1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License, Version 1.0 only 6 * (the "License"). You may not use this file except in compliance 7 * with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or http://www.opensolaris.org/os/licensing. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 */ 22 /* 23 * Copyright 2005 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 /* Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989 AT&T */ 28 /* All Rights Reserved */ 29 30 /* 31 * University Copyright- Copyright (c) 1982, 1986, 1988 32 * The Regents of the University of California 33 * All Rights Reserved 34 * 35 * University Acknowledgment- Portions of this document are derived from 36 * software developed by the University of California, Berkeley, and its 37 * contributors. 38 */ 39 40 41 #pragma ident "%Z%%M% %I% %E% SMI" 42 43 #include <sys/types.h> 44 #include <sys/t_lock.h> 45 #include <sys/debug.h> 46 #include <sys/param.h> 47 #include <sys/systm.h> 48 #include <sys/signal.h> 49 #include <sys/cred.h> 50 #include <sys/proc.h> 51 #include <sys/disp.h> 52 #include <sys/user.h> 53 #include <sys/buf.h> 54 #include <sys/vfs.h> 55 #include <sys/vnode.h> 56 #include <sys/acl.h> 57 #include <sys/fs/ufs_fs.h> 58 #include <sys/fs/ufs_inode.h> 59 #include <sys/fs/ufs_acl.h> 60 #include <sys/fs/ufs_bio.h> 61 #include <sys/fs/ufs_quota.h> 62 #include <sys/kmem.h> 63 #include <sys/fs/ufs_trans.h> 64 #include <sys/fs/ufs_panic.h> 65 #include <sys/errno.h> 66 #include <sys/time.h> 67 #include <sys/sysmacros.h> 68 #include <sys/file.h> 69 #include <sys/fcntl.h> 70 #include <sys/flock.h> 71 #include <fs/fs_subr.h> 72 #include <sys/cmn_err.h> 73 #include <sys/policy.h> 74 75 static ino_t hashalloc(); 76 static daddr_t fragextend(); 77 static daddr_t alloccg(); 78 static daddr_t alloccgblk(); 79 static ino_t ialloccg(); 80 static daddr_t mapsearch(); 81 82 extern int inside[], around[]; 83 extern uchar_t *fragtbl[]; 84 void delay(); 85 86 /* 87 * Allocate a block in the file system. 88 * 89 * The size of the requested block is given, which must be some 90 * multiple of fs_fsize and <= fs_bsize. 91 * A preference may be optionally specified. If a preference is given 92 * the following hierarchy is used to allocate a block: 93 * 1) allocate the requested block. 94 * 2) allocate a rotationally optimal block in the same cylinder. 95 * 3) allocate a block in the same cylinder group. 96 * 4) quadratically rehash into other cylinder groups, until an 97 * available block is located. 98 * If no block preference is given the following hierarchy is used 99 * to allocate a block: 100 * 1) allocate a block in the cylinder group that contains the 101 * inode for the file. 102 * 2) quadratically rehash into other cylinder groups, until an 103 * available block is located. 104 */ 105 int 106 alloc(struct inode *ip, daddr_t bpref, int size, daddr_t *bnp, cred_t *cr) 107 { 108 struct fs *fs; 109 struct ufsvfs *ufsvfsp; 110 daddr_t bno; 111 int cg; 112 int err; 113 char *errmsg = NULL; 114 size_t len; 115 116 ufsvfsp = ip->i_ufsvfs; 117 fs = ufsvfsp->vfs_fs; 118 if ((unsigned)size > fs->fs_bsize || fragoff(fs, size) != 0) { 119 err = ufs_fault(ITOV(ip), 120 "alloc: bad size, dev = 0x%lx, bsize = %d, size = %d, fs = %s\n", 121 ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt); 122 return (err); 123 } 124 if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0) 125 goto nospace; 126 if (freespace(fs, ufsvfsp) <= 0 && 127 secpolicy_fs_minfree(cr, ufsvfsp->vfs_vfs) != 0) 128 goto nospace; 129 err = chkdq(ip, (long)btodb(size), 0, cr, &errmsg, &len); 130 /* Note that may not have err, but may have errmsg */ 131 if (errmsg != NULL) { 132 uprintf(errmsg); 133 kmem_free(errmsg, len); 134 errmsg = NULL; 135 } 136 if (err) 137 return (err); 138 if (bpref >= fs->fs_size) 139 bpref = 0; 140 if (bpref == 0) 141 cg = (int)itog(fs, ip->i_number); 142 else 143 cg = dtog(fs, bpref); 144 145 bno = (daddr_t)hashalloc(ip, cg, (long)bpref, size, 146 (ulong_t (*)())alloccg); 147 if (bno > 0) { 148 *bnp = bno; 149 return (0); 150 } 151 152 /* 153 * hashalloc() failed because some other thread grabbed 154 * the last block so unwind the quota operation. We can 155 * ignore the return because subtractions don't fail and 156 * size is guaranteed to be >= zero by our caller. 157 */ 158 (void) chkdq(ip, -(long)btodb(size), 0, cr, (char **)NULL, 159 (size_t *)NULL); 160 161 nospace: 162 mutex_enter(&ufsvfsp->vfs_lock); 163 if ((lbolt - ufsvfsp->vfs_lastwhinetime) > (hz << 2) && 164 (!(TRANS_ISTRANS(ufsvfsp)) || !(ip->i_flag & IQUIET))) { 165 ufsvfsp->vfs_lastwhinetime = lbolt; 166 cmn_err(CE_NOTE, "alloc: %s: file system full", fs->fs_fsmnt); 167 } 168 mutex_exit(&ufsvfsp->vfs_lock); 169 return (ENOSPC); 170 } 171 172 /* 173 * Reallocate a fragment to a bigger size 174 * 175 * The number and size of the old block is given, and a preference 176 * and new size is also specified. The allocator attempts to extend 177 * the original block. Failing that, the regular block allocator is 178 * invoked to get an appropriate block. 179 */ 180 int 181 realloccg(struct inode *ip, daddr_t bprev, daddr_t bpref, int osize, 182 int nsize, daddr_t *bnp, cred_t *cr) 183 { 184 daddr_t bno; 185 struct fs *fs; 186 struct ufsvfs *ufsvfsp; 187 int cg, request; 188 int err; 189 char *errmsg = NULL; 190 size_t len; 191 192 ufsvfsp = ip->i_ufsvfs; 193 fs = ufsvfsp->vfs_fs; 194 if ((unsigned)osize > fs->fs_bsize || fragoff(fs, osize) != 0 || 195 (unsigned)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) { 196 err = ufs_fault(ITOV(ip), 197 "realloccg: bad size, dev=0x%lx, bsize=%d, osize=%d, nsize=%d, fs=%s\n", 198 ip->i_dev, fs->fs_bsize, osize, nsize, 199 fs->fs_fsmnt); 200 return (err); 201 } 202 if (freespace(fs, ufsvfsp) <= 0 && 203 secpolicy_fs_minfree(cr, ufsvfsp->vfs_vfs) != 0) 204 goto nospace; 205 if (bprev == 0) { 206 err = ufs_fault(ITOV(ip), 207 "realloccg: bad bprev, dev = 0x%lx, bsize = %d, bprev = %ld, fs = %s\n", 208 ip->i_dev, fs->fs_bsize, bprev, 209 fs->fs_fsmnt); 210 