1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 1995, 2010, Oracle and/or its affiliates. All rights reserved. 24 */ 25 26 /* Copyright (c) 2013, OmniTI Computer Consulting, Inc. All rights reserved. */ 27 /* 28 * Copyright 2015 Nexenta Systems, Inc. All rights reserved. 29 */ 30 31 #include <sys/types.h> 32 #include <sys/t_lock.h> 33 #include <sys/param.h> 34 #include <sys/systm.h> 35 #include <sys/buf.h> 36 #include <sys/conf.h> 37 #include <sys/cred.h> 38 #include <sys/kmem.h> 39 #include <sys/sysmacros.h> 40 #include <sys/vfs.h> 41 #include <sys/vnode.h> 42 #include <sys/debug.h> 43 #include <sys/errno.h> 44 #include <sys/time.h> 45 #include <sys/file.h> 46 #include <sys/user.h> 47 #include <sys/stream.h> 48 #include <sys/strsubr.h> 49 #include <sys/strsun.h> 50 #include <sys/sunddi.h> 51 #include <sys/esunddi.h> 52 #include <sys/flock.h> 53 #include <sys/modctl.h> 54 #include <sys/cmn_err.h> 55 #include <sys/vmsystm.h> 56 #include <sys/policy.h> 57 58 #include <sys/socket.h> 59 #include <sys/socketvar.h> 60 61 #include <sys/isa_defs.h> 62 #include <sys/inttypes.h> 63 #include <sys/systm.h> 64 #include <sys/cpuvar.h> 65 #include <sys/filio.h> 66 #include <sys/sendfile.h> 67 #include <sys/ddi.h> 68 #include <vm/seg.h> 69 #include <vm/seg_map.h> 70 #include <vm/seg_kpm.h> 71 72 #include <fs/sockfs/nl7c.h> 73 #include <fs/sockfs/sockcommon.h> 74 #include <fs/sockfs/sockfilter_impl.h> 75 #include <fs/sockfs/socktpi.h> 76 77 #ifdef SOCK_TEST 78 int do_useracc = 1; /* Controlled by setting SO_DEBUG to 4 */ 79 #else 80 #define do_useracc 1 81 #endif /* SOCK_TEST */ 82 83 extern int xnet_truncate_print; 84 85 extern void nl7c_init(void); 86 extern int sockfs_defer_nl7c_init; 87 88 /* 89 * Note: DEF_IOV_MAX is defined and used as it is in "fs/vncalls.c" 90 * as there isn't a formal definition of IOV_MAX ??? 91 */ 92 #define MSG_MAXIOVLEN 16 93 94 /* 95 * Kernel component of socket creation. 96 * 97 * The socket library determines which version number to use. 98 * First the library calls this with a NULL devpath. If this fails 99 * to find a transport (using solookup) the library will look in /etc/netconfig 100 * for the appropriate transport. If one is found it will pass in the 101 * devpath for the kernel to use. 102 */ 103 int 104 so_socket(int family, int type_w_flags, int protocol, char *devpath, 105 int version) 106 { 107 struct sonode *so; 108 vnode_t *vp; 109 struct file *fp; 110 int fd; 111 int error; 112 int type; 113 114 type = type_w_flags & SOCK_TYPE_MASK; 115 type_w_flags &= ~SOCK_TYPE_MASK; 116 if (type_w_flags & ~(SOCK_CLOEXEC|SOCK_NDELAY|SOCK_NONBLOCK)) 117 return (set_errno(EINVAL)); 118 119 if (devpath != NULL) { 120 char *buf; 121 size_t kdevpathlen = 0; 122 123 buf = kmem_alloc(MAXPATHLEN, KM_SLEEP); 124 if ((error = copyinstr(devpath, buf, 125 MAXPATHLEN, &kdevpathlen)) != 0) { 126 kmem_free(buf, MAXPATHLEN); 127 return (set_errno(error)); 128 } 129 so = socket_create(family, type, protocol, buf, NULL, 130 SOCKET_SLEEP, version, CRED(), &error); 131 kmem_free(buf, MAXPATHLEN); 132 } else { 133 so = socket_create(family, type, protocol, NULL, NULL, 134 SOCKET_SLEEP, version, CRED(), &error); 135 } 136 if (so == NULL) 137 return (set_errno(error)); 138 139 /* Allocate a file descriptor for the socket */ 140 vp = SOTOV(so); 141 if (error = falloc(vp, FWRITE|FREAD, &fp, &fd)) { 142 (void) socket_close(so, 0, CRED()); 143 socket_destroy(so); 144 return (set_errno(error)); 145 } 146 147 /* 148 * Now fill in the entries that falloc reserved 149 */ 150 if (type_w_flags & SOCK_NDELAY) { 151 so->so_state |= SS_NDELAY; 152 fp->f_flag |= FNDELAY; 153 } 154 if (type_w_flags & SOCK_NONBLOCK) { 155 so->so_state |= SS_NONBLOCK; 156 fp->f_flag |= FNONBLOCK; 157 } 158 mutex_exit(&fp->f_tlock); 159 setf(fd, fp); 160 if ((type_w_flags & SOCK_CLOEXEC) != 0) { 161 f_setfd(fd, FD_CLOEXEC); 162 } 163 164 return (fd); 165 } 166 167 /* 168 * Map from a file descriptor to a socket node. 169 * Returns with the file descriptor held i.e. the caller has to 170 * use releasef when done with the file descriptor. 171 */ 172 struct sonode * 173 getsonode(int sock, int *errorp, file_t **fpp) 174 { 175 file_t *fp; 176 vnode_t *vp; 177 struct sonode *so; 178 179 if ((fp = getf(sock)) == NULL) { 180 *errorp = EBADF; 181 eprintline(*errorp); 182 return (NULL); 183 } 184 vp = fp->f_vnode; 185 /* Check if it is a socket */ 186 if (vp->v_type != VSOCK) { 187 releasef(sock); 188 *errorp = ENOTSOCK; 189 eprintline(*errorp); 190 return (NULL); 191 } 192 /* 193 * Use the stream head to find the real socket vnode. 194 * This is needed when namefs sits above sockfs. 195 */ 196 if (vp->v_stream) { 197 ASSERT(vp->v_stream->sd_vnode); 198 vp = vp->v_stream->sd_vnode; 199 200 so = VTOSO(vp); 201 if (so->so_version == SOV_STREAM) { 202 releasef(sock); 203 *errorp = ENOTSOCK; 204 eprintsoline(so, *errorp); 205 return (NULL); 206 } 207 } else { 208 so = VTOSO(vp); 209 } 210 if (fpp) 211 *fpp = fp; 212 return (so); 213 } 214 215 /* 216 * Allocate and copyin a sockaddr. 217 * Ensures NULL termination for AF_UNIX addresses by extending them 218 * with one NULL byte if need be. Verifies that the length is not 219 * excessive to prevent an application from consuming all of kernel 220 * memory. Returns NULL when an error occurred. 