xref: /titanic_44/usr/src/uts/common/fs/ufs/lufs.c (revision cc7641ccbef3fd0f5eeedc74f555d11723b3926c)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #include <sys/systm.h>
27 #include <sys/types.h>
28 #include <sys/vnode.h>
29 #include <sys/buf.h>
30 #include <sys/errno.h>
31 #include <sys/fssnap_if.h>
32 #include <sys/fs/ufs_inode.h>
33 #include <sys/fs/ufs_filio.h>
34 #include <sys/sysmacros.h>
35 #include <sys/modctl.h>
36 #include <sys/fs/ufs_log.h>
37 #include <sys/fs/ufs_bio.h>
38 #include <sys/fs/ufs_fsdir.h>
39 #include <sys/debug.h>
40 #include <sys/atomic.h>
41 #include <sys/kmem.h>
42 #include <sys/inttypes.h>
43 #include <sys/vfs.h>
44 #include <sys/mntent.h>
45 #include <sys/conf.h>
46 #include <sys/param.h>
47 #include <sys/kstat.h>
48 #include <sys/cmn_err.h>
49 #include <sys/sdt.h>
50 
51 #define	LUFS_GENID_PRIME	UINT64_C(4294967291)
52 #define	LUFS_GENID_BASE		UINT64_C(311)
53 #define	LUFS_NEXT_ID(id)	((uint32_t)(((id) * LUFS_GENID_BASE) % \
54 				    LUFS_GENID_PRIME))
55 
56 extern	kmutex_t	ufs_scan_lock;
57 
58 static kmutex_t	log_mutex;	/* general purpose log layer lock */
59 kmutex_t	ml_scan;	/* Scan thread syncronization */
60 kcondvar_t	ml_scan_cv;	/* Scan thread syncronization */
61 
62 struct kmem_cache	*lufs_sv;
63 struct kmem_cache	*lufs_bp;
64 
65 /* Tunables */
66 uint_t		ldl_maxlogsize	= LDL_MAXLOGSIZE;
67 uint_t		ldl_minlogsize	= LDL_MINLOGSIZE;
68 uint_t		ldl_softlogcap	= LDL_SOFTLOGCAP;
69 uint32_t	ldl_divisor	= LDL_DIVISOR;
70 uint32_t	ldl_mintransfer	= LDL_MINTRANSFER;
71 uint32_t	ldl_maxtransfer	= LDL_MAXTRANSFER;
72 uint32_t	ldl_minbufsize	= LDL_MINBUFSIZE;
73 uint32_t	ldl_cgsizereq	= 0;
74 
75 /* Generation of header ids */
76 static kmutex_t	genid_mutex;
77 static uint32_t	last_loghead_ident = UINT32_C(0);
78 
79 /*
80  * Logging delta and roll statistics
81  */
82 struct delta_kstats {
83 	kstat_named_t ds_superblock_deltas;
84 	kstat_named_t ds_bitmap_deltas;
85 	kstat_named_t ds_suminfo_deltas;
86 	kstat_named_t ds_allocblk_deltas;
87 	kstat_named_t ds_ab0_deltas;
88 	kstat_named_t ds_dir_deltas;
89 	kstat_named_t ds_inode_deltas;
90 	kstat_named_t ds_fbiwrite_deltas;
91 	kstat_named_t ds_quota_deltas;
92 	kstat_named_t ds_shadow_deltas;
93 
94 	kstat_named_t ds_superblock_rolled;
95 	kstat_named_t ds_bitmap_rolled;
96 	kstat_named_t ds_suminfo_rolled;
97 	kstat_named_t ds_allocblk_rolled;
98 	kstat_named_t ds_ab0_rolled;
99 	kstat_named_t ds_dir_rolled;
100 	kstat_named_t ds_inode_rolled;
101 	kstat_named_t ds_fbiwrite_rolled;
102 	kstat_named_t ds_quota_rolled;
103 	kstat_named_t ds_shadow_rolled;
104 } dkstats = {
105 	{ "superblock_deltas",	KSTAT_DATA_UINT64 },
106 	{ "bitmap_deltas",	KSTAT_DATA_UINT64 },
107 	{ "suminfo_deltas",	KSTAT_DATA_UINT64 },
108 	{ "allocblk_deltas",	KSTAT_DATA_UINT64 },
109 	{ "ab0_deltas",		KSTAT_DATA_UINT64 },
110 	{ "dir_deltas",		KSTAT_DATA_UINT64 },
111 	{ "inode_deltas",	KSTAT_DATA_UINT64 },
112 	{ "fbiwrite_deltas",	KSTAT_DATA_UINT64 },
113 	{ "quota_deltas",	KSTAT_DATA_UINT64 },
114 	{ "shadow_deltas",	KSTAT_DATA_UINT64 },
115 
116 	{ "superblock_rolled",	KSTAT_DATA_UINT64 },
117 	{ "bitmap_rolled",	KSTAT_DATA_UINT64 },
118 	{ "suminfo_rolled",	KSTAT_DATA_UINT64 },
119 	{ "allocblk_rolled",	KSTAT_DATA_UINT64 },
120 	{ "ab0_rolled",		KSTAT_DATA_UINT64 },
121 	{ "dir_rolled",		KSTAT_DATA_UINT64 },
122 	{ "inode_rolled",	KSTAT_DATA_UINT64 },
123 	{ "fbiwrite_rolled",	KSTAT_DATA_UINT64 },
124 	{ "quota_rolled",	KSTAT_DATA_UINT64 },
125 	{ "shadow_rolled",	KSTAT_DATA_UINT64 }
126 };
127 
128 uint64_t delta_stats[DT_MAX];
129 uint64_t roll_stats[DT_MAX];
130 
131 /*
132  * General logging kstats
133  */
134 struct logstats logstats = {
135 	{ "master_reads",		KSTAT_DATA_UINT64 },
136 	{ "master_writes",		KSTAT_DATA_UINT64 },
137 	{ "log_reads_inmem",		KSTAT_DATA_UINT64 },
138 	{ "log_reads",			KSTAT_DATA_UINT64 },
139 	{ "log_writes",			KSTAT_DATA_UINT64 },
140 	{ "log_master_reads",		KSTAT_DATA_UINT64 },
141 	{ "log_roll_reads",		KSTAT_DATA_UINT64 },
142 	{ "log_roll_writes",		KSTAT_DATA_UINT64 }
143 };
144 
145 int
146 trans_not_done(struct buf *cb)
147 {
148 	sema_v(&cb->b_io);
149 	return (0);
150 }
151 
152 static void
153 trans_wait_panic(struct buf *cb)
154 {
155 	while ((cb->b_flags & B_DONE) == 0)
156 		drv_usecwait(10);
157 }
158 
159 int
160 trans_not_wait(struct buf *cb)
161 {
162 	/*
163 	 * In case of panic, busy wait for completion
164 	 */
165 	if (panicstr)
166 		trans_wait_panic(cb);
167 	else
168 		sema_p(&cb->b_io);
169 
170 	return (geterror(cb));
171 }
172 
173 int
174 trans_wait(struct buf *cb)
175 {
176 	/*
177 	 * In case of panic, busy wait for completion and run md daemon queues
178 	 */
179 	if (panicstr)
180 		trans_wait_panic(cb);
181 	return (biowait(cb));
182 }
183 
184 static void
185 setsum(int32_t *sp, int32_t *lp, int nb)
186 {
187 	int32_t csum = 0;
188 
189 	*sp = 0;
190 	nb /= sizeof (int32_t);
191 	while (nb--)
192 		csum += *lp++;
193 	*sp = csum;
194 }
195 
196 static int
197 checksum(int32_t *sp, int32_t *lp, int nb)
198 {
199 	int32_t ssum = *sp;
200 
201 	setsum(sp, lp, nb);
202 	if (ssum != *sp) {
203 		*sp = ssum;
204 		return (0);
205 	}
206 	return (1);
207 }
208 
209 void
210 lufs_unsnarf(ufsvfs_t *ufsvfsp)
211 {
212 	ml_unit_t *ul;
213 	mt_map_t *mtm;
214 
215 	ul = ufsvfsp->vfs_log;
216 	if (ul == NULL)
217 		return;
218 
219 	mtm = ul->un_logmap;
220 
221 	/*
222 	 * Wait for a pending top_issue_sync which is
223 	 * dispatched (via taskq_dispatch()) but hasnt completed yet.
