
1358 			    KM_SLEEP);
1359 			(void) strcpy(resource, pn.pn_path);
1360 			pn_free(&pn);
1361 		}
1362 		/*
1363 		 * Do a lookupname prior to taking the
1364 		 * writelock. Mark this as completed if
1365 		 * successful for later cleanup and addition to
1366 		 * the mount in progress table.
1367 		 */
1368 		if ((uap->flags & MS_GLOBAL) == 0 &&
1369 		    lookupname(uap->spec, fromspace,
1370 		    FOLLOW, NULL, &bvp) == 0) {
1371 			addmip = 1;
1372 		}
1373 
1374 		if ((error = pn_get(uap->dir, fromspace, &pn)) == 0) {
1375 			pathname_t *pnp;
1376 
1377 			if (*pn.pn_path != '/') {
1378 				error = EINVAL;
1379 				pn_free(&pn);
1380 				goto errout;
1381 			}
1382 			pn_alloc(&rpn);
1383 			/*
1384 			 * Kludge to prevent autofs from deadlocking with
1385 			 * itself when it calls domount().
1386 			 *
1387 			 * If autofs is calling, it is because it is doing
1388 			 * (autofs) mounts in the process of an NFS mount.  A
1389 			 * lookuppn() here would cause us to block waiting for
1390 			 * said NFS mount to complete, which can't since this
1391 			 * is the thread that was supposed to doing it.
1392 			 */
1393 			if (fromspace == UIO_USERSPACE) {
1394 				if ((error = lookuppn(&pn, &rpn, FOLLOW, NULL,
1395 				    NULL)) == 0) {
1396 					pnp = &rpn;
1397 				} else {
1398 					/*
1399 					 * The file disappeared or otherwise
1400 					 * became inaccessible since we opened
1401 					 * it; might as well fail the mount
1402 					 * since the mount point is no longer
1403 					 * accessible.
1404 					 */
1405 					pn_free(&rpn);
1406 					pn_free(&pn);
1407 					goto errout;
1408 				}
1409 			} else {
1410 				pnp = &pn;
1411 			}
1412 			mountpt = kmem_alloc(pnp->pn_pathlen + 1, KM_SLEEP);
1413 			(void) strcpy(mountpt, pnp->pn_path);
1414 
1415 			/*
1416 			 * If the addition of the zone's rootpath
1417 			 * would push us over a total path length
1418 			 * of MAXPATHLEN, we fail the mount with
1419 			 * ENAMETOOLONG, which is what we would have
1420 			 * gotten if we were trying to perform the same
1421 			 * mount in the global zone.
1422 			 *
1423 			 * strlen() doesn't count the trailing
1424 			 * '\0', but zone_rootpathlen counts both a
1425 			 * trailing '/' and the terminating '\0'.
1426 			 */
1427 			if ((curproc->p_zone->zone_rootpathlen - 1 +
1428 			    strlen(mountpt)) > MAXPATHLEN ||
1429 			    (resource != NULL &&
1430 			    (curproc->p_zone->zone_rootpathlen - 1 +
1431 			    strlen(resource)) > MAXPATHLEN)) {
1432 				error = ENAMETOOLONG;
1433 			}
1434 
1435 			pn_free(&rpn);
1436 			pn_free(&pn);
1437 		}
1438 
1439 		if (error)
1440 			goto errout;
1441 
1442 		/*
1443 		 * Prevent path name resolution from proceeding past
1444 		 * the mount point.
1445 		 */
1446 		if (vn_vfswlock(vp) != 0) {
1447 			error = EBUSY;
1448 			goto errout;
1449 		}
1450 
1451 		/*
1452 		 * Verify that it's legitimate to establish a mount on
1453 		 * the prospective mount point.
1454 		 */
1455 		if (vn_mountedvfs(vp) != NULL) {
1456 			/*
1457 			 * The mount point lock was obtained after some
1458 			 * other thread raced through and established a mount.
1459 			 */
1460 			vn_vfsunlock(vp);
1461 			error = EBUSY;
1462 			goto errout;
1463 		}
1464 		if (vp->v_flag & VNOMOUNT) {
1465 			vn_vfsunlock(vp);
1466 			error = EINVAL;
1467 			goto errout;
1468 		}
1469 	}
1470 	if ((uap->flags & (MS_DATA | MS_OPTIONSTR)) == 0) {
1471 		uap->dataptr = NULL;
1472 		uap->datalen = 0;
1473 	}
1474 
1475 	/*
1476 	 * If this is a remount, we don't want to create a new VFS.
1477 	 * Instead, we pass the existing one with a remount flag.
1478 	 */
1479 	if (remount) {
1480 		/*
1481 		 * Confirm that the mount point is the root vnode of the
1482 		 * file system that is being remounted.
1483 		 * This can happen if the user specifies a different
1484 		 * mount point directory pathname in the (re)mount command.
1485 		 *
1486 		 * Code below can only be reached if splice is true, so it's
1487 		 * safe to do vn_vfsunlock() here.
1488 		 */
1489 		if ((vp->v_flag & VROOT) == 0) {
1490 			vn_vfsunlock(vp);
1491 			error = ENOENT;
1492 			goto errout;
1493 		}
1494 		/*
1495 		 * Disallow making file systems read-only unless file system
1496 		 * explicitly allows it in its vfssw.  Ignore other flags.
1497 		 */
1498 		if (rdonly && vn_is_readonly(vp) == 0 &&
1499 		    (vswp->vsw_flag & VSW_CANRWRO) == 0) {
1500 			vn_vfsunlock(vp);
1501 			error = EINVAL;
1502 			goto errout;
1503 		}
1504 		/*
1505 		 * Disallow changing the NBMAND disposition of the file
1506 		 * system on remounts.
1507 		 */
1508 		if ((nbmand && ((vp->v_vfsp->vfs_flag & VFS_NBMAND) == 0)) ||
1509 		    (!nbmand && (vp->v_vfsp->vfs_flag & VFS_NBMAND))) {
1510 			vn_vfsunlock(vp);
1511 			error = EINVAL;
1512 			goto errout;
1513 		}
1514 		vfsp = vp->v_vfsp;
1515 		ovflags = vfsp->vfs_flag;
1516 		vfsp->vfs_flag |= VFS_REMOUNT;
1517 		vfsp->vfs_flag &= ~VFS_RDONLY;
1518 	} else {
1519 		vfsp = vfs_alloc(KM_SLEEP);
1520 		VFS_INIT(vfsp, vfsops, NULL);
1521 	}
1522 
1523 	VFS_HOLD(vfsp);
1524 
1525 	if ((error = lofi_add(fsname, vfsp, &mnt_mntopts, uap)) != 0) {
1526 		if (!remount) {
1527 			if (splice)
1528 				vn_vfsunlock(vp);
1529 			vfs_free(vfsp);
1530 		} else {
1531 			vn_vfsunlock(vp);
1532 			VFS_RELE(vfsp);
1533 		}
1534 		goto errout;
1535 	}
1536 
1537 	/*
1538 	 * PRIV_SYS_MOUNT doesn't mean you can become root.
1539 	 */
1540 	if (vfsp->vfs_lofi_minor != 0) {
1541 		uap->flags |= MS_NOSUID;
1542 		vfs_setmntopt_nolock(&mnt_mntopts, MNTOPT_NOSUID, NULL, 0, 0);
1543 	}
1544 
1545 	/*
1546 	 * The vfs_reflock is not used anymore the code below explicitly
1547 	 * holds it preventing others accesing it directly.
1548 	 */
1549 	if ((sema_tryp(&vfsp->vfs_reflock) == 0) &&
1550 	    !(vfsp->vfs_flag & VFS_REMOUNT))
1551 		cmn_err(CE_WARN,
1552 		    "mount type %s couldn't get vfs_reflock", vswp->vsw_name);
1553 
1554 	/*
1555 	 * Lock the vfs. If this is a remount we want to avoid spurious umount
1556 	 * failures that happen as a side-effect of fsflush() and other mount
1557 	 * and unmount operations that might be going on simultaneously and
1558 	 * may have locked the vfs currently. To not return EBUSY immediately
1559 	 * here we use vfs_lock_wait() instead vfs_lock() for the remount case.
1560 	 */
1561 	if (!remount) {
1562 		if (error = vfs_lock(vfsp)) {
1563 			vfsp->vfs_flag = ovflags;
1564 
1565 			lofi_remove(vfsp);
1566 
1567 			if (splice)
1568 				vn_vfsunlock(vp);
1569 			vfs_free(vfsp);
1570 			goto errout;
1571 		}
1572 	} else {
1573 		vfs_lock_wait(vfsp);
1574 	}
1575 
1576 	/*
1577 	 * Add device to mount in progress table, global mounts require special
1578 	 * handling. It is possible that we have already done the lookupname
1579 	 * on a spliced, non-global fs. If so, we don't want to do it again
1580 	 * since we cannot do a lookupname after taking the
1581 	 * wlock above. This case is for a non-spliced, non-global filesystem.
1582 	 */
1583 	if (!addmip) {
1584 		if ((uap->flags & MS_GLOBAL) == 0 &&
1585 		    lookupname(uap->spec, fromspace, FOLLOW, NULL, &bvp) == 0) {
1586 			addmip = 1;
1587 		}
1588 	}
1589 
1590 	if (addmip) {
1591 		vnode_t *lvp = NULL;
1592 
1593 		error = vfs_get_lofi(vfsp, &lvp);
1594 		if (error > 0) {
1595 			lofi_remove(vfsp);
1596 
1597 			if (splice)
1598 				vn_vfsunlock(vp);
1599 			vfs_unlock(vfsp);
1600 
1601 			if (remount) {
1602 				VFS_RELE(vfsp);
1603 			} else {
1604 				vfs_free(vfsp);
1605 			}
1606 
1607 			goto errout;
1608 		} else if (error == -1) {
1609 			bdev = bvp->v_rdev;
1610 			VN_RELE(bvp);
1611 		} else {
1612 			bdev = lvp->v_rdev;
1613 			VN_RELE(lvp);
1614 			VN_RELE(bvp);
1615 		}
1616 
1617 		vfs_addmip(bdev, vfsp);
1618 		addmip = 0;
1619 		delmip = 1;
1620 	}
1621 	/*
1622 	 * Invalidate cached entry for the mount point.
1623 	 */
1624 	if (splice)
1625 		dnlc_purge_vp(vp);
1626 
1627 	/*
1628 	 * If have an option string but the filesystem doesn't supply a
1629 	 * prototype options table, create a table with the global
1630 	 * options and sufficient room to accept all the options in the
1631 	 * string.  Then parse the passed in option string
1632 	 * accepting all the options in the string.  This gives us an
1633 	 * option table with all the proper cancel properties for the
1634 	 * global options.
1635 	 *
1636 	 * Filesystems that supply a prototype options table are handled
1637 	 * earlier in this function.
1638 	 */
1639 	if (uap->flags & MS_OPTIONSTR) {
1640 		if (!(vswp->vsw_flag & VSW_HASPROTO)) {
1641 			mntopts_t tmp_mntopts;
1642 
1643 			tmp_mntopts.mo_count = 0;
1644 			vfs_createopttbl_extend(&tmp_mntopts, inargs,
1645 			    &mnt_mntopts);
1646 			vfs_parsemntopts(&tmp_mntopts, inargs, 1);
1647 			vfs_swapopttbl_nolock(&mnt_mntopts, &tmp_mntopts);
1648 			vfs_freeopttbl(&tmp_mntopts);
1649 		}
1650 	}
1651 
1652 	/*
1653 	 * Serialize with zone state transitions.
1654 	 * See vfs_list_add; zone mounted into is:
1655 	 * 	zone_find_by_path(refstr_value(vfsp->vfs_mntpt))
1656 	 * not the zone doing the mount (curproc->p_zone), but if we're already
1657 	 * inside a NGZ, then we know what zone we are.
1658 	 */
1659 	if (INGLOBALZONE(curproc)) {
1660 		zone = zone_find_by_path(mountpt);
1661 		ASSERT(zone != NULL);
1662 	} else {
1663 		zone = curproc->p_zone;
1664 		/*
1665 		 * zone_find_by_path does a hold, so do one here too so that
1666 		 * we can do a zone_rele after mount_completed.
1667 		 */
1668 		zone_hold(zone);
1669 	}
1670 	mount_in_progress(zone);
1671 	/*
1672 	 * Instantiate (or reinstantiate) the file system.  If appropriate,
1673 	 * splice it into the file system name space.
1674 	 *
1675 	 * We want VFS_MOUNT() to be able to override the vfs_resource
1676 	 * string if necessary (ie, mntfs), and also for a remount to
1677 	 * change the same (necessary when remounting '/' during boot).
1678 	 * So we set up vfs_mntpt and vfs_resource to what we think they
1679 	 * should be, then hand off control to VFS_MOUNT() which can
1680 	 * override this.
1681 	 *
1682 	 * For safety's sake, when changing vfs_resource or vfs_mntpt of
1683 	 * a vfs which is on the vfs list (i.e. during a remount), we must
1684 	 * never set those fields to NULL. Several bits of code make
1685 	 * assumptions that the fields are always valid.
1686 	 */
1687 	vfs_swapopttbl(&mnt_mntopts, &vfsp->vfs_mntopts);
1688 	if (remount) {
1689 		if ((oldresource = vfsp->vfs_resource) != NULL)
1690 			refstr_hold(oldresource);
1691 		if ((oldmntpt = vfsp->vfs_mntpt) != NULL)
1692 			refstr_hold(oldmntpt);
1693 	}
1694 	vfs_setresource(vfsp, resource, 0);
1695 	vfs_setmntpoint(vfsp, mountpt, 0);
1696 
1697 	/*
1698 	 * going to mount on this vnode, so notify.
1699 	 */
1700 	vnevent_mountedover(vp, NULL);
1701 	error = VFS_MOUNT(vfsp, vp, uap, credp);
1702 
1703 	if (uap->flags & MS_RDONLY)
1704 		vfs_setmntopt(vfsp, MNTOPT_RO, NULL, 0);
1705 	if (uap->flags & MS_NOSUID)
1706 		vfs_setmntopt(vfsp, MNTOPT_NOSUID, NULL, 0);
1707 	if (uap->flags & MS_GLOBAL)
1708 		vfs_setmntopt(vfsp, MNTOPT_GLOBAL, NULL, 0);
1709 
1710 	if (error) {
1711 		lofi_remove(vfsp);
1712 
1713 		if (remount) {
1714 			/* put back pre-remount options */
1715 			vfs_swapopttbl(&mnt_mntopts, &vfsp->vfs_mntopts);
1716 			vfs_setmntpoint(vfsp, refstr_value(oldmntpt),
1717 			    VFSSP_VERBATIM);
1718 			if (oldmntpt)
1719 				refstr_rele(oldmntpt);
1720 			vfs_setresource(vfsp, refstr_value(oldresource),
1721 			    VFSSP_VERBATIM);
1722 			if (oldresource)
1723 				refstr_rele(oldresource);
1724 			vfsp->vfs_flag = ovflags;
1725 			vfs_unlock(vfsp);
1726 			VFS_RELE(vfsp);
1727 		} else {
1728 			vfs_unlock(vfsp);
1729 			vfs_freemnttab(vfsp);
1730 			vfs_free(vfsp);
1731 		}
1732 	} else {
1733 		/*
1734 		 * Set the mount time to now
1735 		 */
1736 		vfsp->vfs_mtime = ddi_get_time();
1737 		if (remount) {
1738 			vfsp->vfs_flag &= ~VFS_REMOUNT;
1739 			if (oldresource)
1740 				refstr_rele(oldresource);
1741 			if (oldmntpt)
1742 				refstr_rele(oldmntpt);
1743 		} else if (splice) {
1744 			/*
1745 			 * Link vfsp into the name space at the mount
1746 			 * point. Vfs_add() is responsible for
1747 			 * holding the mount point which will be
1748 			 * released when vfs_remove() is called.
1749 			 */
1750 			vfs_add(vp, vfsp, uap->flags);
1751 		} else {
1752 			/*
1753 			 * Hold the reference to file system which is
1754 			 * not linked into the name space.
1755 			 */
1756 			vfsp->vfs_zone = NULL;
1757 			VFS_HOLD(vfsp);
1758 			vfsp->vfs_vnodecovered = NULL;
1759 		}
1760 		/*
1761 		 * Set flags for global options encountered
1762 		 */
1763 		if (vfs_optionisset(vfsp, MNTOPT_RO, NULL))
1764 			vfsp->vfs_flag |= VFS_RDONLY;
1765 		else
1766 			vfsp->vfs_flag &= ~VFS_RDONLY;
1767 		if (vfs_optionisset(vfsp, MNTOPT_NOSUID, NULL)) {
1768 			vfsp->vfs_flag |= (VFS_NOSETUID|VFS_NODEVICES);
1769 		} else {
1770 			if (vfs_optionisset(vfsp, MNTOPT_NODEVICES, NULL))
1771 				vfsp->vfs_flag |= VFS_NODEVICES;
1772 			else
1773 				vfsp->vfs_flag &= ~VFS_NODEVICES;
1774 			if (vfs_optionisset(vfsp, MNTOPT_NOSETUID, NULL))
1775 				vfsp->vfs_flag |= VFS_NOSETUID;
1776 			else
1777 				vfsp->vfs_flag &= ~VFS_NOSETUID;
1778 		}
1779 		if (vfs_optionisset(vfsp, MNTOPT_NBMAND, NULL))
1780 			vfsp->vfs_flag |= VFS_NBMAND;
1781 		else
1782 			vfsp->vfs_flag &= ~VFS_NBMAND;
1783 
1784 		if (vfs_optionisset(vfsp, MNTOPT_XATTR, NULL))
1785 			vfsp->vfs_flag |= VFS_XATTR;
1786 		else
1787 			vfsp->vfs_flag &= ~VFS_XATTR;
1788 
1789 		if (vfs_optionisset(vfsp, MNTOPT_NOEXEC, NULL))
1790 			vfsp->vfs_flag |= VFS_NOEXEC;
1791 		else
1792 			vfsp->vfs_flag &= ~VFS_NOEXEC;
1793 
1794 		/*
1795 		 * Now construct the output option string of options
1796 		 * we recognized.
