xref: /titanic_44/usr/src/uts/common/fs/udfs/udf_inode.c (revision db8b037b5616a366b7dfdc01ef9552f02f9adfdd)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 1998, 2010, Oracle and/or its affiliates. All rights reserved.
23  */
24 
25 #include <sys/types.h>
26 #include <sys/t_lock.h>
27 #include <sys/param.h>
28 #include <sys/time.h>
29 #include <sys/systm.h>
30 #include <sys/sysmacros.h>
31 #include <sys/resource.h>
32 #include <sys/signal.h>
33 #include <sys/cred.h>
34 #include <sys/user.h>
35 #include <sys/buf.h>
36 #include <sys/vfs.h>
37 #include <sys/stat.h>
38 #include <sys/vnode.h>
39 #include <sys/mode.h>
40 #include <sys/proc.h>
41 #include <sys/disp.h>
42 #include <sys/file.h>
43 #include <sys/fcntl.h>
44 #include <sys/flock.h>
45 #include <sys/kmem.h>
46 #include <sys/uio.h>
47 #include <sys/dnlc.h>
48 #include <sys/conf.h>
49 #include <sys/errno.h>
50 #include <sys/mman.h>
51 #include <sys/fbuf.h>
52 #include <sys/pathname.h>
53 #include <sys/debug.h>
54 #include <sys/vmsystm.h>
55 #include <sys/cmn_err.h>
56 #include <sys/dirent.h>
57 #include <sys/errno.h>
58 #include <sys/modctl.h>
59 #include <sys/statvfs.h>
60 #include <sys/mount.h>
61 #include <sys/sunddi.h>
62 #include <sys/bootconf.h>
63 #include <sys/policy.h>
64 
65 #include <vm/hat.h>
66 #include <vm/page.h>
67 #include <vm/pvn.h>
68 #include <vm/as.h>
69 #include <vm/seg.h>
70 #include <vm/seg_map.h>
71 #include <vm/seg_kmem.h>
72 #include <vm/seg_vn.h>
73 #include <vm/rm.h>
74 #include <vm/page.h>
75 #include <sys/swap.h>
76 
77 
78 #include <fs/fs_subr.h>
79 
80 
81 #include <sys/fs/udf_volume.h>
82 #include <sys/fs/udf_inode.h>
83 
84 extern struct vnodeops *udf_vnodeops;
85 
86 kmutex_t ud_sync_busy;
87 /*
88  * udf_vfs list manipulation routines
89  */
90 kmutex_t udf_vfs_mutex;
91 struct udf_vfs *udf_vfs_instances;
92 #ifndef	__lint
93 _NOTE(MUTEX_PROTECTS_DATA(udf_vfs_mutex, udf_vfs_instances))
94 #endif
95 
96 union ihead ud_ihead[UD_HASH_SZ];
97 kmutex_t ud_icache_lock;
98 
99 #define	UD_BEGIN	0x0
100 #define	UD_END		0x1
101 #define	UD_UNKN		0x2
102 struct ud_inode *udf_ifreeh, *udf_ifreet;
103 kmutex_t udf_ifree_lock;
104 #ifndef	__lint
105 _NOTE(MUTEX_PROTECTS_DATA(udf_ifree_lock, udf_ifreeh))
106 _NOTE(MUTEX_PROTECTS_DATA(udf_ifree_lock, udf_ifreet))
107 #endif
108 
109 kmutex_t ud_nino_lock;
110 int32_t ud_max_inodes = 512;
111 int32_t ud_cur_inodes = 0;
112 #ifndef	__lint
113 _NOTE(MUTEX_PROTECTS_DATA(ud_nino_lock, ud_cur_inodes))
114 #endif
115 
116 uid_t ud_default_uid = 0;
117 gid_t ud_default_gid = 3;
118 
119 int32_t ud_updat_ext4(struct ud_inode *, struct file_entry *);
120 int32_t ud_updat_ext4096(struct ud_inode *, struct file_entry *);
121 void ud_make_sad(struct icb_ext *, struct short_ad *, int32_t);
122 void ud_make_lad(struct icb_ext *, struct long_ad *, int32_t);
123 void ud_trunc_ext4(struct ud_inode *, u_offset_t);
124 void ud_trunc_ext4096(struct ud_inode *, u_offset_t);
125 void ud_add_to_free_list(struct ud_inode *, uint32_t);
126 void ud_remove_from_free_list(struct ud_inode *, uint32_t);
127 
128 
129 #ifdef	DEBUG
130 struct ud_inode *
131 ud_search_icache(struct vfs *vfsp, uint16_t prn, uint32_t ploc)
132 {
133 	int32_t hno;
134 	union ihead *ih;
135 	struct ud_inode *ip;
136 	struct udf_vfs *udf_vfsp;
137 	uint32_t loc, dummy;
138 
139 	udf_vfsp = (struct udf_vfs *)vfsp->vfs_data;
140 	loc = ud_xlate_to_daddr(udf_vfsp, prn, ploc, 1, &dummy);
141 
142 	mutex_enter(&ud_icache_lock);
143 	hno = UD_INOHASH(vfsp->vfs_dev, loc);
144 	ih = &ud_ihead[hno];
145 	for (ip = ih->ih_chain[0];
146 	    ip != (struct ud_inode *)ih;
147 	    ip = ip->i_forw) {
148 		if ((prn == ip->i_icb_prn) && (ploc == ip->i_icb_block) &&
149 		    (vfsp->vfs_dev == ip->i_dev)) {
150 			mutex_exit(&ud_icache_lock);
151 			return (ip);
152 		}
153 	}
154 	mutex_exit(&ud_icache_lock);
155 	return (0);
156 }
157 #endif
158 
159 /* ARGSUSED */
160 int
161 ud_iget(struct vfs *vfsp, uint16_t prn, uint32_t ploc,
162 	struct ud_inode **ipp, struct buf *pbp, struct cred *cred)
163 {
164 	int32_t hno, nomem = 0, icb_tag_flags;
165 	union ihead *ih;
166 	struct ud_inode *ip;
167 	struct vnode *vp;
168 	struct buf *bp = NULL;
169 	struct file_entry *fe;
170 	struct udf_vfs *udf_vfsp;
171 	struct ext_attr_hdr *eah;
172 	struct attr_hdr *ah;
173 	int32_t ea_len, ea_off;
174 	daddr_t loc;
175 	uint64_t offset = 0;
176 	struct icb_ext *iext, *con;
177 	uint32_t length, dummy;
178 	int32_t ndesc, ftype;
179 	uint16_t old_prn;
180 	uint32_t old_block, old_lbano;
181 
182 	ud_printf("ud_iget\n");
183 	udf_vfsp = (struct udf_vfs *)vfsp->vfs_data;
184 	old_prn = 0;
185 	old_block = old_lbano = 0;
186 	ftype = 0;
187 	loc = ud_xlate_to_daddr(udf_vfsp, prn, ploc, 1, &dummy);
188 loop:
189 	mutex_enter(&ud_icache_lock);
190 	hno = UD_INOHASH(vfsp->vfs_dev, loc);
191 
192 	ih = &ud_ihead[hno];
193 	for (ip = ih->ih_chain[0];
194 	    ip != (struct ud_inode *)ih;
195 	    ip = ip->i_forw) {
196 
197 		if ((prn == ip->i_icb_prn) &&
198 		    (ploc == ip->i_icb_block) &&
199 		    (vfsp->vfs_dev == ip->i_dev)) {
200 
201 			vp = ITOV(ip);
202 			VN_HOLD(vp);
203 			mutex_exit(&ud_icache_lock);
204 
205 			rw_enter(&ip->i_contents, RW_READER);
206 			mutex_enter(&ip->i_tlock);
207 			if ((ip->i_flag & IREF) == 0) {
208 				mutex_enter(&udf_ifree_lock);
209 				ud_remove_from_free_list(ip, UD_UNKN);
210 				mutex_exit(&udf_ifree_lock);
211 			}
212 			ip->i_flag |= IREF;
213 			mutex_exit(&ip->i_tlock);
214 			rw_exit(&ip->i_contents);
215 
216 			*ipp = ip;
217 
218 			if (pbp != NULL) {
219 				brelse(pbp);
220 			}
221 
222 			return (0);
223 		}
224 	}
225 
226 	/*
227 	 * We don't have it in the cache
228 	 * Allocate a new entry
229 	 */
230 tryagain:
231 	mutex_enter(&udf_ifree_lock);
232 	mutex_enter(&ud_nino_lock);
233 	if (ud_cur_inodes > ud_max_inodes) {
234 		int32_t purged;
235 
236 		mutex_exit(&ud_nino_lock);
237 		while (udf_ifreeh == NULL ||
238 		    vn_has_cached_data(ITOV(udf_ifreeh))) {
239 			/*
240 			 * Try to put an inode on the freelist that's
241 			 * sitting in the dnlc.
242 			 */
243 			mutex_exit(&udf_ifree_lock);
244 			purged = dnlc_fs_purge1(udf_vnodeops);
245 			mutex_enter(&udf_ifree_lock);
246 			if (!purged) {
247 				break;
248 			}
249 		}
250 		mutex_enter(&ud_nino_lock);
251 	}
252 
253 	/*
254 	 * If there's a free one available and it has no pages attached
255 	 * take it. If we're over the high water mark, take it even if
256 	 * it has attached pages. Otherwise, make a new one.
257 	 */
258 	if (udf_ifreeh &&
259 	    (nomem || !vn_has_cached_data(ITOV(udf_ifreeh)) ||
260 	    ud_cur_inodes >= ud_max_inodes)) {
261 
262 		mutex_exit(&ud_nino_lock);
263 		ip = udf_ifreeh;
264 		vp = ITOV(ip);
265 
266 		ud_remove_from_free_list(ip, UD_BEGIN);
267 
268 		mutex_exit(&udf_ifree_lock);
269 		if (ip->i_flag & IREF) {
270 			cmn_err(CE_WARN, "ud_iget: bad i_flag\n");
271 			mutex_exit(&ud_icache_lock);
272 			if (pbp != NULL) {
273 				brelse(pbp);
274 			}
275 			return (EINVAL);
276 		}
277 		rw_enter(&ip->i_contents, RW_WRITER);
278 
279 		/*
280 		 * We call udf_syncip() to synchronously destroy all pages
281 		 * associated with the vnode before re-using it. The pageout
282 		 * thread may have beat us to this page so our v_count can
283 		 * be > 0 at this point even though we are on the freelist.