224 	 */
225 
226 	mutex_enter(&mtm->mtm_lock);
227 
228 	while (mtm->mtm_taskq_sync_count != 0) {
229 		cv_wait(&mtm->mtm_cv, &mtm->mtm_lock);
230 	}
231 
232 	mutex_exit(&mtm->mtm_lock);
233 
234 	/* Roll committed transactions */
235 	logmap_roll_dev(ul);
236 
237 	/* Kill the roll thread */
238 	logmap_kill_roll(ul);
239 
240 	/* release saved alloction info */
241 	if (ul->un_ebp)
242 		kmem_free(ul->un_ebp, ul->un_nbeb);
243 
244 	/* release circular bufs */
245 	free_cirbuf(&ul->un_rdbuf);
246 	free_cirbuf(&ul->un_wrbuf);
247 
248 	/* release maps */
249 	if (ul->un_logmap)
250 		ul->un_logmap = map_put(ul->un_logmap);
251 	if (ul->un_deltamap)
252 		ul->un_deltamap = map_put(ul->un_deltamap);
253 	if (ul->un_matamap)
254 		ul->un_matamap = map_put(ul->un_matamap);
255 
256 	mutex_destroy(&ul->un_log_mutex);
257 	mutex_destroy(&ul->un_state_mutex);
258 
259 	/* release state buffer MUST BE LAST!! (contains our ondisk data) */
260 	if (ul->un_bp)
261 		brelse(ul->un_bp);
262 	kmem_free(ul, sizeof (*ul));
263 
264 	ufsvfsp->vfs_log = NULL;
265 }
266 
267 int
268 lufs_snarf(ufsvfs_t *ufsvfsp, struct fs *fs, int ronly)
269 {
270 	buf_t		*bp, *tbp;
271 	ml_unit_t	*ul;
272 	extent_block_t	*ebp;
273 	ic_extent_block_t  *nebp;
274 	size_t		nb;
275 	daddr_t		bno;	/* in disk blocks */
276 	int		i;
277 
278 	/* LINTED: warning: logical expression always true: op "||" */
279 	ASSERT(sizeof (ml_odunit_t) < DEV_BSIZE);
280 
281 	/*
282 	 * Get the allocation table
283 	 *	During a remount the superblock pointed to by the ufsvfsp
284 	 *	is out of date.  Hence the need for the ``new'' superblock
285 	 *	pointer, fs, passed in as a parameter.
286 	 */
287 	bp = UFS_BREAD(ufsvfsp, ufsvfsp->vfs_dev, logbtodb(fs, fs->fs_logbno),
288 	    fs->fs_bsize);
289 	if (bp->b_flags & B_ERROR) {
290 		brelse(bp);
291 		return (EIO);
292 	}
293 	ebp = (void *)bp->b_un.b_addr;
294 	if (!checksum(&ebp->chksum, (int32_t *)bp->b_un.b_addr,
295 	    fs->fs_bsize)) {
296 		brelse(bp);
297 		return (ENODEV);
298 	}
299 
300 	/*
301 	 * It is possible to get log blocks with all zeros.
302 	 * We should also check for nextents to be zero in such case.
303 	 */
304 	if (ebp->type != LUFS_EXTENTS || ebp->nextents == 0) {
305 		brelse(bp);
306 		return (EDOM);
307 	}
308 	/*
309 	 * Put allocation into memory.  This requires conversion between
310 	 * on the ondisk format of the extent (type extent_t) and the
311 	 * in-core format of the extent (type ic_extent_t).  The
312 	 * difference is the in-core form of the extent block stores
313 	 * the physical offset of the extent in disk blocks, which
314 	 * can require more than a 32-bit field.
315 	 */
316 	nb = (size_t)(sizeof (ic_extent_block_t) +
317 	    ((ebp->nextents - 1) * sizeof (ic_extent_t)));
318 	nebp = kmem_alloc(nb, KM_SLEEP);
319 	nebp->ic_nextents = ebp->nextents;
320 	nebp->ic_nbytes = ebp->nbytes;
321 	nebp->ic_nextbno = ebp->nextbno;
322 	for (i = 0; i < ebp->nextents; i++) {
323 		nebp->ic_extents[i].ic_lbno = ebp->extents[i].lbno;
324 		nebp->ic_extents[i].ic_nbno = ebp->extents[i].nbno;
325 		nebp->ic_extents[i].ic_pbno =
326 		    logbtodb(fs, ebp->extents[i].pbno);
327 	}
328 	brelse(bp);
329 
330 	/*
331 	 * Get the log state
332 	 */
333 	bno = nebp->ic_extents[0].ic_pbno;
334 	bp = UFS_BREAD(ufsvfsp, ufsvfsp->vfs_dev, bno, DEV_BSIZE);
335 	if (bp->b_flags & B_ERROR) {
336 		brelse(bp);
337 		bp = UFS_BREAD(ufsvfsp, ufsvfsp->vfs_dev, bno + 1, DEV_BSIZE);
338 		if (bp->b_flags & B_ERROR) {
339 			brelse(bp);
340 			kmem_free(nebp, nb);
341 			return (EIO);
342 		}
343 	}
344 
345 	/*
346 	 * Put ondisk struct into an anonymous buffer
347 	 *	This buffer will contain the memory for the ml_odunit struct
348 	 */
349 	tbp = ngeteblk(dbtob(LS_SECTORS));
350 	tbp->b_edev = bp->b_edev;
351 	tbp->b_dev = bp->b_dev;
352 	tbp->b_blkno = bno;
353 	bcopy(bp->b_un.b_addr, tbp->b_un.b_addr, DEV_BSIZE);
354 	bcopy(bp->b_un.b_addr, tbp->b_un.b_addr + DEV_BSIZE, DEV_BSIZE);
355 	bp->b_flags |= (B_STALE | B_AGE);
356 	brelse(bp);
357 	bp = tbp;
358 
359 	/*
360 	 * Verify the log state
361 	 *
362 	 * read/only mounts w/bad logs are allowed.  umount will
363 	 * eventually roll the bad log until the first IO error.
364 	 * fsck will then repair the file system.
365 	 *
366 	 * read/write mounts with bad logs are not allowed.
367 	 *
368 	 */
369 	ul = (ml_unit_t *)kmem_zalloc(sizeof (*ul), KM_SLEEP);
370 	bcopy(bp->b_un.b_addr, &ul->un_ondisk, sizeof (ml_odunit_t));
371 	if ((ul->un_chksum != ul->un_head_ident + ul->un_tail_ident) ||
372 	    (ul->un_version != LUFS_VERSION_LATEST) ||
373 	    (!ronly && ul->un_badlog)) {
374 		kmem_free(ul, sizeof (*ul));
375 		brelse(bp);
376 		kmem_free(nebp, nb);
377 		return (EIO);
378 	}
379 	/*
380 	 * Initialize the incore-only fields
381 	 */
382 	if (ronly)
383 		ul->un_flags |= LDL_NOROLL;
384 	ul->un_bp = bp;
385 	ul->un_ufsvfs = ufsvfsp;
386 	ul->un_dev = ufsvfsp->vfs_dev;
387 	ul->un_ebp = nebp;
388 	ul->un_nbeb = nb;
389 	ul->un_maxresv = btodb(ul->un_logsize) * LDL_USABLE_BSIZE;
390 	ul->un_deltamap = map_get(ul, deltamaptype, DELTAMAP_NHASH);
391 	ul->un_logmap = map_get(ul, logmaptype, LOGMAP_NHASH);
392 	if (ul->un_debug & MT_MATAMAP)
393 		ul->un_matamap = map_get(ul, matamaptype, DELTAMAP_NHASH);
394 	mutex_init(&ul->un_log_mutex, NULL, MUTEX_DEFAULT, NULL);
395 	mutex_init(&ul->un_state_mutex, NULL, MUTEX_DEFAULT, NULL);
396 
397 	/*
398 	 * Aquire the ufs_scan_lock before linking the mtm data
399 	 * structure so that we keep ufs_sync() and ufs_update() away
400 	 * when they execute the ufs_scan_inodes() run while we're in
401 	 * progress of enabling/disabling logging.
