1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License, Version 1.0 only 6 * (the "License"). You may not use this file except in compliance 7 * with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or http://www.opensolaris.org/os/licensing. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 */ 22 /* 23 * Copyright 2005 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 /* Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989 AT&T */ 28 /* All Rights Reserved */ 29 30 /* 31 * University Copyright- Copyright (c) 1982, 1986, 1988 32 * The Regents of the University of California 33 * All Rights Reserved 34 * 35 * University Acknowledgment- Portions of this document are derived from 36 * software developed by the University of California, Berkeley, and its 37 * contributors. 38 */ 39 40 41 #pragma ident "%Z%%M% %I% %E% SMI" 42 43 #include <sys/types.h> 44 #include <sys/t_lock.h> 45 #include <sys/debug.h> 46 #include <sys/param.h> 47 #include <sys/systm.h> 48 #include <sys/signal.h> 49 #include <sys/cred.h> 50 #include <sys/proc.h> 51 #include <sys/disp.h> 52 #include <sys/user.h> 53 #include <sys/buf.h> 54 #include <sys/vfs.h> 55 #include <sys/vnode.h> 56 #include <sys/acl.h> 57 #include <sys/fs/ufs_fs.h> 58 #include <sys/fs/ufs_inode.h> 59 #include <sys/fs/ufs_acl.h> 60 #include <sys/fs/ufs_bio.h> 61 #include <sys/fs/ufs_quota.h> 62 #include <sys/kmem.h> 63 #include <sys/fs/ufs_trans.h> 64 #include <sys/fs/ufs_panic.h> 65 #include <sys/errno.h> 66 #include <sys/time.h> 67 #include <sys/sysmacros.h> 68 #include <sys/file.h> 69 #include <sys/fcntl.h> 70 #include <sys/flock.h> 71 #include <fs/fs_subr.h> 72 #include <sys/cmn_err.h> 73 #include <sys/policy.h> 74 75 static ino_t hashalloc(); 76 static daddr_t fragextend(); 77 static daddr_t alloccg(); 78 static daddr_t alloccgblk(); 79 static ino_t ialloccg(); 80 static daddr_t mapsearch(); 81 82 extern int inside[], around[]; 83 extern uchar_t *fragtbl[]; 84 void delay(); 85 86 /* 87 * Allocate a block in the file system. 88 * 89 * The size of the requested block is given, which must be some 90 * multiple of fs_fsize and <= fs_bsize. 91 * A preference may be optionally specified. If a preference is given 92 * the following hierarchy is used to allocate a block: 93 * 1) allocate the requested block. 94 * 2) allocate a rotationally optimal block in the same cylinder. 95 * 3) allocate a block in the same cylinder group. 96 * 4) quadratically rehash into other cylinder groups, until an 97 * available block is located. 98 * If no block preference is given the following hierarchy is used 99 * to allocate a block: 100 * 1) allocate a block in the cylinder group that contains the 101 * inode for the file. 102 * 2) quadratically rehash into other cylinder groups, until an 103 * available block is located. 104 */ 105 int 106 alloc(struct inode *ip, daddr_t bpref, int size, daddr_t *bnp, cred_t *cr) 107 { 108 struct fs *fs; 109 struct ufsvfs *ufsvfsp; 110 daddr_t bno; 111 int cg; 112 int err; 113 char *errmsg = NULL; 114 size_t len; 115 116 ufsvfsp = ip->i_ufsvfs; 117 fs = ufsvfsp->vfs_fs; 118 if ((unsigned)size > fs->fs_bsize || fragoff(fs, size) != 0) { 119 err = ufs_fault(ITOV(ip), 120 "alloc: bad size, dev = 0x%lx, bsize = %d, size = %d, fs = %s\n", 121 ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt); 122 return (err); 123 } 124 if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0) 125 goto nospace; 126 if (freespace(fs, ufsvfsp) <= 0 && 127 secpolicy_fs_minfree(cr, ufsvfsp->vfs_vfs) != 0) 128 goto nospace; 129 err = chkdq(ip, (long)btodb(size), 0, cr, &errmsg, &len); 130 /* Note that may not have err, but may have errmsg */ 131 if (errmsg != NULL) { 132 uprintf(errmsg); 133 kmem_free(errmsg, len); 134 errmsg = NULL; 135 } 136 if (err) 137 return (err); 138 if (bpref >= fs->fs_size) 139 bpref = 0; 140 if (bpref == 0) 141 cg = (int)itog(fs, ip->i_number); 142 else 143 cg = dtog(fs, bpref); 144 145 bno = (daddr_t)hashalloc(ip, cg, (long)bpref, size, 146 (ulong_t (*)())alloccg); 147 if (bno > 0) { 148 *bnp = bno; 149 return (0); 150 } 151 152 /* 153 * hashalloc() failed because some other thread grabbed 154 * the last block so unwind the quota operation. We can 155 * ignore the return because subtractions don't fail and 156 * size is guaranteed to be >= zero by our caller. 157 */ 158 (void) chkdq(ip, -(long)btodb(size), 0, cr, (char **)NULL, 159 (size_t *)NULL); 160 161 nospace: 162 mutex_enter(&ufsvfsp->vfs_lock); 163 if ((lbolt - ufsvfsp->vfs_lastwhinetime) > (hz << 2) && 164 (!(TRANS_ISTRANS(ufsvfsp)) || !(ip->i_flag & IQUIET))) { 165 ufsvfsp->vfs_lastwhinetime = lbolt; 166 cmn_err(CE_NOTE, "alloc: %s: file system full", fs->fs_fsmnt); 167 } 168 mutex_exit(&ufsvfsp->vfs_lock); 169 return (ENOSPC); 170 } 171 172 /* 173 * Reallocate a fragment to a bigger size 174 * 175 * The number and size of the old block is given, and a preference 176 * and new size is also specified. The allocator attempts to extend 177 * the original block. Failing that, the regular block allocator is 178 * invoked to get an appropriate block. 179 */ 180 int 181 realloccg(struct inode *ip, daddr_t bprev, daddr_t bpref, int osize, 182 int nsize, daddr_t *bnp, cred_t *cr) 183 { 184 daddr_t bno; 185 struct fs *fs; 186 struct ufsvfs *ufsvfsp; 187 int cg, request; 188 int err; 189 char *errmsg = NULL; 190 size_t len; 191 192 ufsvfsp = ip->i_ufsvfs; 193 fs = ufsvfsp->vfs_fs; 194 if ((unsigned)osize > fs->fs_bsize || fragoff(fs, osize) != 0 || 195 (unsigned)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) { 196 err = ufs_fault(ITOV(ip), 197 "realloccg: bad size, dev=0x%lx, bsize=%d, osize=%d, nsize=%d, fs=%s\n", 198 ip->i_dev, fs->fs_bsize, osize, nsize, 199 fs->fs_fsmnt); 200 return (err); 201 } 202 if (freespace(fs, ufsvfsp) <= 0 && 203 secpolicy_fs_minfree(cr, ufsvfsp->vfs_vfs) != 0) 204 goto nospace; 205 if (bprev == 0) { 206 err = ufs_fault(ITOV(ip), 207 "realloccg: bad bprev, dev = 0x%lx, bsize = %d, bprev = %ld, fs = %s\n", 208 ip->i_dev, fs->fs_bsize, bprev, 209 fs->fs_fsmnt); 210 return (err); 211 } 212 err = chkdq(ip, (long)btodb(nsize - osize), 0, cr, &errmsg, &len); 213 /* Note that may not have err, but may have errmsg */ 214 if (errmsg != NULL) { 215 uprintf(errmsg); 216 kmem_free(errmsg, len); 217 errmsg = NULL; 218 } 219 if (err) 220 return (err); 221 cg = dtog(fs, bprev); 222 bno = fragextend(ip, cg, (long)bprev, osize, nsize); 223 if (bno != 0) { 224 *bnp = bno; 225 return (0); 226 } 227 if (bpref >= fs->fs_size) 228 bpref = 0; 229 230 /* 231 * When optimizing for time we allocate a full block and 232 * then only use the upper portion for this request. When 233 * this file grows again it will grow into the unused portion 234 * of the block (See fragextend() above). This saves time 235 * because an extra disk write would be needed if the frags 236 * following the current allocation were not free. The extra 237 * disk write is needed to move the data from its current 238 * location into the newly allocated position. 239 * 240 * When optimizing for space we allocate a run of frags 241 * that is just the right size for this request. 242 */ 243 request = (fs->fs_optim == FS_OPTTIME) ? fs->fs_bsize : nsize; 244 bno = (daddr_t)hashalloc(ip, cg, (long)bpref, request, 245 (ulong_t (*)())alloccg); 246 if (bno > 0) { 247 *bnp = bno; 248 if (nsize < request) 249 (void) free(ip, bno + numfrags(fs, nsize), 250 (off_t)(request - nsize), I_NOCANCEL); 251 return (0); 252 } 253 254 /* 255 * hashalloc() failed because some other thread grabbed 256 * the last block so unwind the quota operation. We can 257 * ignore the return because subtractions don't fail, and 258 * our caller guarantees nsize >= osize. 259 */ 260 (void) chkdq(ip, -(long)btodb(nsize - osize), 0, cr, (char **)NULL, 261 (size_t *)NULL); 262 263 nospace: 264 mutex_enter(&ufsvfsp->vfs_lock); 265 if ((lbolt - ufsvfsp->vfs_lastwhinetime) > (hz << 2) && 266 (!(TRANS_ISTRANS(ufsvfsp)) || !(ip->i_flag & IQUIET))) { 267 ufsvfsp->vfs_lastwhinetime = lbolt; 268 cmn_err(CE_NOTE, 269 "realloccg %s: file system full", fs->fs_fsmnt); 270 } 271 mutex_exit(&ufsvfsp->vfs_lock); 272 return (ENOSPC); 273 } 274 275 /* 276 * Allocate an inode in the file system. 277 * 278 * A preference may be optionally specified. If a preference is given 279 * the following hierarchy is used to allocate an inode: 280 * 1) allocate the requested inode. 281 * 2) allocate an inode in the same cylinder group. 282 * 3) quadratically rehash into other cylinder groups, until an 283 * available inode is located. 284 * If no inode preference is given the following hierarchy is used 285 * to allocate an inode: 286 * 1) allocate an inode in cylinder group 0. 287 * 2) quadratically rehash into other cylinder groups, until an 288 * available inode is located. 289 */ 290 int 291 ufs_ialloc(struct inode *pip, 292 ino_t ipref, mode_t mode, struct inode **ipp, cred_t *cr) 293 { 294 struct inode *ip; 295 struct fs *fs; 296 int cg; 297 ino_t ino; 298 int err; 299 int nifree; 300 struct ufsvfs *ufsvfsp = pip->i_ufsvfs; 301 char *errmsg = NULL; 302 size_t len; 303 304 ASSERT(RW_WRITE_HELD(&pip->i_rwlock)); 305 fs = pip->i_fs; 306 loop: 307 nifree = fs->fs_cstotal.cs_nifree; 308 309 if (nifree == 0) 310 goto noinodes; 311 /* 312 * Shadow inodes don't count against a user's inode allocation. 313 * They are an implementation method and not a resource. 314 */ 315 if ((mode != IFSHAD) && (mode != IFATTRDIR)) { 316 err = chkiq((struct ufsvfs *)ITOV(pip)->v_vfsp->vfs_data, 317 /* change */ 1, (struct inode *)NULL, crgetuid(cr), 0, 318 cr, &errmsg, &len); 319 /* 320 * As we haven't acquired any locks yet, dump the message 321 * now. 322 */ 323 if (errmsg != NULL) { 324 uprintf(errmsg); 325 kmem_free(errmsg, len); 326 errmsg = NULL; 327 } 328 if (err) 329 return (err); 330 } 331 332 if (ipref >= (ulong_t)(fs->fs_ncg * fs->fs_ipg)) 333 ipref = 0; 334 cg = (int)itog(fs, ipref); 335 ino = (ino_t)hashalloc(pip, cg, (long)ipref, (int)mode, 336 (ulong_t (*)())ialloccg); 337 if (ino == 0) { 338 if ((mode != IFSHAD) && (mode != IFATTRDIR)) { 339 /* 340 * We can safely ignore the return from chkiq() 341 * because deallocations can only fail if we 342 * can't get the user's quota info record off 343 * the disk due to an I/O error. In that case, 344 * the quota subsystem is already messed up. 345 */ 346 (void) chkiq(ufsvfsp, /* change */ -1, 347 (struct inode *)NULL, crgetuid(cr), 0, cr, 348 (char **)NULL, (size_t *)NULL); 349 } 350 goto noinodes; 351 } 352 err = ufs_iget(pip->i_vfs, ino, ipp, cr); 353 if (err) { 354 if ((mode != IFSHAD) && (mode != IFATTRDIR)) { 355 /* 356 * See above comment about why it is safe to ignore an 357 * error return here. 358 */ 359 (void) chkiq(ufsvfsp, /* change */ -1, 360 (struct inode *)NULL, crgetuid(cr), 0, cr, 361 (char **)NULL, (size_t *)NULL); 362 } 363 ufs_ifree(pip, ino, 0); 364 return (err); 365 } 366 ip = *ipp; 367 ASSERT(!ip->i_ufs_acl); 368 ASSERT(!ip->i_dquot); 369 rw_enter(&ip->i_contents, RW_WRITER); 370 371 /* 372 * Check if we really got a free inode, if not then complain 373 * and mark the inode ISTALE so that it will be freed by the 374 * ufs idle thread eventually and will not be sent to ufs_delete(). 375 */ 376 if (ip->i_mode || (ip->i_nlink > 0)) { 377 ip->i_flag |= ISTALE; 378 rw_exit(&ip->i_contents); 379 VN_RELE(ITOV(ip)); 380 cmn_err(CE_WARN, 381 "%s: unexpected allocated inode %d, run fsck(1M)%s", 382 fs->fs_fsmnt, (int)ino, 383 (TRANS_ISTRANS(ufsvfsp) ? " -o f" : "")); 384 goto loop; 385 } 386 387 /* 388 * Check the inode has no size or data blocks. 389 * This could have happened if the truncation failed when 390 * deleting the inode. It used to be possible for this to occur 391 * if a block allocation failed when iteratively truncating a 392 * large file using logging and with a full file system. 