284 		 */
285 		mutex_enter(&ip->i_tlock);
286 		ip->i_flag = (ip->i_flag & IMODTIME) | IREF;
287 		mutex_exit(&ip->i_tlock);
288 
289 		VN_HOLD(vp);
290 		if (ud_syncip(ip, B_INVAL, I_SYNC) != 0) {
291 			ud_idrop(ip);
292 			rw_exit(&ip->i_contents);
293 			mutex_exit(&ud_icache_lock);
294 			goto loop;
295 		}
296 
297 		mutex_enter(&ip->i_tlock);
298 		ip->i_flag &= ~IMODTIME;
299 		mutex_exit(&ip->i_tlock);
300 
301 		if (ip->i_ext) {
302 			kmem_free(ip->i_ext,
303 			    sizeof (struct icb_ext) * ip->i_ext_count);
304 			ip->i_ext = 0;
305 			ip->i_ext_count = ip->i_ext_used = 0;
306 		}
307 
308 		if (ip->i_con) {
309 			kmem_free(ip->i_con,
310 			    sizeof (struct icb_ext) * ip->i_con_count);
311 			ip->i_con = 0;
312 			ip->i_con_count = ip->i_con_used = ip->i_con_read = 0;
313 		}
314 
315 		/*
316 		 * The pageout thread may not have had a chance to release
317 		 * its hold on the vnode (if it was active with this vp),
318 		 * but the pages should all be invalidated.
319 		 */
320 	} else {
321 		mutex_exit(&ud_nino_lock);
322 		mutex_exit(&udf_ifree_lock);
323 		/*
324 		 * Try to get memory for this inode without blocking.
325 		 * If we can't and there is something on the freelist,
326 		 * go ahead and use it, otherwise block waiting for
327 		 * memory holding the hash_lock. We expose a potential
328 		 * deadlock if all users of memory have to do a ud_iget()
329 		 * before releasing memory.
330 		 */
331 		ip = (struct ud_inode *)kmem_zalloc(sizeof (struct ud_inode),
332 		    KM_NOSLEEP);
333 		vp = vn_alloc(KM_NOSLEEP);
334 		if ((ip == NULL) || (vp == NULL)) {
335 			mutex_enter(&udf_ifree_lock);
336 			if (udf_ifreeh) {
337 				mutex_exit(&udf_ifree_lock);
338 				if (ip != NULL)
339 					kmem_free(ip, sizeof (struct ud_inode));
340 				if (vp != NULL)
341 					vn_free(vp);
342 				nomem = 1;
343 				goto tryagain;
344 			} else {
345 				mutex_exit(&udf_ifree_lock);
346 				if (ip == NULL)
347 					ip = (struct ud_inode *)
348 					    kmem_zalloc(
349 					    sizeof (struct ud_inode),
350 					    KM_SLEEP);
351 				if (vp == NULL)
352 					vp = vn_alloc(KM_SLEEP);
353 			}
354 		}
355 		ip->i_vnode = vp;
356 
357 		ip->i_marker1 = (uint32_t)0xAAAAAAAA;
358 		ip->i_marker2 = (uint32_t)0xBBBBBBBB;
359 		ip->i_marker3 = (uint32_t)0xCCCCCCCC;
360 
361 		rw_init(&ip->i_rwlock, NULL, RW_DEFAULT, NULL);
362 		rw_init(&ip->i_contents, NULL, RW_DEFAULT, NULL);
363 		mutex_init(&ip->i_tlock, NULL, MUTEX_DEFAULT, NULL);
364 
365 		ip->i_forw = ip;
366 		ip->i_back = ip;
367 		vp->v_data = (caddr_t)ip;
368 		vn_setops(vp, udf_vnodeops);
369 		ip->i_flag = IREF;
370 		cv_init(&ip->i_wrcv, NULL, CV_DRIVER, NULL);
371 		mutex_enter(&ud_nino_lock);
372 		ud_cur_inodes++;
373 		mutex_exit(&ud_nino_lock);
374 
375 		rw_enter(&ip->i_contents, RW_WRITER);
376 	}
377 
378 	if (vp->v_count < 1) {
379 		cmn_err(CE_WARN, "ud_iget: v_count < 1\n");
380 		mutex_exit(&ud_icache_lock);
381 		rw_exit(&ip->i_contents);
382 		if (pbp != NULL) {
383 			brelse(pbp);
384 		}
385 		return (EINVAL);
386 	}
387 	if (vn_has_cached_data(vp)) {
388 		cmn_err(CE_WARN, "ud_iget: v_pages not NULL\n");
389 		mutex_exit(&ud_icache_lock);
390 		rw_exit(&ip->i_contents);
391 		if (pbp != NULL) {
392 			brelse(pbp);
393 		}
394 		return (EINVAL);
395 	}
396 
397 	/*
398 	 * Move the inode on the chain for its new (ino, dev) pair
399 	 */
400 	remque(ip);
401 	ip->i_forw = ip;
402 	ip->i_back = ip;
403 	insque(ip, ih);
404 
405 	ip->i_dev = vfsp->vfs_dev;
406 	ip->i_udf = udf_vfsp;
407 	ip->i_diroff = 0;
408 	ip->i_devvp = ip->i_udf->udf_devvp;
409 	ip->i_icb_prn = prn;
410 	ip->i_icb_block = ploc;
411 	ip->i_icb_lbano = loc;
412 	ip->i_nextr = 0;
413 	ip->i_seq = 0;
414 	mutex_exit(&ud_icache_lock);
415 
416 read_de:
417 	if (pbp != NULL) {
418 		/*
419 		 * assumption is that we will not
420 		 * create a 4096 file
421 		 */
422 		bp = pbp;
423 	} else {
424 		bp = ud_bread(ip->i_dev,
425 		    ip->i_icb_lbano << udf_vfsp->udf_l2d_shift,
426 		    udf_vfsp->udf_lbsize);
427 	}
428 
429 	/*
430 	 * Check I/O errors
431 	 */
432 	fe = (struct file_entry *)bp->b_un.b_addr;
433 	if ((bp->b_flags & B_ERROR) ||
434 	    (ud_verify_tag_and_desc(&fe->fe_tag, UD_FILE_ENTRY,
435 	    ip->i_icb_block, 1, udf_vfsp->udf_lbsize) != 0)) {
436 
437 		if (((bp->b_flags & B_ERROR) == 0) &&
438 		    (ftype == STRAT_TYPE4096)) {
439 			if (ud_check_te_unrec(udf_vfsp,
440 			    bp->b_un.b_addr, ip->i_icb_block) == 0) {
441 
442 				brelse(bp);
443 
444 				/*
445 				 * restore old file entry location
446 				 */
447 				ip->i_icb_prn = old_prn;
448 				ip->i_icb_block = old_block;
449 				ip->i_icb_lbano = old_lbano;
450 
451 				/*
452 				 * reread old file entry
453 				 */
454 				bp = ud_bread(ip->i_dev,
455 				    old_lbano << udf_vfsp->udf_l2d_shift,
456 				    udf_vfsp->udf_lbsize);
457 				if ((bp->b_flags & B_ERROR) == 0) {
458 					fe = (struct file_entry *)
459 					    bp->b_un.b_addr;
460 					if (ud_verify_tag_and_desc(&fe->fe_tag,
461 					    UD_FILE_ENTRY, ip->i_icb_block, 1,
462 					    udf_vfsp->udf_lbsize) == 0) {
463 						goto end_4096;
464 					}
465 				}
466 			}
467 		}
468 error_ret:
469 		brelse(bp);
470 		/*
471 		 * The inode may not contain anything useful. Mark it as
472 		 * having an error and let anyone else who was waiting for
473 		 * this know there was an error. Callers waiting for
474 		 * access to this inode in ud_iget will find
475 		 * the i_icb_lbano == 0, so there won't be a match.
476 		 * It remains in the cache. Put it back on the freelist.
477 		 */
478 		mutex_enter(&vp->v_lock);
479 		vp->v_count--;
480 		mutex_exit(&vp->v_lock);
481 		ip->i_icb_lbano = 0;
482 
483 		/*
484 		 * The folowing two lines make
485 		 * it impossible for any one do
486 		 * a VN_HOLD and then a VN_RELE
487 		 * so avoiding a ud_iinactive
488 		 */
489 		ip->i_icb_prn = 0xffff;
490 		ip->i_icb_block = 0;
491 
492 		/*
493 		 * remove the bad inode from hash chains
494 		 * so that during unmount we will not
495 		 * go through this inode
496 		 */
497 		mutex_enter(&ud_icache_lock);
498 		remque(ip);
499 		ip->i_forw = ip;
500 		ip->i_back = ip;
501 		mutex_exit(&ud_icache_lock);
502 
503 		/* Put the inode at the front of the freelist */
504 		mutex_enter(&ip->i_tlock);
505 		mutex_enter(&udf_ifree_lock);
506 		ud_add_to_free_list(ip, UD_BEGIN);
507 		mutex_exit(&udf_ifree_lock);
508 		ip->i_flag = 0;
509 		mutex_exit(&ip->i_tlock);
510 		rw_exit(&ip->i_contents);
511 		return (EIO);
512 	}
513 
514 	if (fe->fe_icb_tag.itag_strategy == SWAP_16(STRAT_TYPE4096)) {
515 		struct buf *ibp = NULL;
516 		struct indirect_entry *ie;
517 
518 		/*
519 		 * save old file_entry location
520 		 */
521 		old_prn = ip->i_icb_prn;
522 		old_block = ip->i_icb_block;
523 		old_lbano = ip->i_icb_lbano;
524 
525 		ftype = STRAT_TYPE4096;
526 
527 		/*
528 		 * If astrat is 4096 different versions
529 		 * of the file exist on the media.