221 */ 222 static struct sockaddr * 223 copyin_name(struct sonode *so, struct sockaddr *name, socklen_t *namelenp, 224 int *errorp) 225 { 226 char *faddr; 227 size_t namelen = (size_t)*namelenp; 228 229 ASSERT(namelen != 0); 230 if (namelen > SO_MAXARGSIZE) { 231 *errorp = EINVAL; 232 eprintsoline(so, *errorp); 233 return (NULL); 234 } 235 236 faddr = (char *)kmem_alloc(namelen, KM_SLEEP); 237 if (copyin(name, faddr, namelen)) { 238 kmem_free(faddr, namelen); 239 *errorp = EFAULT; 240 eprintsoline(so, *errorp); 241 return (NULL); 242 } 243 244 /* 245 * Add space for NULL termination if needed. 246 * Do a quick check if the last byte is NUL. 247 */ 248 if (so->so_family == AF_UNIX && faddr[namelen - 1] != '\0') { 249 /* Check if there is any NULL termination */ 250 size_t i; 251 int foundnull = 0; 252 253 for (i = sizeof (name->sa_family); i < namelen; i++) { 254 if (faddr[i] == '\0') { 255 foundnull = 1; 256 break; 257 } 258 } 259 if (!foundnull) { 260 /* Add extra byte for NUL padding */ 261 char *nfaddr; 262 263 nfaddr = (char *)kmem_alloc(namelen + 1, KM_SLEEP); 264 bcopy(faddr, nfaddr, namelen); 265 kmem_free(faddr, namelen); 266 267 /* NUL terminate */ 268 nfaddr[namelen] = '\0'; 269 namelen++; 270 ASSERT((socklen_t)namelen == namelen); 271 *namelenp = (socklen_t)namelen; 272 faddr = nfaddr; 273 } 274 } 275 return ((struct sockaddr *)faddr); 276 } 277 278 /* 279 * Copy from kaddr/klen to uaddr/ulen. Updates ulenp if non-NULL. 280 */ 281 static int 282 copyout_arg(void *uaddr, socklen_t ulen, void *ulenp, void *kaddr, 283 socklen_t klen) 284 { 285 if (uaddr != NULL) { 286 if (ulen > klen) 287 ulen = klen; 288 289 if (ulen != 0) { 290 if (copyout(kaddr, uaddr, ulen)) 291 return (EFAULT); 292 } 293 } else 294 ulen = 0; 295 296 if (ulenp != NULL) { 297 if (copyout(&ulen, ulenp, sizeof (ulen))) 298 return (EFAULT); 299 } 300 return (0); 301 } 302 303 /* 304 * Copy from kaddr/klen to uaddr/ulen. Updates ulenp if non-NULL. 305 * If klen is greater than ulen it still uses the non-truncated 306 * klen to update ulenp. 307 */ 308 static int 309 copyout_name(void *uaddr, socklen_t ulen, void *ulenp, void *kaddr, 310 socklen_t klen) 311 { 312 if (uaddr != NULL) { 313 if (ulen >= klen) 314 ulen = klen; 315 else if (ulen != 0 && xnet_truncate_print) { 316 printf("sockfs: truncating copyout of address using " 317 "XNET semantics for pid = %d. Lengths %d, %d\n", 318 curproc->p_pid, klen, ulen); 319 } 320 321 if (ulen != 0) { 322 if (copyout(kaddr, uaddr, ulen)) 323 return (EFAULT); 324 } else 325 klen = 0; 326 } else 327 klen = 0; 328 329 if (ulenp != NULL) { 330 if (copyout(&klen, ulenp, sizeof (klen))) 331 return (EFAULT); 332 } 333 return (0); 334 } 335 336 /* 337 * The socketpair() code in libsocket creates two sockets (using 338 * the /etc/netconfig fallback if needed) before calling this routine 339 * to connect the two sockets together. 340 * 341 * For a SOCK_STREAM socketpair a listener is needed - in that case this 342 * routine will create a new file descriptor as part of accepting the 343 * connection. The library socketpair() will check if svs[2] has changed 344 * in which case it will close the changed fd. 345 * 346 * Note that this code could use the TPI feature of accepting the connection 347 * on the listening endpoint. However, that would require significant changes 348 * to soaccept. 349 */ 350 int 351 so_socketpair(int sv[2]) 352 { 353 int svs[2]; 354 struct sonode *so1, *so2; 355 int error; 356 int orig_flags; 357 struct sockaddr_ux *name; 358 size_t namelen; 359 sotpi_info_t *sti1; 360 sotpi_info_t *sti2; 361 362 dprint(1, ("so_socketpair(%p)\n", (void *)sv)); 363 364 error = useracc(sv, sizeof (svs), B_WRITE); 365 if (error && do_useracc) 366 return (set_errno(EFAULT)); 367 368 if (copyin(sv, svs, sizeof (svs))) 369 return (set_errno(EFAULT)); 370 371 if ((so1 = getsonode(svs[0], &error, NULL)) == NULL) 372 return (set_errno(error)); 373 374 if ((so2 = getsonode(svs[1], &error, NULL)) == NULL) { 375 releasef(svs[0]); 376 return (set_errno(error)); 377 } 378 379 if (so1->so_family != AF_UNIX || so2->so_family != AF_UNIX) { 380 error = EOPNOTSUPP; 381 goto done; 382 } 383 384 sti1 = SOTOTPI(so1); 385 sti2 = SOTOTPI(so2); 386 387 /* 388 * The code below makes assumptions about the "sockfs" implementation. 389 * So make sure that the correct implementation is really used. 390 */ 391 ASSERT(so1->so_ops == &sotpi_sonodeops); 392 ASSERT(so2->so_ops == &sotpi_sonodeops); 393 394 if (so1->so_type == SOCK_DGRAM) { 395 /* 396 * Bind both sockets and connect them with each other. 397 * Need to allocate name/namelen for soconnect. 398 */ 399 error = socket_bind(so1, NULL, 0, _SOBIND_UNSPEC, CRED()); 400 if (error) { 401 eprintsoline(so1, error); 402 goto done; 403 } 404 error = socket_bind(so2, NULL, 0, _SOBIND_UNSPEC, CRED()); 405 if (error) { 406 eprintsoline(so2, error); 407 goto done; 408 } 409 namelen = sizeof (struct sockaddr_ux); 410 name = kmem_alloc(namelen, KM_SLEEP); 411 name->sou_family = AF_UNIX; 412 name->sou_addr = sti2->sti_ux_laddr; 413 error = socket_connect(so1, 414 (struct sockaddr *)name, 415 (socklen_t)namelen, 416 0, _SOCONNECT_NOXLATE, CRED()); 417 if (error) { 418 kmem_free(name, namelen); 419 eprintsoline(so1, error); 420 goto done; 421 } 422 name->sou_addr = sti1->sti_ux_laddr; 423 error = socket_connect(so2, 424 (struct sockaddr *)name, 425 (socklen_t)namelen, 426 0, _SOCONNECT_NOXLATE, CRED()); 427 kmem_free(name, namelen); 428 if (error) { 429 eprintsoline(so2, error); 430 goto done; 431 } 432 releasef(svs[0]); 433 releasef(svs[1]); 434 } else { 435 /* 436 * Bind both sockets, with so1 being a listener. 