402 	 */
403 	mutex_enter(&ufs_scan_lock);
404 	ufsvfsp->vfs_log = ul;
405 
406 	/* remember the state of the log before the log scan */
407 	logmap_logscan(ul);
408 	mutex_exit(&ufs_scan_lock);
409 
410 	/*
411 	 * Error during scan
412 	 *
413 	 * If this is a read/only mount; ignore the error.
414 	 * At a later time umount/fsck will repair the fs.
415 	 *
416 	 */
417 	if (ul->un_flags & LDL_ERROR) {
418 		if (!ronly) {
419 			/*
420 			 * Aquire the ufs_scan_lock before de-linking
421 			 * the mtm data structure so that we keep ufs_sync()
422 			 * and ufs_update() away when they execute the
423 			 * ufs_scan_inodes() run while we're in progress of
424 			 * enabling/disabling logging.
425 			 */
426 			mutex_enter(&ufs_scan_lock);
427 			lufs_unsnarf(ufsvfsp);
428 			mutex_exit(&ufs_scan_lock);
429 			return (EIO);
430 		}
431 		ul->un_flags &= ~LDL_ERROR;
432 	}
433 	if (!ronly)
434 		logmap_start_roll(ul);
435 	return (0);
436 }
437 
438 uint32_t
439 lufs_hd_genid(const ml_unit_t *up)
440 {
441 	uint32_t id;
442 
443 	mutex_enter(&genid_mutex);
444 
445 	/*
446 	 * The formula below implements an exponential, modular sequence.
447 	 *
448 	 * ID(N) = (SEED * (BASE^N)) % PRIME
449 	 *
450 	 * The numbers will be pseudo random.  They depend on SEED, BASE, PRIME,
451 	 * but will sweep through almost all of the range 1....PRIME-1.
452 	 * Most  importantly  they  will  not  repeat  for PRIME-2 (4294967289)
453 	 * repetitions.  If they would repeat that  could possibly cause  hangs,
454 	 * panics at mount/umount and failed mount operations.
455 	 */
456 	id = LUFS_NEXT_ID(last_loghead_ident);
457 
458 	/* Checking if new identity used already */
459 	if (up != NULL && up->un_head_ident == id) {
460 		DTRACE_PROBE1(head_ident_collision, uint32_t, id);
461 
462 		/*
463 		 * The  following  preserves  the  algorithm  for  the fix  for
464 		 * "panic: free: freeing free frag, dev:0x2000000018, blk:34605,
465 		 * cg:26, ino:148071,".
466 		 * If  the header identities  un_head_ident  are  equal  to the
467 		 * present element  in the sequence,  the next element  of  the
468 		 * sequence is returned instead.
469 		 */
470 		id = LUFS_NEXT_ID(id);
471 	}
472 
473 	last_loghead_ident = id;
474 
475 	mutex_exit(&genid_mutex);
476 
477 	return (id);
478 }
479 
480 static void
481 lufs_genid_init(void)
482 {
483 	uint64_t seed;
484 
485 	/* Initialization */
486 	mutex_init(&genid_mutex, NULL, MUTEX_DEFAULT, NULL);
487 
488 	/* Seed the algorithm */
489 	do {
490 		timestruc_t tv;
491 
492 		gethrestime(&tv);
493 
494 		seed = (tv.tv_nsec << 3);
495 		seed ^= tv.tv_sec;
496 
497 		last_loghead_ident = (uint32_t)(seed % LUFS_GENID_PRIME);
498 	} while (last_loghead_ident == UINT32_C(0));
499 }
500 
501 static int
502 lufs_initialize(
503 	ufsvfs_t *ufsvfsp,
504 	daddr_t bno,
505 	size_t nb,
506 	struct fiolog *flp)
507 {
508 	ml_odunit_t	*ud, *ud2;
509 	buf_t		*bp;
510 
511 	/* LINTED: warning: logical expression always true: op "||" */
512 	ASSERT(sizeof (ml_odunit_t) < DEV_BSIZE);
513 	ASSERT(nb >= ldl_minlogsize);
514 
515 	bp = UFS_GETBLK(ufsvfsp, ufsvfsp->vfs_dev, bno, dbtob(LS_SECTORS));
516 	bzero(bp->b_un.b_addr, bp->b_bcount);
517 
518 	ud = (void *)bp->b_un.b_addr;
519 	ud->od_version = LUFS_VERSION_LATEST;
520 	ud->od_maxtransfer = MIN(ufsvfsp->vfs_iotransz, ldl_maxtransfer);
521 	if (ud->od_maxtransfer < ldl_mintransfer)
522 		ud->od_maxtransfer = ldl_mintransfer;
523 	ud->od_devbsize = DEV_BSIZE;
524 
525 	ud->od_requestsize = flp->nbytes_actual;
526 	ud->od_statesize = dbtob(LS_SECTORS);
527 	ud->od_logsize = nb - ud->od_statesize;
528 
529 	ud->od_statebno = INT32_C(0);
530 
531 	ud->od_head_ident = lufs_hd_genid(NULL);
532 	ud->od_tail_ident = ud->od_head_ident;
533 	ud->od_chksum = ud->od_head_ident + ud->od_tail_ident;
534 
535 	ud->od_bol_lof = dbtob(ud->od_statebno) + ud->od_statesize;
536 	ud->od_eol_lof = ud->od_bol_lof + ud->od_logsize;
537 	ud->od_head_lof = ud->od_bol_lof;
538 	ud->od_tail_lof = ud->od_bol_lof;
539 
540 	ASSERT(lufs_initialize_debug(ud));
541 
542 	ud2 = (void *)(bp->b_un.b_addr + DEV_BSIZE);
543 	bcopy(ud, ud2, sizeof (*ud));
544 
545 	UFS_BWRITE2(ufsvfsp, bp);
546 	if (bp->b_flags & B_ERROR) {
547 		brelse(bp);
548 		return (EIO);
549 	}
550 	brelse(bp);
551 
552 	return (0);
553 }
554 
555 /*
556  * Free log space
557  *	Assumes the file system is write locked and is not logging
558  */
559 static int
560 lufs_free(struct ufsvfs *ufsvfsp)
561 {
562 	int		error = 0, i, j;
563 	buf_t		*bp = NULL;
564 	extent_t	*ep;
565 	extent_block_t	*ebp;
566 	struct fs	*fs = ufsvfsp->vfs_fs;
567 	daddr_t		fno;
568 	int32_t		logbno;
569 	long		nfno;
570 	inode_t		*ip = NULL;
571 	char		clean;
572 
573 	/*
574 	 * Nothing to free
575 	 */
576 	if (fs->fs_logbno == 0)
577 		return (0);
578 
579 	/*
580 	 * Mark the file system as FSACTIVE and no log but honor the
581 	 * current value of fs_reclaim.  The reclaim thread could have
582 	 * been active when lufs_disable() was called and if fs_reclaim
583 	 * is reset to zero here it could lead to lost inodes.
