xref: /titanic_44/usr/src/uts/common/fs/sockfs/socksyscalls.c (revision 52244c0958bdf281ca42932b449f644b4decfdc2)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 1995, 2010, Oracle and/or its affiliates. All rights reserved.
24  */
25 
26 /* Copyright (c) 2013, OmniTI Computer Consulting, Inc. All rights reserved. */
27 
28 #include <sys/types.h>
29 #include <sys/t_lock.h>
30 #include <sys/param.h>
31 #include <sys/systm.h>
32 #include <sys/buf.h>
33 #include <sys/conf.h>
34 #include <sys/cred.h>
35 #include <sys/kmem.h>
36 #include <sys/sysmacros.h>
37 #include <sys/vfs.h>
38 #include <sys/vnode.h>
39 #include <sys/debug.h>
40 #include <sys/errno.h>
41 #include <sys/time.h>
42 #include <sys/file.h>
43 #include <sys/user.h>
44 #include <sys/stream.h>
45 #include <sys/strsubr.h>
46 #include <sys/strsun.h>
47 #include <sys/sunddi.h>
48 #include <sys/esunddi.h>
49 #include <sys/flock.h>
50 #include <sys/modctl.h>
51 #include <sys/cmn_err.h>
52 #include <sys/vmsystm.h>
53 #include <sys/policy.h>
54 
55 #include <sys/socket.h>
56 #include <sys/socketvar.h>
57 
58 #include <sys/isa_defs.h>
59 #include <sys/inttypes.h>
60 #include <sys/systm.h>
61 #include <sys/cpuvar.h>
62 #include <sys/filio.h>
63 #include <sys/sendfile.h>
64 #include <sys/ddi.h>
65 #include <vm/seg.h>
66 #include <vm/seg_map.h>
67 #include <vm/seg_kpm.h>
68 
69 #include <fs/sockfs/nl7c.h>
70 #include <fs/sockfs/sockcommon.h>
71 #include <fs/sockfs/sockfilter_impl.h>
72 #include <fs/sockfs/socktpi.h>
73 
74 #ifdef SOCK_TEST
75 int do_useracc = 1;		/* Controlled by setting SO_DEBUG to 4 */
76 #else
77 #define	do_useracc	1
78 #endif /* SOCK_TEST */
79 
80 extern int 	xnet_truncate_print;
81 
82 extern void	nl7c_init(void);
83 extern int	sockfs_defer_nl7c_init;
84 
85 /*
86  * Note: DEF_IOV_MAX is defined and used as it is in "fs/vncalls.c"
87  *	 as there isn't a formal definition of IOV_MAX ???
88  */
89 #define	MSG_MAXIOVLEN	16
90 
91 /*
92  * Kernel component of socket creation.
93  *
94  * The socket library determines which version number to use.
95  * First the library calls this with a NULL devpath. If this fails
96  * to find a transport (using solookup) the library will look in /etc/netconfig
97  * for the appropriate transport. If one is found it will pass in the
98  * devpath for the kernel to use.
99  */
100 int
101 so_socket(int family, int type_w_flags, int protocol, char *devpath,
102     int version)
103 {
104 	struct sonode *so;
105 	vnode_t *vp;
106 	struct file *fp;
107 	int fd;
108 	int error;
109 	int type;
110 
111 	type = type_w_flags & SOCK_TYPE_MASK;
112 	type_w_flags &= ~SOCK_TYPE_MASK;
113 	if (type_w_flags & ~(SOCK_CLOEXEC|SOCK_NDELAY|SOCK_NONBLOCK))
114 		return (set_errno(EINVAL));
115 
116 	if (devpath != NULL) {
117 		char *buf;
118 		size_t kdevpathlen = 0;
119 
120 		buf = kmem_alloc(MAXPATHLEN, KM_SLEEP);
121 		if ((error = copyinstr(devpath, buf,
122 		    MAXPATHLEN, &kdevpathlen)) != 0) {
123 			kmem_free(buf, MAXPATHLEN);
124 			return (set_errno(error));
125 		}
126 		so = socket_create(family, type, protocol, buf, NULL,
127 		    SOCKET_SLEEP, version, CRED(), &error);
128 		kmem_free(buf, MAXPATHLEN);
129 	} else {
130 		so = socket_create(family, type, protocol, NULL, NULL,
131 		    SOCKET_SLEEP, version, CRED(), &error);
132 	}
133 	if (so == NULL)
134 		return (set_errno(error));
135 
136 	/* Allocate a file descriptor for the socket */
137 	vp = SOTOV(so);
138 	if (error = falloc(vp, FWRITE|FREAD, &fp, &fd)) {
139 		(void) socket_close(so, 0, CRED());
140 		socket_destroy(so);
141 		return (set_errno(error));
142 	}
143 
144 	/*
145 	 * Now fill in the entries that falloc reserved
146 	 */
147 	if (type_w_flags & SOCK_NDELAY) {
148 		so->so_state |= SS_NDELAY;
149 		fp->f_flag |= FNDELAY;
150 	}
151 	if (type_w_flags & SOCK_NONBLOCK) {
152 		so->so_state |= SS_NONBLOCK;
153 		fp->f_flag |= FNONBLOCK;
154 	}
155 	mutex_exit(&fp->f_tlock);
156 	setf(fd, fp);
157 	if ((type_w_flags & SOCK_CLOEXEC) != 0) {
158 		f_setfd(fd, FD_CLOEXEC);
159 	}
160 
161 	return (fd);
162 }
163 
164 /*
165  * Map from a file descriptor to a socket node.
166  * Returns with the file descriptor held i.e. the caller has to
167  * use releasef when done with the file descriptor.
168  */
169 struct sonode *
170 getsonode(int sock, int *errorp, file_t **fpp)
171 {
172 	file_t *fp;
173 	vnode_t *vp;
174 	struct sonode *so;
175 
176 	if ((fp = getf(sock)) == NULL) {
177 		*errorp = EBADF;
178 		eprintline(*errorp);
179 		return (NULL);
180 	}
181 	vp = fp->f_vnode;
182 	/* Check if it is a socket */
183 	if (vp->v_type != VSOCK) {
184 		releasef(sock);
185 		*errorp = ENOTSOCK;
186 		eprintline(*errorp);
187 		return (NULL);
188 	}
189 	/*
190 	 * Use the stream head to find the real socket vnode.
191 	 * This is needed when namefs sits above sockfs.
192 	 */
193 	if (vp->v_stream) {
194 		ASSERT(vp->v_stream->sd_vnode);
195 		vp = vp->v_stream->sd_vnode;
196 
197 		so = VTOSO(vp);
198 		if (so->so_version == SOV_STREAM) {
199 			releasef(sock);
200 			*errorp = ENOTSOCK;
201 			eprintsoline(so, *errorp);
202 			return (NULL);
203 		}
204 	} else {
205 		so = VTOSO(vp);
206 	}
207 	if (fpp)
208 		*fpp = fp;
209 	return (so);
210 }
211 
212 /*
213  * Allocate and copyin a sockaddr.
214  * Ensures NULL termination for AF_UNIX addresses by extending them
215  * with one NULL byte if need be. Verifies that the length is not
216  * excessive to prevent an application from consuming all of kernel
217  * memory. Returns NULL when an error occurred.
218  */
219 static struct sockaddr *
220 copyin_name(struct sonode *so, struct sockaddr *name, socklen_t *namelenp,
221 	    int *errorp)
222 {
223 	char	*faddr;
224 	size_t	namelen = (size_t)*namelenp;
225 
226 	ASSERT(namelen != 0);
227 	if (namelen > SO_MAXARGSIZE) {
228 		*errorp = EINVAL;
229 		eprintsoline(so, *errorp);
230 		return (NULL);
231 	}
232 
233 	faddr = (char *)kmem_alloc(namelen, KM_SLEEP);
234 	if (copyin(name, faddr, namelen)) {
235 		kmem_free(faddr, namelen);
236 		*errorp = EFAULT;
237 		eprintsoline(so, *errorp);
238 		return (NULL);
239 	}
240 
241 	/*
242 	 * Add space for NULL termination if needed.
243 	 * Do a quick check if the last byte is NUL.
244 	 */
245 	if (so->so_family == AF_UNIX && faddr[namelen - 1] != '\0') {
246 		/* Check if there is any NULL termination */
247 		size_t	i;
248 		int foundnull = 0;
249 
250 		for (i = sizeof (name->sa_family); i < namelen; i++) {
251 			if (faddr[i] == '\0') {
252 				foundnull = 1;
253 				break;
254 			}
255 		}
256 		if (!foundnull) {
257 			/* Add extra byte for NUL padding */
258 			char *nfaddr;
259 
260 			nfaddr = (char *)kmem_alloc(namelen + 1, KM_SLEEP);
261 			bcopy(faddr, nfaddr, namelen);
262 			kmem_free(faddr, namelen);
263 
264 			/* NUL terminate */
265 			nfaddr[namelen] = '\0';
266 			namelen++;
267 			ASSERT((socklen_t)namelen == namelen);
268 			*namelenp = (socklen_t)namelen;
269 			faddr = nfaddr;
270 		}
271 	}
272 	return ((struct sockaddr *)faddr);
273 }
274 
275 /*
276  * Copy from kaddr/klen to uaddr/ulen. Updates ulenp if non-NULL.
277  */
278 static int
279 copyout_arg(void *uaddr, socklen_t ulen, void *ulenp,
280 		void *kaddr, socklen_t klen)
281 {
282 	if (uaddr != NULL) {
283 		if (ulen > klen)
284 			ulen = klen;
285 
286 		if (ulen != 0) {
287 			if (copyout(kaddr, uaddr, ulen))
288 				return (EFAULT);
289 		}
290 	} else
291 		ulen = 0;
292 
293 	if (ulenp != NULL) {
294 		if (copyout(&ulen, ulenp, sizeof (ulen)))
295 			return (EFAULT);
296 	}
297 	return (0);
298 }
299 
300 /*
301  * Copy from kaddr/klen to uaddr/ulen. Updates ulenp if non-NULL.
302  * If klen is greater than ulen it still uses the non-truncated
303  * klen to update ulenp.
304  */
305 static int
306 copyout_name(void *uaddr, socklen_t ulen, void *ulenp,
307 		void *kaddr, socklen_t klen)
308 {
309 	if (uaddr != NULL) {
310 		if (ulen >= klen)
311 			ulen = klen;
312 		else if (ulen != 0 && xnet_truncate_print) {
313 			printf("sockfs: truncating copyout of address using "
314 			    "XNET semantics for pid = %d. Lengths %d, %d\n",
315 			    curproc->p_pid, klen, ulen);
316 		}
317 
318 		if (ulen != 0) {
319 			if (copyout(kaddr, uaddr, ulen))
320 				return (EFAULT);
321 		} else
322 			klen = 0;
323 	} else
324 		klen = 0;
325 
326 	if (ulenp != NULL) {
327 		if (copyout(&klen, ulenp, sizeof (klen)))
328 			return (EFAULT);
329 	}
330 	return (0);
331 }
332 
333 /*
334  * The socketpair() code in libsocket creates two sockets (using
335  * the /etc/netconfig fallback if needed) before calling this routine
336  * to connect the two sockets together.
337  *
338  * For a SOCK_STREAM socketpair a listener is needed - in that case this
339  * routine will create a new file descriptor as part of accepting the
340  * connection. The library socketpair() will check if svs[2] has changed
341  * in which case it will close the changed fd.
342  *
343  * Note that this code could use the TPI feature of accepting the connection
344  * on the listening endpoint. However, that would require significant changes
345  * to soaccept.
346  */
347 int
348 so_socketpair(int sv[2])
349 {
350 	int svs[2];
351 	struct sonode *so1, *so2;
352 	int error;
353 	int orig_flags;
354 	struct sockaddr_ux *name;
355 	size_t namelen;
356 	sotpi_info_t *sti1;
357 	sotpi_info_t *sti2;
358 
359 	dprint(1, ("so_socketpair(%p)\n", (void *)sv));
360 
361 	error = useracc(sv, sizeof (svs), B_WRITE);
362 	if (error && do_useracc)
363 		return (set_errno(EFAULT));
364 
365 	if (copyin(sv, svs, sizeof (svs)))
366 		return (set_errno(EFAULT));
367 
368 	if ((so1 = getsonode(svs[0], &error, NULL)) == NULL)
369 		return (set_errno(error));
370 
371 	if ((so2 = getsonode(svs[1], &error, NULL)) == NULL) {
372 		releasef(svs[0]);
373 		return (set_errno(error));
374 	}
375 
376 	if (so1->so_family != AF_UNIX || so2->so_family != AF_UNIX) {
377 		error = EOPNOTSUPP;
378 		goto done;
379 	}
380 
381 	sti1 = SOTOTPI(so1);
382 	sti2 = SOTOTPI(so2);
383 
384 	/*
385 	 * The code below makes assumptions about the "sockfs" implementation.
386 	 * So make sure that the correct implementation is really used.
387 	 */
388 	ASSERT(so1->so_ops == &sotpi_sonodeops);
389 	ASSERT(so2->so_ops == &sotpi_sonodeops);
390 
391 	if (so1->so_type == SOCK_DGRAM) {
392 		/*
393 		 * Bind both sockets and connect them with each other.
394 		 * Need to allocate name/namelen for soconnect.
395 		 */
396 		error = socket_bind(so1, NULL, 0, _SOBIND_UNSPEC, CRED());
397 		if (error) {
398 			eprintsoline(so1, error);
399 			goto done;
400 		}
401 		error = socket_bind(so2, NULL, 0, _SOBIND_UNSPEC, CRED());
402 		if (error) {
403 			eprintsoline(so2, error);
404 			goto done;
405 		}
406 		namelen = sizeof (struct sockaddr_ux);
407 		name = kmem_alloc(namelen, KM_SLEEP);
408 		name->sou_family = AF_UNIX;
409 		name->sou_addr = sti2->sti_ux_laddr;
410 		error = socket_connect(so1,
411 		    (struct sockaddr *)name,
412 		    (socklen_t)namelen,
413 		    0, _SOCONNECT_NOXLATE, CRED());
414 		if (error) {
415 			kmem_free(name, namelen);
416 			eprintsoline(so1, error);
417 			goto done;
418 		}
419 		name->sou_addr = sti1->sti_ux_laddr;
420 		error = socket_connect(so2,
421 		    (struct sockaddr *)name,
422 		    (socklen_t)namelen,
423 		    0, _SOCONNECT_NOXLATE, CRED());
424 		kmem_free(name, namelen);
425 		if (error) {
426 			eprintsoline(so2, error);
427 			goto done;
428 		}
429 		releasef(svs[0]);
430 		releasef(svs[1]);
431 	} else {
432 		/*
433 		 * Bind both sockets, with so1 being a listener.
434 		 * Connect so2 to so1 - nonblocking to avoid waiting for
435 		 * soaccept to complete.
436 		 * Accept a connection on so1. Pass out the new fd as sv[0].
437 		 * The library will detect the changed fd and close
438 		 * the original one.
439 		 */
440 		struct sonode *nso;
441 		struct vnode *nvp;
442 		struct file *nfp;
443 		int nfd;
444 
445 		/*
446 		 * We could simply call socket_listen() here (which would do the
447 		 * binding automatically) if the code didn't rely on passing
448 		 * _SOBIND_NOXLATE to the TPI implementation of socket_bind().