393 * This was fixed with bug fix 4348738. However, truncation may 394 * still fail on an IO error. So in all cases for safety and 395 * security we clear out the size; the blocks allocated; and 396 * pointers to the blocks. This will ultimately cause a fsck 397 * error of un-accounted for blocks, but its a fairly benign error, 398 * and possibly the correct thing to do anyway as accesssing those 399 * blocks agains may lead to more IO errors. 400 */ 401 if (ip->i_size || ip->i_blocks) { 402 int i; 403 404 if (ip->i_size) { 405 cmn_err(CE_WARN, 406 "%s: free inode %d had size 0x%llx, run fsck(1M)%s", 407 fs->fs_fsmnt, (int)ino, ip->i_size, 408 (TRANS_ISTRANS(ufsvfsp) ? " -o f" : "")); 409 } 410 /* 411 * Clear any garbage left behind. 412 */ 413 ip->i_size = (u_offset_t)0; 414 ip->i_blocks = 0; 415 for (i = 0; i < NDADDR; i++) 416 ip->i_db[i] = 0; 417 for (i = 0; i < NIADDR; i++) 418 ip->i_ib[i] = 0; 419 } 420 421 /* 422 * Initialize the link count 423 */ 424 ip->i_nlink = 0; 425 426 /* 427 * Clear the old flags 428 */ 429 ip->i_flag &= IREF; 430 431 /* 432 * Access times are not really defined if the fs is mounted 433 * with 'noatime'. But it can cause nfs clients to fail 434 * open() if the atime is not a legal value. Set a legal value 435 * here when the inode is allocated. 436 */ 437 if (ufsvfsp->vfs_noatime) { 438 mutex_enter(&ufs_iuniqtime_lock); 439 ip->i_atime = iuniqtime; 440 mutex_exit(&ufs_iuniqtime_lock); 441 } 442 rw_exit(&ip->i_contents); 443 return (0); 444 noinodes: 445 if (!(TRANS_ISTRANS(ufsvfsp)) || !(pip->i_flag & IQUIET)) 446 cmn_err(CE_NOTE, "%s: out of inodes\n", fs->fs_fsmnt); 447 return (ENOSPC); 448 } 449 450 /* 451 * Find a cylinder group to place a directory. 452 * Returns an inumber within the selected cylinder group. 453 * Note, the vfs_lock is not needed as we don't require exact cg summary info. 454 * 455 * If the switch ufs_close_dirs is set, then the policy is to use 456 * the current cg if it has more than 25% free inodes and more 457 * than 25% free blocks. Otherwise the cgs are searched from 458 * the beginning and the first cg with the same criteria is 459 * used. If that is also null then we revert to the old algorithm. 460 * This tends to cluster files at the beginning of the disk 461 * until the disk gets full. 462 * 463 * Otherwise if ufs_close_dirs is not set then the original policy is 464 * used which is to select from among those cylinder groups with 465 * above the average number of free inodes, the one with the smallest 466 * number of directories. 467 */ 468 469 int ufs_close_dirs = 1; /* allocate directories close as possible */ 470 471 ino_t 472 dirpref(inode_t *dp) 473 { 474 int cg, minndir, mincg, avgifree, mininode, minbpg, ifree; 475 struct fs *fs = dp->i_fs; 476 477 cg = itog(fs, dp->i_number); 478 mininode = fs->fs_ipg >> 2; 479 minbpg = fs->fs_maxbpg >> 2; 480 if (ufs_close_dirs && 481 (fs->fs_cs(fs, cg).cs_nifree > mininode) && 482 (fs->fs_cs(fs, cg).cs_nbfree > minbpg)) { 483 return (dp->i_number); 484 } 485 486 avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg; 487 minndir = fs->fs_ipg; 488 mincg = 0; 489 for (cg = 0; cg < fs->fs_ncg; cg++) { 490 ifree = fs->fs_cs(fs, cg).cs_nifree; 491 if (ufs_close_dirs && 492 (ifree > mininode) && 493 (fs->fs_cs(fs, cg).cs_nbfree > minbpg)) { 494 return ((ino_t)(fs->fs_ipg * cg)); 495 } 496 if ((fs->fs_cs(fs, cg).cs_ndir < minndir) && 497 (ifree >= avgifree)) { 498 mincg = cg; 499 minndir = fs->fs_cs(fs, cg).cs_ndir; 500 } 501 } 502 return ((ino_t)(fs->fs_ipg * mincg)); 503 } 504 505 /* 506 * Select the desired position for the next block in a file. The file is 507 * logically divided into sections. The first section is composed of the 508 * direct blocks. Each additional section contains fs_maxbpg blocks. 509 * 510 * If no blocks have been allocated in the first section, the policy is to 511 * request a block in the same cylinder group as the inode that describes 512 * the file. If no blocks have been allocated in any other section, the 513 * policy is to place the section in a cylinder group with a greater than 514 * average number of free blocks. An appropriate cylinder group is found 515 * by using a rotor that sweeps the cylinder groups. When a new group of 516 * blocks is needed, the sweep begins in the cylinder group following the 517 * cylinder group from which the previous allocation was made. The sweep 518 * continues until a cylinder group with greater than the average number 519 * of free blocks is found. If the allocation is for the first block in an 520 * indirect block, the information on the previous allocation is unavailable; 521 * here a best guess is made based upon the logical block number being 522 * allocated. 523 * 524 * If a section is already partially allocated, the policy is to 525 * contiguously allocate fs_maxcontig blocks. The end of one of these 526 * contiguous blocks and the beginning of the next is physically separated 527 * so that the disk head will be in transit between them for at least 528 * fs_rotdelay milliseconds. This is to allow time for the processor to 529 * schedule another I/O transfer. 530 */ 531 daddr_t 532 blkpref(struct inode *ip, daddr_t lbn, int indx, daddr32_t *bap) 533 { 534 struct fs *fs; 535 struct ufsvfs *ufsvfsp; 536 int cg; 537 int avgbfree, startcg; 538 daddr_t nextblk; 539 540 ufsvfsp = ip->i_ufsvfs; 541 fs = ip->i_fs; 542 if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) { 543 if (lbn < NDADDR) { 544 cg = itog(fs, ip->i_number); 545 return (fs->fs_fpg * cg + fs->fs_frag); 546 } 547 /* 548 * Find a cylinder with greater than average 549 * number of unused data blocks. 