584 	 */
585 	ufsvfsp->vfs_ulockfs.ul_sbowner = curthread;
586 	mutex_enter(&ufsvfsp->vfs_lock);
587 	clean = fs->fs_clean;
588 	logbno = fs->fs_logbno;
589 	fs->fs_clean = FSACTIVE;
590 	fs->fs_logbno = INT32_C(0);
591 	ufs_sbwrite(ufsvfsp);
592 	mutex_exit(&ufsvfsp->vfs_lock);
593 	ufsvfsp->vfs_ulockfs.ul_sbowner = (kthread_id_t)-1;
594 	if (ufsvfsp->vfs_bufp->b_flags & B_ERROR) {
595 		error = EIO;
596 		fs->fs_clean = clean;
597 		fs->fs_logbno = logbno;
598 		goto errout;
599 	}
600 
601 	/*
602 	 * fetch the allocation block
603 	 *	superblock -> one block of extents -> log data
604 	 */
605 	bp = UFS_BREAD(ufsvfsp, ufsvfsp->vfs_dev, logbtodb(fs, logbno),
606 	    fs->fs_bsize);
607 	if (bp->b_flags & B_ERROR) {
608 		error = EIO;
609 		goto errout;
610 	}
611 
612 	/*
613 	 * Free up the allocated space (dummy inode needed for free())
614 	 */
615 	ip = ufs_alloc_inode(ufsvfsp, UFSROOTINO);
616 	ebp = (void *)bp->b_un.b_addr;
617 	for (i = 0, ep = &ebp->extents[0]; i < ebp->nextents; ++i, ++ep) {
618 		fno = logbtofrag(fs, ep->pbno);
619 		nfno = dbtofsb(fs, ep->nbno);
620 		for (j = 0; j < nfno; j += fs->fs_frag, fno += fs->fs_frag)
621 			free(ip, fno, fs->fs_bsize, 0);
622 	}
623 	free(ip, logbtofrag(fs, logbno), fs->fs_bsize, 0);
624 	brelse(bp);
625 	bp = NULL;
626 
627 	/*
628 	 * Push the metadata dirtied during the allocations
629 	 */
630 	ufsvfsp->vfs_ulockfs.ul_sbowner = curthread;
631 	sbupdate(ufsvfsp->vfs_vfs);
632 	ufsvfsp->vfs_ulockfs.ul_sbowner = (kthread_id_t)-1;
633 	bflush(ufsvfsp->vfs_dev);
634 	error = bfinval(ufsvfsp->vfs_dev, 0);
635 	if (error)
636 		goto errout;
637 
638 	/*
639 	 * Free the dummy inode
640 	 */
641 	ufs_free_inode(ip);
642 
643 	return (0);
644 
645 errout:
646 	/*
647 	 * Free up all resources
648 	 */
649 	if (bp)
650 		brelse(bp);
651 	if (ip)
652 		ufs_free_inode(ip);
653 	return (error);
654 }
655 
656 /*
657  * Allocate log space
658  *	Assumes the file system is write locked and is not logging
659  */
660 static int
661 lufs_alloc(struct ufsvfs *ufsvfsp, struct fiolog *flp, size_t minb, cred_t *cr)
662 {
663 	int		error = 0;
664 	buf_t		*bp = NULL;
665 	extent_t	*ep, *nep;
666 	extent_block_t	*ebp;
667 	struct fs	*fs = ufsvfsp->vfs_fs;
668 	daddr_t		fno;	/* in frags */
669 	daddr_t		bno;	/* in disk blocks */
670 	int32_t		logbno = INT32_C(0);	/* will be fs_logbno */
671 	struct inode	*ip = NULL;
672 	size_t		nb = flp->nbytes_actual;
673 	size_t		tb = 0;
674 
675 	/*
676 	 * Mark the file system as FSACTIVE
677 	 */
678 	ufsvfsp->vfs_ulockfs.ul_sbowner = curthread;
679 	mutex_enter(&ufsvfsp->vfs_lock);
680 	fs->fs_clean = FSACTIVE;
681 	ufs_sbwrite(ufsvfsp);
682 	mutex_exit(&ufsvfsp->vfs_lock);
683 	ufsvfsp->vfs_ulockfs.ul_sbowner = (kthread_id_t)-1;
684 
685 	/*
686 	 * Allocate the allocation block (need dummy shadow inode;
687 	 * we use a shadow inode so the quota sub-system ignores
688 	 * the block allocations.)
689 	 *	superblock -> one block of extents -> log data
690 	 */
691 	ip = ufs_alloc_inode(ufsvfsp, UFSROOTINO);
692 	ip->i_mode = IFSHAD;		/* make the dummy a shadow inode */
693 	rw_enter(&ip->i_contents, RW_WRITER);
694 	fno = contigpref(ufsvfsp, nb + fs->fs_bsize, minb);
695 	error = alloc(ip, fno, fs->fs_bsize, &fno, cr);
696 	if (error)
697 		goto errout;
698 	bno = fsbtodb(fs, fno);
699 
700 	bp = UFS_BREAD(ufsvfsp, ufsvfsp->vfs_dev, bno, fs->fs_bsize);
701 	if (bp->b_flags & B_ERROR) {
702 		error = EIO;
703 		goto errout;
704 	}
705 
706 	ebp = (void *)bp->b_un.b_addr;
707 	ebp->type = LUFS_EXTENTS;
708 	ebp->nextbno = UINT32_C(0);
709 	ebp->nextents = UINT32_C(0);
710 	ebp->chksum = INT32_C(0);
711 	if (fs->fs_magic == FS_MAGIC)
712 		logbno = bno;
713 	else
714 		logbno = dbtofsb(fs, bno);
715 
716 	/*
717 	 * Initialize the first extent
718 	 */
719 	ep = &ebp->extents[0];
720 	error = alloc(ip, fno + fs->fs_frag, fs->fs_bsize, &fno, cr);
721 	if (error)
722 		goto errout;
723 	bno = fsbtodb(fs, fno);
724 
725 	ep->lbno = UINT32_C(0);
726 	if (fs->fs_magic == FS_MAGIC)
727 		ep->pbno = (uint32_t)bno;
728 	else
729 		ep->pbno = (uint32_t)fno;
730 	ep->nbno = (uint32_t)fsbtodb(fs, fs->fs_frag);
731 	ebp->nextents = UINT32_C(1);
732 	tb = fs->fs_bsize;
733 	nb -= fs->fs_bsize;
734 
735 	while (nb) {
736 		error = alloc(ip, fno + fs->fs_frag, fs->fs_bsize, &fno, cr);
737 		if (error) {
738 			if (tb < minb)
739 				goto errout;
740 			error = 0;
741 			break;
742 		}
743 		bno = fsbtodb(fs, fno);
744 		if ((daddr_t)((logbtodb(fs, ep->pbno) + ep->nbno) == bno))
745 			ep->nbno += (uint32_t)(fsbtodb(fs, fs->fs_frag));
746 		else {
747 			nep = ep + 1;
748 			if ((caddr_t)(nep + 1) >
749 			    (bp->b_un.b_addr + fs->fs_bsize)) {
750 				free(ip, fno, fs->fs_bsize, 0);
751 				break;
752 			}
753 			nep->lbno = ep->lbno + ep->nbno;
754 			if (fs->fs_magic == FS_MAGIC)
755 				nep->pbno = (uint32_t)bno;
756 			else
757 				nep->pbno = (uint32_t)fno;
758 			nep->nbno = (uint32_t)(fsbtodb(fs, fs->fs_frag));
759 			ebp->nextents++;
760 			ep = nep;
761 		}
762 		tb += fs->fs_bsize;
763 		nb -= fs->fs_bsize;
764 	}
765 
766 	if (tb < minb) {	/* Failed to reach minimum log size */
767 		error = ENOSPC;
768 		goto errout;
769 	}
770 
771 	ebp->nbytes = (uint32_t)tb;
772 	setsum(&ebp->chksum, (int32_t *)bp->b_un.b_addr, fs->fs_bsize);
773 	UFS_BWRITE2(ufsvfsp, bp);
774 	if (bp->b_flags & B_ERROR) {
775 		error = EIO;
776 		goto errout;
777 	}
778 	/*
779 	 * Initialize the first two sectors of the log
780 	 */
781 	error = lufs_initialize(ufsvfsp, logbtodb(fs, ebp->extents[0].pbno),
782 	    tb, flp);
783 	if (error)
784 		goto errout;
785 
786 	/*
787 	 * We are done initializing the allocation block and the log
788 	 */
789 	brelse(bp);
790 	bp = NULL;
791 
792 	/*