449 		 */
450 		error = socket_bind(so1, NULL, 0, _SOBIND_UNSPEC|
451 		    _SOBIND_NOXLATE|_SOBIND_LISTEN|_SOBIND_SOCKETPAIR,
452 		    CRED());
453 		if (error) {
454 			eprintsoline(so1, error);
455 			goto done;
456 		}
457 		error = socket_bind(so2, NULL, 0, _SOBIND_UNSPEC, CRED());
458 		if (error) {
459 			eprintsoline(so2, error);
460 			goto done;
461 		}
462 
463 		namelen = sizeof (struct sockaddr_ux);
464 		name = kmem_alloc(namelen, KM_SLEEP);
465 		name->sou_family = AF_UNIX;
466 		name->sou_addr = sti1->sti_ux_laddr;
467 		error = socket_connect(so2,
468 		    (struct sockaddr *)name,
469 		    (socklen_t)namelen,
470 		    FNONBLOCK, _SOCONNECT_NOXLATE, CRED());
471 		kmem_free(name, namelen);
472 		if (error) {
473 			if (error != EINPROGRESS) {
474 				eprintsoline(so2, error); goto done;
475 			}
476 		}
477 
478 		error = socket_accept(so1, 0, CRED(), &nso);
479 		if (error) {
480 			eprintsoline(so1, error);
481 			goto done;
482 		}
483 
484 		/* wait for so2 being SS_CONNECTED ignoring signals */
485 		mutex_enter(&so2->so_lock);
486 		error = sowaitconnected(so2, 0, 1);
487 		mutex_exit(&so2->so_lock);
488 		if (error != 0) {
489 			(void) socket_close(nso, 0, CRED());
490 			socket_destroy(nso);
491 			eprintsoline(so2, error);
492 			goto done;
493 		}
494 
495 		nvp = SOTOV(nso);
496 		if (error = falloc(nvp, FWRITE|FREAD, &nfp, &nfd)) {
497 			(void) socket_close(nso, 0, CRED());
498 			socket_destroy(nso);
499 			eprintsoline(nso, error);
500 			goto done;
501 		}
502 		/*
503 		 * copy over FNONBLOCK and FNDELAY flags should they exist
504 		 */
505 		if (so1->so_state & SS_NONBLOCK)
506 			nfp->f_flag |= FNONBLOCK;
507 		if (so1->so_state & SS_NDELAY)
508 			nfp->f_flag |= FNDELAY;
509 
510 		/*
511 		 * fill in the entries that falloc reserved
512 		 */
513 		mutex_exit(&nfp->f_tlock);
514 		setf(nfd, nfp);
515 
516 		/*
517 		 * get the original flags before we release
518 		 */
519 		VERIFY(f_getfd_error(svs[0], &orig_flags) == 0);
520 
521 		releasef(svs[0]);
522 		releasef(svs[1]);
523 
524 		/*
525 		 * If FD_CLOEXEC was set on the filedescriptor we're
526 		 * swapping out, we should set it on the new one too.
527 		 */
528 		if (orig_flags & FD_CLOEXEC) {
529 			f_setfd(nfd, FD_CLOEXEC);
530 		}
531 
532 		/*
533 		 * The socketpair library routine will close the original
534 		 * svs[0] when this code passes out a different file
535 		 * descriptor.
536 		 */
537 		svs[0] = nfd;
538 
539 		if (copyout(svs, sv, sizeof (svs))) {
540 			(void) closeandsetf(nfd, NULL);
541 			eprintline(EFAULT);
542 			return (set_errno(EFAULT));
543 		}
544 	}
545 	return (0);
546 
547 done:
548 	releasef(svs[0]);
549 	releasef(svs[1]);
550 	return (set_errno(error));
551 }
552 
553 int
554 bind(int sock, struct sockaddr *name, socklen_t namelen, int version)
555 {
556 	struct sonode *so;
557 	int error;
558 
559 	dprint(1, ("bind(%d, %p, %d)\n",
560 	    sock, (void *)name, namelen));
561 
562 	if ((so = getsonode(sock, &error, NULL)) == NULL)
563 		return (set_errno(error));
564 
565 	/* Allocate and copyin name */
566 	/*
567 	 * X/Open test does not expect EFAULT with NULL name and non-zero
568 	 * namelen.
569 	 */
570 	if (name != NULL && namelen != 0) {
571 		ASSERT(MUTEX_NOT_HELD(&so->so_lock));
572 		name = copyin_name(so, name, &namelen, &error);
573 		if (name == NULL) {
574 			releasef(sock);
575 			return (set_errno(error));
576 		}
577 	} else {
578 		name = NULL;
579 		namelen = 0;
580 	}
581 
582 	switch (version) {
583 	default:
584 		error = socket_bind(so, name, namelen, 0, CRED());
585 		break;
586 	case SOV_XPG4_2:
587 		error = socket_bind(so, name, namelen, _SOBIND_XPG4_2, CRED());
588 		break;
589 	case SOV_SOCKBSD:
590 		error = socket_bind(so, name, namelen, _SOBIND_SOCKBSD, CRED());
591 		break;
592 	}
593 done:
594 	releasef(sock);
595 	if (name != NULL)
596 		kmem_free(name, (size_t)namelen);
597 
598 	if (error)
599 		return (set_errno(error));
600 	return (0);
601 }
602 
603 /* ARGSUSED2 */
604 int
605 listen(int sock, int backlog, int version)
606 {
607 	struct sonode *so;
608 	int error;
609 
610 	dprint(1, ("listen(%d, %d)\n",
611 	    sock, backlog));
612 
613 	if ((so = getsonode(sock, &error, NULL)) == NULL)
614 		return (set_errno(error));
615 
616 	error = socket_listen(so, backlog, CRED());
617 
618 	releasef(sock);
619 	if (error)
620 		return (set_errno(error));
621 	return (0);
622 }
623 
624 /*ARGSUSED3*/
625 int
626 accept(int sock, struct sockaddr *name, socklen_t *namelenp, int version,
627     int flags)
628 {
629 	struct sonode *so;
630 	file_t *fp;
631 	int error;
632 	socklen_t namelen;
633 	struct sonode *nso;
634 	struct vnode *nvp;
635 	struct file *nfp;
636 	int nfd;
637 	int ssflags;
638 	struct sockaddr *addrp;
639 	socklen_t addrlen;
640 
641 	dprint(1, ("accept(%d, %p, %p)\n",
642 	    sock, (void *)name, (void *)namelenp));
643 
644 	if (flags & ~(SOCK_CLOEXEC|SOCK_NONBLOCK|SOCK_NDELAY)) {
645 		return (set_errno(EINVAL));
646 	}
647 
648 	/* Translate SOCK_ flags to their SS_ variant */
649 	ssflags = 0;
650 	if (flags & SOCK_NONBLOCK)
651 		ssflags |= SS_NONBLOCK;
652 	if (flags & SOCK_NDELAY)
653 		ssflags |= SS_NDELAY;
654 
655 	if ((so = getsonode(sock, &error, &fp)) == NULL)
656 		return (set_errno(error));
657 
658 	if (name != NULL) {
659 		ASSERT(MUTEX_NOT_HELD(&so->so_lock));
660 		if (copyin(namelenp, &namelen, sizeof (namelen))) {
661 			releasef(sock);
662 			return (set_errno(EFAULT));
663 		}
664 		if (namelen != 0) {
665 			error = useracc(name, (size_t)namelen, B_WRITE);
666 			if (error && do_useracc) {
667 				releasef(sock);
668 				return (set_errno(EFAULT));
669 			}
670 		} else
671 			name = NULL;
672 	} else {
673 		namelen = 0;
674 	}
675 
676 	/*
677 	 * Allocate the user fd before socket_accept() in order to
678 	 * catch EMFILE errors before calling socket_accept().
679 	 */
680 	if ((nfd = ufalloc(0)) == -1) {
681 		eprintsoline(so, EMFILE);
682 		releasef(sock);
683 		return (set_errno(EMFILE));
684 	}
685 	error = socket_accept(so, fp->f_flag, CRED(), &nso);
686 	if (error) {
687 		setf(nfd, NULL);
688 		releasef(sock);
689 		return (set_errno(error));
690 	}
691 
692 	nvp = SOTOV(nso);
693 
694 	ASSERT(MUTEX_NOT_HELD(&nso->so_lock));
695 	if (namelen != 0) {
696 		addrlen = so->so_max_addr_len;
697 		addrp = (struct sockaddr *)kmem_alloc(addrlen, KM_SLEEP);
698 
699 		if ((error = socket_getpeername(nso, (struct sockaddr *)addrp,
700 		    &addrlen, B_TRUE, CRED())) == 0) {
701 			error = copyout_name(name, namelen, namelenp,
702 			    addrp, addrlen);
703 		} else {
704 			ASSERT(error == EINVAL || error == ENOTCONN);
705 			error = ECONNABORTED;
706 		}
707 		kmem_free(addrp, so->so_max_addr_len);
708 	}
709 
710 	if (error) {
711 		setf(nfd, NULL);
712 		(void) socket_close(nso, 0, CRED());
713 		socket_destroy(nso);
714 		releasef(sock);
715 		return (set_errno(error));
716 	}
717 	if (error = falloc(NULL, FWRITE|FREAD, &nfp, NULL)) {
718 		setf(nfd, NULL);
719 		(void) socket_close(nso, 0, CRED());
720 		socket_destroy(nso);
721 		eprintsoline(so, error);
722 		releasef(sock);
723 		return (set_errno(error));
724 	}
725 	/*
726 	 * fill in the entries that falloc reserved
727 	 */
728 	nfp->f_vnode = nvp;
729 	mutex_exit(&nfp->f_tlock);
730 	setf(nfd, nfp);
731 
732 	/*
733 	 * Act on SOCK_CLOEXEC from flags
734 	 */
735 	if (flags & SOCK_CLOEXEC) {
736 		f_setfd(nfd, FD_CLOEXEC);
737 	}
738 
739 	/*
740 	 * Copy FNDELAY and FNONBLOCK from listener to acceptor
741 	 * and from ssflags
742 	 */
743 	if ((ssflags | so->so_state) & (SS_NDELAY|SS_NONBLOCK)) {
744 		uint_t oflag = nfp->f_flag;
745 		int arg = 0;
746 
747 		if ((ssflags | so->so_state) & SS_NONBLOCK)
748 			arg |= FNONBLOCK;
749 		else if ((ssflags | so->so_state) & SS_NDELAY)
750 			arg |= FNDELAY;
751 
752 		/*
753 		 * This code is a simplification of the F_SETFL code in fcntl()
754 		 * Ignore any errors from VOP_SETFL.
755 		 */
756 		if ((error = VOP_SETFL(nvp, oflag, arg, nfp->f_cred, NULL))
757 		    != 0) {
758 			eprintsoline(so, error);
759 			error = 0;
760 		} else {
761 			mutex_enter(&nfp->f_tlock);
762 			nfp->f_flag &= ~FMASK | (FREAD|FWRITE);
763 			nfp->f_flag |= arg;
764 			mutex_exit(&nfp->f_tlock);
765 		}
766 	}
767 	releasef(sock);
768 	return (nfd);
769 }
770 
771 int
772 connect(int sock, struct sockaddr *name, socklen_t namelen, int version)
773 {
774 	struct sonode *so;
775 	file_t *fp;
776 	int error;
777 
778 	dprint(1, ("connect(%d, %p, %d)\n",
779 	    sock, (void *)name, namelen));
780 
781 	if ((so = getsonode(sock, &error, &fp)) == NULL)
782 		return (set_errno(error));
783 
784 	/* Allocate and copyin name */
785 	if (namelen != 0) {
786 		ASSERT(MUTEX_NOT_HELD(&so->so_lock));
787 		name = copyin_name(so, name, &namelen, &error);
788 		if (name == NULL) {
789 			releasef(sock);
790 			return (set_errno(error));
791 		}
792 	} else
793 		name = NULL;
794 
795 	error = socket_connect(so, name, namelen, fp->f_flag,
796 	    (version != SOV_XPG4_2) ? 0 : _SOCONNECT_XPG4_2, CRED());
797 	releasef(sock);
798 	if (name)
799 		kmem_free(name, (size_t)namelen);
800 	if (error)
801 		return (set_errno(error));
802 	return (0);
803 }
804 
805 /*ARGSUSED2*/
806 int
807 shutdown(int sock, int how, int version)
808 {
809 	struct sonode *so;
810 	int error;
811 
812 	dprint(1, ("shutdown(%d, %d)\n",
813 	    sock, how));
814 
815 	if ((so = getsonode(sock, &error, NULL)) == NULL)
816 		return (set_errno(error));
817 
818 	error = socket_shutdown(so, how, CRED());
819 
820 	releasef(sock);
821 	if (error)
822 		return (set_errno(error));
823 	return (0);
824 }
825 
826 /*
827  * Common receive routine.
828  */
829 static ssize_t
830 recvit(int sock,
831 	struct nmsghdr *msg,
832 	struct uio *uiop,
833 	int flags,
834 	socklen_t *namelenp,
835 	socklen_t *controllenp,
836 	int *flagsp)
837 {
838 	struct sonode *so;
839 	file_t *fp;
840 	void *name;
841 	socklen_t namelen;
842 	void *control;
843 	socklen_t controllen;
844 	ssize_t len;
845 	int error;
846 
847 	if ((so = getsonode(sock, &error, &fp)) == NULL)
848 		return (set_errno(error));
849 
850 	len = uiop->uio_resid;
851 	uiop->uio_fmode = fp->f_flag;
852 	uiop->uio_extflg = UIO_COPY_CACHED;
853 
854 	name = msg->msg_name;
855 	namelen = msg->msg_namelen;
856 	control = msg->msg_control;
857 	controllen = msg->msg_controllen;
858 
859 	msg->msg_flags = flags & (MSG_OOB | MSG_PEEK | MSG_WAITALL |
860 	    MSG_DONTWAIT | MSG_XPG4_2);
861 
862 	error = socket_recvmsg(so, msg, uiop, CRED());
863 	if (error) {
864 		releasef(sock);
865 		return (set_errno(error));
866 	}
867 	lwp_stat_update(LWP_STAT_MSGRCV, 1);
868 	releasef(sock);
869 
870 	error = copyout_name(name, namelen, namelenp,
871 	    msg->msg_name, msg->msg_namelen);
872 	if (error)
873 		goto err;
874 
875 	if (flagsp != NULL) {
876 		/*
877 		 * Clear internal flag.
878 		 */
879 		msg->msg_flags &= ~MSG_XPG4_2;
880 
881 		/*
882 		 * Determine MSG_CTRUNC. sorecvmsg sets MSG_CTRUNC only
883 		 * when controllen is zero and there is control data to
884 		 * copy out.
885 		 */
886 		if (controllen != 0 &&
887 		    (msg->msg_controllen > controllen || control == NULL)) {
888 			dprint(1, ("recvit: CTRUNC %d %d %p\n",
889 			    msg->msg_controllen, controllen, control));
890 
891 			msg->msg_flags |= MSG_CTRUNC;
892 		}
893 		if (copyout(&msg->msg_flags, flagsp,
894 		    sizeof (msg->msg_flags))) {
895 			error = EFAULT;
896 			goto err;
897 		}
898 	}
899 	/*
900 	 * Note: This MUST be done last. There can be no "goto err" after this
901 	 * point since it could make so_closefds run twice on some part
902 	 * of the file descriptor array.