return (err); 211 } 212 err = chkdq(ip, (long)btodb(nsize - osize), 0, cr, &errmsg, &len); 213 /* Note that may not have err, but may have errmsg */ 214 if (errmsg != NULL) { 215 uprintf(errmsg); 216 kmem_free(errmsg, len); 217 errmsg = NULL; 218 } 219 if (err) 220 return (err); 221 cg = dtog(fs, bprev); 222 bno = fragextend(ip, cg, (long)bprev, osize, nsize); 223 if (bno != 0) { 224 *bnp = bno; 225 return (0); 226 } 227 if (bpref >= fs->fs_size) 228 bpref = 0; 229 230 /* 231 * When optimizing for time we allocate a full block and 232 * then only use the upper portion for this request. When 233 * this file grows again it will grow into the unused portion 234 * of the block (See fragextend() above). This saves time 235 * because an extra disk write would be needed if the frags 236 * following the current allocation were not free. The extra 237 * disk write is needed to move the data from its current 238 * location into the newly allocated position. 239 * 240 * When optimizing for space we allocate a run of frags 241 * that is just the right size for this request. 242 */ 243 request = (fs->fs_optim == FS_OPTTIME) ? fs->fs_bsize : nsize; 244 bno = (daddr_t)hashalloc(ip, cg, (long)bpref, request, 245 (ulong_t (*)())alloccg); 246 if (bno > 0) { 247 *bnp = bno; 248 if (nsize < request) 249 (void) free(ip, bno + numfrags(fs, nsize), 250 (off_t)(request - nsize), I_NOCANCEL); 251 return (0); 252 } 253 254 /* 255 * hashalloc() failed because some other thread grabbed 256 * the last block so unwind the quota operation. We can 257 * ignore the return because subtractions don't fail, and 258 * our caller guarantees nsize >= osize. 259 */ 260 (void) chkdq(ip, -(long)btodb(nsize - osize), 0, cr, (char **)NULL, 261 (size_t *)NULL); 262 263 nospace: 264 mutex_enter(&ufsvfsp->vfs_lock); 265 if ((lbolt - ufsvfsp->vfs_lastwhinetime) > (hz << 2) && 266 (!(TRANS_ISTRANS(ufsvfsp)) || !(ip->i_flag & IQUIET))) { 267 ufsvfsp->vfs_lastwhinetime = lbolt; 268 cmn_err(CE_NOTE, 269 "realloccg %s: file system full", fs->fs_fsmnt); 270 } 271 mutex_exit(&ufsvfsp->vfs_lock); 272 return (ENOSPC); 273 } 274 275 /* 276 * Allocate an inode in the file system. 277 * 278 * A preference may be optionally specified. If a preference is given 279 * the following hierarchy is used to allocate an inode: 280 * 1) allocate the requested inode. 281 * 2) allocate an inode in the same cylinder group. 282 * 3) quadratically rehash into other cylinder groups, until an 283 * available inode is located. 284 * If no inode preference is given the following hierarchy is used 285 * to allocate an inode: 286 * 1) allocate an inode in cylinder group 0. 287 * 2) quadratically rehash into other cylinder groups, until an 288 * available inode is located. 289 */ 290 int 291 ufs_ialloc(struct inode *pip, 292 ino_t ipref, mode_t mode, struct inode **ipp, cred_t *cr) 293 { 294 struct inode *ip; 295 struct fs *fs; 296 int cg; 297 ino_t ino; 298 int err; 299 int nifree; 300 struct ufsvfs *ufsvfsp = pip->i_ufsvfs; 301 char *errmsg = NULL; 302 size_t len; 303 304 ASSERT(RW_WRITE_HELD(&pip->i_rwlock)); 305 fs = pip->i_fs; 306 loop: 307 nifree = fs->fs_cstotal.cs_nifree; 308 309 if (nifree == 0) 310 goto noinodes; 311 /* 312 * Shadow inodes don't count against a user's inode allocation. 313 * They are an implementation method and not a resource. 314 */ 315 if ((mode != IFSHAD) && (mode != IFATTRDIR)) { 316 err = chkiq((struct ufsvfs *)ITOV(pip)->v_vfsp->vfs_data, 317 /* change */ 1, (struct inode *)NULL, crgetuid(cr), 0, 318 cr, &errmsg, &len); 319 /* 320 * As we haven't acquired any locks yet, dump the message 321 * now. 322 */ 323 if (errmsg != NULL) { 324 uprintf(errmsg); 325 kmem_free(errmsg, len); 326 errmsg = NULL; 327 } 328 if (err) 329 return (err); 330 } 331 332 if (ipref >= (ulong_t)(fs->fs_ncg * fs->fs_ipg)) 333 ipref = 0; 334 cg = (int)itog(fs, ipref); 335 ino = (ino_t)hashalloc(pip, cg, (long)ipref, (int)mode, 336 (ulong_t (*)())ialloccg); 337 if (ino == 0) { 338 if ((mode != IFSHAD) && (mode != IFATTRDIR)) { 339 /* 340 * We can safely ignore the return from chkiq() 341 * because deallocations can only fail if we 342 * can't get the user's quota info record off 343 * the disk due to an I/O error. In that case, 344 * the quota subsystem is already messed up. 345 */ 346 (void) chkiq(ufsvfsp, /* change */ -1, 347 (struct inode *)NULL, crgetuid(cr), 0, cr, 348 (char **)NULL, (size_t *)NULL); 349 } 350 goto noinodes; 351 } 352 err = ufs_iget(pip->i_vfs, ino, ipp, cr); 353 if (err) { 354 if ((mode != IFSHAD) && (mode != IFATTRDIR)) { 355 /* 356 * See above comment about why it is safe to ignore an 357 * error return here. 358 */ 359 (void) chkiq(ufsvfsp, /* change */ -1, 360 (struct inode *)NULL, crgetuid(cr), 0, cr, 361 (char **)NULL, (size_t *)NULL); 362 } 363 ufs_ifree(pip, ino, 0); 364 return (err); 365 } 366 ip = *ipp; 367 ASSERT(!ip->i_ufs_acl); 368 ASSERT(!ip->i_dquot); 369 rw_enter(&ip->i_contents, RW_WRITER); 370 371 /* 372 * Check if we really got a free inode, if not then complain 373 * and mark the inode ISTALE so that it will be freed by the 374 * ufs idle thread eventually and will not be sent to ufs_delete(). 375 */ 376 if (ip->i_mode || (ip->i_nlink > 0)) { 377 ip->i_flag |= ISTALE; 378 rw_exit(&ip->i_contents); 379 VN_RELE(ITOV(ip)); 380 cmn_err(CE_WARN, 381 "%s: unexpected allocated inode %d, run fsck(1M)%s", 382 fs->fs_fsmnt, (int)ino, 383 (TRANS_ISTRANS(ufsvfsp) ? " -o f" : "")); 384 goto loop; 385 } 386 387 /* 388 * Check the inode has no size or data blocks. 389 * This could have happened if the truncation failed when 390 * deleting the inode. It used to be possible for this to occur 391 * if a block allocation failed when iteratively truncating a 392 * large file using logging and with a full file system. 393 * This was fixed with bug fix 4348738. However, truncation may 394 * still fail on an IO error. So in all cases for safety and 395 * security we clear out the size; the blocks allocated; and 396 * pointers to the blocks. This will ultimately cause a fsck 397 * error of un-accounted for blocks, but its a fairly benign error, 398 * and possibly the correct thing to do anyway as accesssing those 399 * blocks agains may lead to more IO errors. 