530 		 * we are supposed to get to the latest
531 		 * version of the file
532 		 */
533 
534 		/*
535 		 * IE is supposed to be in the next block
536 		 * of DE
537 		 */
538 		ibp = ud_bread(ip->i_dev,
539 		    (ip->i_icb_lbano + 1) << udf_vfsp->udf_l2d_shift,
540 		    udf_vfsp->udf_lbsize);
541 		if (ibp->b_flags & B_ERROR) {
542 			/*
543 			 * Get rid of current ibp and
544 			 * then goto error on DE's bp
545 			 */
546 ie_error:
547 			brelse(ibp);
548 			goto error_ret;
549 		}
550 
551 		ie = (struct indirect_entry *)ibp->b_un.b_addr;
552 		if (ud_verify_tag_and_desc(&ie->ie_tag,
553 		    UD_INDIRECT_ENT, ip->i_icb_block + 1,
554 		    1, udf_vfsp->udf_lbsize) == 0) {
555 			struct long_ad *lad;
556 
557 			lad = &ie->ie_indirecticb;
558 			ip->i_icb_prn = SWAP_16(lad->lad_ext_prn);
559 			ip->i_icb_block = SWAP_32(lad->lad_ext_loc);
560 			ip->i_icb_lbano = ud_xlate_to_daddr(udf_vfsp,
561 			    ip->i_icb_prn, ip->i_icb_block,
562 			    1, &dummy);
563 			brelse(ibp);
564 			brelse(bp);
565 			goto read_de;
566 		}
567 
568 		/*
569 		 * If this block is TE or unrecorded we
570 		 * are at the last entry
571 		 */
572 		if (ud_check_te_unrec(udf_vfsp, ibp->b_un.b_addr,
573 		    ip->i_icb_block + 1) != 0) {
574 			/*
575 			 * This is not an unrecorded block
576 			 * Check if it a valid IE and
577 			 * get the address of DE that
578 			 * this IE points to
579 			 */
580 			goto ie_error;
581 		}
582 		/*
583 		 * If ud_check_unrec returns "0"
584 		 * this is the last in the chain
585 		 * Latest file_entry
586 		 */
587 		brelse(ibp);
588 	}
589 
590 end_4096:
591 
592 	ip->i_uid = SWAP_32(fe->fe_uid);
593 	if (ip->i_uid == -1) {
594 		ip->i_uid = ud_default_uid;
595 	}
596 	ip->i_gid = SWAP_32(fe->fe_gid);
597 	if (ip->i_gid == -1) {
598 		ip->i_gid = ud_default_gid;
599 	}
600 	ip->i_perm = SWAP_32(fe->fe_perms) & 0xFFFF;
601 	if (fe->fe_icb_tag.itag_strategy == SWAP_16(STRAT_TYPE4096)) {
602 		ip->i_perm &= ~(IWRITE | (IWRITE >> 5) | (IWRITE >> 10));
603 	}
604 
605 	ip->i_nlink = SWAP_16(fe->fe_lcount);
606 	ip->i_size = SWAP_64(fe->fe_info_len);
607 	ip->i_lbr = SWAP_64(fe->fe_lbr);
608 
609 	ud_dtime2utime(&ip->i_atime, &fe->fe_acc_time);
610 	ud_dtime2utime(&ip->i_mtime, &fe->fe_mod_time);
611 	ud_dtime2utime(&ip->i_ctime, &fe->fe_attr_time);
612 
613 
614 	ip->i_uniqid = SWAP_64(fe->fe_uniq_id);
615 	icb_tag_flags = SWAP_16(fe->fe_icb_tag.itag_flags);
616 
617 	if ((fe->fe_icb_tag.itag_ftype == FTYPE_CHAR_DEV) ||
618 	    (fe->fe_icb_tag.itag_ftype == FTYPE_BLOCK_DEV)) {
619 
620 		eah = (struct ext_attr_hdr *)fe->fe_spec;
621 		ea_off = GET_32(&eah->eah_ial);
622 		ea_len = GET_32(&fe->fe_len_ear);
623 		if (ea_len && (ud_verify_tag_and_desc(&eah->eah_tag,
624 		    UD_EXT_ATTR_HDR, ip->i_icb_block, 1,
625 		    sizeof (struct file_entry) -
626 		    offsetof(struct file_entry, fe_spec)) == 0)) {
627 
628 			while (ea_off < ea_len) {
629 				/*
630 				 * We now check the validity of ea_off.
631 				 * (ea_len - ea_off) should be large enough to
632 				 * hold the attribute header atleast.
633 				 */
634 				if ((ea_len - ea_off) <
635 				    sizeof (struct attr_hdr)) {
636 					cmn_err(CE_NOTE,
637 					    "ea_len(0x%x) - ea_off(0x%x) is "
638 					    "too small to hold attr. info. "
639 					    "blockno 0x%x\n",
640 					    ea_len, ea_off, ip->i_icb_block);
641 					goto error_ret;
642 				}
643 				ah = (struct attr_hdr *)&fe->fe_spec[ea_off];
644 
645 				/*
646 				 * Device Specification EA
647 				 */
648 				if ((GET_32(&ah->ahdr_atype) == 12) &&
649 					(ah->ahdr_astype == 1)) {
650 					struct dev_spec_ear *ds;
651 
652 					if ((ea_len - ea_off) <
653 					    sizeof (struct dev_spec_ear)) {
654 						cmn_err(CE_NOTE,
655 						    "ea_len(0x%x) - "
656 						    "ea_off(0x%x) is too small "
657 						    "to hold dev_spec_ear."
658 						    " blockno 0x%x\n",
659 						    ea_len, ea_off,
660 						    ip->i_icb_block);
661 						goto error_ret;
662 					}
663 					ds = (struct dev_spec_ear *)ah;
664 					ip->i_major = GET_32(&ds->ds_major_id);
665 					ip->i_minor = GET_32(&ds->ds_minor_id);
666 				}
667 
668 				/*
669 				 * Impl Use EA
670 				 */
671 				if ((GET_32(&ah->ahdr_atype) == 2048) &&
672 					(ah->ahdr_astype == 1)) {
673 					struct iu_ea *iuea;
674 					struct copy_mgt_info *cmi;
675 
676 					if ((ea_len - ea_off) <
677 					    sizeof (struct iu_ea)) {
678 						cmn_err(CE_NOTE,
679 "ea_len(0x%x) - ea_off(0x%x) is too small to hold iu_ea. blockno 0x%x\n",
680 						    ea_len, ea_off,
681 						    ip->i_icb_block);
682 						goto error_ret;
683 					}
684 					iuea = (struct iu_ea *)ah;
685 					if (strncmp(iuea->iuea_ii.reg_id,
686 					    UDF_FREEEASPACE,
687 					    sizeof (iuea->iuea_ii.reg_id))
688 					    == 0) {
689 						/* skip it */
690 						iuea = iuea;
691 					} else if (strncmp(iuea->iuea_ii.reg_id,
692 					    UDF_CGMS_INFO,
693 					    sizeof (iuea->iuea_ii.reg_id))
694 					    == 0) {
695 						cmi = (struct copy_mgt_info *)
696 							iuea->iuea_iu;
697 						cmi = cmi;
698 					}
699 				}
700 				/* ??? PARANOIA */
701 				if (GET_32(&ah->ahdr_length) == 0) {
702 					break;
703 				}
704 				ea_off += GET_32(&ah->ahdr_length);
705 			}
706 		}
707 	}
708 
709 	ip->i_nextr = 0;
710 
711 	ip->i_maxent = SWAP_16(fe->fe_icb_tag.itag_max_ent);
712 	ip->i_astrat = SWAP_16(fe->fe_icb_tag.itag_strategy);
713 
714 	ip->i_desc_type = icb_tag_flags & 0x7;
715 
716 	/* Strictly Paranoia */
717 	ip->i_ext = NULL;
718 	ip->i_ext_count = ip->i_ext_used = 0;
719 	ip->i_con = 0;
720 	ip->i_con_count = ip->i_con_used = ip->i_con_read = 0;
721 
722 	ip->i_data_off = 0xB0 + SWAP_32(fe->fe_len_ear);
723 	ip->i_max_emb =  udf_vfsp->udf_lbsize - ip->i_data_off;
724 	if (ip->i_desc_type == ICB_FLAG_SHORT_AD) {
725 		/* Short allocation desc */
726 		struct short_ad *sad;
727 
728 		ip->i_ext_used = 0;
729 		ip->i_ext_count = ndesc =
730 		    SWAP_32(fe->fe_len_adesc) / sizeof (struct short_ad);
731 		ip->i_ext_count =
732 		    ((ip->i_ext_count / EXT_PER_MALLOC) + 1) * EXT_PER_MALLOC;
733 		ip->i_ext = (struct icb_ext  *)kmem_zalloc(ip->i_ext_count *
734 		    sizeof (struct icb_ext), KM_SLEEP);
735 		ip->i_cur_max_ext = ip->i_max_emb / sizeof (struct short_ad);
736 		ip->i_cur_max_ext --;
737 
738 		if ((ip->i_astrat != STRAT_TYPE4) &&
739 		    (ip->i_astrat != STRAT_TYPE4096)) {
740 			goto error_ret;
741 		}
742 
743 		sad = (struct short_ad *)
744 		    (fe->fe_spec + SWAP_32(fe->fe_len_ear));
745 		iext = ip->i_ext;
746 		while (ndesc --) {
747 			length = SWAP_32(sad->sad_ext_len);
748 			if ((length & 0x3FFFFFFF) == 0) {
749 				break;
750 			}
751 			if (((length >> 30) & IB_MASK) == IB_CON) {
752 				if (ip->i_con == NULL) {
753 					ip->i_con_count = EXT_PER_MALLOC;
754 					ip->i_con_used = 0;
755 					ip->i_con_read = 0;
756 					ip->i_con = kmem_zalloc(
757 					    ip->i_con_count *
758 					    sizeof (struct icb_ext),
759 					    KM_SLEEP);
760 				}
761 				con = &ip->i_con[ip->i_con_used];
762 				con->ib_prn = 0;
763 				con->ib_block = SWAP_32(sad->sad_ext_loc);
764 				con->ib_count = length & 0x3FFFFFFF;
765 				con->ib_flags = (length >> 30) & IB_MASK;
766 				ip->i_con_used++;
767 				sad ++;
768 				break;
769 			}
770 			iext->ib_prn = 0;
771 			iext->ib_block = SWAP_32(sad->sad_ext_loc);
772 			length = SWAP_32(sad->sad_ext_len);
773 			iext->ib_count = length & 0x3FFFFFFF;
774 			iext->ib_offset = offset;
775 			iext->ib_marker1 = (uint32_t)0xAAAAAAAA;
776 			iext->ib_marker2 = (uint32_t)0xBBBBBBBB;
777 			offset += (iext->ib_count + udf_vfsp->udf_lbmask) &
778 			    (~udf_vfsp->udf_lbmask);
779 
780 			iext->ib_flags = (length >> 30) & IB_MASK;
781 
782 			ip->i_ext_used++;
783 			iext++;
784 			sad ++;
785 		}
786 	} else if (ip->i_desc_type == ICB_FLAG_LONG_AD) {
787 		/* Long allocation desc */
788 		struct long_ad *lad;
789 
790 		ip->i_ext_used = 0;
791 		ip->i_ext_count = ndesc =
792 		    SWAP_32(fe->fe_len_adesc) / sizeof (struct long_ad);
793 		ip->i_ext_count =
794 		    ((ip->i_ext_count / EXT_PER_MALLOC) + 1) * EXT_PER_MALLOC;