1797 		 */
1798 		if (uap->flags & MS_OPTIONSTR) {
1799 			vfs_list_read_lock();
1800 			copyout_error = vfs_buildoptionstr(
1801 			    &vfsp->vfs_mntopts, inargs, optlen);
1802 			vfs_list_unlock();
1803 			if (copyout_error == 0 &&
1804 			    (uap->flags & MS_SYSSPACE) == 0) {
1805 				copyout_error = copyoutstr(inargs, opts,
1806 				    optlen, NULL);
1807 			}
1808 		}
1809 
1810 		/*
1811 		 * If this isn't a remount, set up the vopstats before
1812 		 * anyone can touch this. We only allow spliced file
1813 		 * systems (file systems which are in the namespace) to
1814 		 * have the VFS_STATS flag set.
1815 		 * NOTE: PxFS mounts the underlying file system with
1816 		 * MS_NOSPLICE set and copies those vfs_flags to its private
1817 		 * vfs structure. As a result, PxFS should never have
1818 		 * the VFS_STATS flag or else we might access the vfs
1819 		 * statistics-related fields prior to them being
1820 		 * properly initialized.
1821 		 */
1822 		if (!remount && (vswp->vsw_flag & VSW_STATS) && splice) {
1823 			initialize_vopstats(&vfsp->vfs_vopstats);
1824 			/*
1825 			 * We need to set vfs_vskap to NULL because there's
1826 			 * a chance it won't be set below.  This is checked
1827 			 * in teardown_vopstats() so we can't have garbage.
1828 			 */
1829 			vfsp->vfs_vskap = NULL;
1830 			vfsp->vfs_flag |= VFS_STATS;
1831 			vfsp->vfs_fstypevsp = get_fstype_vopstats(vfsp, vswp);
1832 		}
1833 
1834 		if (vswp->vsw_flag & VSW_XID)
1835 			vfsp->vfs_flag |= VFS_XID;
1836 
1837 		vfs_unlock(vfsp);
1838 	}
1839 	mount_completed(zone);
1840 	zone_rele(zone);
1841 	if (splice)
1842 		vn_vfsunlock(vp);
1843 
1844 	if ((error == 0) && (copyout_error == 0)) {
1845 		if (!remount) {
1846 			/*
1847 			 * Don't call get_vskstat_anchor() while holding
1848 			 * locks since it allocates memory and calls
1849 			 * VFS_STATVFS().  For NFS, the latter can generate
1850 			 * an over-the-wire call.
1851 			 */
1852 			vskap = get_vskstat_anchor(vfsp);
1853 			/* Only take the lock if we have something to do */
1854 			if (vskap != NULL) {
1855 				vfs_lock_wait(vfsp);
1856 				if (vfsp->vfs_flag & VFS_STATS) {
1857 					vfsp->vfs_vskap = vskap;
1858 				}
1859 				vfs_unlock(vfsp);
1860 			}
1861 		}
1862 		/* Return vfsp to caller. */
1863 		*vfspp = vfsp;
1864 	}
1865 errout:
1866 	vfs_freeopttbl(&mnt_mntopts);
1867 	if (resource != NULL)
1868 		kmem_free(resource, strlen(resource) + 1);
1869 	if (mountpt != NULL)
1870 		kmem_free(mountpt, strlen(mountpt) + 1);
1871 	/*
1872 	 * It is possible we errored prior to adding to mount in progress
1873 	 * table. Must free vnode we acquired with successful lookupname.
1874 	 */
1875 	if (addmip)
1876 		VN_RELE(bvp);
1877 	if (delmip)
1878 		vfs_delmip(vfsp);
1879 	ASSERT(vswp != NULL);
1880 	vfs_unrefvfssw(vswp);
1881 	if (inargs != opts)
1882 		kmem_free(inargs, MAX_MNTOPT_STR);
1883 	if (copyout_error) {
1884 		lofi_remove(vfsp);
1885 		VFS_RELE(vfsp);
1886 		error = copyout_error;
1887 	}
1888 	return (error);
1889 }
1890 
1891 static void
1892 vfs_setpath(
1893     struct vfs *vfsp,		/* vfs being updated */
1894     refstr_t **refp,		/* Ref-count string to contain the new path */
1895     const char *newpath,	/* Path to add to refp (above) */
1896     uint32_t flag)		/* flag */
1897 {
1898 	size_t len;
1899 	refstr_t *ref;
1900 	zone_t *zone = curproc->p_zone;
1901 	char *sp;
1902 	int have_list_lock = 0;
1903 
1904 	ASSERT(!VFS_ON_LIST(vfsp) || vfs_lock_held(vfsp));
1905 
1906 	/*
1907 	 * New path must be less than MAXPATHLEN because mntfs
1908 	 * will only display up to MAXPATHLEN bytes. This is currently
1909 	 * safe, because domount() uses pn_get(), and other callers
1910 	 * similarly cap the size to fewer than MAXPATHLEN bytes.
1911 	 */
1912 
1913 	ASSERT(strlen(newpath) < MAXPATHLEN);
1914 
1915 	/* mntfs requires consistency while vfs list lock is held */
1916 
1917 	if (VFS_ON_LIST(vfsp)) {
1918 		have_list_lock = 1;
1919 		vfs_list_lock();
1920 	}
1921 
1922 	if (*refp != NULL)
1923 		refstr_rele(*refp);
1924 
1925 	/*
1926 	 * If we are in a non-global zone then we prefix the supplied path,
1927 	 * newpath, with the zone's root path, with two exceptions. The first
1928 	 * is where we have been explicitly directed to avoid doing so; this
1929 	 * will be the case following a failed remount, where the path supplied
1930 	 * will be a saved version which must now be restored. The second
1931 	 * exception is where newpath is not a pathname but a descriptive name,
1932 	 * e.g. "procfs".
1933 	 */
1934 	if (zone == global_zone || (flag & VFSSP_VERBATIM) || *newpath != '/') {
1935 		ref = refstr_alloc(newpath);
1936 		goto out;
1937 	}
1938 
1939 	/*
1940 	 * Truncate the trailing '/' in the zoneroot, and merge
1941 	 * in the zone's rootpath with the "newpath" (resource
1942 	 * or mountpoint) passed in.
1943 	 *
1944 	 * The size of the required buffer is thus the size of
1945 	 * the buffer required for the passed-in newpath
1946 	 * (strlen(newpath) + 1), plus the size of the buffer
1947 	 * required to hold zone_rootpath (zone_rootpathlen)
1948 	 * minus one for one of the now-superfluous NUL
1949 	 * terminations, minus one for the trailing '/'.
1950 	 *
1951 	 * That gives us:
1952 	 *
1953 	 * (strlen(newpath) + 1) + zone_rootpathlen - 1 - 1
1954 	 *
1955 	 * Which is what we have below.
1956 	 */
1957 
1958 	len = strlen(newpath) + zone->zone_rootpathlen - 1;
1959 	sp = kmem_alloc(len, KM_SLEEP);
1960 
1961 	/*
1962 	 * Copy everything including the trailing slash, which
1963 	 * we then overwrite with the NUL character.
1964 	 */
1965 
1966 	(void) strcpy(sp, zone->zone_rootpath);
1967 	sp[zone->zone_rootpathlen - 2] = '\0';
1968 	(void) strcat(sp, newpath);
1969 
1970 	ref = refstr_alloc(sp);
1971 	kmem_free(sp, len);
1972 out:
1973 	*refp = ref;
1974 
1975 	if (have_list_lock) {
1976 		vfs_mnttab_modtimeupd();
1977 		vfs_list_unlock();
1978 	}
1979 }
1980 
1981 /*
1982  * Record a mounted resource name in a vfs structure.
1983  * If vfsp is already mounted, caller must hold the vfs lock.
1984  */
1985 void
1986 vfs_setresource(struct vfs *vfsp, const char *resource, uint32_t flag)
1987 {
1988 	if (resource == NULL || resource[0] == '\0')
1989 		resource = VFS_NORESOURCE;
1990 	vfs_setpath(vfsp, &vfsp->vfs_resource, resource, flag);
1991 }
1992 
1993 /*
1994  * Record a mount point name in a vfs structure.
1995  * If vfsp is already mounted, caller must hold the vfs lock.
1996  */
1997 void
1998 vfs_setmntpoint(struct vfs *vfsp, const char *mntpt, uint32_t flag)
1999 {
2000 	if (mntpt == NULL || mntpt[0] == '\0')
2001 		mntpt = VFS_NOMNTPT;
2002 	vfs_setpath(vfsp, &vfsp->vfs_mntpt, mntpt, flag);
2003 }
2004 
2005 /* Returns the vfs_resource. Caller must call refstr_rele() when finished. */
2006 
2007 refstr_t *
2008 vfs_getresource(const struct vfs *vfsp)
2009 {
2010 	refstr_t *resource;
2011 
2012 	vfs_list_read_lock();
2013 	resource = vfsp->vfs_resource;
2014 	refstr_hold(resource);
2015 	vfs_list_unlock();
2016 
2017 	return (resource);
2018 }
2019 
2020 /* Returns the vfs_mntpt. Caller must call refstr_rele() when finished. */
2021 
2022 refstr_t *
2023 vfs_getmntpoint(const struct vfs *vfsp)
2024 {
2025 	refstr_t *mntpt;
2026 
2027 	vfs_list_read_lock();
2028 	mntpt = vfsp->vfs_mntpt;
2029 	refstr_hold(mntpt);
2030 	vfs_list_unlock();
2031 
2032 	return (mntpt);
2033 }
2034 
2035 /*
2036  * Create an empty options table with enough empty slots to hold all
2037  * The options in the options string passed as an argument.
2038  * Potentially prepend another options table.
2039  *
2040  * Note: caller is responsible for locking the vfs list, if needed,
2041  *       to protect mops.
2042  */
2043 static void
2044 vfs_createopttbl_extend(mntopts_t *mops, const char *opts,
2045     const mntopts_t *mtmpl)
2046 {
2047 	const char *s = opts;
2048 	uint_t count;
2049 
2050 	if (opts == NULL || *opts == '\0') {
2051 		count = 0;
2052 	} else {
2053 		count = 1;
2054 
2055 		/*
2056 		 * Count number of options in the string
2057 		 */
2058 		for (s = strchr(s, ','); s != NULL; s = strchr(s, ',')) {
2059 			count++;
2060 			s++;
2061 		}
2062 	}
2063 	vfs_copyopttbl_extend(mtmpl, mops, count);
2064 }
2065 
2066 /*
2067  * Create an empty options table with enough empty slots to hold all
2068  * The options in the options string passed as an argument.
2069  *
2070  * This function is *not* for general use by filesystems.
2071  *
2072  * Note: caller is responsible for locking the vfs list, if needed,
2073  *       to protect mops.
2074  */
2075 void
2076 vfs_createopttbl(mntopts_t *mops, const char *opts)
2077 {
2078 	vfs_createopttbl_extend(mops, opts, NULL);
2079 }
2080 
2081 
2082 /*
2083  * Swap two mount options tables
2084  */
2085 static void
2086 vfs_swapopttbl_nolock(mntopts_t *optbl1, mntopts_t *optbl2)
2087 {
2088 	uint_t tmpcnt;
2089 	mntopt_t *tmplist;
2090 
2091 	tmpcnt = optbl2->mo_count;
2092 	tmplist = optbl2->mo_list;
2093 	optbl2->mo_count = optbl1->mo_count;
2094 	optbl2->mo_list = optbl1->mo_list;
2095 	optbl1->mo_count = tmpcnt;
2096 	optbl1->mo_list = tmplist;
2097 }
2098 
2099 static void
2100 vfs_swapopttbl(mntopts_t *optbl1, mntopts_t *optbl2)
2101 {
2102 	vfs_list_lock();
2103 	vfs_swapopttbl_nolock(optbl1, optbl2);
2104 	vfs_mnttab_modtimeupd();
2105 	vfs_list_unlock();
2106 }
2107 
2108 static char **
2109 vfs_copycancelopt_extend(char **const moc, int extend)
2110 {
2111 	int i = 0;
2112 	int j;
2113 	char **result;
2114 
2115 	if (moc != NULL) {
2116 		for (; moc[i] != NULL; i++)
2117 			/* count number of options to cancel */;
2118 	}
2119 
2120 	if (i + extend == 0)
2121 		return (NULL);
2122 
2123 	result = kmem_alloc((i + extend + 1) * sizeof (char *), KM_SLEEP);
2124 
2125 	for (j = 0; j < i; j++) {
2126 		result[j] = kmem_alloc(strlen(moc[j]) + 1, KM_SLEEP);
2127 		(void) strcpy(result[j], moc[j]);
2128 	}
2129 	for (; j <= i + extend; j++)
2130 		result[j] = NULL;
2131 
2132 	return (result);
2133 }
2134 
2135 static void
2136 vfs_copyopt(const mntopt_t *s, mntopt_t *d)
2137 {
2138 	char *sp, *dp;
2139 
2140 	d->mo_flags = s->mo_flags;
2141 	d->mo_data = s->mo_data;
2142 	sp = s->mo_name;
2143 	if (sp != NULL) {
2144 		dp = kmem_alloc(strlen(sp) + 1, KM_SLEEP);
2145 		(void) strcpy(dp, sp);
2146 		d->mo_name = dp;
2147 	} else {
2148 		d->mo_name = NULL; /* should never happen */
2149 	}
2150 
2151 	d->mo_cancel = vfs_copycancelopt_extend(s->mo_cancel, 0);
2152 
2153 	sp = s->mo_arg;
2154 	if (sp != NULL) {
2155 		dp = kmem_alloc(strlen(sp) + 1, KM_SLEEP);
2156 		(void) strcpy(dp, sp);
2157 		d->mo_arg = dp;
2158 	} else {
2159 		d->mo_arg = NULL;
2160 	}
2161 }
2162 
2163 /*
2164  * Copy a mount options table, possibly allocating some spare
2165  * slots at the end.  It is permissible to copy_extend the NULL table.
2166  */
2167 static void
2168 vfs_copyopttbl_extend(const mntopts_t *smo, mntopts_t *dmo, int extra)
2169 {
2170 	uint_t i, count;
2171 	mntopt_t *motbl;
2172 
2173 	/*
2174 	 * Clear out any existing stuff in the options table being initialized
2175 	 */
2176 	vfs_freeopttbl(dmo);
2177 	count = (smo == NULL) ? 0 : smo->mo_count;
2178 	if ((count + extra) == 0)	/* nothing to do */
2179 		return;
2180 	dmo->mo_count = count + extra;
2181 	motbl = kmem_zalloc((count + extra) * sizeof (mntopt_t), KM_SLEEP);
2182 	dmo->mo_list = motbl;
2183 	for (i = 0; i < count; i++) {
2184 		vfs_copyopt(&smo->mo_list[i], &motbl[i]);
2185 	}
2186 	for (i = count; i < count + extra; i++) {
2187 		motbl[i].mo_flags = MO_EMPTY;
2188 	}
2189 }
2190 
2191 /*
2192  * Copy a mount options table.
2193  *
2194  * This function is *not* for general use by filesystems.
2195  *
2196  * Note: caller is responsible for locking the vfs list, if needed,
2197  *       to protect smo and dmo.
2198  */
2199 void
2200 vfs_copyopttbl(const mntopts_t *smo, mntopts_t *dmo)
2201 {
2202 	vfs_copyopttbl_extend(smo, dmo, 0);
2203 }
2204 
2205 static char **
2206 vfs_mergecancelopts(const mntopt_t *mop1, const mntopt_t *mop2)
2207 {
2208 	int c1 = 0;
2209 	int c2 = 0;
2210 	char **result;
2211 	char **sp1, **sp2, **dp;
2212 
2213 	/*
2214 	 * First we count both lists of cancel options.
2215 	 * If either is NULL or has no elements, we return a copy of
2216 	 * the other.
2217 	 */
2218 	if (mop1->mo_cancel != NULL) {
2219 		for (; mop1->mo_cancel[c1] != NULL; c1++)
2220 			/* count cancel options in mop1 */;
2221 	}
2222 
2223 	if (c1 == 0)
2224 		return (vfs_copycancelopt_extend(mop2->mo_cancel, 0));
2225 
2226 	if (mop2->mo_cancel != NULL) {
2227 		for (; mop2->mo_cancel[c2] != NULL; c2++)
2228 			/* count cancel options in mop2 */;
2229 	}
2230 
2231 	result = vfs_copycancelopt_extend(mop1->mo_cancel, c2);
2232 
2233 	if (c2 == 0)
2234 		return (result);
2235 
2236 	/*
2237 	 * When we get here, we've got two sets of cancel options;
2238 	 * we need to merge the two sets.  We know that the result
2239 	 * array has "c1+c2+1" entries and in the end we might shrink
2240 	 * it.
