xref: /titanic_44/usr/src/uts/common/fs/vfs.c (revision 952d685ebe0e34acfa6e0842e7484f982f38b74c)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /*	Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989 AT&T	*/
27 /*	  All Rights Reserved  	*/
28 
29 /*
30  * University Copyright- Copyright (c) 1982, 1986, 1988
31  * The Regents of the University of California
32  * All Rights Reserved
33  *
34  * University Acknowledgment- Portions of this document are derived from
35  * software developed by the University of California, Berkeley, and its
36  * contributors.
37  */
38 
39 
40 #pragma ident	"%Z%%M%	%I%	%E% SMI"
41 
42 #include <sys/types.h>
43 #include <sys/t_lock.h>
44 #include <sys/param.h>
45 #include <sys/errno.h>
46 #include <sys/user.h>
47 #include <sys/fstyp.h>
48 #include <sys/kmem.h>
49 #include <sys/systm.h>
50 #include <sys/proc.h>
51 #include <sys/mount.h>
52 #include <sys/vfs.h>
53 #include <sys/fem.h>
54 #include <sys/mntent.h>
55 #include <sys/stat.h>
56 #include <sys/statvfs.h>
57 #include <sys/statfs.h>
58 #include <sys/cred.h>
59 #include <sys/vnode.h>
60 #include <sys/rwstlock.h>
61 #include <sys/dnlc.h>
62 #include <sys/file.h>
63 #include <sys/time.h>
64 #include <sys/atomic.h>
65 #include <sys/cmn_err.h>
66 #include <sys/buf.h>
67 #include <sys/swap.h>
68 #include <sys/debug.h>
69 #include <sys/vnode.h>
70 #include <sys/modctl.h>
71 #include <sys/ddi.h>
72 #include <sys/pathname.h>
73 #include <sys/bootconf.h>
74 #include <sys/dumphdr.h>
75 #include <sys/dc_ki.h>
76 #include <sys/poll.h>
77 #include <sys/sunddi.h>
78 #include <sys/sysmacros.h>
79 #include <sys/zone.h>
80 #include <sys/policy.h>
81 #include <sys/ctfs.h>
82 #include <sys/objfs.h>
83 #include <sys/console.h>
84 #include <sys/reboot.h>
85 
86 #include <vm/page.h>
87 
88 #include <fs/fs_subr.h>
89 
90 /* Private interfaces to create vopstats-related data structures */
91 extern void		initialize_vopstats(vopstats_t *);
92 extern vopstats_t	*get_fstype_vopstats(struct vfs *, struct vfssw *);
93 extern vsk_anchor_t	*get_vskstat_anchor(struct vfs *);
94 
95 static void vfs_clearmntopt_nolock(mntopts_t *, const char *, int);
96 static void vfs_setmntopt_nolock(mntopts_t *, const char *,
97     const char *, int, int);
98 static int  vfs_optionisset_nolock(const mntopts_t *, const char *, char **);
99 static void vfs_freemnttab(struct vfs *);
100 static void vfs_freeopt(mntopt_t *);
101 static void vfs_swapopttbl_nolock(mntopts_t *, mntopts_t *);
102 static void vfs_swapopttbl(mntopts_t *, mntopts_t *);
103 static void vfs_copyopttbl_extend(const mntopts_t *, mntopts_t *, int);
104 static void vfs_createopttbl_extend(mntopts_t *, const char *,
105     const mntopts_t *);
106 static char **vfs_copycancelopt_extend(char **const, int);
107 static void vfs_freecancelopt(char **);
108 static char *getrootfs(void);
109 static int getmacpath(dev_info_t *, void *);
110 
111 struct ipmnt {
112 	struct ipmnt	*mip_next;
113 	dev_t		mip_dev;
114 	struct vfs	*mip_vfsp;
115 };
116 
117 static kmutex_t		vfs_miplist_mutex;
118 static struct ipmnt	*vfs_miplist = NULL;
119 static struct ipmnt	*vfs_miplist_end = NULL;
120 
121 /*
122  * VFS global data.
123  */
124 vnode_t *rootdir;		/* pointer to root inode vnode. */
125 vnode_t *devicesdir;		/* pointer to inode of devices root */
126 vnode_t	*devdir;		/* pointer to inode of dev root */
127 
128 char *server_rootpath;		/* root path for diskless clients */
129 char *server_hostname;		/* hostname of diskless server */
130 
131 static struct vfs root;
132 static struct vfs devices;
133 static struct vfs dev;
134 struct vfs *rootvfs = &root;	/* pointer to root vfs; head of VFS list. */
135 rvfs_t *rvfs_list;		/* array of vfs ptrs for vfs hash list */
136 int vfshsz = 512;		/* # of heads/locks in vfs hash arrays */
137 				/* must be power of 2!	*/
138 timespec_t vfs_mnttab_ctime;	/* mnttab created time */
139 timespec_t vfs_mnttab_mtime;	/* mnttab last modified time */
140 char *vfs_dummyfstype = "\0";
141 struct pollhead vfs_pollhd;	/* for mnttab pollers */
142 
143 /*
144  * Table for generic options recognized in the VFS layer and acted
145  * on at this level before parsing file system specific options.
146  * The nosuid option is stronger than any of the devices and setuid
147  * options, so those are canceled when nosuid is seen.
148  *
149  * All options which are added here need to be added to the
150  * list of standard options in usr/src/cmd/fs.d/fslib.c as well.
151  */
152 /*
153  * VFS Mount options table
154  */
155 static char *ro_cancel[] = { MNTOPT_RW, NULL };
156 static char *rw_cancel[] = { MNTOPT_RO, NULL };
157 static char *suid_cancel[] = { MNTOPT_NOSUID, NULL };
158 static char *nosuid_cancel[] = { MNTOPT_SUID, MNTOPT_DEVICES, MNTOPT_NODEVICES,
159     MNTOPT_NOSETUID, MNTOPT_SETUID, NULL };
160 static char *devices_cancel[] = { MNTOPT_NODEVICES, NULL };
161 static char *nodevices_cancel[] = { MNTOPT_DEVICES, NULL };
162 static char *setuid_cancel[] = { MNTOPT_NOSETUID, NULL };
163 static char *nosetuid_cancel[] = { MNTOPT_SETUID, NULL };
164 static char *nbmand_cancel[] = { MNTOPT_NONBMAND, NULL };
165 static char *nonbmand_cancel[] = { MNTOPT_NBMAND, NULL };
166 static char *exec_cancel[] = { MNTOPT_NOEXEC, NULL };
167 static char *noexec_cancel[] = { MNTOPT_EXEC, NULL };
168 
169 static const mntopt_t mntopts[] = {
170 /*
171  *	option name		cancel options		default arg	flags
172  */
173 	{ MNTOPT_REMOUNT,	NULL,			NULL,
174 		MO_NODISPLAY, (void *)0 },
175 	{ MNTOPT_RO,		ro_cancel,		NULL,		0,
176 		(void *)0 },
177 	{ MNTOPT_RW,		rw_cancel,		NULL,		0,
178 		(void *)0 },
179 	{ MNTOPT_SUID,		suid_cancel,		NULL,		0,
180 		(void *)0 },
181 	{ MNTOPT_NOSUID,	nosuid_cancel,		NULL,		0,
182 		(void *)0 },
183 	{ MNTOPT_DEVICES,	devices_cancel,		NULL,		0,
184 		(void *)0 },
185 	{ MNTOPT_NODEVICES,	nodevices_cancel,	NULL,		0,
186 		(void *)0 },
187 	{ MNTOPT_SETUID,	setuid_cancel,		NULL,		0,
188 		(void *)0 },
189 	{ MNTOPT_NOSETUID,	nosetuid_cancel,	NULL,		0,
190 		(void *)0 },
191 	{ MNTOPT_NBMAND,	nbmand_cancel,		NULL,		0,
192 		(void *)0 },
193 	{ MNTOPT_NONBMAND,	nonbmand_cancel,	NULL,		0,
194 		(void *)0 },
195 	{ MNTOPT_EXEC,		exec_cancel,		NULL,		0,
196 		(void *)0 },
197 	{ MNTOPT_NOEXEC,	noexec_cancel,		NULL,		0,
198 		(void *)0 },
199 };
200 
201 const mntopts_t vfs_mntopts = {
202 	sizeof (mntopts) / sizeof (mntopt_t),
203 	(mntopt_t *)&mntopts[0]
204 };
205 
206 /*
207  * File system operation dispatch functions.
208  */
209 
210 int
211 fsop_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr)
212 {
213 	return (*(vfsp)->vfs_op->vfs_mount)(vfsp, mvp, uap, cr);
214 }
215 
216 int
217 fsop_unmount(vfs_t *vfsp, int flag, cred_t *cr)
218 {
219 	return (*(vfsp)->vfs_op->vfs_unmount)(vfsp, flag, cr);
220 }
221 
222 int
223 fsop_root(vfs_t *vfsp, vnode_t **vpp)
224 {
225 	refstr_t *mntpt;
226 	int ret = (*(vfsp)->vfs_op->vfs_root)(vfsp, vpp);
227 	/*
228 	 * Make sure this root has a path.  With lofs, it is possible to have
229 	 * a NULL mountpoint.
230 	 */
231 	if (ret == 0 && vfsp->vfs_mntpt != NULL && (*vpp)->v_path == NULL) {
232 		mntpt = vfs_getmntpoint(vfsp);
233 		vn_setpath_str(*vpp, refstr_value(mntpt),
234 		    strlen(refstr_value(mntpt)));
235 		refstr_rele(mntpt);
236 	}
237 
238 	return (ret);
239 }
240 
241 int
242 fsop_statfs(vfs_t *vfsp, statvfs64_t *sp)
243 {
244 	return (*(vfsp)->vfs_op->vfs_statvfs)(vfsp, sp);
245 }
246 
247 int
248 fsop_sync(vfs_t *vfsp, short flag, cred_t *cr)
249 {
250 	return (*(vfsp)->vfs_op->vfs_sync)(vfsp, flag, cr);
251 }
252 
253 int
254 fsop_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp)
255 {
256 	return (*(vfsp)->vfs_op->vfs_vget)(vfsp, vpp, fidp);
257 }
258 
259 int
260 fsop_mountroot(vfs_t *vfsp, enum whymountroot reason)
261 {
262 	return (*(vfsp)->vfs_op->vfs_mountroot)(vfsp, reason);
263 }
264 
265 void
266 fsop_freefs(vfs_t *vfsp)
267 {
268 	(*(vfsp)->vfs_op->vfs_freevfs)(vfsp);
269 }
270 
271 int
272 fsop_vnstate(vfs_t *vfsp, vnode_t *vp, vntrans_t nstate)
273 {
274 	return ((*(vfsp)->vfs_op->vfs_vnstate)(vfsp, vp, nstate));
275 }
276 
277 int
278 fsop_sync_by_kind(int fstype, short flag, cred_t *cr)
279 {
280 	ASSERT((fstype >= 0) && (fstype < nfstype));
281 
282 	if (ALLOCATED_VFSSW(&vfssw[fstype]) && VFS_INSTALLED(&vfssw[fstype]))
283 		return (*vfssw[fstype].vsw_vfsops.vfs_sync) (NULL, flag, cr);
284 	else
285 		return (ENOTSUP);
286 }
287 
288 /*
289  * File system initialization.  vfs_setfsops() must be called from a file
290  * system's init routine.
291  */
292 
293 static int
294 fs_copyfsops(const fs_operation_def_t *template, vfsops_t *actual,
295     int *unused_ops)
296 {
297 	static const fs_operation_trans_def_t vfs_ops_table[] = {
298 		VFSNAME_MOUNT, offsetof(vfsops_t, vfs_mount),
299 			fs_nosys, fs_nosys,
300 
301 		VFSNAME_UNMOUNT, offsetof(vfsops_t, vfs_unmount),
302 			fs_nosys, fs_nosys,
303 
304 		VFSNAME_ROOT, offsetof(vfsops_t, vfs_root),
305 			fs_nosys, fs_nosys,
306 
307 		VFSNAME_STATVFS, offsetof(vfsops_t, vfs_statvfs),
308 			fs_nosys, fs_nosys,
309 
310 		VFSNAME_SYNC, offsetof(vfsops_t, vfs_sync),
311 			(fs_generic_func_p) fs_sync,
312 			(fs_generic_func_p) fs_sync,	/* No errors allowed */
313 
314 		VFSNAME_VGET, offsetof(vfsops_t, vfs_vget),
315 			fs_nosys, fs_nosys,
316 
317 		VFSNAME_MOUNTROOT, offsetof(vfsops_t, vfs_mountroot),
318 			fs_nosys, fs_nosys,
319 
320 		VFSNAME_FREEVFS, offsetof(vfsops_t, vfs_freevfs),
321 			(fs_generic_func_p)fs_freevfs,
322 			(fs_generic_func_p)fs_freevfs,	/* Shouldn't fail */
323 
324 		VFSNAME_VNSTATE, offsetof(vfsops_t, vfs_vnstate),
325 			(fs_generic_func_p)fs_nosys,
326 			(fs_generic_func_p)fs_nosys,
327 
328 		NULL, 0, NULL, NULL
329 	};
330 
331 	return (fs_build_vector(actual, unused_ops, vfs_ops_table, template));
332 }
333 
334 int
335 vfs_setfsops(int fstype, const fs_operation_def_t *template, vfsops_t **actual)
336 {
337 	int error;
338 	int unused_ops;
339 
340 	/* Verify that fstype refers to a loaded fs (and not fsid 0). */
341 
342 	if ((fstype <= 0) || (fstype >= nfstype))
343 		return (EINVAL);
344 
345 	if (!ALLOCATED_VFSSW(&vfssw[fstype]))
346 		return (EINVAL);
347 
348 	/* Set up the operations vector. */
349 
350 	error = fs_copyfsops(template, &vfssw[fstype].vsw_vfsops, &unused_ops);
351 
352 	if (error != 0)
353 		return (error);
354 
355 	vfssw[fstype].vsw_flag |= VSW_INSTALLED;
356 
357 	if (actual != NULL)
358 		*actual = &vfssw[fstype].vsw_vfsops;
359 
360 #if DEBUG
361 	if (unused_ops != 0)
362 		cmn_err(CE_WARN, "vfs_setfsops: %s: %d operations supplied "
363 		    "but not used", vfssw[fstype].vsw_name, unused_ops);
364 #endif
365 
366 	return (0);
367 }
368 
369 int
370 vfs_makefsops(const fs_operation_def_t *template, vfsops_t **actual)
371 {
372 	int error;
373 	int unused_ops;
374 
375 	*actual = (vfsops_t *)kmem_alloc(sizeof (vfsops_t), KM_SLEEP);
376 
377 	error = fs_copyfsops(template, *actual, &unused_ops);
378 	if (error != 0) {
379 		kmem_free(*actual, sizeof (vfsops_t));
380 		*actual = NULL;
381 		return (error);
382 	}
383 
384 	return (0);
385 }
386 
387 /*
388  * Free a vfsops structure created as a result of vfs_makefsops().
389  * NOTE: For a vfsops structure initialized by vfs_setfsops(), use
390  * vfs_freevfsops_by_type().
391  */
392 void
393 vfs_freevfsops(vfsops_t *vfsops)
394 {
395 	kmem_free(vfsops, sizeof (vfsops_t));
396 }
397 
398 /*
399  * Since the vfsops structure is part of the vfssw table and wasn't
400  * really allocated, we're not really freeing anything.  We keep
401  * the name for consistency with vfs_freevfsops().  We do, however,
402  * need to take care of a little bookkeeping.
403  * NOTE: For a vfsops structure created by vfs_setfsops(), use
404  * vfs_freevfsops_by_type().
405  */
406 int
407 vfs_freevfsops_by_type(int fstype)
408 {
409 
410 	/* Verify that fstype refers to a loaded fs (and not fsid 0). */
411 	if ((fstype <= 0) || (fstype >= nfstype))
412 		return (EINVAL);
413 
414 	WLOCK_VFSSW();
415 	if ((vfssw[fstype].vsw_flag & VSW_INSTALLED) == 0) {
416 		WUNLOCK_VFSSW();
417 		return (EINVAL);
418 	}
419 
420 	vfssw[fstype].vsw_flag &= ~VSW_INSTALLED;
421 	WUNLOCK_VFSSW();
422 
423 	return (0);
424 }
425 
426 /* Support routines used to reference vfs_op */
427 
428 /* Set the operations vector for a vfs */
429 void
430 vfs_setops(vfs_t *vfsp, vfsops_t *vfsops)
431 {
432 	vfsops_t	*op;
433 
434 	ASSERT(vfsp != NULL);
435 	ASSERT(vfsops != NULL);
436 
437 	op = vfsp->vfs_op;
438 	membar_consumer();
439 	if ((vfsp->vfs_implp == NULL || vfsp->vfs_femhead == NULL) &&
440 	    casptr(&vfsp->vfs_op, op, vfsops) == op) {
441 		return;
442 	}
443 	fsem_setvfsops(vfsp, vfsops);
444 }
445 
446 /* Retrieve the operations vector for a vfs */
447 vfsops_t *
448 vfs_getops(vfs_t *vfsp)
449 {
450 	vfsops_t	*op;
451 
452 	ASSERT(vfsp != NULL);
453 
454 	op = vfsp->vfs_op;
455 	membar_consumer();
456 	if ((vfsp->vfs_implp == NULL || vfsp->vfs_femhead == NULL) &&
457 	    op == vfsp->vfs_op) {
458 		return (op);
459 	} else {
460 		return (fsem_getvfsops(vfsp));
461 	}
462 }
463 
464 /*
465  * Returns non-zero (1) if the vfsops matches that of the vfs.
466  * Returns zero (0) if not.
467  */
468 int
469 vfs_matchops(vfs_t *vfsp, vfsops_t *vfsops)
470 {
471 	return (vfs_getops(vfsp) == vfsops);
472 }
473 
474 /*
475  * Returns non-zero (1) if the file system has installed a non-default,
476  * non-error vfs_sync routine.  Returns zero (0) otherwise.
477  */
478 int
479 vfs_can_sync(vfs_t *vfsp)
480 {
481 	/* vfs_sync() routine is not the default/error function */
482 	return (vfs_getops(vfsp)->vfs_sync != fs_sync);
483 }
484 
485 /*
486  * Initialize a vfs structure.
487  */
488 void
489 vfs_init(vfs_t *vfsp, vfsops_t *op, void *data)
490 {
491 	vfsp->vfs_count = 0;
492 	vfsp->vfs_next = vfsp;
493 	vfsp->vfs_prev = vfsp;
494 	vfsp->vfs_zone_next = vfsp;
495 	vfsp->vfs_zone_prev = vfsp;
496 	vfsp->vfs_flag = 0;
497 	vfsp->vfs_data = (data);
498 	vfsp->vfs_resource = NULL;
499 	vfsp->vfs_mntpt = NULL;
500 	vfsp->vfs_mntopts.mo_count = 0;
501 	vfsp->vfs_mntopts.mo_list = NULL;
502 	vfsp->vfs_implp = NULL;
503 	vfsp->vfs_zone = NULL;
504 	/*
505 	 * Note: Don't initialize any member of the vfs_impl_t structure
506 	 * here as it could be a problem for unbundled file systems.
507 	 */
508 	vfs_setops((vfsp), (op));
509 	sema_init(&vfsp->vfs_reflock, 1, NULL, SEMA_DEFAULT, NULL);
510 }
511 
512 /*
513  * Allocate and initialize the vfs implementation private data
514  * structure, vfs_impl_t.
515  */
516 void
517 vfsimpl_setup(vfs_t *vfsp)
518 {
519 	vfsp->vfs_implp = kmem_alloc(sizeof (vfs_impl_t), KM_SLEEP);
520 	/* Note that this are #define'd in vfs.h */
521 	vfsp->vfs_femhead = NULL;
522 	vfsp->vfs_vskap = NULL;
523 	vfsp->vfs_fstypevsp = NULL;
524 }
525 
526 /*
527  * Release the vfs_impl_t structure, if it exists. Some unbundled
528  * filesystems may not use the newer version of vfs and thus
529  * would not contain this implementation private data structure.