550 */ 551 if (indx == 0 || bap[indx - 1] == 0) 552 startcg = itog(fs, ip->i_number) + lbn / fs->fs_maxbpg; 553 else 554 startcg = dtog(fs, bap[indx - 1]) + 1; 555 startcg %= fs->fs_ncg; 556 557 mutex_enter(&ufsvfsp->vfs_lock); 558 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg; 559 /* 560 * used for computing log space for writes/truncs 561 */ 562 ufsvfsp->vfs_avgbfree = avgbfree; 563 for (cg = startcg; cg < fs->fs_ncg; cg++) 564 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 565 fs->fs_cgrotor = cg; 566 mutex_exit(&ufsvfsp->vfs_lock); 567 return (fs->fs_fpg * cg + fs->fs_frag); 568 } 569 for (cg = 0; cg <= startcg; cg++) 570 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 571 fs->fs_cgrotor = cg; 572 mutex_exit(&ufsvfsp->vfs_lock); 573 return (fs->fs_fpg * cg + fs->fs_frag); 574 } 575 mutex_exit(&ufsvfsp->vfs_lock); 576 return (NULL); 577 } 578 /* 579 * One or more previous blocks have been laid out. If less 580 * than fs_maxcontig previous blocks are contiguous, the 581 * next block is requested contiguously, otherwise it is 582 * requested rotationally delayed by fs_rotdelay milliseconds. 583 */ 584 nextblk = bap[indx - 1] + fs->fs_frag; 585 if (indx > fs->fs_maxcontig && 586 bap[indx - fs->fs_maxcontig] + blkstofrags(fs, fs->fs_maxcontig) 587 != nextblk) 588 return (nextblk); 589 if (fs->fs_rotdelay != 0) 590 /* 591 * Here we convert ms of delay to frags as: 592 * (frags) = (ms) * (rev/sec) * (sect/rev) / 593 * ((sect/frag) * (ms/sec)) 594 * then round up to the next block. 595 */ 596 nextblk += roundup(fs->fs_rotdelay * fs->fs_rps * fs->fs_nsect / 597 (NSPF(fs) * 1000), fs->fs_frag); 598 return (nextblk); 599 } 600 601 /* 602 * Free a block or fragment. 603 * 604 * The specified block or fragment is placed back in the 605 * free map. If a fragment is deallocated, a possible 606 * block reassembly is checked. 607 */ 608 void 609 free(struct inode *ip, daddr_t bno, off_t size, int flags) 610 { 611 struct fs *fs = ip->i_fs; 612 struct ufsvfs *ufsvfsp = ip->i_ufsvfs; 613 struct cg *cgp; 614 struct buf *bp; 615 int cg, bmap, bbase; 616 int i; 617 uchar_t *blksfree; 618 int *blktot; 619 short *blks; 620 daddr_t blkno, cylno, rpos; 621 622 if ((unsigned long)size > fs->fs_bsize || fragoff(fs, size) != 0) { 623 (void) ufs_fault(ITOV(ip), 624 "free: bad size, dev = 0x%lx, bsize = %d, size = %d, fs = %s\n", 625 ip->i_dev, fs->fs_bsize, (int)size, fs->fs_fsmnt); 626 return; 627 } 628 cg = dtog(fs, bno); 629 ASSERT(!ufs_badblock(ip, bno)); 630 bp = UFS_BREAD(ufsvfsp, ip->i_dev, (daddr_t)fsbtodb(fs, cgtod(fs, cg)), 631 (int)fs->fs_cgsize); 632 633 cgp = bp->b_un.b_cg; 634 if (bp->b_flags & B_ERROR || !cg_chkmagic(cgp)) { 635 brelse(bp); 636 return; 637 } 638 639 if (!(flags & I_NOCANCEL)) 640 TRANS_CANCEL(ufsvfsp, ldbtob(fsbtodb(fs, bno)), size, flags); 641 if (flags & (I_DIR|I_IBLK|I_SHAD|I_QUOTA)) { 642 TRANS_MATA_FREE(ufsvfsp, ldbtob(fsbtodb(fs, bno)), size); 643 } 644 blksfree = cg_blksfree(cgp); 645 blktot = cg_blktot(cgp); 646 mutex_enter(&ufsvfsp->vfs_lock); 647 cgp->cg_time = gethrestime_sec(); 648 bno = dtogd(fs, bno); 649 if (size == fs->fs_bsize) { 650 blkno = fragstoblks(fs, bno); 651 cylno = cbtocylno(fs, bno); 652 rpos = cbtorpos(ufsvfsp, bno); 653 blks = cg_blks(ufsvfsp, cgp, cylno); 654 if (!isclrblock(fs, blksfree, blkno)) { 655 mutex_exit(&ufsvfsp->vfs_lock); 656 brelse(bp); 657 (void) ufs_fault(ITOV(ip), "free: freeing free block, " 658 "dev:0x%lx, block:%ld, ino:%lu, fs:%s", 659 ip->i_dev, bno, ip->i_number, fs->fs_fsmnt); 660 return; 661 } 662 setblock(fs, blksfree, blkno); 663 blks[rpos]++; 664 blktot[cylno]++; 665 cgp->cg_cs.cs_nbfree++; /* Log below */ 666 fs->fs_cstotal.cs_nbfree++; 667 fs->fs_cs(fs, cg).cs_nbfree++; 668 } else { 669 bbase = bno - fragnum(fs, bno); 670 /* 671 * Decrement the counts associated with the old frags 672 */ 673 bmap = blkmap(fs, blksfree, bbase); 674 fragacct(fs, bmap, cgp->cg_frsum, -1); 675 /* 676 * Deallocate the fragment 677 */ 678 for (i = 0; i < numfrags(fs, size); i++) { 679 if (isset(blksfree, bno + i)) { 680 brelse(bp); 681 mutex_exit(&ufsvfsp->vfs_lock); 682 (void) ufs_fault(ITOV(ip), 683 "free: freeing free frag, " 684 "dev:0x%lx, blk:%ld, cg:%d, " 685 "ino:%lu, fs:%s", 686 ip->i_dev, 687 bno + i, 688 cgp->cg_cgx, 689 ip->i_number, 690 fs->fs_fsmnt); 691 return; 692 } 693 setbit(blksfree, bno + i); 694 } 695 cgp->cg_cs.cs_nffree += i; 696 fs->fs_cstotal.cs_nffree += i; 697 fs->fs_cs(fs, cg).cs_nffree += i; 698 /* 699 * Add back in counts associated with the new frags 700 */ 701 bmap = blkmap(fs, blksfree, bbase); 702 fragacct(fs, bmap, cgp->cg_frsum, 1); 703 /* 704 * If a complete block has been reassembled, account for it 705 */ 706 blkno = fragstoblks(fs, bbase); 707 if (isblock(fs, blksfree, blkno)) { 708 cylno = cbtocylno(fs, bbase); 709 rpos = cbtorpos(ufsvfsp, bbase); 710 blks = cg_blks(ufsvfsp, cgp, cylno); 711 blks[rpos]++; 712 blktot[cylno]++; 713 cgp->cg_cs.cs_nffree -= fs->fs_frag; 714 fs->fs_cstotal.cs_nffree -= fs->fs_frag; 715 fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag; 716 cgp->cg_cs.cs_nbfree++; 717 fs->fs_cstotal.cs_nbfree++; 718 fs->fs_cs(fs, cg).cs_nbfree++; 719 } 720 } 721 fs->fs_fmod = 1; 722 ufs_notclean(ufsvfsp); 723 TRANS_BUF(ufsvfsp, 0, fs->fs_cgsize, bp, DT_CG); 724 TRANS_SI(ufsvfsp, fs, cg); 725 bdrwrite(bp); 726 } 727 728 /* 729 * Free an inode. 730 * 731 * The specified inode is placed back in the free map. 732 */ 733 void 734 ufs_ifree(struct inode *ip, ino_t ino, mode_t mode) 735 { 736 struct fs *fs = ip->i_fs; 737 struct ufsvfs *ufsvfsp = ip->i_ufsvfs; 738 struct cg *cgp; 739 struct buf *bp; 740 unsigned int inot; 741 int cg; 742 char *iused; 743 744 if (ip->i_number == ino && ip->i_mode != 0) { 745 (void) ufs_fault(ITOV(ip), 746 "ufs_ifree: illegal mode: (imode) %o, (omode) %o, ino %d, " 747 "fs = %s\n", 748 ip->i_mode, mode, (int)ip->i_number, fs->fs_fsmnt); 749 return; 750 } 751 if (ino >= fs->fs_ipg * fs->fs_ncg) { 752 (void) ufs_fault(ITOV(ip), 753 "ifree: range, dev = 0x%x, ino = %d, fs = %s\n", 754 (int)ip->i_dev, (int)ino, fs->fs_fsmnt); 755 return; 756 } 757 cg = (int)itog(fs, ino); 758 bp = UFS_BREAD(ufsvfsp, ip->i_dev, (daddr_t)fsbtodb(fs, cgtod(fs, cg)), 759 (int)fs->fs_cgsize); 760 761 cgp = bp->b_un.b_cg; 762 if (bp->b_flags & B_ERROR || !cg_chkmagic(cgp)) { 763 brelse(bp); 764 return; 765 } 766 mutex_enter(&ufsvfsp->vfs_lock); 767 cgp->cg_time = gethrestime_sec(); 768 iused = cg_inosused(cgp); 769 inot = (unsigned int)(ino % (ulong_t)fs->fs_ipg); 770 if (isclr(iused, inot)) { 771 mutex_exit(&ufsvfsp->vfs_lock); 772 brelse(bp); 773 (void) ufs_fault(ITOV(ip), "ufs_ifree: freeing free inode, " 774 "mode: (imode) %o, (omode) %o, ino:%d, " 775 "fs:%s", 776 ip->i_mode, mode, (int)ino, fs->fs_fsmnt); 777 return; 778 } 779 clrbit(iused, inot); 780 781 if (inot < (ulong_t)cgp->cg_irotor) 782 cgp->cg_irotor = inot; 783 cgp->cg_cs.cs_nifree++; 784 fs->fs_cstotal.cs_nifree++; 785 fs->fs_cs(fs, cg).cs_nifree++; 786 if (((mode & IFMT) == IFDIR) || ((mode & IFMT) == IFATTRDIR)) { 787 cgp->cg_cs.cs_ndir--; 788 fs->fs_cstotal.cs_ndir--; 789 fs->fs_cs(fs, cg).cs_ndir--; 790 } 791 fs->fs_fmod = 1; 792 ufs_notclean(ufsvfsp); 793 TRANS_BUF(ufsvfsp, 0, fs->fs_cgsize, bp, DT_CG); 794 TRANS_SI(ufsvfsp, fs, cg); 795 bdrwrite(bp); 796 } 797 798 /* 799 * Implement the cylinder overflow algorithm. 800 * 801 * The policy implemented by this algorithm is: 802 * 1) allocate the block in its requested cylinder group. 803 * 2) quadratically rehash on the cylinder group number. 804 * 3) brute force search for a free block. 805 * The size parameter means size for data blocks, mode for inodes. 806 */ 807 static ino_t 808 hashalloc(struct inode *ip, int cg, long pref, int size, ulong_t (*allocator)()) 809 { 810 struct fs *fs; 811 int i; 812 long result; 813 int icg = cg; 814 815 fs = ip->i_fs; 816 /* 817 * 1: preferred cylinder group 818 */ 819 result = (*allocator)(ip, cg, pref, size); 820 if (result) 821 return (result); 822 /* 823 * 2: quadratic rehash 824 */ 825 for (i = 1; i < fs->fs_ncg; i *= 2) { 826 cg += i; 827 if (cg >= fs->fs_ncg) 828 cg -= fs->fs_ncg; 829 result = (*allocator)(ip, cg, 0, size); 830 if (result) 831 return (result); 832 } 833 /* 834 * 3: brute force search 835 * Note that we start at i == 2, since 0 was checked initially, 836 * and 1 is always checked in the quadratic rehash. 837 */ 838 cg = (icg + 2) % fs->fs_ncg; 839 for (i = 2; i < fs->fs_ncg; i++) { 840 result = (*allocator)(ip, cg, 0, size); 841 if (result) 842 return (result); 843 cg++; 844 if (cg == fs->fs_ncg) 845 cg = 0; 846 } 847 return (NULL); 848 } 849 850 /* 851 * Determine whether a fragment can be extended. 852 * 853 * Check to see if the necessary fragments are available, and 854 * if they are, allocate them. 855 */ 856 static daddr_t 857 fragextend(struct inode *ip, int cg, long bprev, int osize, int nsize) 858 { 859 struct ufsvfs *ufsvfsp = ip->i_ufsvfs; 860 struct fs *fs = ip->i_fs; 861 struct buf *bp; 862 struct cg *cgp; 863 uchar_t *blksfree; 864 long bno; 865 int frags, bbase; 866 int i, j; 867 868 if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize)) 869 return (NULL); 870 frags = numfrags(fs, nsize); 871 bbase = (int)fragnum(fs, bprev); 872 if (bbase > fragnum(fs, (bprev + frags - 1))) { 873 /* cannot extend across a block boundary */ 874 return (NULL); 875 } 876 877 bp = UFS_BREAD(ufsvfsp, ip->i_dev, (daddr_t)fsbtodb(fs, cgtod(fs, cg)), 878 (int)fs->fs_cgsize); 879 cgp = bp->b_un.b_cg; 880 if (bp->b_flags & B_ERROR || !cg_chkmagic(cgp)) { 881 brelse(bp); 882 return (NULL); 883 } 884 885 blksfree = cg_blksfree(cgp); 886 mutex_enter(&ufsvfsp->vfs_lock); 887 bno = dtogd(fs, bprev); 888 for (i = numfrags(fs, osize); i < frags; i++) { 889 if (isclr(blksfree, bno + i)) { 890 mutex_exit(&ufsvfsp->vfs_lock); 891 brelse(bp); 892 return (NULL); 893 } 894 if ((TRANS_ISCANCEL(ufsvfsp, ldbtob(fsbtodb(fs, bprev + i)), 895 fs->fs_fsize))) { 896 mutex_exit(&ufsvfsp->vfs_lock); 897 brelse(bp); 898 return (NULL); 899 } 900 } 901 902 cgp->cg_time = gethrestime_sec(); 903 /* 904 * The current fragment can be extended, 905 * deduct the count on fragment being extended into 906 * increase the count on the remaining fragment (if any) 907 * allocate the extended piece. 908 */ 909 for (i = frags; i < fs->fs_frag - bbase; i++) 910 if (isclr(blksfree, bno + i)) 911 break; 912 j = i - numfrags(fs, osize); 913 cgp->cg_frsum[j]--; 914 ASSERT(cgp->cg_frsum[j] >= 0); 915 if (i != frags) 916 cgp->cg_frsum[i - frags]++; 917 for (i = numfrags(fs, osize); i < frags; i++) { 918 clrbit(blksfree, bno + i); 919 cgp->cg_cs.cs_nffree--; 920 fs->fs_cs(fs, cg).cs_nffree--; 921 fs->fs_cstotal.cs_nffree--; 922 } 923 fs->fs_fmod = 1; 924 ufs_notclean(ufsvfsp); 925 TRANS_BUF(ufsvfsp, 0, fs->fs_cgsize, bp, DT_CG); 926 TRANS_SI(ufsvfsp, fs, cg); 927 bdrwrite(bp); 928 return ((daddr_t)bprev); 929 } 930 931 /* 932 * Determine whether a block can be allocated. 933 * 934 * Check to see if a block of the apprpriate size 935 * is available, and if it is, allocate it. 936 */ 937 static daddr_t 938 alloccg(struct inode *ip, int cg, daddr_t bpref, int size) 939 { 940 struct ufsvfs *ufsvfsp = ip->i_ufsvfs; 941 struct fs *fs = ip->i_fs; 942 struct buf *bp; 943 struct cg *cgp; 944 uchar_t *blksfree; 945 int bno, frags; 946 int allocsiz; 947 int i; 948 949 if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize) 950 return (0); 951 bp = UFS_BREAD(ufsvfsp, ip->i_dev, (daddr_t)fsbtodb(fs, cgtod(fs, cg)), 952 (int)fs->fs_cgsize); 953 954 cgp = bp->b_un.b_cg; 955 if (bp->b_flags & B_ERROR || !cg_chkmagic(cgp) || 956 (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize)) { 957 brelse(bp); 958 return (0); 959 } 960 blksfree = cg_blksfree(cgp); 961 mutex_enter(&ufsvfsp->vfs_lock); 962 cgp->cg_time = gethrestime_sec(); 963 if (size == fs->fs_bsize) { 964 if ((bno = alloccgblk(ufsvfsp, cgp, bpref, bp)) == 0) 965 goto errout; 966 fs->fs_fmod = 1; 967 ufs_notclean(ufsvfsp); 968 TRANS_SI(ufsvfsp, fs, cg); 969 bdrwrite(bp); 970 return (bno); 971 } 972 /* 973 * Check to see if any fragments are already available 974 * allocsiz is the size which will be allocated, hacking 975 * it down to a smaller size if necessary. 