793 	 * Update the superblock and push the dirty metadata
794 	 */
795 	ufsvfsp->vfs_ulockfs.ul_sbowner = curthread;
796 	sbupdate(ufsvfsp->vfs_vfs);
797 	ufsvfsp->vfs_ulockfs.ul_sbowner = (kthread_id_t)-1;
798 	bflush(ufsvfsp->vfs_dev);
799 	error = bfinval(ufsvfsp->vfs_dev, 1);
800 	if (error)
801 		goto errout;
802 	if (ufsvfsp->vfs_bufp->b_flags & B_ERROR) {
803 		error = EIO;
804 		goto errout;
805 	}
806 
807 	/*
808 	 * Everything is safely on disk; update log space pointer in sb
809 	 */
810 	ufsvfsp->vfs_ulockfs.ul_sbowner = curthread;
811 	mutex_enter(&ufsvfsp->vfs_lock);
812 	fs->fs_logbno = (uint32_t)logbno;
813 	ufs_sbwrite(ufsvfsp);
814 	mutex_exit(&ufsvfsp->vfs_lock);
815 	ufsvfsp->vfs_ulockfs.ul_sbowner = (kthread_id_t)-1;
816 
817 	/*
818 	 * Free the dummy inode
819 	 */
820 	rw_exit(&ip->i_contents);
821 	ufs_free_inode(ip);
822 
823 	/* inform user of real log size */
824 	flp->nbytes_actual = tb;
825 	return (0);
826 
827 errout:
828 	/*
829 	 * Free all resources
830 	 */
831 	if (bp)
832 		brelse(bp);
833 	if (logbno) {
834 		fs->fs_logbno = logbno;
835 		(void) lufs_free(ufsvfsp);
836 	}
837 	if (ip) {
838 		rw_exit(&ip->i_contents);
839 		ufs_free_inode(ip);
840 	}
841 	return (error);
842 }
843 
844 /*
845  * Disable logging
846  */
847 int
848 lufs_disable(vnode_t *vp, struct fiolog *flp)
849 {
850 	int		error = 0;
851 	inode_t		*ip = VTOI(vp);
852 	ufsvfs_t	*ufsvfsp = ip->i_ufsvfs;
853 	struct fs	*fs = ufsvfsp->vfs_fs;
854 	struct lockfs	lf;
855 	struct ulockfs	*ulp;
856 
857 	flp->error = FIOLOG_ENONE;
858 
859 	/*
860 	 * Logging is already disabled; done
861 	 */
862 	if (fs->fs_logbno == 0 || ufsvfsp->vfs_log == NULL)
863 		return (0);
864 
865 	/*
866 	 * Readonly file system
867 	 */
868 	if (fs->fs_ronly) {
869 		flp->error = FIOLOG_EROFS;
870 		return (0);
871 	}
872 
873 	/*
874 	 * File system must be write locked to disable logging
875 	 */
876 	error = ufs_fiolfss(vp, &lf);
877 	if (error) {
878 		return (error);
879 	}
880 	if (!LOCKFS_IS_ULOCK(&lf)) {
881 		flp->error = FIOLOG_EULOCK;
882 		return (0);
883 	}
884 	lf.lf_lock = LOCKFS_WLOCK;
885 	lf.lf_flags = 0;
886 	lf.lf_comment = NULL;
887 	error = ufs_fiolfs(vp, &lf, 1);
888 	if (error) {
889 		flp->error = FIOLOG_EWLOCK;
890 		return (0);
891 	}
892 
893 	if (ufsvfsp->vfs_log == NULL || fs->fs_logbno == 0)
894 		goto errout;
895 
896 	/*
897 	 * WE ARE COMMITTED TO DISABLING LOGGING PAST THIS POINT
898 	 */
899 
900 	/*
901 	 * Disable logging:
902 	 * Suspend the reclaim thread and force the delete thread to exit.
903 	 *	When a nologging mount has completed there may still be
904 	 *	work for reclaim to do so just suspend this thread until
905 	 *	it's [deadlock-] safe for it to continue.  The delete
906 	 *	thread won't be needed as ufs_iinactive() calls
907 	 *	ufs_delete() when logging is disabled.
908 	 * Freeze and drain reader ops.
909 	 *	Commit any outstanding reader transactions (ufs_flush).
910 	 *	Set the ``unmounted'' bit in the ufstrans struct.
911 	 *	If debug, remove metadata from matamap.
912 	 *	Disable matamap processing.
913 	 *	NULL the trans ops table.
914 	 *	Free all of the incore structs related to logging.
915 	 * Allow reader ops.
916 	 */
917 	ufs_thread_suspend(&ufsvfsp->vfs_reclaim);
918 	ufs_thread_exit(&ufsvfsp->vfs_delete);
919 
920 	vfs_lock_wait(ufsvfsp->vfs_vfs);
921 	ulp = &ufsvfsp->vfs_ulockfs;
922 	mutex_enter(&ulp->ul_lock);
923 	atomic_add_long(&ufs_quiesce_pend, 1);
924 	(void) ufs_quiesce(ulp);
925 
926 	(void) ufs_flush(ufsvfsp->vfs_vfs);
927 
928 	TRANS_MATA_UMOUNT(ufsvfsp);
929 	ufsvfsp->vfs_domatamap = 0;
930 
931 	/*
932 	 * Free all of the incore structs
933 	 * Aquire the ufs_scan_lock before de-linking the mtm data
934 	 * structure so that we keep ufs_sync() and ufs_update() away
935 	 * when they execute the ufs_scan_inodes() run while we're in
936 	 * progress of enabling/disabling logging.
937 	 */
938 	mutex_enter(&ufs_scan_lock);
939 	(void) lufs_unsnarf(ufsvfsp);
940 	mutex_exit(&ufs_scan_lock);
941 
942 	atomic_add_long(&ufs_quiesce_pend, -1);
943 	mutex_exit(&ulp->ul_lock);
944 	vfs_setmntopt(ufsvfsp->vfs_vfs, MNTOPT_NOLOGGING, NULL, 0);
945 	vfs_unlock(ufsvfsp->vfs_vfs);
946 
947 	fs->fs_rolled = FS_ALL_ROLLED;
948 	ufsvfsp->vfs_nolog_si = 0;
949 
950 	/*
951 	 * Free the log space and mark the superblock as FSACTIVE
952 	 */
953 	(void) lufs_free(ufsvfsp);
954 
955 	/*
956 	 * Allow the reclaim thread to continue.
957 	 */
958 	ufs_thread_continue(&ufsvfsp->vfs_reclaim);
959 
960 	/*
961 	 * Unlock the file system
962 	 */
963 	lf.lf_lock = LOCKFS_ULOCK;
964 	lf.lf_flags = 0;
965 	error = ufs_fiolfs(vp, &lf, 1);
966 	if (error)
967 		flp->error = FIOLOG_ENOULOCK;
968 
969 	return (0);
970 
971 errout:
972 	lf.lf_lock = LOCKFS_ULOCK;
973 	lf.lf_flags = 0;
974 	(void) ufs_fiolfs(vp, &lf, 1);
975 	return (error);
976 }
977 
978 /*
979  * Enable logging
980  */
981 int
982 lufs_enable(struct vnode *vp, struct fiolog *flp, cred_t *cr)
983 {
984 	int		error;
985 	int		reclaim;
986 	inode_t		*ip = VTOI(vp);
987 	ufsvfs_t	*ufsvfsp = ip->i_ufsvfs;
988 	struct fs	*fs;
989 	ml_unit_t	*ul;
990 	struct lockfs	lf;
991 	struct ulockfs	*ulp;
992 	vfs_t		*vfsp = ufsvfsp->vfs_vfs;
993 	uint64_t	tmp_nbytes_actual;
994 	uint64_t	cg_minlogsize;
995 	uint32_t	cgsize;
996 	static int	minlogsizewarn = 0;
997 	static int	maxlogsizewarn = 0;
998 
999 	/*
1000 	 * Check if logging is already enabled
1001 	 */
1002 	if (ufsvfsp->vfs_log) {
1003 		flp->error = FIOLOG_ETRANS;
1004 		/* for root ensure logging option is set */
1005 		vfs_setmntopt(vfsp, MNTOPT_LOGGING, NULL, 0);
1006 		return (0);
1007 	}
1008 	fs = ufsvfsp->vfs_fs;
1009 
1010 	/*
1011 	 * Come back here to recheck if we had to disable the log.