795 		ip->i_ext = (struct icb_ext  *)kmem_zalloc(ip->i_ext_count *
796 		    sizeof (struct icb_ext), KM_SLEEP);
797 
798 		ip->i_cur_max_ext = ip->i_max_emb / sizeof (struct long_ad);
799 		ip->i_cur_max_ext --;
800 
801 		if ((ip->i_astrat != STRAT_TYPE4) &&
802 		    (ip->i_astrat != STRAT_TYPE4096)) {
803 			goto error_ret;
804 		}
805 
806 		lad = (struct long_ad *)
807 		    (fe->fe_spec + SWAP_32(fe->fe_len_ear));
808 		iext = ip->i_ext;
809 		while (ndesc --) {
810 			length = SWAP_32(lad->lad_ext_len);
811 			if ((length & 0x3FFFFFFF) == 0) {
812 				break;
813 			}
814 			if (((length >> 30) & IB_MASK) == IB_CON) {
815 				if (ip->i_con == NULL) {
816 					ip->i_con_count = EXT_PER_MALLOC;
817 					ip->i_con_used = 0;
818 					ip->i_con_read = 0;
819 					ip->i_con = kmem_zalloc(
820 					    ip->i_con_count *
821 					    sizeof (struct icb_ext),
822 					    KM_SLEEP);
823 				}
824 				con = &ip->i_con[ip->i_con_used];
825 				con->ib_prn = SWAP_16(lad->lad_ext_prn);
826 				con->ib_block = SWAP_32(lad->lad_ext_loc);
827 				con->ib_count = length & 0x3FFFFFFF;
828 				con->ib_flags = (length >> 30) & IB_MASK;
829 				ip->i_con_used++;
830 				lad ++;
831 				break;
832 			}
833 			iext->ib_prn = SWAP_16(lad->lad_ext_prn);
834 			iext->ib_block = SWAP_32(lad->lad_ext_loc);
835 			iext->ib_count = length & 0x3FFFFFFF;
836 			iext->ib_offset = offset;
837 			iext->ib_marker1 = (uint32_t)0xAAAAAAAA;
838 			iext->ib_marker2 = (uint32_t)0xBBBBBBBB;
839 			offset += (iext->ib_count + udf_vfsp->udf_lbmask) &
840 			    (~udf_vfsp->udf_lbmask);
841 
842 			iext->ib_flags = (length >> 30) & IB_MASK;
843 
844 			ip->i_ext_used++;
845 			iext++;
846 			lad ++;
847 		}
848 	} else if (ip->i_desc_type == ICB_FLAG_ONE_AD) {
849 		ASSERT(SWAP_32(fe->fe_len_ear) < udf_vfsp->udf_lbsize);
850 
851 		if (SWAP_32(fe->fe_len_ear) > udf_vfsp->udf_lbsize) {
852 			goto error_ret;
853 		}
854 	} else {
855 		/* Not to be used in UDF 1.50 */
856 		cmn_err(CE_NOTE, "Invalid Allocation Descriptor type %x\n",
857 		    ip->i_desc_type);
858 		goto error_ret;
859 	}
860 
861 
862 	if (icb_tag_flags & ICB_FLAG_SETUID) {
863 		ip->i_char = ISUID;
864 	} else {
865 		ip->i_char = 0;
866 	}
867 	if (icb_tag_flags & ICB_FLAG_SETGID) {
868 		ip->i_char |= ISGID;
869 	}
870 	if (icb_tag_flags & ICB_FLAG_STICKY) {
871 		ip->i_char |= ISVTX;
872 	}
873 	switch (fe->fe_icb_tag.itag_ftype) {
874 		case FTYPE_DIRECTORY :
875 			ip->i_type = VDIR;
876 			break;
877 		case FTYPE_FILE :
878 			ip->i_type = VREG;
879 			break;
880 		case FTYPE_BLOCK_DEV :
881 			ip->i_type = VBLK;
882 			break;
883 		case FTYPE_CHAR_DEV :
884 			ip->i_type = VCHR;
885 			break;
886 		case FTYPE_FIFO :
887 			ip->i_type = VFIFO;
888 			break;
889 		case FTYPE_C_ISSOCK :
890 			ip->i_type = VSOCK;
891 			break;
892 		case FTYPE_SYMLINK :
893 			ip->i_type = VLNK;
894 			break;
895 		default :
896 			ip->i_type = VNON;
897 			break;
898 	}
899 
900 	if (ip->i_type == VBLK || ip->i_type == VCHR) {
901 		ip->i_rdev = makedevice(ip->i_major, ip->i_minor);
902 	}
903 
904 	/*
905 	 * Fill in the rest.  Don't bother with the vnode lock because nobody
906 	 * should be looking at this vnode.  We have already invalidated the
907 	 * pages if it had any so pageout shouldn't be referencing this vnode
908 	 * and we are holding the write contents lock so a look up can't use
909 	 * the vnode.
910 	 */
911 	vp->v_vfsp = vfsp;
912 	vp->v_type = ip->i_type;
913 	vp->v_rdev = ip->i_rdev;
914 	if (ip->i_udf->udf_root_blkno == loc) {
915 		vp->v_flag = VROOT;
916 	} else {
917 		vp->v_flag = 0;
918 	}
919 
920 	brelse(bp);
921 	*ipp = ip;
922 	rw_exit(&ip->i_contents);
923 	vn_exists(vp);
924 	return (0);
925 }
926 
927 void
928 ud_iinactive(struct ud_inode *ip, struct cred *cr)
929 {
930 	int32_t busy = 0;
931 	struct vnode *vp;
932 	vtype_t type;
933 	caddr_t addr, addr1;
934 	size_t size, size1;
935 
936 
937 	ud_printf("ud_iinactive\n");
938 
939 	/*
940 	 * Get exclusive access to inode data.
941 	 */
942 	rw_enter(&ip->i_contents, RW_WRITER);
943 
944 	/*
945 	 * Make sure no one reclaimed the inode before we put
946 	 * it on the freelist or destroy it. We keep our 'hold'
947 	 * on the vnode from vn_rele until we are ready to
948 	 * do something with the inode (freelist/destroy).
949 	 *
950 	 * Pageout may put a VN_HOLD/VN_RELE at anytime during this
951 	 * operation via an async putpage, so we must make sure
952 	 * we don't free/destroy the inode more than once. ud_iget
953 	 * may also put a VN_HOLD on the inode before it grabs
954 	 * the i_contents lock. This is done so we don't kmem_free
955 	 * an inode that a thread is waiting on.
956 	 */
957 	vp = ITOV(ip);
958 
959 	mutex_enter(&vp->v_lock);
960 	if (vp->v_count < 1) {
961 		cmn_err(CE_WARN, "ud_iinactive: v_count < 1\n");
962 		return;
963 	}
964 	if ((vp->v_count > 1) || ((ip->i_flag & IREF) == 0)) {
965 		vp->v_count--;		/* release our hold from vn_rele */
966 		mutex_exit(&vp->v_lock);
967 		rw_exit(&ip->i_contents);
968 		return;
969 	}
970 	mutex_exit(&vp->v_lock);
971 
972 	/*
973 	 * For forced umount case: if i_udf is NULL, the contents of
974 	 * the inode and all the pages have already been pushed back
975 	 * to disk. It can be safely destroyed.
976 	 */
977 	if (ip->i_udf == NULL) {
978 		addr = (caddr_t)ip->i_ext;
979 		size = sizeof (struct icb_ext) * ip->i_ext_count;
980 		ip->i_ext = 0;
981 		ip->i_ext_count = ip->i_ext_used = 0;
982 		addr1 = (caddr_t)ip->i_con;
983 		size1 = sizeof (struct icb_ext) * ip->i_con_count;
984 		ip->i_con = 0;
985 		ip->i_con_count = ip->i_con_used = ip->i_con_read = 0;
986 		rw_exit(&ip->i_contents);
987 		vn_invalid(vp);
988 
989 		mutex_enter(&ud_nino_lock);
990 		ud_cur_inodes--;
991 		mutex_exit(&ud_nino_lock);
992 
993 		cv_destroy(&ip->i_wrcv);  /* throttling */
994 		rw_destroy(&ip->i_rwlock);
995 		rw_exit(&ip->i_contents);
996 		rw_destroy(&ip->i_contents);
997 		kmem_free(addr, size);
998 		kmem_free(addr1, size1);
999 		vn_free(vp);
1000 		kmem_free(ip, sizeof (struct ud_inode));
1001 		return;
1002 	}
1003 
1004 	if ((ip->i_udf->udf_flags & UDF_FL_RDONLY) == 0) {
1005 		if (ip->i_nlink <= 0) {
1006 			ip->i_marker3 = (uint32_t)0xDDDD0000;
1007 			ip->i_nlink = 1;	/* prevent free-ing twice */
1008 			(void) ud_itrunc(ip, 0, 0, cr);
1009 			type = ip->i_type;
1010 			ip->i_perm = 0;
1011 			ip->i_uid = 0;
1012 			ip->i_gid = 0;
1013 			ip->i_rdev = 0;	/* Zero in core version of rdev */
1014 			mutex_enter(&ip->i_tlock);
1015 			ip->i_flag |= IUPD|ICHG;
1016 			mutex_exit(&ip->i_tlock);
1017 			ud_ifree(ip, type);
1018 			ip->i_icb_prn = 0xFFFF;
1019 		} else if (!IS_SWAPVP(vp)) {
1020 			/*
1021 			 * Write the inode out if dirty. Pages are
1022 			 * written back and put on the freelist.
1023 			 */
1024 			(void) ud_syncip(ip, B_FREE | B_ASYNC, 0);
1025 			/*
1026 			 * Do nothing if inode is now busy -- inode may
1027 			 * have gone busy because ud_syncip
1028 			 * releases/reacquires the i_contents lock
1029 			 */
1030 			mutex_enter(&vp->v_lock);
1031 			if (vp->v_count > 1) {
1032 				vp->v_count--;
1033 				mutex_exit(&vp->v_lock);
1034 				rw_exit(&ip->i_contents);
1035 				return;
1036 			}
1037 			mutex_exit(&vp->v_lock);
1038 		} else {
1039 			ud_iupdat(ip, 0);
1040 		}
1041 	}
1042 
1043 
1044 	/*
1045 	 * Put the inode on the end of the free list.
1046 	 * Possibly in some cases it would be better to
1047 	 * put the inode at the head of the free list,
1048 	 * (e.g.: where i_perm == 0 || i_number == 0)
1049 	 * but I will think about that later.
1050 	 * (i_number is rarely 0 - only after an i/o error in ud_iget,
1051 	 * where i_perm == 0, the inode will probably be wanted
1052 	 * again soon for an ialloc, so possibly we should keep it)
1053 	 */
1054 	/*
1055 	 * If inode is invalid or there is no page associated with
1056 	 * this inode, put the inode in the front of the free list.
1057 	 * Since we have a VN_HOLD on the vnode, and checked that it
1058 	 * wasn't already on the freelist when we entered, we can safely
1059 	 * put it on the freelist even if another thread puts a VN_HOLD
1060 	 * on it (pageout/ud_iget).