976 */ 977 frags = numfrags(fs, size); 978 for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++) 979 if (cgp->cg_frsum[allocsiz] != 0) 980 break; 981 982 if (allocsiz != fs->fs_frag) 983 bno = mapsearch(ufsvfsp, cgp, bpref, allocsiz); 984 985 if (allocsiz == fs->fs_frag || bno < 0) { 986 /* 987 * No fragments were available, so a block 988 * will be allocated and hacked up. 989 */ 990 if (cgp->cg_cs.cs_nbfree == 0) 991 goto errout; 992 if ((bno = alloccgblk(ufsvfsp, cgp, bpref, bp)) == 0) 993 goto errout; 994 bpref = dtogd(fs, bno); 995 for (i = frags; i < fs->fs_frag; i++) 996 setbit(blksfree, bpref + i); 997 i = fs->fs_frag - frags; 998 cgp->cg_cs.cs_nffree += i; 999 fs->fs_cstotal.cs_nffree += i; 1000 fs->fs_cs(fs, cg).cs_nffree += i; 1001 cgp->cg_frsum[i]++; 1002 fs->fs_fmod = 1; 1003 ufs_notclean(ufsvfsp); 1004 TRANS_SI(ufsvfsp, fs, cg); 1005 bdrwrite(bp); 1006 return (bno); 1007 } 1008 1009 for (i = 0; i < frags; i++) 1010 clrbit(blksfree, bno + i); 1011 cgp->cg_cs.cs_nffree -= frags; 1012 fs->fs_cstotal.cs_nffree -= frags; 1013 fs->fs_cs(fs, cg).cs_nffree -= frags; 1014 cgp->cg_frsum[allocsiz]--; 1015 ASSERT(cgp->cg_frsum[allocsiz] >= 0); 1016 if (frags != allocsiz) { 1017 cgp->cg_frsum[allocsiz - frags]++; 1018 } 1019 fs->fs_fmod = 1; 1020 ufs_notclean(ufsvfsp); 1021 TRANS_BUF(ufsvfsp, 0, fs->fs_cgsize, bp, DT_CG); 1022 TRANS_SI(ufsvfsp, fs, cg); 1023 bdrwrite(bp); 1024 return (cg * fs->fs_fpg + bno); 1025 errout: 1026 mutex_exit(&ufsvfsp->vfs_lock); 1027 brelse(bp); 1028 return (0); 1029 } 1030 1031 /* 1032 * Allocate a block in a cylinder group. 1033 * 1034 * This algorithm implements the following policy: 1035 * 1) allocate the requested block. 1036 * 2) allocate a rotationally optimal block in the same cylinder. 1037 * 3) allocate the next available block on the block rotor for the 1038 * specified cylinder group. 1039 * Note that this routine only allocates fs_bsize blocks; these 1040 * blocks may be fragmented by the routine that allocates them. 1041 */ 1042 static daddr_t 1043 alloccgblk( 1044 struct ufsvfs *ufsvfsp, 1045 struct cg *cgp, 1046 daddr_t bpref, 1047 struct buf *bp) 1048 { 1049 daddr_t bno; 1050 int cylno, pos, delta, rotbl_size; 1051 short *cylbp; 1052 int i; 1053 struct fs *fs; 1054 uchar_t *blksfree; 1055 daddr_t blkno, rpos, frag; 1056 short *blks; 1057 int32_t *blktot; 1058 1059 ASSERT(MUTEX_HELD(&ufsvfsp->vfs_lock)); 1060 fs = ufsvfsp->vfs_fs; 1061 blksfree = cg_blksfree(cgp); 1062 if (bpref == 0) { 1063 bpref = cgp->cg_rotor; 1064 goto norot; 1065 } 1066 bpref = blknum(fs, bpref); 1067 bpref = dtogd(fs, bpref); 1068 /* 1069 * If the requested block is available, use it. 1070 */ 1071 if (isblock(fs, blksfree, (daddr_t)fragstoblks(fs, bpref))) { 1072 bno = bpref; 1073 goto gotit; 1074 } 1075 /* 1076 * Check for a block available on the same cylinder. 1077 */ 1078 cylno = cbtocylno(fs, bpref); 1079 if (cg_blktot(cgp)[cylno] == 0) 1080 goto norot; 1081 if (fs->fs_cpc == 0) { 1082 /* 1083 * Block layout info is not available, so just 1084 * have to take any block in this cylinder. 1085 */ 1086 bpref = howmany(fs->fs_spc * cylno, NSPF(fs)); 1087 goto norot; 1088 } 1089 /* 1090 * Check the summary information to see if a block is 1091 * available in the requested cylinder starting at the 1092 * requested rotational position and proceeding around. 1093 */ 1094 cylbp = cg_blks(ufsvfsp, cgp, cylno); 1095 pos = cbtorpos(ufsvfsp, bpref); 1096 for (i = pos; i < ufsvfsp->vfs_nrpos; i++) 1097 if (cylbp[i] > 0) 1098 break; 1099 if (i == ufsvfsp->vfs_nrpos) 1100 for (i = 0; i < pos; i++) 1101 if (cylbp[i] > 0) 1102 break; 1103 if (cylbp[i] > 0) { 1104 /* 1105 * Found a rotational position, now find the actual 1106 * block. A "panic" if none is actually there. 1107 */ 1108 1109 /* 1110 * Up to this point, "pos" has referred to the rotational 1111 * position of the desired block. From now on, it holds 1112 * the offset of the current cylinder within a cylinder 1113 * cycle. (A cylinder cycle refers to a set of cylinders 1114 * which are described by a single rotational table; the 1115 * size of the cycle is fs_cpc.) 1116 * 1117 * bno is set to the block number of the first block within 1118 * the current cylinder cycle. 1119 */ 1120 1121 pos = cylno % fs->fs_cpc; 1122 bno = (cylno - pos) * fs->fs_spc / NSPB(fs); 1123 1124 /* 1125 * The blocks within a cylinder are grouped into equivalence 1126 * classes according to their "rotational position." There 1127 * are two tables used to determine these classes. 1128 * 1129 * The positional offset table (fs_postbl) has an entry for 1130 * each rotational position of each cylinder in a cylinder 1131 * cycle. This entry contains the relative block number 1132 * (counting from the start of the cylinder cycle) of the 1133 * first block in the equivalence class for that position 1134 * and that cylinder. Positions for which no blocks exist 1135 * are indicated by a -1. 1136 * 1137 * The rotational delta table (fs_rotbl) has an entry for 1138 * each block in a cylinder cycle. This entry contains 1139 * the offset from that block to the next block in the 1140 * same equivalence class. The last block in the class 1141 * is indicated by a zero in the table. 1142 * 1143 * The following code, then, walks through all of the blocks 1144 * in the cylinder (cylno) which we're allocating within 1145 * which are in the equivalence class for the rotational 1146 * position (i) which we're allocating within. 1147 */ 1148 1149 if (fs_postbl(ufsvfsp, pos)[i] == -1) { 1150 (void) ufs_fault(ufsvfsp->vfs_root, 1151 "alloccgblk: cyl groups corrupted, pos = %d, i = %d, fs = %s\n", 1152 pos, i, fs->fs_fsmnt); 1153 return (0); 1154 } 1155 1156 /* 1157 * There is one entry in the rotational table for each block 1158 * in the cylinder cycle. These are whole blocks, not frags. 1159 */ 1160 1161 rotbl_size = (fs->fs_cpc * fs->fs_spc) >> 1162 (fs->fs_fragshift + fs->fs_fsbtodb); 1163 1164 /* 1165 * As we start, "i" is the rotational position within which 1166 * we're searching. After the next line, it will be a block 1167 * number (relative to the start of the cylinder cycle) 1168 * within the equivalence class of that rotational position. 