400 */ 401 if (ip->i_size || ip->i_blocks) { 402 int i; 403 404 if (ip->i_size) { 405 cmn_err(CE_WARN, 406 "%s: free inode %d had size 0x%llx, run fsck(1M)%s", 407 fs->fs_fsmnt, (int)ino, ip->i_size, 408 (TRANS_ISTRANS(ufsvfsp) ? " -o f" : "")); 409 } 410 /* 411 * Clear any garbage left behind. 412 */ 413 ip->i_size = (u_offset_t)0; 414 ip->i_blocks = 0; 415 for (i = 0; i < NDADDR; i++) 416 ip->i_db[i] = 0; 417 for (i = 0; i < NIADDR; i++) 418 ip->i_ib[i] = 0; 419 } 420 421 /* 422 * Initialize the link count 423 */ 424 ip->i_nlink = 0; 425 426 /* 427 * Clear the old flags 428 */ 429 ip->i_flag &= IREF; 430 431 /* 432 * Access times are not really defined if the fs is mounted 433 * with 'noatime'. But it can cause nfs clients to fail 434 * open() if the atime is not a legal value. Set a legal value 435 * here when the inode is allocated. 436 */ 437 if (ufsvfsp->vfs_noatime) { 438 mutex_enter(&ufs_iuniqtime_lock); 439 ip->i_atime = iuniqtime; 440 mutex_exit(&ufs_iuniqtime_lock); 441 } 442 rw_exit(&ip->i_contents); 443 return (0); 444 noinodes: 445 if (!(TRANS_ISTRANS(ufsvfsp)) || !(pip->i_flag & IQUIET)) 446 cmn_err(CE_NOTE, "%s: out of inodes\n", fs->fs_fsmnt); 447 return (ENOSPC); 448 } 449 450 /* 451 * Find a cylinder group to place a directory. 452 * Returns an inumber within the selected cylinder group. 453 * Note, the vfs_lock is not needed as we don't require exact cg summary info. 454 * 455 * If the switch ufs_close_dirs is set, then the policy is to use 456 * the current cg if it has more than 25% free inodes and more 457 * than 25% free blocks. Otherwise the cgs are searched from 458 * the beginning and the first cg with the same criteria is 459 * used. If that is also null then we revert to the old algorithm. 460 * This tends to cluster files at the beginning of the disk 461 * until the disk gets full. 462 * 463 * Otherwise if ufs_close_dirs is not set then the original policy is 464 * used which is to select from among those cylinder groups with 465 * above the average number of free inodes, the one with the smallest 466 * number of directories. 467 */ 468 469 int ufs_close_dirs = 1; /* allocate directories close as possible */ 470 471 ino_t 472 dirpref(inode_t *dp) 473 { 474 int cg, minndir, mincg, avgifree, mininode, minbpg, ifree; 475 struct fs *fs = dp->i_fs; 476 477 cg = itog(fs, dp->i_number); 478 mininode = fs->fs_ipg >> 2; 479 minbpg = fs->fs_maxbpg >> 2; 480 if (ufs_close_dirs && 481 (fs->fs_cs(fs, cg).cs_nifree > mininode) && 482 (fs->fs_cs(fs, cg).cs_nbfree > minbpg)) { 483 return (dp->i_number); 484 } 485 486 avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg; 487 minndir = fs->fs_ipg; 488 mincg = 0; 489 for (cg = 0; cg < fs->fs_ncg; cg++) { 490 ifree = fs->fs_cs(fs, cg).cs_nifree; 491 if (ufs_close_dirs && 492 (ifree > mininode) && 493 (fs->fs_cs(fs, cg).cs_nbfree > minbpg)) { 494 return ((ino_t)(fs->fs_ipg * cg)); 495 } 496 if ((fs->fs_cs(fs, cg).cs_ndir < minndir) && 497 (ifree >= avgifree)) { 498 mincg = cg; 499 minndir = fs->fs_cs(fs, cg).cs_ndir; 500 } 501 } 502 return ((ino_t)(fs->fs_ipg * mincg)); 503 } 504 505 /* 506 * Select the desired position for the next block in a file. The file is 507 * logically divided into sections. The first section is composed of the 508 * direct blocks. Each additional section contains fs_maxbpg blocks. 509 * 510 * If no blocks have been allocated in the first section, the policy is to 511 * request a block in the same cylinder group as the inode that describes 512 * the file. If no blocks have been allocated in any other section, the 513 * policy is to place the section in a cylinder group with a greater than 514 * average number of free blocks. An appropriate cylinder group is found 515 * by using a rotor that sweeps the cylinder groups. When a new group of 516 * blocks is needed, the sweep begins in the cylinder group following the 517 * cylinder group from which the previous allocation was made. The sweep 518 * continues until a cylinder group with greater than the average number 519 * of free blocks is found. If the allocation is for the first block in an 520 * indirect block, the information on the previous allocation is unavailable; 521 * here a best guess is made based upon the logical block number being 522 * allocated. 523 * 524 * If a section is already partially allocated, the policy is to 525 * contiguously allocate fs_maxcontig blocks. The end of one of these 526 * contiguous blocks and the beginning of the next is physically separated 527 * so that the disk head will be in transit between them for at least 528 * fs_rotdelay milliseconds. This is to allow time for the processor to 529 * schedule another I/O transfer. 530 */ 531 daddr_t 532 blkpref(struct inode *ip, daddr_t lbn, int indx, daddr32_t *bap) 533 { 534 struct fs *fs; 535 struct ufsvfs *ufsvfsp; 536 int cg; 537 int avgbfree, startcg; 538 daddr_t nextblk; 539 540 ufsvfsp = ip->i_ufsvfs; 541 fs = ip->i_fs; 542 if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) { 543 if (lbn < NDADDR) { 544 cg = itog(fs, ip->i_number); 545 return (fs->fs_fpg * cg + fs->fs_frag); 546 } 547 /* 548 * Find a cylinder with greater than average 549 * number of unused data blocks. 550 */ 551 if (indx == 0 || bap[indx - 1] == 0) 552 startcg = itog(fs, ip->i_number) + lbn / fs->fs_maxbpg; 553 else 554 startcg = dtog(fs, bap[indx - 1]) + 1; 555 startcg %= fs->fs_ncg; 556 557 mutex_enter(&ufsvfsp->vfs_lock); 558 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg; 559 /* 560 * used for computing log space for writes/truncs 561 */ 562 ufsvfsp->vfs_avgbfree = avgbfree; 563 for (cg = startcg; cg < fs->fs_ncg; cg++) 564 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 565 fs->fs_cgrotor = cg; 566 mutex_exit(&ufsvfsp->vfs_lock); 567 return (fs->fs_fpg * cg + fs->fs_frag); 568 } 569 for (cg = 0; cg <= startcg; cg++) 570 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 571 fs->fs_cgrotor = cg; 572 mutex_exit(&ufsvfsp->vfs_lock); 573 return (fs->fs_fpg * cg + fs->fs_frag); 574 } 575 mutex_exit(&ufsvfsp->vfs_lock); 576 return (NULL); 577 } 578 /* 579 * One or more previous blocks have been laid out. If less 580 * than fs_maxcontig previous blocks are contiguous, the 581 * next block is requested contiguously, otherwise it is 582 * requested rotationally delayed by fs_rotdelay milliseconds. 