1061 	 */
1062 tryagain:
1063 	mutex_enter(&ud_nino_lock);
1064 	if (vn_has_cached_data(vp)) {
1065 		mutex_exit(&ud_nino_lock);
1066 		mutex_enter(&vp->v_lock);
1067 		vp->v_count--;
1068 		mutex_exit(&vp->v_lock);
1069 		mutex_enter(&ip->i_tlock);
1070 		mutex_enter(&udf_ifree_lock);
1071 		ud_add_to_free_list(ip, UD_END);
1072 		mutex_exit(&udf_ifree_lock);
1073 		ip->i_flag &= IMODTIME;
1074 		mutex_exit(&ip->i_tlock);
1075 		rw_exit(&ip->i_contents);
1076 	} else if (busy || ud_cur_inodes < ud_max_inodes) {
1077 		mutex_exit(&ud_nino_lock);
1078 		/*
1079 		 * We're not over our high water mark, or it's
1080 		 * not safe to kmem_free the inode, so put it
1081 		 * on the freelist.
1082 		 */
1083 		mutex_enter(&vp->v_lock);
1084 		if (vn_has_cached_data(vp)) {
1085 			cmn_err(CE_WARN, "ud_iinactive: v_pages not NULL\n");
1086 		}
1087 		vp->v_count--;
1088 		mutex_exit(&vp->v_lock);
1089 
1090 	mutex_enter(&ip->i_tlock);
1091 		mutex_enter(&udf_ifree_lock);
1092 		ud_add_to_free_list(ip, UD_BEGIN);
1093 		mutex_exit(&udf_ifree_lock);
1094 	ip->i_flag &= IMODTIME;
1095 	mutex_exit(&ip->i_tlock);
1096 		rw_exit(&ip->i_contents);
1097 	} else {
1098 		mutex_exit(&ud_nino_lock);
1099 		if (vn_has_cached_data(vp)) {
1100 			cmn_err(CE_WARN, "ud_iinactive: v_pages not NULL\n");
1101 		}
1102 		/*
1103 		 * Try to free the inode. We must make sure
1104 		 * it's o.k. to destroy this inode. We can't destroy
1105 		 * if a thread is waiting for this inode. If we can't get the
1106 		 * cache now, put it back on the freelist.
1107 		 */
1108 		if (!mutex_tryenter(&ud_icache_lock)) {
1109 			busy = 1;
1110 			goto tryagain;
1111 		}
1112 		mutex_enter(&vp->v_lock);
1113 		if (vp->v_count > 1) {
1114 			/* inode is wanted in ud_iget */
1115 			busy = 1;
1116 			mutex_exit(&vp->v_lock);
1117 			mutex_exit(&ud_icache_lock);
1118 			goto tryagain;
1119 		}
1120 		mutex_exit(&vp->v_lock);
1121 		remque(ip);
1122 		ip->i_forw = ip;
1123 		ip->i_back = ip;
1124 		mutex_enter(&ud_nino_lock);
1125 		ud_cur_inodes--;
1126 		mutex_exit(&ud_nino_lock);
1127 		mutex_exit(&ud_icache_lock);
1128 		if (ip->i_icb_prn != 0xFFFF) {
1129 			ud_iupdat(ip, 0);
1130 		}
1131 		addr = (caddr_t)ip->i_ext;
1132 		size = sizeof (struct icb_ext) * ip->i_ext_count;
1133 		ip->i_ext = 0;
1134 		ip->i_ext_count = ip->i_ext_used = 0;
1135 		addr1 = (caddr_t)ip->i_con;
1136 		size1 = sizeof (struct icb_ext) * ip->i_con_count;
1137 		ip->i_con = 0;
1138 		ip->i_con_count = ip->i_con_used = ip->i_con_read = 0;
1139 		cv_destroy(&ip->i_wrcv);  /* throttling */
1140 		rw_destroy(&ip->i_rwlock);
1141 		rw_exit(&ip->i_contents);
1142 		rw_destroy(&ip->i_contents);
1143 		kmem_free(addr, size);
1144 		kmem_free(addr1, size1);
1145 		ip->i_marker3 = (uint32_t)0xDDDDDDDD;
1146 		vn_free(vp);
1147 		kmem_free(ip, sizeof (struct ud_inode));
1148 	}
1149 }
1150 
1151 
1152 void
1153 ud_iupdat(struct ud_inode *ip, int32_t waitfor)
1154 {
1155 	uint16_t flag, tag_flags;
1156 	int32_t error;
1157 	struct buf *bp;
1158 	struct udf_vfs *udf_vfsp;
1159 	struct file_entry *fe;
1160 	uint16_t crc_len = 0;
1161 
1162 	ASSERT(RW_WRITE_HELD(&ip->i_contents));
1163 
1164 	ud_printf("ud_iupdat\n");
1165 	/*
1166 	 * Return if file system has been forcibly umounted.
1167 	 */
1168 	if (ip->i_udf == NULL) {
1169 		return;
1170 	}
1171 
1172 	udf_vfsp = ip->i_udf;
1173 	flag = ip->i_flag;	/* Atomic read */
1174 	if ((flag & (IUPD|IACC|ICHG|IMOD|IMODACC)) != 0) {
1175 		if (udf_vfsp->udf_flags & UDF_FL_RDONLY) {
1176 			ip->i_flag &= ~(IUPD|IACC|ICHG|IMOD|IMODACC|IATTCHG);
1177 			return;
1178 		}
1179 
1180 		bp = ud_bread(ip->i_dev,
1181 		    ip->i_icb_lbano << udf_vfsp->udf_l2d_shift,
1182 		    ip->i_udf->udf_lbsize);
1183 		if (bp->b_flags & B_ERROR) {
1184 			brelse(bp);
1185 			return;
1186 		}
1187 		fe = (struct file_entry *)bp->b_un.b_addr;
1188 		if (ud_verify_tag_and_desc(&fe->fe_tag, UD_FILE_ENTRY,
1189 		    ip->i_icb_block,
1190 		    1, ip->i_udf->udf_lbsize) != 0) {
1191 			brelse(bp);
1192 			return;
1193 		}
1194 
1195 		mutex_enter(&ip->i_tlock);
1196 		if (ip->i_flag & (IUPD|IACC|ICHG)) {
1197 			IMARK(ip);
1198 		}
1199 		ip->i_flag &= ~(IUPD|IACC|ICHG|IMOD|IMODACC);
1200 		mutex_exit(&ip->i_tlock);
1201 
1202 		fe->fe_uid = SWAP_32(ip->i_uid);
1203 		fe->fe_gid = SWAP_32(ip->i_gid);
1204 
1205 		fe->fe_perms = SWAP_32(ip->i_perm);
1206 
1207 		fe->fe_lcount = SWAP_16(ip->i_nlink);
1208 		fe->fe_info_len = SWAP_64(ip->i_size);
1209 		fe->fe_lbr = SWAP_64(ip->i_lbr);
1210 
1211 		ud_utime2dtime(&ip->i_atime, &fe->fe_acc_time);
1212 		ud_utime2dtime(&ip->i_mtime, &fe->fe_mod_time);
1213 		ud_utime2dtime(&ip->i_ctime, &fe->fe_attr_time);
1214 
1215 		if (ip->i_char & ISUID) {
1216 			tag_flags = ICB_FLAG_SETUID;
1217 		} else {
1218 			tag_flags = 0;
1219 		}
1220 		if (ip->i_char & ISGID) {
1221 			tag_flags |= ICB_FLAG_SETGID;
1222 		}
1223 		if (ip->i_char & ISVTX) {
1224 			tag_flags |= ICB_FLAG_STICKY;
1225 		}
1226 		tag_flags |= ip->i_desc_type;
1227 
1228 		/*
1229 		 * Remove the following it is no longer contig
1230 		 * if (ip->i_astrat  == STRAT_TYPE4) {
1231 		 *	tag_flags |= ICB_FLAG_CONTIG;
1232 		 * }
1233 		 */
1234 
1235 		fe->fe_icb_tag.itag_flags &= ~SWAP_16((uint16_t)0x3C3);
1236 		fe->fe_icb_tag.itag_strategy = SWAP_16(ip->i_astrat);
1237 		fe->fe_icb_tag.itag_flags |= SWAP_16(tag_flags);
1238 
1239 		ud_update_regid(&fe->fe_impl_id);
1240 
1241 		crc_len = offsetof(struct file_entry, fe_spec) +
1242 		    SWAP_32(fe->fe_len_ear);
1243 		if (ip->i_desc_type == ICB_FLAG_ONE_AD) {
1244 			crc_len += ip->i_size;
1245 			fe->fe_len_adesc = SWAP_32(((uint32_t)ip->i_size));
1246 		} else if ((ip->i_size != 0) && (ip->i_ext != NULL) &&
1247 		    (ip->i_ext_used != 0)) {
1248 
1249 			if ((error = ud_read_icb_till_off(ip,
1250 			    ip->i_size)) == 0) {
1251 				if (ip->i_astrat == STRAT_TYPE4) {
1252 					error = ud_updat_ext4(ip, fe);
1253 				} else if (ip->i_astrat == STRAT_TYPE4096) {
1254 					error = ud_updat_ext4096(ip, fe);
1255 				}
1256 				if (error) {
1257 					udf_vfsp->udf_mark_bad = 1;
1258 				}
1259 			}
1260 			crc_len += SWAP_32(fe->fe_len_adesc);
1261 		} else {
1262 			fe->fe_len_adesc = 0;
1263 		}
1264 
1265 		/*
1266 		 * Zero out the rest of the block
1267 		 */
1268 		bzero(bp->b_un.b_addr + crc_len,
1269 		    ip->i_udf->udf_lbsize - crc_len);
1270 
1271 		ud_make_tag(ip->i_udf, &fe->fe_tag,
1272 		    UD_FILE_ENTRY, ip->i_icb_block, crc_len);
1273 
1274 
1275 		if (waitfor) {
1276 			BWRITE(bp);
1277 
1278 			/*
1279 			 * Synchronous write has guaranteed that inode
1280 			 * has been written on disk so clear the flag
1281 			 */
1282 			ip->i_flag &= ~(IBDWRITE);
1283 		} else {
1284 			bdwrite(bp);
1285 
1286 			/*
1287 			 * This write hasn't guaranteed that inode has been
1288 			 * written on the disk.
1289 			 * Since, all updat flags on indoe are cleared, we must
1290 			 * remember the condition in case inode is to be updated
1291 			 * synchronously later (e.g.- fsync()/fdatasync())
1292 			 * and inode has not been modified yet.
1293 			 */
1294 			ip->i_flag |= (IBDWRITE);
1295 		}
1296 	} else {
1297 		/*
1298 		 * In case previous inode update was done asynchronously
1299 		 * (IBDWRITE) and this inode update request wants guaranteed
1300 		 * (synchronous) disk update, flush the inode.