1169 */ 1170 1171 i = fs_postbl(ufsvfsp, pos)[i]; 1172 1173 for (;;) { 1174 if (isblock(fs, blksfree, (daddr_t)(bno + i))) { 1175 bno = blkstofrags(fs, (bno + i)); 1176 goto gotit; 1177 } 1178 delta = fs_rotbl(fs)[i]; 1179 if (delta <= 0 || /* End of chain, or */ 1180 delta + i > rotbl_size) /* end of table? */ 1181 break; /* If so, panic. */ 1182 i += delta; 1183 } 1184 (void) ufs_fault(ufsvfsp->vfs_root, 1185 "alloccgblk: can't find blk in cyl, pos:%d, i:%d, fs:%s bno: %x\n", 1186 pos, i, fs->fs_fsmnt, (int)bno); 1187 return (0); 1188 } 1189 norot: 1190 /* 1191 * No blocks in the requested cylinder, so take 1192 * next available one in this cylinder group. 1193 */ 1194 bno = mapsearch(ufsvfsp, cgp, bpref, (int)fs->fs_frag); 1195 if (bno < 0) 1196 return (0); 1197 cgp->cg_rotor = bno; 1198 gotit: 1199 blkno = fragstoblks(fs, bno); 1200 frag = (cgp->cg_cgx * fs->fs_fpg) + bno; 1201 if (TRANS_ISCANCEL(ufsvfsp, ldbtob(fsbtodb(fs, frag)), fs->fs_bsize)) 1202 goto norot; 1203 clrblock(fs, blksfree, (long)blkno); 1204 /* 1205 * the other cg/sb/si fields are TRANS'ed by the caller 1206 */ 1207 cgp->cg_cs.cs_nbfree--; 1208 fs->fs_cstotal.cs_nbfree--; 1209 fs->fs_cs(fs, cgp->cg_cgx).cs_nbfree--; 1210 cylno = cbtocylno(fs, bno); 1211 blks = cg_blks(ufsvfsp, cgp, cylno); 1212 rpos = cbtorpos(ufsvfsp, bno); 1213 blktot = cg_blktot(cgp); 1214 blks[rpos]--; 1215 blktot[cylno]--; 1216 TRANS_BUF(ufsvfsp, 0, fs->fs_cgsize, bp, DT_CG); 1217 fs->fs_fmod = 1; 1218 return (frag); 1219 } 1220 1221 /* 1222 * Determine whether an inode can be allocated. 1223 * 1224 * Check to see if an inode is available, and if it is, 1225 * allocate it using the following policy: 1226 * 1) allocate the requested inode. 1227 * 2) allocate the next available inode after the requested 1228 * inode in the specified cylinder group. 1229 */ 1230 static ino_t 1231 ialloccg(struct inode *ip, int cg, daddr_t ipref, int mode) 1232 { 1233 struct ufsvfs *ufsvfsp = ip->i_ufsvfs; 1234 struct fs *fs = ip->i_fs; 1235 struct cg *cgp; 1236 struct buf *bp; 1237 int start, len, loc, map, i; 1238 char *iused; 1239 1240 if (fs->fs_cs(fs, cg).cs_nifree == 0) 1241 return (0); 1242 bp = UFS_BREAD(ufsvfsp, ip->i_dev, (daddr_t)fsbtodb(fs, cgtod(fs, cg)), 1243 (int)fs->fs_cgsize); 1244 1245 cgp = bp->b_un.b_cg; 1246 if (bp->b_flags & B_ERROR || !cg_chkmagic(cgp) || 1247 cgp->cg_cs.cs_nifree == 0) { 1248 brelse(bp); 1249 return (0); 1250 } 1251 iused = cg_inosused(cgp); 1252 mutex_enter(&ufsvfsp->vfs_lock); 1253 /* 1254 * While we are waiting for the mutex, someone may have taken 1255 * the last available inode. Need to recheck. 1256 */ 1257 if (cgp->cg_cs.cs_nifree == 0) { 1258 mutex_exit(&ufsvfsp->vfs_lock); 1259 brelse(bp); 1260 return (0); 1261 } 1262 1263 cgp->cg_time = gethrestime_sec(); 1264 if (ipref) { 1265 ipref %= fs->fs_ipg; 1266 if (isclr(iused, ipref)) 1267 goto gotit; 1268 } 1269 start = cgp->cg_irotor / NBBY; 1270 len = howmany(fs->fs_ipg - cgp->cg_irotor, NBBY); 1271 loc = skpc(0xff, (uint_t)len, &iused[start]); 1272 if (loc == 0) { 1273 len = start + 1; 1274 start = 0; 1275 loc = skpc(0xff, (uint_t)len, &iused[0]); 1276 if (loc == 0) { 1277 mutex_exit(&ufsvfsp->vfs_lock); 1278 (void) ufs_fault(ITOV(ip), 1279 "ialloccg: map corrupted, cg = %d, irotor = %d, fs = %s\n", 1280 cg, (int)cgp->cg_irotor, fs->fs_fsmnt); 1281 return (0); 1282 } 1283 } 1284 i = start + len - loc; 1285 map = iused[i]; 1286 ipref = i * NBBY; 1287 for (i = 1; i < (1 << NBBY); i <<= 1, ipref++) { 1288 if ((map & i) == 0) { 1289 cgp->cg_irotor = ipref; 1290 goto gotit; 1291 } 1292 } 1293 1294 mutex_exit(&ufsvfsp->vfs_lock); 1295 (void) ufs_fault(ITOV(ip), "ialloccg: block not in mapfs = %s", 1296 fs->fs_fsmnt); 1297 return (0); 1298 gotit: 1299 setbit(iused, ipref); 1300 cgp->cg_cs.cs_nifree--; 1301 fs->fs_cstotal.cs_nifree--; 1302 fs->fs_cs(fs, cg).cs_nifree--; 1303 if (((mode & IFMT) == IFDIR) || ((mode & IFMT) == IFATTRDIR)) { 1304 cgp->cg_cs.cs_ndir++; 1305 fs->fs_cstotal.cs_ndir++; 1306 fs->fs_cs(fs, cg).cs_ndir++; 1307 } 1308 fs->fs_fmod = 1; 1309 ufs_notclean(ufsvfsp); 1310 TRANS_BUF(ufsvfsp, 0, fs->fs_cgsize, bp, DT_CG); 1311 TRANS_SI(ufsvfsp, fs, cg); 1312 bdrwrite(bp); 1313 return (cg * fs->fs_ipg + ipref); 1314 } 1315 1316 /* 1317 * Find a block of the specified size in the specified cylinder group. 1318 * 1319 * It is a panic if a request is made to find a block if none are 1320 * available. 1321 */ 1322 static daddr_t 1323 mapsearch(struct ufsvfs *ufsvfsp, struct cg *cgp, daddr_t bpref, 1324 int allocsiz) 1325 { 1326 struct fs *fs = ufsvfsp->vfs_fs; 1327 daddr_t bno, cfrag; 1328 int start, len, loc, i, last, first, secondtime; 1329 int blk, field, subfield, pos; 1330 int gotit; 1331 1332 /* 1333 * ufsvfs->vfs_lock is held when calling this. 1334 */ 1335 /* 1336 * Find the fragment by searching through the 1337 * free block map for an appropriate bit pattern. 1338 */ 1339 if (bpref) 1340 start = dtogd(fs, bpref) / NBBY; 1341 else 1342 start = cgp->cg_frotor / NBBY; 1343 /* 1344 * the following loop performs two scans -- the first scan 1345 * searches the bottom half of the array for a match and the 1346 * second scan searches the top half of the array. The loops 1347 * have been merged just to make things difficult. 1348 */ 1349 first = start; 1350 last = howmany(fs->fs_fpg, NBBY); 1351 secondtime = 0; 1352 cfrag = cgp->cg_cgx * fs->fs_fpg; 1353 while (first < last) { 1354 len = last - first; 1355 /* 1356 * search the array for a match 1357 */ 1358 loc = scanc((unsigned)len, (uchar_t *)&cg_blksfree(cgp)[first], 1359 (uchar_t *)fragtbl[fs->fs_frag], 1360 (int)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY)))); 1361 /* 1362 * match found 1363 */ 1364 if (loc) { 1365 bno = (last - loc) * NBBY; 1366 1367 /* 1368 * Found the byte in the map, sift 1369 * through the bits to find the selected frag 1370 */ 1371 cgp->cg_frotor = bno; 1372 gotit = 0; 1373 for (i = bno + NBBY; bno < i; bno += fs->fs_frag) { 1374 blk = blkmap(fs, cg_blksfree(cgp), bno); 1375 blk <<= 1; 1376 field = around[allocsiz]; 1377 subfield = inside[allocsiz]; 1378 for (pos = 0; 1379 pos <= fs->fs_frag - allocsiz; 1380 pos++) { 1381 if ((blk & field) == subfield) { 1382 gotit++; 1383 break; 1384 } 1385 field <<= 1; 1386 subfield <<= 1; 1387 } 1388 if (gotit) 1389 break; 1390 } 1391 bno += pos; 1392 1393 /* 1394 * success if block is *not* being converted from 1395 * metadata into userdata (harpy). If so, ignore. 