437 * Connect so2 to so1 - nonblocking to avoid waiting for 438 * soaccept to complete. 439 * Accept a connection on so1. Pass out the new fd as sv[0]. 440 * The library will detect the changed fd and close 441 * the original one. 442 */ 443 struct sonode *nso; 444 struct vnode *nvp; 445 struct file *nfp; 446 int nfd; 447 448 /* 449 * We could simply call socket_listen() here (which would do the 450 * binding automatically) if the code didn't rely on passing 451 * _SOBIND_NOXLATE to the TPI implementation of socket_bind(). 452 */ 453 error = socket_bind(so1, NULL, 0, _SOBIND_UNSPEC| 454 _SOBIND_NOXLATE|_SOBIND_LISTEN|_SOBIND_SOCKETPAIR, 455 CRED()); 456 if (error) { 457 eprintsoline(so1, error); 458 goto done; 459 } 460 error = socket_bind(so2, NULL, 0, _SOBIND_UNSPEC, CRED()); 461 if (error) { 462 eprintsoline(so2, error); 463 goto done; 464 } 465 466 namelen = sizeof (struct sockaddr_ux); 467 name = kmem_alloc(namelen, KM_SLEEP); 468 name->sou_family = AF_UNIX; 469 name->sou_addr = sti1->sti_ux_laddr; 470 error = socket_connect(so2, 471 (struct sockaddr *)name, 472 (socklen_t)namelen, 473 FNONBLOCK, _SOCONNECT_NOXLATE, CRED()); 474 kmem_free(name, namelen); 475 if (error) { 476 if (error != EINPROGRESS) { 477 eprintsoline(so2, error); goto done; 478 } 479 } 480 481 error = socket_accept(so1, 0, CRED(), &nso); 482 if (error) { 483 eprintsoline(so1, error); 484 goto done; 485 } 486 487 /* wait for so2 being SS_CONNECTED ignoring signals */ 488 mutex_enter(&so2->so_lock); 489 error = sowaitconnected(so2, 0, 1); 490 mutex_exit(&so2->so_lock); 491 if (error != 0) { 492 (void) socket_close(nso, 0, CRED()); 493 socket_destroy(nso); 494 eprintsoline(so2, error); 495 goto done; 496 } 497 498 nvp = SOTOV(nso); 499 if (error = falloc(nvp, FWRITE|FREAD, &nfp, &nfd)) { 500 (void) socket_close(nso, 0, CRED()); 501 socket_destroy(nso); 502 eprintsoline(nso, error); 503 goto done; 504 } 505 /* 506 * copy over FNONBLOCK and FNDELAY flags should they exist 507 */ 508 if (so1->so_state & SS_NONBLOCK) 509 nfp->f_flag |= FNONBLOCK; 510 if (so1->so_state & SS_NDELAY) 511 nfp->f_flag |= FNDELAY; 512 513 /* 514 * fill in the entries that falloc reserved 515 */ 516 mutex_exit(&nfp->f_tlock); 517 setf(nfd, nfp); 518 519 /* 520 * get the original flags before we release 521 */ 522 VERIFY(f_getfd_error(svs[0], &orig_flags) == 0); 523 524 releasef(svs[0]); 525 releasef(svs[1]); 526 527 /* 528 * If FD_CLOEXEC was set on the filedescriptor we're 529 * swapping out, we should set it on the new one too. 530 */ 531 if (orig_flags & FD_CLOEXEC) { 532 f_setfd(nfd, FD_CLOEXEC); 533 } 534 535 /* 536 * The socketpair library routine will close the original 537 * svs[0] when this code passes out a different file 538 * descriptor. 539 */ 540 svs[0] = nfd; 541 542 if (copyout(svs, sv, sizeof (svs))) { 543 (void) closeandsetf(nfd, NULL); 544 eprintline(EFAULT); 545 return (set_errno(EFAULT)); 546 } 547 } 548 return (0); 549 550 done: 551 releasef(svs[0]); 552 releasef(svs[1]); 553 return (set_errno(error)); 554 } 555 556 int 557 bind(int sock, struct sockaddr *name, socklen_t namelen, int version) 558 { 559 struct sonode *so; 560 int error; 561 562 dprint(1, ("bind(%d, %p, %d)\n", 563 sock, (void *)name, namelen)); 564 565 if ((so = getsonode(sock, &error, NULL)) == NULL) 566 return (set_errno(error)); 567 568 /* Allocate and copyin name */ 569 /* 570 * X/Open test does not expect EFAULT with NULL name and non-zero 571 * namelen. 572 */ 573 if (name != NULL && namelen != 0) { 574 ASSERT(MUTEX_NOT_HELD(&so->so_lock)); 575 name = copyin_name(so, name, &namelen, &error); 576 if (name == NULL) { 577 releasef(sock); 578 return (set_errno(error)); 579 } 580 } else { 581 name = NULL; 582 namelen = 0; 583 } 584 585 switch (version) { 586 default: 587 error = socket_bind(so, name, namelen, 0, CRED()); 588 break; 589 case SOV_XPG4_2: 590 error = socket_bind(so, name, namelen, _SOBIND_XPG4_2, CRED()); 591 break; 592 case SOV_SOCKBSD: 593 error = socket_bind(so, name, namelen, _SOBIND_SOCKBSD, CRED()); 594 break; 595 } 596 done: 597 releasef(sock); 598 if (name != NULL) 599 kmem_free(name, (size_t)namelen); 600 601 if (error) 602 return (set_errno(error)); 603 return (0); 604 } 605 606 /* ARGSUSED2 */ 607 int 608 listen(int sock, int backlog, int version) 609 { 610 struct sonode *so; 611 int error; 612 613 dprint(1, ("listen(%d, %d)\n", 614 sock, backlog)); 615 616 if ((so = getsonode(sock, &error, NULL)) == NULL) 617 return (set_errno(error)); 618 619 error = socket_listen(so, backlog, CRED()); 620 621 releasef(sock); 622 if (error) 623 return (set_errno(error)); 624 return (0); 625 } 626 627 /*ARGSUSED3*/ 628 int 629 accept(int sock, struct sockaddr *name, socklen_t *namelenp, int version, 630 int flags) 631 { 632 struct sonode *so; 633 file_t *fp; 634 int error; 635 socklen_t namelen; 636 struct sonode *nso; 637 struct vnode *nvp; 638 struct file *nfp; 639 int nfd; 640 int ssflags; 641 struct sockaddr *addrp; 642 socklen_t addrlen; 643 644 dprint(1, ("accept(%d, %p, %p)\n", 645 sock, (void *)name, (void *)namelenp)); 646 647 if (flags & ~(SOCK_CLOEXEC|SOCK_NONBLOCK|SOCK_NDELAY)) { 648 return (set_errno(EINVAL)); 649 } 650 651 /* Translate SOCK_ flags to their SS_ variant */ 652 ssflags = 0; 653 if (flags & SOCK_NONBLOCK) 654 ssflags |= SS_NONBLOCK; 655 if (flags & SOCK_NDELAY) 656 ssflags |= SS_NDELAY; 657 658 if ((so = getsonode(sock, &error, &fp)) == NULL) 659 return (set_errno(error)); 660 661 if (name != NULL) { 662 ASSERT(MUTEX_NOT_HELD(&so->so_lock)); 663 if (copyin(namelenp, &namelen, sizeof (namelen))) { 664 releasef(sock); 665 return (set_errno(EFAULT)); 666 } 667 if (namelen != 0) { 668 error = useracc(name, (size_t)namelen, B_WRITE); 669 if (error && do_useracc) { 670 releasef(sock); 671 return (set_errno(EFAULT)); 672 } 673 } else 674 name = NULL; 675 } else { 676 namelen = 0; 677 } 678 679 /* 680 * Allocate the user fd before socket_accept() in order to 681 * catch EMFILE errors before calling socket_accept(). 