1301 		 */
1302 		if (waitfor && (flag & IBDWRITE)) {
1303 			blkflush(ip->i_dev,
1304 			    (daddr_t)fsbtodb(udf_vfsp, ip->i_icb_lbano));
1305 			ip->i_flag &= ~(IBDWRITE);
1306 		}
1307 	}
1308 }
1309 
1310 int32_t
1311 ud_updat_ext4(struct ud_inode *ip, struct file_entry *fe)
1312 {
1313 	uint32_t dummy;
1314 	int32_t elen, ndent, index, count, con_index;
1315 	daddr_t bno;
1316 	struct buf *bp;
1317 	struct short_ad *sad;
1318 	struct long_ad *lad;
1319 	struct icb_ext *iext, *icon;
1320 
1321 
1322 	ASSERT(ip);
1323 	ASSERT(fe);
1324 	ASSERT((ip->i_desc_type == ICB_FLAG_SHORT_AD) ||
1325 	    (ip->i_desc_type == ICB_FLAG_LONG_AD));
1326 
1327 	if (ip->i_desc_type == ICB_FLAG_SHORT_AD) {
1328 		elen = sizeof (struct short_ad);
1329 		sad = (struct short_ad *)
1330 		    (fe->fe_spec + SWAP_32(fe->fe_len_ear));
1331 	} else if (ip->i_desc_type == ICB_FLAG_LONG_AD) {
1332 		elen = sizeof (struct long_ad);
1333 		lad = (struct long_ad *)
1334 		    (fe->fe_spec + SWAP_32(fe->fe_len_ear));
1335 	} else {
1336 		/* This cannot happen return */
1337 		return (EINVAL);
1338 	}
1339 
1340 	ndent = ip->i_max_emb / elen;
1341 
1342 	if (ip->i_ext_used < ndent) {
1343 
1344 		if (ip->i_desc_type == ICB_FLAG_SHORT_AD) {
1345 			ud_make_sad(ip->i_ext, sad, ip->i_ext_used);
1346 		} else {
1347 			ud_make_lad(ip->i_ext, lad, ip->i_ext_used);
1348 		}
1349 		fe->fe_len_adesc = SWAP_32(ip->i_ext_used * elen);
1350 		con_index = 0;
1351 	} else {
1352 
1353 		con_index = index = 0;
1354 
1355 		while (index < ip->i_ext_used) {
1356 			if (index == 0) {
1357 				/*
1358 				 * bp is already read
1359 				 * First few extents will go
1360 				 * into the file_entry
1361 				 */
1362 				count = ndent - 1;
1363 				fe->fe_len_adesc = SWAP_32(ndent * elen);
1364 				bp = NULL;
1365 
1366 				/*
1367 				 * Last entry to be cont ext
1368 				 */
1369 				icon = &ip->i_con[con_index];
1370 			} else {
1371 				/*
1372 				 * Read the buffer
1373 				 */
1374 				icon = &ip->i_con[con_index];
1375 
1376 				bno = ud_xlate_to_daddr(ip->i_udf,
1377 				    icon->ib_prn, icon->ib_block,
1378 				    icon->ib_count >> ip->i_udf->udf_l2d_shift,
1379 				    &dummy);
1380 				bp = ud_bread(ip->i_dev,
1381 				    bno << ip->i_udf->udf_l2d_shift,
1382 				    ip->i_udf->udf_lbsize);
1383 				if (bp->b_flags & B_ERROR) {
1384 					brelse(bp);
1385 					return (EIO);
1386 				}
1387 
1388 				/*
1389 				 * Figure out how many extents in
1390 				 * this time
1391 				 */
1392 				count = (bp->b_bcount -
1393 				    sizeof (struct alloc_ext_desc)) / elen;
1394 				if (count > (ip->i_ext_used - index)) {
1395 					count = ip->i_ext_used - index;
1396 				} else {
1397 					count --;
1398 				}
1399 				con_index++;
1400 				if (con_index >= ip->i_con_used) {
1401 					icon = NULL;
1402 				} else {
1403 					icon = &ip->i_con[con_index];
1404 				}
1405 			}
1406 
1407 
1408 
1409 			/*
1410 			 * convert to on disk form and
1411 			 * update
1412 			 */
1413 			iext = &ip->i_ext[index];
1414 			if (ip->i_desc_type == ICB_FLAG_SHORT_AD) {
1415 				if (index != 0) {
1416 					sad = (struct short_ad *)
1417 					    (bp->b_un.b_addr +
1418 					    sizeof (struct alloc_ext_desc));
1419 				}
1420 				ud_make_sad(iext, sad, count);
1421 				sad += count;
1422 				if (icon != NULL) {
1423 					ud_make_sad(icon, sad, 1);
1424 				}
1425 			} else {
1426 				if (index != 0) {
1427 					lad = (struct long_ad *)
1428 					    (bp->b_un.b_addr +
1429 					    sizeof (struct alloc_ext_desc));
1430 				}
1431 				ud_make_lad(iext, lad, count);
1432 				lad += count;
1433 				if (icon != NULL) {
1434 					ud_make_lad(icon, lad, 1);
1435 				}
1436 			}
1437 
1438 			if (con_index != 0) {
1439 				struct alloc_ext_desc *aed;
1440 				int32_t sz;
1441 				struct icb_ext *oicon;
1442 
1443 				oicon = &ip->i_con[con_index - 1];
1444 				sz = count * elen;
1445 				if (icon != NULL) {
1446 					sz += elen;
1447 				}
1448 				aed = (struct alloc_ext_desc *)bp->b_un.b_addr;
1449 				aed->aed_len_aed = SWAP_32(sz);
1450 				if (con_index == 1) {
1451 					aed->aed_rev_ael =
1452 					    SWAP_32(ip->i_icb_block);
1453 				} else {
1454 					aed->aed_rev_ael =
1455 					    SWAP_32(oicon->ib_block);
1456 				}
1457 				sz += sizeof (struct alloc_ext_desc);
1458 				ud_make_tag(ip->i_udf, &aed->aed_tag,
1459 				    UD_ALLOC_EXT_DESC, oicon->ib_block, sz);
1460 			}
1461 
1462 			/*
1463 			 * Write back to disk
1464 			 */
1465 			if (bp != NULL) {
1466 				BWRITE(bp);
1467 			}
1468 			index += count;
1469 		}
1470 
1471 	}
1472 
1473 	if (con_index != ip->i_con_used) {
1474 		int32_t lbmask, l2b, temp;
1475 
1476 		temp = con_index;
1477 		lbmask = ip->i_udf->udf_lbmask;
1478 		l2b = ip->i_udf->udf_l2b_shift;
1479 		/*
1480 		 * Free unused continuation extents
1481 		 */
1482 		for (; con_index < ip->i_con_used; con_index++) {
1483 			icon = &ip->i_con[con_index];
1484 			count = (icon->ib_count + lbmask) >> l2b;
1485 			ud_free_space(ip->i_udf->udf_vfs, icon->ib_prn,
1486 			    icon->ib_block, count);
1487 			count = (count << l2b) - sizeof (struct alloc_ext_desc);
1488 			ip->i_cur_max_ext -= (count / elen) - 1;
1489 		}
1490 		ip->i_con_used = temp;
1491 	}
1492 	return (0);
1493 }
1494 
1495 /* ARGSUSED */
1496 int32_t
1497 ud_updat_ext4096(struct ud_inode *ip, struct file_entry *fe)
1498 {
1499 	return (ENXIO);
1500 }
1501 
1502 void
1503 ud_make_sad(struct icb_ext *iext, struct short_ad *sad, int32_t count)
1504 {
1505 	int32_t index = 0, scount;
1506 
1507 	ASSERT(iext);
1508 	ASSERT(sad);
1509 
1510 	if (count != 0) {
1511 		ASSERT(count > 0);
1512 		while (index < count) {
1513 			scount = (iext->ib_count & 0x3FFFFFFF) |
1514 			    (iext->ib_flags << 30);
1515 			sad->sad_ext_len = SWAP_32(scount);
1516 			sad->sad_ext_loc = SWAP_32(iext->ib_block);
1517 			sad++;
1518 			iext++;
1519 			index++;
1520 		}
1521 	}
1522 }
1523 
1524 void
1525 ud_make_lad(struct icb_ext *iext, struct long_ad *lad, int32_t count)
1526 {
1527 	int32_t index = 0, scount;
1528 
1529 	ASSERT(iext);
1530 	ASSERT(lad);
1531 
1532 	if (count != 0) {
1533 		ASSERT(count > 0);
1534 
1535 		while (index < count) {
1536 			lad->lad_ext_prn = SWAP_16(iext->ib_prn);
1537 			scount = (iext->ib_count & 0x3FFFFFFF) |
1538 			    (iext->ib_flags << 30);
1539 			lad->lad_ext_len = SWAP_32(scount);
1540 			lad->lad_ext_loc = SWAP_32(iext->ib_block);
1541 			lad++;
1542 			iext++;
1543 			index++;
1544 		}
1545 	}
1546 }
1547 
1548 /*
1549  * Truncate the inode ip to at most length size.
1550  * Free affected disk blocks -- the blocks of the
1551  * file are removed in reverse order.
1552  */
1553 /* ARGSUSED */
1554 int
1555 ud_itrunc(struct ud_inode *oip, u_offset_t length,
1556     int32_t flags, struct cred *cr)
1557 {
1558 	int32_t error, boff;
1559 	off_t bsize;
1560 	mode_t mode;
1561 	struct udf_vfs *udf_vfsp;
1562 
1563 	ud_printf("ud_itrunc\n");
1564 
1565 	ASSERT(RW_WRITE_HELD(&oip->i_contents));
1566 	udf_vfsp = oip->i_udf;
1567 	bsize = udf_vfsp->udf_lbsize;
1568 
1569 	/*
1570 	 * We only allow truncation of regular files and directories
1571 	 * to arbritary lengths here.  In addition, we allow symbolic
1572 	 * links to be truncated only to zero length.  Other inode
1573 	 * types cannot have their length set here.
1574 	 */
1575 	mode = oip->i_type;
1576 	if (mode == VFIFO) {
1577 		return (0);
1578 	}
1579 	if ((mode != VREG) && (mode != VDIR) &&
1580 	    (!(mode == VLNK && length == 0))) {
1581 		return (EINVAL);
1582 	}
1583 	if (length == oip->i_size) {
1584 		/* update ctime and mtime to please POSIX tests */
1585 		mutex_enter(&oip->i_tlock);
1586 		oip->i_flag |= ICHG |IUPD;
1587 		mutex_exit(&oip->i_tlock);
1588 		return (0);
1589 	}
1590 
1591 	boff = blkoff(udf_vfsp, length);
1592 
1593 	if (length > oip->i_size) {
1594 		/*
1595 		 * Trunc up case.ud_bmap_write will insure that the right blocks
1596 		 * are allocated.  This includes doing any work needed for
1597 		 * allocating the last block.
1598 		 */
1599 		if (boff == 0) {
1600 			error = ud_bmap_write(oip, length - 1,
1601 			    (int)bsize, 0, cr);
1602 		} else {
1603 			error = ud_bmap_write(oip, length - 1, boff, 0, cr);
1604 		}
1605 		if (error == 0) {
1606 			u_offset_t osize = oip->i_size;
1607 			oip->i_size  = length;
1608 
1609 			/*
1610 			 * Make sure we zero out the remaining bytes of
1611 			 * the page in case a mmap scribbled on it. We
1612 			 * can't prevent a mmap from writing beyond EOF
1613 			 * on the last page of a file.