530  */
531 void
532 vfsimpl_teardown(vfs_t *vfsp)
533 {
534 	vfs_impl_t	*vip = vfsp->vfs_implp;
535 
536 	if (vip == NULL)
537 		return;
538 
539 	if (vip->vi_femhead) {
540 		ASSERT(vip->vi_femhead->femh_list == NULL);
541 		mutex_destroy(&vip->vi_femhead->femh_lock);
542 		kmem_free(vip->vi_femhead, sizeof (*(vip->vi_femhead)));
543 		vip->vi_femhead = NULL;
544 	}
545 
546 	kmem_free(vfsp->vfs_implp, sizeof (vfs_impl_t));
547 	vfsp->vfs_implp = NULL;
548 }
549 
550 /*
551  * VFS system calls: mount, umount, syssync, statfs, fstatfs, statvfs,
552  * fstatvfs, and sysfs moved to common/syscall.
553  */
554 
555 /*
556  * Update every mounted file system.  We call the vfs_sync operation of
557  * each file system type, passing it a NULL vfsp to indicate that all
558  * mounted file systems of that type should be updated.
559  */
560 void
561 vfs_sync(int flag)
562 {
563 	struct vfssw *vswp;
564 	RLOCK_VFSSW();
565 	for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) {
566 		if (ALLOCATED_VFSSW(vswp) && VFS_INSTALLED(vswp)) {
567 			vfs_refvfssw(vswp);
568 			RUNLOCK_VFSSW();
569 			(void) (*vswp->vsw_vfsops.vfs_sync)(NULL, flag,
570 			    CRED());
571 			vfs_unrefvfssw(vswp);
572 			RLOCK_VFSSW();
573 		}
574 	}
575 	RUNLOCK_VFSSW();
576 }
577 
578 void
579 sync(void)
580 {
581 	vfs_sync(0);
582 }
583 
584 /*
585  * External routines.
586  */
587 
588 krwlock_t vfssw_lock;	/* lock accesses to vfssw */
589 
590 /*
591  * Lock for accessing the vfs linked list.  Initialized in vfs_mountroot(),
592  * but otherwise should be accessed only via vfs_list_lock() and
593  * vfs_list_unlock().  Also used to protect the timestamp for mods to the list.
594  */
595 static krwlock_t vfslist;
596 
597 /*
598  * Mount devfs on /devices. This is done right after root is mounted
599  * to provide device access support for the system
600  */
601 static void
602 vfs_mountdevices(void)
603 {
604 	struct vfssw *vsw;
605 	struct vnode *mvp;
606 	struct mounta mounta = {	/* fake mounta for devfs_mount() */
607 		NULL,
608 		NULL,
609 		MS_SYSSPACE,
610 		NULL,
611 		NULL,
612 		0,
613 		NULL,
614 		0
615 	};
616 
617 	/*
618 	 * _init devfs module to fill in the vfssw
619 	 */
620 	if (modload("fs", "devfs") == -1)
621 		cmn_err(CE_PANIC, "Cannot _init devfs module\n");
622 
623 	/*
624 	 * Hold vfs
625 	 */
626 	RLOCK_VFSSW();
627 	vsw = vfs_getvfsswbyname("devfs");
628 	VFS_INIT(&devices, &vsw->vsw_vfsops, NULL);
629 	VFS_HOLD(&devices);
630 
631 	/*
632 	 * Locate mount point
633 	 */
634 	if (lookupname("/devices", UIO_SYSSPACE, FOLLOW, NULLVPP, &mvp))
635 		cmn_err(CE_PANIC, "Cannot find /devices\n");
636 
637 	/*
638 	 * Perform the mount of /devices
639 	 */
640 	if (VFS_MOUNT(&devices, mvp, &mounta, CRED()))
641 		cmn_err(CE_PANIC, "Cannot mount /devices\n");
642 
643 	RUNLOCK_VFSSW();
644 
645 	/*
646 	 * Set appropriate members and add to vfs list for mnttab display
647 	 */
648 	vfs_setresource(&devices, "/devices");
649 	vfs_setmntpoint(&devices, "/devices");
650 
651 	/*
652 	 * Hold the root of /devices so it won't go away
653 	 */
654 	if (VFS_ROOT(&devices, &devicesdir))
655 		cmn_err(CE_PANIC, "vfs_mountdevices: not devices root");
656 
657 	if (vfs_lock(&devices) != 0) {
658 		VN_RELE(devicesdir);
659 		cmn_err(CE_NOTE, "Cannot acquire vfs_lock of /devices");
660 		return;
661 	}
662 
663 	if (vn_vfswlock(mvp) != 0) {
664 		vfs_unlock(&devices);
665 		VN_RELE(devicesdir);
666 		cmn_err(CE_NOTE, "Cannot acquire vfswlock of /devices");
667 		return;
668 	}
669 
670 	vfs_add(mvp, &devices, 0);
671 	vn_vfsunlock(mvp);
672 	vfs_unlock(&devices);
673 	VN_RELE(devicesdir);
674 }
675 
676 /*
677  * mount the first instance of /dev  to root and remain mounted
678  */
679 static void
680 vfs_mountdev1(void)
681 {
682 	struct vfssw *vsw;
683 	struct vnode *mvp;
684 	struct mounta mounta = {	/* fake mounta for sdev_mount() */
685 		NULL,
686 		NULL,
687 		MS_SYSSPACE | MS_OVERLAY,
688 		NULL,
689 		NULL,
690 		0,
691 		NULL,
692 		0
693 	};
694 
695 	/*
696 	 * _init dev module to fill in the vfssw
697 	 */
698 	if (modload("fs", "dev") == -1)
699 		cmn_err(CE_PANIC, "Cannot _init dev module\n");
700 
701 	/*
702 	 * Hold vfs
703 	 */
704 	RLOCK_VFSSW();
705 	vsw = vfs_getvfsswbyname("dev");
706 	VFS_INIT(&dev, &vsw->vsw_vfsops, NULL);
707 	VFS_HOLD(&dev);
708 
709 	/*
710 	 * Locate mount point
711 	 */
712 	if (lookupname("/dev", UIO_SYSSPACE, FOLLOW, NULLVPP, &mvp))
713 		cmn_err(CE_PANIC, "Cannot find /dev\n");
714 
715 	/*
716 	 * Perform the mount of /dev
717 	 */
718 	if (VFS_MOUNT(&dev, mvp, &mounta, CRED()))
719 		cmn_err(CE_PANIC, "Cannot mount /dev 1\n");
720 
721 	RUNLOCK_VFSSW();
722 
723 	/*
724 	 * Set appropriate members and add to vfs list for mnttab display
725 	 */
726 	vfs_setresource(&dev, "/dev");
727 	vfs_setmntpoint(&dev, "/dev");
728 
729 	/*
730 	 * Hold the root of /dev so it won't go away
731 	 */
732 	if (VFS_ROOT(&dev, &devdir))
733 		cmn_err(CE_PANIC, "vfs_mountdev1: not dev root");
734 
735 	if (vfs_lock(&dev) != 0) {
736 		VN_RELE(devdir);
737 		cmn_err(CE_NOTE, "Cannot acquire vfs_lock of /dev");
738 		return;
739 	}
740 
741 	if (vn_vfswlock(mvp) != 0) {
742 		vfs_unlock(&dev);
743 		VN_RELE(devdir);
744 		cmn_err(CE_NOTE, "Cannot acquire vfswlock of /dev");
745 		return;
746 	}
747 
748 	vfs_add(mvp, &dev, 0);
749 	vn_vfsunlock(mvp);
750 	vfs_unlock(&dev);
751 	VN_RELE(devdir);
752 }
753 
754 /*
755  * Mount required filesystem. This is done right after root is mounted.
756  */
757 static void
758 vfs_mountfs(char *module, char *spec, char *path)
759 {
760 	struct vnode *mvp;
761 	struct mounta mounta;
762 	vfs_t *vfsp;
763 
764 	mounta.flags = MS_SYSSPACE | MS_DATA;
765 	mounta.fstype = module;
766 	mounta.spec = spec;
767 	mounta.dir = path;
768 	if (lookupname(path, UIO_SYSSPACE, FOLLOW, NULLVPP, &mvp)) {
769 		cmn_err(CE_WARN, "Cannot find %s\n", path);
770 		return;
771 	}
772 	if (domount(NULL, &mounta, mvp, CRED(), &vfsp))
773 		cmn_err(CE_WARN, "Cannot mount %s\n", path);
774 	else
775 		VFS_RELE(vfsp);
776 	VN_RELE(mvp);
777 }
778 
779 /*
780  * vfs_mountroot is called by main() to mount the root filesystem.
781  */
782 void
783 vfs_mountroot(void)
784 {
785 	struct vnode	*rvp = NULL;
786 	char		*path;
787 	size_t		plen;
788 	struct vfssw	*vswp;
789 
790 	rw_init(&vfssw_lock, NULL, RW_DEFAULT, NULL);
791 	rw_init(&vfslist, NULL, RW_DEFAULT, NULL);
792 
793 	/*
794 	 * Alloc the vfs hash bucket array and locks
795 	 */
796 	rvfs_list = kmem_zalloc(vfshsz * sizeof (rvfs_t), KM_SLEEP);
797 
798 	/*
799 	 * Call machine-dependent routine "rootconf" to choose a root
800 	 * file system type.
801 	 */
802 	if (rootconf())
803 		cmn_err(CE_PANIC, "vfs_mountroot: cannot mount root");
804 	/*
805 	 * Get vnode for '/'.  Set up rootdir, u.u_rdir and u.u_cdir
806 	 * to point to it.  These are used by lookuppn() so that it
807 	 * knows where to start from ('/' or '.').
808 	 */
809 	vfs_setmntpoint(rootvfs, "/");
810 	if (VFS_ROOT(rootvfs, &rootdir))
811 		cmn_err(CE_PANIC, "vfs_mountroot: no root vnode");
812 	u.u_cdir = rootdir;
813 	VN_HOLD(u.u_cdir);
814 	u.u_rdir = NULL;
815 
816 	/*
817 	 * Setup the global zone's rootvp, now that it exists.
818 	 */
819 	global_zone->zone_rootvp = rootdir;
820 	VN_HOLD(global_zone->zone_rootvp);
821 
822 	/*
823 	 * Notify the module code that it can begin using the
824 	 * root filesystem instead of the boot program's services.
825 	 */
826 	modrootloaded = 1;
827 	/*
828 	 * Set up mnttab information for root
829 	 */
830 	vfs_setresource(rootvfs, rootfs.bo_name);
831 
832 	/*
833 	 * Notify cluster software that the root filesystem is available.
834 	 */
835 	clboot_mountroot();
836 
837 	/* Now that we're all done with the root FS, set up its vopstats */
838 	if ((vswp = vfs_getvfsswbyvfsops(vfs_getops(rootvfs))) != NULL) {
839 		/* Set flag for statistics collection */
840 		if (vswp->vsw_flag & VSW_STATS) {
841 			initialize_vopstats(&rootvfs->vfs_vopstats);
842 			rootvfs->vfs_flag |= VFS_STATS;
843 			rootvfs->vfs_fstypevsp =
844 			    get_fstype_vopstats(rootvfs, vswp);
845 			rootvfs->vfs_vskap = get_vskstat_anchor(rootvfs);
846 		}
847 		vfs_unrefvfssw(vswp);
848 	}
849 
850 	/*
851 	 * Mount /devices, /dev instance 1, /system/contract, /etc/mnttab,
852 	 * /etc/svc/volatile, /system/object, and /proc.
853 	 */
854 	vfs_mountdevices();
855 	vfs_mountdev1();
856 
857 	vfs_mountfs("ctfs", "ctfs", CTFS_ROOT);
858 	vfs_mountfs("proc", "/proc", "/proc");
859 	vfs_mountfs("mntfs", "/etc/mnttab", "/etc/mnttab");
860 	vfs_mountfs("tmpfs", "/etc/svc/volatile", "/etc/svc/volatile");
861 	vfs_mountfs("objfs", "objfs", OBJFS_ROOT);
862 
863 #ifdef __sparc
864 	/*
865 	 * This bit of magic can go away when we convert sparc to
866 	 * the new boot architecture based on ramdisk.
867 	 *
868 	 * Booting off a mirrored root volume:
869 	 * At this point, we have booted and mounted root on a
870 	 * single component of the mirror.  Complete the boot
871 	 * by configuring SVM and converting the root to the
872 	 * dev_t of the mirrored root device.  This dev_t conversion
873 	 * only works because the underlying device doesn't change.
874 	 */
875 	if (root_is_svm) {
876 		if (svm_rootconf()) {
877 			cmn_err(CE_PANIC, "vfs_mountroot: cannot remount root");
878 		}
879 
880 		/*
881 		 * mnttab should reflect the new root device
882 		 */
883 		vfs_lock_wait(rootvfs);
884 		vfs_setresource(rootvfs, rootfs.bo_name);
885 		vfs_unlock(rootvfs);
886 	}
887 #endif /* __sparc */
888 
889 	/*
890 	 * Look up the root device via devfs so that a dv_node is
891 	 * created for it. The vnode is never VN_RELE()ed.
892 	 * We allocate more than MAXPATHLEN so that the
893 	 * buffer passed to i_ddi_prompath_to_devfspath() is
894 	 * exactly MAXPATHLEN (the function expects a buffer
895 	 * of that length).
896 	 */
897 	plen = strlen("/devices");
898 	path = kmem_alloc(plen + MAXPATHLEN, KM_SLEEP);
899 	(void) strcpy(path, "/devices");
900 
901 	if (i_ddi_prompath_to_devfspath(rootfs.bo_name, path + plen)
902 	    != DDI_SUCCESS ||
903 	    lookupname(path, UIO_SYSSPACE, FOLLOW, NULLVPP, &rvp)) {
904 
905 		/* NUL terminate in case "path" has garbage */
906 		path[plen + MAXPATHLEN - 1] = '\0';
907 #ifdef	DEBUG
908 		cmn_err(CE_WARN, "!Cannot lookup root device: %s", path);
909 #endif
910 	}
911 	kmem_free(path, plen + MAXPATHLEN);
912 }
913 
914 /*
915  * If remount failed and we're in a zone we need to check for the zone
916  * root path and strip it before the call to vfs_setpath().
917  *
918  * If strpath doesn't begin with the zone_rootpath the original
919  * strpath is returned unchanged.
920  */
921 static const char *
922 stripzonepath(const char *strpath)
923 {
924 	char *str1, *str2;
925 	int i;
926 	zone_t *zonep = curproc->p_zone;
927 
928 	if (zonep->zone_rootpath == NULL || strpath == NULL) {
929 		return (NULL);
930 	}
931 
932 	/*
933 	 * we check for the end of the string at one past the
934 	 * current position because the zone_rootpath always
935 	 * ends with "/" but we don't want to strip that off.
936 	 */
937 	str1 = zonep->zone_rootpath;
938 	str2 = (char *)strpath;
939 	ASSERT(str1[0] != '\0');
940 	for (i = 0; str1[i + 1] != '\0'; i++) {
941 		if (str1[i] != str2[i])
942 			return ((char *)strpath);
943 	}
944 	return (&str2[i]);
945 }
946 
947 /*
948  * Common mount code.  Called from the system call entry point, from autofs,
949  * and from pxfs.
950  *
951  * Takes the effective file system type, mount arguments, the mount point
952  * vnode, flags specifying whether the mount is a remount and whether it
953  * should be entered into the vfs list, and credentials.  Fills in its vfspp
954  * parameter with the mounted file system instance's vfs.
955  *
956  * Note that the effective file system type is specified as a string.  It may
957  * be null, in which case it's determined from the mount arguments, and may
958  * differ from the type specified in the mount arguments; this is a hook to
959  * allow interposition when instantiating file system instances.
960  *
961  * The caller is responsible for releasing its own hold on the mount point
962  * vp (this routine does its own hold when necessary).
963  * Also note that for remounts, the mount point vp should be the vnode for
964  * the root of the file system rather than the vnode that the file system
965  * is mounted on top of.
966  */
967 int
968 domount(char *fsname, struct mounta *uap, vnode_t *vp, struct cred *credp,
969 	struct vfs **vfspp)
970 {
971 	struct vfssw	*vswp;
972 	vfsops_t	*vfsops;
973 	struct vfs	*vfsp;
974 	struct vnode	*bvp;
975 	dev_t		bdev = 0;
976 	mntopts_t	mnt_mntopts;
977 	int		error = 0;
978 	int		copyout_error = 0;
979 	int		ovflags;
980 	char		*opts = uap->optptr;
981 	char		*inargs = opts;
982 	int		optlen = uap->optlen;
983 	int		remount;
984 	int		rdonly;
985 	int		nbmand = 0;
986 	int		delmip = 0;
987 	int		addmip = 0;
988 	int		splice = ((uap->flags & MS_NOSPLICE) == 0);
989 	int		fromspace = (uap->flags & MS_SYSSPACE) ?
990 				UIO_SYSSPACE : UIO_USERSPACE;
991 	char		*resource = NULL, *mountpt = NULL;
992 	refstr_t	*oldresource, *oldmntpt;
993 	struct pathname	pn, rpn;
994 	vsk_anchor_t	*vskap;
995 
996 	/*
997 	 * The v_flag value for the mount point vp is permanently set
998 	 * to VVFSLOCK so that no one bypasses the vn_vfs*locks routine
999 	 * for mount point locking.
1000 	 */
1001 	mutex_enter(&vp->v_lock);
1002 	vp->v_flag |= VVFSLOCK;
1003 	mutex_exit(&vp->v_lock);
1004 
1005 	mnt_mntopts.mo_count = 0;
1006 	/*
1007 	 * Find the ops vector to use to invoke the file system-specific mount
1008 	 * method.  If the fsname argument is non-NULL, use it directly.
1009 	 * Otherwise, dig the file system type information out of the mount
1010 	 * arguments.
1011 	 *
1012 	 * A side effect is to hold the vfssw entry.
1013 	 *
1014 	 * Mount arguments can be specified in several ways, which are
1015 	 * distinguished by flag bit settings.  The preferred way is to set
1016 	 * MS_OPTIONSTR, indicating an 8 argument mount with the file system
1017 	 * type supplied as a character string and the last two arguments
1018 	 * being a pointer to a character buffer and the size of the buffer.
1019 	 * On entry, the buffer holds a null terminated list of options; on
1020 	 * return, the string is the list of options the file system
1021 	 * recognized. If MS_DATA is set arguments five and six point to a
1022 	 * block of binary data which the file system interprets.
1023 	 * A further wrinkle is that some callers don't set MS_FSS and MS_DATA
1024 	 * consistently with these conventions.  To handle them, we check to
1025 	 * see whether the pointer to the file system name has a numeric value
1026 	 * less than 256.  If so, we treat it as an index.
1027 	 */
1028 	if (fsname != NULL) {
1029 		if ((vswp = vfs_getvfssw(fsname)) == NULL) {
1030 			return (EINVAL);
1031 		}
1032 	} else if (uap->flags & (MS_OPTIONSTR | MS_DATA | MS_FSS)) {
1033 		size_t n;
1034 		uint_t fstype;
1035 		char name[FSTYPSZ];
1036 
1037 		if ((fstype = (uintptr_t)uap->fstype) < 256) {
1038 			RLOCK_VFSSW();
1039 			if (fstype == 0 || fstype >= nfstype ||
1040 			    !ALLOCATED_VFSSW(&vfssw[fstype])) {
1041 				RUNLOCK_VFSSW();
1042 				return (EINVAL);
1043 			}
1044 			(void) strcpy(name, vfssw[fstype].vsw_name);
1045 			RUNLOCK_VFSSW();
1046 			if ((vswp = vfs_getvfssw(name)) == NULL)
1047 				return (EINVAL);
1048 		} else {
1049 			/*
1050 			 * Handle either kernel or user address space.