1012 	 */
1013 recheck:
1014 	error = 0;
1015 	reclaim = 0;
1016 	flp->error = FIOLOG_ENONE;
1017 
1018 	/*
1019 	 * The size of the ufs log is determined using the following rules:
1020 	 *
1021 	 * 1) If no size is requested the log size is calculated as a
1022 	 *    ratio of the total file system size. By default this is
1023 	 *    1MB of log per 1GB of file system. This calculation is then
1024 	 *    capped at the log size specified by ldl_softlogcap.
1025 	 * 2) The log size requested may then be increased based on the
1026 	 *    number of cylinder groups contained in the file system.
1027 	 *    To prevent a hang the log has to be large enough to contain a
1028 	 *    single transaction that alters every cylinder group in the file
1029 	 *    system. This is calculated as cg_minlogsize.
1030 	 * 3) Finally a check is made that the log size requested is within
1031 	 *    the limits of ldl_minlogsize and ldl_maxlogsize.
1032 	 */
1033 
1034 	/*
1035 	 * Adjust requested log size
1036 	 */
1037 	flp->nbytes_actual = flp->nbytes_requested;
1038 	if (flp->nbytes_actual == 0) {
1039 		tmp_nbytes_actual =
1040 		    (((uint64_t)fs->fs_size) / ldl_divisor) << fs->fs_fshift;
1041 		flp->nbytes_actual = (uint_t)MIN(tmp_nbytes_actual, INT_MAX);
1042 		/*
1043 		 * The 1MB per 1GB log size allocation only applies up to
1044 		 * ldl_softlogcap size of log.
1045 		 */
1046 		flp->nbytes_actual = MIN(flp->nbytes_actual, ldl_softlogcap);
1047 	}
1048 
1049 	cgsize = ldl_cgsizereq ? ldl_cgsizereq : LDL_CGSIZEREQ(fs);
1050 
1051 	/*
1052 	 * Determine the log size required based on the number of cylinder
1053 	 * groups in the file system. The log has to be at least this size
1054 	 * to prevent possible hangs due to log space exhaustion.
1055 	 */
1056 	cg_minlogsize = cgsize * fs->fs_ncg;
1057 
1058 	/*
1059 	 * Ensure that the minimum log size isn't so small that it could lead
1060 	 * to a full log hang.
1061 	 */
1062 	if (ldl_minlogsize < LDL_MINLOGSIZE) {
1063 		ldl_minlogsize = LDL_MINLOGSIZE;
1064 		if (!minlogsizewarn) {
1065 			cmn_err(CE_WARN, "ldl_minlogsize too small, increasing "
1066 			    "to 0x%x", LDL_MINLOGSIZE);
1067 			minlogsizewarn = 1;
1068 		}
1069 	}
1070 
1071 	/*
1072 	 * Ensure that the maximum log size isn't greater than INT_MAX as the
1073 	 * logical log offset fields would overflow.
1074 	 */
1075 	if (ldl_maxlogsize > INT_MAX) {
1076 		ldl_maxlogsize = INT_MAX;
1077 		if (!maxlogsizewarn) {
1078 			cmn_err(CE_WARN, "ldl_maxlogsize too large, reducing "
1079 			    "to 0x%x", INT_MAX);
1080 			maxlogsizewarn = 1;
1081 		}
1082 	}
1083 
1084 	if (cg_minlogsize > ldl_maxlogsize) {
1085 		cmn_err(CE_WARN,
1086 		    "%s: reducing calculated log size from 0x%x to "
1087 		    "ldl_maxlogsize (0x%x).", fs->fs_fsmnt, (int)cg_minlogsize,
1088 		    ldl_maxlogsize);
1089 	}
1090 
1091 	cg_minlogsize = MAX(cg_minlogsize, ldl_minlogsize);
1092 	cg_minlogsize = MIN(cg_minlogsize, ldl_maxlogsize);
1093 
1094 	flp->nbytes_actual = MAX(flp->nbytes_actual, cg_minlogsize);
1095 	flp->nbytes_actual = MAX(flp->nbytes_actual, ldl_minlogsize);
1096 	flp->nbytes_actual = MIN(flp->nbytes_actual, ldl_maxlogsize);
1097 	flp->nbytes_actual = blkroundup(fs, flp->nbytes_actual);
1098 
1099 	/*
1100 	 * logging is enabled and the log is the right size; done
1101 	 */
1102 	ul = ufsvfsp->vfs_log;
1103 	if (ul && fs->fs_logbno && (flp->nbytes_actual == ul->un_requestsize))
1104 			return (0);
1105 
1106 	/*
1107 	 * Readonly file system
1108 	 */
1109 	if (fs->fs_ronly) {
1110 		flp->error = FIOLOG_EROFS;
1111 		return (0);
1112 	}
1113 
1114 	/*
1115 	 * File system must be write locked to enable logging
1116 	 */
1117 	error = ufs_fiolfss(vp, &lf);
1118 	if (error) {
1119 		return (error);
1120 	}
1121 	if (!LOCKFS_IS_ULOCK(&lf)) {
1122 		flp->error = FIOLOG_EULOCK;
1123 		return (0);
1124 	}
1125 	lf.lf_lock = LOCKFS_WLOCK;
1126 	lf.lf_flags = 0;
1127 	lf.lf_comment = NULL;
1128 	error = ufs_fiolfs(vp, &lf, 1);
1129 	if (error) {
1130 		flp->error = FIOLOG_EWLOCK;
1131 		return (0);
1132 	}
1133 
1134 	/*
1135 	 * Grab appropriate locks to synchronize with the rest
1136 	 * of the system
1137 	 */
1138 	vfs_lock_wait(vfsp);
1139 	ulp = &ufsvfsp->vfs_ulockfs;
1140 	mutex_enter(&ulp->ul_lock);
1141 
1142 	/*
1143 	 * File system must be fairly consistent to enable logging
1144 	 */
1145 	if (fs->fs_clean != FSLOG &&
1146 	    fs->fs_clean != FSACTIVE &&
1147 	    fs->fs_clean != FSSTABLE &&
1148 	    fs->fs_clean != FSCLEAN) {
1149 		flp->error = FIOLOG_ECLEAN;
1150 		goto unlockout;
1151 	}
1152 
1153 	/*
1154 	 * A write-locked file system is only active if there are
1155 	 * open deleted files; so remember to set FS_RECLAIM later.
1156 	 */
1157 	if (fs->fs_clean == FSACTIVE)
1158 		reclaim = FS_RECLAIM;
1159 
1160 	/*
1161 	 * Logging is already enabled; must be changing the log's size
1162 	 */
1163 	if (fs->fs_logbno && ufsvfsp->vfs_log) {
1164 		/*
1165 		 * Before we can disable logging, we must give up our
1166 		 * lock.  As a consequence of unlocking and disabling the
1167 		 * log, the fs structure may change.  Because of this, when
1168 		 * disabling is complete, we will go back to recheck to
1169 		 * repeat all of the checks that we performed to get to
1170 		 * this point.  Disabling sets fs->fs_logbno to 0, so this
1171 		 * will not put us into an infinite loop.