2241 	 * Result now has a copy of the c1 entries from mop1; we'll
2242 	 * now lookup all the entries of mop2 in mop1 and copy it if
2243 	 * it is unique.
2244 	 * This operation is O(n^2) but it's only called once per
2245 	 * filesystem per duplicate option.  This is a situation
2246 	 * which doesn't arise with the filesystems in ON and
2247 	 * n is generally 1.
2248 	 */
2249 
2250 	dp = &result[c1];
2251 	for (sp2 = mop2->mo_cancel; *sp2 != NULL; sp2++) {
2252 		for (sp1 = mop1->mo_cancel; *sp1 != NULL; sp1++) {
2253 			if (strcmp(*sp1, *sp2) == 0)
2254 				break;
2255 		}
2256 		if (*sp1 == NULL) {
2257 			/*
2258 			 * Option *sp2 not found in mop1, so copy it.
2259 			 * The calls to vfs_copycancelopt_extend()
2260 			 * guarantee that there's enough room.
2261 			 */
2262 			*dp = kmem_alloc(strlen(*sp2) + 1, KM_SLEEP);
2263 			(void) strcpy(*dp++, *sp2);
2264 		}
2265 	}
2266 	if (dp != &result[c1+c2]) {
2267 		size_t bytes = (dp - result + 1) * sizeof (char *);
2268 		char **nres = kmem_alloc(bytes, KM_SLEEP);
2269 
2270 		bcopy(result, nres, bytes);
2271 		kmem_free(result, (c1 + c2 + 1) * sizeof (char *));
2272 		result = nres;
2273 	}
2274 	return (result);
2275 }
2276 
2277 /*
2278  * Merge two mount option tables (outer and inner) into one.  This is very
2279  * similar to "merging" global variables and automatic variables in C.
2280  *
2281  * This isn't (and doesn't have to be) fast.
2282  *
2283  * This function is *not* for general use by filesystems.
2284  *
2285  * Note: caller is responsible for locking the vfs list, if needed,
2286  *       to protect omo, imo & dmo.
2287  */
2288 void
2289 vfs_mergeopttbl(const mntopts_t *omo, const mntopts_t *imo, mntopts_t *dmo)
2290 {
2291 	uint_t i, count;
2292 	mntopt_t *mop, *motbl;
2293 	uint_t freeidx;
2294 
2295 	/*
2296 	 * First determine how much space we need to allocate.
2297 	 */
2298 	count = omo->mo_count;
2299 	for (i = 0; i < imo->mo_count; i++) {
2300 		if (imo->mo_list[i].mo_flags & MO_EMPTY)
2301 			continue;
2302 		if (vfs_hasopt(omo, imo->mo_list[i].mo_name) == NULL)
2303 			count++;
2304 	}
2305 	ASSERT(count >= omo->mo_count &&
2306 	    count <= omo->mo_count + imo->mo_count);
2307 	motbl = kmem_alloc(count * sizeof (mntopt_t), KM_SLEEP);
2308 	for (i = 0; i < omo->mo_count; i++)
2309 		vfs_copyopt(&omo->mo_list[i], &motbl[i]);
2310 	freeidx = omo->mo_count;
2311 	for (i = 0; i < imo->mo_count; i++) {
2312 		if (imo->mo_list[i].mo_flags & MO_EMPTY)
2313 			continue;
2314 		if ((mop = vfs_hasopt(omo, imo->mo_list[i].mo_name)) != NULL) {
2315 			char **newcanp;
2316 			uint_t index = mop - omo->mo_list;
2317 
2318 			newcanp = vfs_mergecancelopts(mop, &motbl[index]);
2319 
2320 			vfs_freeopt(&motbl[index]);
2321 			vfs_copyopt(&imo->mo_list[i], &motbl[index]);
2322 
2323 			vfs_freecancelopt(motbl[index].mo_cancel);
2324 			motbl[index].mo_cancel = newcanp;
2325 		} else {
2326 			/*
2327 			 * If it's a new option, just copy it over to the first
2328 			 * free location.
2329 			 */
2330 			vfs_copyopt(&imo->mo_list[i], &motbl[freeidx++]);
2331 		}
2332 	}
2333 	dmo->mo_count = count;
2334 	dmo->mo_list = motbl;
2335 }
2336 
2337 /*
2338  * Functions to set and clear mount options in a mount options table.
2339  */
2340 
2341 /*
2342  * Clear a mount option, if it exists.
2343  *
2344  * The update_mnttab arg indicates whether mops is part of a vfs that is on
2345  * the vfs list.
2346  */
2347 static void
2348 vfs_clearmntopt_nolock(mntopts_t *mops, const char *opt, int update_mnttab)
2349 {
2350 	struct mntopt *mop;
2351 	uint_t i, count;
2352 
2353 	ASSERT(!update_mnttab || RW_WRITE_HELD(&vfslist));
2354 
2355 	count = mops->mo_count;
2356 	for (i = 0; i < count; i++) {
2357 		mop = &mops->mo_list[i];
2358 
2359 		if (mop->mo_flags & MO_EMPTY)
2360 			continue;
2361 		if (strcmp(opt, mop->mo_name))
2362 			continue;
2363 		mop->mo_flags &= ~MO_SET;
2364 		if (mop->mo_arg != NULL) {
2365 			kmem_free(mop->mo_arg, strlen(mop->mo_arg) + 1);
2366 		}
2367 		mop->mo_arg = NULL;
2368 		if (update_mnttab)
2369 			vfs_mnttab_modtimeupd();
2370 		break;
2371 	}
2372 }
2373 
2374 void
2375 vfs_clearmntopt(struct vfs *vfsp, const char *opt)
2376 {
2377 	int gotlock = 0;
2378 
2379 	if (VFS_ON_LIST(vfsp)) {
2380 		gotlock = 1;
2381 		vfs_list_lock();
2382 	}
2383 	vfs_clearmntopt_nolock(&vfsp->vfs_mntopts, opt, gotlock);
2384 	if (gotlock)
2385 		vfs_list_unlock();
2386 }
2387 
2388 
2389 /*
2390  * Set a mount option on.  If it's not found in the table, it's silently
2391  * ignored.  If the option has MO_IGNORE set, it is still set unless the
2392  * VFS_NOFORCEOPT bit is set in the flags.  Also, VFS_DISPLAY/VFS_NODISPLAY flag
2393  * bits can be used to toggle the MO_NODISPLAY bit for the option.
2394  * If the VFS_CREATEOPT flag bit is set then the first option slot with
2395  * MO_EMPTY set is created as the option passed in.
2396  *
2397  * The update_mnttab arg indicates whether mops is part of a vfs that is on
2398  * the vfs list.
2399  */
2400 static void
2401 vfs_setmntopt_nolock(mntopts_t *mops, const char *opt,
2402     const char *arg, int flags, int update_mnttab)
2403 {
2404 	mntopt_t *mop;
2405 	uint_t i, count;
2406 	char *sp;
2407 
2408 	ASSERT(!update_mnttab || RW_WRITE_HELD(&vfslist));
2409 
2410 	if (flags & VFS_CREATEOPT) {
2411 		if (vfs_hasopt(mops, opt) != NULL) {
2412 			flags &= ~VFS_CREATEOPT;
2413 		}
2414 	}
2415 	count = mops->mo_count;
2416 	for (i = 0; i < count; i++) {
2417 		mop = &mops->mo_list[i];
2418 
2419 		if (mop->mo_flags & MO_EMPTY) {
2420 			if ((flags & VFS_CREATEOPT) == 0)
2421 				continue;
2422 			sp = kmem_alloc(strlen(opt) + 1, KM_SLEEP);
2423 			(void) strcpy(sp, opt);
2424 			mop->mo_name = sp;
2425 			if (arg != NULL)
2426 				mop->mo_flags = MO_HASVALUE;
2427 			else
2428 				mop->mo_flags = 0;
2429 		} else if (strcmp(opt, mop->mo_name)) {
2430 			continue;
2431 		}
2432 		if ((mop->mo_flags & MO_IGNORE) && (flags & VFS_NOFORCEOPT))
2433 			break;
2434 		if (arg != NULL && (mop->mo_flags & MO_HASVALUE) != 0) {
2435 			sp = kmem_alloc(strlen(arg) + 1, KM_SLEEP);
2436 			(void) strcpy(sp, arg);
2437 		} else {
2438 			sp = NULL;
2439 		}
2440 		if (mop->mo_arg != NULL)
2441 			kmem_free(mop->mo_arg, strlen(mop->mo_arg) + 1);
2442 		mop->mo_arg = sp;
2443 		if (flags & VFS_DISPLAY)
2444 			mop->mo_flags &= ~MO_NODISPLAY;
2445 		if (flags & VFS_NODISPLAY)
2446 			mop->mo_flags |= MO_NODISPLAY;
2447 		mop->mo_flags |= MO_SET;
2448 		if (mop->mo_cancel != NULL) {
2449 			char **cp;
2450 
2451 			for (cp = mop->mo_cancel; *cp != NULL; cp++)
2452 				vfs_clearmntopt_nolock(mops, *cp, 0);
2453 		}
2454 		if (update_mnttab)
2455 			vfs_mnttab_modtimeupd();
2456 		break;
2457 	}
2458 }
2459 
2460 void
2461 vfs_setmntopt(struct vfs *vfsp, const char *opt, const char *arg, int flags)
2462 {
2463 	int gotlock = 0;
2464 
2465 	if (VFS_ON_LIST(vfsp)) {
2466 		gotlock = 1;
2467 		vfs_list_lock();
2468 	}
2469 	vfs_setmntopt_nolock(&vfsp->vfs_mntopts, opt, arg, flags, gotlock);
2470 	if (gotlock)
2471 		vfs_list_unlock();
2472 }
2473 
2474 
2475 /*
2476  * Add a "tag" option to a mounted file system's options list.
2477  *
2478  * Note: caller is responsible for locking the vfs list, if needed,
2479  *       to protect mops.
2480  */
2481 static mntopt_t *
2482 vfs_addtag(mntopts_t *mops, const char *tag)
2483 {
2484 	uint_t count;
2485 	mntopt_t *mop, *motbl;
2486 
2487 	count = mops->mo_count + 1;
2488 	motbl = kmem_zalloc(count * sizeof (mntopt_t), KM_SLEEP);
2489 	if (mops->mo_count) {
2490 		size_t len = (count - 1) * sizeof (mntopt_t);
2491 
2492 		bcopy(mops->mo_list, motbl, len);
2493 		kmem_free(mops->mo_list, len);
2494 	}
2495 	mops->mo_count = count;
2496 	mops->mo_list = motbl;
2497 	mop = &motbl[count - 1];
2498 	mop->mo_flags = MO_TAG;
2499 	mop->mo_name = kmem_alloc(strlen(tag) + 1, KM_SLEEP);
2500 	(void) strcpy(mop->mo_name, tag);
2501 	return (mop);
2502 }
2503 
2504 /*
2505  * Allow users to set arbitrary "tags" in a vfs's mount options.
2506  * Broader use within the kernel is discouraged.
2507  */
2508 int
2509 vfs_settag(uint_t major, uint_t minor, const char *mntpt, const char *tag,
2510     cred_t *cr)
2511 {
2512 	vfs_t *vfsp;
2513 	mntopts_t *mops;
2514 	mntopt_t *mop;
2515 	int found = 0;
2516 	dev_t dev = makedevice(major, minor);
2517 	int err = 0;
2518 	char *buf = kmem_alloc(MAX_MNTOPT_STR, KM_SLEEP);
2519 
2520 	/*
2521 	 * Find the desired mounted file system
2522 	 */
2523 	vfs_list_lock();
2524 	vfsp = rootvfs;
2525 	do {
2526 		if (vfsp->vfs_dev == dev &&
2527 		    strcmp(mntpt, refstr_value(vfsp->vfs_mntpt)) == 0) {
2528 			found = 1;
2529 			break;
2530 		}
2531 		vfsp = vfsp->vfs_next;
2532 	} while (vfsp != rootvfs);
2533 
2534 	if (!found) {
2535 		err = EINVAL;
2536 		goto out;
2537 	}
2538 	err = secpolicy_fs_config(cr, vfsp);
2539 	if (err != 0)
2540 		goto out;
2541 
2542 	mops = &vfsp->vfs_mntopts;
2543 	/*
2544 	 * Add tag if it doesn't already exist
2545 	 */
2546 	if ((mop = vfs_hasopt(mops, tag)) == NULL) {
2547 		int len;
2548 
2549 		(void) vfs_buildoptionstr(mops, buf, MAX_MNTOPT_STR);
2550 		len = strlen(buf);
2551 		if (len + strlen(tag) + 2 > MAX_MNTOPT_STR) {
2552 			err = ENAMETOOLONG;
2553 			goto out;
2554 		}
2555 		mop = vfs_addtag(mops, tag);
2556 	}
2557 	if ((mop->mo_flags & MO_TAG) == 0) {
2558 		err = EINVAL;
2559 		goto out;
2560 	}
2561 	vfs_setmntopt_nolock(mops, tag, NULL, 0, 1);
2562 out:
2563 	vfs_list_unlock();
2564 	kmem_free(buf, MAX_MNTOPT_STR);
2565 	return (err);
2566 }
2567 
2568 /*
2569  * Allow users to remove arbitrary "tags" in a vfs's mount options.
2570  * Broader use within the kernel is discouraged.
2571  */
2572 int
2573 vfs_clrtag(uint_t major, uint_t minor, const char *mntpt, const char *tag,
2574     cred_t *cr)
2575 {
2576 	vfs_t *vfsp;
2577 	mntopt_t *mop;
2578 	int found = 0;
2579 	dev_t dev = makedevice(major, minor);
2580 	int err = 0;
2581 
2582 	/*
2583 	 * Find the desired mounted file system
2584 	 */
2585 	vfs_list_lock();
2586 	vfsp = rootvfs;
2587 	do {
2588 		if (vfsp->vfs_dev == dev &&
2589 		    strcmp(mntpt, refstr_value(vfsp->vfs_mntpt)) == 0) {
2590 			found = 1;
2591 			break;
2592 		}
2593 		vfsp = vfsp->vfs_next;
2594 	} while (vfsp != rootvfs);
2595 
2596 	if (!found) {
2597 		err = EINVAL;
2598 		goto out;
2599 	}
2600 	err = secpolicy_fs_config(cr, vfsp);
2601 	if (err != 0)
2602 		goto out;
2603 
2604 	if ((mop = vfs_hasopt(&vfsp->vfs_mntopts, tag)) == NULL) {
2605 		err = EINVAL;
2606 		goto out;
2607 	}
2608 	if ((mop->mo_flags & MO_TAG) == 0) {
2609 		err = EINVAL;
2610 		goto out;
2611 	}
2612 	vfs_clearmntopt_nolock(&vfsp->vfs_mntopts, tag, 1);
2613 out:
2614 	vfs_list_unlock();
2615 	return (err);
2616 }
2617 
2618 /*
2619  * Function to parse an option string and fill in a mount options table.
2620  * Unknown options are silently ignored.  The input option string is modified
2621  * by replacing separators with nulls.  If the create flag is set, options
2622  * not found in the table are just added on the fly.  The table must have
2623  * an option slot marked MO_EMPTY to add an option on the fly.
2624  *
2625  * This function is *not* for general use by filesystems.
2626  *
2627  * Note: caller is responsible for locking the vfs list, if needed,
2628  *       to protect mops..
2629  */
2630 void
2631 vfs_parsemntopts(mntopts_t *mops, char *osp, int create)
2632 {
2633 	char *s = osp, *p, *nextop, *valp, *cp, *ep;
2634 	int setflg = VFS_NOFORCEOPT;
2635 
2636 	if (osp == NULL)
2637 		return;
2638 	while (*s != '\0') {
2639 		p = strchr(s, ',');	/* find next option */
2640 		if (p == NULL) {
2641 			cp = NULL;
2642 			p = s + strlen(s);
2643 		} else {
2644 			cp = p;		/* save location of comma */
2645 			*p++ = '\0';	/* mark end and point to next option */
2646 		}
2647 		nextop = p;
2648 		p = strchr(s, '=');	/* look for value */
2649 		if (p == NULL) {
2650 			valp = NULL;	/* no value supplied */
2651 		} else {
2652 			ep = p;		/* save location of equals */
2653 			*p++ = '\0';	/* end option and point to value */
2654 			valp = p;
2655 		}
2656 		/*
2657 		 * set option into options table
2658 		 */
2659 		if (create)
2660 			setflg |= VFS_CREATEOPT;
2661 		vfs_setmntopt_nolock(mops, s, valp, setflg, 0);
2662 		if (cp != NULL)
2663 			*cp = ',';	/* restore the comma */
2664 		if (valp != NULL)
2665 			*ep = '=';	/* restore the equals */
2666 		s = nextop;
2667 	}
2668 }
2669 
2670 /*
2671  * Function to inquire if an option exists in a mount options table.