1396 */ 1397 if (!TRANS_ISCANCEL(ufsvfsp, 1398 ldbtob(fsbtodb(fs, (cfrag+bno))), 1399 allocsiz * fs->fs_fsize)) 1400 return (bno); 1401 /* 1402 * keep looking -- this block is being converted 1403 */ 1404 first = (last - loc) + 1; 1405 loc = 0; 1406 if (first < last) 1407 continue; 1408 } 1409 /* 1410 * no usable matches in bottom half -- now search the top half 1411 */ 1412 if (secondtime) 1413 /* 1414 * no usable matches in top half -- all done 1415 */ 1416 break; 1417 secondtime = 1; 1418 last = start + 1; 1419 first = 0; 1420 } 1421 /* 1422 * no usable matches 1423 */ 1424 return ((daddr_t)-1); 1425 } 1426 1427 #define UFSNADDR (NDADDR + NIADDR) /* NADDR applies to (obsolete) S5FS */ 1428 #define IB(i) (NDADDR + (i)) /* index of i'th indirect block ptr */ 1429 #define SINGLE 0 /* single indirect block ptr */ 1430 #define DOUBLE 1 /* double indirect block ptr */ 1431 #define TRIPLE 2 /* triple indirect block ptr */ 1432 1433 /* 1434 * Free storage space associated with the specified inode. The portion 1435 * to be freed is specified by lp->l_start and lp->l_len (already 1436 * normalized to a "whence" of 0). 1437 * 1438 * This is an experimental facility whose continued existence is not 1439 * guaranteed. Currently, we only support the special case 1440 * of l_len == 0, meaning free to end of file. 1441 * 1442 * Blocks are freed in reverse order. This FILO algorithm will tend to 1443 * maintain a contiguous free list much longer than FIFO. 1444 * See also ufs_itrunc() in ufs_inode.c. 1445 * 1446 * Bug: unused bytes in the last retained block are not cleared. 1447 * This may result in a "hole" in the file that does not read as zeroes. 1448 */ 1449 /* ARGSUSED */ 1450 int 1451 ufs_freesp(struct vnode *vp, struct flock64 *lp, int flag, cred_t *cr) 1452 { 1453 int i; 1454 struct inode *ip = VTOI(vp); 1455 int error; 1456 1457 ASSERT(vp->v_type == VREG); 1458 ASSERT(lp->l_start >= 0); /* checked by convoff */ 1459 1460 if (lp->l_len != 0) 1461 return (EINVAL); 1462 1463 rw_enter(&ip->i_contents, RW_READER); 1464 if (ip->i_size == (u_offset_t)lp->l_start) { 1465 rw_exit(&ip->i_contents); 1466 return (0); 1467 } 1468 1469 /* 1470 * Check if there is any active mandatory lock on the 1471 * range that will be truncated/expanded. 1472 */ 1473 if (MANDLOCK(vp, ip->i_mode)) { 1474 offset_t save_start; 1475 1476 save_start = lp->l_start; 1477 1478 if (ip->i_size < lp->l_start) { 1479 /* 1480 * "Truncate up" case: need to make sure there 1481 * is no lock beyond current end-of-file. To 1482 * do so, we need to set l_start to the size 1483 * of the file temporarily. 1484 */ 1485 lp->l_start = ip->i_size; 1486 } 1487 lp->l_type = F_WRLCK; 1488 lp->l_sysid = 0; 1489 lp->l_pid = ttoproc(curthread)->p_pid; 1490 i = (flag & (FNDELAY|FNONBLOCK)) ? 0 : SLPFLCK; 1491 rw_exit(&ip->i_contents); 1492 if ((i = reclock(vp, lp, i, 0, lp->l_start, NULL)) != 0 || 1493 lp->l_type != F_UNLCK) { 1494 return (i ? i : EAGAIN); 1495 } 1496 rw_enter(&ip->i_contents, RW_READER); 1497 1498 lp->l_start = save_start; 1499 } 1500 1501 /* 1502 * Make sure a write isn't in progress (allocating blocks) 1503 * by acquiring i_rwlock (we promised ufs_bmap we wouldn't 1504 * truncate while it was allocating blocks). 1505 * Grab the locks in the right order. 1506 */ 1507 rw_exit(&ip->i_contents); 1508 rw_enter(&ip->i_rwlock, RW_WRITER); 1509 error = TRANS_ITRUNC(ip, (u_offset_t)lp->l_start, 0, cr); 1510 rw_exit(&ip->i_rwlock); 1511 return (error); 1512 } 1513 1514 /* 1515 * Find a cg with as close to nb contiguous bytes as possible 1516 * THIS MAY TAKE MANY DISK READS! 1517 * 1518 * Implemented in an attempt to allocate contiguous blocks for 1519 * writing the ufs log file to, minimizing future disk head seeking 1520 */ 1521 daddr_t 1522 contigpref(ufsvfs_t *ufsvfsp, size_t nb) 1523 { 1524 struct fs *fs = ufsvfsp->vfs_fs; 1525 daddr_t nblk = lblkno(fs, blkroundup(fs, nb)); 1526 daddr_t savebno, curbno, cgbno; 1527 int cg, cgblks, savecg, savenblk, curnblk; 1528 uchar_t *blksfree; 1529 buf_t *bp; 1530 struct cg *cgp; 1531 1532 savenblk = 0; 1533 savecg = 0; 1534 savebno = 0; 1535 for (cg = 0; cg < fs->fs_ncg; ++cg) { 1536 1537 /* not enough free blks for a contig check */ 1538 if (fs->fs_cs(fs, cg).cs_nbfree < nblk) 1539 continue; 1540 1541 /* 1542 * find the largest contiguous range in this cg 1543 */ 1544 bp = UFS_BREAD(ufsvfsp, ufsvfsp->vfs_dev, 1545 (daddr_t)fsbtodb(fs, cgtod(fs, cg)), 1546 (int)fs->fs_cgsize); 1547 cgp = bp->b_un.b_cg; 1548 if (bp->b_flags & B_ERROR || !cg_chkmagic(cgp)) { 1549 brelse(bp); 1550 continue; 1551 } 1552 blksfree = cg_blksfree(cgp); /* free array */ 1553 cgblks = fragstoblks(fs, fs->fs_fpg); /* blks in free array */ 1554 cgbno = 0; 1555 while (cgbno < cgblks && savenblk < nblk) { 1556 /* find a free block */ 1557 for (; cgbno < cgblks; ++cgbno) 1558 if (isblock(fs, blksfree, cgbno)) 1559 break; 1560 curbno = cgbno; 1561 /* count the number of free blocks */ 1562 for (curnblk = 0; cgbno < cgblks; ++cgbno) { 1563 if (!isblock(fs, blksfree, cgbno)) 1564 break; 1565 if (++curnblk >= nblk) 1566 break; 1567 } 1568 if (curnblk > savenblk) { 1569 savecg = cg; 1570 savenblk = curnblk; 1571 savebno = curbno; 1572 } 1573 } 1574 brelse(bp); 1575 if (savenblk >= nblk) 1576 break; 1577 } 1578 1579 /* convert block offset in cg to frag offset in cg */ 1580 savebno = blkstofrags(fs, savebno); 1581 1582 /* convert frag offset in cg to frag offset in fs */ 1583 savebno += (savecg * fs->fs_fpg); 1584 1585 return (savebno); 1586 } 1587