1051 			 */
1052 			if (uap->flags & MS_SYSSPACE) {
1053 				error = copystr(uap->fstype, name,
1054 				    FSTYPSZ, &n);
1055 			} else {
1056 				error = copyinstr(uap->fstype, name,
1057 				    FSTYPSZ, &n);
1058 			}
1059 			if (error) {
1060 				if (error == ENAMETOOLONG)
1061 					return (EINVAL);
1062 				return (error);
1063 			}
1064 			if ((vswp = vfs_getvfssw(name)) == NULL)
1065 				return (EINVAL);
1066 		}
1067 	} else {
1068 		if ((vswp = vfs_getvfsswbyvfsops(vfs_getops(rootvfs))) == NULL)
1069 			return (EINVAL);
1070 	}
1071 	if (!VFS_INSTALLED(vswp))
1072 		return (EINVAL);
1073 	vfsops = &vswp->vsw_vfsops;
1074 
1075 	vfs_copyopttbl(&vswp->vsw_optproto, &mnt_mntopts);
1076 	/*
1077 	 * Fetch mount options and parse them for generic vfs options
1078 	 */
1079 	if (uap->flags & MS_OPTIONSTR) {
1080 		/*
1081 		 * Limit the buffer size
1082 		 */
1083 		if (optlen < 0 || optlen > MAX_MNTOPT_STR) {
1084 			error = EINVAL;
1085 			goto errout;
1086 		}
1087 		if ((uap->flags & MS_SYSSPACE) == 0) {
1088 			inargs = kmem_alloc(MAX_MNTOPT_STR, KM_SLEEP);
1089 			inargs[0] = '\0';
1090 			if (optlen) {
1091 				error = copyinstr(opts, inargs, (size_t)optlen,
1092 					NULL);
1093 				if (error) {
1094 					goto errout;
1095 				}
1096 			}
1097 		}
1098 		vfs_parsemntopts(&mnt_mntopts, inargs, 0);
1099 	}
1100 	/*
1101 	 * Flag bits override the options string.
1102 	 */
1103 	if (uap->flags & MS_REMOUNT)
1104 		vfs_setmntopt_nolock(&mnt_mntopts, MNTOPT_REMOUNT, NULL, 0, 0);
1105 	if (uap->flags & MS_RDONLY)
1106 		vfs_setmntopt_nolock(&mnt_mntopts, MNTOPT_RO, NULL, 0, 0);
1107 	if (uap->flags & MS_NOSUID)
1108 		vfs_setmntopt_nolock(&mnt_mntopts, MNTOPT_NOSUID, NULL, 0, 0);
1109 
1110 	/*
1111 	 * Check if this is a remount; must be set in the option string and
1112 	 * the file system must support a remount option.
1113 	 */
1114 	if (remount = vfs_optionisset_nolock(&mnt_mntopts,
1115 	    MNTOPT_REMOUNT, NULL)) {
1116 		if (!(vswp->vsw_flag & VSW_CANREMOUNT)) {
1117 			error = ENOTSUP;
1118 			goto errout;
1119 		}
1120 		uap->flags |= MS_REMOUNT;
1121 	}
1122 
1123 	/*
1124 	 * uap->flags and vfs_optionisset() should agree.
1125 	 */
1126 	if (rdonly = vfs_optionisset_nolock(&mnt_mntopts, MNTOPT_RO, NULL)) {
1127 		uap->flags |= MS_RDONLY;
1128 	}
1129 	if (vfs_optionisset_nolock(&mnt_mntopts, MNTOPT_NOSUID, NULL)) {
1130 		uap->flags |= MS_NOSUID;
1131 	}
1132 	nbmand = vfs_optionisset_nolock(&mnt_mntopts, MNTOPT_NBMAND, NULL);
1133 	ASSERT(splice || !remount);
1134 	/*
1135 	 * If we are splicing the fs into the namespace,
1136 	 * perform mount point checks.
1137 	 *
1138 	 * We want to resolve the path for the mount point to eliminate
1139 	 * '.' and ".." and symlinks in mount points; we can't do the
1140 	 * same for the resource string, since it would turn
1141 	 * "/dev/dsk/c0t0d0s0" into "/devices/pci@...".  We need to do
1142 	 * this before grabbing vn_vfswlock(), because otherwise we
1143 	 * would deadlock with lookuppn().
1144 	 */
1145 	if (splice) {
1146 		ASSERT(vp->v_count > 0);
1147 
1148 		/*
1149 		 * Pick up mount point and device from appropriate space.
1150 		 */
1151 		if (pn_get(uap->spec, fromspace, &pn) == 0) {
1152 			resource = kmem_alloc(pn.pn_pathlen + 1,
1153 			    KM_SLEEP);
1154 			(void) strcpy(resource, pn.pn_path);
1155 			pn_free(&pn);
1156 		}
1157 		/*
1158 		 * Do a lookupname prior to taking the
1159 		 * writelock. Mark this as completed if
1160 		 * successful for later cleanup and addition to
1161 		 * the mount in progress table.
1162 		 */
1163 		if ((uap->flags & MS_GLOBAL) == 0 &&
1164 		    lookupname(uap->spec, fromspace,
1165 			    FOLLOW, NULL, &bvp) == 0) {
1166 			addmip = 1;
1167 		}
1168 
1169 		if ((error = pn_get(uap->dir, fromspace, &pn)) == 0) {
1170 			pathname_t *pnp;
1171 
1172 			if (*pn.pn_path != '/') {
1173 				error = EINVAL;
1174 				pn_free(&pn);
1175 				goto errout;
1176 			}
1177 			pn_alloc(&rpn);
1178 			/*
1179 			 * Kludge to prevent autofs from deadlocking with
1180 			 * itself when it calls domount().
1181 			 *
1182 			 * If autofs is calling, it is because it is doing
1183 			 * (autofs) mounts in the process of an NFS mount.  A
1184 			 * lookuppn() here would cause us to block waiting for
1185 			 * said NFS mount to complete, which can't since this
1186 			 * is the thread that was supposed to doing it.
1187 			 */
1188 			if (fromspace == UIO_USERSPACE) {
1189 				if ((error = lookuppn(&pn, &rpn, FOLLOW, NULL,
1190 				    NULL)) == 0) {
1191 					pnp = &rpn;
1192 				} else {
1193 					/*
1194 					 * The file disappeared or otherwise
1195 					 * became inaccessible since we opened
1196 					 * it; might as well fail the mount
1197 					 * since the mount point is no longer
1198 					 * accessible.
1199 					 */
1200 					pn_free(&rpn);
1201 					pn_free(&pn);
1202 					goto errout;
1203 				}
1204 			} else {
1205 				pnp = &pn;
1206 			}
1207 			mountpt = kmem_alloc(pnp->pn_pathlen + 1, KM_SLEEP);
1208 			(void) strcpy(mountpt, pnp->pn_path);
1209 
1210 			/*
1211 			 * If the addition of the zone's rootpath
1212 			 * would push us over a total path length
1213 			 * of MAXPATHLEN, we fail the mount with
1214 			 * ENAMETOOLONG, which is what we would have
1215 			 * gotten if we were trying to perform the same
1216 			 * mount in the global zone.
1217 			 *
1218 			 * strlen() doesn't count the trailing
1219 			 * '\0', but zone_rootpathlen counts both a
1220 			 * trailing '/' and the terminating '\0'.
1221 			 */
1222 			if ((curproc->p_zone->zone_rootpathlen - 1 +
1223 			    strlen(mountpt)) > MAXPATHLEN ||
1224 			    (resource != NULL &&
1225 			    (curproc->p_zone->zone_rootpathlen - 1 +
1226 			    strlen(resource)) > MAXPATHLEN)) {
1227 				error = ENAMETOOLONG;
1228 			}
1229 
1230 			pn_free(&rpn);
1231 			pn_free(&pn);
1232 		}
1233 
1234 		if (error)
1235 			goto errout;
1236 
1237 		/*
1238 		 * Prevent path name resolution from proceeding past
1239 		 * the mount point.
1240 		 */
1241 		if (vn_vfswlock(vp) != 0) {
1242 			error = EBUSY;
1243 			goto errout;
1244 		}
1245 
1246 		/*
1247 		 * Verify that it's legitimate to establish a mount on
1248 		 * the prospective mount point.
1249 		 */
1250 		if (vn_mountedvfs(vp) != NULL) {
1251 			/*
1252 			 * The mount point lock was obtained after some
1253 			 * other thread raced through and established a mount.
1254 			 */
1255 			vn_vfsunlock(vp);
1256 			error = EBUSY;
1257 			goto errout;
1258 		}
1259 		if (vp->v_flag & VNOMOUNT) {
1260 			vn_vfsunlock(vp);
1261 			error = EINVAL;
1262 			goto errout;
1263 		}
1264 	}
1265 	if ((uap->flags & (MS_DATA | MS_OPTIONSTR)) == 0) {
1266 		uap->dataptr = NULL;
1267 		uap->datalen = 0;
1268 	}
1269 
1270 	/*
1271 	 * If this is a remount, we don't want to create a new VFS.
1272 	 * Instead, we pass the existing one with a remount flag.
1273 	 */
1274 	if (remount) {
1275 		/*
1276 		 * Confirm that the mount point is the root vnode of the
1277 		 * file system that is being remounted.
1278 		 * This can happen if the user specifies a different
1279 		 * mount point directory pathname in the (re)mount command.
1280 		 *
1281 		 * Code below can only be reached if splice is true, so it's
1282 		 * safe to do vn_vfsunlock() here.
1283 		 */
1284 		if ((vp->v_flag & VROOT) == 0) {
1285 			vn_vfsunlock(vp);
1286 			error = ENOENT;
1287 			goto errout;
1288 		}
1289 		/*
1290 		 * Disallow making file systems read-only unless file system
1291 		 * explicitly allows it in its vfssw.  Ignore other flags.
1292 		 */
1293 		if (rdonly && vn_is_readonly(vp) == 0 &&
1294 		    (vswp->vsw_flag & VSW_CANRWRO) == 0) {
1295 			vn_vfsunlock(vp);
1296 			error = EINVAL;
1297 			goto errout;
1298 		}
1299 		/*
1300 		 * Changing the NBMAND setting on remounts is permitted
1301 		 * but logged since it can lead to unexpected behavior.
1302 		 * We also counsel against using it for / and /usr.
1303 		 */
1304 		if ((nbmand && ((vp->v_vfsp->vfs_flag & VFS_NBMAND) == 0)) ||
1305 		    (!nbmand && (vp->v_vfsp->vfs_flag & VFS_NBMAND))) {
1306 			cmn_err(CE_WARN, "domount: nbmand turned %s via "
1307 			    "remounting %s", nbmand ? "on" : "off",
1308 			    refstr_value(vp->v_vfsp->vfs_mntpt));
1309 		}
1310 		vfsp = vp->v_vfsp;
1311 		ovflags = vfsp->vfs_flag;
1312 		vfsp->vfs_flag |= VFS_REMOUNT;
1313 		vfsp->vfs_flag &= ~VFS_RDONLY;
1314 	} else {
1315 		vfsp = kmem_alloc(sizeof (vfs_t), KM_SLEEP);
1316 		VFS_INIT(vfsp, vfsops, NULL);
1317 	}
1318 
1319 	VFS_HOLD(vfsp);
1320 
1321 	/*
1322 	 * The vfs_reflock is not used anymore the code below explicitly
1323 	 * holds it preventing others accesing it directly.
1324 	 */
1325 	if ((sema_tryp(&vfsp->vfs_reflock) == 0) &&
1326 	    !(vfsp->vfs_flag & VFS_REMOUNT))
1327 		cmn_err(CE_WARN,
1328 		    "mount type %s couldn't get vfs_reflock\n", vswp->vsw_name);
1329 
1330 	/*
1331 	 * Lock the vfs. If this is a remount we want to avoid spurious umount
1332 	 * failures that happen as a side-effect of fsflush() and other mount
1333 	 * and unmount operations that might be going on simultaneously and
1334 	 * may have locked the vfs currently. To not return EBUSY immediately
1335 	 * here we use vfs_lock_wait() instead vfs_lock() for the remount case.
1336 	 */
1337 	if (!remount) {
1338 		if (error = vfs_lock(vfsp)) {
1339 			vfsp->vfs_flag = ovflags;
1340 			if (splice)
1341 				vn_vfsunlock(vp);
1342 			if (vfsp->vfs_implp)
1343 				vfsimpl_teardown(vfsp);
1344 			kmem_free(vfsp, sizeof (struct vfs));
1345 			goto errout;
1346 		}
1347 	} else {
1348 		vfs_lock_wait(vfsp);
1349 	}
1350 
1351 	/*
1352 	 * Add device to mount in progress table, global mounts require special
1353 	 * handling. It is possible that we have already done the lookupname
1354 	 * on a spliced, non-global fs. If so, we don't want to do it again
1355 	 * since we cannot do a lookupname after taking the
1356 	 * wlock above. This case is for a non-spliced, non-global filesystem.
1357 	 */
1358 	if (!addmip) {
1359 	    if ((uap->flags & MS_GLOBAL) == 0 &&
1360 		lookupname(uap->spec, fromspace, FOLLOW, NULL, &bvp) == 0) {
1361 			addmip = 1;
1362 		}
1363 	}
1364 
1365 	if (addmip) {
1366 		bdev = bvp->v_rdev;
1367 		VN_RELE(bvp);
1368 		vfs_addmip(bdev, vfsp);
1369 		addmip = 0;
1370 		delmip = 1;
1371 	}
1372 	/*
1373 	 * Invalidate cached entry for the mount point.
1374 	 */
1375 	if (splice)
1376 		dnlc_purge_vp(vp);
1377 
1378 	/*
1379 	 * If have an option string but the filesystem doesn't supply a
1380 	 * prototype options table, create a table with the global
1381 	 * options and sufficient room to accept all the options in the
1382 	 * string.  Then parse the passed in option string
1383 	 * accepting all the options in the string.  This gives us an
1384 	 * option table with all the proper cancel properties for the
1385 	 * global options.
1386 	 *
1387 	 * Filesystems that supply a prototype options table are handled
1388 	 * earlier in this function.
1389 	 */
1390 	if (uap->flags & MS_OPTIONSTR) {
1391 		if (!(vswp->vsw_flag & VSW_HASPROTO)) {
1392 			mntopts_t tmp_mntopts;
1393 
1394 			tmp_mntopts.mo_count = 0;
1395 			vfs_createopttbl_extend(&tmp_mntopts, inargs,
1396 			    &mnt_mntopts);
1397 			vfs_parsemntopts(&tmp_mntopts, inargs, 1);
1398 			vfs_swapopttbl_nolock(&mnt_mntopts, &tmp_mntopts);
1399 			vfs_freeopttbl(&tmp_mntopts);
1400 		}
1401 	}
1402 
1403 	/*
1404 	 * Serialize with zone creations.
1405 	 */
1406 	mount_in_progress();
1407 	/*
1408 	 * Instantiate (or reinstantiate) the file system.  If appropriate,
1409 	 * splice it into the file system name space.
1410 	 *
1411 	 * We want VFS_MOUNT() to be able to override the vfs_resource
1412 	 * string if necessary (ie, mntfs), and also for a remount to
1413 	 * change the same (necessary when remounting '/' during boot).
1414 	 * So we set up vfs_mntpt and vfs_resource to what we think they
1415 	 * should be, then hand off control to VFS_MOUNT() which can
1416 	 * override this.
1417 	 *
1418 	 * For safety's sake, when changing vfs_resource or vfs_mntpt of
1419 	 * a vfs which is on the vfs list (i.e. during a remount), we must
1420 	 * never set those fields to NULL. Several bits of code make
1421 	 * assumptions that the fields are always valid.
1422 	 */
1423 	vfs_swapopttbl(&mnt_mntopts, &vfsp->vfs_mntopts);
1424 	if (remount) {
1425 		if ((oldresource = vfsp->vfs_resource) != NULL)
1426 			refstr_hold(oldresource);
1427 		if ((oldmntpt = vfsp->vfs_mntpt) != NULL)
1428 			refstr_hold(oldmntpt);
1429 	}
1430 	vfs_setresource(vfsp, resource);
1431 	vfs_setmntpoint(vfsp, mountpt);
1432 
1433 	error = VFS_MOUNT(vfsp, vp, uap, credp);
1434 
1435 	if (uap->flags & MS_RDONLY)
1436 		vfs_setmntopt(vfsp, MNTOPT_RO, NULL, 0);
1437 	if (uap->flags & MS_NOSUID)
1438 		vfs_setmntopt(vfsp, MNTOPT_NOSUID, NULL, 0);
1439 	if (uap->flags & MS_GLOBAL)
1440 		vfs_setmntopt(vfsp, MNTOPT_GLOBAL, NULL, 0);
1441 
1442 	if (error) {
1443 		if (remount) {
1444 			/* put back pre-remount options */
1445 			vfs_swapopttbl(&mnt_mntopts, &vfsp->vfs_mntopts);
1446 			vfs_setmntpoint(vfsp, (stripzonepath(
1447 					refstr_value(oldmntpt))));
1448 			if (oldmntpt)
1449 				refstr_rele(oldmntpt);
1450 			vfs_setresource(vfsp, (stripzonepath(
1451 					refstr_value(oldresource))));
1452 			if (oldresource)
1453 				refstr_rele(oldresource);
1454 			vfsp->vfs_flag = ovflags;
1455 			vfs_unlock(vfsp);
1456 			VFS_RELE(vfsp);
1457 		} else {
1458 			vfs_unlock(vfsp);
1459 			vfs_freemnttab(vfsp);
1460 			if (vfsp->vfs_implp)
1461 				vfsimpl_teardown(vfsp);
1462 			kmem_free(vfsp, sizeof (struct vfs));
1463 		}
1464 	} else {
1465 		/*
1466 		 * Set the mount time to now
1467 		 */
1468 		vfsp->vfs_mtime = ddi_get_time();
1469 		if (remount) {
1470 			vfsp->vfs_flag &= ~VFS_REMOUNT;
1471 			if (oldresource)
1472 				refstr_rele(oldresource);
1473 			if (oldmntpt)
1474 				refstr_rele(oldmntpt);
1475 		} else if (splice) {
1476 			/*
1477 			 * Link vfsp into the name space at the mount
1478 			 * point. Vfs_add() is responsible for
1479 			 * holding the mount point which will be
1480 			 * released when vfs_remove() is called.
1481 			 */
1482 			vfs_add(vp, vfsp, uap->flags);
1483 		} else {
1484 			/*
1485 			 * Hold the reference to file system which is
1486 			 * not linked into the name space.
1487 			 */
1488 			vfsp->vfs_zone = NULL;
1489 			VFS_HOLD(vfsp);
1490 			vfsp->vfs_vnodecovered = NULL;
1491 		}
1492 		/*
1493 		 * Set flags for global options encountered
1494 		 */
1495 		if (vfs_optionisset(vfsp, MNTOPT_RO, NULL))
1496 			vfsp->vfs_flag |= VFS_RDONLY;
1497 		else
1498 			vfsp->vfs_flag &= ~VFS_RDONLY;
1499 		if (vfs_optionisset(vfsp, MNTOPT_NOSUID, NULL)) {
1500 			vfsp->vfs_flag |= (VFS_NOSETUID|VFS_NODEVICES);
1501 		} else {
1502 			if (vfs_optionisset(vfsp, MNTOPT_NODEVICES, NULL))
1503 				vfsp->vfs_flag |= VFS_NODEVICES;
1504 			else
1505 				vfsp->vfs_flag &= ~VFS_NODEVICES;
1506 			if (vfs_optionisset(vfsp, MNTOPT_NOSETUID, NULL))
1507 				vfsp->vfs_flag |= VFS_NOSETUID;
1508 			else
1509 				vfsp->vfs_flag &= ~VFS_NOSETUID;
1510 		}
1511 		if (vfs_optionisset(vfsp, MNTOPT_NBMAND, NULL))
1512 			vfsp->vfs_flag |= VFS_NBMAND;
1513 		else
1514 			vfsp->vfs_flag &= ~VFS_NBMAND;
1515 
1516 		if (vfs_optionisset(vfsp, MNTOPT_XATTR, NULL))
1517 			vfsp->vfs_flag |= VFS_XATTR;
1518 		else
1519 			vfsp->vfs_flag &= ~VFS_XATTR;
1520 
1521 		if (vfs_optionisset(vfsp, MNTOPT_NOEXEC, NULL))
1522 			vfsp->vfs_flag |= VFS_NOEXEC;
1523 		else
1524 			vfsp->vfs_flag &= ~VFS_NOEXEC;
1525 
1526 		/*
1527 		 * Now construct the output option string of options
1528 		 * we recognized.