903 	 */
904 	if (controllen != 0) {
905 		if (!(flags & MSG_XPG4_2)) {
906 			/*
907 			 * Good old msg_accrights can only return a multiple
908 			 * of 4 bytes.
909 			 */
910 			controllen &= ~((int)sizeof (uint32_t) - 1);
911 		}
912 		error = copyout_arg(control, controllen, controllenp,
913 		    msg->msg_control, msg->msg_controllen);
914 		if (error)
915 			goto err;
916 
917 		if (msg->msg_controllen > controllen || control == NULL) {
918 			if (control == NULL)
919 				controllen = 0;
920 			so_closefds(msg->msg_control, msg->msg_controllen,
921 			    !(flags & MSG_XPG4_2), controllen);
922 		}
923 	}
924 	if (msg->msg_namelen != 0)
925 		kmem_free(msg->msg_name, (size_t)msg->msg_namelen);
926 	if (msg->msg_controllen != 0)
927 		kmem_free(msg->msg_control, (size_t)msg->msg_controllen);
928 	return (len - uiop->uio_resid);
929 
930 err:
931 	/*
932 	 * If we fail and the control part contains file descriptors
933 	 * we have to close the fd's.
934 	 */
935 	if (msg->msg_controllen != 0)
936 		so_closefds(msg->msg_control, msg->msg_controllen,
937 		    !(flags & MSG_XPG4_2), 0);
938 	if (msg->msg_namelen != 0)
939 		kmem_free(msg->msg_name, (size_t)msg->msg_namelen);
940 	if (msg->msg_controllen != 0)
941 		kmem_free(msg->msg_control, (size_t)msg->msg_controllen);
942 	return (set_errno(error));
943 }
944 
945 /*
946  * Native system call
947  */
948 ssize_t
949 recv(int sock, void *buffer, size_t len, int flags)
950 {
951 	struct nmsghdr lmsg;
952 	struct uio auio;
953 	struct iovec aiov[1];
954 
955 	dprint(1, ("recv(%d, %p, %ld, %d)\n",
956 	    sock, buffer, len, flags));
957 
958 	if ((ssize_t)len < 0) {
959 		return (set_errno(EINVAL));
960 	}
961 
962 	aiov[0].iov_base = buffer;
963 	aiov[0].iov_len = len;
964 	auio.uio_loffset = 0;
965 	auio.uio_iov = aiov;
966 	auio.uio_iovcnt = 1;
967 	auio.uio_resid = len;
968 	auio.uio_segflg = UIO_USERSPACE;
969 	auio.uio_limit = 0;
970 
971 	lmsg.msg_namelen = 0;
972 	lmsg.msg_controllen = 0;
973 	lmsg.msg_flags = 0;
974 	return (recvit(sock, &lmsg, &auio, flags, NULL, NULL, NULL));
975 }
976 
977 ssize_t
978 recvfrom(int sock, void *buffer, size_t len, int flags,
979 	struct sockaddr *name, socklen_t *namelenp)
980 {
981 	struct nmsghdr lmsg;
982 	struct uio auio;
983 	struct iovec aiov[1];
984 
985 	dprint(1, ("recvfrom(%d, %p, %ld, %d, %p, %p)\n",
986 	    sock, buffer, len, flags, (void *)name, (void *)namelenp));
987 
988 	if ((ssize_t)len < 0) {
989 		return (set_errno(EINVAL));
990 	}
991 
992 	aiov[0].iov_base = buffer;
993 	aiov[0].iov_len = len;
994 	auio.uio_loffset = 0;
995 	auio.uio_iov = aiov;
996 	auio.uio_iovcnt = 1;
997 	auio.uio_resid = len;
998 	auio.uio_segflg = UIO_USERSPACE;
999 	auio.uio_limit = 0;
1000 
1001 	lmsg.msg_name = (char *)name;
1002 	if (namelenp != NULL) {
1003 		if (copyin(namelenp, &lmsg.msg_namelen,
1004 		    sizeof (lmsg.msg_namelen)))
1005 			return (set_errno(EFAULT));
1006 	} else {
1007 		lmsg.msg_namelen = 0;
1008 	}
1009 	lmsg.msg_controllen = 0;
1010 	lmsg.msg_flags = 0;
1011 
1012 	return (recvit(sock, &lmsg, &auio, flags, namelenp, NULL, NULL));
1013 }
1014 
1015 /*
1016  * Uses the MSG_XPG4_2 flag to determine if the caller is using
1017  * struct omsghdr or struct nmsghdr.
1018  */
1019 ssize_t
1020 recvmsg(int sock, struct nmsghdr *msg, int flags)
1021 {
1022 	STRUCT_DECL(nmsghdr, u_lmsg);
1023 	STRUCT_HANDLE(nmsghdr, umsgptr);
1024 	struct nmsghdr lmsg;
1025 	struct uio auio;
1026 	struct iovec aiov[MSG_MAXIOVLEN];
1027 	int iovcnt;
1028 	ssize_t len;
1029 	int i;
1030 	int *flagsp;
1031 	model_t	model;
1032 
1033 	dprint(1, ("recvmsg(%d, %p, %d)\n",
1034 	    sock, (void *)msg, flags));
1035 
1036 	model = get_udatamodel();
1037 	STRUCT_INIT(u_lmsg, model);
1038 	STRUCT_SET_HANDLE(umsgptr, model, msg);
1039 
1040 	if (flags & MSG_XPG4_2) {
1041 		if (copyin(msg, STRUCT_BUF(u_lmsg), STRUCT_SIZE(u_lmsg)))
1042 			return (set_errno(EFAULT));
1043 		flagsp = STRUCT_FADDR(umsgptr, msg_flags);
1044 	} else {
1045 		/*
1046 		 * Assumes that nmsghdr and omsghdr are identically shaped
1047 		 * except for the added msg_flags field.
1048 		 */
1049 		if (copyin(msg, STRUCT_BUF(u_lmsg),
1050 		    SIZEOF_STRUCT(omsghdr, model)))
1051 			return (set_errno(EFAULT));
1052 		STRUCT_FSET(u_lmsg, msg_flags, 0);
1053 		flagsp = NULL;
1054 	}
1055 
1056 	/*
1057 	 * Code below us will kmem_alloc memory and hang it
1058 	 * off msg_control and msg_name fields. This forces
1059 	 * us to copy the structure to its native form.
1060 	 */
1061 	lmsg.msg_name = STRUCT_FGETP(u_lmsg, msg_name);
1062 	lmsg.msg_namelen = STRUCT_FGET(u_lmsg, msg_namelen);
1063 	lmsg.msg_iov = STRUCT_FGETP(u_lmsg, msg_iov);
1064 	lmsg.msg_iovlen = STRUCT_FGET(u_lmsg, msg_iovlen);
1065 	lmsg.msg_control = STRUCT_FGETP(u_lmsg, msg_control);
1066 	lmsg.msg_controllen = STRUCT_FGET(u_lmsg, msg_controllen);
1067 	lmsg.msg_flags = STRUCT_FGET(u_lmsg, msg_flags);
1068 
1069 	iovcnt = lmsg.msg_iovlen;
1070 
1071 	if (iovcnt <= 0 || iovcnt > MSG_MAXIOVLEN) {
1072 		return (set_errno(EMSGSIZE));
1073 	}
1074 
1075 #ifdef _SYSCALL32_IMPL
1076 	/*
1077 	 * 32-bit callers need to have their iovec expanded, while ensuring
1078 	 * that they can't move more than 2Gbytes of data in a single call.
1079 	 */
1080 	if (model == DATAMODEL_ILP32) {
1081 		struct iovec32 aiov32[MSG_MAXIOVLEN];
1082 		ssize32_t count32;
1083 
1084 		if (copyin((struct iovec32 *)lmsg.msg_iov, aiov32,
1085 		    iovcnt * sizeof (struct iovec32)))
1086 			return (set_errno(EFAULT));
1087 
1088 		count32 = 0;
1089 		for (i = 0; i < iovcnt; i++) {
1090 			ssize32_t iovlen32;
1091 
1092 			iovlen32 = aiov32[i].iov_len;
1093 			count32 += iovlen32;
1094 			if (iovlen32 < 0 || count32 < 0)
1095 				return (set_errno(EINVAL));
1096 			aiov[i].iov_len = iovlen32;
1097 			aiov[i].iov_base =
1098 			    (caddr_t)(uintptr_t)aiov32[i].iov_base;
1099 		}
1100 	} else
1101 #endif /* _SYSCALL32_IMPL */
1102 	if (copyin(lmsg.msg_iov, aiov, iovcnt * sizeof (struct iovec))) {
1103 		return (set_errno(EFAULT));
1104 	}
1105 	len = 0;
1106 	for (i = 0; i < iovcnt; i++) {
1107 		ssize_t iovlen = aiov[i].iov_len;
1108 		len += iovlen;
1109 		if (iovlen < 0 || len < 0) {
1110 			return (set_errno(EINVAL));
1111 		}
1112 	}
1113 	auio.uio_loffset = 0;
1114 	auio.uio_iov = aiov;
1115 	auio.uio_iovcnt = iovcnt;
1116 	auio.uio_resid = len;
1117 	auio.uio_segflg = UIO_USERSPACE;
1118 	auio.uio_limit = 0;
1119 
1120 	if (lmsg.msg_control != NULL &&
1121 	    (do_useracc == 0 ||
1122 	    useracc(lmsg.msg_control, lmsg.msg_controllen,
1123 	    B_WRITE) != 0)) {
1124 		return (set_errno(EFAULT));
1125 	}
1126 
1127 	return (recvit(sock, &lmsg, &auio, flags,
1128 	    STRUCT_FADDR(umsgptr, msg_namelen),
1129 	    STRUCT_FADDR(umsgptr, msg_controllen), flagsp));
1130 }
1131 
1132 /*
1133  * Common send function.
1134  */
1135 static ssize_t
1136 sendit(int sock, struct nmsghdr *msg, struct uio *uiop, int flags)
1137 {
1138 	struct sonode *so;
1139 	file_t *fp;
1140 	void *name;
1141 	socklen_t namelen;
1142 	void *control;
1143 	socklen_t controllen;
1144 	ssize_t len;
1145 	int error;
1146 
1147 	if ((so = getsonode(sock, &error, &fp)) == NULL)
1148 		return (set_errno(error));
1149 
1150 	uiop->uio_fmode = fp->f_flag;
1151 
1152 	if (so->so_family == AF_UNIX)
1153 		uiop->uio_extflg = UIO_COPY_CACHED;
1154 	else
1155 		uiop->uio_extflg = UIO_COPY_DEFAULT;
1156 
1157 	/* Allocate and copyin name and control */
1158 	name = msg->msg_name;
1159 	namelen = msg->msg_namelen;
1160 	if (name != NULL && namelen != 0) {
1161 		ASSERT(MUTEX_NOT_HELD(&so->so_lock));
1162 		name = copyin_name(so,
1163 		    (struct sockaddr *)name,
1164 		    &namelen, &error);
1165 		if (name == NULL)
1166 			goto done3;
1167 		/* copyin_name null terminates addresses for AF_UNIX */
1168 		msg->msg_namelen = namelen;
1169 		msg->msg_name = name;
1170 	} else {
1171 		msg->msg_name = name = NULL;
1172 		msg->msg_namelen = namelen = 0;
1173 	}
1174 
1175 	control = msg->msg_control;
1176 	controllen = msg->msg_controllen;
1177 	if ((control != NULL) && (controllen != 0)) {
1178 		/*
1179 		 * Verify that the length is not excessive to prevent
1180 		 * an application from consuming all of kernel memory.
1181 		 */
1182 		if (controllen > SO_MAXARGSIZE) {
1183 			error = EINVAL;
1184 			goto done2;
1185 		}
1186 		control = kmem_alloc(controllen, KM_SLEEP);
1187 
1188 		ASSERT(MUTEX_NOT_HELD(&so->so_lock));
1189 		if (copyin(msg->msg_control, control, controllen)) {
1190 			error = EFAULT;
1191 			goto done1;
1192 		}
1193 		msg->msg_control = control;
1194 	} else {
1195 		msg->msg_control = control = NULL;
1196 		msg->msg_controllen = controllen = 0;
1197 	}
1198 
1199 	len = uiop->uio_resid;
1200 	msg->msg_flags = flags;
1201 
1202 	error = socket_sendmsg(so, msg, uiop, CRED());
1203 done1:
1204 	if (control != NULL)
1205 		kmem_free(control, controllen);
1206 done2:
1207 	if (name != NULL)
1208 		kmem_free(name, namelen);
1209 done3:
1210 	if (error != 0) {
1211 		releasef(sock);
1212 		return (set_errno(error));
1213 	}
1214 	lwp_stat_update(LWP_STAT_MSGSND, 1);
1215 	releasef(sock);
1216 	return (len - uiop->uio_resid);
1217 }
1218 
1219 /*
1220  * Native system call
1221  */
1222 ssize_t
1223 send(int sock, void *buffer, size_t len, int flags)
1224 {
1225 	struct nmsghdr lmsg;
1226 	struct uio auio;
1227 	struct iovec aiov[1];
1228 
1229 	dprint(1, ("send(%d, %p, %ld, %d)\n",
1230 	    sock, buffer, len, flags));
1231 
1232 	if ((ssize_t)len < 0) {
1233 		return (set_errno(EINVAL));
1234 	}
1235 
1236 	aiov[0].iov_base = buffer;
1237 	aiov[0].iov_len = len;
1238 	auio.uio_loffset = 0;
1239 	auio.uio_iov = aiov;
1240 	auio.uio_iovcnt = 1;
1241 	auio.uio_resid = len;
1242 	auio.uio_segflg = UIO_USERSPACE;
1243 	auio.uio_limit = 0;
1244 
1245 	lmsg.msg_name = NULL;
1246 	lmsg.msg_control = NULL;
1247 	if (!(flags & MSG_XPG4_2)) {
1248 		/*
1249 		 * In order to be compatible with the libsocket/sockmod
1250 		 * implementation we set EOR for all send* calls.
1251 		 */
1252 		flags |= MSG_EOR;
1253 	}
1254 	return (sendit(sock, &lmsg, &auio, flags));
1255 }
1256 
1257 /*
1258  * Uses the MSG_XPG4_2 flag to determine if the caller is using
1259  * struct omsghdr or struct nmsghdr.
1260  */
1261 ssize_t
1262 sendmsg(int sock, struct nmsghdr *msg, int flags)
1263 {
1264 	struct nmsghdr lmsg;
1265 	STRUCT_DECL(nmsghdr, u_lmsg);
1266 	struct uio auio;
1267 	struct iovec aiov[MSG_MAXIOVLEN];
1268 	int iovcnt;
1269 	ssize_t len;
1270 	int i;
1271 	model_t	model;
1272 
1273 	dprint(1, ("sendmsg(%d, %p, %d)\n", sock, (void *)msg, flags));
1274 
1275 	model = get_udatamodel();
1276 	STRUCT_INIT(u_lmsg, model);
1277 
1278 	if (flags & MSG_XPG4_2) {
1279 		if (copyin(msg, (char *)STRUCT_BUF(u_lmsg),
1280 		    STRUCT_SIZE(u_lmsg)))
1281 			return (set_errno(EFAULT));
1282 	} else {
1283 		/*
1284 		 * Assumes that nmsghdr and omsghdr are identically shaped
1285 		 * except for the added msg_flags field.