2672  * Returns a pointer to the option if it exists, else NULL.
2673  *
2674  * This function is *not* for general use by filesystems.
2675  *
2676  * Note: caller is responsible for locking the vfs list, if needed,
2677  *       to protect mops.
2678  */
2679 struct mntopt *
2680 vfs_hasopt(const mntopts_t *mops, const char *opt)
2681 {
2682 	struct mntopt *mop;
2683 	uint_t i, count;
2684 
2685 	count = mops->mo_count;
2686 	for (i = 0; i < count; i++) {
2687 		mop = &mops->mo_list[i];
2688 
2689 		if (mop->mo_flags & MO_EMPTY)
2690 			continue;
2691 		if (strcmp(opt, mop->mo_name) == 0)
2692 			return (mop);
2693 	}
2694 	return (NULL);
2695 }
2696 
2697 /*
2698  * Function to inquire if an option is set in a mount options table.
2699  * Returns non-zero if set and fills in the arg pointer with a pointer to
2700  * the argument string or NULL if there is no argument string.
2701  */
2702 static int
2703 vfs_optionisset_nolock(const mntopts_t *mops, const char *opt, char **argp)
2704 {
2705 	struct mntopt *mop;
2706 	uint_t i, count;
2707 
2708 	count = mops->mo_count;
2709 	for (i = 0; i < count; i++) {
2710 		mop = &mops->mo_list[i];
2711 
2712 		if (mop->mo_flags & MO_EMPTY)
2713 			continue;
2714 		if (strcmp(opt, mop->mo_name))
2715 			continue;
2716 		if ((mop->mo_flags & MO_SET) == 0)
2717 			return (0);
2718 		if (argp != NULL && (mop->mo_flags & MO_HASVALUE) != 0)
2719 			*argp = mop->mo_arg;
2720 		return (1);
2721 	}
2722 	return (0);
2723 }
2724 
2725 
2726 int
2727 vfs_optionisset(const struct vfs *vfsp, const char *opt, char **argp)
2728 {
2729 	int ret;
2730 
2731 	vfs_list_read_lock();
2732 	ret = vfs_optionisset_nolock(&vfsp->vfs_mntopts, opt, argp);
2733 	vfs_list_unlock();
2734 	return (ret);
2735 }
2736 
2737 
2738 /*
2739  * Construct a comma separated string of the options set in the given
2740  * mount table, return the string in the given buffer.  Return non-zero if
2741  * the buffer would overflow.
2742  *
2743  * This function is *not* for general use by filesystems.
2744  *
2745  * Note: caller is responsible for locking the vfs list, if needed,
2746  *       to protect mp.
2747  */
2748 int
2749 vfs_buildoptionstr(const mntopts_t *mp, char *buf, int len)
2750 {
2751 	char *cp;
2752 	uint_t i;
2753 
2754 	buf[0] = '\0';
2755 	cp = buf;
2756 	for (i = 0; i < mp->mo_count; i++) {
2757 		struct mntopt *mop;
2758 
2759 		mop = &mp->mo_list[i];
2760 		if (mop->mo_flags & MO_SET) {
2761 			int optlen, comma = 0;
2762 
2763 			if (buf[0] != '\0')
2764 				comma = 1;
2765 			optlen = strlen(mop->mo_name);
2766 			if (strlen(buf) + comma + optlen + 1 > len)
2767 				goto err;
2768 			if (comma)
2769 				*cp++ = ',';
2770 			(void) strcpy(cp, mop->mo_name);
2771 			cp += optlen;
2772 			/*
2773 			 * Append option value if there is one
2774 			 */
2775 			if (mop->mo_arg != NULL) {
2776 				int arglen;
2777 
2778 				arglen = strlen(mop->mo_arg);
2779 				if (strlen(buf) + arglen + 2 > len)
2780 					goto err;
2781 				*cp++ = '=';
2782 				(void) strcpy(cp, mop->mo_arg);
2783 				cp += arglen;
2784 			}
2785 		}
2786 	}
2787 	return (0);
2788 err:
2789 	return (EOVERFLOW);
2790 }
2791 
2792 static void
2793 vfs_freecancelopt(char **moc)
2794 {
2795 	if (moc != NULL) {
2796 		int ccnt = 0;
2797 		char **cp;
2798 
2799 		for (cp = moc; *cp != NULL; cp++) {
2800 			kmem_free(*cp, strlen(*cp) + 1);
2801 			ccnt++;
2802 		}
2803 		kmem_free(moc, (ccnt + 1) * sizeof (char *));
2804 	}
2805 }
2806 
2807 static void
2808 vfs_freeopt(mntopt_t *mop)
2809 {
2810 	if (mop->mo_name != NULL)
2811 		kmem_free(mop->mo_name, strlen(mop->mo_name) + 1);
2812 
2813 	vfs_freecancelopt(mop->mo_cancel);
2814 
2815 	if (mop->mo_arg != NULL)
2816 		kmem_free(mop->mo_arg, strlen(mop->mo_arg) + 1);
2817 }
2818 
2819 /*
2820  * Free a mount options table
2821  *
2822  * This function is *not* for general use by filesystems.
2823  *
2824  * Note: caller is responsible for locking the vfs list, if needed,
2825  *       to protect mp.
2826  */
2827 void
2828 vfs_freeopttbl(mntopts_t *mp)
2829 {
2830 	uint_t i, count;
2831 
2832 	count = mp->mo_count;
2833 	for (i = 0; i < count; i++) {
2834 		vfs_freeopt(&mp->mo_list[i]);
2835 	}
2836 	if (count) {
2837 		kmem_free(mp->mo_list, sizeof (mntopt_t) * count);
2838 		mp->mo_count = 0;
2839 		mp->mo_list = NULL;
2840 	}
2841 }
2842 
2843 
2844 /* ARGSUSED */
2845 static int
2846 vfs_mntdummyread(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cred,
2847 	caller_context_t *ct)
2848 {
2849 	return (0);
2850 }
2851 
2852 /* ARGSUSED */
2853 static int
2854 vfs_mntdummywrite(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cred,
2855 	caller_context_t *ct)
2856 {
2857 	return (0);
2858 }
2859 
2860 /*
2861  * The dummy vnode is currently used only by file events notification
2862  * module which is just interested in the timestamps.
2863  */
2864 /* ARGSUSED */
2865 static int
2866 vfs_mntdummygetattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr,
2867     caller_context_t *ct)
2868 {
2869 	bzero(vap, sizeof (vattr_t));
2870 	vap->va_type = VREG;
2871 	vap->va_nlink = 1;
2872 	vap->va_ctime = vfs_mnttab_ctime;
2873 	/*
2874 	 * it is ok to just copy mtime as the time will be monotonically
2875 	 * increasing.
2876 	 */
2877 	vap->va_mtime = vfs_mnttab_mtime;
2878 	vap->va_atime = vap->va_mtime;
2879 	return (0);
2880 }
2881 
2882 static void
2883 vfs_mnttabvp_setup(void)
2884 {
2885 	vnode_t *tvp;
2886 	vnodeops_t *vfs_mntdummyvnops;
2887 	const fs_operation_def_t mnt_dummyvnodeops_template[] = {
2888 		VOPNAME_READ, 		{ .vop_read = vfs_mntdummyread },
2889 		VOPNAME_WRITE, 		{ .vop_write = vfs_mntdummywrite },
2890 		VOPNAME_GETATTR,	{ .vop_getattr = vfs_mntdummygetattr },
2891 		VOPNAME_VNEVENT,	{ .vop_vnevent = fs_vnevent_support },
2892 		NULL,			NULL
2893 	};
2894 
2895 	if (vn_make_ops("mnttab", mnt_dummyvnodeops_template,
2896 	    &vfs_mntdummyvnops) != 0) {
2897 		cmn_err(CE_WARN, "vfs_mnttabvp_setup: vn_make_ops failed");
2898 		/* Shouldn't happen, but not bad enough to panic */
2899 		return;
2900 	}
2901 
2902 	/*
2903 	 * A global dummy vnode is allocated to represent mntfs files.
2904 	 * The mntfs file (/etc/mnttab) can be monitored for file events
2905 	 * and receive an event when mnttab changes. Dummy VOP calls
2906 	 * will be made on this vnode. The file events notification module
2907 	 * intercepts this vnode and delivers relevant events.
2908 	 */
2909 	tvp = vn_alloc(KM_SLEEP);
2910 	tvp->v_flag = VNOMOUNT|VNOMAP|VNOSWAP|VNOCACHE;
2911 	vn_setops(tvp, vfs_mntdummyvnops);
2912 	tvp->v_type = VREG;
2913 	/*
2914 	 * The mnt dummy ops do not reference v_data.
2915 	 * No other module intercepting this vnode should either.
2916 	 * Just set it to point to itself.
2917 	 */
2918 	tvp->v_data = (caddr_t)tvp;
2919 	tvp->v_vfsp = rootvfs;
2920 	vfs_mntdummyvp = tvp;
2921 }
2922 
2923 /*
2924  * performs fake read/write ops
2925  */
2926 static void
2927 vfs_mnttab_rwop(int rw)
2928 {
2929 	struct uio	uio;
2930 	struct iovec	iov;
2931 	char	buf[1];
2932 
2933 	if (vfs_mntdummyvp == NULL)
2934 		return;
2935 
2936 	bzero(&uio, sizeof (uio));
2937 	bzero(&iov, sizeof (iov));
2938 	iov.iov_base = buf;
2939 	iov.iov_len = 0;
2940 	uio.uio_iov = &iov;
2941 	uio.uio_iovcnt = 1;
2942 	uio.uio_loffset = 0;
2943 	uio.uio_segflg = UIO_SYSSPACE;
2944 	uio.uio_resid = 0;
2945 	if (rw) {
2946 		(void) VOP_WRITE(vfs_mntdummyvp, &uio, 0, kcred, NULL);
2947 	} else {
2948 		(void) VOP_READ(vfs_mntdummyvp, &uio, 0, kcred, NULL);
2949 	}
2950 }
2951 
2952 /*
2953  * Generate a write operation.
2954  */
2955 void
2956 vfs_mnttab_writeop(void)
2957 {
2958 	vfs_mnttab_rwop(1);
2959 }
2960 
2961 /*
2962  * Generate a read operation.
2963  */
2964 void
2965 vfs_mnttab_readop(void)
2966 {
2967 	vfs_mnttab_rwop(0);
2968 }
2969 
2970 /*
2971  * Free any mnttab information recorded in the vfs struct.
2972  * The vfs must not be on the vfs list.
2973  */
2974 static void
2975 vfs_freemnttab(struct vfs *vfsp)
2976 {
2977 	ASSERT(!VFS_ON_LIST(vfsp));
2978 
2979 	/*
2980 	 * Free device and mount point information
2981 	 */
2982 	if (vfsp->vfs_mntpt != NULL) {
2983 		refstr_rele(vfsp->vfs_mntpt);
2984 		vfsp->vfs_mntpt = NULL;
2985 	}
2986 	if (vfsp->vfs_resource != NULL) {
2987 		refstr_rele(vfsp->vfs_resource);
2988 		vfsp->vfs_resource = NULL;
2989 	}
2990 	/*
2991 	 * Now free mount options information
2992 	 */
2993 	vfs_freeopttbl(&vfsp->vfs_mntopts);
2994 }
2995 
2996 /*
2997  * Return the last mnttab modification time
2998  */
2999 void
3000 vfs_mnttab_modtime(timespec_t *ts)
3001 {
3002 	ASSERT(RW_LOCK_HELD(&vfslist));
3003 	*ts = vfs_mnttab_mtime;
3004 }
3005 
3006 /*
3007  * See if mnttab is changed
3008  */
3009 void
3010 vfs_mnttab_poll(timespec_t *old, struct pollhead **phpp)
3011 {
3012 	int changed;
3013 
3014 	*phpp = (struct pollhead *)NULL;
3015 
3016 	/*
3017 	 * Note: don't grab vfs list lock before accessing vfs_mnttab_mtime.
3018 	 * Can lead to deadlock against vfs_mnttab_modtimeupd(). It is safe
3019 	 * to not grab the vfs list lock because tv_sec is monotonically
3020 	 * increasing.
3021 	 */
3022 
3023 	changed = (old->tv_nsec != vfs_mnttab_mtime.tv_nsec) ||
3024 	    (old->tv_sec != vfs_mnttab_mtime.tv_sec);
3025 	if (!changed) {
3026 		*phpp = &vfs_pollhd;
3027 	}
3028 }
3029 
3030 /* Provide a unique and monotonically-increasing timestamp. */
3031 void
3032 vfs_mono_time(timespec_t *ts)
3033 {
3034 	static volatile hrtime_t hrt;		/* The saved time. */
3035 	hrtime_t	newhrt, oldhrt;		/* For effecting the CAS. */
3036 	timespec_t	newts;
3037 
3038 	/*
3039 	 * Try gethrestime() first, but be prepared to fabricate a sensible
3040 	 * answer at the first sign of any trouble.
3041 	 */
3042 	gethrestime(&newts);
3043 	newhrt = ts2hrt(&newts);
3044 	for (;;) {
3045 		oldhrt = hrt;
3046 		if (newhrt <= hrt)
3047 			newhrt = hrt + 1;
3048 		if (atomic_cas_64((uint64_t *)&hrt, oldhrt, newhrt) == oldhrt)
3049 			break;
3050 	}
3051 	hrt2ts(newhrt, ts);
3052 }
3053 
3054 /*
3055  * Update the mnttab modification time and wake up any waiters for
3056  * mnttab changes
3057  */
3058 void
3059 vfs_mnttab_modtimeupd()
3060 {
3061 	hrtime_t oldhrt, newhrt;
3062 
3063 	ASSERT(RW_WRITE_HELD(&vfslist));
3064 	oldhrt = ts2hrt(&vfs_mnttab_mtime);
3065 	gethrestime(&vfs_mnttab_mtime);
3066 	newhrt = ts2hrt(&vfs_mnttab_mtime);
3067 	if (oldhrt == (hrtime_t)0)
3068 		vfs_mnttab_ctime = vfs_mnttab_mtime;
3069 	/*
3070 	 * Attempt to provide unique mtime (like uniqtime but not).
3071 	 */
3072 	if (newhrt == oldhrt) {
3073 		newhrt++;
3074 		hrt2ts(newhrt, &vfs_mnttab_mtime);
3075 	}
3076 	pollwakeup(&vfs_pollhd, (short)POLLRDBAND);
3077 	vfs_mnttab_writeop();
3078 }
3079 
3080 int
3081 dounmount(struct vfs *vfsp, int flag, cred_t *cr)
3082 {
3083 	vnode_t *coveredvp;
3084 	int error;
3085 	extern void teardown_vopstats(vfs_t *);
3086 
3087 	/*
3088 	 * Get covered vnode. This will be NULL if the vfs is not linked
3089 	 * into the file system name space (i.e., domount() with MNT_NOSPICE).
3090 	 */
3091 	coveredvp = vfsp->vfs_vnodecovered;
3092 	ASSERT(coveredvp == NULL || vn_vfswlock_held(coveredvp));
3093 
3094 	/*
3095 	 * Purge all dnlc entries for this vfs.
3096 	 */
3097 	(void) dnlc_purge_vfsp(vfsp, 0);
3098 
3099 	/* For forcible umount, skip VFS_SYNC() since it may hang */
3100 	if ((flag & MS_FORCE) == 0)
3101 		(void) VFS_SYNC(vfsp, 0, cr);
3102 
3103 	/*
3104 	 * Lock the vfs to maintain fs status quo during unmount.  This
3105 	 * has to be done after the sync because ufs_update tries to acquire
3106 	 * the vfs_reflock.
3107 	 */
3108 	vfs_lock_wait(vfsp);
3109 
3110 	if (error = VFS_UNMOUNT(vfsp, flag, cr)) {
3111 		vfs_unlock(vfsp);
3112 		if (coveredvp != NULL)
3113 			vn_vfsunlock(coveredvp);
3114 	} else if (coveredvp != NULL) {
3115 		teardown_vopstats(vfsp);
3116 		/*
3117 		 * vfs_remove() will do a VN_RELE(vfsp->vfs_vnodecovered)
3118 		 * when it frees vfsp so we do a VN_HOLD() so we can
3119 		 * continue to use coveredvp afterwards.
3120 		 */
3121 		VN_HOLD(coveredvp);
3122 		vfs_remove(vfsp);
3123 		vn_vfsunlock(coveredvp);
3124 		VN_RELE(coveredvp);
3125 	} else {
3126 		teardown_vopstats(vfsp);
3127 		/*
3128 		 * Release the reference to vfs that is not linked
3129 		 * into the name space.
3130 		 */
3131 		vfs_unlock(vfsp);
3132 		VFS_RELE(vfsp);
3133 	}
3134 	return (error);
3135 }
3136 
3137 
3138 /*
3139  * Vfs_unmountall() is called by uadmin() to unmount all
3140  * mounted file systems (except the root file system) during shutdown.
3141  * It follows the existing locking protocol when traversing the vfs list
3142  * to sync and unmount vfses. Even though there should be no
3143  * other thread running while the system is shutting down, it is prudent
3144  * to still follow the locking protocol.