1529 		 */
1530 		if (uap->flags & MS_OPTIONSTR) {
1531 			vfs_list_read_lock();
1532 			copyout_error = vfs_buildoptionstr(
1533 				&vfsp->vfs_mntopts, inargs, optlen);
1534 			vfs_list_unlock();
1535 			if (copyout_error == 0 &&
1536 			    (uap->flags & MS_SYSSPACE) == 0) {
1537 				copyout_error = copyoutstr(inargs, opts,
1538 				    optlen, NULL);
1539 			}
1540 		}
1541 
1542 		/*
1543 		 * If this isn't a remount, set up the vopstats before
1544 		 * anyone can touch this. We only allow spliced file
1545 		 * systems (file systems which are in the namespace) to
1546 		 * have the VFS_STATS flag set.
1547 		 * NOTE: PxFS mounts the underlying file system with
1548 		 * MS_NOSPLICE set and copies those vfs_flags to its private
1549 		 * vfs structure. As a result, PxFS should never have
1550 		 * the VFS_STATS flag or else we might access the vfs
1551 		 * statistics-related fields prior to them being
1552 		 * properly initialized.
1553 		 */
1554 		if (!remount && (vswp->vsw_flag & VSW_STATS) && splice) {
1555 			initialize_vopstats(&vfsp->vfs_vopstats);
1556 			/*
1557 			 * We need to set vfs_vskap to NULL because there's
1558 			 * a chance it won't be set below.  This is checked
1559 			 * in teardown_vopstats() so we can't have garbage.
1560 			 */
1561 			vfsp->vfs_vskap = NULL;
1562 			vfsp->vfs_flag |= VFS_STATS;
1563 			vfsp->vfs_fstypevsp = get_fstype_vopstats(vfsp, vswp);
1564 		}
1565 
1566 		vfs_unlock(vfsp);
1567 	}
1568 	mount_completed();
1569 	if (splice)
1570 		vn_vfsunlock(vp);
1571 
1572 	if ((error == 0) && (copyout_error == 0)) {
1573 		if (!remount) {
1574 			/*
1575 			 * Don't call get_vskstat_anchor() while holding
1576 			 * locks since it allocates memory and calls
1577 			 * VFS_STATVFS().  For NFS, the latter can generate
1578 			 * an over-the-wire call.
1579 			 */
1580 			vskap = get_vskstat_anchor(vfsp);
1581 			/* Only take the lock if we have something to do */
1582 			if (vskap != NULL) {
1583 				vfs_lock_wait(vfsp);
1584 				if (vfsp->vfs_flag & VFS_STATS) {
1585 					vfsp->vfs_vskap = vskap;
1586 				}
1587 				vfs_unlock(vfsp);
1588 			}
1589 		}
1590 		/* Return vfsp to caller. */
1591 		*vfspp = vfsp;
1592 	}
1593 errout:
1594 	vfs_freeopttbl(&mnt_mntopts);
1595 	if (resource != NULL)
1596 		kmem_free(resource, strlen(resource) + 1);
1597 	if (mountpt != NULL)
1598 		kmem_free(mountpt, strlen(mountpt) + 1);
1599 	/*
1600 	 * It is possible we errored prior to adding to mount in progress
1601 	 * table. Must free vnode we acquired with successful lookupname.
1602 	 */
1603 	if (addmip)
1604 		VN_RELE(bvp);
1605 	if (delmip)
1606 		vfs_delmip(vfsp);
1607 	ASSERT(vswp != NULL);
1608 	vfs_unrefvfssw(vswp);
1609 	if (inargs != opts)
1610 		kmem_free(inargs, MAX_MNTOPT_STR);
1611 	if (copyout_error) {
1612 		VFS_RELE(vfsp);
1613 		error = copyout_error;
1614 	}
1615 	return (error);
1616 }
1617 
1618 static void
1619 vfs_setpath(struct vfs *vfsp, refstr_t **refp, const char *newpath)
1620 {
1621 	size_t len;
1622 	refstr_t *ref;
1623 	zone_t *zone = curproc->p_zone;
1624 	char *sp;
1625 	int have_list_lock = 0;
1626 
1627 	ASSERT(!VFS_ON_LIST(vfsp) || vfs_lock_held(vfsp));
1628 
1629 	/*
1630 	 * New path must be less than MAXPATHLEN because mntfs
1631 	 * will only display up to MAXPATHLEN bytes. This is currently
1632 	 * safe, because domount() uses pn_get(), and other callers
1633 	 * similarly cap the size to fewer than MAXPATHLEN bytes.
1634 	 */
1635 
1636 	ASSERT(strlen(newpath) < MAXPATHLEN);
1637 
1638 	/* mntfs requires consistency while vfs list lock is held */
1639 
1640 	if (VFS_ON_LIST(vfsp)) {
1641 		have_list_lock = 1;
1642 		vfs_list_lock();
1643 	}
1644 
1645 	if (*refp != NULL)
1646 		refstr_rele(*refp);
1647 
1648 	/* Do we need to modify the path? */
1649 
1650 	if (zone == global_zone || *newpath != '/') {
1651 		ref = refstr_alloc(newpath);
1652 		goto out;
1653 	}
1654 
1655 	/*
1656 	 * Truncate the trailing '/' in the zoneroot, and merge
1657 	 * in the zone's rootpath with the "newpath" (resource
1658 	 * or mountpoint) passed in.
1659 	 *
1660 	 * The size of the required buffer is thus the size of
1661 	 * the buffer required for the passed-in newpath
1662 	 * (strlen(newpath) + 1), plus the size of the buffer
1663 	 * required to hold zone_rootpath (zone_rootpathlen)
1664 	 * minus one for one of the now-superfluous NUL
1665 	 * terminations, minus one for the trailing '/'.
1666 	 *
1667 	 * That gives us:
1668 	 *
1669 	 * (strlen(newpath) + 1) + zone_rootpathlen - 1 - 1
1670 	 *
1671 	 * Which is what we have below.
1672 	 */
1673 
1674 	len = strlen(newpath) + zone->zone_rootpathlen - 1;
1675 	sp = kmem_alloc(len, KM_SLEEP);
1676 
1677 	/*
1678 	 * Copy everything including the trailing slash, which
1679 	 * we then overwrite with the NUL character.
1680 	 */
1681 
1682 	(void) strcpy(sp, zone->zone_rootpath);
1683 	sp[zone->zone_rootpathlen - 2] = '\0';
1684 	(void) strcat(sp, newpath);
1685 
1686 	ref = refstr_alloc(sp);
1687 	kmem_free(sp, len);
1688 out:
1689 	*refp = ref;
1690 
1691 	if (have_list_lock) {
1692 		vfs_mnttab_modtimeupd();
1693 		vfs_list_unlock();
1694 	}
1695 }
1696 
1697 /*
1698  * Record a mounted resource name in a vfs structure.
1699  * If vfsp is already mounted, caller must hold the vfs lock.
1700  */
1701 void
1702 vfs_setresource(struct vfs *vfsp, const char *resource)
1703 {
1704 	if (resource == NULL || resource[0] == '\0')
1705 		resource = VFS_NORESOURCE;
1706 	vfs_setpath(vfsp, &vfsp->vfs_resource, resource);
1707 }
1708 
1709 /*
1710  * Record a mount point name in a vfs structure.
1711  * If vfsp is already mounted, caller must hold the vfs lock.
1712  */
1713 void
1714 vfs_setmntpoint(struct vfs *vfsp, const char *mntpt)
1715 {
1716 	if (mntpt == NULL || mntpt[0] == '\0')
1717 		mntpt = VFS_NOMNTPT;
1718 	vfs_setpath(vfsp, &vfsp->vfs_mntpt, mntpt);
1719 }
1720 
1721 /* Returns the vfs_resource. Caller must call refstr_rele() when finished. */
1722 
1723 refstr_t *
1724 vfs_getresource(const struct vfs *vfsp)
1725 {
1726 	refstr_t *resource;
1727 
1728 	vfs_list_read_lock();
1729 	resource = vfsp->vfs_resource;
1730 	refstr_hold(resource);
1731 	vfs_list_unlock();
1732 
1733 	return (resource);
1734 }
1735 
1736 /* Returns the vfs_mntpt. Caller must call refstr_rele() when finished. */
1737 
1738 refstr_t *
1739 vfs_getmntpoint(const struct vfs *vfsp)
1740 {
1741 	refstr_t *mntpt;
1742 
1743 	vfs_list_read_lock();
1744 	mntpt = vfsp->vfs_mntpt;
1745 	refstr_hold(mntpt);
1746 	vfs_list_unlock();
1747 
1748 	return (mntpt);
1749 }
1750 
1751 /*
1752  * Create an empty options table with enough empty slots to hold all
1753  * The options in the options string passed as an argument.
1754  * Potentially prepend another options table.
1755  *
1756  * Note: caller is responsible for locking the vfs list, if needed,
1757  *       to protect mops.
1758  */
1759 static void
1760 vfs_createopttbl_extend(mntopts_t *mops, const char *opts,
1761     const mntopts_t *mtmpl)
1762 {
1763 	const char *s = opts;
1764 	uint_t count;
1765 
1766 	if (opts == NULL || *opts == '\0') {
1767 		count = 0;
1768 	} else {
1769 		count = 1;
1770 
1771 		/*
1772 		 * Count number of options in the string
1773 		 */
1774 		for (s = strchr(s, ','); s != NULL; s = strchr(s, ',')) {
1775 			count++;
1776 			s++;
1777 		}
1778 	}
1779 	vfs_copyopttbl_extend(mtmpl, mops, count);
1780 }
1781 
1782 /*
1783  * Create an empty options table with enough empty slots to hold all
1784  * The options in the options string passed as an argument.
1785  *
1786  * This function is *not* for general use by filesystems.
1787  *
1788  * Note: caller is responsible for locking the vfs list, if needed,
1789  *       to protect mops.
1790  */
1791 void
1792 vfs_createopttbl(mntopts_t *mops, const char *opts)
1793 {
1794 	vfs_createopttbl_extend(mops, opts, NULL);
1795 }
1796 
1797 
1798 /*
1799  * Swap two mount options tables
1800  */
1801 static void
1802 vfs_swapopttbl_nolock(mntopts_t *optbl1, mntopts_t *optbl2)
1803 {
1804 	uint_t tmpcnt;
1805 	mntopt_t *tmplist;
1806 
1807 	tmpcnt = optbl2->mo_count;
1808 	tmplist = optbl2->mo_list;
1809 	optbl2->mo_count = optbl1->mo_count;
1810 	optbl2->mo_list = optbl1->mo_list;
1811 	optbl1->mo_count = tmpcnt;
1812 	optbl1->mo_list = tmplist;
1813 }
1814 
1815 static void
1816 vfs_swapopttbl(mntopts_t *optbl1, mntopts_t *optbl2)
1817 {
1818 	vfs_list_lock();
1819 	vfs_swapopttbl_nolock(optbl1, optbl2);
1820 	vfs_mnttab_modtimeupd();
1821 	vfs_list_unlock();
1822 }
1823 
1824 static char **
1825 vfs_copycancelopt_extend(char **const moc, int extend)
1826 {
1827 	int i = 0;
1828 	int j;
1829 	char **result;
1830 
1831 	if (moc != NULL) {
1832 		for (; moc[i] != NULL; i++)
1833 			/* count number of options to cancel */;
1834 	}
1835 
1836 	if (i + extend == 0)
1837 		return (NULL);
1838 
1839 	result = kmem_alloc((i + extend + 1) * sizeof (char *), KM_SLEEP);
1840 
1841 	for (j = 0; j < i; j++) {
1842 		result[j] = kmem_alloc(strlen(moc[j]) + 1, KM_SLEEP);
1843 		(void) strcpy(result[j], moc[j]);
1844 	}
1845 	for (; j <= i + extend; j++)
1846 		result[j] = NULL;
1847 
1848 	return (result);
1849 }
1850 
1851 static void
1852 vfs_copyopt(const mntopt_t *s, mntopt_t *d)
1853 {
1854 	char *sp, *dp;
1855 
1856 	d->mo_flags = s->mo_flags;
1857 	d->mo_data = s->mo_data;
1858 	sp = s->mo_name;
1859 	if (sp != NULL) {
1860 		dp = kmem_alloc(strlen(sp) + 1, KM_SLEEP);
1861 		(void) strcpy(dp, sp);
1862 		d->mo_name = dp;
1863 	} else {
1864 		d->mo_name = NULL; /* should never happen */
1865 	}
1866 
1867 	d->mo_cancel = vfs_copycancelopt_extend(s->mo_cancel, 0);
1868 
1869 	sp = s->mo_arg;
1870 	if (sp != NULL) {
1871 		dp = kmem_alloc(strlen(sp) + 1, KM_SLEEP);
1872 		(void) strcpy(dp, sp);
1873 		d->mo_arg = dp;
1874 	} else {
1875 		d->mo_arg = NULL;
1876 	}
1877 }
1878 
1879 /*
1880  * Copy a mount options table, possibly allocating some spare
1881  * slots at the end.  It is permissible to copy_extend the NULL table.
1882  */
1883 static void
1884 vfs_copyopttbl_extend(const mntopts_t *smo, mntopts_t *dmo, int extra)
1885 {
1886 	uint_t i, count;
1887 	mntopt_t *motbl;
1888 
1889 	/*
1890 	 * Clear out any existing stuff in the options table being initialized
1891 	 */
1892 	vfs_freeopttbl(dmo);
1893 	count = (smo == NULL) ? 0 : smo->mo_count;
1894 	if ((count + extra) == 0)	/* nothing to do */
1895 		return;
1896 	dmo->mo_count = count + extra;
1897 	motbl = kmem_zalloc((count + extra) * sizeof (mntopt_t), KM_SLEEP);
1898 	dmo->mo_list = motbl;
1899 	for (i = 0; i < count; i++) {
1900 		vfs_copyopt(&smo->mo_list[i], &motbl[i]);
1901 	}
1902 	for (i = count; i < count + extra; i++) {
1903 		motbl[i].mo_flags = MO_EMPTY;
1904 	}
1905 }
1906 
1907 /*
1908  * Copy a mount options table.
1909  *
1910  * This function is *not* for general use by filesystems.
1911  *
1912  * Note: caller is responsible for locking the vfs list, if needed,
1913  *       to protect smo and dmo.
1914  */
1915 void
1916 vfs_copyopttbl(const mntopts_t *smo, mntopts_t *dmo)
1917 {
1918 	vfs_copyopttbl_extend(smo, dmo, 0);
1919 }
1920 
1921 static char **
1922 vfs_mergecancelopts(const mntopt_t *mop1, const mntopt_t *mop2)
1923 {
1924 	int c1 = 0;
1925 	int c2 = 0;
1926 	char **result;
1927 	char **sp1, **sp2, **dp;
1928 
1929 	/*
1930 	 * First we count both lists of cancel options.
1931 	 * If either is NULL or has no elements, we return a copy of
1932 	 * the other.
1933 	 */
1934 	if (mop1->mo_cancel != NULL) {
1935 		for (; mop1->mo_cancel[c1] != NULL; c1++)
1936 			/* count cancel options in mop1 */;
1937 	}
1938 
1939 	if (c1 == 0)
1940 		return (vfs_copycancelopt_extend(mop2->mo_cancel, 0));
1941 
1942 	if (mop2->mo_cancel != NULL) {
1943 		for (; mop2->mo_cancel[c2] != NULL; c2++)
1944 			/* count cancel options in mop2 */;
1945 	}
1946 
1947 	result = vfs_copycancelopt_extend(mop1->mo_cancel, c2);
1948 
1949 	if (c2 == 0)
1950 		return (result);
1951 
1952 	/*
1953 	 * When we get here, we've got two sets of cancel options;
1954 	 * we need to merge the two sets.  We know that the result
1955 	 * array has "c1+c2+1" entries and in the end we might shrink
1956 	 * it.
1957 	 * Result now has a copy of the c1 entries from mop1; we'll
1958 	 * now lookup all the entries of mop2 in mop1 and copy it if
1959 	 * it is unique.
1960 	 * This operation is O(n^2) but it's only called once per
1961 	 * filesystem per duplicate option.  This is a situation
1962 	 * which doesn't arise with the filesystems in ON and
1963 	 * n is generally 1.
1964 	 */
1965 
1966 	dp = &result[c1];
1967 	for (sp2 = mop2->mo_cancel; *sp2 != NULL; sp2++) {
1968 		for (sp1 = mop1->mo_cancel; *sp1 != NULL; sp1++) {
1969 			if (strcmp(*sp1, *sp2) == 0)
1970 				break;
1971 		}
1972 		if (*sp1 == NULL) {
1973 			/*
1974 			 * Option *sp2 not found in mop1, so copy it.
1975 			 * The calls to vfs_copycancelopt_extend()
1976 			 * guarantee that there's enough room.
1977 			 */
1978 			*dp = kmem_alloc(strlen(*sp2) + 1, KM_SLEEP);
1979 			(void) strcpy(*dp++, *sp2);
1980 		}
1981 	}
1982 	if (dp != &result[c1+c2]) {
1983 		size_t bytes = (dp - result + 1) * sizeof (char *);
1984 		char **nres = kmem_alloc(bytes, KM_SLEEP);
1985 
1986 		bcopy(result, nres, bytes);
1987 		kmem_free(result, (c1 + c2 + 1) * sizeof (char *));
1988 		result = nres;
1989 	}
1990 	return (result);
1991 }
1992 
1993 /*
1994  * Merge two mount option tables (outer and inner) into one.  This is very
1995  * similar to "merging" global variables and automatic variables in C.
1996  *
1997  * This isn't (and doesn't have to be) fast.
1998  *
1999  * This function is *not* for general use by filesystems.
2000  *
2001  * Note: caller is responsible for locking the vfs list, if needed,
2002  *       to protect omo, imo & dmo.
2003  */
2004 void
2005 vfs_mergeopttbl(const mntopts_t *omo, const mntopts_t *imo, mntopts_t *dmo)
2006 {
2007 	uint_t i, count;
2008 	mntopt_t *mop, *motbl;
2009 	uint_t freeidx;
2010 
2011 	/*
2012 	 * First determine how much space we need to allocate.
2013 	 */
2014 	count = omo->mo_count;
2015 	for (i = 0; i < imo->mo_count; i++) {
2016 		if (imo->mo_list[i].mo_flags & MO_EMPTY)
2017 			continue;
2018 		if (vfs_hasopt(omo, imo->mo_list[i].mo_name) == NULL)
2019 			count++;
2020 	}
2021 	ASSERT(count >= omo->mo_count &&
2022 	    count <= omo->mo_count + imo->mo_count);
2023 	motbl = kmem_alloc(count * sizeof (mntopt_t), KM_SLEEP);
2024 	for (i = 0; i < omo->mo_count; i++)
2025 		vfs_copyopt(&omo->mo_list[i], &motbl[i]);
2026 	freeidx = omo->mo_count;
2027 	for (i = 0; i < imo->mo_count; i++) {
2028 		if (imo->mo_list[i].mo_flags & MO_EMPTY)
2029 			continue;
2030 		if ((mop = vfs_hasopt(omo, imo->mo_list[i].mo_name)) != NULL) {
2031 			char **newcanp;
2032 			uint_t index = mop - omo->mo_list;
2033 
2034 			newcanp = vfs_mergecancelopts(mop, &motbl[index]);
2035 
2036 			vfs_freeopt(&motbl[index]);
2037 			vfs_copyopt(&imo->mo_list[i], &motbl[index]);
2038 
2039 			vfs_freecancelopt(motbl[index].mo_cancel);
2040 			motbl[index].mo_cancel = newcanp;
2041 		} else {
2042 			/*
2043 			 * If it's a new option, just copy it over to the first
2044 			 * free location.