1286 		 */
1287 		if (copyin(msg, (char *)STRUCT_BUF(u_lmsg),
1288 		    SIZEOF_STRUCT(omsghdr, model)))
1289 			return (set_errno(EFAULT));
1290 		/*
1291 		 * In order to be compatible with the libsocket/sockmod
1292 		 * implementation we set EOR for all send* calls.
1293 		 */
1294 		flags |= MSG_EOR;
1295 	}
1296 
1297 	/*
1298 	 * Code below us will kmem_alloc memory and hang it
1299 	 * off msg_control and msg_name fields. This forces
1300 	 * us to copy the structure to its native form.
1301 	 */
1302 	lmsg.msg_name = STRUCT_FGETP(u_lmsg, msg_name);
1303 	lmsg.msg_namelen = STRUCT_FGET(u_lmsg, msg_namelen);
1304 	lmsg.msg_iov = STRUCT_FGETP(u_lmsg, msg_iov);
1305 	lmsg.msg_iovlen = STRUCT_FGET(u_lmsg, msg_iovlen);
1306 	lmsg.msg_control = STRUCT_FGETP(u_lmsg, msg_control);
1307 	lmsg.msg_controllen = STRUCT_FGET(u_lmsg, msg_controllen);
1308 	lmsg.msg_flags = STRUCT_FGET(u_lmsg, msg_flags);
1309 
1310 	iovcnt = lmsg.msg_iovlen;
1311 
1312 	if (iovcnt <= 0 || iovcnt > MSG_MAXIOVLEN) {
1313 		/*
1314 		 * Unless this is XPG 4.2 we allow iovcnt == 0 to
1315 		 * be compatible with SunOS 4.X and 4.4BSD.
1316 		 */
1317 		if (iovcnt != 0 || (flags & MSG_XPG4_2))
1318 			return (set_errno(EMSGSIZE));
1319 	}
1320 
1321 #ifdef _SYSCALL32_IMPL
1322 	/*
1323 	 * 32-bit callers need to have their iovec expanded, while ensuring
1324 	 * that they can't move more than 2Gbytes of data in a single call.
1325 	 */
1326 	if (model == DATAMODEL_ILP32) {
1327 		struct iovec32 aiov32[MSG_MAXIOVLEN];
1328 		ssize32_t count32;
1329 
1330 		if (iovcnt != 0 &&
1331 		    copyin((struct iovec32 *)lmsg.msg_iov, aiov32,
1332 		    iovcnt * sizeof (struct iovec32)))
1333 			return (set_errno(EFAULT));
1334 
1335 		count32 = 0;
1336 		for (i = 0; i < iovcnt; i++) {
1337 			ssize32_t iovlen32;
1338 
1339 			iovlen32 = aiov32[i].iov_len;
1340 			count32 += iovlen32;
1341 			if (iovlen32 < 0 || count32 < 0)
1342 				return (set_errno(EINVAL));
1343 			aiov[i].iov_len = iovlen32;
1344 			aiov[i].iov_base =
1345 			    (caddr_t)(uintptr_t)aiov32[i].iov_base;
1346 		}
1347 	} else
1348 #endif /* _SYSCALL32_IMPL */
1349 	if (iovcnt != 0 &&
1350 	    copyin(lmsg.msg_iov, aiov,
1351 	    (unsigned)iovcnt * sizeof (struct iovec))) {
1352 		return (set_errno(EFAULT));
1353 	}
1354 	len = 0;
1355 	for (i = 0; i < iovcnt; i++) {
1356 		ssize_t iovlen = aiov[i].iov_len;
1357 		len += iovlen;
1358 		if (iovlen < 0 || len < 0) {
1359 			return (set_errno(EINVAL));
1360 		}
1361 	}
1362 	auio.uio_loffset = 0;
1363 	auio.uio_iov = aiov;
1364 	auio.uio_iovcnt = iovcnt;
1365 	auio.uio_resid = len;
1366 	auio.uio_segflg = UIO_USERSPACE;
1367 	auio.uio_limit = 0;
1368 
1369 	return (sendit(sock, &lmsg, &auio, flags));
1370 }
1371 
1372 ssize_t
1373 sendto(int sock, void *buffer, size_t len, int flags,
1374     struct sockaddr *name, socklen_t namelen)
1375 {
1376 	struct nmsghdr lmsg;
1377 	struct uio auio;
1378 	struct iovec aiov[1];
1379 
1380 	dprint(1, ("sendto(%d, %p, %ld, %d, %p, %d)\n",
1381 	    sock, buffer, len, flags, (void *)name, namelen));
1382 
1383 	if ((ssize_t)len < 0) {
1384 		return (set_errno(EINVAL));
1385 	}
1386 
1387 	aiov[0].iov_base = buffer;
1388 	aiov[0].iov_len = len;
1389 	auio.uio_loffset = 0;
1390 	auio.uio_iov = aiov;
1391 	auio.uio_iovcnt = 1;
1392 	auio.uio_resid = len;
1393 	auio.uio_segflg = UIO_USERSPACE;
1394 	auio.uio_limit = 0;
1395 
1396 	lmsg.msg_name = (char *)name;
1397 	lmsg.msg_namelen = namelen;
1398 	lmsg.msg_control = NULL;
1399 	if (!(flags & MSG_XPG4_2)) {
1400 		/*
1401 		 * In order to be compatible with the libsocket/sockmod
1402 		 * implementation we set EOR for all send* calls.
1403 		 */
1404 		flags |= MSG_EOR;
1405 	}
1406 	return (sendit(sock, &lmsg, &auio, flags));
1407 }
1408 
1409 /*ARGSUSED3*/
1410 int
1411 getpeername(int sock, struct sockaddr *name, socklen_t *namelenp, int version)
1412 {
1413 	struct sonode *so;
1414 	int error;
1415 	socklen_t namelen;
1416 	socklen_t sock_addrlen;
1417 	struct sockaddr *sock_addrp;
1418 
1419 	dprint(1, ("getpeername(%d, %p, %p)\n",
1420 	    sock, (void *)name, (void *)namelenp));
1421 
1422 	if ((so = getsonode(sock, &error, NULL)) == NULL)
1423 		goto bad;
1424 
1425 	ASSERT(MUTEX_NOT_HELD(&so->so_lock));
1426 	if (copyin(namelenp, &namelen, sizeof (namelen)) ||
1427 	    (name == NULL && namelen != 0)) {
1428 		error = EFAULT;
1429 		goto rel_out;
1430 	}
1431 	sock_addrlen = so->so_max_addr_len;
1432 	sock_addrp = (struct sockaddr *)kmem_alloc(sock_addrlen, KM_SLEEP);
1433 
1434 	if ((error = socket_getpeername(so, sock_addrp, &sock_addrlen,
1435 	    B_FALSE, CRED())) == 0) {
1436 		ASSERT(sock_addrlen <= so->so_max_addr_len);
1437 		error = copyout_name(name, namelen, namelenp,
1438 		    (void *)sock_addrp, sock_addrlen);
1439 	}
1440 	kmem_free(sock_addrp, so->so_max_addr_len);
1441 rel_out:
1442 	releasef(sock);
1443 bad:	return (error != 0 ? set_errno(error) : 0);
1444 }
1445 
1446 /*ARGSUSED3*/
1447 int
1448 getsockname(int sock, struct sockaddr *name,
1449 		socklen_t *namelenp, int version)
1450 {
1451 	struct sonode *so;
1452 	int error;
1453 	socklen_t namelen, sock_addrlen;
1454 	struct sockaddr *sock_addrp;
1455 
1456 	dprint(1, ("getsockname(%d, %p, %p)\n",
1457 	    sock, (void *)name, (void *)namelenp));
1458 
1459 	if ((so = getsonode(sock, &error, NULL)) == NULL)
1460 		goto bad;
1461 
1462 	ASSERT(MUTEX_NOT_HELD(&so->so_lock));
1463 	if (copyin(namelenp, &namelen, sizeof (namelen)) ||
1464 	    (name == NULL && namelen != 0)) {
1465 		error = EFAULT;
1466 		goto rel_out;
1467 	}
1468 
1469 	sock_addrlen = so->so_max_addr_len;
1470 	sock_addrp = (struct sockaddr *)kmem_alloc(sock_addrlen, KM_SLEEP);
1471 	if ((error = socket_getsockname(so, sock_addrp, &sock_addrlen,
1472 	    CRED())) == 0) {
1473 		ASSERT(MUTEX_NOT_HELD(&so->so_lock));
1474 		ASSERT(sock_addrlen <= so->so_max_addr_len);
1475 		error = copyout_name(name, namelen, namelenp,
1476 		    (void *)sock_addrp, sock_addrlen);
1477 	}
1478 	kmem_free(sock_addrp, so->so_max_addr_len);
1479 rel_out:
1480 	releasef(sock);
1481 bad:	return (error != 0 ? set_errno(error) : 0);
1482 }
1483 
1484 /*ARGSUSED5*/
1485 int
1486 getsockopt(int sock,
1487 	int level,
1488 	int option_name,
1489 	void *option_value,
1490 	socklen_t *option_lenp,
1491 	int version)
1492 {
1493 	struct sonode *so;
1494 	socklen_t optlen, optlen_res;
1495 	void *optval;
1496 	int error;
1497 
1498 	dprint(1, ("getsockopt(%d, %d, %d, %p, %p)\n",
1499 	    sock, level, option_name, option_value, (void *)option_lenp));
1500 
1501 	if ((so = getsonode(sock, &error, NULL)) == NULL)
1502 		return (set_errno(error));
1503 
1504 	ASSERT(MUTEX_NOT_HELD(&so->so_lock));
1505 	if (copyin(option_lenp, &optlen, sizeof (optlen))) {
1506 		releasef(sock);
1507 		return (set_errno(EFAULT));
1508 	}
1509 	/*
1510 	 * Verify that the length is not excessive to prevent
1511 	 * an application from consuming all of kernel memory.
1512 	 */
1513 	if (optlen > SO_MAXARGSIZE) {
1514 		error = EINVAL;
1515 		releasef(sock);
1516 		return (set_errno(error));
1517 	}
1518 	optval = kmem_alloc(optlen, KM_SLEEP);
1519 	optlen_res = optlen;
1520 	error = socket_getsockopt(so, level, option_name, optval,
1521 	    &optlen_res, (version != SOV_XPG4_2) ? 0 : _SOGETSOCKOPT_XPG4_2,
1522 	    CRED());
1523 	releasef(sock);
1524 	if (error) {
1525 		kmem_free(optval, optlen);
1526 		return (set_errno(error));
1527 	}
1528 	error = copyout_arg(option_value, optlen, option_lenp,
1529 	    optval, optlen_res);
1530 	kmem_free(optval, optlen);
1531 	if (error)
1532 		return (set_errno(error));
1533 	return (0);
1534 }
1535 
1536 /*ARGSUSED5*/
1537 int
1538 setsockopt(int sock,
1539 	int level,
1540 	int option_name,
1541 	void *option_value,
1542 	socklen_t option_len,
1543 	int version)
1544 {
1545 	struct sonode *so;
1546 	intptr_t buffer[2];
1547 	void *optval = NULL;
1548 	int error;
1549 
1550 	dprint(1, ("setsockopt(%d, %d, %d, %p, %d)\n",
1551 	    sock, level, option_name, option_value, option_len));
1552 
1553 	if ((so = getsonode(sock, &error, NULL)) == NULL)
1554 		return (set_errno(error));
1555 
1556 	if (option_value != NULL) {
1557 		if (option_len != 0) {
1558 			/*
1559 			 * Verify that the length is not excessive to prevent
1560 			 * an application from consuming all of kernel memory.
1561 			 */
1562 			if (option_len > SO_MAXARGSIZE) {
1563 				error = EINVAL;
1564 				goto done2;
1565 			}
1566 			optval = option_len <= sizeof (buffer) ?
1567 			    &buffer : kmem_alloc((size_t)option_len, KM_SLEEP);
1568 			ASSERT(MUTEX_NOT_HELD(&so->so_lock));
1569 			if (copyin(option_value, optval, (size_t)option_len)) {
1570 				error = EFAULT;
1571 				goto done1;
1572 			}
1573 		}
1574 	} else
1575 		option_len = 0;
1576 
1577 	error = socket_setsockopt(so, level, option_name, optval,
1578 	    (t_uscalar_t)option_len, CRED());
1579 done1:
1580 	if (optval != buffer)
1581 		kmem_free(optval, (size_t)option_len);
1582 done2:
1583 	releasef(sock);
1584 	if (error)
1585 		return (set_errno(error));
1586 	return (0);
1587 }
1588 
1589 static int
1590 sockconf_add_sock(int family, int type, int protocol, char *name)
1591 {
1592 	int error = 0;
1593 	char *kdevpath = NULL;
1594 	char *kmodule = NULL;
1595 	char *buf = NULL;
1596 	size_t pathlen = 0;
1597 	struct sockparams *sp;
1598 
1599 	if (name == NULL)
1600 		return (EINVAL);
1601 	/*
1602 	 * Copyin the name.
1603 	 * This also makes it possible to check for too long pathnames.
1604 	 * Compress the space needed for the name before passing it
1605 	 * to soconfig - soconfig will store the string until
1606 	 * the configuration is removed.
1607 	 */
1608 	buf = kmem_alloc(MAXPATHLEN, KM_SLEEP);
1609 	if ((error = copyinstr(name, buf, MAXPATHLEN, &pathlen)) != 0) {
1610 		kmem_free(buf, MAXPATHLEN);
1611 		return (error);
1612 	}
1613 	if (strncmp(buf, "/dev", strlen("/dev")) == 0) {
1614 		/* For device */
1615 
1616 		/*
1617 		 * Special handling for NCA:
1618 		 *
1619 		 * DEV_NCA is never opened even if an application
1620 		 * requests for AF_NCA. The device opened is instead a
1621 		 * predefined AF_INET transport (NCA_INET_DEV).
1622 		 *
1623 		 * Prior to Volo (PSARC/2007/587) NCA would determine
1624 		 * the device using a lookup, which worked then because
1625 		 * all protocols were based on TPI. Since TPI is no
1626 		 * longer the default, we have to explicitly state
1627 		 * which device to use.