682 */ 683 if ((nfd = ufalloc(0)) == -1) { 684 eprintsoline(so, EMFILE); 685 releasef(sock); 686 return (set_errno(EMFILE)); 687 } 688 error = socket_accept(so, fp->f_flag, CRED(), &nso); 689 if (error) { 690 setf(nfd, NULL); 691 releasef(sock); 692 return (set_errno(error)); 693 } 694 695 nvp = SOTOV(nso); 696 697 ASSERT(MUTEX_NOT_HELD(&nso->so_lock)); 698 if (namelen != 0) { 699 addrlen = so->so_max_addr_len; 700 addrp = (struct sockaddr *)kmem_alloc(addrlen, KM_SLEEP); 701 702 if ((error = socket_getpeername(nso, (struct sockaddr *)addrp, 703 &addrlen, B_TRUE, CRED())) == 0) { 704 error = copyout_name(name, namelen, namelenp, 705 addrp, addrlen); 706 } else { 707 ASSERT(error == EINVAL || error == ENOTCONN); 708 error = ECONNABORTED; 709 } 710 kmem_free(addrp, so->so_max_addr_len); 711 } 712 713 if (error) { 714 setf(nfd, NULL); 715 (void) socket_close(nso, 0, CRED()); 716 socket_destroy(nso); 717 releasef(sock); 718 return (set_errno(error)); 719 } 720 if (error = falloc(NULL, FWRITE|FREAD, &nfp, NULL)) { 721 setf(nfd, NULL); 722 (void) socket_close(nso, 0, CRED()); 723 socket_destroy(nso); 724 eprintsoline(so, error); 725 releasef(sock); 726 return (set_errno(error)); 727 } 728 /* 729 * fill in the entries that falloc reserved 730 */ 731 nfp->f_vnode = nvp; 732 mutex_exit(&nfp->f_tlock); 733 setf(nfd, nfp); 734 735 /* 736 * Act on SOCK_CLOEXEC from flags 737 */ 738 if (flags & SOCK_CLOEXEC) { 739 f_setfd(nfd, FD_CLOEXEC); 740 } 741 742 /* 743 * Copy FNDELAY and FNONBLOCK from listener to acceptor 744 * and from ssflags 745 */ 746 if ((ssflags | so->so_state) & (SS_NDELAY|SS_NONBLOCK)) { 747 uint_t oflag = nfp->f_flag; 748 int arg = 0; 749 750 if ((ssflags | so->so_state) & SS_NONBLOCK) 751 arg |= FNONBLOCK; 752 else if ((ssflags | so->so_state) & SS_NDELAY) 753 arg |= FNDELAY; 754 755 /* 756 * This code is a simplification of the F_SETFL code in fcntl() 757 * Ignore any errors from VOP_SETFL. 758 */ 759 if ((error = VOP_SETFL(nvp, oflag, arg, nfp->f_cred, NULL)) 760 != 0) { 761 eprintsoline(so, error); 762 error = 0; 763 } else { 764 mutex_enter(&nfp->f_tlock); 765 nfp->f_flag &= ~FMASK | (FREAD|FWRITE); 766 nfp->f_flag |= arg; 767 mutex_exit(&nfp->f_tlock); 768 } 769 } 770 releasef(sock); 771 return (nfd); 772 } 773 774 int 775 connect(int sock, struct sockaddr *name, socklen_t namelen, int version) 776 { 777 struct sonode *so; 778 file_t *fp; 779 int error; 780 781 dprint(1, ("connect(%d, %p, %d)\n", 782 sock, (void *)name, namelen)); 783 784 if ((so = getsonode(sock, &error, &fp)) == NULL) 785 return (set_errno(error)); 786 787 /* Allocate and copyin name */ 788 if (namelen != 0) { 789 ASSERT(MUTEX_NOT_HELD(&so->so_lock)); 790 name = copyin_name(so, name, &namelen, &error); 791 if (name == NULL) { 792 releasef(sock); 793 return (set_errno(error)); 794 } 795 } else 796 name = NULL; 797 798 error = socket_connect(so, name, namelen, fp->f_flag, 799 (version != SOV_XPG4_2) ? 0 : _SOCONNECT_XPG4_2, CRED()); 800 releasef(sock); 801 if (name) 802 kmem_free(name, (size_t)namelen); 803 if (error) 804 return (set_errno(error)); 805 return (0); 806 } 807 808 /*ARGSUSED2*/ 809 int 810 shutdown(int sock, int how, int version) 811 { 812 struct sonode *so; 813 int error; 814 815 dprint(1, ("shutdown(%d, %d)\n", 816 sock, how)); 817 818 if ((so = getsonode(sock, &error, NULL)) == NULL) 819 return (set_errno(error)); 820 821 error = socket_shutdown(so, how, CRED()); 822 823 releasef(sock); 824 if (error) 825 return (set_errno(error)); 826 return (0); 827 } 828 829 /* 830 * Common receive routine. 831 */ 832 static ssize_t 833 recvit(int sock, struct nmsghdr *msg, struct uio *uiop, int flags, 834 socklen_t *namelenp, socklen_t *controllenp, int *flagsp) 835 { 836 struct sonode *so; 837 file_t *fp; 838 void *name; 839 socklen_t namelen; 840 void *control; 841 socklen_t controllen; 842 ssize_t len; 843 int error; 844 845 if ((so = getsonode(sock, &error, &fp)) == NULL) 846 return (set_errno(error)); 847 848 len = uiop->uio_resid; 849 uiop->uio_fmode = fp->f_flag; 850 uiop->uio_extflg = UIO_COPY_CACHED; 851 852 name = msg->msg_name; 853 namelen = msg->msg_namelen; 854 control = msg->msg_control; 855 controllen = msg->msg_controllen; 856 857 msg->msg_flags = flags & (MSG_OOB | MSG_PEEK | MSG_WAITALL | 858 MSG_DONTWAIT | MSG_XPG4_2); 859 860 error = socket_recvmsg(so, msg, uiop, CRED()); 861 if (error) { 862 releasef(sock); 863 return (set_errno(error)); 864 } 865 lwp_stat_update(LWP_STAT_MSGRCV, 1); 866 releasef(sock); 867 868 error = copyout_name(name, namelen, namelenp, 869 msg->msg_name, msg->msg_namelen); 870 if (error) 871 goto err; 872 873 if (flagsp != NULL) { 874 /* 875 * Clear internal flag. 876 */ 877 msg->msg_flags &= ~MSG_XPG4_2; 878 879 /* 880 * Determine MSG_CTRUNC. sorecvmsg sets MSG_CTRUNC only 881 * when controllen is zero and there is control data to 882 * copy out. 883 */ 884 if (controllen != 0 && 885 (msg->msg_controllen > controllen || control == NULL)) { 886 dprint(1, ("recvit: CTRUNC %d %d %p\n", 887 msg->msg_controllen, controllen, control)); 888 889 msg->msg_flags |= MSG_CTRUNC; 890 } 891 if (copyout(&msg->msg_flags, flagsp, 892 sizeof (msg->msg_flags))) { 893 error = EFAULT; 894 goto err; 895 } 896 } 897 /* 898 * Note: This MUST be done last. There can be no "goto err" after this 899 * point since it could make so_closefds run twice on some part 900 * of the file descriptor array. 