2045 			 */
2046 			vfs_copyopt(&imo->mo_list[i], &motbl[freeidx++]);
2047 		}
2048 	}
2049 	dmo->mo_count = count;
2050 	dmo->mo_list = motbl;
2051 }
2052 
2053 /*
2054  * Functions to set and clear mount options in a mount options table.
2055  */
2056 
2057 /*
2058  * Clear a mount option, if it exists.
2059  *
2060  * The update_mnttab arg indicates whether mops is part of a vfs that is on
2061  * the vfs list.
2062  */
2063 static void
2064 vfs_clearmntopt_nolock(mntopts_t *mops, const char *opt, int update_mnttab)
2065 {
2066 	struct mntopt *mop;
2067 	uint_t i, count;
2068 
2069 	ASSERT(!update_mnttab || RW_WRITE_HELD(&vfslist));
2070 
2071 	count = mops->mo_count;
2072 	for (i = 0; i < count; i++) {
2073 		mop = &mops->mo_list[i];
2074 
2075 		if (mop->mo_flags & MO_EMPTY)
2076 			continue;
2077 		if (strcmp(opt, mop->mo_name))
2078 			continue;
2079 		mop->mo_flags &= ~MO_SET;
2080 		if (mop->mo_arg != NULL) {
2081 			kmem_free(mop->mo_arg, strlen(mop->mo_arg) + 1);
2082 		}
2083 		mop->mo_arg = NULL;
2084 		if (update_mnttab)
2085 			vfs_mnttab_modtimeupd();
2086 		break;
2087 	}
2088 }
2089 
2090 void
2091 vfs_clearmntopt(struct vfs *vfsp, const char *opt)
2092 {
2093 	int gotlock = 0;
2094 
2095 	if (VFS_ON_LIST(vfsp)) {
2096 		gotlock = 1;
2097 		vfs_list_lock();
2098 	}
2099 	vfs_clearmntopt_nolock(&vfsp->vfs_mntopts, opt, gotlock);
2100 	if (gotlock)
2101 		vfs_list_unlock();
2102 }
2103 
2104 
2105 /*
2106  * Set a mount option on.  If it's not found in the table, it's silently
2107  * ignored.  If the option has MO_IGNORE set, it is still set unless the
2108  * VFS_NOFORCEOPT bit is set in the flags.  Also, VFS_DISPLAY/VFS_NODISPLAY flag
2109  * bits can be used to toggle the MO_NODISPLAY bit for the option.
2110  * If the VFS_CREATEOPT flag bit is set then the first option slot with
2111  * MO_EMPTY set is created as the option passed in.
2112  *
2113  * The update_mnttab arg indicates whether mops is part of a vfs that is on
2114  * the vfs list.
2115  */
2116 static void
2117 vfs_setmntopt_nolock(mntopts_t *mops, const char *opt,
2118     const char *arg, int flags, int update_mnttab)
2119 {
2120 	mntopt_t *mop;
2121 	uint_t i, count;
2122 	char *sp;
2123 
2124 	ASSERT(!update_mnttab || RW_WRITE_HELD(&vfslist));
2125 
2126 	if (flags & VFS_CREATEOPT) {
2127 		if (vfs_hasopt(mops, opt) != NULL) {
2128 			flags &= ~VFS_CREATEOPT;
2129 		}
2130 	}
2131 	count = mops->mo_count;
2132 	for (i = 0; i < count; i++) {
2133 		mop = &mops->mo_list[i];
2134 
2135 		if (mop->mo_flags & MO_EMPTY) {
2136 			if ((flags & VFS_CREATEOPT) == 0)
2137 				continue;
2138 			sp = kmem_alloc(strlen(opt) + 1, KM_SLEEP);
2139 			(void) strcpy(sp, opt);
2140 			mop->mo_name = sp;
2141 			if (arg != NULL)
2142 				mop->mo_flags = MO_HASVALUE;
2143 			else
2144 				mop->mo_flags = 0;
2145 		} else if (strcmp(opt, mop->mo_name)) {
2146 			continue;
2147 		}
2148 		if ((mop->mo_flags & MO_IGNORE) && (flags & VFS_NOFORCEOPT))
2149 			break;
2150 		if (arg != NULL && (mop->mo_flags & MO_HASVALUE) != 0) {
2151 			sp = kmem_alloc(strlen(arg) + 1, KM_SLEEP);
2152 			(void) strcpy(sp, arg);
2153 		} else {
2154 			sp = NULL;
2155 		}
2156 		if (mop->mo_arg != NULL)
2157 			kmem_free(mop->mo_arg, strlen(mop->mo_arg) + 1);
2158 		mop->mo_arg = sp;
2159 		if (flags & VFS_DISPLAY)
2160 			mop->mo_flags &= ~MO_NODISPLAY;
2161 		if (flags & VFS_NODISPLAY)
2162 			mop->mo_flags |= MO_NODISPLAY;
2163 		mop->mo_flags |= MO_SET;
2164 		if (mop->mo_cancel != NULL) {
2165 			char **cp;
2166 
2167 			for (cp = mop->mo_cancel; *cp != NULL; cp++)
2168 				vfs_clearmntopt_nolock(mops, *cp, 0);
2169 		}
2170 		if (update_mnttab)
2171 			vfs_mnttab_modtimeupd();
2172 		break;
2173 	}
2174 }
2175 
2176 void
2177 vfs_setmntopt(struct vfs *vfsp, const char *opt, const char *arg, int flags)
2178 {
2179 	int gotlock = 0;
2180 
2181 	if (VFS_ON_LIST(vfsp)) {
2182 		gotlock = 1;
2183 		vfs_list_lock();
2184 	}
2185 	vfs_setmntopt_nolock(&vfsp->vfs_mntopts, opt, arg, flags, gotlock);
2186 	if (gotlock)
2187 		vfs_list_unlock();
2188 }
2189 
2190 
2191 /*
2192  * Add a "tag" option to a mounted file system's options list.
2193  *
2194  * Note: caller is responsible for locking the vfs list, if needed,
2195  *       to protect mops.
2196  */
2197 static mntopt_t *
2198 vfs_addtag(mntopts_t *mops, const char *tag)
2199 {
2200 	uint_t count;
2201 	mntopt_t *mop, *motbl;
2202 
2203 	count = mops->mo_count + 1;
2204 	motbl = kmem_zalloc(count * sizeof (mntopt_t), KM_SLEEP);
2205 	if (mops->mo_count) {
2206 		size_t len = (count - 1) * sizeof (mntopt_t);
2207 
2208 		bcopy(mops->mo_list, motbl, len);
2209 		kmem_free(mops->mo_list, len);
2210 	}
2211 	mops->mo_count = count;
2212 	mops->mo_list = motbl;
2213 	mop = &motbl[count - 1];
2214 	mop->mo_flags = MO_TAG;
2215 	mop->mo_name = kmem_alloc(strlen(tag) + 1, KM_SLEEP);
2216 	(void) strcpy(mop->mo_name, tag);
2217 	return (mop);
2218 }
2219 
2220 /*
2221  * Allow users to set arbitrary "tags" in a vfs's mount options.
2222  * Broader use within the kernel is discouraged.
2223  */
2224 int
2225 vfs_settag(uint_t major, uint_t minor, const char *mntpt, const char *tag,
2226     cred_t *cr)
2227 {
2228 	vfs_t *vfsp;
2229 	mntopts_t *mops;
2230 	mntopt_t *mop;
2231 	int found = 0;
2232 	dev_t dev = makedevice(major, minor);
2233 	int err = 0;
2234 	char *buf = kmem_alloc(MAX_MNTOPT_STR, KM_SLEEP);
2235 
2236 	/*
2237 	 * Find the desired mounted file system
2238 	 */
2239 	vfs_list_lock();
2240 	vfsp = rootvfs;
2241 	do {
2242 		if (vfsp->vfs_dev == dev &&
2243 		    strcmp(mntpt, refstr_value(vfsp->vfs_mntpt)) == 0) {
2244 			found = 1;
2245 			break;
2246 		}
2247 		vfsp = vfsp->vfs_next;
2248 	} while (vfsp != rootvfs);
2249 
2250 	if (!found) {
2251 		err = EINVAL;
2252 		goto out;
2253 	}
2254 	err = secpolicy_fs_config(cr, vfsp);
2255 	if (err != 0)
2256 		goto out;
2257 
2258 	mops = &vfsp->vfs_mntopts;
2259 	/*
2260 	 * Add tag if it doesn't already exist
2261 	 */
2262 	if ((mop = vfs_hasopt(mops, tag)) == NULL) {
2263 		int len;
2264 
2265 		(void) vfs_buildoptionstr(mops, buf, MAX_MNTOPT_STR);
2266 		len = strlen(buf);
2267 		if (len + strlen(tag) + 2 > MAX_MNTOPT_STR) {
2268 			err = ENAMETOOLONG;
2269 			goto out;
2270 		}
2271 		mop = vfs_addtag(mops, tag);
2272 	}
2273 	if ((mop->mo_flags & MO_TAG) == 0) {
2274 		err = EINVAL;
2275 		goto out;
2276 	}
2277 	vfs_setmntopt_nolock(mops, tag, NULL, 0, 1);
2278 out:
2279 	vfs_list_unlock();
2280 	kmem_free(buf, MAX_MNTOPT_STR);
2281 	return (err);
2282 }
2283 
2284 /*
2285  * Allow users to remove arbitrary "tags" in a vfs's mount options.
2286  * Broader use within the kernel is discouraged.
2287  */
2288 int
2289 vfs_clrtag(uint_t major, uint_t minor, const char *mntpt, const char *tag,
2290     cred_t *cr)
2291 {
2292 	vfs_t *vfsp;
2293 	mntopt_t *mop;
2294 	int found = 0;
2295 	dev_t dev = makedevice(major, minor);
2296 	int err = 0;
2297 
2298 	/*
2299 	 * Find the desired mounted file system
2300 	 */
2301 	vfs_list_lock();
2302 	vfsp = rootvfs;
2303 	do {
2304 		if (vfsp->vfs_dev == dev &&
2305 		    strcmp(mntpt, refstr_value(vfsp->vfs_mntpt)) == 0) {
2306 			found = 1;
2307 			break;
2308 		}
2309 		vfsp = vfsp->vfs_next;
2310 	} while (vfsp != rootvfs);
2311 
2312 	if (!found) {
2313 		err = EINVAL;
2314 		goto out;
2315 	}
2316 	err = secpolicy_fs_config(cr, vfsp);
2317 	if (err != 0)
2318 		goto out;
2319 
2320 	if ((mop = vfs_hasopt(&vfsp->vfs_mntopts, tag)) == NULL) {
2321 		err = EINVAL;
2322 		goto out;
2323 	}
2324 	if ((mop->mo_flags & MO_TAG) == 0) {
2325 		err = EINVAL;
2326 		goto out;
2327 	}
2328 	vfs_clearmntopt_nolock(&vfsp->vfs_mntopts, tag, 1);
2329 out:
2330 	vfs_list_unlock();
2331 	return (err);
2332 }
2333 
2334 /*
2335  * Function to parse an option string and fill in a mount options table.
2336  * Unknown options are silently ignored.  The input option string is modified
2337  * by replacing separators with nulls.  If the create flag is set, options
2338  * not found in the table are just added on the fly.  The table must have
2339  * an option slot marked MO_EMPTY to add an option on the fly.
2340  *
2341  * This function is *not* for general use by filesystems.
2342  *
2343  * Note: caller is responsible for locking the vfs list, if needed,
2344  *       to protect mops..
2345  */
2346 void
2347 vfs_parsemntopts(mntopts_t *mops, char *osp, int create)
2348 {
2349 	char *s = osp, *p, *nextop, *valp, *cp, *ep;
2350 	int setflg = VFS_NOFORCEOPT;
2351 
2352 	if (osp == NULL)
2353 		return;
2354 	while (*s != '\0') {
2355 		p = strchr(s, ',');	/* find next option */
2356 		if (p == NULL) {
2357 			cp = NULL;
2358 			p = s + strlen(s);
2359 		} else {
2360 			cp = p;		/* save location of comma */
2361 			*p++ = '\0';	/* mark end and point to next option */
2362 		}
2363 		nextop = p;
2364 		p = strchr(s, '=');	/* look for value */
2365 		if (p == NULL) {
2366 			valp = NULL;	/* no value supplied */
2367 		} else {
2368 			ep = p;		/* save location of equals */
2369 			*p++ = '\0';	/* end option and point to value */
2370 			valp = p;
2371 		}
2372 		/*
2373 		 * set option into options table
2374 		 */
2375 		if (create)
2376 			setflg |= VFS_CREATEOPT;
2377 		vfs_setmntopt_nolock(mops, s, valp, setflg, 0);
2378 		if (cp != NULL)
2379 			*cp = ',';	/* restore the comma */
2380 		if (valp != NULL)
2381 			*ep = '=';	/* restore the equals */
2382 		s = nextop;
2383 	}
2384 }
2385 
2386 /*
2387  * Function to inquire if an option exists in a mount options table.
2388  * Returns a pointer to the option if it exists, else NULL.
2389  *
2390  * This function is *not* for general use by filesystems.
2391  *
2392  * Note: caller is responsible for locking the vfs list, if needed,
2393  *       to protect mops.
2394  */
2395 struct mntopt *
2396 vfs_hasopt(const mntopts_t *mops, const char *opt)
2397 {
2398 	struct mntopt *mop;
2399 	uint_t i, count;
2400 
2401 	count = mops->mo_count;
2402 	for (i = 0; i < count; i++) {
2403 		mop = &mops->mo_list[i];
2404 
2405 		if (mop->mo_flags & MO_EMPTY)
2406 			continue;
2407 		if (strcmp(opt, mop->mo_name) == 0)
2408 			return (mop);
2409 	}
2410 	return (NULL);
2411 }
2412 
2413 /*
2414  * Function to inquire if an option is set in a mount options table.
2415  * Returns non-zero if set and fills in the arg pointer with a pointer to
2416  * the argument string or NULL if there is no argument string.
2417  */
2418 static int
2419 vfs_optionisset_nolock(const mntopts_t *mops, const char *opt, char **argp)
2420 {
2421 	struct mntopt *mop;
2422 	uint_t i, count;
2423 
2424 	count = mops->mo_count;
2425 	for (i = 0; i < count; i++) {
2426 		mop = &mops->mo_list[i];
2427 
2428 		if (mop->mo_flags & MO_EMPTY)
2429 			continue;
2430 		if (strcmp(opt, mop->mo_name))
2431 			continue;
2432 		if ((mop->mo_flags & MO_SET) == 0)
2433 			return (0);
2434 		if (argp != NULL && (mop->mo_flags & MO_HASVALUE) != 0)
2435 			*argp = mop->mo_arg;
2436 		return (1);
2437 	}
2438 	return (0);
2439 }
2440 
2441 
2442 int
2443 vfs_optionisset(const struct vfs *vfsp, const char *opt, char **argp)
2444 {
2445 	int ret;
2446 
2447 	vfs_list_read_lock();
2448 	ret = vfs_optionisset_nolock(&vfsp->vfs_mntopts, opt, argp);
2449 	vfs_list_unlock();
2450 	return (ret);
2451 }
2452 
2453 
2454 /*
2455  * Construct a comma separated string of the options set in the given
2456  * mount table, return the string in the given buffer.  Return non-zero if
2457  * the buffer would overflow.
2458  *
2459  * This function is *not* for general use by filesystems.
2460  *
2461  * Note: caller is responsible for locking the vfs list, if needed,
2462  *       to protect mp.
2463  */
2464 int
2465 vfs_buildoptionstr(const mntopts_t *mp, char *buf, int len)
2466 {
2467 	char *cp;
2468 	uint_t i;
2469 
2470 	buf[0] = '\0';
2471 	cp = buf;
2472 	for (i = 0; i < mp->mo_count; i++) {
2473 		struct mntopt *mop;
2474 
2475 		mop = &mp->mo_list[i];
2476 		if (mop->mo_flags & MO_SET) {
2477 			int optlen, comma = 0;
2478 
2479 			if (buf[0] != '\0')
2480 				comma = 1;
2481 			optlen = strlen(mop->mo_name);
2482 			if (strlen(buf) + comma + optlen + 1 > len)
2483 				goto err;
2484 			if (comma)
2485 				*cp++ = ',';
2486 			(void) strcpy(cp, mop->mo_name);
2487 			cp += optlen;
2488 			/*
2489 			 * Append option value if there is one
2490 			 */
2491 			if (mop->mo_arg != NULL) {
2492 				int arglen;
2493 
2494 				arglen = strlen(mop->mo_arg);
2495 				if (strlen(buf) + arglen + 2 > len)
2496 					goto err;
2497 				*cp++ = '=';
2498 				(void) strcpy(cp, mop->mo_arg);
2499 				cp += arglen;
2500 			}
2501 		}
2502 	}
2503 	return (0);
2504 err:
2505 	return (EOVERFLOW);
2506 }
2507 
2508 static void
2509 vfs_freecancelopt(char **moc)
2510 {
2511 	if (moc != NULL) {
2512 		int ccnt = 0;
2513 		char **cp;
2514 
2515 		for (cp = moc; *cp != NULL; cp++) {
2516 			kmem_free(*cp, strlen(*cp) + 1);
2517 			ccnt++;
2518 		}
2519 		kmem_free(moc, (ccnt + 1) * sizeof (char *));
2520 	}
2521 }
2522 
2523 static void
2524 vfs_freeopt(mntopt_t *mop)
2525 {
2526 	if (mop->mo_name != NULL)
2527 		kmem_free(mop->mo_name, strlen(mop->mo_name) + 1);
2528 
2529 	vfs_freecancelopt(mop->mo_cancel);
2530 
2531 	if (mop->mo_arg != NULL)
2532 		kmem_free(mop->mo_arg, strlen(mop->mo_arg) + 1);
2533 }
2534 
2535 /*
2536  * Free a mount options table
2537  *
2538  * This function is *not* for general use by filesystems.
2539  *
2540  * Note: caller is responsible for locking the vfs list, if needed,
2541  *       to protect mp.
2542  */
2543 void
2544 vfs_freeopttbl(mntopts_t *mp)
2545 {
2546 	uint_t i, count;
2547 
2548 	count = mp->mo_count;
2549 	for (i = 0; i < count; i++) {
2550 		vfs_freeopt(&mp->mo_list[i]);
2551 	}
2552 	if (count) {
2553 		kmem_free(mp->mo_list, sizeof (mntopt_t) * count);
2554 		mp->mo_count = 0;
2555 		mp->mo_list = NULL;
2556 	}
2557 }
2558 
2559 /*
2560  * Free any mnttab information recorded in the vfs struct.
2561  * The vfs must not be on the vfs list.