1628 		 */
1629 		if (strcmp(buf, NCA_DEV) == 0) {
1630 			/* only support entry <28, 2, 0> */
1631 			if (family != AF_NCA || type != SOCK_STREAM ||
1632 			    protocol != 0) {
1633 				kmem_free(buf, MAXPATHLEN);
1634 				return (EINVAL);
1635 			}
1636 
1637 			pathlen = strlen(NCA_INET_DEV) + 1;
1638 			kdevpath = kmem_alloc(pathlen, KM_SLEEP);
1639 			bcopy(NCA_INET_DEV, kdevpath, pathlen);
1640 			kdevpath[pathlen - 1] = '\0';
1641 		} else {
1642 			kdevpath = kmem_alloc(pathlen, KM_SLEEP);
1643 			bcopy(buf, kdevpath, pathlen);
1644 			kdevpath[pathlen - 1] = '\0';
1645 		}
1646 	} else {
1647 		/* For socket module */
1648 		kmodule = kmem_alloc(pathlen, KM_SLEEP);
1649 		bcopy(buf, kmodule, pathlen);
1650 		kmodule[pathlen - 1] = '\0';
1651 		pathlen = 0;
1652 	}
1653 	kmem_free(buf, MAXPATHLEN);
1654 
1655 	/* sockparams_create frees mod name and devpath upon failure */
1656 	sp = sockparams_create(family, type, protocol, kmodule,
1657 	    kdevpath, pathlen, 0, KM_SLEEP, &error);
1658 	if (sp != NULL) {
1659 		error = sockparams_add(sp);
1660 		if (error != 0)
1661 			sockparams_destroy(sp);
1662 	}
1663 
1664 	return (error);
1665 }
1666 
1667 static int
1668 sockconf_remove_sock(int family, int type, int protocol)
1669 {
1670 	return (sockparams_delete(family, type, protocol));
1671 }
1672 
1673 static int
1674 sockconfig_remove_filter(const char *uname)
1675 {
1676 	char kname[SOF_MAXNAMELEN];
1677 	size_t len;
1678 	int error;
1679 	sof_entry_t *ent;
1680 
1681 	if ((error = copyinstr(uname, kname, SOF_MAXNAMELEN, &len)) != 0)
1682 		return (error);
1683 
1684 	ent = sof_entry_remove_by_name(kname);
1685 	if (ent == NULL)
1686 		return (ENXIO);
1687 
1688 	mutex_enter(&ent->sofe_lock);
1689 	ASSERT(!(ent->sofe_flags & SOFEF_CONDEMED));
1690 	if (ent->sofe_refcnt == 0) {
1691 		mutex_exit(&ent->sofe_lock);
1692 		sof_entry_free(ent);
1693 	} else {
1694 		/* let the last socket free the filter */
1695 		ent->sofe_flags |= SOFEF_CONDEMED;
1696 		mutex_exit(&ent->sofe_lock);
1697 	}
1698 
1699 	return (0);
1700 }
1701 
1702 static int
1703 sockconfig_add_filter(const char *uname, void *ufilpropp)
1704 {
1705 	struct sockconfig_filter_props filprop;
1706 	sof_entry_t *ent;
1707 	int error;
1708 	size_t tuplesz, len;
1709 	char hintbuf[SOF_MAXNAMELEN];
1710 
1711 	ent = kmem_zalloc(sizeof (sof_entry_t), KM_SLEEP);
1712 	mutex_init(&ent->sofe_lock, NULL, MUTEX_DEFAULT, NULL);
1713 
1714 	if ((error = copyinstr(uname, ent->sofe_name, SOF_MAXNAMELEN,
1715 	    &len)) != 0) {
1716 		sof_entry_free(ent);
1717 		return (error);
1718 	}
1719 
1720 	if (get_udatamodel() == DATAMODEL_NATIVE) {
1721 		if (copyin(ufilpropp, &filprop, sizeof (filprop)) != 0) {
1722 			sof_entry_free(ent);
1723 			return (EFAULT);
1724 		}
1725 	}
1726 #ifdef	_SYSCALL32_IMPL
1727 	else {
1728 		struct sockconfig_filter_props32 filprop32;
1729 
1730 		if (copyin(ufilpropp, &filprop32, sizeof (filprop32)) != 0) {
1731 			sof_entry_free(ent);
1732 			return (EFAULT);
1733 		}
1734 		filprop.sfp_modname = (char *)(uintptr_t)filprop32.sfp_modname;
1735 		filprop.sfp_autoattach = filprop32.sfp_autoattach;
1736 		filprop.sfp_hint = filprop32.sfp_hint;
1737 		filprop.sfp_hintarg = (char *)(uintptr_t)filprop32.sfp_hintarg;
1738 		filprop.sfp_socktuple_cnt = filprop32.sfp_socktuple_cnt;
1739 		filprop.sfp_socktuple =
1740 		    (sof_socktuple_t *)(uintptr_t)filprop32.sfp_socktuple;
1741 	}
1742 #endif	/* _SYSCALL32_IMPL */
1743 
1744 	if ((error = copyinstr(filprop.sfp_modname, ent->sofe_modname,
1745 	    sizeof (ent->sofe_modname), &len)) != 0) {
1746 		sof_entry_free(ent);
1747 		return (error);
1748 	}
1749 
1750 	/*
1751 	 * A filter must specify at least one socket tuple.
1752 	 */
1753 	if (filprop.sfp_socktuple_cnt == 0 ||
1754 	    filprop.sfp_socktuple_cnt > SOF_MAXSOCKTUPLECNT) {
1755 		sof_entry_free(ent);
1756 		return (EINVAL);
1757 	}
1758 	ent->sofe_flags = filprop.sfp_autoattach ? SOFEF_AUTO : SOFEF_PROG;
1759 	ent->sofe_hint = filprop.sfp_hint;
1760 
1761 	/*
1762 	 * Verify the hint, and copy in the hint argument, if necessary.
1763 	 */
1764 	switch (ent->sofe_hint) {
1765 	case SOF_HINT_BEFORE:
1766 	case SOF_HINT_AFTER:
1767 		if ((error = copyinstr(filprop.sfp_hintarg, hintbuf,
1768 		    sizeof (hintbuf), &len)) != 0) {
1769 			sof_entry_free(ent);
1770 			return (error);
1771 		}
1772 		ent->sofe_hintarg = kmem_alloc(len, KM_SLEEP);
1773 		bcopy(hintbuf, ent->sofe_hintarg, len);
1774 		/* FALLTHRU */
1775 	case SOF_HINT_TOP:
1776 	case SOF_HINT_BOTTOM:
1777 		/* hints cannot be used with programmatic filters */
1778 		if (ent->sofe_flags & SOFEF_PROG) {
1779 			sof_entry_free(ent);
1780 			return (EINVAL);
1781 		}
1782 		break;
1783 	case SOF_HINT_NONE:
1784 		break;
1785 	default:
1786 		/* bad hint value */
1787 		sof_entry_free(ent);
1788 		return (EINVAL);
1789 	}
1790 
1791 	ent->sofe_socktuple_cnt = filprop.sfp_socktuple_cnt;
1792 	tuplesz = sizeof (sof_socktuple_t) * ent->sofe_socktuple_cnt;
1793 	ent->sofe_socktuple = kmem_alloc(tuplesz, KM_SLEEP);
1794 
1795 	if (get_udatamodel() == DATAMODEL_NATIVE) {
1796 		if (copyin(filprop.sfp_socktuple, ent->sofe_socktuple,
1797 		    tuplesz)) {
1798 			sof_entry_free(ent);
1799 			return (EFAULT);
1800 		}
1801 	}
1802 #ifdef	_SYSCALL32_IMPL
1803 	else {
1804 		int i;
1805 		caddr_t data = (caddr_t)filprop.sfp_socktuple;
1806 		sof_socktuple_t	*tup = ent->sofe_socktuple;
1807 		sof_socktuple32_t tup32;
1808 
1809 		tup = ent->sofe_socktuple;
1810 		for (i = 0; i < ent->sofe_socktuple_cnt; i++, tup++) {
1811 			ASSERT(tup < ent->sofe_socktuple + tuplesz);
1812 
1813 			if (copyin(data, &tup32, sizeof (tup32)) != 0) {
1814 				sof_entry_free(ent);
1815 				return (EFAULT);
1816 			}
1817 			tup->sofst_family = tup32.sofst_family;
1818 			tup->sofst_type = tup32.sofst_type;
1819 			tup->sofst_protocol = tup32.sofst_protocol;
1820 
1821 			data += sizeof (tup32);
1822 		}
1823 	}
1824 #endif	/* _SYSCALL32_IMPL */
1825 
1826 	/* Sockets can start using the filter as soon as the filter is added */
1827 	if ((error = sof_entry_add(ent)) != 0)
1828 		sof_entry_free(ent);
1829 
1830 	return (error);
1831 }
1832 
1833 /*
1834  * Socket configuration system call. It is used to add and remove
1835  * socket types.
1836  */
1837 int
1838 sockconfig(int cmd, void *arg1, void *arg2, void *arg3, void *arg4)
1839 {
1840 	int error = 0;
1841 
1842 	if (secpolicy_net_config(CRED(), B_FALSE) != 0)
1843 		return (set_errno(EPERM));
1844 
1845 	if (sockfs_defer_nl7c_init) {
1846 		nl7c_init();
1847 		sockfs_defer_nl7c_init = 0;
1848 	}
1849 
1850 	switch (cmd) {
1851 	case SOCKCONFIG_ADD_SOCK:
1852 		error = sockconf_add_sock((int)(uintptr_t)arg1,
1853 		    (int)(uintptr_t)arg2, (int)(uintptr_t)arg3, arg4);
1854 		break;
1855 	case SOCKCONFIG_REMOVE_SOCK:
1856 		error = sockconf_remove_sock((int)(uintptr_t)arg1,
1857 		    (int)(uintptr_t)arg2, (int)(uintptr_t)arg3);
1858 		break;
1859 	case SOCKCONFIG_ADD_FILTER:
1860 		error = sockconfig_add_filter((const char *)arg1, arg2);
1861 		break;
1862 	case SOCKCONFIG_REMOVE_FILTER:
1863 		error = sockconfig_remove_filter((const char *)arg1);
1864 		break;
1865 	default:
1866 #ifdef	DEBUG
1867 		cmn_err(CE_NOTE, "sockconfig: unkonwn subcommand %d", cmd);
1868 #endif
1869 		error = EINVAL;
1870 		break;
1871 	}
1872 
1873 	if (error != 0) {
1874 		eprintline(error);
1875 		return (set_errno(error));
1876 	}
1877 	return (0);
1878 }
1879 
1880 
1881 /*
1882  * Sendfile is implemented through two schemes, direct I/O or by
1883  * caching in the filesystem page cache. We cache the input file by
1884  * default and use direct I/O only if sendfile_max_size is set
1885  * appropriately as explained below. Note that this logic is consistent
1886  * with other filesystems where caching is turned on by default
1887  * unless explicitly turned off by using the DIRECTIO ioctl.
1888  *
1889  * We choose a slightly different scheme here. One can turn off
1890  * caching by setting sendfile_max_size to 0. One can also enable
1891  * caching of files <= sendfile_max_size by setting sendfile_max_size
1892  * to an appropriate value. By default sendfile_max_size is set to the
1893  * maximum value so that all files are cached. In future, we may provide
1894  * better interfaces for caching the file.
1895  *
1896  * Sendfile through Direct I/O (Zero copy)
1897  * --------------------------------------
1898  *
1899  * As disks are normally slower than the network, we can't have a
1900  * single thread that reads the disk and writes to the network. We
1901  * need to have parallelism. This is done by having the sendfile
1902  * thread create another thread that reads from the filesystem
1903  * and queues it for network processing. In this scheme, the data
1904  * is never copied anywhere i.e it is zero copy unlike the other
1905  * scheme.
1906  *
1907  * We have a sendfile queue (snfq) where each sendfile
1908  * request (snf_req_t) is queued for processing by a thread. Number
1909  * of threads is dynamically allocated and they exit if they are idling
1910  * beyond a specified amount of time. When each request (snf_req_t) is
1911  * processed by a thread, it produces a number of mblk_t structures to
1912  * be consumed by the sendfile thread. snf_deque and snf_enque are
1913  * used for consuming and producing mblks. Size of the filesystem
1914  * read is determined by the tunable (sendfile_read_size). A single
1915  * mblk holds sendfile_read_size worth of data (except the last
1916  * read of the file) which is sent down as a whole to the network.
1917  * sendfile_read_size is set to 1 MB as this seems to be the optimal
1918  * value for the UFS filesystem backed by a striped storage array.
1919  *
1920  * Synchronisation between read (producer) and write (consumer) threads.
1921  * --------------------------------------------------------------------
1922  *
1923  * sr_lock protects sr_ib_head and sr_ib_tail. The lock is held while
1924  * adding and deleting items in this list. Error can happen anytime
1925  * during read or write. There could be unprocessed mblks in the
1926  * sr_ib_XXX list when a read or write error occurs. Whenever error
1927  * is encountered, we need two things to happen :
1928  *
1929  * a) One of the threads need to clean the mblks.
1930  * b) When one thread encounters an error, the other should stop.
1931  *
1932  * For (a), we don't want to penalize the reader thread as it could do
1933  * some useful work processing other requests. For (b), the error can
1934  * be detected by examining sr_read_error or sr_write_error.
1935  * sr_lock protects sr_read_error and sr_write_error. If both reader and
1936  * writer encounters error, we need to report the write error back to
1937  * the application as that's what would have happened if the operations
1938  * were done sequentially. With this in mind, following should work :
1939  *
1940  * 	- Check for errors before read or write.
1941  *	- If the reader encounters error, set the error in sr_read_error.
1942  *	  Check sr_write_error, if it is set, send cv_signal as it is
1943  *	  waiting for reader to complete. If it is not set, the writer
1944  *	  is either running sinking data to the network or blocked
1945  *        because of flow control. For handling the latter case, we
1946  *	  always send a signal. In any case, it will examine sr_read_error
1947  *	  and return. sr_read_error is marked with SR_READ_DONE to tell
1948  *	  the writer that the reader is done in all the cases.
1949  *	- If the writer encounters error, set the error in sr_write_error.
1950  *	  The reader thread is either blocked because of flow control or
1951  *	  running reading data from the disk. For the former, we need to
1952  *	  wakeup the thread. Again to keep it simple, we always wake up
1953  *	  the reader thread. Then, wait for the read thread to complete
1954  *	  if it is not done yet. Cleanup and return.
1955  *
1956  * High and low water marks for the read thread.
1957  * --------------------------------------------
1958  *
1959  * If sendfile() is used to send data over a slow network, we need to
1960  * make sure that the read thread does not produce data at a faster
1961  * rate than the network. This can happen if the disk is faster than
1962  * the network. In such a case, we don't want to build a very large queue.
1963  * But we would still like to get all of the network throughput possible.
1964  * This implies that network should never block waiting for data.
1965  * As there are lot of disk throughput/network throughput combinations
1966  * possible, it is difficult to come up with an accurate number.
1967  * A typical 10K RPM disk has a max seek latency 17ms and rotational
1968  * latency of 3ms for reading a disk block. Thus, the total latency to
1969  * initiate a new read, transfer data from the disk and queue for
1970  * transmission would take about a max of 25ms. Todays max transfer rate
1971  * for network is 100MB/sec. If the thread is blocked because of flow
1972  * control, it would take 25ms to get new data ready for transmission.
1973  * We have to make sure that network is not idling, while we are initiating
1974  * new transfers. So, at 100MB/sec, to keep network busy we would need
1975  * 2.5MB of data. Rounding off, we keep the low water mark to be 3MB of data.
1976  * We need to pick a high water mark so that the woken up thread would
1977  * do considerable work before blocking again to prevent thrashing. Currently,
1978  * we pick this to be 10 times that of the low water mark.
1979  *
1980  * Sendfile with segmap caching (One copy from page cache to mblks).