901 */ 902 if (controllen != 0) { 903 if (!(flags & MSG_XPG4_2)) { 904 /* 905 * Good old msg_accrights can only return a multiple 906 * of 4 bytes. 907 */ 908 controllen &= ~((int)sizeof (uint32_t) - 1); 909 } 910 error = copyout_arg(control, controllen, controllenp, 911 msg->msg_control, msg->msg_controllen); 912 if (error) 913 goto err; 914 915 if (msg->msg_controllen > controllen || control == NULL) { 916 if (control == NULL) 917 controllen = 0; 918 so_closefds(msg->msg_control, msg->msg_controllen, 919 !(flags & MSG_XPG4_2), controllen); 920 } 921 } 922 if (msg->msg_namelen != 0) 923 kmem_free(msg->msg_name, (size_t)msg->msg_namelen); 924 if (msg->msg_controllen != 0) 925 kmem_free(msg->msg_control, (size_t)msg->msg_controllen); 926 return (len - uiop->uio_resid); 927 928 err: 929 /* 930 * If we fail and the control part contains file descriptors 931 * we have to close the fd's. 932 */ 933 if (msg->msg_controllen != 0) 934 so_closefds(msg->msg_control, msg->msg_controllen, 935 !(flags & MSG_XPG4_2), 0); 936 if (msg->msg_namelen != 0) 937 kmem_free(msg->msg_name, (size_t)msg->msg_namelen); 938 if (msg->msg_controllen != 0) 939 kmem_free(msg->msg_control, (size_t)msg->msg_controllen); 940 return (set_errno(error)); 941 } 942 943 /* 944 * Native system call 945 */ 946 ssize_t 947 recv(int sock, void *buffer, size_t len, int flags) 948 { 949 struct nmsghdr lmsg; 950 struct uio auio; 951 struct iovec aiov[1]; 952 953 dprint(1, ("recv(%d, %p, %ld, %d)\n", 954 sock, buffer, len, flags)); 955 956 if ((ssize_t)len < 0) { 957 return (set_errno(EINVAL)); 958 } 959 960 aiov[0].iov_base = buffer; 961 aiov[0].iov_len = len; 962 auio.uio_loffset = 0; 963 auio.uio_iov = aiov; 964 auio.uio_iovcnt = 1; 965 auio.uio_resid = len; 966 auio.uio_segflg = UIO_USERSPACE; 967 auio.uio_limit = 0; 968 969 lmsg.msg_namelen = 0; 970 lmsg.msg_controllen = 0; 971 lmsg.msg_flags = 0; 972 return (recvit(sock, &lmsg, &auio, flags, NULL, NULL, NULL)); 973 } 974 975 ssize_t 976 recvfrom(int sock, void *buffer, size_t len, int flags, struct sockaddr *name, 977 socklen_t *namelenp) 978 { 979 struct nmsghdr lmsg; 980 struct uio auio; 981 struct iovec aiov[1]; 982 983 dprint(1, ("recvfrom(%d, %p, %ld, %d, %p, %p)\n", 984 sock, buffer, len, flags, (void *)name, (void *)namelenp)); 985 986 if ((ssize_t)len < 0) { 987 return (set_errno(EINVAL)); 988 } 989 990 aiov[0].iov_base = buffer; 991 aiov[0].iov_len = len; 992 auio.uio_loffset = 0; 993 auio.uio_iov = aiov; 994 auio.uio_iovcnt = 1; 995 auio.uio_resid = len; 996 auio.uio_segflg = UIO_USERSPACE; 997 auio.uio_limit = 0; 998 999 lmsg.msg_name = (char *)name; 1000 if (namelenp != NULL) { 1001 if (copyin(namelenp, &lmsg.msg_namelen, 1002 sizeof (lmsg.msg_namelen))) 1003 return (set_errno(EFAULT)); 1004 } else { 1005 lmsg.msg_namelen = 0; 1006 } 1007 lmsg.msg_controllen = 0; 1008 lmsg.msg_flags = 0; 1009 1010 return (recvit(sock, &lmsg, &auio, flags, namelenp, NULL, NULL)); 1011 } 1012 1013 /* 1014 * Uses the MSG_XPG4_2 flag to determine if the caller is using 1015 * struct omsghdr or struct nmsghdr. 1016 */ 1017 ssize_t 1018 recvmsg(int sock, struct nmsghdr *msg, int flags) 1019 { 1020 STRUCT_DECL(nmsghdr, u_lmsg); 1021 STRUCT_HANDLE(nmsghdr, umsgptr); 1022 struct nmsghdr lmsg; 1023 struct uio auio; 1024 struct iovec aiov[MSG_MAXIOVLEN]; 1025 int iovcnt; 1026 ssize_t len; 1027 int i; 1028 int *flagsp; 1029 model_t model; 1030 1031 dprint(1, ("recvmsg(%d, %p, %d)\n", 1032 sock, (void *)msg, flags)); 1033 1034 model = get_udatamodel(); 1035 STRUCT_INIT(u_lmsg, model); 1036 STRUCT_SET_HANDLE(umsgptr, model, msg); 1037 1038 if (flags & MSG_XPG4_2) { 1039 if (copyin(msg, STRUCT_BUF(u_lmsg), STRUCT_SIZE(u_lmsg))) 1040 return (set_errno(EFAULT)); 1041 flagsp = STRUCT_FADDR(umsgptr, msg_flags); 1042 } else { 1043 /* 1044 * Assumes that nmsghdr and omsghdr are identically shaped 1045 * except for the added msg_flags field. 1046 */ 1047 if (copyin(msg, STRUCT_BUF(u_lmsg), 1048 SIZEOF_STRUCT(omsghdr, model))) 1049 return (set_errno(EFAULT)); 1050 STRUCT_FSET(u_lmsg, msg_flags, 0); 1051 flagsp = NULL; 1052 } 1053 1054 /* 1055 * Code below us will kmem_alloc memory and hang it 1056 * off msg_control and msg_name fields. This forces 1057 * us to copy the structure to its native form. 1058 */ 1059 lmsg.msg_name = STRUCT_FGETP(u_lmsg, msg_name); 1060 lmsg.msg_namelen = STRUCT_FGET(u_lmsg, msg_namelen); 1061 lmsg.msg_iov = STRUCT_FGETP(u_lmsg, msg_iov); 1062 lmsg.msg_iovlen = STRUCT_FGET(u_lmsg, msg_iovlen); 1063 lmsg.msg_control = STRUCT_FGETP(u_lmsg, msg_control); 1064 lmsg.msg_controllen = STRUCT_FGET(u_lmsg, msg_controllen); 1065 lmsg.msg_flags = STRUCT_FGET(u_lmsg, msg_flags); 1066 1067 iovcnt = lmsg.msg_iovlen; 1068 1069 if (iovcnt <= 0 || iovcnt > MSG_MAXIOVLEN) { 1070 return (set_errno(EMSGSIZE)); 1071 } 1072 1073 #ifdef _SYSCALL32_IMPL 1074 /* 1075 * 32-bit callers need to have their iovec expanded, while ensuring 1076 * that they can't move more than 2Gbytes of data in a single call. 1077 */ 1078 if (model == DATAMODEL_ILP32) { 1079 struct iovec32 aiov32[MSG_MAXIOVLEN]; 1080 ssize32_t count32; 