2562  */
2563 static void
2564 vfs_freemnttab(struct vfs *vfsp)
2565 {
2566 	ASSERT(!VFS_ON_LIST(vfsp));
2567 
2568 	/*
2569 	 * Free device and mount point information
2570 	 */
2571 	if (vfsp->vfs_mntpt != NULL) {
2572 		refstr_rele(vfsp->vfs_mntpt);
2573 		vfsp->vfs_mntpt = NULL;
2574 	}
2575 	if (vfsp->vfs_resource != NULL) {
2576 		refstr_rele(vfsp->vfs_resource);
2577 		vfsp->vfs_resource = NULL;
2578 	}
2579 	/*
2580 	 * Now free mount options information
2581 	 */
2582 	vfs_freeopttbl(&vfsp->vfs_mntopts);
2583 }
2584 
2585 /*
2586  * Return the last mnttab modification time
2587  */
2588 void
2589 vfs_mnttab_modtime(timespec_t *ts)
2590 {
2591 	ASSERT(RW_LOCK_HELD(&vfslist));
2592 	*ts = vfs_mnttab_mtime;
2593 }
2594 
2595 /*
2596  * See if mnttab is changed
2597  */
2598 void
2599 vfs_mnttab_poll(timespec_t *old, struct pollhead **phpp)
2600 {
2601 	int changed;
2602 
2603 	*phpp = (struct pollhead *)NULL;
2604 
2605 	/*
2606 	 * Note: don't grab vfs list lock before accessing vfs_mnttab_mtime.
2607 	 * Can lead to deadlock against vfs_mnttab_modtimeupd(). It is safe
2608 	 * to not grab the vfs list lock because tv_sec is monotonically
2609 	 * increasing.
2610 	 */
2611 
2612 	changed = (old->tv_nsec != vfs_mnttab_mtime.tv_nsec) ||
2613 	    (old->tv_sec != vfs_mnttab_mtime.tv_sec);
2614 	if (!changed) {
2615 		*phpp = &vfs_pollhd;
2616 	}
2617 }
2618 
2619 /*
2620  * Update the mnttab modification time and wake up any waiters for
2621  * mnttab changes
2622  */
2623 void
2624 vfs_mnttab_modtimeupd()
2625 {
2626 	hrtime_t oldhrt, newhrt;
2627 
2628 	ASSERT(RW_WRITE_HELD(&vfslist));
2629 	oldhrt = ts2hrt(&vfs_mnttab_mtime);
2630 	gethrestime(&vfs_mnttab_mtime);
2631 	newhrt = ts2hrt(&vfs_mnttab_mtime);
2632 	if (oldhrt == (hrtime_t)0)
2633 		vfs_mnttab_ctime = vfs_mnttab_mtime;
2634 	/*
2635 	 * Attempt to provide unique mtime (like uniqtime but not).
2636 	 */
2637 	if (newhrt == oldhrt) {
2638 		newhrt++;
2639 		hrt2ts(newhrt, &vfs_mnttab_mtime);
2640 	}
2641 	pollwakeup(&vfs_pollhd, (short)POLLRDBAND);
2642 }
2643 
2644 int
2645 dounmount(struct vfs *vfsp, int flag, cred_t *cr)
2646 {
2647 	vnode_t *coveredvp;
2648 	int error;
2649 	extern void teardown_vopstats(vfs_t *);
2650 
2651 	/*
2652 	 * Get covered vnode. This will be NULL if the vfs is not linked
2653 	 * into the file system name space (i.e., domount() with MNT_NOSPICE).
2654 	 */
2655 	coveredvp = vfsp->vfs_vnodecovered;
2656 	ASSERT(coveredvp == NULL || vn_vfswlock_held(coveredvp));
2657 
2658 	/*
2659 	 * Purge all dnlc entries for this vfs.
2660 	 */
2661 	(void) dnlc_purge_vfsp(vfsp, 0);
2662 
2663 	/* For forcible umount, skip VFS_SYNC() since it may hang */
2664 	if ((flag & MS_FORCE) == 0)
2665 		(void) VFS_SYNC(vfsp, 0, cr);
2666 
2667 	/*
2668 	 * Lock the vfs to maintain fs status quo during unmount.  This
2669 	 * has to be done after the sync because ufs_update tries to acquire
2670 	 * the vfs_reflock.
2671 	 */
2672 	vfs_lock_wait(vfsp);
2673 
2674 	if (error = VFS_UNMOUNT(vfsp, flag, cr)) {
2675 		vfs_unlock(vfsp);
2676 		if (coveredvp != NULL)
2677 			vn_vfsunlock(coveredvp);
2678 	} else if (coveredvp != NULL) {
2679 		teardown_vopstats(vfsp);
2680 		/*
2681 		 * vfs_remove() will do a VN_RELE(vfsp->vfs_vnodecovered)
2682 		 * when it frees vfsp so we do a VN_HOLD() so we can
2683 		 * continue to use coveredvp afterwards.
2684 		 */
2685 		VN_HOLD(coveredvp);
2686 		vfs_remove(vfsp);
2687 		vn_vfsunlock(coveredvp);
2688 		VN_RELE(coveredvp);
2689 	} else {
2690 		teardown_vopstats(vfsp);
2691 		/*
2692 		 * Release the reference to vfs that is not linked
2693 		 * into the name space.
2694 		 */
2695 		vfs_unlock(vfsp);
2696 		VFS_RELE(vfsp);
2697 	}
2698 	return (error);
2699 }
2700 
2701 
2702 /*
2703  * Vfs_unmountall() is called by uadmin() to unmount all
2704  * mounted file systems (except the root file system) during shutdown.
2705  * It follows the existing locking protocol when traversing the vfs list
2706  * to sync and unmount vfses. Even though there should be no
2707  * other thread running while the system is shutting down, it is prudent
2708  * to still follow the locking protocol.
2709  */
2710 void
2711 vfs_unmountall(void)
2712 {
2713 	struct vfs *vfsp;
2714 	struct vfs *prev_vfsp = NULL;
2715 	int error;
2716 
2717 	/*
2718 	 * Toss all dnlc entries now so that the per-vfs sync
2719 	 * and unmount operations don't have to slog through
2720 	 * a bunch of uninteresting vnodes over and over again.
2721 	 */
2722 	dnlc_purge();
2723 
2724 	vfs_list_lock();
2725 	for (vfsp = rootvfs->vfs_prev; vfsp != rootvfs; vfsp = prev_vfsp) {
2726 		prev_vfsp = vfsp->vfs_prev;
2727 
2728 		if (vfs_lock(vfsp) != 0)
2729 			continue;
2730 		error = vn_vfswlock(vfsp->vfs_vnodecovered);
2731 		vfs_unlock(vfsp);
2732 		if (error)
2733 			continue;
2734 
2735 		vfs_list_unlock();
2736 
2737 		(void) VFS_SYNC(vfsp, SYNC_CLOSE, CRED());
2738 		(void) dounmount(vfsp, 0, CRED());
2739 
2740 		/*
2741 		 * Since we dropped the vfslist lock above we must
2742 		 * verify that next_vfsp still exists, else start over.
2743 		 */
2744 		vfs_list_lock();
2745 		for (vfsp = rootvfs->vfs_prev;
2746 			vfsp != rootvfs; vfsp = vfsp->vfs_prev)
2747 			if (vfsp == prev_vfsp)
2748 				break;
2749 		if (vfsp == rootvfs && prev_vfsp != rootvfs)
2750 			prev_vfsp = rootvfs->vfs_prev;
2751 	}
2752 	vfs_list_unlock();
2753 }
2754 
2755 /*
2756  * Called to add an entry to the end of the vfs mount in progress list
2757  */
2758 void
2759 vfs_addmip(dev_t dev, struct vfs *vfsp)
2760 {
2761 	struct ipmnt *mipp;
2762 
2763 	mipp = (struct ipmnt *)kmem_alloc(sizeof (struct ipmnt), KM_SLEEP);
2764 	mipp->mip_next = NULL;
2765 	mipp->mip_dev = dev;
2766 	mipp->mip_vfsp = vfsp;
2767 	mutex_enter(&vfs_miplist_mutex);
2768 	if (vfs_miplist_end != NULL)
2769 		vfs_miplist_end->mip_next = mipp;
2770 	else
2771 		vfs_miplist = mipp;
2772 	vfs_miplist_end = mipp;
2773 	mutex_exit(&vfs_miplist_mutex);
2774 }
2775 
2776 /*
2777  * Called to remove an entry from the mount in progress list
2778  * Either because the mount completed or it failed.
2779  */
2780 void
2781 vfs_delmip(struct vfs *vfsp)
2782 {
2783 	struct ipmnt *mipp, *mipprev;
2784 
2785 	mutex_enter(&vfs_miplist_mutex);
2786 	mipprev = NULL;
2787 	for (mipp = vfs_miplist;
2788 		mipp && mipp->mip_vfsp != vfsp; mipp = mipp->mip_next) {
2789 		mipprev = mipp;
2790 	}
2791 	if (mipp == NULL)
2792 		return; /* shouldn't happen */
2793 	if (mipp == vfs_miplist_end)
2794 		vfs_miplist_end = mipprev;
2795 	if (mipprev == NULL)
2796 		vfs_miplist = mipp->mip_next;
2797 	else
2798 		mipprev->mip_next = mipp->mip_next;
2799 	mutex_exit(&vfs_miplist_mutex);
2800 	kmem_free(mipp, sizeof (struct ipmnt));
2801 }
2802 
2803 /*
2804  * vfs_add is called by a specific filesystem's mount routine to add
2805  * the new vfs into the vfs list/hash and to cover the mounted-on vnode.
2806  * The vfs should already have been locked by the caller.
2807  *
2808  * coveredvp is NULL if this is the root.
2809  */
2810 void
2811 vfs_add(vnode_t *coveredvp, struct vfs *vfsp, int mflag)
2812 {
2813 	int newflag;
2814 
2815 	ASSERT(vfs_lock_held(vfsp));
2816 	VFS_HOLD(vfsp);
2817 	newflag = vfsp->vfs_flag;
2818 	if (mflag & MS_RDONLY)
2819 		newflag |= VFS_RDONLY;
2820 	else
2821 		newflag &= ~VFS_RDONLY;
2822 	if (mflag & MS_NOSUID)
2823 		newflag |= (VFS_NOSETUID|VFS_NODEVICES);
2824 	else
2825 		newflag &= ~(VFS_NOSETUID|VFS_NODEVICES);
2826 	if (mflag & MS_NOMNTTAB)
2827 		newflag |= VFS_NOMNTTAB;
2828 	else
2829 		newflag &= ~VFS_NOMNTTAB;
2830 
2831 	if (coveredvp != NULL) {
2832 		ASSERT(vn_vfswlock_held(coveredvp));
2833 		coveredvp->v_vfsmountedhere = vfsp;
2834 		VN_HOLD(coveredvp);
2835 	}
2836 	vfsp->vfs_vnodecovered = coveredvp;
2837 	vfsp->vfs_flag = newflag;
2838 
2839 	vfs_list_add(vfsp);
2840 }
2841 
2842 /*
2843  * Remove a vfs from the vfs list, null out the pointer from the
2844  * covered vnode to the vfs (v_vfsmountedhere), and null out the pointer
2845  * from the vfs to the covered vnode (vfs_vnodecovered). Release the
2846  * reference to the vfs and to the covered vnode.
2847  *
2848  * Called from dounmount after it's confirmed with the file system
2849  * that the unmount is legal.
2850  */
2851 void
2852 vfs_remove(struct vfs *vfsp)
2853 {
2854 	vnode_t *vp;
2855 
2856 	ASSERT(vfs_lock_held(vfsp));
2857 
2858 	/*
2859 	 * Can't unmount root.  Should never happen because fs will
2860 	 * be busy.
2861 	 */
2862 	if (vfsp == rootvfs)
2863 		cmn_err(CE_PANIC, "vfs_remove: unmounting root");
2864 
2865 	vfs_list_remove(vfsp);
2866 
2867 	/*
2868 	 * Unhook from the file system name space.
2869 	 */
2870 	vp = vfsp->vfs_vnodecovered;
2871 	ASSERT(vn_vfswlock_held(vp));
2872 	vp->v_vfsmountedhere = NULL;
2873 	vfsp->vfs_vnodecovered = NULL;
2874 	VN_RELE(vp);
2875 
2876 	/*
2877 	 * Release lock and wakeup anybody waiting.
2878 	 */
2879 	vfs_unlock(vfsp);
2880 	VFS_RELE(vfsp);
2881 }
2882 
2883 /*
2884  * Lock a filesystem to prevent access to it while mounting,
2885  * unmounting and syncing.  Return EBUSY immediately if lock
2886  * can't be acquired.
2887  */
2888 int
2889 vfs_lock(vfs_t *vfsp)
2890 {
2891 	vn_vfslocks_entry_t *vpvfsentry;
2892 
2893 	vpvfsentry = vn_vfslocks_getlock(vfsp);
2894 	if (rwst_tryenter(&vpvfsentry->ve_lock, RW_WRITER))
2895 		return (0);
2896 
2897 	vn_vfslocks_rele(vpvfsentry);
2898 	return (EBUSY);
2899 }
2900 
2901 int
2902 vfs_rlock(vfs_t *vfsp)
2903 {
2904 	vn_vfslocks_entry_t *vpvfsentry;
2905 
2906 	vpvfsentry = vn_vfslocks_getlock(vfsp);
2907 
2908 	if (rwst_tryenter(&vpvfsentry->ve_lock, RW_READER))
2909 		return (0);
2910 
2911 	vn_vfslocks_rele(vpvfsentry);
2912 	return (EBUSY);
2913 }
2914 
2915 void
2916 vfs_lock_wait(vfs_t *vfsp)
2917 {
2918 	vn_vfslocks_entry_t *vpvfsentry;
2919 
2920 	vpvfsentry = vn_vfslocks_getlock(vfsp);
2921 	rwst_enter(&vpvfsentry->ve_lock, RW_WRITER);
2922 }
2923 
2924 void
2925 vfs_rlock_wait(vfs_t *vfsp)
2926 {
2927 	vn_vfslocks_entry_t *vpvfsentry;
2928 
2929 	vpvfsentry = vn_vfslocks_getlock(vfsp);
2930 	rwst_enter(&vpvfsentry->ve_lock, RW_READER);
2931 }
2932 
2933 /*
2934  * Unlock a locked filesystem.
2935  */
2936 void
2937 vfs_unlock(vfs_t *vfsp)
2938 {
2939 	vn_vfslocks_entry_t *vpvfsentry;
2940 
2941 	/*
2942 	 * vfs_unlock will mimic sema_v behaviour to fix 4748018.
2943 	 * And these changes should remain for the patch changes as it is.
2944 	 */
2945 	if (panicstr)
2946 		return;
2947 
2948 	/*
2949 	 * ve_refcount needs to be dropped twice here.
2950 	 * 1. To release refernce after a call to vfs_locks_getlock()
2951 	 * 2. To release the reference from the locking routines like
2952 	 *    vfs_rlock_wait/vfs_wlock_wait/vfs_wlock etc,.
2953 	 */
2954 
2955 	vpvfsentry = vn_vfslocks_getlock(vfsp);
2956 	vn_vfslocks_rele(vpvfsentry);
2957 
2958 	rwst_exit(&vpvfsentry->ve_lock);
2959 	vn_vfslocks_rele(vpvfsentry);
2960 }
2961 
2962 /*
2963  * Utility routine that allows a filesystem to construct its
2964  * fsid in "the usual way" - by munging some underlying dev_t and
2965  * the filesystem type number into the 64-bit fsid.  Note that
2966  * this implicitly relies on dev_t persistence to make filesystem
2967  * id's persistent.
2968  *
2969  * There's nothing to prevent an individual fs from constructing its
2970  * fsid in a different way, and indeed they should.
2971  *
2972  * Since we want fsids to be 32-bit quantities (so that they can be
2973  * exported identically by either 32-bit or 64-bit APIs, as well as
2974  * the fact that fsid's are "known" to NFS), we compress the device
2975  * number given down to 32-bits, and panic if that isn't possible.
2976  */
2977 void
2978 vfs_make_fsid(fsid_t *fsi, dev_t dev, int val)
2979 {
2980 	if (!cmpldev((dev32_t *)&fsi->val[0], dev))
2981 		panic("device number too big for fsid!");
2982 	fsi->val[1] = val;
2983 }
2984 
2985 int
2986 vfs_lock_held(vfs_t *vfsp)
2987 {
2988 	int held;
2989 	vn_vfslocks_entry_t *vpvfsentry;
2990 
2991 	/*
2992 	 * vfs_lock_held will mimic sema_held behaviour
2993 	 * if panicstr is set. And these changes should remain
2994 	 * for the patch changes as it is.
2995 	 */
2996 	if (panicstr)
2997 		return (1);
2998 
2999 	vpvfsentry = vn_vfslocks_getlock(vfsp);
3000 	held = rwst_lock_held(&vpvfsentry->ve_lock, RW_WRITER);
3001 
3002 	vn_vfslocks_rele(vpvfsentry);
3003 	return (held);
3004 }
3005 
3006 struct _kthread *
3007 vfs_lock_owner(vfs_t *vfsp)
3008 {
3009 	struct _kthread *owner;
3010 	vn_vfslocks_entry_t *vpvfsentry;
3011 
3012 	/*
3013 	 * vfs_wlock_held will mimic sema_held behaviour
3014 	 * if panicstr is set. And these changes should remain
3015 	 * for the patch changes as it is.
3016 	 */
3017 	if (panicstr)
3018 		return (NULL);
3019 
3020 	vpvfsentry = vn_vfslocks_getlock(vfsp);
3021 	owner = rwst_owner(&vpvfsentry->ve_lock);
3022 
3023 	vn_vfslocks_rele(vpvfsentry);
3024 	return (owner);
3025 }
3026 
3027 /*
3028  * vfs list locking.
3029  *
3030  * Rather than manipulate the vfslist lock directly, we abstract into lock
3031  * and unlock routines to allow the locking implementation to be changed for
3032  * clustering.
3033  *
3034  * Whenever the vfs list is modified through its hash links, the overall list
3035  * lock must be obtained before locking the relevant hash bucket.  But to see
3036  * whether a given vfs is on the list, it suffices to obtain the lock for the
3037  * hash bucket without getting the overall list lock.  (See getvfs() below.)
3038  */
3039 
3040 void
3041 vfs_list_lock()
3042 {
3043 	rw_enter(&vfslist, RW_WRITER);
3044 }
3045 
3046 void
3047 vfs_list_read_lock()
3048 {
3049 	rw_enter(&vfslist, RW_READER);
3050 }
3051 
3052 void
3053 vfs_list_unlock()
3054 {
3055 	rw_exit(&vfslist);
3056 }
3057 
3058 /*
3059  * Low level worker routines for adding entries to and removing entries from
3060  * the vfs list.
3061  */
3062 
3063 static void
3064 vfs_hash_add(struct vfs *vfsp, int insert_at_head)
3065 {
3066 	int vhno;
3067 	struct vfs **hp;
3068 	dev_t dev;
3069 
3070 	ASSERT(RW_WRITE_HELD(&vfslist));
3071 
3072 	dev = expldev(vfsp->vfs_fsid.val[0]);
3073 	vhno = VFSHASH(getmajor(dev), getminor(dev));
3074 
3075 	mutex_enter(&rvfs_list[vhno].rvfs_lock);
3076 
3077 	/*
3078 	 * Link into the hash table, inserting it at the end, so that LOFS
3079 	 * with the same fsid as UFS (or other) file systems will not hide the
3080 	 * UFS.
3081 	 */
3082 	if (insert_at_head) {
3083 		vfsp->vfs_hash = rvfs_list[vhno].rvfs_head;
3084 		rvfs_list[vhno].rvfs_head = vfsp;
3085 	} else {
3086 		for (hp = &rvfs_list[vhno].rvfs_head; *hp != NULL;
3087 		    hp = &(*hp)->vfs_hash)
3088 			continue;
3089 		/*
3090 		 * hp now contains the address of the pointer to update
3091 		 * to effect the insertion.
3092 		 */
3093 		vfsp->vfs_hash = NULL;
3094 		*hp = vfsp;
3095 	}
3096 
3097 	rvfs_list[vhno].rvfs_len++;
3098 	mutex_exit(&rvfs_list[vhno].rvfs_lock);
3099 }
3100 
3101 
3102 static void
3103 vfs_hash_remove(struct vfs *vfsp)
3104 {
3105 	int vhno;
3106 	struct vfs *tvfsp;
3107 	dev_t dev;
3108 
3109 	ASSERT(RW_WRITE_HELD(&vfslist));
3110 
3111 	dev = expldev(vfsp->vfs_fsid.val[0]);
3112 	vhno = VFSHASH(getmajor(dev), getminor(dev));
3113 
3114 	mutex_enter(&rvfs_list[vhno].rvfs_lock);
3115 
3116 	/*
3117 	 * Remove from hash.