3145  */
3146 void
3147 vfs_unmountall(void)
3148 {
3149 	struct vfs *vfsp;
3150 	struct vfs *prev_vfsp = NULL;
3151 	int error;
3152 
3153 	/*
3154 	 * Toss all dnlc entries now so that the per-vfs sync
3155 	 * and unmount operations don't have to slog through
3156 	 * a bunch of uninteresting vnodes over and over again.
3157 	 */
3158 	dnlc_purge();
3159 
3160 	vfs_list_lock();
3161 	for (vfsp = rootvfs->vfs_prev; vfsp != rootvfs; vfsp = prev_vfsp) {
3162 		prev_vfsp = vfsp->vfs_prev;
3163 
3164 		if (vfs_lock(vfsp) != 0)
3165 			continue;
3166 		error = vn_vfswlock(vfsp->vfs_vnodecovered);
3167 		vfs_unlock(vfsp);
3168 		if (error)
3169 			continue;
3170 
3171 		vfs_list_unlock();
3172 
3173 		(void) VFS_SYNC(vfsp, SYNC_CLOSE, CRED());
3174 		(void) dounmount(vfsp, 0, CRED());
3175 
3176 		/*
3177 		 * Since we dropped the vfslist lock above we must
3178 		 * verify that next_vfsp still exists, else start over.
3179 		 */
3180 		vfs_list_lock();
3181 		for (vfsp = rootvfs->vfs_prev;
3182 		    vfsp != rootvfs; vfsp = vfsp->vfs_prev)
3183 			if (vfsp == prev_vfsp)
3184 				break;
3185 		if (vfsp == rootvfs && prev_vfsp != rootvfs)
3186 			prev_vfsp = rootvfs->vfs_prev;
3187 	}
3188 	vfs_list_unlock();
3189 }
3190 
3191 /*
3192  * Called to add an entry to the end of the vfs mount in progress list
3193  */
3194 void
3195 vfs_addmip(dev_t dev, struct vfs *vfsp)
3196 {
3197 	struct ipmnt *mipp;
3198 
3199 	mipp = (struct ipmnt *)kmem_alloc(sizeof (struct ipmnt), KM_SLEEP);
3200 	mipp->mip_next = NULL;
3201 	mipp->mip_dev = dev;
3202 	mipp->mip_vfsp = vfsp;
3203 	mutex_enter(&vfs_miplist_mutex);
3204 	if (vfs_miplist_end != NULL)
3205 		vfs_miplist_end->mip_next = mipp;
3206 	else
3207 		vfs_miplist = mipp;
3208 	vfs_miplist_end = mipp;
3209 	mutex_exit(&vfs_miplist_mutex);
3210 }
3211 
3212 /*
3213  * Called to remove an entry from the mount in progress list
3214  * Either because the mount completed or it failed.
3215  */
3216 void
3217 vfs_delmip(struct vfs *vfsp)
3218 {
3219 	struct ipmnt *mipp, *mipprev;
3220 
3221 	mutex_enter(&vfs_miplist_mutex);
3222 	mipprev = NULL;
3223 	for (mipp = vfs_miplist;
3224 	    mipp && mipp->mip_vfsp != vfsp; mipp = mipp->mip_next) {
3225 		mipprev = mipp;
3226 	}
3227 	if (mipp == NULL)
3228 		return; /* shouldn't happen */
3229 	if (mipp == vfs_miplist_end)
3230 		vfs_miplist_end = mipprev;
3231 	if (mipprev == NULL)
3232 		vfs_miplist = mipp->mip_next;
3233 	else
3234 		mipprev->mip_next = mipp->mip_next;
3235 	mutex_exit(&vfs_miplist_mutex);
3236 	kmem_free(mipp, sizeof (struct ipmnt));
3237 }
3238 
3239 /*
3240  * vfs_add is called by a specific filesystem's mount routine to add
3241  * the new vfs into the vfs list/hash and to cover the mounted-on vnode.
3242  * The vfs should already have been locked by the caller.
3243  *
3244  * coveredvp is NULL if this is the root.
3245  */
3246 void
3247 vfs_add(vnode_t *coveredvp, struct vfs *vfsp, int mflag)
3248 {
3249 	int newflag;
3250 
3251 	ASSERT(vfs_lock_held(vfsp));
3252 	VFS_HOLD(vfsp);
3253 	newflag = vfsp->vfs_flag;
3254 	if (mflag & MS_RDONLY)
3255 		newflag |= VFS_RDONLY;
3256 	else
3257 		newflag &= ~VFS_RDONLY;
3258 	if (mflag & MS_NOSUID)
3259 		newflag |= (VFS_NOSETUID|VFS_NODEVICES);
3260 	else
3261 		newflag &= ~(VFS_NOSETUID|VFS_NODEVICES);
3262 	if (mflag & MS_NOMNTTAB)
3263 		newflag |= VFS_NOMNTTAB;
3264 	else
3265 		newflag &= ~VFS_NOMNTTAB;
3266 
3267 	if (coveredvp != NULL) {
3268 		ASSERT(vn_vfswlock_held(coveredvp));
3269 		coveredvp->v_vfsmountedhere = vfsp;
3270 		VN_HOLD(coveredvp);
3271 	}
3272 	vfsp->vfs_vnodecovered = coveredvp;
3273 	vfsp->vfs_flag = newflag;
3274 
3275 	vfs_list_add(vfsp);
3276 }
3277 
3278 /*
3279  * Remove a vfs from the vfs list, null out the pointer from the
3280  * covered vnode to the vfs (v_vfsmountedhere), and null out the pointer
3281  * from the vfs to the covered vnode (vfs_vnodecovered). Release the
3282  * reference to the vfs and to the covered vnode.
3283  *
3284  * Called from dounmount after it's confirmed with the file system
3285  * that the unmount is legal.
3286  */
3287 void
3288 vfs_remove(struct vfs *vfsp)
3289 {
3290 	vnode_t *vp;
3291 
3292 	ASSERT(vfs_lock_held(vfsp));
3293 
3294 	/*
3295 	 * Can't unmount root.  Should never happen because fs will
3296 	 * be busy.
3297 	 */
3298 	if (vfsp == rootvfs)
3299 		panic("vfs_remove: unmounting root");
3300 
3301 	vfs_list_remove(vfsp);
3302 
3303 	/*
3304 	 * Unhook from the file system name space.
3305 	 */
3306 	vp = vfsp->vfs_vnodecovered;
3307 	ASSERT(vn_vfswlock_held(vp));
3308 	vp->v_vfsmountedhere = NULL;
3309 	vfsp->vfs_vnodecovered = NULL;
3310 	VN_RELE(vp);
3311 
3312 	/*
3313 	 * Release lock and wakeup anybody waiting.
3314 	 */
3315 	vfs_unlock(vfsp);
3316 	VFS_RELE(vfsp);
3317 }
3318 
3319 /*
3320  * Lock a filesystem to prevent access to it while mounting,
3321  * unmounting and syncing.  Return EBUSY immediately if lock
3322  * can't be acquired.
3323  */
3324 int
3325 vfs_lock(vfs_t *vfsp)
3326 {
3327 	vn_vfslocks_entry_t *vpvfsentry;
3328 
3329 	vpvfsentry = vn_vfslocks_getlock(vfsp);
3330 	if (rwst_tryenter(&vpvfsentry->ve_lock, RW_WRITER))
3331 		return (0);
3332 
3333 	vn_vfslocks_rele(vpvfsentry);
3334 	return (EBUSY);
3335 }
3336 
3337 int
3338 vfs_rlock(vfs_t *vfsp)
3339 {
3340 	vn_vfslocks_entry_t *vpvfsentry;
3341 
3342 	vpvfsentry = vn_vfslocks_getlock(vfsp);
3343 
3344 	if (rwst_tryenter(&vpvfsentry->ve_lock, RW_READER))
3345 		return (0);
3346 
3347 	vn_vfslocks_rele(vpvfsentry);
3348 	return (EBUSY);
3349 }
3350 
3351 void
3352 vfs_lock_wait(vfs_t *vfsp)
3353 {
3354 	vn_vfslocks_entry_t *vpvfsentry;
3355 
3356 	vpvfsentry = vn_vfslocks_getlock(vfsp);
3357 	rwst_enter(&vpvfsentry->ve_lock, RW_WRITER);
3358 }
3359 
3360 void
3361 vfs_rlock_wait(vfs_t *vfsp)
3362 {
3363 	vn_vfslocks_entry_t *vpvfsentry;
3364 
3365 	vpvfsentry = vn_vfslocks_getlock(vfsp);
3366 	rwst_enter(&vpvfsentry->ve_lock, RW_READER);
3367 }
3368 
3369 /*
3370  * Unlock a locked filesystem.
3371  */
3372 void
3373 vfs_unlock(vfs_t *vfsp)
3374 {
3375 	vn_vfslocks_entry_t *vpvfsentry;
3376 
3377 	/*
3378 	 * vfs_unlock will mimic sema_v behaviour to fix 4748018.
3379 	 * And these changes should remain for the patch changes as it is.
3380 	 */
3381 	if (panicstr)
3382 		return;
3383 
3384 	/*
3385 	 * ve_refcount needs to be dropped twice here.
3386 	 * 1. To release refernce after a call to vfs_locks_getlock()
3387 	 * 2. To release the reference from the locking routines like
3388 	 *    vfs_rlock_wait/vfs_wlock_wait/vfs_wlock etc,.
3389 	 */
3390 
3391 	vpvfsentry = vn_vfslocks_getlock(vfsp);
3392 	vn_vfslocks_rele(vpvfsentry);
3393 
3394 	rwst_exit(&vpvfsentry->ve_lock);
3395 	vn_vfslocks_rele(vpvfsentry);
3396 }
3397 
3398 /*
3399  * Utility routine that allows a filesystem to construct its
3400  * fsid in "the usual way" - by munging some underlying dev_t and
3401  * the filesystem type number into the 64-bit fsid.  Note that
3402  * this implicitly relies on dev_t persistence to make filesystem
3403  * id's persistent.
3404  *
3405  * There's nothing to prevent an individual fs from constructing its
3406  * fsid in a different way, and indeed they should.
3407  *
3408  * Since we want fsids to be 32-bit quantities (so that they can be
3409  * exported identically by either 32-bit or 64-bit APIs, as well as
3410  * the fact that fsid's are "known" to NFS), we compress the device
3411  * number given down to 32-bits, and panic if that isn't possible.
3412  */
3413 void
3414 vfs_make_fsid(fsid_t *fsi, dev_t dev, int val)
3415 {
3416 	if (!cmpldev((dev32_t *)&fsi->val[0], dev))
3417 		panic("device number too big for fsid!");
3418 	fsi->val[1] = val;
3419 }
3420 
3421 int
3422 vfs_lock_held(vfs_t *vfsp)
3423 {
3424 	int held;
3425 	vn_vfslocks_entry_t *vpvfsentry;
3426 
3427 	/*
3428 	 * vfs_lock_held will mimic sema_held behaviour
3429 	 * if panicstr is set. And these changes should remain
3430 	 * for the patch changes as it is.
3431 	 */
3432 	if (panicstr)
3433 		return (1);
3434 
3435 	vpvfsentry = vn_vfslocks_getlock(vfsp);
3436 	held = rwst_lock_held(&vpvfsentry->ve_lock, RW_WRITER);
3437 
3438 	vn_vfslocks_rele(vpvfsentry);
3439 	return (held);
3440 }
3441 
3442 struct _kthread *
3443 vfs_lock_owner(vfs_t *vfsp)
3444 {
3445 	struct _kthread *owner;
3446 	vn_vfslocks_entry_t *vpvfsentry;
3447 
3448 	/*
3449 	 * vfs_wlock_held will mimic sema_held behaviour
3450 	 * if panicstr is set. And these changes should remain
3451 	 * for the patch changes as it is.
3452 	 */
3453 	if (panicstr)
3454 		return (NULL);
3455 
3456 	vpvfsentry = vn_vfslocks_getlock(vfsp);
3457 	owner = rwst_owner(&vpvfsentry->ve_lock);
3458 
3459 	vn_vfslocks_rele(vpvfsentry);
3460 	return (owner);
3461 }
3462 
3463 /*
3464  * vfs list locking.
3465  *
3466  * Rather than manipulate the vfslist lock directly, we abstract into lock
3467  * and unlock routines to allow the locking implementation to be changed for
3468  * clustering.
3469  *
3470  * Whenever the vfs list is modified through its hash links, the overall list
3471  * lock must be obtained before locking the relevant hash bucket.  But to see
3472  * whether a given vfs is on the list, it suffices to obtain the lock for the
3473  * hash bucket without getting the overall list lock.  (See getvfs() below.)
3474  */
3475 
3476 void
3477 vfs_list_lock()
3478 {
3479 	rw_enter(&vfslist, RW_WRITER);
3480 }
3481 
3482 void
3483 vfs_list_read_lock()
3484 {
3485 	rw_enter(&vfslist, RW_READER);
3486 }
3487 
3488 void
3489 vfs_list_unlock()
3490 {
3491 	rw_exit(&vfslist);
3492 }
3493 
3494 /*
3495  * Low level worker routines for adding entries to and removing entries from
3496  * the vfs list.
3497  */
3498 
3499 static void
3500 vfs_hash_add(struct vfs *vfsp, int insert_at_head)
3501 {
3502 	int vhno;
3503 	struct vfs **hp;
3504 	dev_t dev;
3505 
3506 	ASSERT(RW_WRITE_HELD(&vfslist));
3507 
3508 	dev = expldev(vfsp->vfs_fsid.val[0]);
3509 	vhno = VFSHASH(getmajor(dev), getminor(dev));
3510 
3511 	mutex_enter(&rvfs_list[vhno].rvfs_lock);
3512 
3513 	/*
3514 	 * Link into the hash table, inserting it at the end, so that LOFS
3515 	 * with the same fsid as UFS (or other) file systems will not hide the
3516 	 * UFS.
3517 	 */
3518 	if (insert_at_head) {
3519 		vfsp->vfs_hash = rvfs_list[vhno].rvfs_head;
3520 		rvfs_list[vhno].rvfs_head = vfsp;
3521 	} else {
3522 		for (hp = &rvfs_list[vhno].rvfs_head; *hp != NULL;
3523 		    hp = &(*hp)->vfs_hash)
3524 			continue;
3525 		/*
3526 		 * hp now contains the address of the pointer to update
3527 		 * to effect the insertion.
3528 		 */
3529 		vfsp->vfs_hash = NULL;
3530 		*hp = vfsp;
3531 	}
3532 
3533 	rvfs_list[vhno].rvfs_len++;
3534 	mutex_exit(&rvfs_list[vhno].rvfs_lock);
3535 }
3536 
3537 
3538 static void
3539 vfs_hash_remove(struct vfs *vfsp)
3540 {
3541 	int vhno;
3542 	struct vfs *tvfsp;
3543 	dev_t dev;
3544 
3545 	ASSERT(RW_WRITE_HELD(&vfslist));
3546 
3547 	dev = expldev(vfsp->vfs_fsid.val[0]);
3548 	vhno = VFSHASH(getmajor(dev), getminor(dev));
3549 
3550 	mutex_enter(&rvfs_list[vhno].rvfs_lock);
3551 
3552 	/*
3553 	 * Remove from hash.
3554 	 */
3555 	if (rvfs_list[vhno].rvfs_head == vfsp) {
3556 		rvfs_list[vhno].rvfs_head = vfsp->vfs_hash;
3557 		rvfs_list[vhno].rvfs_len--;
3558 		goto foundit;
3559 	}
3560 	for (tvfsp = rvfs_list[vhno].rvfs_head; tvfsp != NULL;
3561 	    tvfsp = tvfsp->vfs_hash) {
3562 		if (tvfsp->vfs_hash == vfsp) {
3563 			tvfsp->vfs_hash = vfsp->vfs_hash;
3564 			rvfs_list[vhno].rvfs_len--;
3565 			goto foundit;
3566 		}
3567 	}
3568 	cmn_err(CE_WARN, "vfs_list_remove: vfs not found in hash");
3569 
3570 foundit:
3571 
3572 	mutex_exit(&rvfs_list[vhno].rvfs_lock);
3573 }
3574 
3575 
3576 void
3577 vfs_list_add(struct vfs *vfsp)
3578 {
3579 	zone_t *zone;
3580 
3581 	/*
3582 	 * Typically, the vfs_t will have been created on behalf of the file
3583 	 * system in vfs_init, where it will have been provided with a
3584 	 * vfs_impl_t. This, however, might be lacking if the vfs_t was created
3585 	 * by an unbundled file system. We therefore check for such an example
3586 	 * before stamping the vfs_t with its creation time for the benefit of
3587 	 * mntfs.
3588 	 */
3589 	if (vfsp->vfs_implp == NULL)
3590 		vfsimpl_setup(vfsp);
3591 	vfs_mono_time(&vfsp->vfs_hrctime);
3592 
3593 	/*
3594 	 * The zone that owns the mount is the one that performed the mount.
3595 	 * Note that this isn't necessarily the same as the zone mounted into.
3596 	 * The corresponding zone_rele_ref() will be done when the vfs_t
3597 	 * is being free'd.