1172 		 */
1173 		mutex_exit(&ulp->ul_lock);
1174 		vfs_unlock(vfsp);
1175 
1176 		lf.lf_lock = LOCKFS_ULOCK;
1177 		lf.lf_flags = 0;
1178 		error = ufs_fiolfs(vp, &lf, 1);
1179 		if (error) {
1180 			flp->error = FIOLOG_ENOULOCK;
1181 			return (0);
1182 		}
1183 		error = lufs_disable(vp, flp);
1184 		if (error || (flp->error != FIOLOG_ENONE))
1185 			return (0);
1186 		goto recheck;
1187 	}
1188 
1189 	error = lufs_alloc(ufsvfsp, flp, cg_minlogsize, cr);
1190 	if (error)
1191 		goto errout;
1192 
1193 	/*
1194 	 * Create all of the incore structs
1195 	 */
1196 	error = lufs_snarf(ufsvfsp, fs, 0);
1197 	if (error)
1198 		goto errout;
1199 
1200 	/*
1201 	 * DON'T ``GOTO ERROUT'' PAST THIS POINT
1202 	 */
1203 
1204 	/*
1205 	 * Pretend we were just mounted with logging enabled
1206 	 *		Get the ops vector
1207 	 *		If debug, record metadata locations with log subsystem
1208 	 *		Start the delete thread
1209 	 *		Start the reclaim thread, if necessary
1210 	 */
1211 	vfs_setmntopt(vfsp, MNTOPT_LOGGING, NULL, 0);
1212 
1213 	TRANS_DOMATAMAP(ufsvfsp);
1214 	TRANS_MATA_MOUNT(ufsvfsp);
1215 	TRANS_MATA_SI(ufsvfsp, fs);
1216 	ufs_thread_start(&ufsvfsp->vfs_delete, ufs_thread_delete, vfsp);
1217 	if (fs->fs_reclaim & (FS_RECLAIM|FS_RECLAIMING)) {
1218 		fs->fs_reclaim &= ~FS_RECLAIM;
1219 		fs->fs_reclaim |=  FS_RECLAIMING;
1220 		ufs_thread_start(&ufsvfsp->vfs_reclaim,
1221 		    ufs_thread_reclaim, vfsp);
1222 	} else
1223 		fs->fs_reclaim |= reclaim;
1224 
1225 	mutex_exit(&ulp->ul_lock);
1226 	vfs_unlock(vfsp);
1227 
1228 	/*
1229 	 * Unlock the file system
1230 	 */
1231 	lf.lf_lock = LOCKFS_ULOCK;
1232 	lf.lf_flags = 0;
1233 	error = ufs_fiolfs(vp, &lf, 1);
1234 	if (error) {
1235 		flp->error = FIOLOG_ENOULOCK;
1236 		return (0);
1237 	}
1238 
1239 	/*
1240 	 * There's nothing in the log yet (we've just allocated it)
1241 	 * so directly write out the super block.
1242 	 * Note, we have to force this sb out to disk
1243 	 * (not just to the log) so that if we crash we know we are logging
1244 	 */
1245 	mutex_enter(&ufsvfsp->vfs_lock);
1246 	fs->fs_clean = FSLOG;
1247 	fs->fs_rolled = FS_NEED_ROLL; /* Mark the fs as unrolled */
1248 	UFS_BWRITE2(NULL, ufsvfsp->vfs_bufp);
1249 	mutex_exit(&ufsvfsp->vfs_lock);
1250 
1251 	return (0);
1252 
1253 errout:
1254 	/*
1255 	 * Aquire the ufs_scan_lock before de-linking the mtm data
1256 	 * structure so that we keep ufs_sync() and ufs_update() away
1257 	 * when they execute the ufs_scan_inodes() run while we're in
1258 	 * progress of enabling/disabling logging.
1259 	 */
1260 	mutex_enter(&ufs_scan_lock);
1261 	(void) lufs_unsnarf(ufsvfsp);
1262 	mutex_exit(&ufs_scan_lock);
1263 
1264 	(void) lufs_free(ufsvfsp);
1265 unlockout:
1266 	mutex_exit(&ulp->ul_lock);
1267 	vfs_unlock(vfsp);
1268 
1269 	lf.lf_lock = LOCKFS_ULOCK;
1270 	lf.lf_flags = 0;
1271 	(void) ufs_fiolfs(vp, &lf, 1);
1272 	return (error);
1273 }
1274 
1275 void
1276 lufs_read_strategy(ml_unit_t *ul, buf_t *bp)
1277 {
1278 	mt_map_t	*logmap	= ul->un_logmap;
1279 	offset_t	mof	= ldbtob(bp->b_blkno);
1280 	off_t		nb	= bp->b_bcount;
1281 	mapentry_t	*age;
1282 	char		*va;
1283 	int		(*saviodone)();
1284 	int		entire_range;
1285 
1286 	/*
1287 	 * get a linked list of overlapping deltas
1288 	 * returns with &mtm->mtm_rwlock held
1289 	 */
1290 	entire_range = logmap_list_get(logmap, mof, nb, &age);
1291 
1292 	/*
1293 	 * no overlapping deltas were found; read master
1294 	 */
1295 	if (age == NULL) {
1296 		rw_exit(&logmap->mtm_rwlock);
1297 		if (ul->un_flags & LDL_ERROR) {
1298 			bp->b_flags |= B_ERROR;
1299 			bp->b_error = EIO;
1300 			biodone(bp);
1301 		} else {
1302 			ul->un_ufsvfs->vfs_iotstamp = lbolt;
1303 			logstats.ls_lreads.value.ui64++;
1304 			(void) bdev_strategy(bp);
1305 			lwp_stat_update(LWP_STAT_INBLK, 1);
1306 		}
1307 		return;
1308 	}
1309 
1310 	va = bp_mapin_common(bp, VM_SLEEP);
1311 	/*
1312 	 * if necessary, sync read the data from master
1313 	 *	errors are returned in bp
1314 	 */
1315 	if (!entire_range) {
1316 		saviodone = bp->b_iodone;
1317 		bp->b_iodone = trans_not_done;
1318 		logstats.ls_mreads.value.ui64++;
1319 		(void) bdev_strategy(bp);
1320 		lwp_stat_update(LWP_STAT_INBLK, 1);
1321 		if (trans_not_wait(bp))
1322 			ldl_seterror(ul, "Error reading master");
1323 		bp->b_iodone = saviodone;
1324 	}
1325 
1326 	/*
1327 	 * sync read the data from the log
1328 	 *	errors are returned inline
1329 	 */
1330 	if (ldl_read(ul, va, mof, nb, age)) {
1331 		bp->b_flags |= B_ERROR;
1332 		bp->b_error = EIO;
1333 	}
1334 
1335 	/*
1336 	 * unlist the deltas
1337 	 */
1338 	logmap_list_put(logmap, age);
1339 
1340 	/*
1341 	 * all done
1342 	 */
1343 	if (ul->un_flags & LDL_ERROR) {
1344 		bp->b_flags |= B_ERROR;
1345 		bp->b_error = EIO;
1346 	}
1347 	biodone(bp);
1348 }
1349 
1350 void
1351 lufs_write_strategy(ml_unit_t *ul, buf_t *bp)
1352 {
1353 	offset_t	mof	= ldbtob(bp->b_blkno);
1354 	off_t		nb	= bp->b_bcount;
1355 	char		*va;
1356 	mapentry_t	*me;
1357 
1358 	ASSERT((nb & DEV_BMASK) == 0);
1359 	ul->un_logmap->mtm_ref = 1;
1360 
1361 	/*
1362 	 * if there are deltas, move into log
1363 	 */
1364 	me = deltamap_remove(ul->un_deltamap, mof, nb);
1365 	if (me) {
1366 
1367 		va = bp_mapin_common(bp, VM_SLEEP);
1368 
1369 		ASSERT(((ul->un_debug & MT_WRITE_CHECK) == 0) ||
1370 		    (ul->un_matamap == NULL)||
1371 		    matamap_within(ul->un_matamap, mof, nb));
1372 
1373 		/*
1374 		 * move to logmap
1375 		 */
1376 		if (ufs_crb_enable) {
1377 			logmap_add_buf(ul, va, mof, me,
1378 			    bp->b_un.b_addr, nb);
1379 		} else {
1380 			logmap_add(ul, va, mof, me);
1381 		}
1382 
1383 		if (ul->un_flags & LDL_ERROR) {
1384 			bp->b_flags |= B_ERROR;
1385 			bp->b_error = EIO;
1386 		}
1387 		biodone(bp);
1388 		return;
1389 	}
1390 	if (ul->un_flags & LDL_ERROR) {
1391 		bp->b_flags |= B_ERROR;
1392 		bp->b_error = EIO;
1393 		biodone(bp);
1394 		return;
1395 	}
1396 
1397 	/*
1398 	 * Check that we are not updating metadata, or if so then via B_PHYS.