1081 1082 if (copyin((struct iovec32 *)lmsg.msg_iov, aiov32, 1083 iovcnt * sizeof (struct iovec32))) 1084 return (set_errno(EFAULT)); 1085 1086 count32 = 0; 1087 for (i = 0; i < iovcnt; i++) { 1088 ssize32_t iovlen32; 1089 1090 iovlen32 = aiov32[i].iov_len; 1091 count32 += iovlen32; 1092 if (iovlen32 < 0 || count32 < 0) 1093 return (set_errno(EINVAL)); 1094 aiov[i].iov_len = iovlen32; 1095 aiov[i].iov_base = 1096 (caddr_t)(uintptr_t)aiov32[i].iov_base; 1097 } 1098 } else 1099 #endif /* _SYSCALL32_IMPL */ 1100 if (copyin(lmsg.msg_iov, aiov, iovcnt * sizeof (struct iovec))) { 1101 return (set_errno(EFAULT)); 1102 } 1103 len = 0; 1104 for (i = 0; i < iovcnt; i++) { 1105 ssize_t iovlen = aiov[i].iov_len; 1106 len += iovlen; 1107 if (iovlen < 0 || len < 0) { 1108 return (set_errno(EINVAL)); 1109 } 1110 } 1111 auio.uio_loffset = 0; 1112 auio.uio_iov = aiov; 1113 auio.uio_iovcnt = iovcnt; 1114 auio.uio_resid = len; 1115 auio.uio_segflg = UIO_USERSPACE; 1116 auio.uio_limit = 0; 1117 1118 if (lmsg.msg_control != NULL && 1119 (do_useracc == 0 || 1120 useracc(lmsg.msg_control, lmsg.msg_controllen, 1121 B_WRITE) != 0)) { 1122 return (set_errno(EFAULT)); 1123 } 1124 1125 return (recvit(sock, &lmsg, &auio, flags, 1126 STRUCT_FADDR(umsgptr, msg_namelen), 1127 STRUCT_FADDR(umsgptr, msg_controllen), flagsp)); 1128 } 1129 1130 /* 1131 * Common send function. 1132 */ 1133 static ssize_t 1134 sendit(int sock, struct nmsghdr *msg, struct uio *uiop, int flags) 1135 { 1136 struct sonode *so; 1137 file_t *fp; 1138 void *name; 1139 socklen_t namelen; 1140 void *control; 1141 socklen_t controllen; 1142 ssize_t len; 1143 int error; 1144 1145 if ((so = getsonode(sock, &error, &fp)) == NULL) 1146 return (set_errno(error)); 1147 1148 uiop->uio_fmode = fp->f_flag; 1149 1150 if (so->so_family == AF_UNIX) 1151 uiop->uio_extflg = UIO_COPY_CACHED; 1152 else 1153 uiop->uio_extflg = UIO_COPY_DEFAULT; 1154 1155 /* Allocate and copyin name and control */ 1156 name = msg->msg_name; 1157 namelen = msg->msg_namelen; 1158 if (name != NULL && namelen != 0) { 1159 ASSERT(MUTEX_NOT_HELD(&so->so_lock)); 1160 name = copyin_name(so, 1161 (struct sockaddr *)name, 1162 &namelen, &error); 1163 if (name == NULL) 1164 goto done3; 1165 /* copyin_name null terminates addresses for AF_UNIX */ 1166 msg->msg_namelen = namelen; 1167 msg->msg_name = name; 1168 } else { 1169 msg->msg_name = name = NULL; 1170 msg->msg_namelen = namelen = 0; 1171 } 1172 1173 control = msg->msg_control; 1174 controllen = msg->msg_controllen; 1175 if ((control != NULL) && (controllen != 0)) { 1176 /* 1177 * Verify that the length is not excessive to prevent 1178 * an application from consuming all of kernel memory. 1179 */ 1180 if (controllen > SO_MAXARGSIZE) { 1181 error = EINVAL; 1182 goto done2; 1183 } 1184 control = kmem_alloc(controllen, KM_SLEEP); 1185 1186 ASSERT(MUTEX_NOT_HELD(&so->so_lock)); 1187 if (copyin(msg->msg_control, control, controllen)) { 1188 error = EFAULT; 1189 goto done1; 1190 } 1191 msg->msg_control = control; 1192 } else { 1193 msg->msg_control = control = NULL; 1194 msg->msg_controllen = controllen = 0; 1195 } 1196 1197 len = uiop->uio_resid; 1198 msg->msg_flags = flags; 1199 1200 error = socket_sendmsg(so, msg, uiop, CRED()); 1201 done1: 1202 if (control != NULL) 1203 kmem_free(control, controllen); 1204 done2: 1205 if (name != NULL) 1206 kmem_free(name, namelen); 1207 done3: 1208 if (error != 0) { 1209 releasef(sock); 1210 return (set_errno(error)); 1211 } 1212 lwp_stat_update(LWP_STAT_MSGSND, 1); 1213 releasef(sock); 1214 return (len - uiop->uio_resid); 1215 } 1216 1217 /* 1218 * Native system call 1219 */ 1220 ssize_t 1221 send(int sock, void *buffer, size_t len, int flags) 1222 { 1223 struct nmsghdr lmsg; 1224 struct uio auio; 1225 struct iovec aiov[1]; 1226 1227 dprint(1, ("send(%d, %p, %ld, %d)\n", 1228 sock, buffer, len, flags)); 1229 1230 if ((ssize_t)len < 0) { 1231 return (set_errno(EINVAL)); 1232 } 1233 1234 aiov[0].iov_base = buffer; 1235 aiov[0].iov_len = len; 1236 auio.uio_loffset = 0; 1237 auio.uio_iov = aiov; 1238 auio.uio_iovcnt = 1; 1239 auio.uio_resid = len; 1240 auio.uio_segflg = UIO_USERSPACE; 1241 auio.uio_limit = 0; 1242 1243 lmsg.msg_name = NULL; 1244 lmsg.msg_control = NULL; 1245 if (!(flags & MSG_XPG4_2)) { 1246 /* 1247 * In order to be compatible with the libsocket/sockmod 1248 * implementation we set EOR for all send* calls. 1249 */ 1250 flags |= MSG_EOR; 1251 } 1252 return (sendit(sock, &lmsg, &auio, flags)); 1253 } 1254 1255 /* 1256 * Uses the MSG_XPG4_2 flag to determine if the caller is using 1257 * struct omsghdr or struct nmsghdr. 1258 */ 1259 ssize_t 1260 sendmsg(int sock, struct nmsghdr *msg, int flags) 1261 { 1262 struct nmsghdr lmsg; 1263 STRUCT_DECL(nmsghdr, u_lmsg); 1264 struct uio auio; 1265 struct iovec aiov[MSG_MAXIOVLEN]; 1266 int iovcnt; 1267 ssize_t len; 1268 int i; 1269 model_t model; 1270 1271 dprint(1, ("sendmsg(%d, %p, %d)\n", sock, (void *)msg, flags)); 1272 1273 model = get_udatamodel(); 1274 STRUCT_INIT(u_lmsg, model); 1275 1276 if (flags & MSG_XPG4_2) { 1277 if (copyin(msg, (char *)STRUCT_BUF(u_lmsg), 1278 STRUCT_SIZE(u_lmsg))) 1279 return (set_errno(EFAULT)); 1280 } else { 1281 /* 1282 * Assumes that nmsghdr and omsghdr are identically shaped 1283 * except for the added msg_flags field. 1284 */ 1285 if (copyin(msg, (char *)STRUCT_BUF(u_lmsg), 1286 SIZEOF_STRUCT(omsghdr, model))) 1287 return (set_errno(EFAULT)); 1288 /* 1289 * In order to be compatible with the libsocket/sockmod 1290 * implementation we set EOR for all send* calls. 