3598 	 */
3599 	vfsp->vfs_zone = curproc->p_zone;
3600 	zone_init_ref(&vfsp->vfs_implp->vi_zone_ref);
3601 	zone_hold_ref(vfsp->vfs_zone, &vfsp->vfs_implp->vi_zone_ref,
3602 	    ZONE_REF_VFS);
3603 
3604 	/*
3605 	 * Find the zone mounted into, and put this mount on its vfs list.
3606 	 */
3607 	zone = zone_find_by_path(refstr_value(vfsp->vfs_mntpt));
3608 	ASSERT(zone != NULL);
3609 	/*
3610 	 * Special casing for the root vfs.  This structure is allocated
3611 	 * statically and hooked onto rootvfs at link time.  During the
3612 	 * vfs_mountroot call at system startup time, the root file system's
3613 	 * VFS_MOUNTROOT routine will call vfs_add with this root vfs struct
3614 	 * as argument.  The code below must detect and handle this special
3615 	 * case.  The only apparent justification for this special casing is
3616 	 * to ensure that the root file system appears at the head of the
3617 	 * list.
3618 	 *
3619 	 * XXX:	I'm assuming that it's ok to do normal list locking when
3620 	 *	adding the entry for the root file system (this used to be
3621 	 *	done with no locks held).
3622 	 */
3623 	vfs_list_lock();
3624 	/*
3625 	 * Link into the vfs list proper.
3626 	 */
3627 	if (vfsp == &root) {
3628 		/*
3629 		 * Assert: This vfs is already on the list as its first entry.
3630 		 * Thus, there's nothing to do.
3631 		 */
3632 		ASSERT(rootvfs == vfsp);
3633 		/*
3634 		 * Add it to the head of the global zone's vfslist.
3635 		 */
3636 		ASSERT(zone == global_zone);
3637 		ASSERT(zone->zone_vfslist == NULL);
3638 		zone->zone_vfslist = vfsp;
3639 	} else {
3640 		/*
3641 		 * Link to end of list using vfs_prev (as rootvfs is now a
3642 		 * doubly linked circular list) so list is in mount order for
3643 		 * mnttab use.
3644 		 */
3645 		rootvfs->vfs_prev->vfs_next = vfsp;
3646 		vfsp->vfs_prev = rootvfs->vfs_prev;
3647 		rootvfs->vfs_prev = vfsp;
3648 		vfsp->vfs_next = rootvfs;
3649 
3650 		/*
3651 		 * Do it again for the zone-private list (which may be NULL).
3652 		 */
3653 		if (zone->zone_vfslist == NULL) {
3654 			ASSERT(zone != global_zone);
3655 			zone->zone_vfslist = vfsp;
3656 		} else {
3657 			zone->zone_vfslist->vfs_zone_prev->vfs_zone_next = vfsp;
3658 			vfsp->vfs_zone_prev = zone->zone_vfslist->vfs_zone_prev;
3659 			zone->zone_vfslist->vfs_zone_prev = vfsp;
3660 			vfsp->vfs_zone_next = zone->zone_vfslist;
3661 		}
3662 	}
3663 
3664 	/*
3665 	 * Link into the hash table, inserting it at the end, so that LOFS
3666 	 * with the same fsid as UFS (or other) file systems will not hide
3667 	 * the UFS.
3668 	 */
3669 	vfs_hash_add(vfsp, 0);
3670 
3671 	/*
3672 	 * Link into tree indexed by mntpoint, for vfs_mntpoint2vfsp
3673 	 * mntix discerns entries with the same key
3674 	 */
3675 	vfsp->vfs_mntix = ++vfs_curr_mntix;
3676 	avl_add(&vfs_by_dev, vfsp);
3677 
3678 	/*
3679 	 * Link into tree indexed by dev, for vfs_devismounted
3680 	 */
3681 	avl_add(&vfs_by_mntpnt, vfsp);
3682 
3683 	/*
3684 	 * update the mnttab modification time
3685 	 */
3686 	vfs_mnttab_modtimeupd();
3687 	vfs_list_unlock();
3688 	zone_rele(zone);
3689 }
3690 
3691 void
3692 vfs_list_remove(struct vfs *vfsp)
3693 {
3694 	zone_t *zone;
3695 
3696 	zone = zone_find_by_path(refstr_value(vfsp->vfs_mntpt));
3697 	ASSERT(zone != NULL);
3698 	/*
3699 	 * Callers are responsible for preventing attempts to unmount the
3700 	 * root.
3701 	 */
3702 	ASSERT(vfsp != rootvfs);
3703 
3704 	vfs_list_lock();
3705 
3706 	/*
3707 	 * Remove from avl trees
3708 	 */
3709 	avl_remove(&vfs_by_mntpnt, vfsp);
3710 	avl_remove(&vfs_by_dev, vfsp);
3711 
3712 	/*
3713 	 * Remove from hash.
3714 	 */
3715 	vfs_hash_remove(vfsp);
3716 
3717 	/*
3718 	 * Remove from vfs list.
3719 	 */
3720 	vfsp->vfs_prev->vfs_next = vfsp->vfs_next;
3721 	vfsp->vfs_next->vfs_prev = vfsp->vfs_prev;
3722 	vfsp->vfs_next = vfsp->vfs_prev = NULL;
3723 
3724 	/*
3725 	 * Remove from zone-specific vfs list.
3726 	 */
3727 	if (zone->zone_vfslist == vfsp)
3728 		zone->zone_vfslist = vfsp->vfs_zone_next;
3729 
3730 	if (vfsp->vfs_zone_next == vfsp) {
3731 		ASSERT(vfsp->vfs_zone_prev == vfsp);
3732 		ASSERT(zone->zone_vfslist == vfsp);
3733 		zone->zone_vfslist = NULL;
3734 	}
3735 
3736 	vfsp->vfs_zone_prev->vfs_zone_next = vfsp->vfs_zone_next;
3737 	vfsp->vfs_zone_next->vfs_zone_prev = vfsp->vfs_zone_prev;
3738 	vfsp->vfs_zone_next = vfsp->vfs_zone_prev = NULL;
3739 
3740 	/*
3741 	 * update the mnttab modification time
3742 	 */
3743 	vfs_mnttab_modtimeupd();
3744 	vfs_list_unlock();
3745 	zone_rele(zone);
3746 }
3747 
3748 struct vfs *
3749 getvfs(fsid_t *fsid)
3750 {
3751 	struct vfs *vfsp;
3752 	int val0 = fsid->val[0];
3753 	int val1 = fsid->val[1];
3754 	dev_t dev = expldev(val0);
3755 	int vhno = VFSHASH(getmajor(dev), getminor(dev));
3756 	kmutex_t *hmp = &rvfs_list[vhno].rvfs_lock;
3757 
3758 	mutex_enter(hmp);
3759 	for (vfsp = rvfs_list[vhno].rvfs_head; vfsp; vfsp = vfsp->vfs_hash) {
3760 		if (vfsp->vfs_fsid.val[0] == val0 &&
3761 		    vfsp->vfs_fsid.val[1] == val1) {
3762 			VFS_HOLD(vfsp);
3763 			mutex_exit(hmp);
3764 			return (vfsp);
3765 		}
3766 	}
3767 	mutex_exit(hmp);
3768 	return (NULL);
3769 }
3770 
3771 /*
3772  * Search the vfs mount in progress list for a specified device/vfs entry.
3773  * Returns 0 if the first entry in the list that the device matches has the
3774  * given vfs pointer as well.  If the device matches but a different vfs
3775  * pointer is encountered in the list before the given vfs pointer then
3776  * a 1 is returned.
3777  */
3778 
3779 int
3780 vfs_devmounting(dev_t dev, struct vfs *vfsp)
3781 {
3782 	int retval = 0;
3783 	struct ipmnt *mipp;
3784 
3785 	mutex_enter(&vfs_miplist_mutex);
3786 	for (mipp = vfs_miplist; mipp != NULL; mipp = mipp->mip_next) {
3787 		if (mipp->mip_dev == dev) {
3788 			if (mipp->mip_vfsp != vfsp)
3789 				retval = 1;
3790 			break;
3791 		}
3792 	}
3793 	mutex_exit(&vfs_miplist_mutex);
3794 	return (retval);
3795 }
3796 
3797 /*
3798  * Search the vfs list for a specified device.  Returns 1, if entry is found
3799  * or 0 if no suitable entry is found.
3800  */
3801 
3802 int
3803 vfs_devismounted(dev_t dev)
3804 {
3805 	struct vfs *vfsp;
3806 	int found = 0;
3807 	struct vfs search;
3808 	avl_index_t index;
3809 
3810 	search.vfs_dev = dev;
3811 	search.vfs_mntix = 0;
3812 
3813 	vfs_list_read_lock();
3814 
3815 	/*
3816 	 * there might be several entries with the same dev in the tree,
3817 	 * only discerned by mntix. To find the first, we start with a mntix
3818 	 * of 0. The search will fail. The following avl_nearest will give
3819 	 * us the actual first entry.
3820 	 */
3821 	VERIFY(avl_find(&vfs_by_dev, &search, &index) == NULL);
3822 	vfsp = avl_nearest(&vfs_by_dev, index, AVL_AFTER);
3823 
3824 	if (vfsp != NULL && vfsp->vfs_dev == dev)
3825 		found = 1;
3826 
3827 	vfs_list_unlock();
3828 	return (found);
3829 }
3830 
3831 /*
3832  * Search the vfs list for a specified device.  Returns a pointer to it
3833  * or NULL if no suitable entry is found. The caller of this routine
3834  * is responsible for releasing the returned vfs pointer.
3835  */
3836 struct vfs *
3837 vfs_dev2vfsp(dev_t dev)
3838 {
3839 	struct vfs *vfsp;
3840 	int found;
3841 	struct vfs search;
3842 	avl_index_t index;
3843 
3844 	search.vfs_dev = dev;
3845 	search.vfs_mntix = 0;
3846 
3847 	vfs_list_read_lock();
3848 
3849 	/*
3850 	 * there might be several entries with the same dev in the tree,
3851 	 * only discerned by mntix. To find the first, we start with a mntix
3852 	 * of 0. The search will fail. The following avl_nearest will give
3853 	 * us the actual first entry.
3854 	 */
3855 	VERIFY(avl_find(&vfs_by_dev, &search, &index) == NULL);
3856 	vfsp = avl_nearest(&vfs_by_dev, index, AVL_AFTER);
3857 
3858 	found = 0;
3859 	while (vfsp != NULL && vfsp->vfs_dev == dev) {
3860 		/*
3861 		 * The following could be made more efficient by making
3862 		 * the entire loop use vfs_zone_next if the call is from
3863 		 * a zone.  The only callers, however, ustat(2) and
3864 		 * umount2(2), don't seem to justify the added
3865 		 * complexity at present.
3866 		 */
3867 		if (ZONE_PATH_VISIBLE(refstr_value(vfsp->vfs_mntpt),
3868 		    curproc->p_zone)) {
3869 			VFS_HOLD(vfsp);
3870 			found = 1;
3871 			break;
3872 		}
3873 		vfsp = AVL_NEXT(&vfs_by_dev, vfsp);
3874 	}
3875 	vfs_list_unlock();
3876 	return (found ? vfsp : NULL);
3877 }
3878 
3879 /*
3880  * Search the vfs list for a specified mntpoint.  Returns a pointer to it
3881  * or NULL if no suitable entry is found. The caller of this routine
3882  * is responsible for releasing the returned vfs pointer.
3883  *
3884  * Note that if multiple mntpoints match, the last one matching is
3885  * returned in an attempt to return the "top" mount when overlay
3886  * mounts are covering the same mount point.  This is accomplished by starting
3887  * at the end of the list and working our way backwards, stopping at the first
3888  * matching mount.
3889  */
3890 struct vfs *
3891 vfs_mntpoint2vfsp(const char *mp)
3892 {
3893 	struct vfs *vfsp;
3894 	struct vfs *retvfsp = NULL;
3895 	zone_t *zone = curproc->p_zone;
3896 	struct vfs *list;
3897 
3898 	vfs_list_read_lock();
3899 	if (getzoneid() == GLOBAL_ZONEID) {
3900 		/*
3901 		 * The global zone may see filesystems in any zone.
3902 		 */
3903 		struct vfs search;
3904 		search.vfs_mntpt = refstr_alloc(mp);
3905 		search.vfs_mntix = UINT64_MAX;
3906 		avl_index_t index;
3907 
3908 		/*
3909 		 * there might be several entries with the same mntpnt in the
3910 		 * tree, only discerned by mntix. To find the last, we start
3911 		 * with a mntix of UINT64_MAX. The search will fail. The
3912 		 * following avl_nearest will give  us the actual last entry
3913 		 * matching the mntpnt.
3914 		 */
3915 		VERIFY(avl_find(&vfs_by_mntpnt, &search, &index) == 0);
3916 		vfsp = avl_nearest(&vfs_by_mntpnt, index, AVL_BEFORE);
3917 
3918 		refstr_rele(search.vfs_mntpt);
3919 
3920 		if (vfsp != NULL &&
3921 		    strcmp(refstr_value(vfsp->vfs_mntpt), mp) == 0)
3922 			retvfsp = vfsp;
3923 	} else if ((list = zone->zone_vfslist) != NULL) {
3924 		const char *mntpt;
3925 
3926 		vfsp = list->vfs_zone_prev;
3927 		do {
3928 			mntpt = refstr_value(vfsp->vfs_mntpt);
3929 			mntpt = ZONE_PATH_TRANSLATE(mntpt, zone);
3930 			if (strcmp(mntpt, mp) == 0) {
3931 				retvfsp = vfsp;
3932 				break;
3933 			}
3934 			vfsp = vfsp->vfs_zone_prev;
3935 		} while (vfsp != list->vfs_zone_prev);
3936 	}
3937 	if (retvfsp)
3938 		VFS_HOLD(retvfsp);
3939 	vfs_list_unlock();
3940 	return (retvfsp);
3941 }
3942 
3943 /*
3944  * Search the vfs list for a specified vfsops.
3945  * if vfs entry is found then return 1, else 0.
3946  */
3947 int
3948 vfs_opsinuse(vfsops_t *ops)
3949 {
3950 	struct vfs *vfsp;
3951 	int found;
3952 
3953 	vfs_list_read_lock();
3954 	vfsp = rootvfs;
3955 	found = 0;
3956 	do {
3957 		if (vfs_getops(vfsp) == ops) {
3958 			found = 1;
3959 			break;
3960 		}
3961 		vfsp = vfsp->vfs_next;
3962 	} while (vfsp != rootvfs);
3963 	vfs_list_unlock();
3964 	return (found);
3965 }
3966 
3967 /*
3968  * Allocate an entry in vfssw for a file system type
3969  */
3970 struct vfssw *
3971 allocate_vfssw(const char *type)
3972 {
3973 	struct vfssw *vswp;
3974 
3975 	if (type[0] == '\0' || strlen(type) + 1 > _ST_FSTYPSZ) {
3976 		/*
3977 		 * The vfssw table uses the empty string to identify an
3978 		 * available entry; we cannot add any type which has
3979 		 * a leading NUL. The string length is limited to
3980 		 * the size of the st_fstype array in struct stat.
3981 		 */
3982 		return (NULL);
3983 	}
3984 
3985 	ASSERT(VFSSW_WRITE_LOCKED());
3986 	for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++)
3987 		if (!ALLOCATED_VFSSW(vswp)) {
3988 			vswp->vsw_name = kmem_alloc(strlen(type) + 1, KM_SLEEP);
3989 			(void) strcpy(vswp->vsw_name, type);
3990 			ASSERT(vswp->vsw_count == 0);
3991 			vswp->vsw_count = 1;
3992 			mutex_init(&vswp->vsw_lock, NULL, MUTEX_DEFAULT, NULL);
3993 			return (vswp);
3994 		}
3995 	return (NULL);
3996 }
3997 
3998 /*
3999  * Impose additional layer of translation between vfstype names
4000  * and module names in the filesystem.
4001  */
4002 static const char *
4003 vfs_to_modname(const char *vfstype)
4004 {
4005 	if (strcmp(vfstype, "proc") == 0) {
4006 		vfstype = "procfs";
4007 	} else if (strcmp(vfstype, "fd") == 0) {
4008 		vfstype = "fdfs";
4009 	} else if (strncmp(vfstype, "nfs", 3) == 0) {
4010 		vfstype = "nfs";
4011 	}
4012 
4013 	return (vfstype);
4014 }
4015 
4016 /*
4017  * Find a vfssw entry given a file system type name.
4018  * Try to autoload the filesystem if it's not found.
4019  * If it's installed, return the vfssw locked to prevent unloading.
4020  */
4021 struct vfssw *
4022 vfs_getvfssw(const char *type)
4023 {
4024 	struct vfssw *vswp;
4025 	const char *modname;
4026 
4027 	RLOCK_VFSSW();
4028 	vswp = vfs_getvfsswbyname(type);
4029 	modname = vfs_to_modname(type);
4030 
4031 	if (rootdir == NULL) {
4032 		/*
4033 		 * If we haven't yet loaded the root file system, then our
4034 		 * _init won't be called until later. Allocate vfssw entry,
4035 		 * because mod_installfs won't be called.