583 */ 584 nextblk = bap[indx - 1] + fs->fs_frag; 585 if (indx > fs->fs_maxcontig && 586 bap[indx - fs->fs_maxcontig] + blkstofrags(fs, fs->fs_maxcontig) 587 != nextblk) 588 return (nextblk); 589 if (fs->fs_rotdelay != 0) 590 /* 591 * Here we convert ms of delay to frags as: 592 * (frags) = (ms) * (rev/sec) * (sect/rev) / 593 * ((sect/frag) * (ms/sec)) 594 * then round up to the next block. 595 */ 596 nextblk += roundup(fs->fs_rotdelay * fs->fs_rps * fs->fs_nsect / 597 (NSPF(fs) * 1000), fs->fs_frag); 598 return (nextblk); 599 } 600 601 /* 602 * Free a block or fragment. 603 * 604 * The specified block or fragment is placed back in the 605 * free map. If a fragment is deallocated, a possible 606 * block reassembly is checked. 607 */ 608 void 609 free(struct inode *ip, daddr_t bno, off_t size, int flags) 610 { 611 struct fs *fs = ip->i_fs; 612 struct ufsvfs *ufsvfsp = ip->i_ufsvfs; 613 struct ufs_q *delq = &ufsvfsp->vfs_delete; 614 struct ufs_delq_info *delq_info = &ufsvfsp->vfs_delete_info; 615 struct cg *cgp; 616 struct buf *bp; 617 int cg, bmap, bbase; 618 int i; 619 uchar_t *blksfree; 620 int *blktot; 621 short *blks; 622 daddr_t blkno, cylno, rpos; 623 624 if ((unsigned long)size > fs->fs_bsize || fragoff(fs, size) != 0) { 625 (void) ufs_fault(ITOV(ip), 626 "free: bad size, dev = 0x%lx, bsize = %d, size = %d, fs = %s\n", 627 ip->i_dev, fs->fs_bsize, (int)size, fs->fs_fsmnt); 628 return; 629 } 630 cg = dtog(fs, bno); 631 ASSERT(!ufs_badblock(ip, bno)); 632 bp = UFS_BREAD(ufsvfsp, ip->i_dev, (daddr_t)fsbtodb(fs, cgtod(fs, cg)), 633 (int)fs->fs_cgsize); 634 635 cgp = bp->b_un.b_cg; 636 if (bp->b_flags & B_ERROR || !cg_chkmagic(cgp)) { 637 brelse(bp); 638 return; 639 } 640 641 if (!(flags & I_NOCANCEL)) 642 TRANS_CANCEL(ufsvfsp, ldbtob(fsbtodb(fs, bno)), size, flags); 643 if (flags & (I_DIR|I_IBLK|I_SHAD|I_QUOTA)) { 644 TRANS_MATA_FREE(ufsvfsp, ldbtob(fsbtodb(fs, bno)), size); 645 } 646 blksfree = cg_blksfree(cgp); 647 blktot = cg_blktot(cgp); 648 mutex_enter(&ufsvfsp->vfs_lock); 649 cgp->cg_time = gethrestime_sec(); 650 bno = dtogd(fs, bno); 651 if (size == fs->fs_bsize) { 652 blkno = fragstoblks(fs, bno); 653 cylno = cbtocylno(fs, bno); 654 rpos = cbtorpos(ufsvfsp, bno); 655 blks = cg_blks(ufsvfsp, cgp, cylno); 656 if (!isclrblock(fs, blksfree, blkno)) { 657 mutex_exit(&ufsvfsp->vfs_lock); 658 brelse(bp); 659 (void) ufs_fault(ITOV(ip), "free: freeing free block, " 660 "dev:0x%lx, block:%ld, ino:%lu, fs:%s", 661 ip->i_dev, bno, ip->i_number, fs->fs_fsmnt); 662 return; 663 } 664 setblock(fs, blksfree, blkno); 665 blks[rpos]++; 666 blktot[cylno]++; 667 cgp->cg_cs.cs_nbfree++; /* Log below */ 668 fs->fs_cstotal.cs_nbfree++; 669 fs->fs_cs(fs, cg).cs_nbfree++; 670 if (TRANS_ISTRANS(ufsvfsp) && (flags & I_ACCT)) { 671 mutex_enter(&delq->uq_mutex); 672 delq_info->delq_unreclaimed_blocks -= 673 btodb(fs->fs_bsize); 674 mutex_exit(&delq->uq_mutex); 675 } 676 } else { 677 bbase = bno - fragnum(fs, bno); 678 /* 679 * Decrement the counts associated with the old frags 680 */ 681 bmap = blkmap(fs, blksfree, bbase); 682 fragacct(fs, bmap, cgp->cg_frsum, -1); 683 /* 684 * Deallocate the fragment 685 */ 686 for (i = 0; i < numfrags(fs, size); i++) { 687 if (isset(blksfree, bno + i)) { 688 brelse(bp); 689 mutex_exit(&ufsvfsp->vfs_lock); 690 (void) ufs_fault(ITOV(ip), 691 "free: freeing free frag, " 692 "dev:0x%lx, blk:%ld, cg:%d, " 693 "ino:%lu, fs:%s", 694 ip->i_dev, 695 bno + i, 696 cgp->cg_cgx, 697 ip->i_number, 698 fs->fs_fsmnt); 699 return; 700 } 701 setbit(blksfree, bno + i); 702 } 703 cgp->cg_cs.cs_nffree += i; 704 fs->fs_cstotal.cs_nffree += i; 705 fs->fs_cs(fs, cg).cs_nffree += i; 706 if (TRANS_ISTRANS(ufsvfsp) && (flags & I_ACCT)) { 707 mutex_enter(&delq->uq_mutex); 708 delq_info->delq_unreclaimed_blocks -= 709 btodb(i * fs->fs_fsize); 710 mutex_exit(&delq->uq_mutex); 711 } 712 /* 713 * Add back in counts associated with the new frags 714 */ 715 bmap = blkmap(fs, blksfree, bbase); 716 fragacct(fs, bmap, cgp->cg_frsum, 1); 717 /* 718 * If a complete block has been reassembled, account for it 719 */ 720 blkno = fragstoblks(fs, bbase); 721 if (isblock(fs, blksfree, blkno)) { 722 cylno = cbtocylno(fs, bbase); 723 rpos = cbtorpos(ufsvfsp, bbase); 724 blks = cg_blks(ufsvfsp, cgp, cylno); 725 blks[rpos]++; 726 blktot[cylno]++; 727 cgp->cg_cs.cs_nffree -= fs->fs_frag; 728 fs->fs_cstotal.cs_nffree -= fs->fs_frag; 729 fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag; 730 cgp->cg_cs.cs_nbfree++; 731 fs->fs_cstotal.cs_nbfree++; 732 fs->fs_cs(fs, cg).cs_nbfree++; 733 } 734 } 735 fs->fs_fmod = 1; 736 ufs_notclean(ufsvfsp); 737 TRANS_BUF(ufsvfsp, 0, fs->fs_cgsize, bp, DT_CG); 738 TRANS_SI(ufsvfsp, fs, cg); 739 bdrwrite(bp); 740 } 741 742 /* 743 * Free an inode. 