1981  * ----------------------------------------------------------------
1982  *
1983  * We use the segmap cache for caching the file, if the size of file
1984  * is <= sendfile_max_size. In this case we don't use threads as VM
1985  * is reasonably fast enough to keep up with the network. If the underlying
1986  * transport allows, we call segmap_getmapflt() to map MAXBSIZE (8K) worth
1987  * of data into segmap space, and use the virtual address from segmap
1988  * directly through desballoc() to avoid copy. Once the transport is done
1989  * with the data, the mapping will be released through segmap_release()
1990  * called by the call-back routine.
1991  *
1992  * If zero-copy is not allowed by the transport, we simply call VOP_READ()
1993  * to copy the data from the filesystem into our temporary network buffer.
1994  *
1995  * To disable caching, set sendfile_max_size to 0.
1996  */
1997 
1998 uint_t sendfile_read_size = 1024 * 1024;
1999 #define	SENDFILE_REQ_LOWAT	3 * 1024 * 1024
2000 uint_t sendfile_req_lowat = SENDFILE_REQ_LOWAT;
2001 uint_t sendfile_req_hiwat = 10 * SENDFILE_REQ_LOWAT;
2002 struct sendfile_stats sf_stats;
2003 struct sendfile_queue *snfq;
2004 clock_t snfq_timeout;
2005 off64_t sendfile_max_size;
2006 
2007 static void snf_enque(snf_req_t *, mblk_t *);
2008 static mblk_t *snf_deque(snf_req_t *);
2009 
2010 void
2011 sendfile_init(void)
2012 {
2013 	snfq = kmem_zalloc(sizeof (struct sendfile_queue), KM_SLEEP);
2014 
2015 	mutex_init(&snfq->snfq_lock, NULL, MUTEX_DEFAULT, NULL);
2016 	cv_init(&snfq->snfq_cv, NULL, CV_DEFAULT, NULL);
2017 	snfq->snfq_max_threads = max_ncpus;
2018 	snfq_timeout = SNFQ_TIMEOUT;
2019 	/* Cache all files by default. */
2020 	sendfile_max_size = MAXOFFSET_T;
2021 }
2022 
2023 /*
2024  * Queues a mblk_t for network processing.
2025  */
2026 static void
2027 snf_enque(snf_req_t *sr, mblk_t *mp)
2028 {
2029 	mp->b_next = NULL;
2030 	mutex_enter(&sr->sr_lock);
2031 	if (sr->sr_mp_head == NULL) {
2032 		sr->sr_mp_head = sr->sr_mp_tail = mp;
2033 		cv_signal(&sr->sr_cv);
2034 	} else {
2035 		sr->sr_mp_tail->b_next = mp;
2036 		sr->sr_mp_tail = mp;
2037 	}
2038 	sr->sr_qlen += MBLKL(mp);
2039 	while ((sr->sr_qlen > sr->sr_hiwat) &&
2040 	    (sr->sr_write_error == 0)) {
2041 		sf_stats.ss_full_waits++;
2042 		cv_wait(&sr->sr_cv, &sr->sr_lock);
2043 	}
2044 	mutex_exit(&sr->sr_lock);
2045 }
2046 
2047 /*
2048  * De-queues a mblk_t for network processing.
2049  */
2050 static mblk_t *
2051 snf_deque(snf_req_t *sr)
2052 {
2053 	mblk_t *mp;
2054 
2055 	mutex_enter(&sr->sr_lock);
2056 	/*
2057 	 * If we have encountered an error on read or read is
2058 	 * completed and no more mblks, return NULL.
2059 	 * We need to check for NULL sr_mp_head also as
2060 	 * the reads could have completed and there is
2061 	 * nothing more to come.
2062 	 */
2063 	if (((sr->sr_read_error & ~SR_READ_DONE) != 0) ||
2064 	    ((sr->sr_read_error & SR_READ_DONE) &&
2065 	    sr->sr_mp_head == NULL)) {
2066 		mutex_exit(&sr->sr_lock);
2067 		return (NULL);
2068 	}
2069 	/*
2070 	 * To start with neither SR_READ_DONE is marked nor
2071 	 * the error is set. When we wake up from cv_wait,
2072 	 * following are the possibilities :
2073 	 *
2074 	 *	a) sr_read_error is zero and mblks are queued.
2075 	 *	b) sr_read_error is set to SR_READ_DONE
2076 	 *	   and mblks are queued.
2077 	 *	c) sr_read_error is set to SR_READ_DONE
2078 	 *	   and no mblks.
2079 	 *	d) sr_read_error is set to some error other
2080 	 *	   than SR_READ_DONE.
2081 	 */
2082 
2083 	while ((sr->sr_read_error == 0) && (sr->sr_mp_head == NULL)) {
2084 		sf_stats.ss_empty_waits++;
2085 		cv_wait(&sr->sr_cv, &sr->sr_lock);
2086 	}
2087 	/* Handle (a) and (b) first  - the normal case. */
2088 	if (((sr->sr_read_error & ~SR_READ_DONE) == 0) &&
2089 	    (sr->sr_mp_head != NULL)) {
2090 		mp = sr->sr_mp_head;
2091 		sr->sr_mp_head = mp->b_next;
2092 		sr->sr_qlen -= MBLKL(mp);
2093 		if (sr->sr_qlen < sr->sr_lowat)
2094 			cv_signal(&sr->sr_cv);
2095 		mutex_exit(&sr->sr_lock);
2096 		mp->b_next = NULL;
2097 		return (mp);
2098 	}
2099 	/* Handle (c) and (d). */
2100 	mutex_exit(&sr->sr_lock);
2101 	return (NULL);
2102 }
2103 
2104 /*
2105  * Reads data from the filesystem and queues it for network processing.
2106  */
2107 void
2108 snf_async_read(snf_req_t *sr)
2109 {
2110 	size_t iosize;
2111 	u_offset_t fileoff;
2112 	u_offset_t size;
2113 	int ret_size;
2114 	int error;
2115 	file_t *fp;
2116 	mblk_t *mp;
2117 	struct vnode *vp;
2118 	int extra = 0;
2119 	int maxblk = 0;
2120 	int wroff = 0;
2121 	struct sonode *so;
2122 
2123 	fp = sr->sr_fp;
2124 	size = sr->sr_file_size;
2125 	fileoff = sr->sr_file_off;
2126 
2127 	/*
2128 	 * Ignore the error for filesystems that doesn't support DIRECTIO.
2129 	 */
2130 	(void) VOP_IOCTL(fp->f_vnode, _FIODIRECTIO, DIRECTIO_ON, 0,
2131 	    kcred, NULL, NULL);
2132 
2133 	vp = sr->sr_vp;
2134 	if (vp->v_type == VSOCK) {
2135 		stdata_t *stp;
2136 
2137 		/*
2138 		 * Get the extra space to insert a header and a trailer.
2139 		 */
2140 		so = VTOSO(vp);
2141 		stp = vp->v_stream;
2142 		if (stp == NULL) {
2143 			wroff = so->so_proto_props.sopp_wroff;
2144 			maxblk = so->so_proto_props.sopp_maxblk;
2145 			extra = wroff + so->so_proto_props.sopp_tail;
2146 		} else {
2147 			wroff = (int)(stp->sd_wroff);
2148 			maxblk = (int)(stp->sd_maxblk);
2149 			extra = wroff + (int)(stp->sd_tail);
2150 		}
2151 	}
2152 
2153 	while ((size != 0) && (sr->sr_write_error == 0)) {
2154 
2155 		iosize = (int)MIN(sr->sr_maxpsz, size);
2156 
2157 		/*
2158 		 * Socket filters can limit the mblk size,
2159 		 * so limit reads to maxblk if there are
2160 		 * filters present.
2161 		 */
2162 		if (vp->v_type == VSOCK &&
2163 		    so->so_filter_active > 0 && maxblk != INFPSZ)
2164 			iosize = (int)MIN(iosize, maxblk);
2165 
2166 		if (is_system_labeled()) {
2167 			mp = allocb_cred(iosize + extra, CRED(),
2168 			    curproc->p_pid);
2169 		} else {
2170 			mp = allocb(iosize + extra, BPRI_MED);
2171 		}
2172 		if (mp == NULL) {
2173 			error = EAGAIN;
2174 			break;
2175 		}
2176 
2177 		mp->b_rptr += wroff;
2178 
2179 		ret_size = soreadfile(fp, mp->b_rptr, fileoff, &error, iosize);
2180 
2181 		/* Error or Reached EOF ? */
2182 		if ((error != 0) || (ret_size == 0)) {
2183 			freeb(mp);
2184 			break;
2185 		}
2186 		mp->b_wptr = mp->b_rptr + ret_size;
2187 
2188 		snf_enque(sr, mp);
2189 		size -= ret_size;
2190 		fileoff += ret_size;
2191 	}
2192 	(void) VOP_IOCTL(fp->f_vnode, _FIODIRECTIO, DIRECTIO_OFF, 0,
2193 	    kcred, NULL, NULL);
2194 	mutex_enter(&sr->sr_lock);
2195 	sr->sr_read_error = error;
2196 	sr->sr_read_error |= SR_READ_DONE;
2197 	cv_signal(&sr->sr_cv);
2198 	mutex_exit(&sr->sr_lock);
2199 }
2200 
2201 void
2202 snf_async_thread(void)
2203 {
2204 	snf_req_t *sr;
2205 	callb_cpr_t cprinfo;
2206 	clock_t time_left = 1;
2207 
2208 	CALLB_CPR_INIT(&cprinfo, &snfq->snfq_lock, callb_generic_cpr, "snfq");
2209 
2210 	mutex_enter(&snfq->snfq_lock);
2211 	for (;;) {
2212 		/*
2213 		 * If we didn't find a entry, then block until woken up
2214 		 * again and then look through the queues again.
2215 		 */
2216 		while ((sr = snfq->snfq_req_head) == NULL) {
2217 			CALLB_CPR_SAFE_BEGIN(&cprinfo);
2218 			if (time_left <= 0) {
2219 				snfq->snfq_svc_threads--;
2220 				CALLB_CPR_EXIT(&cprinfo);
2221 				thread_exit();
2222 				/* NOTREACHED */
2223 			}
2224 			snfq->snfq_idle_cnt++;
2225 
2226 			time_left = cv_reltimedwait(&snfq->snfq_cv,
2227 			    &snfq->snfq_lock, snfq_timeout, TR_CLOCK_TICK);
2228 			snfq->snfq_idle_cnt--;
2229 
2230 			CALLB_CPR_SAFE_END(&cprinfo, &snfq->snfq_lock);
2231 		}
2232 		snfq->snfq_req_head = sr->sr_next;
2233 		snfq->snfq_req_cnt--;
2234 		mutex_exit(&snfq->snfq_lock);
2235 		snf_async_read(sr);
2236 		mutex_enter(&snfq->snfq_lock);
2237 	}
2238 }
2239 
2240 
2241 snf_req_t *
2242 create_thread(int operation, struct vnode *vp, file_t *fp,
2243     u_offset_t fileoff, u_offset_t size)
2244 {
2245 	snf_req_t *sr;
2246 	stdata_t *stp;
2247 
2248 	sr = (snf_req_t *)kmem_zalloc(sizeof (snf_req_t), KM_SLEEP);
2249 
2250 	sr->sr_vp = vp;
2251 	sr->sr_fp = fp;
2252 	stp = vp->v_stream;
2253 
2254 	/*
2255 	 * store sd_qn_maxpsz into sr_maxpsz while we have stream head.
2256 	 * stream might be closed before thread returns from snf_async_read.
2257 	 */
2258 	if (stp != NULL && stp->sd_qn_maxpsz > 0) {
2259 		sr->sr_maxpsz = MIN(MAXBSIZE, stp->sd_qn_maxpsz);
2260 	} else {
2261 		sr->sr_maxpsz = MAXBSIZE;
2262 	}
2263 
2264 	sr->sr_operation = operation;
2265 	sr->sr_file_off = fileoff;
2266 	sr->sr_file_size = size;
2267 	sr->sr_hiwat = sendfile_req_hiwat;
2268 	sr->sr_lowat = sendfile_req_lowat;
2269 	mutex_init(&sr->sr_lock, NULL, MUTEX_DEFAULT, NULL);
2270 	cv_init(&sr->sr_cv, NULL, CV_DEFAULT, NULL);
2271 	/*
2272 	 * See whether we need another thread for servicing this
2273 	 * request. If there are already enough requests queued
2274 	 * for the threads, create one if not exceeding
2275 	 * snfq_max_threads.
2276 	 */
2277 	mutex_enter(&snfq->snfq_lock);
2278 	if (snfq->snfq_req_cnt >= snfq->snfq_idle_cnt &&
2279 	    snfq->snfq_svc_threads < snfq->snfq_max_threads) {
2280 		(void) thread_create(NULL, 0, &snf_async_thread, 0, 0, &p0,
2281 		    TS_RUN, minclsyspri);
2282 		snfq->snfq_svc_threads++;
2283 	}
2284 	if (snfq->snfq_req_head == NULL) {
2285 		snfq->snfq_req_head = snfq->snfq_req_tail = sr;
2286 		cv_signal(&snfq->snfq_cv);
2287 	} else {
2288 		snfq->snfq_req_tail->sr_next = sr;
2289 		snfq->snfq_req_tail = sr;
2290 	}
2291 	snfq->snfq_req_cnt++;
2292 	mutex_exit(&snfq->snfq_lock);
2293 	return (sr);
2294 }
2295 
2296 int
2297 snf_direct_io(file_t *fp, file_t *rfp, u_offset_t fileoff, u_offset_t size,
2298     ssize_t *count)
2299 {
2300 	snf_req_t *sr;
2301 	mblk_t *mp;
2302 	int iosize;
2303 	int error = 0;
2304 	short fflag;
2305 	struct vnode *vp;
2306 	int ksize;
2307 	struct nmsghdr msg;
2308 
2309 	ksize = 0;
2310 	*count = 0;
2311 	bzero(&msg, sizeof (msg));
2312 
2313 	vp = fp->f_vnode;
2314 	fflag = fp->f_flag;
2315 	if ((sr = create_thread(READ_OP, vp, rfp, fileoff, size)) == NULL)
2316 		return (EAGAIN);
2317 
2318 	/*
2319 	 * We check for read error in snf_deque. It has to check
2320 	 * for successful READ_DONE and return NULL, and we might
2321 	 * as well make an additional check there.