3118 	 */
3119 	if (rvfs_list[vhno].rvfs_head == vfsp) {
3120 		rvfs_list[vhno].rvfs_head = vfsp->vfs_hash;
3121 		rvfs_list[vhno].rvfs_len--;
3122 		goto foundit;
3123 	}
3124 	for (tvfsp = rvfs_list[vhno].rvfs_head; tvfsp != NULL;
3125 	    tvfsp = tvfsp->vfs_hash) {
3126 		if (tvfsp->vfs_hash == vfsp) {
3127 			tvfsp->vfs_hash = vfsp->vfs_hash;
3128 			rvfs_list[vhno].rvfs_len--;
3129 			goto foundit;
3130 		}
3131 	}
3132 	cmn_err(CE_WARN, "vfs_list_remove: vfs not found in hash");
3133 
3134 foundit:
3135 
3136 	mutex_exit(&rvfs_list[vhno].rvfs_lock);
3137 }
3138 
3139 
3140 void
3141 vfs_list_add(struct vfs *vfsp)
3142 {
3143 	zone_t *zone;
3144 
3145 	/*
3146 	 * The zone that owns the mount is the one that performed the mount.
3147 	 * Note that this isn't necessarily the same as the zone mounted into.
3148 	 * The corresponding zone_rele() will be done when the vfs_t is
3149 	 * being free'd.
3150 	 */
3151 	vfsp->vfs_zone = curproc->p_zone;
3152 	zone_hold(vfsp->vfs_zone);
3153 
3154 	/*
3155 	 * Find the zone mounted into, and put this mount on its vfs list.
3156 	 */
3157 	zone = zone_find_by_path(refstr_value(vfsp->vfs_mntpt));
3158 	ASSERT(zone != NULL);
3159 	/*
3160 	 * Special casing for the root vfs.  This structure is allocated
3161 	 * statically and hooked onto rootvfs at link time.  During the
3162 	 * vfs_mountroot call at system startup time, the root file system's
3163 	 * VFS_MOUNTROOT routine will call vfs_add with this root vfs struct
3164 	 * as argument.  The code below must detect and handle this special
3165 	 * case.  The only apparent justification for this special casing is
3166 	 * to ensure that the root file system appears at the head of the
3167 	 * list.
3168 	 *
3169 	 * XXX:	I'm assuming that it's ok to do normal list locking when
3170 	 *	adding the entry for the root file system (this used to be
3171 	 *	done with no locks held).
3172 	 */
3173 	vfs_list_lock();
3174 	/*
3175 	 * Link into the vfs list proper.
3176 	 */
3177 	if (vfsp == &root) {
3178 		/*
3179 		 * Assert: This vfs is already on the list as its first entry.
3180 		 * Thus, there's nothing to do.
3181 		 */
3182 		ASSERT(rootvfs == vfsp);
3183 		/*
3184 		 * Add it to the head of the global zone's vfslist.
3185 		 */
3186 		ASSERT(zone == global_zone);
3187 		ASSERT(zone->zone_vfslist == NULL);
3188 		zone->zone_vfslist = vfsp;
3189 	} else {
3190 		/*
3191 		 * Link to end of list using vfs_prev (as rootvfs is now a
3192 		 * doubly linked circular list) so list is in mount order for
3193 		 * mnttab use.
3194 		 */
3195 		rootvfs->vfs_prev->vfs_next = vfsp;
3196 		vfsp->vfs_prev = rootvfs->vfs_prev;
3197 		rootvfs->vfs_prev = vfsp;
3198 		vfsp->vfs_next = rootvfs;
3199 
3200 		/*
3201 		 * Do it again for the zone-private list (which may be NULL).
3202 		 */
3203 		if (zone->zone_vfslist == NULL) {
3204 			ASSERT(zone != global_zone);
3205 			zone->zone_vfslist = vfsp;
3206 		} else {
3207 			zone->zone_vfslist->vfs_zone_prev->vfs_zone_next = vfsp;
3208 			vfsp->vfs_zone_prev = zone->zone_vfslist->vfs_zone_prev;
3209 			zone->zone_vfslist->vfs_zone_prev = vfsp;
3210 			vfsp->vfs_zone_next = zone->zone_vfslist;
3211 		}
3212 	}
3213 
3214 	/*
3215 	 * Link into the hash table, inserting it at the end, so that LOFS
3216 	 * with the same fsid as UFS (or other) file systems will not hide
3217 	 * the UFS.
3218 	 */
3219 	vfs_hash_add(vfsp, 0);
3220 
3221 	/*
3222 	 * update the mnttab modification time
3223 	 */
3224 	vfs_mnttab_modtimeupd();
3225 	vfs_list_unlock();
3226 	zone_rele(zone);
3227 }
3228 
3229 void
3230 vfs_list_remove(struct vfs *vfsp)
3231 {
3232 	zone_t *zone;
3233 
3234 	zone = zone_find_by_path(refstr_value(vfsp->vfs_mntpt));
3235 	ASSERT(zone != NULL);
3236 	/*
3237 	 * Callers are responsible for preventing attempts to unmount the
3238 	 * root.
3239 	 */
3240 	ASSERT(vfsp != rootvfs);
3241 
3242 	vfs_list_lock();
3243 
3244 	/*
3245 	 * Remove from hash.
3246 	 */
3247 	vfs_hash_remove(vfsp);
3248 
3249 	/*
3250 	 * Remove from vfs list.
3251 	 */
3252 	vfsp->vfs_prev->vfs_next = vfsp->vfs_next;
3253 	vfsp->vfs_next->vfs_prev = vfsp->vfs_prev;
3254 	vfsp->vfs_next = vfsp->vfs_prev = NULL;
3255 
3256 	/*
3257 	 * Remove from zone-specific vfs list.
3258 	 */
3259 	if (zone->zone_vfslist == vfsp)
3260 		zone->zone_vfslist = vfsp->vfs_zone_next;
3261 
3262 	if (vfsp->vfs_zone_next == vfsp) {
3263 		ASSERT(vfsp->vfs_zone_prev == vfsp);
3264 		ASSERT(zone->zone_vfslist == vfsp);
3265 		zone->zone_vfslist = NULL;
3266 	}
3267 
3268 	vfsp->vfs_zone_prev->vfs_zone_next = vfsp->vfs_zone_next;
3269 	vfsp->vfs_zone_next->vfs_zone_prev = vfsp->vfs_zone_prev;
3270 	vfsp->vfs_zone_next = vfsp->vfs_zone_prev = NULL;
3271 
3272 	/*
3273 	 * update the mnttab modification time
3274 	 */
3275 	vfs_mnttab_modtimeupd();
3276 	vfs_list_unlock();
3277 	zone_rele(zone);
3278 }
3279 
3280 struct vfs *
3281 getvfs(fsid_t *fsid)
3282 {
3283 	struct vfs *vfsp;
3284 	int val0 = fsid->val[0];
3285 	int val1 = fsid->val[1];
3286 	dev_t dev = expldev(val0);
3287 	int vhno = VFSHASH(getmajor(dev), getminor(dev));
3288 	kmutex_t *hmp = &rvfs_list[vhno].rvfs_lock;
3289 
3290 	mutex_enter(hmp);
3291 	for (vfsp = rvfs_list[vhno].rvfs_head; vfsp; vfsp = vfsp->vfs_hash) {
3292 		if (vfsp->vfs_fsid.val[0] == val0 &&
3293 		    vfsp->vfs_fsid.val[1] == val1) {
3294 			VFS_HOLD(vfsp);
3295 			mutex_exit(hmp);
3296 			return (vfsp);
3297 		}
3298 	}
3299 	mutex_exit(hmp);
3300 	return (NULL);
3301 }
3302 
3303 /*
3304  * Search the vfs mount in progress list for a specified device/vfs entry.
3305  * Returns 0 if the first entry in the list that the device matches has the
3306  * given vfs pointer as well.  If the device matches but a different vfs
3307  * pointer is encountered in the list before the given vfs pointer then
3308  * a 1 is returned.
3309  */
3310 
3311 int
3312 vfs_devmounting(dev_t dev, struct vfs *vfsp)
3313 {
3314 	int retval = 0;
3315 	struct ipmnt *mipp;
3316 
3317 	mutex_enter(&vfs_miplist_mutex);
3318 	for (mipp = vfs_miplist; mipp != NULL; mipp = mipp->mip_next) {
3319 		if (mipp->mip_dev == dev) {
3320 			if (mipp->mip_vfsp != vfsp)
3321 				retval = 1;
3322 			break;
3323 		}
3324 	}
3325 	mutex_exit(&vfs_miplist_mutex);
3326 	return (retval);
3327 }
3328 
3329 /*
3330  * Search the vfs list for a specified device.  Returns 1, if entry is found
3331  * or 0 if no suitable entry is found.
3332  */
3333 
3334 int
3335 vfs_devismounted(dev_t dev)
3336 {
3337 	struct vfs *vfsp;
3338 	int found;
3339 
3340 	vfs_list_read_lock();
3341 	vfsp = rootvfs;
3342 	found = 0;
3343 	do {
3344 		if (vfsp->vfs_dev == dev) {
3345 			found = 1;
3346 			break;
3347 		}
3348 		vfsp = vfsp->vfs_next;
3349 	} while (vfsp != rootvfs);
3350 
3351 	vfs_list_unlock();
3352 	return (found);
3353 }
3354 
3355 /*
3356  * Search the vfs list for a specified device.  Returns a pointer to it
3357  * or NULL if no suitable entry is found. The caller of this routine
3358  * is responsible for releasing the returned vfs pointer.
3359  */
3360 struct vfs *
3361 vfs_dev2vfsp(dev_t dev)
3362 {
3363 	struct vfs *vfsp;
3364 	int found;
3365 
3366 	vfs_list_read_lock();
3367 	vfsp = rootvfs;
3368 	found = 0;
3369 	do {
3370 		/*
3371 		 * The following could be made more efficient by making
3372 		 * the entire loop use vfs_zone_next if the call is from
3373 		 * a zone.  The only callers, however, ustat(2) and
3374 		 * umount2(2), don't seem to justify the added
3375 		 * complexity at present.
3376 		 */
3377 		if (vfsp->vfs_dev == dev &&
3378 		    ZONE_PATH_VISIBLE(refstr_value(vfsp->vfs_mntpt),
3379 		    curproc->p_zone)) {
3380 			VFS_HOLD(vfsp);
3381 			found = 1;
3382 			break;
3383 		}
3384 		vfsp = vfsp->vfs_next;
3385 	} while (vfsp != rootvfs);
3386 	vfs_list_unlock();
3387 	return (found ? vfsp: NULL);
3388 }
3389 
3390 /*
3391  * Search the vfs list for a specified mntpoint.  Returns a pointer to it
3392  * or NULL if no suitable entry is found. The caller of this routine
3393  * is responsible for releasing the returned vfs pointer.
3394  *
3395  * Note that if multiple mntpoints match, the last one matching is
3396  * returned in an attempt to return the "top" mount when overlay
3397  * mounts are covering the same mount point.  This is accomplished by starting
3398  * at the end of the list and working our way backwards, stopping at the first
3399  * matching mount.
3400  */
3401 struct vfs *
3402 vfs_mntpoint2vfsp(const char *mp)
3403 {
3404 	struct vfs *vfsp;
3405 	struct vfs *retvfsp = NULL;
3406 	zone_t *zone = curproc->p_zone;
3407 	struct vfs *list;
3408 
3409 	vfs_list_read_lock();
3410 	if (getzoneid() == GLOBAL_ZONEID) {
3411 		/*
3412 		 * The global zone may see filesystems in any zone.
3413 		 */
3414 		vfsp = rootvfs->vfs_prev;
3415 		do {
3416 			if (strcmp(refstr_value(vfsp->vfs_mntpt), mp) == 0) {
3417 				retvfsp = vfsp;
3418 				break;
3419 			}
3420 			vfsp = vfsp->vfs_prev;
3421 		} while (vfsp != rootvfs->vfs_prev);
3422 	} else if ((list = zone->zone_vfslist) != NULL) {
3423 		const char *mntpt;
3424 
3425 		vfsp = list->vfs_zone_prev;
3426 		do {
3427 			mntpt = refstr_value(vfsp->vfs_mntpt);
3428 			mntpt = ZONE_PATH_TRANSLATE(mntpt, zone);
3429 			if (strcmp(mntpt, mp) == 0) {
3430 				retvfsp = vfsp;
3431 				break;
3432 			}
3433 			vfsp = vfsp->vfs_zone_prev;
3434 		} while (vfsp != list->vfs_zone_prev);
3435 	}
3436 	if (retvfsp)
3437 		VFS_HOLD(retvfsp);
3438 	vfs_list_unlock();
3439 	return (retvfsp);
3440 }
3441 
3442 /*
3443  * Search the vfs list for a specified vfsops.
3444  * if vfs entry is found then return 1, else 0.
3445  */
3446 int
3447 vfs_opsinuse(vfsops_t *ops)
3448 {
3449 	struct vfs *vfsp;
3450 	int found;
3451 
3452 	vfs_list_read_lock();
3453 	vfsp = rootvfs;
3454 	found = 0;
3455 	do {
3456 		if (vfs_getops(vfsp) == ops) {
3457 			found = 1;
3458 			break;
3459 		}
3460 		vfsp = vfsp->vfs_next;
3461 	} while (vfsp != rootvfs);
3462 	vfs_list_unlock();
3463 	return (found);
3464 }
3465 
3466 /*
3467  * Allocate an entry in vfssw for a file system type
3468  */
3469 struct vfssw *
3470 allocate_vfssw(char *type)
3471 {
3472 	struct vfssw *vswp;
3473 
3474 	if (type[0] == '\0' || strlen(type) + 1 > _ST_FSTYPSZ) {
3475 		/*
3476 		 * The vfssw table uses the empty string to identify an
3477 		 * available entry; we cannot add any type which has
3478 		 * a leading NUL. The string length is limited to
3479 		 * the size of the st_fstype array in struct stat.
3480 		 */
3481 		return (NULL);
3482 	}
3483 
3484 	ASSERT(VFSSW_WRITE_LOCKED());
3485 	for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++)
3486 		if (!ALLOCATED_VFSSW(vswp)) {
3487 			vswp->vsw_name = kmem_alloc(strlen(type) + 1, KM_SLEEP);
3488 			(void) strcpy(vswp->vsw_name, type);
3489 			ASSERT(vswp->vsw_count == 0);
3490 			vswp->vsw_count = 1;
3491 			mutex_init(&vswp->vsw_lock, NULL, MUTEX_DEFAULT, NULL);
3492 			return (vswp);
3493 		}
3494 	return (NULL);
3495 }
3496 
3497 /*
3498  * Impose additional layer of translation between vfstype names
3499  * and module names in the filesystem.
3500  */
3501 static char *
3502 vfs_to_modname(char *vfstype)
3503 {
3504 	if (strcmp(vfstype, "proc") == 0) {
3505 		vfstype = "procfs";
3506 	} else if (strcmp(vfstype, "fd") == 0) {
3507 		vfstype = "fdfs";
3508 	} else if (strncmp(vfstype, "nfs", 3) == 0) {
3509 		vfstype = "nfs";
3510 	}
3511 
3512 	return (vfstype);
3513 }
3514 
3515 /*
3516  * Find a vfssw entry given a file system type name.
3517  * Try to autoload the filesystem if it's not found.
3518  * If it's installed, return the vfssw locked to prevent unloading.
3519  */
3520 struct vfssw *
3521 vfs_getvfssw(char *type)
3522 {
3523 	struct vfssw *vswp;
3524 	char	*modname;
3525 
3526 	RLOCK_VFSSW();
3527 	vswp = vfs_getvfsswbyname(type);
3528 	modname = vfs_to_modname(type);
3529 
3530 	if (rootdir == NULL) {
3531 		/*
3532 		 * If we haven't yet loaded the root file system, then our
3533 		 * _init won't be called until later. Allocate vfssw entry,
3534 		 * because mod_installfs won't be called.
3535 		 */
3536 		if (vswp == NULL) {
3537 			RUNLOCK_VFSSW();
3538 			WLOCK_VFSSW();
3539 			if ((vswp = vfs_getvfsswbyname(type)) == NULL) {
3540 				if ((vswp = allocate_vfssw(type)) == NULL) {
3541 					WUNLOCK_VFSSW();
3542 					return (NULL);
3543 				}
3544 			}
3545 			WUNLOCK_VFSSW();
3546 			RLOCK_VFSSW();
3547 		}
3548 		if (!VFS_INSTALLED(vswp)) {
3549 			RUNLOCK_VFSSW();
3550 			(void) modloadonly("fs", modname);
3551 		} else
3552 			RUNLOCK_VFSSW();
3553 		return (vswp);
3554 	}
3555 
3556 	/*
3557 	 * Try to load the filesystem.  Before calling modload(), we drop
3558 	 * our lock on the VFS switch table, and pick it up after the
3559 	 * module is loaded.  However, there is a potential race:  the
3560 	 * module could be unloaded after the call to modload() completes
3561 	 * but before we pick up the lock and drive on.  Therefore,
3562 	 * we keep reloading the module until we've loaded the module
3563 	 * _and_ we have the lock on the VFS switch table.
3564 	 */
3565 	while (vswp == NULL || !VFS_INSTALLED(vswp)) {
3566 		RUNLOCK_VFSSW();
3567 		if (modload("fs", modname) == -1)
3568 			return (NULL);
3569 		RLOCK_VFSSW();
3570 		if (vswp == NULL)
3571 			if ((vswp = vfs_getvfsswbyname(type)) == NULL)
3572 				break;
3573 	}
3574 	RUNLOCK_VFSSW();
3575 
3576 	return (vswp);
3577 }
3578 
3579 /*
3580  * Find a vfssw entry given a file system type name.
3581  */
3582 struct vfssw *
3583 vfs_getvfsswbyname(char *type)
3584 {
3585 	struct vfssw *vswp;
3586 
3587 	ASSERT(VFSSW_LOCKED());
3588 	if (type == NULL || *type == '\0')
3589 		return (NULL);
3590 
3591 	for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) {
3592 		if (strcmp(type, vswp->vsw_name) == 0) {
3593 			vfs_refvfssw(vswp);
3594 			return (vswp);
3595 		}
3596 	}
3597 
3598 	return (NULL);
3599 }
3600 
3601 /*
3602  * Find a vfssw entry given a set of vfsops.
3603  */
3604 struct vfssw *
3605 vfs_getvfsswbyvfsops(vfsops_t *vfsops)
3606 {
3607 	struct vfssw *vswp;
3608 
3609 	RLOCK_VFSSW();
3610 	for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) {
3611 		if (ALLOCATED_VFSSW(vswp) && &vswp->vsw_vfsops == vfsops) {
3612 			vfs_refvfssw(vswp);
3613 			RUNLOCK_VFSSW();
3614 			return (vswp);
3615 		}
3616 	}
3617 	RUNLOCK_VFSSW();
3618 
3619 	return (NULL);
3620 }
3621 
3622 /*
3623  * Reference a vfssw entry.
3624  */
3625 void
3626 vfs_refvfssw(struct vfssw *vswp)
3627 {
3628 
3629 	mutex_enter(&vswp->vsw_lock);
3630 	vswp->vsw_count++;
3631 	mutex_exit(&vswp->vsw_lock);
3632 }
3633 
3634 /*
3635  * Unreference a vfssw entry.