1399 	 */
1400 	ASSERT((ul->un_matamap == NULL) ||
1401 	    !(matamap_overlap(ul->un_matamap, mof, nb) &&
1402 	    ((bp->b_flags & B_PHYS) == 0)));
1403 
1404 	ul->un_ufsvfs->vfs_iotstamp = lbolt;
1405 	logstats.ls_lwrites.value.ui64++;
1406 
1407 	/* If snapshots are enabled, write through the snapshot driver */
1408 	if (ul->un_ufsvfs->vfs_snapshot)
1409 		fssnap_strategy(&ul->un_ufsvfs->vfs_snapshot, bp);
1410 	else
1411 		(void) bdev_strategy(bp);
1412 
1413 	lwp_stat_update(LWP_STAT_OUBLK, 1);
1414 }
1415 
1416 void
1417 lufs_strategy(ml_unit_t *ul, buf_t *bp)
1418 {
1419 	if (bp->b_flags & B_READ)
1420 		lufs_read_strategy(ul, bp);
1421 	else
1422 		lufs_write_strategy(ul, bp);
1423 }
1424 
1425 /* ARGSUSED */
1426 static int
1427 delta_stats_update(kstat_t *ksp, int rw)
1428 {
1429 	if (rw == KSTAT_WRITE) {
1430 		delta_stats[DT_SB] = dkstats.ds_superblock_deltas.value.ui64;
1431 		delta_stats[DT_CG] = dkstats.ds_bitmap_deltas.value.ui64;
1432 		delta_stats[DT_SI] = dkstats.ds_suminfo_deltas.value.ui64;
1433 		delta_stats[DT_AB] = dkstats.ds_allocblk_deltas.value.ui64;
1434 		delta_stats[DT_ABZERO] = dkstats.ds_ab0_deltas.value.ui64;
1435 		delta_stats[DT_DIR] = dkstats.ds_dir_deltas.value.ui64;
1436 		delta_stats[DT_INODE] = dkstats.ds_inode_deltas.value.ui64;
1437 		delta_stats[DT_FBI] = dkstats.ds_fbiwrite_deltas.value.ui64;
1438 		delta_stats[DT_QR] = dkstats.ds_quota_deltas.value.ui64;
1439 		delta_stats[DT_SHAD] = dkstats.ds_shadow_deltas.value.ui64;
1440 
1441 		roll_stats[DT_SB] = dkstats.ds_superblock_rolled.value.ui64;
1442 		roll_stats[DT_CG] = dkstats.ds_bitmap_rolled.value.ui64;
1443 		roll_stats[DT_SI] = dkstats.ds_suminfo_rolled.value.ui64;
1444 		roll_stats[DT_AB] = dkstats.ds_allocblk_rolled.value.ui64;
1445 		roll_stats[DT_ABZERO] = dkstats.ds_ab0_rolled.value.ui64;
1446 		roll_stats[DT_DIR] = dkstats.ds_dir_rolled.value.ui64;
1447 		roll_stats[DT_INODE] = dkstats.ds_inode_rolled.value.ui64;
1448 		roll_stats[DT_FBI] = dkstats.ds_fbiwrite_rolled.value.ui64;
1449 		roll_stats[DT_QR] = dkstats.ds_quota_rolled.value.ui64;
1450 		roll_stats[DT_SHAD] = dkstats.ds_shadow_rolled.value.ui64;
1451 	} else {
1452 		dkstats.ds_superblock_deltas.value.ui64 = delta_stats[DT_SB];
1453 		dkstats.ds_bitmap_deltas.value.ui64 = delta_stats[DT_CG];
1454 		dkstats.ds_suminfo_deltas.value.ui64 = delta_stats[DT_SI];
1455 		dkstats.ds_allocblk_deltas.value.ui64 = delta_stats[DT_AB];
1456 		dkstats.ds_ab0_deltas.value.ui64 = delta_stats[DT_ABZERO];
1457 		dkstats.ds_dir_deltas.value.ui64 = delta_stats[DT_DIR];
1458 		dkstats.ds_inode_deltas.value.ui64 = delta_stats[DT_INODE];
1459 		dkstats.ds_fbiwrite_deltas.value.ui64 = delta_stats[DT_FBI];
1460 		dkstats.ds_quota_deltas.value.ui64 = delta_stats[DT_QR];
1461 		dkstats.ds_shadow_deltas.value.ui64 = delta_stats[DT_SHAD];
1462 
1463 		dkstats.ds_superblock_rolled.value.ui64 = roll_stats[DT_SB];
1464 		dkstats.ds_bitmap_rolled.value.ui64 = roll_stats[DT_CG];
1465 		dkstats.ds_suminfo_rolled.value.ui64 = roll_stats[DT_SI];
1466 		dkstats.ds_allocblk_rolled.value.ui64 = roll_stats[DT_AB];
1467 		dkstats.ds_ab0_rolled.value.ui64 = roll_stats[DT_ABZERO];
1468 		dkstats.ds_dir_rolled.value.ui64 = roll_stats[DT_DIR];
1469 		dkstats.ds_inode_rolled.value.ui64 = roll_stats[DT_INODE];
1470 		dkstats.ds_fbiwrite_rolled.value.ui64 = roll_stats[DT_FBI];
1471 		dkstats.ds_quota_rolled.value.ui64 = roll_stats[DT_QR];
1472 		dkstats.ds_shadow_rolled.value.ui64 = roll_stats[DT_SHAD];
1473 	}
1474 	return (0);
1475 }
1476 
1477 extern size_t ufs_crb_limit;
1478 extern int ufs_max_crb_divisor;
1479 
1480 void
1481 lufs_init(void)
1482 {
1483 	kstat_t *ksp;
1484 
1485 	/* Create kmem caches */
1486 	lufs_sv = kmem_cache_create("lufs_save", sizeof (lufs_save_t), 0,
1487 	    NULL, NULL, NULL, NULL, NULL, 0);
1488 	lufs_bp = kmem_cache_create("lufs_bufs", sizeof (lufs_buf_t), 0,
1489 	    NULL, NULL, NULL, NULL, NULL, 0);
1490 
1491 	mutex_init(&log_mutex, NULL, MUTEX_DEFAULT, NULL);
1492 
1493 	_init_top();
1494 
1495 	if (&bio_lufs_strategy != NULL)
1496 		bio_lufs_strategy = (void (*) (void *, buf_t *)) lufs_strategy;
1497 
1498 	/*
1499 	 * Initialise general logging and delta kstats
1500 	 */
1501 	ksp = kstat_create("ufs_log", 0, "logstats", "ufs", KSTAT_TYPE_NAMED,
1502 	    sizeof (logstats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
1503 	if (ksp) {
1504 		ksp->ks_data = (void *) &logstats;
1505 		kstat_install(ksp);
1506 	}
1507 
1508 	ksp = kstat_create("ufs_log", 0, "deltastats", "ufs", KSTAT_TYPE_NAMED,
1509 	    sizeof (dkstats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
1510 	if (ksp) {
1511 		ksp->ks_data = (void *) &dkstats;
1512 		ksp->ks_update = delta_stats_update;
1513 		kstat_install(ksp);
1514 	}
1515 
1516 	/* Initialize  generation of logging ids */
1517 	lufs_genid_init();
1518 
1519 	/*
1520 	 * Set up the maximum amount of kmem that the crbs (system wide)
1521 	 * can use.
1522 	 */
1523 	ufs_crb_limit = kmem_maxavail() / ufs_max_crb_divisor;
1524 }
1525