2322 	 */
2323 	while ((mp = snf_deque(sr)) != NULL) {
2324 
2325 		if (ISSIG(curthread, JUSTLOOKING)) {
2326 			freeb(mp);
2327 			error = EINTR;
2328 			break;
2329 		}
2330 		iosize = MBLKL(mp);
2331 
2332 		error = socket_sendmblk(VTOSO(vp), &msg, fflag, CRED(), &mp);
2333 
2334 		if (error != 0) {
2335 			if (mp != NULL)
2336 				freeb(mp);
2337 			break;
2338 		}
2339 		ksize += iosize;
2340 	}
2341 	*count = ksize;
2342 
2343 	mutex_enter(&sr->sr_lock);
2344 	sr->sr_write_error = error;
2345 	/* Look at the big comments on why we cv_signal here. */
2346 	cv_signal(&sr->sr_cv);
2347 
2348 	/* Wait for the reader to complete always. */
2349 	while (!(sr->sr_read_error & SR_READ_DONE)) {
2350 		cv_wait(&sr->sr_cv, &sr->sr_lock);
2351 	}
2352 	/* If there is no write error, check for read error. */
2353 	if (error == 0)
2354 		error = (sr->sr_read_error & ~SR_READ_DONE);
2355 
2356 	if (error != 0) {
2357 		mblk_t *next_mp;
2358 
2359 		mp = sr->sr_mp_head;
2360 		while (mp != NULL) {
2361 			next_mp = mp->b_next;
2362 			mp->b_next = NULL;
2363 			freeb(mp);
2364 			mp = next_mp;
2365 		}
2366 	}
2367 	mutex_exit(&sr->sr_lock);
2368 	kmem_free(sr, sizeof (snf_req_t));
2369 	return (error);
2370 }
2371 
2372 /* Maximum no.of pages allocated by vpm for sendfile at a time */
2373 #define	SNF_VPMMAXPGS	(VPMMAXPGS/2)
2374 
2375 /*
2376  * Maximum no.of elements in the list returned by vpm, including
2377  * NULL for the last entry
2378  */
2379 #define	SNF_MAXVMAPS	(SNF_VPMMAXPGS + 1)
2380 
2381 typedef struct {
2382 	unsigned int	snfv_ref;
2383 	frtn_t		snfv_frtn;
2384 	vnode_t		*snfv_vp;
2385 	struct vmap	snfv_vml[SNF_MAXVMAPS];
2386 } snf_vmap_desbinfo;
2387 
2388 typedef struct {
2389 	frtn_t		snfi_frtn;
2390 	caddr_t		snfi_base;
2391 	uint_t		snfi_mapoff;
2392 	size_t		snfi_len;
2393 	vnode_t		*snfi_vp;
2394 } snf_smap_desbinfo;
2395 
2396 /*
2397  * The callback function used for vpm mapped mblks called when the last ref of
2398  * the mblk is dropped which normally occurs when TCP receives the ack. But it
2399  * can be the driver too due to lazy reclaim.
2400  */
2401 void
2402 snf_vmap_desbfree(snf_vmap_desbinfo *snfv)
2403 {
2404 	ASSERT(snfv->snfv_ref != 0);
2405 	if (atomic_dec_32_nv(&snfv->snfv_ref) == 0) {
2406 		vpm_unmap_pages(snfv->snfv_vml, S_READ);
2407 		VN_RELE(snfv->snfv_vp);
2408 		kmem_free(snfv, sizeof (snf_vmap_desbinfo));
2409 	}
2410 }
2411 
2412 /*
2413  * The callback function used for segmap'ped mblks called when the last ref of
2414  * the mblk is dropped which normally occurs when TCP receives the ack. But it
2415  * can be the driver too due to lazy reclaim.
2416  */
2417 void
2418 snf_smap_desbfree(snf_smap_desbinfo *snfi)
2419 {
2420 	if (! IS_KPM_ADDR(snfi->snfi_base)) {
2421 		/*
2422 		 * We don't need to call segmap_fault(F_SOFTUNLOCK) for
2423 		 * segmap_kpm as long as the latter never falls back to
2424 		 * "use_segmap_range". (See segmap_getmapflt().)
2425 		 *
2426 		 * Using S_OTHER saves an redundant hat_setref() in
2427 		 * segmap_unlock()
2428 		 */
2429 		(void) segmap_fault(kas.a_hat, segkmap,
2430 		    (caddr_t)(uintptr_t)(((uintptr_t)snfi->snfi_base +
2431 		    snfi->snfi_mapoff) & PAGEMASK), snfi->snfi_len,
2432 		    F_SOFTUNLOCK, S_OTHER);
2433 	}
2434 	(void) segmap_release(segkmap, snfi->snfi_base, SM_DONTNEED);
2435 	VN_RELE(snfi->snfi_vp);
2436 	kmem_free(snfi, sizeof (*snfi));
2437 }
2438 
2439 /*
2440  * Use segmap or vpm instead of bcopy to send down a desballoca'ed, mblk.
2441  * When segmap is used, the mblk contains a segmap slot of no more
2442  * than MAXBSIZE.
2443  *
2444  * With vpm, a maximum of SNF_MAXVMAPS page-sized mappings can be obtained
2445  * in each iteration and sent by socket_sendmblk until an error occurs or
2446  * the requested size has been transferred. An mblk is esballoca'ed from
2447  * each mapped page and a chain of these mblk is sent to the transport layer.
2448  * vpm will be called to unmap the pages when all mblks have been freed by
2449  * free_func.
2450  *
2451  * At the end of the whole sendfile() operation, we wait till the data from
2452  * the last mblk is ack'ed by the transport before returning so that the
2453  * caller of sendfile() can safely modify the file content.
2454  */
2455 int
2456 snf_segmap(file_t *fp, vnode_t *fvp, u_offset_t fileoff, u_offset_t total_size,
2457     ssize_t *count, boolean_t nowait)
2458 {
2459 	caddr_t base;
2460 	int mapoff;
2461 	vnode_t *vp;
2462 	mblk_t *mp = NULL;
2463 	int chain_size;
2464 	int error;
2465 	clock_t deadlk_wait;
2466 	short fflag;
2467 	int ksize;
2468 	struct vattr va;
2469 	boolean_t dowait = B_FALSE;
2470 	struct nmsghdr msg;
2471 
2472 	vp = fp->f_vnode;
2473 	fflag = fp->f_flag;
2474 	ksize = 0;
2475 	bzero(&msg, sizeof (msg));
2476 
2477 	for (;;) {
2478 		if (ISSIG(curthread, JUSTLOOKING)) {
2479 			error = EINTR;
2480 			break;
2481 		}
2482 
2483 		if (vpm_enable) {
2484 			snf_vmap_desbinfo *snfv;
2485 			mblk_t *nmp;
2486 			int mblk_size;
2487 			int maxsize;
2488 			int i;
2489 
2490 			mapoff = fileoff & PAGEOFFSET;
2491 			maxsize = MIN((SNF_VPMMAXPGS * PAGESIZE), total_size);
2492 
2493 			snfv = kmem_zalloc(sizeof (snf_vmap_desbinfo),
2494 			    KM_SLEEP);
2495 
2496 			/*
2497 			 * Get vpm mappings for maxsize with read access.
2498 			 * If the pages aren't available yet, we get
2499 			 * DEADLK, so wait and try again a little later using
2500 			 * an increasing wait. We might be here a long time.
2501 			 *
2502 			 * If delay_sig returns EINTR, be sure to exit and
2503 			 * pass it up to the caller.
2504 			 */
2505 			deadlk_wait = 0;
2506 			while ((error = vpm_map_pages(fvp, fileoff,
2507 			    (size_t)maxsize, (VPM_FETCHPAGE), snfv->snfv_vml,
2508 			    SNF_MAXVMAPS, NULL, S_READ)) == EDEADLK) {
2509 				deadlk_wait += (deadlk_wait < 5) ? 1 : 4;
2510 				if ((error = delay_sig(deadlk_wait)) != 0) {
2511 					break;
2512 				}
2513 			}
2514 			if (error != 0) {
2515 				kmem_free(snfv, sizeof (snf_vmap_desbinfo));
2516 				error = (error == EINTR) ? EINTR : EIO;
2517 				goto out;
2518 			}
2519 			snfv->snfv_frtn.free_func = snf_vmap_desbfree;
2520 			snfv->snfv_frtn.free_arg = (caddr_t)snfv;
2521 
2522 			/* Construct the mblk chain from the page mappings */
2523 			chain_size = 0;
2524 			for (i = 0; (snfv->snfv_vml[i].vs_addr != NULL) &&
2525 			    total_size > 0; i++) {
2526 				ASSERT(chain_size < maxsize);
2527 				mblk_size = MIN(snfv->snfv_vml[i].vs_len -
2528 				    mapoff, total_size);
2529 				nmp = esballoca(
2530 				    (uchar_t *)snfv->snfv_vml[i].vs_addr +
2531 				    mapoff, mblk_size, BPRI_HI,
2532 				    &snfv->snfv_frtn);
2533 
2534 				/*
2535 				 * We return EAGAIN after unmapping the pages
2536 				 * if we cannot allocate the the head of the
2537 				 * chain. Otherwise, we continue sending the
2538 				 * mblks constructed so far.
2539 				 */
2540 				if (nmp == NULL) {
2541 					if (i == 0) {
2542 						vpm_unmap_pages(snfv->snfv_vml,
2543 						    S_READ);
2544 						kmem_free(snfv,
2545 						    sizeof (snf_vmap_desbinfo));
2546 						error = EAGAIN;
2547 						goto out;
2548 					}
2549 					break;
2550 				}
2551 				/* Mark this dblk with the zero-copy flag */
2552 				nmp->b_datap->db_struioflag |= STRUIO_ZC;
2553 				nmp->b_wptr += mblk_size;
2554 				chain_size += mblk_size;
2555 				fileoff += mblk_size;
2556 				total_size -= mblk_size;
2557 				snfv->snfv_ref++;
2558 				mapoff = 0;
2559 				if (i > 0)
2560 					linkb(mp, nmp);
2561 				else
2562 					mp = nmp;
2563 			}
2564 			VN_HOLD(fvp);
2565 			snfv->snfv_vp = fvp;
2566 		} else {
2567 			/* vpm not supported. fallback to segmap */
2568 			snf_smap_desbinfo *snfi;
2569 
2570 			mapoff = fileoff & MAXBOFFSET;
2571 			chain_size = MAXBSIZE - mapoff;
2572 			if (chain_size > total_size)
2573 				chain_size = total_size;
2574 			/*
2575 			 * we don't forcefault because we'll call
2576 			 * segmap_fault(F_SOFTLOCK) next.
2577 			 *
2578 			 * S_READ will get the ref bit set (by either
2579 			 * segmap_getmapflt() or segmap_fault()) and page
2580 			 * shared locked.
2581 			 */
2582 			base = segmap_getmapflt(segkmap, fvp, fileoff,
2583 			    chain_size, segmap_kpm ? SM_FAULT : 0, S_READ);
2584 
2585 			snfi = kmem_alloc(sizeof (*snfi), KM_SLEEP);
2586 			snfi->snfi_len = (size_t)roundup(mapoff+chain_size,
2587 			    PAGESIZE)- (mapoff & PAGEMASK);
2588 			/*
2589 			 * We must call segmap_fault() even for segmap_kpm
2590 			 * because that's how error gets returned.
2591 			 * (segmap_getmapflt() never fails but segmap_fault()
2592 			 * does.)
2593 			 *
2594 			 * If the pages aren't available yet, we get
2595 			 * DEADLK, so wait and try again a little later using
2596 			 * an increasing wait. We might be here a long time.
2597 			 *
2598 			 * If delay_sig returns EINTR, be sure to exit and
2599 			 * pass it up to the caller.
2600 			 */
2601 			deadlk_wait = 0;
2602 			while ((error = FC_ERRNO(segmap_fault(kas.a_hat,
2603 			    segkmap, (caddr_t)(uintptr_t)(((uintptr_t)base +
2604 			    mapoff) & PAGEMASK), snfi->snfi_len, F_SOFTLOCK,
2605 			    S_READ))) == EDEADLK) {
2606 				deadlk_wait += (deadlk_wait < 5) ? 1 : 4;
2607 				if ((error = delay_sig(deadlk_wait)) != 0) {
2608 					break;
2609 				}
2610 			}
2611 			if (error != 0) {
2612 				(void) segmap_release(segkmap, base, 0);
2613 				kmem_free(snfi, sizeof (*snfi));
2614 				error = (error == EINTR) ? EINTR : EIO;
2615 				goto out;
2616 			}
2617 			snfi->snfi_frtn.free_func = snf_smap_desbfree;
2618 			snfi->snfi_frtn.free_arg = (caddr_t)snfi;
2619 			snfi->snfi_base = base;
2620 			snfi->snfi_mapoff = mapoff;
2621 			mp = esballoca((uchar_t *)base + mapoff, chain_size,
2622 			    BPRI_HI, &snfi->snfi_frtn);
2623 
2624 			if (mp == NULL) {
2625 				(void) segmap_fault(kas.a_hat, segkmap,
2626 				    (caddr_t)(uintptr_t)(((uintptr_t)base +
2627 				    mapoff) & PAGEMASK), snfi->snfi_len,
2628 				    F_SOFTUNLOCK, S_OTHER);
2629 				(void) segmap_release(segkmap, base, 0);
2630 				kmem_free(snfi, sizeof (*snfi));
2631 				freemsg(mp);
2632 				error = EAGAIN;
2633 				goto out;
2634 			}
2635 			VN_HOLD(fvp);
2636 			snfi->snfi_vp = fvp;
2637 			mp->b_wptr += chain_size;
2638 
2639 			/* Mark this dblk with the zero-copy flag */
2640 			mp->b_datap->db_struioflag |= STRUIO_ZC;
2641 			fileoff += chain_size;
2642 			total_size -= chain_size;
2643 		}
2644 
2645 		if (total_size == 0 && !nowait) {
2646 			ASSERT(!dowait);
2647 			dowait = B_TRUE;
2648 			mp->b_datap->db_struioflag |= STRUIO_ZCNOTIFY;
2649 		}
2650 		VOP_RWUNLOCK(fvp, V_WRITELOCK_FALSE, NULL);
2651 		error = socket_sendmblk(VTOSO(vp), &msg, fflag, CRED(), &mp);
2652 		if (error != 0) {
2653 			/*
2654 			 * mp contains the mblks that were not sent by
2655 			 * socket_sendmblk. Use its size to update *count
2656 			 */
2657 			*count = ksize + (chain_size - msgdsize(mp));
2658 			if (mp != NULL)
2659 				freemsg(mp);
2660 			return (error);
2661 		}
2662 		ksize += chain_size;
2663 		if (total_size == 0)
2664 			goto done;
2665 
2666 		(void) VOP_RWLOCK(fvp, V_WRITELOCK_FALSE, NULL);
2667 		va.va_mask = AT_SIZE;
2668 		error = VOP_GETATTR(fvp, &va, 0, kcred, NULL);
2669 		if (error)
2670 			break;
2671 		/* Read as much as possible. */
2672 		if (fileoff >= va.va_size)
2673 			break;
2674 		if (total_size + fileoff > va.va_size)
2675 			total_size = va.va_size - fileoff;
2676 	}
2677 out:
2678 	VOP_RWUNLOCK(fvp, V_WRITELOCK_FALSE, NULL);
2679 done:
2680 	*count = ksize;
2681 	if (dowait) {
2682 		stdata_t *stp;
2683 
2684 		stp = vp->v_stream;
2685 		if (stp == NULL) {
2686 			struct sonode *so;
2687 			so = VTOSO(vp);
2688 			error = so_zcopy_wait(so);
2689 		} else {
2690 			mutex_enter(&stp->sd_lock);
2691 			while (!(stp->sd_flag & STZCNOTIFY)) {
2692 				if (cv_wait_sig(&stp->sd_zcopy_wait,
2693 				    &stp->sd_lock) == 0) {
2694 					error = EINTR;
2695 					break;
2696 				}
2697 			}
2698 			stp->sd_flag &= ~STZCNOTIFY;
2699 			mutex_exit(&stp->sd_lock);
2700 		}
2701 	}
2702 	return (error);
2703 }
2704 
2705 int
2706 snf_cache(file_t *fp, vnode_t *fvp, u_offset_t fileoff, u_offset_t size,
2707     uint_t maxpsz, ssize_t *count)
2708 {
2709 	struct vnode *vp;
2710 	mblk_t *mp;
2711 	int iosize;
2712 	int extra = 0;
2713 	int error;
2714 	short fflag;
2715 	int ksize;
2716 	int ioflag;
2717 	struct uio auio;
2718 	struct iovec aiov;
2719 	struct vattr va;
2720 	int maxblk = 0;
2721 	int wroff = 0;
2722 	struct sonode *so;
2723 	struct nmsghdr msg;
2724 
2725 	vp = fp->f_vnode;
2726 	if (vp->v_type == VSOCK) {
2727 		stdata_t *stp;
2728 
2729 		/*
2730 		 * Get the extra space to insert a header and a trailer.