3636  */
3637 void
3638 vfs_unrefvfssw(struct vfssw *vswp)
3639 {
3640 
3641 	mutex_enter(&vswp->vsw_lock);
3642 	vswp->vsw_count--;
3643 	mutex_exit(&vswp->vsw_lock);
3644 }
3645 
3646 int sync_timeout = 30;		/* timeout for syncing a page during panic */
3647 int sync_timeleft;		/* portion of sync_timeout remaining */
3648 
3649 static int sync_retries = 20;	/* number of retries when not making progress */
3650 static int sync_triesleft;	/* portion of sync_retries remaining */
3651 
3652 static pgcnt_t old_pgcnt, new_pgcnt;
3653 static int new_bufcnt, old_bufcnt;
3654 
3655 /*
3656  * Sync all of the mounted filesystems, and then wait for the actual i/o to
3657  * complete.  We wait by counting the number of dirty pages and buffers,
3658  * pushing them out using bio_busy() and page_busy(), and then counting again.
3659  * This routine is used during both the uadmin A_SHUTDOWN code as well as
3660  * the SYNC phase of the panic code (see comments in panic.c).  It should only
3661  * be used after some higher-level mechanism has quiesced the system so that
3662  * new writes are not being initiated while we are waiting for completion.
3663  *
3664  * To ensure finite running time, our algorithm uses two timeout mechanisms:
3665  * sync_timeleft (a timer implemented by the omnipresent deadman() cyclic), and
3666  * sync_triesleft (a progress counter used by the vfs_syncall() loop below).
3667  * Together these ensure that syncing completes if our i/o paths are stuck.
3668  * The counters are declared above so they can be found easily in the debugger.
3669  *
3670  * The sync_timeleft counter is reset by bio_busy() and page_busy() using the
3671  * vfs_syncprogress() subroutine whenever we make progress through the lists of
3672  * pages and buffers.  It is decremented and expired by the deadman() cyclic.
3673  * When vfs_syncall() decides it is done, we disable the deadman() counter by
3674  * setting sync_timeleft to zero.  This timer guards against vfs_syncall()
3675  * deadlocking or hanging inside of a broken filesystem or driver routine.
3676  *
3677  * The sync_triesleft counter is updated by vfs_syncall() itself.  If we make
3678  * sync_retries consecutive calls to bio_busy() and page_busy() without
3679  * decreasing either the number of dirty buffers or dirty pages below the
3680  * lowest count we have seen so far, we give up and return from vfs_syncall().
3681  *
3682  * Each loop iteration ends with a call to delay() one second to allow time for
3683  * i/o completion and to permit the user time to read our progress messages.
3684  */
3685 void
3686 vfs_syncall(void)
3687 {
3688 	if (rootdir == NULL && !modrootloaded)
3689 		return; /* panic during boot - no filesystems yet */
3690 
3691 	printf("syncing file systems...");
3692 	vfs_syncprogress();
3693 	sync();
3694 
3695 	vfs_syncprogress();
3696 	sync_triesleft = sync_retries;
3697 
3698 	old_bufcnt = new_bufcnt = INT_MAX;
3699 	old_pgcnt = new_pgcnt = ULONG_MAX;
3700 
3701 	while (sync_triesleft > 0) {
3702 		old_bufcnt = MIN(old_bufcnt, new_bufcnt);
3703 		old_pgcnt = MIN(old_pgcnt, new_pgcnt);
3704 
3705 		new_bufcnt = bio_busy(B_TRUE);
3706 		new_pgcnt = page_busy(B_TRUE);
3707 		vfs_syncprogress();
3708 
3709 		if (new_bufcnt == 0 && new_pgcnt == 0)
3710 			break;
3711 
3712 		if (new_bufcnt < old_bufcnt || new_pgcnt < old_pgcnt)
3713 			sync_triesleft = sync_retries;
3714 		else
3715 			sync_triesleft--;
3716 
3717 		if (new_bufcnt)
3718 			printf(" [%d]", new_bufcnt);
3719 		if (new_pgcnt)
3720 			printf(" %lu", new_pgcnt);
3721 
3722 		delay(hz);
3723 	}
3724 
3725 	if (new_bufcnt != 0 || new_pgcnt != 0)
3726 		printf(" done (not all i/o completed)\n");
3727 	else
3728 		printf(" done\n");
3729 
3730 	sync_timeleft = 0;
3731 	delay(hz);
3732 }
3733 
3734 /*
3735  * If we are in the middle of the sync phase of panic, reset sync_timeleft to
3736  * sync_timeout to indicate that we are making progress and the deadman()
3737  * omnipresent cyclic should not yet time us out.  Note that it is safe to
3738  * store to sync_timeleft here since the deadman() is firing at high-level
3739  * on top of us.  If we are racing with the deadman(), either the deadman()
3740  * will decrement the old value and then we will reset it, or we will
3741  * reset it and then the deadman() will immediately decrement it.  In either
3742  * case, correct behavior results.
3743  */
3744 void
3745 vfs_syncprogress(void)
3746 {
3747 	if (panicstr)
3748 		sync_timeleft = sync_timeout;
3749 }
3750 
3751 /*
3752  * Map VFS flags to statvfs flags.  These shouldn't really be separate
3753  * flags at all.
3754  */
3755 uint_t
3756 vf_to_stf(uint_t vf)
3757 {
3758 	uint_t stf = 0;
3759 
3760 	if (vf & VFS_RDONLY)
3761 		stf |= ST_RDONLY;
3762 	if (vf & VFS_NOSETUID)
3763 		stf |= ST_NOSUID;
3764 	if (vf & VFS_NOTRUNC)
3765 		stf |= ST_NOTRUNC;
3766 
3767 	return (stf);
3768 }
3769 
3770 /*
3771  * Use old-style function prototype for vfsstray() so
3772  * that we can use it anywhere in the vfsops structure.
3773  */
3774 int vfsstray();
3775 
3776 /*
3777  * Entries for (illegal) fstype 0.
3778  */
3779 /* ARGSUSED */
3780 int
3781 vfsstray_sync(struct vfs *vfsp, short arg, struct cred *cr)
3782 {
3783 	cmn_err(CE_PANIC, "stray vfs operation");
3784 	return (0);
3785 }
3786 
3787 vfsops_t vfs_strayops = {
3788 	vfsstray,
3789 	vfsstray,
3790 	vfsstray,
3791 	vfsstray,
3792 	vfsstray_sync,
3793 	vfsstray,
3794 	vfsstray,
3795 	vfsstray
3796 };
3797 
3798 /*
3799  * Entries for (illegal) fstype 0.
3800  */
3801 int
3802 vfsstray(void)
3803 {
3804 	cmn_err(CE_PANIC, "stray vfs operation");
3805 	return (0);
3806 }
3807 
3808 /*
3809  * Support for dealing with forced UFS unmount and its interaction with
3810  * LOFS. Could be used by any filesystem.
3811  * See bug 1203132.
3812  */
3813 int
3814 vfs_EIO(void)
3815 {
3816 	return (EIO);
3817 }
3818 
3819 /*
3820  * We've gotta define the op for sync separately, since the compiler gets
3821  * confused if we mix and match ANSI and normal style prototypes when
3822  * a "short" argument is present and spits out a warning.
3823  */
3824 /*ARGSUSED*/
3825 int
3826 vfs_EIO_sync(struct vfs *vfsp, short arg, struct cred *cr)
3827 {
3828 	return (EIO);
3829 }
3830 
3831 vfs_t EIO_vfs;
3832 vfsops_t *EIO_vfsops;
3833 
3834 /*
3835  * Called from startup() to initialize all loaded vfs's
3836  */
3837 void
3838 vfsinit(void)
3839 {
3840 	struct vfssw *vswp;
3841 	int error;
3842 	extern int vopstats_enabled;
3843 	extern void vopstats_startup();
3844 
3845 	static const fs_operation_def_t EIO_vfsops_template[] = {
3846 		VFSNAME_MOUNT,		vfs_EIO,
3847 		VFSNAME_UNMOUNT,	vfs_EIO,
3848 		VFSNAME_ROOT,		vfs_EIO,
3849 		VFSNAME_STATVFS,	vfs_EIO,
3850 		VFSNAME_SYNC, (fs_generic_func_p) vfs_EIO_sync,
3851 		VFSNAME_VGET,		vfs_EIO,
3852 		VFSNAME_MOUNTROOT,	vfs_EIO,
3853 		VFSNAME_FREEVFS,	vfs_EIO,
3854 		VFSNAME_VNSTATE,	vfs_EIO,
3855 		NULL, NULL
3856 	};
3857 
3858 
3859 	/* Initialize the vnode cache (file systems may use it during init). */
3860 
3861 	vn_create_cache();
3862 
3863 	/* Setup event monitor framework */
3864 
3865 	fem_init();
3866 
3867 	/* Initialize the dummy stray file system type. */
3868 
3869 	vfssw[0].vsw_vfsops = vfs_strayops;
3870 
3871 	/* Initialize the dummy EIO file system. */
3872 	error = vfs_makefsops(EIO_vfsops_template, &EIO_vfsops);
3873 	if (error != 0) {
3874 		cmn_err(CE_WARN, "vfsinit: bad EIO vfs ops template");
3875 		/* Shouldn't happen, but not bad enough to panic */
3876 	}
3877 
3878 	VFS_INIT(&EIO_vfs, EIO_vfsops, (caddr_t)NULL);
3879 
3880 	/*
3881 	 * Default EIO_vfs.vfs_flag to VFS_UNMOUNTED so a lookup
3882 	 * on this vfs can immediately notice it's invalid.
3883 	 */
3884 	EIO_vfs.vfs_flag |= VFS_UNMOUNTED;
3885 
3886 	/*
3887 	 * Call the init routines of non-loadable filesystems only.
3888 	 * Filesystems which are loaded as separate modules will be
3889 	 * initialized by the module loading code instead.
3890 	 */
3891 
3892 	for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) {
3893 		RLOCK_VFSSW();
3894 		if (vswp->vsw_init != NULL)
3895 			(*vswp->vsw_init)(vswp - vfssw, vswp->vsw_name);
3896 		RUNLOCK_VFSSW();
3897 	}
3898 
3899 	vopstats_startup();
3900 
3901 	if (vopstats_enabled) {
3902 		/* EIO_vfs can collect stats, but we don't retrieve them */
3903 		initialize_vopstats(&EIO_vfs.vfs_vopstats);
3904 		EIO_vfs.vfs_fstypevsp = NULL;
3905 		EIO_vfs.vfs_vskap = NULL;
3906 		EIO_vfs.vfs_flag |= VFS_STATS;
3907 	}
3908 }
3909 
3910 /*
3911  * Increments the vfs reference count by one atomically.
3912  */
3913 void
3914 vfs_hold(vfs_t *vfsp)
3915 {
3916 	atomic_add_32(&vfsp->vfs_count, 1);
3917 	ASSERT(vfsp->vfs_count != 0);
3918 }
3919 
3920 /*
3921  * Decrements the vfs reference count by one atomically. When
3922  * vfs reference count becomes zero, it calls the file system
3923  * specific vfs_freevfs() to free up the resources.
3924  */
3925 void
3926 vfs_rele(vfs_t *vfsp)
3927 {
3928 	ASSERT(vfsp->vfs_count != 0);
3929 	if (atomic_add_32_nv(&vfsp->vfs_count, -1) == 0) {
3930 		VFS_FREEVFS(vfsp);
3931 		if (vfsp->vfs_zone)
3932 			zone_rele(vfsp->vfs_zone);
3933 		vfs_freemnttab(vfsp);
3934 		if (vfsp->vfs_implp)
3935 			vfsimpl_teardown(vfsp);
3936 		sema_destroy(&vfsp->vfs_reflock);
3937 		kmem_free(vfsp, sizeof (*vfsp));
3938 	}
3939 }
3940 
3941 /*
3942  * Generic operations vector support.
3943  *
3944  * This is used to build operations vectors for both the vfs and vnode.
3945  * It's normally called only when a file system is loaded.
3946  *
3947  * There are many possible algorithms for this, including the following:
3948  *
3949  *   (1) scan the list of known operations; for each, see if the file system
3950  *       includes an entry for it, and fill it in as appropriate.
3951  *
3952  *   (2) set up defaults for all known operations.  scan the list of ops
3953  *       supplied by the file system; for each which is both supplied and
3954  *       known, fill it in.
3955  *
3956  *   (3) sort the lists of known ops & supplied ops; scan the list, filling
3957  *       in entries as we go.
3958  *
3959  * we choose (1) for simplicity, and because performance isn't critical here.
3960  * note that (2) could be sped up using a precomputed hash table on known ops.
3961  * (3) could be faster than either, but only if the lists were very large or
3962  * supplied in sorted order.
3963  *
3964  */
3965 
3966 int
3967 fs_build_vector(void *vector, int *unused_ops,
3968     const fs_operation_trans_def_t *translation,
3969     const fs_operation_def_t *operations)
3970 {
3971 	int i, num_trans, num_ops, used;
3972 
3973 	/* Count the number of translations and the number of supplied */
3974 	/* operations. */
3975 
3976 	{
3977 		const fs_operation_trans_def_t *p;
3978 
3979 		for (num_trans = 0, p = translation;
3980 		    p->name != NULL;
3981 		    num_trans++, p++)
3982 			;
3983 	}
3984 
3985 	{
3986 		const fs_operation_def_t *p;
3987 
3988 		for (num_ops = 0, p = operations;
3989 		    p->name != NULL;
3990 		    num_ops++, p++)
3991 			;
3992 	}
3993 
3994 	/* Walk through each operation known to our caller.  There will be */
3995 	/* one entry in the supplied "translation table" for each. */
3996 
3997 	used = 0;
3998 
3999 	for (i = 0; i < num_trans; i++) {
4000 		int j, found;
4001 		char *curname;
4002 		fs_generic_func_p result;
4003 		fs_generic_func_p *location;
4004 
4005 		curname = translation[i].name;
4006 
4007 		/* Look for a matching operation in the list supplied by the */
4008 		/* file system. */
4009 
4010 		found = 0;
4011 
4012 		for (j = 0; j < num_ops; j++) {
4013 			if (strcmp(operations[j].name, curname) == 0) {
4014 				used++;
4015 				found = 1;
4016 				break;
4017 			}
4018 		}
4019 
4020 		/* If the file system is using a "placeholder" for default */
4021 		/* or error functions, grab the appropriate function out of */
4022 		/* the translation table.  If the file system didn't supply */
4023 		/* this operation at all, use the default function. */
4024 
4025 		if (found) {
4026 			result = operations[j].func;
4027 			if (result == fs_default) {
4028 				result = translation[i].defaultFunc;
4029 			} else if (result == fs_error) {
4030 				result = translation[i].errorFunc;
4031 			} else if (result == NULL) {
4032 				/* Null values are PROHIBITED */
4033 				return (EINVAL);
4034 			}
4035 		} else {
4036 			result = translation[i].defaultFunc;
4037 		}
4038 
4039 		/* Now store the function into the operations vector. */
4040 
4041 		location = (fs_generic_func_p *)
4042 		    (((char *)vector) + translation[i].offset);
4043 
4044 		*location = result;
4045 	}
4046 
4047 	*unused_ops = num_ops - used;
4048 
4049 	return (0);
4050 }
4051 
4052 /* Placeholder functions, should never be called. */
4053 
4054 int
4055 fs_error(void)
4056 {
4057 	cmn_err(CE_PANIC, "fs_error called");
4058 	return (0);
4059 }
4060 
4061 int
4062 fs_default(void)
4063 {
4064 	cmn_err(CE_PANIC, "fs_default called");
4065 	return (0);
4066 }
4067 
4068 #ifdef __sparc
4069 
4070 /*
4071  * Part of the implementation of booting off a mirrored root
4072  * involves a change of dev_t for the root device.  To
4073  * accomplish this, first remove the existing hash table
4074  * entry for the root device, convert to the new dev_t,
4075  * then re-insert in the hash table at the head of the list.
4076  */
4077 void
4078 vfs_root_redev(vfs_t *vfsp, dev_t ndev, int fstype)
4079 {
4080 	vfs_list_lock();
4081 
4082 	vfs_hash_remove(vfsp);
4083 
4084 	vfsp->vfs_dev = ndev;
4085 	vfs_make_fsid(&vfsp->vfs_fsid, ndev, fstype);
4086 
4087 	vfs_hash_add(vfsp, 1);
4088 
4089 	vfs_list_unlock();
4090 }
4091 
4092 #else /* x86 NEWBOOT */
4093 
4094 int
4095 rootconf()
4096 {
4097 	int error;
4098 	struct vfssw *vsw;
4099 	extern void pm_init();
4100 	char *fstyp;
4101 
4102 	fstyp = getrootfs();
4103 
4104 	if (error = clboot_rootconf())
4105 		return (error);
4106 
4107 	if (modload("fs", fstyp) == -1)
4108 		cmn_err(CE_PANIC, "Cannot _init %s module\n", fstyp);
4109 
4110 	RLOCK_VFSSW();
4111 	vsw = vfs_getvfsswbyname(fstyp);
4112 	RUNLOCK_VFSSW();
4113 	VFS_INIT(rootvfs, &vsw->vsw_vfsops, 0);
4114 	VFS_HOLD(rootvfs);
4115 
4116 	/* always mount readonly first */
4117 	rootvfs->vfs_flag |= VFS_RDONLY;
4118 
4119 	pm_init();
4120 
4121 	if (netboot)
4122 		(void) strplumb();
4123 
4124 	error = VFS_MOUNTROOT(rootvfs, ROOT_INIT);
4125 	vfs_unrefvfssw(vsw);
4126 	rootdev = rootvfs->vfs_dev;
4127 
4128 	if (error)
4129 		cmn_err(CE_PANIC, "cannot mount root path %s", svm_bootpath);
4130 	return (error);
4131 }
4132 
4133 /*
4134  * XXX this is called by nfs only and should probably be removed
4135  * If booted with ASKNAME, prompt on the console for a filesystem
4136  * name and return it.
4137  */
4138 void
4139 getfsname(char *askfor, char *name, size_t namelen)
4140 {
4141 	if (boothowto & RB_ASKNAME) {
4142 		printf("%s name: ", askfor);
4143 		console_gets(name, namelen);
4144 	}
4145 }
4146 
4147 /*
4148  * If server_path exists, then we are booting a diskless
4149  * client. Otherwise, we default to ufs. Zfs should perhaps be
4150  * another property.
4151  */
4152 static char *
4153 getrootfs(void)
4154 {
4155 	extern char *strplumb_get_netdev_path(void);
4156 	char *propstr = NULL;
4157 
4158 	/* check fstype property; it should be nfsdyn for diskless */
4159 	if (ddi_prop_lookup_string(DDI_DEV_T_ANY, ddi_root_node(),
4160 	    DDI_PROP_DONTPASS, "fstype", &propstr)
4161 	    == DDI_SUCCESS) {
4162 		(void) strncpy(rootfs.bo_fstype, propstr, BO_MAXFSNAME);
4163 		ddi_prop_free(propstr);
4164 	}
4165 
4166 	if (strncmp(rootfs.bo_fstype, "nfs", 3) != 0)
4167 		return (rootfs.bo_fstype);
4168 
4169 	++netboot;
4170 	/* check if path to network interface is specified in bootpath */
4171 	if (ddi_prop_lookup_string(DDI_DEV_T_ANY, ddi_root_node(),
4172 	    DDI_PROP_DONTPASS, "bootpath", &propstr)
4173 	    == DDI_SUCCESS) {
4174 		(void) strncpy(rootfs.bo_name, propstr, BO_MAXOBJNAME);
4175 		ddi_prop_free(propstr);
4176 	} else {
4177 		/* attempt to determine netdev_path via boot_mac address */
4178 		netdev_path = strplumb_get_netdev_path();
4179 		if (netdev_path == NULL)
4180 			cmn_err(CE_PANIC,
4181 			    "Cannot find boot network interface\n");
4182 		(void) strncpy(rootfs.bo_name, netdev_path, BO_MAXOBJNAME);
4183 	}
4184 	return ("nfs");
4185 }
4186 #endif
4187