1614 			 */
1615 			if ((boff = blkoff(udf_vfsp, osize)) != 0) {
1616 				pvn_vpzero(ITOV(oip), osize,
1617 				    (uint32_t)(bsize - boff));
1618 			}
1619 			mutex_enter(&oip->i_tlock);
1620 			oip->i_flag |= ICHG;
1621 			ITIMES_NOLOCK(oip);
1622 			mutex_exit(&oip->i_tlock);
1623 		}
1624 		return (error);
1625 	}
1626 
1627 	/*
1628 	 * Update the pages of the file.  If the file is not being
1629 	 * truncated to a block boundary, the contents of the
1630 	 * pages following the end of the file must be zero'ed
1631 	 * in case it ever become accessable again because
1632 	 * of subsequent file growth.
1633 	 */
1634 	if (boff == 0) {
1635 		(void) pvn_vplist_dirty(ITOV(oip), length,
1636 		    ud_putapage, B_INVAL | B_TRUNC, CRED());
1637 	} else {
1638 		/*
1639 		 * Make sure that the last block is properly allocated.
1640 		 * We only really have to do this if the last block is
1641 		 * actually allocated.  Just to be sure, we do it now
1642 		 * independent of current allocation.
1643 		 */
1644 		error = ud_bmap_write(oip, length - 1, boff, 0, cr);
1645 		if (error) {
1646 			return (error);
1647 		}
1648 
1649 		pvn_vpzero(ITOV(oip), length, (uint32_t)(bsize - boff));
1650 
1651 		(void) pvn_vplist_dirty(ITOV(oip), length,
1652 		    ud_putapage, B_INVAL | B_TRUNC, CRED());
1653 	}
1654 
1655 
1656 	/* Free the blocks */
1657 	if (oip->i_desc_type == ICB_FLAG_ONE_AD) {
1658 		if (length > oip->i_max_emb) {
1659 			return (EFBIG);
1660 		}
1661 		oip->i_size = length;
1662 		mutex_enter(&oip->i_tlock);
1663 		oip->i_flag |= ICHG|IUPD;
1664 		mutex_exit(&oip->i_tlock);
1665 		ud_iupdat(oip, 1);
1666 	} else {
1667 		if ((error = ud_read_icb_till_off(oip, oip->i_size)) != 0) {
1668 			return (error);
1669 		}
1670 
1671 		if (oip->i_astrat == STRAT_TYPE4) {
1672 			ud_trunc_ext4(oip, length);
1673 		} else if (oip->i_astrat == STRAT_TYPE4096) {
1674 			ud_trunc_ext4096(oip, length);
1675 		}
1676 	}
1677 
1678 done:
1679 	return (0);
1680 }
1681 
1682 void
1683 ud_trunc_ext4(struct ud_inode *ip, u_offset_t length)
1684 {
1685 	int32_t index, l2b, count, ecount;
1686 	int32_t elen, ndent, nient;
1687 	u_offset_t ext_beg, ext_end;
1688 	struct icb_ext *iext, *icon;
1689 	int32_t lbmask, ext_used;
1690 	uint32_t loc;
1691 	struct icb_ext text;
1692 	uint32_t con_freed;
1693 
1694 	ASSERT((ip->i_desc_type == ICB_FLAG_SHORT_AD) ||
1695 	    (ip->i_desc_type == ICB_FLAG_LONG_AD));
1696 
1697 	if (ip->i_ext_used == 0) {
1698 		return;
1699 	}
1700 
1701 	ext_used = ip->i_ext_used;
1702 
1703 	lbmask = ip->i_udf->udf_lbmask;
1704 	l2b = ip->i_udf->udf_l2b_shift;
1705 
1706 	ASSERT(ip->i_ext);
1707 
1708 	ip->i_lbr = 0;
1709 	for (index = 0; index < ext_used; index++) {
1710 		iext = &ip->i_ext[index];
1711 
1712 		/*
1713 		 * Find the begining and end
1714 		 * of current extent
1715 		 */
1716 		ext_beg = iext->ib_offset;
1717 		ext_end = iext->ib_offset +
1718 		    ((iext->ib_count + lbmask) & ~lbmask);
1719 
1720 		/*
1721 		 * This is the extent that has offset "length"
1722 		 * make a copy of this extent and
1723 		 * remember the index. We can use
1724 		 * it to free blocks
1725 		 */
1726 		if ((length <= ext_end) && (length >= ext_beg)) {
1727 			text = *iext;
1728 
1729 			iext->ib_count = length - ext_beg;
1730 			ip->i_ext_used = index + 1;
1731 			break;
1732 		}
1733 		if (iext->ib_flags != IB_UN_RE_AL) {
1734 			ip->i_lbr += iext->ib_count >> l2b;
1735 		}
1736 	}
1737 	if (ip->i_ext_used != index) {
1738 		if (iext->ib_flags != IB_UN_RE_AL) {
1739 			ip->i_lbr +=
1740 			    ((iext->ib_count + lbmask) & ~lbmask) >> l2b;
1741 		}
1742 	}
1743 
1744 	ip->i_size = length;
1745 	mutex_enter(&ip->i_tlock);
1746 	ip->i_flag |= ICHG|IUPD;
1747 	mutex_exit(&ip->i_tlock);
1748 	ud_iupdat(ip, 1);
1749 
1750 	/*
1751 	 * Free the unused space
1752 	 */
1753 	if (text.ib_flags != IB_UN_RE_AL) {
1754 		count = (ext_end - length) >> l2b;
1755 		if (count) {
1756 			loc = text.ib_block +
1757 			    (((length - text.ib_offset) + lbmask) >> l2b);
1758 			ud_free_space(ip->i_udf->udf_vfs, text.ib_prn,
1759 			    loc, count);
1760 		}
1761 	}
1762 	for (index = ip->i_ext_used; index < ext_used; index++) {
1763 		iext = &ip->i_ext[index];
1764 		if (iext->ib_flags != IB_UN_RE_AL) {
1765 			count = (iext->ib_count + lbmask) >> l2b;
1766 			ud_free_space(ip->i_udf->udf_vfs, iext->ib_prn,
1767 			    iext->ib_block, count);
1768 		}
1769 		bzero(iext, sizeof (struct icb_ext));
1770 		continue;
1771 	}
1772 
1773 	/*
1774 	 * release any continuation blocks
1775 	 */
1776 	if (ip->i_con) {
1777 
1778 		ASSERT(ip->i_con_count >= ip->i_con_used);
1779 
1780 		/*
1781 		 * Find out how many indirect blocks
1782 		 * are required and release the rest
1783 		 */
1784 		if (ip->i_desc_type == ICB_FLAG_SHORT_AD) {
1785 			elen = sizeof (struct short_ad);
1786 		} else if (ip->i_desc_type == ICB_FLAG_LONG_AD) {
1787 			elen = sizeof (struct long_ad);
1788 		}
1789 		ndent = ip->i_max_emb / elen;
1790 		if (ip->i_ext_used > ndent) {
1791 			ecount = ip->i_ext_used - ndent;
1792 		} else {
1793 			ecount = 0;
1794 		}
1795 		con_freed = 0;
1796 		for (index = 0; index < ip->i_con_used; index++) {
1797 			icon = &ip->i_con[index];
1798 			nient = icon->ib_count -
1799 			    (sizeof (struct alloc_ext_desc) + elen);
1800 			/* Header + 1 indirect extent */
1801 			nient /= elen;
1802 			if (ecount) {
1803 				if (ecount > nient) {
1804 					ecount -= nient;
1805 				} else {
1806 					ecount = 0;
1807 				}
1808 			} else {
1809 				count = ((icon->ib_count + lbmask) &
1810 				    ~lbmask) >> l2b;
1811 				ud_free_space(ip->i_udf->udf_vfs,
1812 				    icon->ib_prn, icon->ib_block, count);
1813 				con_freed++;
1814 				ip->i_cur_max_ext -= nient;
1815 			}
1816 		}
1817 		/*
1818 		 * set the continuation extents used(i_con_used)i to correct
1819 		 * value. It is possible for i_con_used to be zero,
1820 		 * if we free up all continuation extents. This happens
1821 		 * when ecount is 0 before entering the for loop above.
1822 		 */
1823 		ip->i_con_used -= con_freed;
1824 		if (ip->i_con_read > ip->i_con_used) {
1825 			ip->i_con_read = ip->i_con_used;
1826 		}
1827 	}
1828 }
1829 
1830 void
1831 ud_trunc_ext4096(struct ud_inode *ip, u_offset_t length)
1832 {
1833 	/*
1834 	 * Truncate code is the same for
1835 	 * both file of type 4 and 4096
1836 	 */
1837 	ud_trunc_ext4(ip, length);
1838 }
1839 
1840 /*
1841  * Remove any inodes in the inode cache belonging to dev
1842  *
1843  * There should not be any active ones, return error if any are found but
1844  * still invalidate others (N.B.: this is a user error, not a system error).
1845  *
1846  * Also, count the references to dev by block devices - this really
1847  * has nothing to do with the object of the procedure, but as we have
1848  * to scan the inode table here anyway, we might as well get the
1849  * extra benefit.
1850  */
1851 int32_t
1852 ud_iflush(struct vfs *vfsp)
1853 {
1854 	int32_t index, busy = 0;
1855 	union ihead *ih;
1856 	struct udf_vfs *udf_vfsp;
1857 	dev_t dev;
1858 	struct vnode *rvp, *vp;
1859 	struct ud_inode *ip, *next;
1860 
1861 	ud_printf("ud_iflush\n");
1862 	udf_vfsp = (struct udf_vfs *)vfsp->vfs_data;
1863 	rvp = udf_vfsp->udf_root;
1864 	dev = vfsp->vfs_dev;
1865 
1866 	mutex_enter(&ud_icache_lock);
1867 	for (index = 0; index < UD_HASH_SZ; index++) {
1868 		ih = &ud_ihead[index];
1869 
1870 		next = ih->ih_chain[0];
1871 		while (next != (struct ud_inode *)ih) {
1872 			ip = next;
1873 			next = ip->i_forw;
1874 			if (ip->i_dev != dev) {
1875 				continue;
1876 			}
1877 			vp = ITOV(ip);
1878 			/*
1879 			 * root inode is processed by the caller
1880 			 */
1881 			if (vp == rvp) {
1882 				if (vp->v_count > 1) {
1883 					busy = -1;
1884 				}
1885 				continue;
1886 			}
1887 			if (ip->i_flag & IREF) {
1888 				/*
1889 				 * Set error indicator for return value,
1890 				 * but continue invalidating other
1891 				 * inodes.