744 * 745 * The specified inode is placed back in the free map. 746 */ 747 void 748 ufs_ifree(struct inode *ip, ino_t ino, mode_t mode) 749 { 750 struct fs *fs = ip->i_fs; 751 struct ufsvfs *ufsvfsp = ip->i_ufsvfs; 752 struct cg *cgp; 753 struct buf *bp; 754 unsigned int inot; 755 int cg; 756 char *iused; 757 758 if (ip->i_number == ino && ip->i_mode != 0) { 759 (void) ufs_fault(ITOV(ip), 760 "ufs_ifree: illegal mode: (imode) %o, (omode) %o, ino %d, " 761 "fs = %s\n", 762 ip->i_mode, mode, (int)ip->i_number, fs->fs_fsmnt); 763 return; 764 } 765 if (ino >= fs->fs_ipg * fs->fs_ncg) { 766 (void) ufs_fault(ITOV(ip), 767 "ifree: range, dev = 0x%x, ino = %d, fs = %s\n", 768 (int)ip->i_dev, (int)ino, fs->fs_fsmnt); 769 return; 770 } 771 cg = (int)itog(fs, ino); 772 bp = UFS_BREAD(ufsvfsp, ip->i_dev, (daddr_t)fsbtodb(fs, cgtod(fs, cg)), 773 (int)fs->fs_cgsize); 774 775 cgp = bp->b_un.b_cg; 776 if (bp->b_flags & B_ERROR || !cg_chkmagic(cgp)) { 777 brelse(bp); 778 return; 779 } 780 mutex_enter(&ufsvfsp->vfs_lock); 781 cgp->cg_time = gethrestime_sec(); 782 iused = cg_inosused(cgp); 783 inot = (unsigned int)(ino % (ulong_t)fs->fs_ipg); 784 if (isclr(iused, inot)) { 785 mutex_exit(&ufsvfsp->vfs_lock); 786 brelse(bp); 787 (void) ufs_fault(ITOV(ip), "ufs_ifree: freeing free inode, " 788 "mode: (imode) %o, (omode) %o, ino:%d, " 789 "fs:%s", 790 ip->i_mode, mode, (int)ino, fs->fs_fsmnt); 791 return; 792 } 793 clrbit(iused, inot); 794 795 if (inot < (ulong_t)cgp->cg_irotor) 796 cgp->cg_irotor = inot; 797 cgp->cg_cs.cs_nifree++; 798 fs->fs_cstotal.cs_nifree++; 799 fs->fs_cs(fs, cg).cs_nifree++; 800 if (((mode & IFMT) == IFDIR) || ((mode & IFMT) == IFATTRDIR)) { 801 cgp->cg_cs.cs_ndir--; 802 fs->fs_cstotal.cs_ndir--; 803 fs->fs_cs(fs, cg).cs_ndir--; 804 } 805 fs->fs_fmod = 1; 806 ufs_notclean(ufsvfsp); 807 TRANS_BUF(ufsvfsp, 0, fs->fs_cgsize, bp, DT_CG); 808 TRANS_SI(ufsvfsp, fs, cg); 809 bdrwrite(bp); 810 } 811 812 /* 813 * Implement the cylinder overflow algorithm. 814 * 815 * The policy implemented by this algorithm is: 816 * 1) allocate the block in its requested cylinder group. 817 * 2) quadratically rehash on the cylinder group number. 818 * 3) brute force search for a free block. 819 * The size parameter means size for data blocks, mode for inodes. 820 */ 821 static ino_t 822 hashalloc(struct inode *ip, int cg, long pref, int size, ulong_t (*allocator)()) 823 { 824 struct fs *fs; 825 int i; 826 long result; 827 int icg = cg; 828 829 fs = ip->i_fs; 830 /* 831 * 1: preferred cylinder group 832 */ 833 result = (*allocator)(ip, cg, pref, size); 834 if (result) 835 return (result); 836 /* 837 * 2: quadratic rehash 838 */ 839 for (i = 1; i < fs->fs_ncg; i *= 2) { 840 cg += i; 841 if (cg >= fs->fs_ncg) 842 cg -= fs->fs_ncg; 843 result = (*allocator)(ip, cg, 0, size); 844 if (result) 845 return (result); 846 } 847 /* 848 * 3: brute force search 849 * Note that we start at i == 2, since 0 was checked initially, 850 * and 1 is always checked in the quadratic rehash. 851 */ 852 cg = (icg + 2) % fs->fs_ncg; 853 for (i = 2; i < fs->fs_ncg; i++) { 854 result = (*allocator)(ip, cg, 0, size); 855 if (result) 856 return (result); 857 cg++; 858 if (cg == fs->fs_ncg) 859 cg = 0; 860 } 861 return (NULL); 862 } 863 864 /* 865 * Determine whether a fragment can be extended. 866 * 867 * Check to see if the necessary fragments are available, and 868 * if they are, allocate them. 869 */ 870 static daddr_t 871 fragextend(struct inode *ip, int cg, long bprev, int osize, int nsize) 872 { 873 struct ufsvfs *ufsvfsp = ip->i_ufsvfs; 874 struct fs *fs = ip->i_fs; 875 struct buf *bp; 876 struct cg *cgp; 877 uchar_t *blksfree; 878 long bno; 879 int frags, bbase; 880 int i, j; 881 882 if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize)) 883 return (NULL); 884 frags = numfrags(fs, nsize); 885 bbase = (int)fragnum(fs, bprev); 886 if (bbase > fragnum(fs, (bprev + frags - 1))) { 887 /* cannot extend across a block boundary */ 888 return (NULL); 889 } 890 891 bp = UFS_BREAD(ufsvfsp, ip->i_dev, (daddr_t)fsbtodb(fs, cgtod(fs, cg)), 892 (int)fs->fs_cgsize); 893 cgp = bp->b_un.b_cg; 894 if (bp->b_flags & B_ERROR || !cg_chkmagic(cgp)) { 895 brelse(bp); 896 return (NULL); 897 } 898 899 blksfree = cg_blksfree(cgp); 900 mutex_enter(&ufsvfsp->vfs_lock); 901 bno = dtogd(fs, bprev); 902 for (i = numfrags(fs, osize); i < frags; i++) { 903 if (isclr(blksfree, bno + i)) { 904 mutex_exit(&ufsvfsp->vfs_lock); 905 brelse(bp); 906 return (NULL); 907 } 908 if ((TRANS_ISCANCEL(ufsvfsp, ldbtob(fsbtodb(fs, bprev + i)), 909 fs->fs_fsize))) { 910 mutex_exit(&ufsvfsp->vfs_lock); 911 brelse(bp); 912 return (NULL); 913 } 914 } 915 916 cgp->cg_time = gethrestime_sec(); 917 /* 918 * The current fragment can be extended, 919 * deduct the count on fragment being extended into 920 * increase the count on the remaining fragment (if any) 921 * allocate the extended piece. 922 */ 923 for (i = frags; i < fs->fs_frag - bbase; i++) 924 if (isclr(blksfree, bno + i)) 925 break; 926 j = i - numfrags(fs, osize); 927 cgp->cg_frsum[j]--; 928 ASSERT(cgp->cg_frsum[j] >= 0); 929 if (i != frags) 930 cgp->cg_frsum[i - frags]++; 931 for (i = numfrags(fs, osize); i < frags; i++) { 932 clrbit(blksfree, bno + i); 933 cgp->cg_cs.cs_nffree--; 934 fs->fs_cs(fs, cg).cs_nffree--; 935 fs->fs_cstotal.cs_nffree--; 936 } 937 fs->fs_fmod = 1; 938 ufs_notclean(ufsvfsp); 939 TRANS_BUF(ufsvfsp, 0, fs->fs_cgsize, bp, DT_CG); 940 TRANS_SI(ufsvfsp, fs, cg); 941 bdrwrite(bp); 942 return ((daddr_t)bprev); 943 } 944 945 /* 946 * Determine whether a block can be allocated. 947 * 948 * Check to see if a block of the apprpriate size 949 * is available, and if it is, allocate it. 950 */ 951 static daddr_t 952 alloccg(struct inode *ip, int cg, daddr_t bpref, int size) 953 { 954 struct ufsvfs *ufsvfsp = ip->i_ufsvfs; 955 struct fs *fs = ip->i_fs; 956 struct buf *bp; 957 struct cg *cgp; 958 uchar_t *blksfree; 959 int bno, frags; 960 int allocsiz; 961 int i; 962 963 if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize) 964 return (0); 965 bp = UFS_BREAD(ufsvfsp, ip->i_dev, (daddr_t)fsbtodb(fs, cgtod(fs, cg)), 966 (int)fs->fs_cgsize); 967 968 cgp = bp->b_un.b_cg; 969 if (bp->b_flags & B_ERROR || !cg_chkmagic(cgp) || 970 (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize)) { 971 brelse(bp); 972 return (0); 973 } 974 blksfree = cg_blksfree(cgp); 975 mutex_enter(&ufsvfsp->vfs_lock); 976 cgp->cg_time = gethrestime_sec(); 977 if (size == fs->fs_bsize) { 978 if ((bno = alloccgblk(ufsvfsp, cgp, bpref, bp)) == 0) 979 goto errout; 980 fs->fs_fmod = 1; 981 ufs_notclean(ufsvfsp); 982 TRANS_SI(ufsvfsp, fs, cg); 983 bdrwrite(bp); 984 return (bno); 985 } 986 /* 987 * Check to see if any fragments are already available 988 * allocsiz is the size which will be allocated, hacking 989 * it down to a smaller size if necessary. 