2731 		 */
2732 		so = VTOSO(vp);
2733 		stp = vp->v_stream;
2734 		if (stp == NULL) {
2735 			wroff = so->so_proto_props.sopp_wroff;
2736 			maxblk = so->so_proto_props.sopp_maxblk;
2737 			extra = wroff + so->so_proto_props.sopp_tail;
2738 		} else {
2739 			wroff = (int)(stp->sd_wroff);
2740 			maxblk = (int)(stp->sd_maxblk);
2741 			extra = wroff + (int)(stp->sd_tail);
2742 		}
2743 	}
2744 	bzero(&msg, sizeof (msg));
2745 	fflag = fp->f_flag;
2746 	ksize = 0;
2747 	auio.uio_iov = &aiov;
2748 	auio.uio_iovcnt = 1;
2749 	auio.uio_segflg = UIO_SYSSPACE;
2750 	auio.uio_llimit = MAXOFFSET_T;
2751 	auio.uio_fmode = fflag;
2752 	auio.uio_extflg = UIO_COPY_CACHED;
2753 	ioflag = auio.uio_fmode & (FSYNC|FDSYNC|FRSYNC);
2754 	/* If read sync is not asked for, filter sync flags */
2755 	if ((ioflag & FRSYNC) == 0)
2756 		ioflag &= ~(FSYNC|FDSYNC);
2757 	for (;;) {
2758 		if (ISSIG(curthread, JUSTLOOKING)) {
2759 			error = EINTR;
2760 			break;
2761 		}
2762 		iosize = (int)MIN(maxpsz, size);
2763 
2764 		/*
2765 		 * Socket filters can limit the mblk size,
2766 		 * so limit reads to maxblk if there are
2767 		 * filters present.
2768 		 */
2769 		if (vp->v_type == VSOCK &&
2770 		    so->so_filter_active > 0 && maxblk != INFPSZ)
2771 			iosize = (int)MIN(iosize, maxblk);
2772 
2773 		if (is_system_labeled()) {
2774 			mp = allocb_cred(iosize + extra, CRED(),
2775 			    curproc->p_pid);
2776 		} else {
2777 			mp = allocb(iosize + extra, BPRI_MED);
2778 		}
2779 		if (mp == NULL) {
2780 			error = EAGAIN;
2781 			break;
2782 		}
2783 
2784 		mp->b_rptr += wroff;
2785 
2786 		aiov.iov_base = (caddr_t)mp->b_rptr;
2787 		aiov.iov_len = iosize;
2788 		auio.uio_loffset = fileoff;
2789 		auio.uio_resid = iosize;
2790 
2791 		error = VOP_READ(fvp, &auio, ioflag, fp->f_cred, NULL);
2792 		iosize -= auio.uio_resid;
2793 
2794 		if (error == EINTR && iosize != 0)
2795 			error = 0;
2796 
2797 		if (error != 0 || iosize == 0) {
2798 			freeb(mp);
2799 			break;
2800 		}
2801 		mp->b_wptr = mp->b_rptr + iosize;
2802 
2803 		VOP_RWUNLOCK(fvp, V_WRITELOCK_FALSE, NULL);
2804 
2805 		error = socket_sendmblk(VTOSO(vp), &msg, fflag, CRED(), &mp);
2806 
2807 		if (error != 0) {
2808 			*count = ksize;
2809 			if (mp != NULL)
2810 				freeb(mp);
2811 			return (error);
2812 		}
2813 		ksize += iosize;
2814 		size -= iosize;
2815 		if (size == 0)
2816 			goto done;
2817 
2818 		fileoff += iosize;
2819 		(void) VOP_RWLOCK(fvp, V_WRITELOCK_FALSE, NULL);
2820 		va.va_mask = AT_SIZE;
2821 		error = VOP_GETATTR(fvp, &va, 0, kcred, NULL);
2822 		if (error)
2823 			break;
2824 		/* Read as much as possible. */
2825 		if (fileoff >= va.va_size)
2826 			size = 0;
2827 		else if (size + fileoff > va.va_size)
2828 			size = va.va_size - fileoff;
2829 	}
2830 	VOP_RWUNLOCK(fvp, V_WRITELOCK_FALSE, NULL);
2831 done:
2832 	*count = ksize;
2833 	return (error);
2834 }
2835 
2836 #if defined(_SYSCALL32_IMPL) || defined(_ILP32)
2837 /*
2838  * Largefile support for 32 bit applications only.
2839  */
2840 int
2841 sosendfile64(file_t *fp, file_t *rfp, const struct ksendfilevec64 *sfv,
2842     ssize32_t *count32)
2843 {
2844 	ssize32_t sfv_len;
2845 	u_offset_t sfv_off, va_size;
2846 	struct vnode *vp, *fvp, *realvp;
2847 	struct vattr va;
2848 	stdata_t *stp;
2849 	ssize_t count = 0;
2850 	int error = 0;
2851 	boolean_t dozcopy = B_FALSE;
2852 	uint_t maxpsz;
2853 
2854 	sfv_len = (ssize32_t)sfv->sfv_len;
2855 	if (sfv_len < 0) {
2856 		error = EINVAL;
2857 		goto out;
2858 	}
2859 
2860 	if (sfv_len == 0) goto out;
2861 
2862 	sfv_off = (u_offset_t)sfv->sfv_off;
2863 
2864 	/* Same checks as in pread */
2865 	if (sfv_off > MAXOFFSET_T) {
2866 		error = EINVAL;
2867 		goto out;
2868 	}
2869 	if (sfv_off + sfv_len > MAXOFFSET_T)
2870 		sfv_len = (ssize32_t)(MAXOFFSET_T - sfv_off);
2871 
2872 	/*
2873 	 * There are no more checks on sfv_len. So, we cast it to
2874 	 * u_offset_t and share the snf_direct_io/snf_cache code between
2875 	 * 32 bit and 64 bit.
2876 	 *
2877 	 * TODO: should do nbl_need_check() like read()?
2878 	 */
2879 	if (sfv_len > sendfile_max_size) {
2880 		sf_stats.ss_file_not_cached++;
2881 		error = snf_direct_io(fp, rfp, sfv_off, (u_offset_t)sfv_len,
2882 		    &count);
2883 		goto out;
2884 	}
2885 	fvp = rfp->f_vnode;
2886 	if (VOP_REALVP(fvp, &realvp, NULL) == 0)
2887 		fvp = realvp;
2888 	/*
2889 	 * Grab the lock as a reader to prevent the file size
2890 	 * from changing underneath.
2891 	 */
2892 	(void) VOP_RWLOCK(fvp, V_WRITELOCK_FALSE, NULL);
2893 	va.va_mask = AT_SIZE;
2894 	error = VOP_GETATTR(fvp, &va, 0, kcred, NULL);
2895 	va_size = va.va_size;
2896 	if ((error != 0) || (va_size == 0) || (sfv_off >= va_size)) {
2897 		VOP_RWUNLOCK(fvp, V_WRITELOCK_FALSE, NULL);
2898 		goto out;
2899 	}
2900 	/* Read as much as possible. */
2901 	if (sfv_off + sfv_len > va_size)
2902 		sfv_len = va_size - sfv_off;
2903 
2904 	vp = fp->f_vnode;
2905 	stp = vp->v_stream;
2906 	/*
2907 	 * When the NOWAIT flag is not set, we enable zero-copy only if the
2908 	 * transfer size is large enough. This prevents performance loss
2909 	 * when the caller sends the file piece by piece.
2910 	 */
2911 	if (sfv_len >= MAXBSIZE && (sfv_len >= (va_size >> 1) ||
2912 	    (sfv->sfv_flag & SFV_NOWAIT) || sfv_len >= 0x1000000) &&
2913 	    !vn_has_flocks(fvp) && !(fvp->v_flag & VNOMAP)) {
2914 		uint_t copyflag;
2915 		copyflag = stp != NULL ? stp->sd_copyflag :
2916 		    VTOSO(vp)->so_proto_props.sopp_zcopyflag;
2917 		if ((copyflag & (STZCVMSAFE|STZCVMUNSAFE)) == 0) {
2918 			int on = 1;
2919 
2920 			if (socket_setsockopt(VTOSO(vp), SOL_SOCKET,
2921 			    SO_SND_COPYAVOID, &on, sizeof (on), CRED()) == 0)
2922 				dozcopy = B_TRUE;
2923 		} else {
2924 			dozcopy = copyflag & STZCVMSAFE;
2925 		}
2926 	}
2927 	if (dozcopy) {
2928 		sf_stats.ss_file_segmap++;
2929 		error = snf_segmap(fp, fvp, sfv_off, (u_offset_t)sfv_len,
2930 		    &count, ((sfv->sfv_flag & SFV_NOWAIT) != 0));
2931 	} else {
2932 		if (vp->v_type == VSOCK && stp == NULL) {
2933 			sonode_t *so = VTOSO(vp);
2934 			maxpsz = so->so_proto_props.sopp_maxpsz;
2935 		} else if (stp != NULL) {
2936 			maxpsz = stp->sd_qn_maxpsz;
2937 		} else {
2938 			maxpsz = maxphys;
2939 		}
2940 
2941 		if (maxpsz == INFPSZ)
2942 			maxpsz = maxphys;
2943 		else
2944 			maxpsz = roundup(maxpsz, MAXBSIZE);
2945 		sf_stats.ss_file_cached++;
2946 		error = snf_cache(fp, fvp, sfv_off, (u_offset_t)sfv_len,
2947 		    maxpsz, &count);
2948 	}
2949 out:
2950 	releasef(sfv->sfv_fd);
2951 	*count32 = (ssize32_t)count;
2952 	return (error);
2953 }
2954 #endif
2955 
2956 #ifdef _SYSCALL32_IMPL
2957 /*
2958  * recv32(), recvfrom32(), send32(), sendto32(): intentionally return a
2959  * ssize_t rather than ssize32_t; see the comments above read32 for details.
2960  */
2961 
2962 ssize_t
2963 recv32(int32_t sock, caddr32_t buffer, size32_t len, int32_t flags)
2964 {
2965 	return (recv(sock, (void *)(uintptr_t)buffer, (ssize32_t)len, flags));
2966 }
2967 
2968 ssize_t
2969 recvfrom32(int32_t sock, caddr32_t buffer, size32_t len, int32_t flags,
2970 	caddr32_t name, caddr32_t namelenp)
2971 {
2972 	return (recvfrom(sock, (void *)(uintptr_t)buffer, (ssize32_t)len, flags,
2973 	    (void *)(uintptr_t)name, (void *)(uintptr_t)namelenp));
2974 }
2975 
2976 ssize_t
2977 send32(int32_t sock, caddr32_t buffer, size32_t len, int32_t flags)
2978 {
2979 	return (send(sock, (void *)(uintptr_t)buffer, (ssize32_t)len, flags));
2980 }
2981 
2982 ssize_t
2983 sendto32(int32_t sock, caddr32_t buffer, size32_t len, int32_t flags,
2984 	caddr32_t name, socklen_t namelen)
2985 {
2986 	return (sendto(sock, (void *)(uintptr_t)buffer, (ssize32_t)len, flags,
2987 	    (void *)(uintptr_t)name, namelen));
2988 }
2989 #endif	/* _SYSCALL32_IMPL */
2990 
2991 /*
2992  * Function wrappers (mostly around the sonode switch) for
2993  * backward compatibility.
2994  */
2995 
2996 int
2997 soaccept(struct sonode *so, int fflag, struct sonode **nsop)
2998 {
2999 	return (socket_accept(so, fflag, CRED(), nsop));
3000 }
3001 
3002 int
3003 sobind(struct sonode *so, struct sockaddr *name, socklen_t namelen,
3004     int backlog, int flags)
3005 {
3006 	int	error;
3007 
3008 	error = socket_bind(so, name, namelen, flags, CRED());
3009 	if (error == 0 && backlog != 0)
3010 		return (socket_listen(so, backlog, CRED()));
3011 
3012 	return (error);
3013 }
3014 
3015 int
3016 solisten(struct sonode *so, int backlog)
3017 {
3018 	return (socket_listen(so, backlog, CRED()));
3019 }
3020 
3021 int
3022 soconnect(struct sonode *so, struct sockaddr *name, socklen_t namelen,
3023     int fflag, int flags)
3024 {
3025 	return (socket_connect(so, name, namelen, fflag, flags, CRED()));
3026 }
3027 
3028 int
3029 sorecvmsg(struct sonode *so, struct nmsghdr *msg, struct uio *uiop)
3030 {
3031 	return (socket_recvmsg(so, msg, uiop, CRED()));
3032 }
3033 
3034 int
3035 sosendmsg(struct sonode *so, struct nmsghdr *msg, struct uio *uiop)
3036 {
3037 	return (socket_sendmsg(so, msg, uiop, CRED()));
3038 }
3039 
3040 int
3041 soshutdown(struct sonode *so, int how)
3042 {
3043 	return (socket_shutdown(so, how, CRED()));
3044 }
3045 
3046 int
3047 sogetsockopt(struct sonode *so, int level, int option_name, void *optval,
3048     socklen_t *optlenp, int flags)
3049 {
3050 	return (socket_getsockopt(so, level, option_name, optval, optlenp,
3051 	    flags, CRED()));
3052 }
3053 
3054 int
3055 sosetsockopt(struct sonode *so, int level, int option_name, const void *optval,
3056     t_uscalar_t optlen)
3057 {
3058 	return (socket_setsockopt(so, level, option_name, optval, optlen,
3059 	    CRED()));
3060 }
3061 
3062 /*
3063  * Because this is backward compatibility interface it only needs to be
3064  * able to handle the creation of TPI sockfs sockets.
3065  */
3066 struct sonode *
3067 socreate(struct sockparams *sp, int family, int type, int protocol, int version,
3068     int *errorp)
3069 {
3070 	struct sonode *so;
3071 
3072 	ASSERT(sp != NULL);
3073 
3074 	so = sp->sp_smod_info->smod_sock_create_func(sp, family, type, protocol,
3075 	    version, SOCKET_SLEEP, errorp, CRED());
3076 	if (so == NULL) {
3077 		SOCKPARAMS_DEC_REF(sp);
3078 	} else {
3079 		if ((*errorp = SOP_INIT(so, NULL, CRED(), SOCKET_SLEEP)) == 0) {
3080 			/* Cannot fail, only bumps so_count */
3081 			(void) VOP_OPEN(&SOTOV(so), FREAD|FWRITE, CRED(), NULL);
3082 		} else {
3083 			socket_destroy(so);
3084 			so = NULL;
3085 		}
3086 	}
3087 	return (so);
3088 }
3089