4036 		 */
4037 		if (vswp == NULL) {
4038 			RUNLOCK_VFSSW();
4039 			WLOCK_VFSSW();
4040 			if ((vswp = vfs_getvfsswbyname(type)) == NULL) {
4041 				if ((vswp = allocate_vfssw(type)) == NULL) {
4042 					WUNLOCK_VFSSW();
4043 					return (NULL);
4044 				}
4045 			}
4046 			WUNLOCK_VFSSW();
4047 			RLOCK_VFSSW();
4048 		}
4049 		if (!VFS_INSTALLED(vswp)) {
4050 			RUNLOCK_VFSSW();
4051 			(void) modloadonly("fs", modname);
4052 		} else
4053 			RUNLOCK_VFSSW();
4054 		return (vswp);
4055 	}
4056 
4057 	/*
4058 	 * Try to load the filesystem.  Before calling modload(), we drop
4059 	 * our lock on the VFS switch table, and pick it up after the
4060 	 * module is loaded.  However, there is a potential race:  the
4061 	 * module could be unloaded after the call to modload() completes
4062 	 * but before we pick up the lock and drive on.  Therefore,
4063 	 * we keep reloading the module until we've loaded the module
4064 	 * _and_ we have the lock on the VFS switch table.
4065 	 */
4066 	while (vswp == NULL || !VFS_INSTALLED(vswp)) {
4067 		RUNLOCK_VFSSW();
4068 		if (modload("fs", modname) == -1)
4069 			return (NULL);
4070 		RLOCK_VFSSW();
4071 		if (vswp == NULL)
4072 			if ((vswp = vfs_getvfsswbyname(type)) == NULL)
4073 				break;
4074 	}
4075 	RUNLOCK_VFSSW();
4076 
4077 	return (vswp);
4078 }
4079 
4080 /*
4081  * Find a vfssw entry given a file system type name.
4082  */
4083 struct vfssw *
4084 vfs_getvfsswbyname(const char *type)
4085 {
4086 	struct vfssw *vswp;
4087 
4088 	ASSERT(VFSSW_LOCKED());
4089 	if (type == NULL || *type == '\0')
4090 		return (NULL);
4091 
4092 	for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) {
4093 		if (strcmp(type, vswp->vsw_name) == 0) {
4094 			vfs_refvfssw(vswp);
4095 			return (vswp);
4096 		}
4097 	}
4098 
4099 	return (NULL);
4100 }
4101 
4102 /*
4103  * Find a vfssw entry given a set of vfsops.
4104  */
4105 struct vfssw *
4106 vfs_getvfsswbyvfsops(vfsops_t *vfsops)
4107 {
4108 	struct vfssw *vswp;
4109 
4110 	RLOCK_VFSSW();
4111 	for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) {
4112 		if (ALLOCATED_VFSSW(vswp) && &vswp->vsw_vfsops == vfsops) {
4113 			vfs_refvfssw(vswp);
4114 			RUNLOCK_VFSSW();
4115 			return (vswp);
4116 		}
4117 	}
4118 	RUNLOCK_VFSSW();
4119 
4120 	return (NULL);
4121 }
4122 
4123 /*
4124  * Reference a vfssw entry.
4125  */
4126 void
4127 vfs_refvfssw(struct vfssw *vswp)
4128 {
4129 
4130 	mutex_enter(&vswp->vsw_lock);
4131 	vswp->vsw_count++;
4132 	mutex_exit(&vswp->vsw_lock);
4133 }
4134 
4135 /*
4136  * Unreference a vfssw entry.
4137  */
4138 void
4139 vfs_unrefvfssw(struct vfssw *vswp)
4140 {
4141 
4142 	mutex_enter(&vswp->vsw_lock);
4143 	vswp->vsw_count--;
4144 	mutex_exit(&vswp->vsw_lock);
4145 }
4146 
4147 int sync_timeout = 30;		/* timeout for syncing a page during panic */
4148 int sync_timeleft;		/* portion of sync_timeout remaining */
4149 
4150 static int sync_retries = 20;	/* number of retries when not making progress */
4151 static int sync_triesleft;	/* portion of sync_retries remaining */
4152 
4153 static pgcnt_t old_pgcnt, new_pgcnt;
4154 static int new_bufcnt, old_bufcnt;
4155 
4156 /*
4157  * Sync all of the mounted filesystems, and then wait for the actual i/o to
4158  * complete.  We wait by counting the number of dirty pages and buffers,
4159  * pushing them out using bio_busy() and page_busy(), and then counting again.
4160  * This routine is used during both the uadmin A_SHUTDOWN code as well as
4161  * the SYNC phase of the panic code (see comments in panic.c).  It should only
4162  * be used after some higher-level mechanism has quiesced the system so that
4163  * new writes are not being initiated while we are waiting for completion.
4164  *
4165  * To ensure finite running time, our algorithm uses two timeout mechanisms:
4166  * sync_timeleft (a timer implemented by the omnipresent deadman() cyclic), and
4167  * sync_triesleft (a progress counter used by the vfs_syncall() loop below).
4168  * Together these ensure that syncing completes if our i/o paths are stuck.
4169  * The counters are declared above so they can be found easily in the debugger.
4170  *
4171  * The sync_timeleft counter is reset by bio_busy() and page_busy() using the
4172  * vfs_syncprogress() subroutine whenever we make progress through the lists of
4173  * pages and buffers.  It is decremented and expired by the deadman() cyclic.
4174  * When vfs_syncall() decides it is done, we disable the deadman() counter by
4175  * setting sync_timeleft to zero.  This timer guards against vfs_syncall()
4176  * deadlocking or hanging inside of a broken filesystem or driver routine.
4177  *
4178  * The sync_triesleft counter is updated by vfs_syncall() itself.  If we make
4179  * sync_retries consecutive calls to bio_busy() and page_busy() without
4180  * decreasing either the number of dirty buffers or dirty pages below the
4181  * lowest count we have seen so far, we give up and return from vfs_syncall().
4182  *
4183  * Each loop iteration ends with a call to delay() one second to allow time for
4184  * i/o completion and to permit the user time to read our progress messages.
4185  */
4186 void
4187 vfs_syncall(void)
4188 {
4189 	if (rootdir == NULL && !modrootloaded)
4190 		return; /* panic during boot - no filesystems yet */
4191 
4192 	printf("syncing file systems...");
4193 	vfs_syncprogress();
4194 	sync();
4195 
4196 	vfs_syncprogress();
4197 	sync_triesleft = sync_retries;
4198 
4199 	old_bufcnt = new_bufcnt = INT_MAX;
4200 	old_pgcnt = new_pgcnt = ULONG_MAX;
4201 
4202 	while (sync_triesleft > 0) {
4203 		old_bufcnt = MIN(old_bufcnt, new_bufcnt);
4204 		old_pgcnt = MIN(old_pgcnt, new_pgcnt);
4205 
4206 		new_bufcnt = bio_busy(B_TRUE);
4207 		new_pgcnt = page_busy(B_TRUE);
4208 		vfs_syncprogress();
4209 
4210 		if (new_bufcnt == 0 && new_pgcnt == 0)
4211 			break;
4212 
4213 		if (new_bufcnt < old_bufcnt || new_pgcnt < old_pgcnt)
4214 			sync_triesleft = sync_retries;
4215 		else
4216 			sync_triesleft--;
4217 
4218 		if (new_bufcnt)
4219 			printf(" [%d]", new_bufcnt);
4220 		if (new_pgcnt)
4221 			printf(" %lu", new_pgcnt);
4222 
4223 		delay(hz);
4224 	}
4225 
4226 	if (new_bufcnt != 0 || new_pgcnt != 0)
4227 		printf(" done (not all i/o completed)\n");
4228 	else
4229 		printf(" done\n");
4230 
4231 	sync_timeleft = 0;
4232 	delay(hz);
4233 }
4234 
4235 /*
4236  * If we are in the middle of the sync phase of panic, reset sync_timeleft to
4237  * sync_timeout to indicate that we are making progress and the deadman()
4238  * omnipresent cyclic should not yet time us out.  Note that it is safe to
4239  * store to sync_timeleft here since the deadman() is firing at high-level
4240  * on top of us.  If we are racing with the deadman(), either the deadman()
4241  * will decrement the old value and then we will reset it, or we will
4242  * reset it and then the deadman() will immediately decrement it.  In either
4243  * case, correct behavior results.
4244  */
4245 void
4246 vfs_syncprogress(void)
4247 {
4248 	if (panicstr)
4249 		sync_timeleft = sync_timeout;
4250 }
4251 
4252 /*
4253  * Map VFS flags to statvfs flags.  These shouldn't really be separate
4254  * flags at all.
4255  */
4256 uint_t
4257 vf_to_stf(uint_t vf)
4258 {
4259 	uint_t stf = 0;
4260 
4261 	if (vf & VFS_RDONLY)
4262 		stf |= ST_RDONLY;
4263 	if (vf & VFS_NOSETUID)
4264 		stf |= ST_NOSUID;
4265 	if (vf & VFS_NOTRUNC)
4266 		stf |= ST_NOTRUNC;
4267 
4268 	return (stf);
4269 }
4270 
4271 /*
4272  * Entries for (illegal) fstype 0.
4273  */
4274 /* ARGSUSED */
4275 int
4276 vfsstray_sync(struct vfs *vfsp, short arg, struct cred *cr)
4277 {
4278 	cmn_err(CE_PANIC, "stray vfs operation");
4279 	return (0);
4280 }
4281 
4282 /*
4283  * Entries for (illegal) fstype 0.
4284  */
4285 int
4286 vfsstray(void)
4287 {
4288 	cmn_err(CE_PANIC, "stray vfs operation");
4289 	return (0);
4290 }
4291 
4292 /*
4293  * Support for dealing with forced UFS unmount and its interaction with
4294  * LOFS. Could be used by any filesystem.
4295  * See bug 1203132.
4296  */
4297 int
4298 vfs_EIO(void)
4299 {
4300 	return (EIO);
4301 }
4302 
4303 /*
4304  * We've gotta define the op for sync separately, since the compiler gets
4305  * confused if we mix and match ANSI and normal style prototypes when
4306  * a "short" argument is present and spits out a warning.
4307  */
4308 /*ARGSUSED*/
4309 int
4310 vfs_EIO_sync(struct vfs *vfsp, short arg, struct cred *cr)
4311 {
4312 	return (EIO);
4313 }
4314 
4315 vfs_t EIO_vfs;
4316 vfsops_t *EIO_vfsops;
4317 
4318 /*
4319  * Called from startup() to initialize all loaded vfs's
4320  */
4321 void
4322 vfsinit(void)
4323 {
4324 	struct vfssw *vswp;
4325 	int error;
4326 	extern int vopstats_enabled;
4327 	extern void vopstats_startup();
4328 
4329 	static const fs_operation_def_t EIO_vfsops_template[] = {
4330 		VFSNAME_MOUNT,		{ .error = vfs_EIO },
4331 		VFSNAME_UNMOUNT,	{ .error = vfs_EIO },
4332 		VFSNAME_ROOT,		{ .error = vfs_EIO },
4333 		VFSNAME_STATVFS,	{ .error = vfs_EIO },
4334 		VFSNAME_SYNC, 		{ .vfs_sync = vfs_EIO_sync },
4335 		VFSNAME_VGET,		{ .error = vfs_EIO },
4336 		VFSNAME_MOUNTROOT,	{ .error = vfs_EIO },
4337 		VFSNAME_FREEVFS,	{ .error = vfs_EIO },
4338 		VFSNAME_VNSTATE,	{ .error = vfs_EIO },
4339 		NULL, NULL
4340 	};
4341 
4342 	static const fs_operation_def_t stray_vfsops_template[] = {
4343 		VFSNAME_MOUNT,		{ .error = vfsstray },
4344 		VFSNAME_UNMOUNT,	{ .error = vfsstray },
4345 		VFSNAME_ROOT,		{ .error = vfsstray },
4346 		VFSNAME_STATVFS,	{ .error = vfsstray },
4347 		VFSNAME_SYNC, 		{ .vfs_sync = vfsstray_sync },
4348 		VFSNAME_VGET,		{ .error = vfsstray },
4349 		VFSNAME_MOUNTROOT,	{ .error = vfsstray },
4350 		VFSNAME_FREEVFS,	{ .error = vfsstray },
4351 		VFSNAME_VNSTATE,	{ .error = vfsstray },
4352 		NULL, NULL
4353 	};
4354 
4355 	/* Create vfs cache */
4356 	vfs_cache = kmem_cache_create("vfs_cache", sizeof (struct vfs),
4357 	    sizeof (uintptr_t), NULL, NULL, NULL, NULL, NULL, 0);
4358 
4359 	/* Initialize the vnode cache (file systems may use it during init). */
4360 	vn_create_cache();
4361 
4362 	/* Setup event monitor framework */
4363 	fem_init();
4364 
4365 	/* Initialize the dummy stray file system type. */
4366 	error = vfs_setfsops(0, stray_vfsops_template, NULL);
4367 
4368 	/* Initialize the dummy EIO file system. */
4369 	error = vfs_makefsops(EIO_vfsops_template, &EIO_vfsops);
4370 	if (error != 0) {
4371 		cmn_err(CE_WARN, "vfsinit: bad EIO vfs ops template");
4372 		/* Shouldn't happen, but not bad enough to panic */
4373 	}
4374 
4375 	VFS_INIT(&EIO_vfs, EIO_vfsops, (caddr_t)NULL);
4376 
4377 	/*
4378 	 * Default EIO_vfs.vfs_flag to VFS_UNMOUNTED so a lookup
4379 	 * on this vfs can immediately notice it's invalid.
4380 	 */
4381 	EIO_vfs.vfs_flag |= VFS_UNMOUNTED;
4382 
4383 	/*
4384 	 * Call the init routines of non-loadable filesystems only.
4385 	 * Filesystems which are loaded as separate modules will be
4386 	 * initialized by the module loading code instead.
4387 	 */
4388 
4389 	for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) {
4390 		RLOCK_VFSSW();
4391 		if (vswp->vsw_init != NULL)
4392 			(*vswp->vsw_init)(vswp - vfssw, vswp->vsw_name);
4393 		RUNLOCK_VFSSW();
4394 	}
4395 
4396 	vopstats_startup();
4397 
4398 	if (vopstats_enabled) {
4399 		/* EIO_vfs can collect stats, but we don't retrieve them */
4400 		initialize_vopstats(&EIO_vfs.vfs_vopstats);
4401 		EIO_vfs.vfs_fstypevsp = NULL;
4402 		EIO_vfs.vfs_vskap = NULL;
4403 		EIO_vfs.vfs_flag |= VFS_STATS;
4404 	}
4405 
4406 	xattr_init();
4407 
4408 	reparse_point_init();
4409 }
4410 
4411 vfs_t *
4412 vfs_alloc(int kmflag)
4413 {
4414 	vfs_t *vfsp;
4415 
4416 	vfsp = kmem_cache_alloc(vfs_cache, kmflag);
4417 
4418 	/*
4419 	 * Do the simplest initialization here.
4420 	 * Everything else gets done in vfs_init()
4421 	 */
4422 	bzero(vfsp, sizeof (vfs_t));
4423 	return (vfsp);
4424 }
4425 
4426 void
4427 vfs_free(vfs_t *vfsp)
4428 {
4429 	/*
4430 	 * One would be tempted to assert that "vfsp->vfs_count == 0".
4431 	 * The problem is that this gets called out of domount() with
4432 	 * a partially initialized vfs and a vfs_count of 1.  This is
4433 	 * also called from vfs_rele() with a vfs_count of 0.  We can't
4434 	 * call VFS_RELE() from domount() if VFS_MOUNT() hasn't successfully
4435 	 * returned.  This is because VFS_MOUNT() fully initializes the
4436 	 * vfs structure and its associated data.  VFS_RELE() will call
4437 	 * VFS_FREEVFS() which may panic the system if the data structures
4438 	 * aren't fully initialized from a successful VFS_MOUNT()).
4439 	 */
4440 
4441 	/* If FEM was in use, make sure everything gets cleaned up */
4442 	if (vfsp->vfs_femhead) {
4443 		ASSERT(vfsp->vfs_femhead->femh_list == NULL);
4444 		mutex_destroy(&vfsp->vfs_femhead->femh_lock);
4445 		kmem_free(vfsp->vfs_femhead, sizeof (*(vfsp->vfs_femhead)));
4446 		vfsp->vfs_femhead = NULL;
4447 	}
4448 
4449 	if (vfsp->vfs_implp)
4450 		vfsimpl_teardown(vfsp);
4451 	sema_destroy(&vfsp->vfs_reflock);
4452 	kmem_cache_free(vfs_cache, vfsp);
4453 }
4454 
4455 /*
4456  * Increments the vfs reference count by one atomically.
4457  */
4458 void
4459 vfs_hold(vfs_t *vfsp)
4460 {
4461 	atomic_inc_32(&vfsp->vfs_count);
4462 	ASSERT(vfsp->vfs_count != 0);
4463 }
4464 
4465 /*
4466  * Decrements the vfs reference count by one atomically. When
4467  * vfs reference count becomes zero, it calls the file system
4468  * specific vfs_freevfs() to free up the resources.