990 */ 991 frags = numfrags(fs, size); 992 for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++) 993 if (cgp->cg_frsum[allocsiz] != 0) 994 break; 995 996 if (allocsiz != fs->fs_frag) 997 bno = mapsearch(ufsvfsp, cgp, bpref, allocsiz); 998 999 if (allocsiz == fs->fs_frag || bno < 0) { 1000 /* 1001 * No fragments were available, so a block 1002 * will be allocated and hacked up. 1003 */ 1004 if (cgp->cg_cs.cs_nbfree == 0) 1005 goto errout; 1006 if ((bno = alloccgblk(ufsvfsp, cgp, bpref, bp)) == 0) 1007 goto errout; 1008 bpref = dtogd(fs, bno); 1009 for (i = frags; i < fs->fs_frag; i++) 1010 setbit(blksfree, bpref + i); 1011 i = fs->fs_frag - frags; 1012 cgp->cg_cs.cs_nffree += i; 1013 fs->fs_cstotal.cs_nffree += i; 1014 fs->fs_cs(fs, cg).cs_nffree += i; 1015 cgp->cg_frsum[i]++; 1016 fs->fs_fmod = 1; 1017 ufs_notclean(ufsvfsp); 1018 TRANS_SI(ufsvfsp, fs, cg); 1019 bdrwrite(bp); 1020 return (bno); 1021 } 1022 1023 for (i = 0; i < frags; i++) 1024 clrbit(blksfree, bno + i); 1025 cgp->cg_cs.cs_nffree -= frags; 1026 fs->fs_cstotal.cs_nffree -= frags; 1027 fs->fs_cs(fs, cg).cs_nffree -= frags; 1028 cgp->cg_frsum[allocsiz]--; 1029 ASSERT(cgp->cg_frsum[allocsiz] >= 0); 1030 if (frags != allocsiz) { 1031 cgp->cg_frsum[allocsiz - frags]++; 1032 } 1033 fs->fs_fmod = 1; 1034 ufs_notclean(ufsvfsp); 1035 TRANS_BUF(ufsvfsp, 0, fs->fs_cgsize, bp, DT_CG); 1036 TRANS_SI(ufsvfsp, fs, cg); 1037 bdrwrite(bp); 1038 return (cg * fs->fs_fpg + bno); 1039 errout: 1040 mutex_exit(&ufsvfsp->vfs_lock); 1041 brelse(bp); 1042 return (0); 1043 } 1044 1045 /* 1046 * Allocate a block in a cylinder group. 1047 * 1048 * This algorithm implements the following policy: 1049 * 1) allocate the requested block. 1050 * 2) allocate a rotationally optimal block in the same cylinder. 1051 * 3) allocate the next available block on the block rotor for the 1052 * specified cylinder group. 1053 * Note that this routine only allocates fs_bsize blocks; these 1054 * blocks may be fragmented by the routine that allocates them. 1055 */ 1056 static daddr_t 1057 alloccgblk( 1058 struct ufsvfs *ufsvfsp, 1059 struct cg *cgp, 1060 daddr_t bpref, 1061 struct buf *bp) 1062 { 1063 daddr_t bno; 1064 int cylno, pos, delta, rotbl_size; 1065 short *cylbp; 1066 int i; 1067 struct fs *fs; 1068 uchar_t *blksfree; 1069 daddr_t blkno, rpos, frag; 1070 short *blks; 1071 int32_t *blktot; 1072 1073 ASSERT(MUTEX_HELD(&ufsvfsp->vfs_lock)); 1074 fs = ufsvfsp->vfs_fs; 1075 blksfree = cg_blksfree(cgp); 1076 if (bpref == 0) { 1077 bpref = cgp->cg_rotor; 1078 goto norot; 1079 } 1080 bpref = blknum(fs, bpref); 1081 bpref = dtogd(fs, bpref); 1082 /* 1083 * If the requested block is available, use it. 1084 */ 1085 if (isblock(fs, blksfree, (daddr_t)fragstoblks(fs, bpref))) { 1086 bno = bpref; 1087 goto gotit; 1088 } 1089 /* 1090 * Check for a block available on the same cylinder. 1091 */ 1092 cylno = cbtocylno(fs, bpref); 1093 if (cg_blktot(cgp)[cylno] == 0) 1094 goto norot; 1095 if (fs->fs_cpc == 0) { 1096 /* 1097 * Block layout info is not available, so just 1098 * have to take any block in this cylinder. 1099 */ 1100 bpref = howmany(fs->fs_spc * cylno, NSPF(fs)); 1101 goto norot; 1102 } 1103 /* 1104 * Check the summary information to see if a block is 1105 * available in the requested cylinder starting at the 1106 * requested rotational position and proceeding around. 1107 */ 1108 cylbp = cg_blks(ufsvfsp, cgp, cylno); 1109 pos = cbtorpos(ufsvfsp, bpref); 1110 for (i = pos; i < ufsvfsp->vfs_nrpos; i++) 1111 if (cylbp[i] > 0) 1112 break; 1113 if (i == ufsvfsp->vfs_nrpos) 1114 for (i = 0; i < pos; i++) 1115 if (cylbp[i] > 0) 1116 break; 1117 if (cylbp[i] > 0) { 1118 /* 1119 * Found a rotational position, now find the actual 1120 * block. A "panic" if none is actually there. 1121 */ 1122 1123 /* 1124 * Up to this point, "pos" has referred to the rotational 1125 * position of the desired block. From now on, it holds 1126 * the offset of the current cylinder within a cylinder 1127 * cycle. (A cylinder cycle refers to a set of cylinders 1128 * which are described by a single rotational table; the 1129 * size of the cycle is fs_cpc.) 1130 * 1131 * bno is set to the block number of the first block within 1132 * the current cylinder cycle. 1133 */ 1134 1135 pos = cylno % fs->fs_cpc; 1136 bno = (cylno - pos) * fs->fs_spc / NSPB(fs); 1137 1138 /* 1139 * The blocks within a cylinder are grouped into equivalence 1140 * classes according to their "rotational position." There 1141 * are two tables used to determine these classes. 1142 * 1143 * The positional offset table (fs_postbl) has an entry for 1144 * each rotational position of each cylinder in a cylinder 1145 * cycle. This entry contains the relative block number 1146 * (counting from the start of the cylinder cycle) of the 1147 * first block in the equivalence class for that position 1148 * and that cylinder. Positions for which no blocks exist 1149 * are indicated by a -1. 1150 * 1151 * The rotational delta table (fs_rotbl) has an entry for 1152 * each block in a cylinder cycle. This entry contains 1153 * the offset from that block to the next block in the 1154 * same equivalence class. The last block in the class 1155 * is indicated by a zero in the table. 1156 * 1157 * The following code, then, walks through all of the blocks 1158 * in the cylinder (cylno) which we're allocating within 1159 * which are in the equivalence class for the rotational 1160 * position (i) which we're allocating within. 1161 */ 1162 1163 if (fs_postbl(ufsvfsp, pos)[i] == -1) { 1164 (void) ufs_fault(ufsvfsp->vfs_root, 1165 "alloccgblk: cyl groups corrupted, pos = %d, i = %d, fs = %s\n", 1166 pos, i, fs->fs_fsmnt); 1167 return (0); 1168 } 1169 1170 /* 1171 * There is one entry in the rotational table for each block 1172 * in the cylinder cycle. These are whole blocks, not frags. 1173 */ 1174 1175 rotbl_size = (fs->fs_cpc * fs->fs_spc) >> 1176 (fs->fs_fragshift + fs->fs_fsbtodb); 1177 1178 /* 1179 * As we start, "i" is the rotational position within which 1180 * we're searching. After the next line, it will be a block 1181 * number (relative to the start of the cylinder cycle) 1182 * within the equivalence class of that rotational position. 