1291 */ 1292 flags |= MSG_EOR; 1293 } 1294 1295 /* 1296 * Code below us will kmem_alloc memory and hang it 1297 * off msg_control and msg_name fields. This forces 1298 * us to copy the structure to its native form. 1299 */ 1300 lmsg.msg_name = STRUCT_FGETP(u_lmsg, msg_name); 1301 lmsg.msg_namelen = STRUCT_FGET(u_lmsg, msg_namelen); 1302 lmsg.msg_iov = STRUCT_FGETP(u_lmsg, msg_iov); 1303 lmsg.msg_iovlen = STRUCT_FGET(u_lmsg, msg_iovlen); 1304 lmsg.msg_control = STRUCT_FGETP(u_lmsg, msg_control); 1305 lmsg.msg_controllen = STRUCT_FGET(u_lmsg, msg_controllen); 1306 lmsg.msg_flags = STRUCT_FGET(u_lmsg, msg_flags); 1307 1308 iovcnt = lmsg.msg_iovlen; 1309 1310 if (iovcnt <= 0 || iovcnt > MSG_MAXIOVLEN) { 1311 /* 1312 * Unless this is XPG 4.2 we allow iovcnt == 0 to 1313 * be compatible with SunOS 4.X and 4.4BSD. 1314 */ 1315 if (iovcnt != 0 || (flags & MSG_XPG4_2)) 1316 return (set_errno(EMSGSIZE)); 1317 } 1318 1319 #ifdef _SYSCALL32_IMPL 1320 /* 1321 * 32-bit callers need to have their iovec expanded, while ensuring 1322 * that they can't move more than 2Gbytes of data in a single call. 1323 */ 1324 if (model == DATAMODEL_ILP32) { 1325 struct iovec32 aiov32[MSG_MAXIOVLEN]; 1326 ssize32_t count32; 1327 1328 if (iovcnt != 0 && 1329 copyin((struct iovec32 *)lmsg.msg_iov, aiov32, 1330 iovcnt * sizeof (struct iovec32))) 1331 return (set_errno(EFAULT)); 1332 1333 count32 = 0; 1334 for (i = 0; i < iovcnt; i++) { 1335 ssize32_t iovlen32; 1336 1337 iovlen32 = aiov32[i].iov_len; 1338 count32 += iovlen32; 1339 if (iovlen32 < 0 || count32 < 0) 1340 return (set_errno(EINVAL)); 1341 aiov[i].iov_len = iovlen32; 1342 aiov[i].iov_base = 1343 (caddr_t)(uintptr_t)aiov32[i].iov_base; 1344 } 1345 } else 1346 #endif /* _SYSCALL32_IMPL */ 1347 if (iovcnt != 0 && 1348 copyin(lmsg.msg_iov, aiov, 1349 (unsigned)iovcnt * sizeof (struct iovec))) { 1350 return (set_errno(EFAULT)); 1351 } 1352 len = 0; 1353 for (i = 0; i < iovcnt; i++) { 1354 ssize_t iovlen = aiov[i].iov_len; 1355 len += iovlen; 1356 if (iovlen < 0 || len < 0) { 1357 return (set_errno(EINVAL)); 1358 } 1359 } 1360 auio.uio_loffset = 0; 1361 auio.uio_iov = aiov; 1362 auio.uio_iovcnt = iovcnt; 1363 auio.uio_resid = len; 1364 auio.uio_segflg = UIO_USERSPACE; 1365 auio.uio_limit = 0; 1366 1367 return (sendit(sock, &lmsg, &auio, flags)); 1368 } 1369 1370 ssize_t 1371 sendto(int sock, void *buffer, size_t len, int flags, 1372 struct sockaddr *name, socklen_t namelen) 1373 { 1374 struct nmsghdr lmsg; 1375 struct uio auio; 1376 struct iovec aiov[1]; 1377 1378 dprint(1, ("sendto(%d, %p, %ld, %d, %p, %d)\n", 1379 sock, buffer, len, flags, (void *)name, namelen)); 1380 1381 if ((ssize_t)len < 0) { 1382 return (set_errno(EINVAL)); 1383 } 1384 1385 aiov[0].iov_base = buffer; 1386 aiov[0].iov_len = len; 1387 auio.uio_loffset = 0; 1388 auio.uio_iov = aiov; 1389 auio.uio_iovcnt = 1; 1390 auio.uio_resid = len; 1391 auio.uio_segflg = UIO_USERSPACE; 1392 auio.uio_limit = 0; 1393 1394 lmsg.msg_name = (char *)name; 1395 lmsg.msg_namelen = namelen; 1396 lmsg.msg_control = NULL; 1397 if (!(flags & MSG_XPG4_2)) { 1398 /* 1399 * In order to be compatible with the libsocket/sockmod 1400 * implementation we set EOR for all send* calls. 1401 */ 1402 flags |= MSG_EOR; 1403 } 1404 return (sendit(sock, &lmsg, &auio, flags)); 1405 } 1406 1407 /*ARGSUSED3*/ 1408 int 1409 getpeername(int sock, struct sockaddr *name, socklen_t *namelenp, int version) 1410 { 1411 struct sonode *so; 1412 int error; 1413 socklen_t namelen; 1414 socklen_t sock_addrlen; 1415 struct sockaddr *sock_addrp; 1416 1417 dprint(1, ("getpeername(%d, %p, %p)\n", 1418 sock, (void *)name, (void *)namelenp)); 1419 1420 if ((so = getsonode(sock, &error, NULL)) == NULL) 1421 goto bad; 1422 1423 ASSERT(MUTEX_NOT_HELD(&so->so_lock)); 1424 if (copyin(namelenp, &namelen, sizeof (namelen)) || 1425 (name == NULL && namelen != 0)) { 1426 error = EFAULT; 1427 goto rel_out; 1428 } 1429 sock_addrlen = so->so_max_addr_len; 1430 sock_addrp = (struct sockaddr *)kmem_alloc(sock_addrlen, KM_SLEEP); 1431 1432 if ((error = socket_getpeername(so, sock_addrp, &sock_addrlen, 1433 B_FALSE, CRED())) == 0) { 1434 ASSERT(sock_addrlen <= so->so_max_addr_len); 1435 error = copyout_name(name, namelen, namelenp, 1436 (void *)sock_addrp, sock_addrlen); 1437 } 1438 kmem_free(sock_addrp, so->so_max_addr_len); 1439 rel_out: 1440 releasef(sock); 1441 bad: return (error != 0 ? set_errno(error) : 0); 1442 } 1443 1444 /*ARGSUSED3*/ 1445 int 1446 getsockname(int sock, struct sockaddr *name, socklen_t *namelenp, int version) 1447 { 1448 struct sonode *so; 1449 int error; 1450 socklen_t namelen, sock_addrlen; 1451 struct sockaddr *sock_addrp; 1452 1453 dprint(1, ("getsockname(%d, %p, %p)\n", 1454 sock, (void *)name, (void *)namelenp)); 1455 1456 if ((so = getsonode(sock, &error, NULL)) == NULL) 1457 goto bad; 1458 1459 ASSERT(MUTEX_NOT_HELD(&so->so_lock)); 1460 if (copyin(namelenp, &namelen, sizeof (namelen)) || 1461 (name == NULL && namelen != 0)) { 1462 error = EFAULT; 1463 goto rel_out; 1464 } 1465 1466 sock_addrlen = so->so_max_addr_len; 1467 sock_addrp = (struct sockaddr *)kmem_alloc(sock_addrlen, KM_SLEEP); 1468 if ((error = socket_getsockname(so, sock_addrp, &sock_addrlen, 1469 CRED())) == 0) { 1470 ASSERT(MUTEX_NOT_HELD(&so->so_lock)); 1471 ASSERT(sock_addrlen <= so->so_max_addr_len); 1472 error = copyout_name(name, namelen, namelenp, 1473 (void *)sock_addrp, sock_addrlen); 1474 } 1475 