1892 				 */
1893 				busy = -1;
1894 				continue;
1895 			}
1896 
1897 			rw_enter(&ip->i_contents, RW_WRITER);
1898 			remque(ip);
1899 			ip->i_forw = ip;
1900 			ip->i_back = ip;
1901 			/*
1902 			 * Hold the vnode since its not done
1903 			 * in VOP_PUTPAGE anymore.
1904 			 */
1905 			VN_HOLD(vp);
1906 			/*
1907 			 * XXX Synchronous write holding
1908 			 * cache lock
1909 			 */
1910 			(void) ud_syncip(ip, B_INVAL, I_SYNC);
1911 			rw_exit(&ip->i_contents);
1912 			VN_RELE(vp);
1913 		}
1914 	}
1915 	mutex_exit(&ud_icache_lock);
1916 
1917 	return (busy);
1918 }
1919 
1920 
1921 /*
1922  * Check mode permission on inode.  Mode is READ, WRITE or EXEC.
1923  * In the case of WRITE, the read-only status of the file system
1924  * is checked.  The applicable mode bits are compared with the
1925  * requested form of access.  If bits are missing, the secpolicy
1926  * function will check for privileges.
1927  */
1928 int
1929 ud_iaccess(struct ud_inode *ip, int32_t mode, struct cred *cr, int dolock)
1930 {
1931 	int shift = 0;
1932 	int ret = 0;
1933 
1934 	if (dolock)
1935 		rw_enter(&ip->i_contents, RW_READER);
1936 	ASSERT(RW_LOCK_HELD(&ip->i_contents));
1937 
1938 	ud_printf("ud_iaccess\n");
1939 	if (mode & IWRITE) {
1940 		/*
1941 		 * Disallow write attempts on read-only
1942 		 * file systems, unless the file is a block
1943 		 * or character device or a FIFO.
1944 		 */
1945 		if (ip->i_udf->udf_flags & UDF_FL_RDONLY) {
1946 			if ((ip->i_type != VCHR) &&
1947 			    (ip->i_type != VBLK) &&
1948 			    (ip->i_type != VFIFO)) {
1949 				ret = EROFS;
1950 				goto out;
1951 			}
1952 		}
1953 	}
1954 
1955 	/*
1956 	 * Access check is based on only
1957 	 * one of owner, group, public.
1958 	 * If not owner, then check group.
1959 	 * If not a member of the group, then
1960 	 * check public access.
1961 	 */
1962 	if (crgetuid(cr) != ip->i_uid) {
1963 		shift += 5;
1964 		if (!groupmember((uid_t)ip->i_gid, cr))
1965 			shift += 5;
1966 	}
1967 
1968 	ret = secpolicy_vnode_access2(cr, ITOV(ip), ip->i_uid,
1969 	    UD2VA_PERM(ip->i_perm << shift), UD2VA_PERM(mode));
1970 
1971 out:
1972 	if (dolock)
1973 		rw_exit(&ip->i_contents);
1974 	return (ret);
1975 }
1976 
1977 void
1978 ud_imark(struct ud_inode *ip)
1979 {
1980 	timestruc_t	now;
1981 
1982 	gethrestime(&now);
1983 	ud_printf("ud_imark\n");
1984 	if (ip->i_flag & IACC) {
1985 		ip->i_atime.tv_sec = now.tv_sec;
1986 		ip->i_atime.tv_nsec = now.tv_nsec;
1987 	}
1988 	if (ip->i_flag & IUPD) {
1989 		ip->i_mtime.tv_sec = now.tv_sec;
1990 		ip->i_mtime.tv_nsec = now.tv_nsec;
1991 		ip->i_flag |= IMODTIME;
1992 	}
1993 	if (ip->i_flag & ICHG) {
1994 		ip->i_diroff = 0;
1995 		ip->i_ctime.tv_sec = now.tv_sec;
1996 		ip->i_ctime.tv_nsec = now.tv_nsec;
1997 	}
1998 }
1999 
2000 
2001 void
2002 ud_itimes_nolock(struct ud_inode *ip)
2003 {
2004 	ud_printf("ud_itimes_nolock\n");
2005 
2006 	if (ip->i_flag & (IUPD|IACC|ICHG)) {
2007 		if (ip->i_flag & ICHG) {
2008 			ip->i_flag |= IMOD;
2009 		} else {
2010 			ip->i_flag |= IMODACC;
2011 		}
2012 		ud_imark(ip);
2013 		ip->i_flag &= ~(IACC|IUPD|ICHG);
2014 	}
2015 }
2016 
2017 void
2018 ud_delcache(struct ud_inode *ip)
2019 {
2020 	ud_printf("ud_delcache\n");
2021 
2022 	mutex_enter(&ud_icache_lock);
2023 	remque(ip);
2024 	ip->i_forw = ip;
2025 	ip->i_back = ip;
2026 	mutex_exit(&ud_icache_lock);
2027 }
2028 
2029 void
2030 ud_idrop(struct ud_inode *ip)
2031 {
2032 	struct vnode *vp = ITOV(ip);
2033 
2034 	ASSERT(RW_WRITE_HELD(&ip->i_contents));
2035 
2036 	ud_printf("ud_idrop\n");
2037 
2038 	mutex_enter(&vp->v_lock);
2039 	if (vp->v_count > 1) {
2040 		vp->v_count--;
2041 		mutex_exit(&vp->v_lock);
2042 		return;
2043 	}
2044 	vp->v_count = 0;
2045 	mutex_exit(&vp->v_lock);
2046 
2047 
2048 	/*
2049 	 *  if inode is invalid or there is no page associated with
2050 	 *  this inode, put the inode in the front of the free list
2051 	 */
2052 	mutex_enter(&ip->i_tlock);
2053 	mutex_enter(&udf_ifree_lock);
2054 	if (!vn_has_cached_data(vp) || ip->i_perm == 0) {
2055 		ud_add_to_free_list(ip, UD_BEGIN);
2056 	} else {
2057 		/*
2058 		 * Otherwise, put the inode back on the end of the free list.
2059 		 */
2060 		ud_add_to_free_list(ip, UD_END);
2061 	}
2062 	mutex_exit(&udf_ifree_lock);
2063 	ip->i_flag &= IMODTIME;
2064 	mutex_exit(&ip->i_tlock);
2065 }
2066 
2067 void
2068 ud_add_to_free_list(struct ud_inode *ip, uint32_t at)
2069 {
2070 	ASSERT(ip);
2071 	ASSERT(mutex_owned(&udf_ifree_lock));
2072 
2073 #ifdef	DEBUG
2074 	/* Search if the element is already in the list */
2075 	if (udf_ifreeh != NULL) {
2076 		struct ud_inode *iq;
2077 
2078 		iq = udf_ifreeh;
2079 		while (iq) {
2080 			if (iq == ip) {
2081 				cmn_err(CE_WARN, "Duplicate %p\n", (void *)ip);
2082 			}
2083 			iq = iq->i_freef;
2084 		}
2085 	}
2086 #endif
2087 
2088 	ip->i_freef = NULL;
2089 	ip->i_freeb = NULL;
2090 	if (udf_ifreeh == NULL) {
2091 		/*
2092 		 * Nothing on the list just add it
2093 		 */
2094 		udf_ifreeh = ip;
2095 		udf_ifreet = ip;
2096 	} else {
2097 		if (at == UD_BEGIN) {
2098 			/*
2099 			 * Add at the begining of the list
2100 			 */
2101 			ip->i_freef = udf_ifreeh;
2102 			udf_ifreeh->i_freeb = ip;
2103 			udf_ifreeh = ip;
2104 		} else {
2105 			/*
2106 			 * Add at the end of the list
2107 			 */
2108 			ip->i_freeb = udf_ifreet;
2109 			udf_ifreet->i_freef = ip;
2110 			udf_ifreet = ip;
2111 		}
2112 	}
2113 }
2114 
2115 void
2116 ud_remove_from_free_list(struct ud_inode *ip, uint32_t at)
2117 {
2118 	ASSERT(ip);
2119 	ASSERT(mutex_owned(&udf_ifree_lock));
2120 
2121 #ifdef	DEBUG
2122 	{
2123 		struct ud_inode *iq;
2124 		uint32_t found = 0;
2125 
2126 		iq = udf_ifreeh;
2127 		while (iq) {
2128 			if (iq == ip) {
2129 				found++;
2130 			}
2131 			iq = iq->i_freef;
2132 		}
2133 		if (found != 1) {
2134 			cmn_err(CE_WARN, "ip %p is found %x times\n",
2135 			    (void *)ip,  found);
2136 		}
2137 	}
2138 #endif
2139 
2140 	if ((ip->i_freef == NULL) && (ip->i_freeb == NULL)) {
2141 		if (ip != udf_ifreeh) {
2142 			return;
2143 		}
2144 	}
2145 
2146 	if ((at == UD_BEGIN) || (ip == udf_ifreeh)) {
2147 		udf_ifreeh = ip->i_freef;
2148 		if (ip->i_freef == NULL) {
2149 			udf_ifreet = NULL;
2150 		} else {
2151 			udf_ifreeh->i_freeb = NULL;
2152 		}
2153 	} else {
2154 		ip->i_freeb->i_freef = ip->i_freef;
2155 		if (ip->i_freef) {
2156 			ip->i_freef->i_freeb = ip->i_freeb;
2157 		} else {
2158 			udf_ifreet = ip->i_freeb;
2159 		}
2160 	}
2161 	ip->i_freef = NULL;
2162 	ip->i_freeb = NULL;
2163 }
2164 
2165 void
2166 ud_init_inodes(void)
2167 {
2168 	union ihead *ih = ud_ihead;
2169 	int index;
2170 
2171 #ifndef	__lint
2172 	_NOTE(NO_COMPETING_THREADS_NOW);
2173 #endif
2174 	for (index = 0; index < UD_HASH_SZ; index++, ih++) {
2175 		ih->ih_head[0] = ih;
2176 		ih->ih_head[1] = ih;
2177 	}
2178 	mutex_init(&ud_icache_lock, NULL, MUTEX_DEFAULT, NULL);
2179 	mutex_init(&ud_nino_lock, NULL, MUTEX_DEFAULT, NULL);
2180 
2181 	udf_ifreeh = NULL;
2182 	udf_ifreet = NULL;
2183 	mutex_init(&udf_ifree_lock, NULL, MUTEX_DEFAULT, NULL);
2184 
2185 	mutex_init(&ud_sync_busy, NULL, MUTEX_DEFAULT, NULL);
2186 	udf_vfs_instances = NULL;
2187 	mutex_init(&udf_vfs_mutex, NULL, MUTEX_DEFAULT, NULL);
2188 
2189 #ifndef	__lint
2190 	_NOTE(COMPETING_THREADS_NOW);
2191 #endif
2192 }
2193