1183 */ 1184 1185 i = fs_postbl(ufsvfsp, pos)[i]; 1186 1187 for (;;) { 1188 if (isblock(fs, blksfree, (daddr_t)(bno + i))) { 1189 bno = blkstofrags(fs, (bno + i)); 1190 goto gotit; 1191 } 1192 delta = fs_rotbl(fs)[i]; 1193 if (delta <= 0 || /* End of chain, or */ 1194 delta + i > rotbl_size) /* end of table? */ 1195 break; /* If so, panic. */ 1196 i += delta; 1197 } 1198 (void) ufs_fault(ufsvfsp->vfs_root, 1199 "alloccgblk: can't find blk in cyl, pos:%d, i:%d, fs:%s bno: %x\n", 1200 pos, i, fs->fs_fsmnt, (int)bno); 1201 return (0); 1202 } 1203 norot: 1204 /* 1205 * No blocks in the requested cylinder, so take 1206 * next available one in this cylinder group. 1207 */ 1208 bno = mapsearch(ufsvfsp, cgp, bpref, (int)fs->fs_frag); 1209 if (bno < 0) 1210 return (0); 1211 cgp->cg_rotor = bno; 1212 gotit: 1213 blkno = fragstoblks(fs, bno); 1214 frag = (cgp->cg_cgx * fs->fs_fpg) + bno; 1215 if (TRANS_ISCANCEL(ufsvfsp, ldbtob(fsbtodb(fs, frag)), fs->fs_bsize)) 1216 goto norot; 1217 clrblock(fs, blksfree, (long)blkno); 1218 /* 1219 * the other cg/sb/si fields are TRANS'ed by the caller 1220 */ 1221 cgp->cg_cs.cs_nbfree--; 1222 fs->fs_cstotal.cs_nbfree--; 1223 fs->fs_cs(fs, cgp->cg_cgx).cs_nbfree--; 1224 cylno = cbtocylno(fs, bno); 1225 blks = cg_blks(ufsvfsp, cgp, cylno); 1226 rpos = cbtorpos(ufsvfsp, bno); 1227 blktot = cg_blktot(cgp); 1228 blks[rpos]--; 1229 blktot[cylno]--; 1230 TRANS_BUF(ufsvfsp, 0, fs->fs_cgsize, bp, DT_CG); 1231 fs->fs_fmod = 1; 1232 return (frag); 1233 } 1234 1235 /* 1236 * Determine whether an inode can be allocated. 1237 * 1238 * Check to see if an inode is available, and if it is, 1239 * allocate it using the following policy: 1240 * 1) allocate the requested inode. 1241 * 2) allocate the next available inode after the requested 1242 * inode in the specified cylinder group. 1243 */ 1244 static ino_t 1245 ialloccg(struct inode *ip, int cg, daddr_t ipref, int mode) 1246 { 1247 struct ufsvfs *ufsvfsp = ip->i_ufsvfs; 1248 struct fs *fs = ip->i_fs; 1249 struct cg *cgp; 1250 struct buf *bp; 1251 int start, len, loc, map, i; 1252 char *iused; 1253 1254 if (fs->fs_cs(fs, cg).cs_nifree == 0) 1255 return (0); 1256 bp = UFS_BREAD(ufsvfsp, ip->i_dev, (daddr_t)fsbtodb(fs, cgtod(fs, cg)), 1257 (int)fs->fs_cgsize); 1258 1259 cgp = bp->b_un.b_cg; 1260 if (bp->b_flags & B_ERROR || !cg_chkmagic(cgp) || 1261 cgp->cg_cs.cs_nifree == 0) { 1262 brelse(bp); 1263 return (0); 1264 } 1265 iused = cg_inosused(cgp); 1266 mutex_enter(&ufsvfsp->vfs_lock); 1267 /* 1268 * While we are waiting for the mutex, someone may have taken 1269 * the last available inode. Need to recheck. 1270 */ 1271 if (cgp->cg_cs.cs_nifree == 0) { 1272 mutex_exit(&ufsvfsp->vfs_lock); 1273 brelse(bp); 1274 return (0); 1275 } 1276 1277 cgp->cg_time = gethrestime_sec(); 1278 if (ipref) { 1279 ipref %= fs->fs_ipg; 1280 if (isclr(iused, ipref)) 1281 goto gotit; 1282 } 1283 start = cgp->cg_irotor / NBBY; 1284 len = howmany(fs->fs_ipg - cgp->cg_irotor, NBBY); 1285 loc = skpc(0xff, (uint_t)len, &iused[start]); 1286 if (loc == 0) { 1287 len = start + 1; 1288 start = 0; 1289 loc = skpc(0xff, (uint_t)len, &iused[0]); 1290 if (loc == 0) { 1291 mutex_exit(&ufsvfsp->vfs_lock); 1292 (void) ufs_fault(ITOV(ip), 1293 "ialloccg: map corrupted, cg = %d, irotor = %d, fs = %s\n", 1294 cg, (int)cgp->cg_irotor, fs->fs_fsmnt); 1295 return (0); 1296 } 1297 } 1298 i = start + len - loc; 1299 map = iused[i]; 1300 ipref = i * NBBY; 1301 for (i = 1; i < (1 << NBBY); i <<= 1, ipref++) { 1302 if ((map & i) == 0) { 1303 cgp->cg_irotor = ipref; 1304 goto gotit; 1305 } 1306 } 1307 1308 mutex_exit(&ufsvfsp->vfs_lock); 1309 (void) ufs_fault(ITOV(ip), "ialloccg: block not in mapfs = %s", 1310 fs->fs_fsmnt); 1311 return (0); 1312 gotit: 1313 setbit(iused, ipref); 1314 cgp->cg_cs.cs_nifree--; 1315 fs->fs_cstotal.cs_nifree--; 1316 fs->fs_cs(fs, cg).cs_nifree--; 1317 if (((mode & IFMT) == IFDIR) || ((mode & IFMT) == IFATTRDIR)) { 1318 cgp->cg_cs.cs_ndir++; 1319 fs->fs_cstotal.cs_ndir++; 1320 fs->fs_cs(fs, cg).cs_ndir++; 1321 } 1322 fs->fs_fmod = 1; 1323 ufs_notclean(ufsvfsp); 1324 TRANS_BUF(ufsvfsp, 0, fs->fs_cgsize, bp, DT_CG); 1325 TRANS_SI(ufsvfsp, fs, cg); 1326 bdrwrite(bp); 1327 return (cg * fs->fs_ipg + ipref); 1328 } 1329 1330 /* 1331 * Find a block of the specified size in the specified cylinder group. 1332 * 1333 * It is a panic if a request is made to find a block if none are 1334 * available. 1335 */ 1336 static daddr_t 1337 mapsearch(struct ufsvfs *ufsvfsp, struct cg *cgp, daddr_t bpref, 1338 int allocsiz) 1339 { 1340 struct fs *fs = ufsvfsp->vfs_fs; 1341 daddr_t bno, cfrag; 1342 int start, len, loc, i, last, first, secondtime; 1343 int blk, field, subfield, pos; 1344 int gotit; 1345 1346 /* 1347 * ufsvfs->vfs_lock is held when calling this. 1348 */ 1349 /* 1350 * Find the fragment by searching through the 1351 * free block map for an appropriate bit pattern. 1352 */ 1353 if (bpref) 1354 start = dtogd(fs, bpref) / NBBY; 1355 else 1356 start = cgp->cg_frotor / NBBY; 1357 /* 1358 * the following loop performs two scans -- the first scan 1359 * searches the bottom half of the array for a match and the 1360 * second scan searches the top half of the array. The loops 1361 * have been merged just to make things difficult. 1362 */ 1363 first = start; 1364 last = howmany(fs->fs_fpg, NBBY); 1365 secondtime = 0; 1366 cfrag = cgp->cg_cgx * fs->fs_fpg; 1367 while (first < last) { 1368 len = last - first; 1369 /* 1370 * search the array for a match 1371 */ 1372 loc = scanc((unsigned)len, (uchar_t *)&cg_blksfree(cgp)[first], 1373 (uchar_t *)fragtbl[fs->fs_frag], 1374 (int)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY)))); 1375 /* 1376 * match found 1377 */ 1378 if (loc) { 1379 bno = (last - loc) * NBBY; 1380 1381 /* 1382 * Found the byte in the map, sift 1383 * through the bits to find the selected frag 1384 */ 1385 cgp->cg_frotor = bno; 1386 gotit = 0; 1387 for (i = bno + NBBY; bno < i; bno += fs->fs_frag) { 1388 blk = blkmap(fs, cg_blksfree(cgp), bno); 1389 blk <<= 1; 1390 field = around[allocsiz]; 1391 subfield = inside[allocsiz]; 1392 for (pos = 0; 1393 pos <= fs->fs_frag - allocsiz; 1394 pos++) { 1395 if ((blk & field) == subfield) { 1396 gotit++; 1397 break; 1398 } 1399 field <<= 1; 1400 subfield <<= 1; 1401 } 1402 if (gotit) 1403 break; 1404 } 1405 bno += pos; 1406 1407 /* 1408 * success if block is *not* being converted from 1409 * metadata into userdata (harpy). If so, ignore. 