4469  */
4470 void
4471 vfs_rele(vfs_t *vfsp)
4472 {
4473 	ASSERT(vfsp->vfs_count != 0);
4474 	if (atomic_dec_32_nv(&vfsp->vfs_count) == 0) {
4475 		VFS_FREEVFS(vfsp);
4476 		lofi_remove(vfsp);
4477 		if (vfsp->vfs_zone)
4478 			zone_rele_ref(&vfsp->vfs_implp->vi_zone_ref,
4479 			    ZONE_REF_VFS);
4480 		vfs_freemnttab(vfsp);
4481 		vfs_free(vfsp);
4482 	}
4483 }
4484 
4485 /*
4486  * Generic operations vector support.
4487  *
4488  * This is used to build operations vectors for both the vfs and vnode.
4489  * It's normally called only when a file system is loaded.
4490  *
4491  * There are many possible algorithms for this, including the following:
4492  *
4493  *   (1) scan the list of known operations; for each, see if the file system
4494  *       includes an entry for it, and fill it in as appropriate.
4495  *
4496  *   (2) set up defaults for all known operations.  scan the list of ops
4497  *       supplied by the file system; for each which is both supplied and
4498  *       known, fill it in.
4499  *
4500  *   (3) sort the lists of known ops & supplied ops; scan the list, filling
4501  *       in entries as we go.
4502  *
4503  * we choose (1) for simplicity, and because performance isn't critical here.
4504  * note that (2) could be sped up using a precomputed hash table on known ops.
4505  * (3) could be faster than either, but only if the lists were very large or
4506  * supplied in sorted order.
4507  *
4508  */
4509 
4510 int
4511 fs_build_vector(void *vector, int *unused_ops,
4512     const fs_operation_trans_def_t *translation,
4513     const fs_operation_def_t *operations)
4514 {
4515 	int i, num_trans, num_ops, used;
4516 
4517 	/*
4518 	 * Count the number of translations and the number of supplied
4519 	 * operations.
4520 	 */
4521 
4522 	{
4523 		const fs_operation_trans_def_t *p;
4524 
4525 		for (num_trans = 0, p = translation;
4526 		    p->name != NULL;
4527 		    num_trans++, p++)
4528 			;
4529 	}
4530 
4531 	{
4532 		const fs_operation_def_t *p;
4533 
4534 		for (num_ops = 0, p = operations;
4535 		    p->name != NULL;
4536 		    num_ops++, p++)
4537 			;
4538 	}
4539 
4540 	/* Walk through each operation known to our caller.  There will be */
4541 	/* one entry in the supplied "translation table" for each. */
4542 
4543 	used = 0;
4544 
4545 	for (i = 0; i < num_trans; i++) {
4546 		int j, found;
4547 		char *curname;
4548 		fs_generic_func_p result;
4549 		fs_generic_func_p *location;
4550 
4551 		curname = translation[i].name;
4552 
4553 		/* Look for a matching operation in the list supplied by the */
4554 		/* file system. */
4555 
4556 		found = 0;
4557 
4558 		for (j = 0; j < num_ops; j++) {
4559 			if (strcmp(operations[j].name, curname) == 0) {
4560 				used++;
4561 				found = 1;
4562 				break;
4563 			}
4564 		}
4565 
4566 		/*
4567 		 * If the file system is using a "placeholder" for default
4568 		 * or error functions, grab the appropriate function out of
4569 		 * the translation table.  If the file system didn't supply
4570 		 * this operation at all, use the default function.
4571 		 */
4572 
4573 		if (found) {
4574 			result = operations[j].func.fs_generic;
4575 			if (result == fs_default) {
4576 				result = translation[i].defaultFunc;
4577 			} else if (result == fs_error) {
4578 				result = translation[i].errorFunc;
4579 			} else if (result == NULL) {
4580 				/* Null values are PROHIBITED */
4581 				return (EINVAL);
4582 			}
4583 		} else {
4584 			result = translation[i].defaultFunc;
4585 		}
4586 
4587 		/* Now store the function into the operations vector. */
4588 
4589 		location = (fs_generic_func_p *)
4590 		    (((char *)vector) + translation[i].offset);
4591 
4592 		*location = result;
4593 	}
4594 
4595 	*unused_ops = num_ops - used;
4596 
4597 	return (0);
4598 }
4599 
4600 /* Placeholder functions, should never be called. */
4601 
4602 int
4603 fs_error(void)
4604 {
4605 	cmn_err(CE_PANIC, "fs_error called");
4606 	return (0);
4607 }
4608 
4609 int
4610 fs_default(void)
4611 {
4612 	cmn_err(CE_PANIC, "fs_default called");
4613 	return (0);
4614 }
4615 
4616 #ifdef __sparc
4617 
4618 /*
4619  * Part of the implementation of booting off a mirrored root
4620  * involves a change of dev_t for the root device.  To
4621  * accomplish this, first remove the existing hash table
4622  * entry for the root device, convert to the new dev_t,
4623  * then re-insert in the hash table at the head of the list.
4624  */
4625 void
4626 vfs_root_redev(vfs_t *vfsp, dev_t ndev, int fstype)
4627 {
4628 	vfs_list_lock();
4629 
4630 	vfs_hash_remove(vfsp);
4631 
4632 	vfsp->vfs_dev = ndev;
4633 	vfs_make_fsid(&vfsp->vfs_fsid, ndev, fstype);
4634 
4635 	vfs_hash_add(vfsp, 1);
4636 
4637 	vfs_list_unlock();
4638 }
4639 
4640 #else /* x86 NEWBOOT */
4641 
4642 #if defined(__x86)
4643 extern int hvmboot_rootconf();
4644 #endif /* __x86 */
4645 
4646 extern ib_boot_prop_t *iscsiboot_prop;
4647 
4648 int
4649 rootconf()
4650 {
4651 	int error;
4652 	struct vfssw *vsw;
4653 	extern void pm_init();
4654 	char *fstyp, *fsmod;
4655 	int ret = -1;
4656 
4657 	getrootfs(&fstyp, &fsmod);
4658 
4659 #if defined(__x86)
4660 	/*
4661 	 * hvmboot_rootconf() is defined in the hvm_bootstrap misc module,
4662 	 * which lives in /platform/i86hvm, and hence is only available when
4663 	 * booted in an x86 hvm environment.  If the hvm_bootstrap misc module
4664 	 * is not available then the modstub for this function will return 0.
4665 	 * If the hvm_bootstrap misc module is available it will be loaded
4666 	 * and hvmboot_rootconf() will be invoked.
4667 	 */
4668 	if (error = hvmboot_rootconf())
4669 		return (error);
4670 #endif /* __x86 */
4671 
4672 	if (error = clboot_rootconf())
4673 		return (error);
4674 
4675 	if (modload("fs", fsmod) == -1)
4676 		panic("Cannot _init %s module", fsmod);
4677 
4678 	RLOCK_VFSSW();
4679 	vsw = vfs_getvfsswbyname(fstyp);
4680 	RUNLOCK_VFSSW();
4681 	if (vsw == NULL) {
4682 		cmn_err(CE_CONT, "Cannot find %s filesystem\n", fstyp);
4683 		return (ENXIO);
4684 	}
4685 	VFS_INIT(rootvfs, &vsw->vsw_vfsops, 0);
4686 	VFS_HOLD(rootvfs);
4687 
4688 	/* always mount readonly first */
4689 	rootvfs->vfs_flag |= VFS_RDONLY;
4690 
4691 	pm_init();
4692 
4693 	if (netboot && iscsiboot_prop) {
4694 		cmn_err(CE_WARN, "NFS boot and iSCSI boot"
4695 		    " shouldn't happen in the same time");
4696 		return (EINVAL);
4697 	}
4698 
4699 	if (netboot || iscsiboot_prop) {
4700 		ret = strplumb();
4701 		if (ret != 0) {
4702 			cmn_err(CE_WARN, "Cannot plumb network device %d", ret);
4703 			return (EFAULT);
4704 		}
4705 	}
4706 
4707 	if ((ret == 0) && iscsiboot_prop) {
4708 		ret = modload("drv", "iscsi");
4709 		/* -1 indicates fail */
4710 		if (ret == -1) {
4711 			cmn_err(CE_WARN, "Failed to load iscsi module");
4712 			iscsi_boot_prop_free();
4713 			return (EINVAL);
4714 		} else {
4715 			if (!i_ddi_attach_pseudo_node("iscsi")) {
4716 				cmn_err(CE_WARN,
4717 				    "Failed to attach iscsi driver");
4718 				iscsi_boot_prop_free();
4719 				return (ENODEV);
4720 			}
4721 		}
4722 	}
4723 
4724 	error = VFS_MOUNTROOT(rootvfs, ROOT_INIT);
4725 	vfs_unrefvfssw(vsw);
4726 	rootdev = rootvfs->vfs_dev;
4727 
4728 	if (error)
4729 		cmn_err(CE_CONT, "Cannot mount root on %s fstype %s\n",
4730 		    rootfs.bo_name, fstyp);
4731 	else
4732 		cmn_err(CE_CONT, "?root on %s fstype %s\n",
4733 		    rootfs.bo_name, fstyp);
4734 	return (error);
4735 }
4736 
4737 /*
4738  * XXX this is called by nfs only and should probably be removed
4739  * If booted with ASKNAME, prompt on the console for a filesystem
4740  * name and return it.
4741  */
4742 void
4743 getfsname(char *askfor, char *name, size_t namelen)
4744 {
4745 	if (boothowto & RB_ASKNAME) {
4746 		printf("%s name: ", askfor);
4747 		console_gets(name, namelen);
4748 	}
4749 }
4750 
4751 /*
4752  * Init the root filesystem type (rootfs.bo_fstype) from the "fstype"
4753  * property.
4754  *
4755  * Filesystem types starting with the prefix "nfs" are diskless clients;
4756  * init the root filename name (rootfs.bo_name), too.
4757  *
4758  * If we are booting via NFS we currently have these options:
4759  *	nfs -	dynamically choose NFS V2, V3, or V4 (default)
4760  *	nfs2 -	force NFS V2
4761  *	nfs3 -	force NFS V3
4762  *	nfs4 -	force NFS V4
4763  * Because we need to maintain backward compatibility with the naming
4764  * convention that the NFS V2 filesystem name is "nfs" (see vfs_conf.c)
4765  * we need to map "nfs" => "nfsdyn" and "nfs2" => "nfs".  The dynamic
4766  * nfs module will map the type back to either "nfs", "nfs3", or "nfs4".
4767  * This is only for root filesystems, all other uses such as cachefs
4768  * will expect that "nfs" == NFS V2.
4769  */
4770 static void
4771 getrootfs(char **fstypp, char **fsmodp)
4772 {
4773 	extern char *strplumb_get_netdev_path(void);
4774 	char *propstr = NULL;
4775 
4776 	/*
4777 	 * Check fstype property; for diskless it should be one of "nfs",
4778 	 * "nfs2", "nfs3" or "nfs4".
4779 	 */
4780 	if (ddi_prop_lookup_string(DDI_DEV_T_ANY, ddi_root_node(),
4781 	    DDI_PROP_DONTPASS, "fstype", &propstr)
4782 	    == DDI_SUCCESS) {
4783 		(void) strncpy(rootfs.bo_fstype, propstr, BO_MAXFSNAME);
4784 		ddi_prop_free(propstr);
4785 
4786 	/*
4787 	 * if the boot property 'fstype' is not set, but 'zfs-bootfs' is set,
4788 	 * assume the type of this root filesystem is 'zfs'.
4789 	 */
4790 	} else if (ddi_prop_lookup_string(DDI_DEV_T_ANY, ddi_root_node(),
4791 	    DDI_PROP_DONTPASS, "zfs-bootfs", &propstr)
4792 	    == DDI_SUCCESS) {
4793 		(void) strncpy(rootfs.bo_fstype, "zfs", BO_MAXFSNAME);
4794 		ddi_prop_free(propstr);
4795 	}
4796 
4797 	if (strncmp(rootfs.bo_fstype, "nfs", 3) != 0) {
4798 		*fstypp = *fsmodp = rootfs.bo_fstype;
4799 		return;
4800 	}
4801 
4802 	++netboot;
4803 
4804 	if (strcmp(rootfs.bo_fstype, "nfs2") == 0)
4805 		(void) strcpy(rootfs.bo_fstype, "nfs");
4806 	else if (strcmp(rootfs.bo_fstype, "nfs") == 0)
4807 		(void) strcpy(rootfs.bo_fstype, "nfsdyn");
4808 
4809 	/*
4810 	 * check if path to network interface is specified in bootpath
4811 	 * or by a hypervisor domain configuration file.
4812 	 * XXPV - enable strlumb_get_netdev_path()
4813 	 */
4814 	if (ddi_prop_exists(DDI_DEV_T_ANY, ddi_root_node(), DDI_PROP_DONTPASS,
4815 	    "xpv-nfsroot")) {
4816 		(void) strcpy(rootfs.bo_name, "/xpvd/xnf@0");
4817 	} else if (ddi_prop_lookup_string(DDI_DEV_T_ANY, ddi_root_node(),
4818 	    DDI_PROP_DONTPASS, "bootpath", &propstr)
4819 	    == DDI_SUCCESS) {
4820 		(void) strncpy(rootfs.bo_name, propstr, BO_MAXOBJNAME);
4821 		ddi_prop_free(propstr);
4822 	} else {
4823 		/* attempt to determine netdev_path via boot_mac address */
4824 		netdev_path = strplumb_get_netdev_path();
4825 		if (netdev_path == NULL)
4826 			panic("cannot find boot network interface");
4827 		(void) strncpy(rootfs.bo_name, netdev_path, BO_MAXOBJNAME);
4828 	}
4829 	*fstypp = rootfs.bo_fstype;
4830 	*fsmodp = "nfs";
4831 }
4832 #endif
4833 
4834 /*
4835  * VFS feature routines
4836  */
4837 
4838 #define	VFTINDEX(feature)	(((feature) >> 32) & 0xFFFFFFFF)
4839 #define	VFTBITS(feature)	((feature) & 0xFFFFFFFFLL)
4840 
4841 /* Register a feature in the vfs */
4842 void
4843 vfs_set_feature(vfs_t *vfsp, vfs_feature_t feature)
4844 {
4845 	/* Note that vfs_featureset[] is found in *vfsp->vfs_implp */
4846 	if (vfsp->vfs_implp == NULL)
4847 		return;
4848 
4849 	vfsp->vfs_featureset[VFTINDEX(feature)] |= VFTBITS(feature);
4850 }
4851 
4852 void
4853 vfs_clear_feature(vfs_t *vfsp, vfs_feature_t feature)
4854 {
4855 	/* Note that vfs_featureset[] is found in *vfsp->vfs_implp */
4856 	if (vfsp->vfs_implp == NULL)
4857 		return;
4858 	vfsp->vfs_featureset[VFTINDEX(feature)] &= VFTBITS(~feature);
4859 }
4860 
4861 /*
4862  * Query a vfs for a feature.
4863  * Returns 1 if feature is present, 0 if not
4864  */
4865 int
4866 vfs_has_feature(vfs_t *vfsp, vfs_feature_t feature)
4867 {
4868 	int	ret = 0;
4869 
4870 	/* Note that vfs_featureset[] is found in *vfsp->vfs_implp */
4871 	if (vfsp->vfs_implp == NULL)
4872 		return (ret);
4873 
4874 	if (vfsp->vfs_featureset[VFTINDEX(feature)] & VFTBITS(feature))
4875 		ret = 1;
4876 
4877 	return (ret);
4878 }
4879 
4880 /*
4881  * Propagate feature set from one vfs to another
4882  */
4883 void
4884 vfs_propagate_features(vfs_t *from, vfs_t *to)
4885 {
4886 	int i;
4887 
4888 	if (to->vfs_implp == NULL || from->vfs_implp == NULL)
4889 		return;
4890 
4891 	for (i = 1; i <= to->vfs_featureset[0]; i++) {
4892 		to->vfs_featureset[i] = from->vfs_featureset[i];
4893 	}
4894 }
4895 
4896 #define	LOFINODE_PATH "/dev/lofi/%d"
4897 
4898 /*
4899  * Return the vnode for the lofi node if there's a lofi mount in place.
4900  * Returns -1 when there's no lofi node, 0 on success, and > 0 on
4901  * failure.
4902  */
4903 int
4904 vfs_get_lofi(vfs_t *vfsp, vnode_t **vpp)
4905 {
4906 	char *path = NULL;
4907 	int strsize;
4908 	int err;
4909 
4910 	if (vfsp->vfs_lofi_minor == 0) {
4911 		*vpp = NULL;
4912 		return (-1);
4913 	}
4914 
4915 	strsize = snprintf(NULL, 0, LOFINODE_PATH, vfsp->vfs_lofi_minor);
4916 	path = kmem_alloc(strsize + 1, KM_SLEEP);
4917 	(void) snprintf(path, strsize + 1, LOFINODE_PATH, vfsp->vfs_lofi_minor);
4918 
4919 	/*
4920 	 * We may be inside a zone, so we need to use the /dev path, but
4921 	 * it's created asynchronously, so we wait here.
4922 	 */
4923 	for (;;) {
4924 		err = lookupname(path, UIO_SYSSPACE, FOLLOW, NULLVPP, vpp);
4925 
4926 		if (err != ENOENT)
4927 			break;
4928 
4929 		if ((err = delay_sig(hz / 8)) == EINTR)
4930 			break;
4931 	}
4932 
4933 	if (err)
4934 		*vpp = NULL;
4935 
4936 	kmem_free(path, strsize + 1);
4937 	return (err);
4938 }
4939