1410 */ 1411 if (!TRANS_ISCANCEL(ufsvfsp, 1412 ldbtob(fsbtodb(fs, (cfrag+bno))), 1413 allocsiz * fs->fs_fsize)) 1414 return (bno); 1415 /* 1416 * keep looking -- this block is being converted 1417 */ 1418 first = (last - loc) + 1; 1419 loc = 0; 1420 if (first < last) 1421 continue; 1422 } 1423 /* 1424 * no usable matches in bottom half -- now search the top half 1425 */ 1426 if (secondtime) 1427 /* 1428 * no usable matches in top half -- all done 1429 */ 1430 break; 1431 secondtime = 1; 1432 last = start + 1; 1433 first = 0; 1434 } 1435 /* 1436 * no usable matches 1437 */ 1438 return ((daddr_t)-1); 1439 } 1440 1441 #define UFSNADDR (NDADDR + NIADDR) /* NADDR applies to (obsolete) S5FS */ 1442 #define IB(i) (NDADDR + (i)) /* index of i'th indirect block ptr */ 1443 #define SINGLE 0 /* single indirect block ptr */ 1444 #define DOUBLE 1 /* double indirect block ptr */ 1445 #define TRIPLE 2 /* triple indirect block ptr */ 1446 1447 /* 1448 * Free storage space associated with the specified inode. The portion 1449 * to be freed is specified by lp->l_start and lp->l_len (already 1450 * normalized to a "whence" of 0). 1451 * 1452 * This is an experimental facility whose continued existence is not 1453 * guaranteed. Currently, we only support the special case 1454 * of l_len == 0, meaning free to end of file. 1455 * 1456 * Blocks are freed in reverse order. This FILO algorithm will tend to 1457 * maintain a contiguous free list much longer than FIFO. 1458 * See also ufs_itrunc() in ufs_inode.c. 1459 * 1460 * Bug: unused bytes in the last retained block are not cleared. 1461 * This may result in a "hole" in the file that does not read as zeroes. 1462 */ 1463 /* ARGSUSED */ 1464 int 1465 ufs_freesp(struct vnode *vp, struct flock64 *lp, int flag, cred_t *cr) 1466 { 1467 int i; 1468 struct inode *ip = VTOI(vp); 1469 int error; 1470 1471 ASSERT(vp->v_type == VREG); 1472 ASSERT(lp->l_start >= 0); /* checked by convoff */ 1473 1474 if (lp->l_len != 0) 1475 return (EINVAL); 1476 1477 rw_enter(&ip->i_contents, RW_READER); 1478 if (ip->i_size == (u_offset_t)lp->l_start) { 1479 rw_exit(&ip->i_contents); 1480 return (0); 1481 } 1482 1483 /* 1484 * Check if there is any active mandatory lock on the 1485 * range that will be truncated/expanded. 1486 */ 1487 if (MANDLOCK(vp, ip->i_mode)) { 1488 offset_t save_start; 1489 1490 save_start = lp->l_start; 1491 1492 if (ip->i_size < lp->l_start) { 1493 /* 1494 * "Truncate up" case: need to make sure there 1495 * is no lock beyond current end-of-file. To 1496 * do so, we need to set l_start to the size 1497 * of the file temporarily. 1498 */ 1499 lp->l_start = ip->i_size; 1500 } 1501 lp->l_type = F_WRLCK; 1502 lp->l_sysid = 0; 1503 lp->l_pid = ttoproc(curthread)->p_pid; 1504 i = (flag & (FNDELAY|FNONBLOCK)) ? 0 : SLPFLCK; 1505 rw_exit(&ip->i_contents); 1506 if ((i = reclock(vp, lp, i, 0, lp->l_start, NULL)) != 0 || 1507 lp->l_type != F_UNLCK) { 1508 return (i ? i : EAGAIN); 1509 } 1510 rw_enter(&ip->i_contents, RW_READER); 1511 1512 lp->l_start = save_start; 1513 } 1514 1515 /* 1516 * Make sure a write isn't in progress (allocating blocks) 1517 * by acquiring i_rwlock (we promised ufs_bmap we wouldn't 1518 * truncate while it was allocating blocks). 1519 * Grab the locks in the right order. 1520 */ 1521 rw_exit(&ip->i_contents); 1522 rw_enter(&ip->i_rwlock, RW_WRITER); 1523 error = TRANS_ITRUNC(ip, (u_offset_t)lp->l_start, 0, cr); 1524 rw_exit(&ip->i_rwlock); 1525 return (error); 1526 } 1527 1528 /* 1529 * Find a cg with as close to nb contiguous bytes as possible 1530 * THIS MAY TAKE MANY DISK READS! 1531 * 1532 * Implemented in an attempt to allocate contiguous blocks for 1533 * writing the ufs log file to, minimizing future disk head seeking 1534 */ 1535 daddr_t 1536 contigpref(ufsvfs_t *ufsvfsp, size_t nb) 1537 { 1538 struct fs *fs = ufsvfsp->vfs_fs; 1539 daddr_t nblk = lblkno(fs, blkroundup(fs, nb)); 1540 daddr_t savebno, curbno, cgbno; 1541 int cg, cgblks, savecg, savenblk, curnblk; 1542 uchar_t *blksfree; 1543 buf_t *bp; 1544 struct cg *cgp; 1545 1546 savenblk = 0; 1547 savecg = 0; 1548 savebno = 0; 1549 for (cg = 0; cg < fs->fs_ncg; ++cg) { 1550 1551 /* not enough free blks for a contig check */ 1552 if (fs->fs_cs(fs, cg).cs_nbfree < nblk) 1553 continue; 1554 1555 /* 1556 * find the largest contiguous range in this cg 1557 */ 1558 bp = UFS_BREAD(ufsvfsp, ufsvfsp->vfs_dev, 1559 (daddr_t)fsbtodb(fs, cgtod(fs, cg)), 1560 (int)fs->fs_cgsize); 1561 cgp = bp->b_un.b_cg; 1562 if (bp->b_flags & B_ERROR || !cg_chkmagic(cgp)) { 1563 brelse(bp); 1564 continue; 1565 } 1566 blksfree = cg_blksfree(cgp); /* free array */ 1567 cgblks = fragstoblks(fs, fs->fs_fpg); /* blks in free array */ 1568 cgbno = 0; 1569 while (cgbno < cgblks && savenblk < nblk) { 1570 /* find a free block */ 1571 for (; cgbno < cgblks; ++cgbno) 1572 if (isblock(fs, blksfree, cgbno)) 1573 break; 1574 curbno = cgbno; 1575 /* count the number of free blocks */ 1576 for (curnblk = 0; cgbno < cgblks; ++cgbno) { 1577 if (!isblock(fs, blksfree, cgbno)) 1578 break; 1579 if (++curnblk >= nblk) 1580 break; 1581 } 1582 if (curnblk > savenblk) { 1583 savecg = cg; 1584 savenblk = curnblk; 1585 savebno = curbno; 1586 } 1587 } 1588 brelse(bp); 1589 if (savenblk >= nblk) 1590 break; 1591 } 1592 1593 /* convert block offset in cg to frag offset in cg */ 1594 savebno = blkstofrags(fs, savebno); 1595 1596 /* convert frag offset in cg to frag offset in fs */ 1597 savebno += (savecg * fs->fs_fpg); 1598 1599 return (savebno); 1600 } 1601