kmem_free(sock_addrp, so->so_max_addr_len); 1476 rel_out: 1477 releasef(sock); 1478 bad: return (error != 0 ? set_errno(error) : 0); 1479 } 1480 1481 /*ARGSUSED5*/ 1482 int 1483 getsockopt(int sock, int level, int option_name, void *option_value, 1484 socklen_t *option_lenp, int version) 1485 { 1486 struct sonode *so; 1487 socklen_t optlen, optlen_res; 1488 void *optval; 1489 int error; 1490 1491 dprint(1, ("getsockopt(%d, %d, %d, %p, %p)\n", 1492 sock, level, option_name, option_value, (void *)option_lenp)); 1493 1494 if ((so = getsonode(sock, &error, NULL)) == NULL) 1495 return (set_errno(error)); 1496 1497 ASSERT(MUTEX_NOT_HELD(&so->so_lock)); 1498 if (copyin(option_lenp, &optlen, sizeof (optlen))) { 1499 releasef(sock); 1500 return (set_errno(EFAULT)); 1501 } 1502 /* 1503 * Verify that the length is not excessive to prevent 1504 * an application from consuming all of kernel memory. 1505 */ 1506 if (optlen > SO_MAXARGSIZE) { 1507 error = EINVAL; 1508 releasef(sock); 1509 return (set_errno(error)); 1510 } 1511 optval = kmem_alloc(optlen, KM_SLEEP); 1512 optlen_res = optlen; 1513 error = socket_getsockopt(so, level, option_name, optval, 1514 &optlen_res, (version != SOV_XPG4_2) ? 0 : _SOGETSOCKOPT_XPG4_2, 1515 CRED()); 1516 releasef(sock); 1517 if (error) { 1518 kmem_free(optval, optlen); 1519 return (set_errno(error)); 1520 } 1521 error = copyout_arg(option_value, optlen, option_lenp, 1522 optval, optlen_res); 1523 kmem_free(optval, optlen); 1524 if (error) 1525 return (set_errno(error)); 1526 return (0); 1527 } 1528 1529 /*ARGSUSED5*/ 1530 int 1531 setsockopt(int sock, int level, int option_name, void *option_value, 1532 socklen_t option_len, int version) 1533 { 1534 struct sonode *so; 1535 intptr_t buffer[2]; 1536 void *optval = NULL; 1537 int error; 1538 1539 dprint(1, ("setsockopt(%d, %d, %d, %p, %d)\n", 1540 sock, level, option_name, option_value, option_len)); 1541 1542 if ((so = getsonode(sock, &error, NULL)) == NULL) 1543 return (set_errno(error)); 1544 1545 if (option_value != NULL) { 1546 if (option_len != 0) { 1547 /* 1548 * Verify that the length is not excessive to prevent 1549 * an application from consuming all of kernel memory. 1550 */ 1551 if (option_len > SO_MAXARGSIZE) { 1552 error = EINVAL; 1553 goto done2; 1554 } 1555 optval = option_len <= sizeof (buffer) ? 1556 &buffer : kmem_alloc((size_t)option_len, KM_SLEEP); 1557 ASSERT(MUTEX_NOT_HELD(&so->so_lock)); 1558 if (copyin(option_value, optval, (size_t)option_len)) { 1559 error = EFAULT; 1560 goto done1; 1561 } 1562 } 1563 } else 1564 option_len = 0; 1565 1566 error = socket_setsockopt(so, level, option_name, optval, 1567 (t_uscalar_t)option_len, CRED()); 1568 done1: 1569 if (optval != buffer) 1570 kmem_free(optval, (size_t)option_len); 1571 done2: 1572 releasef(sock); 1573 if (error) 1574 return (set_errno(error)); 1575 return (0); 1576 } 1577 1578 static int 1579 sockconf_add_sock(int family, int type, int protocol, char *name) 1580 { 1581 int error = 0; 1582 char *kdevpath = NULL; 1583 char *kmodule = NULL; 1584 char *buf = NULL; 1585 size_t pathlen = 0; 1586 struct sockparams *sp; 1587 1588 if (name == NULL) 1589 return (EINVAL); 1590 /* 1591 * Copyin the name. 1592 * This also makes it possible to check for too long pathnames. 1593 * Compress the space needed for the name before passing it 1594 * to soconfig - soconfig will store the string until 1595 * the configuration is removed. 1596 */ 1597 buf = kmem_alloc(MAXPATHLEN, KM_SLEEP); 1598 if ((error = copyinstr(name, buf, MAXPATHLEN, &pathlen)) != 0) { 1599 kmem_free(buf, MAXPATHLEN); 1600 return (error); 1601 } 1602 if (strncmp(buf, "/dev", strlen("/dev")) == 0) { 1603 /* For device */ 1604 1605 /* 1606 * Special handling for NCA: 1607 * 1608 * DEV_NCA is never opened even if an application 1609 * requests for AF_NCA. The device opened is instead a 1610 * predefined AF_INET transport (NCA_INET_DEV). 1611 * 1612 * Prior to Volo (PSARC/2007/587) NCA would determine 1613 * the device using a lookup, which worked then because 1614 * all protocols were based on TPI. Since TPI is no 1615 * longer the default, we have to explicitly state 1616 * which device to use. 1617 */ 1618 if (strcmp(buf, NCA_DEV) == 0) { 1619 /* only support entry <28, 2, 0> */ 1620 if (family != AF_NCA || type != SOCK_STREAM || 1621 protocol != 0) { 1622 kmem_free(buf, MAXPATHLEN); 1623 return (EINVAL); 1624 } 1625 1626 pathlen = strlen(NCA_INET_DEV) + 1; 1627 kdevpath = kmem_alloc(pathlen, KM_SLEEP); 1628 bcopy(NCA_INET_DEV, kdevpath, pathlen); 1629 kdevpath[pathlen - 1] = '\0'; 1630 } else { 1631 kdevpath = kmem_alloc(pathlen, KM_SLEEP); 1632 bcopy(buf, kdevpath, pathlen); 1633 kdevpath[pathlen - 1] = '\0'; 1634 } 1635 } else { 1636 /* For socket module */ 1637 kmodule = kmem_alloc(pathlen, KM_SLEEP); 1638 bcopy(buf, kmodule, pathlen); 1639 kmodule[pathlen - 1] = '\0'; 1640 pathlen = 0; 1641 } 1642 kmem_free(buf, MAXPATHLEN); 1643 1644 /* sockparams_create frees mod name and devpath upon failure */ 1645 sp = sockparams_create(family, type, protocol, kmodule, 1646 kdevpath, pathlen, 0, KM_SLEEP, &error); 1647 if (sp != NULL) { 1648 error = sockparams_add(sp); 1649 if (error != 0) 1650 sockparams_destroy(sp); 1651 } 1652 1653 return (error); 1654 } 1655 1656 static int 1657 sockconf_remove_sock(int family, int type, int protocol) 1658 { 1659 return (sockparams_delete(family, type, protocol)); 1660 } 1661 1662 static int 1663 sockconfig_remove_filter(const char *uname) 1664 { 1665 char kname[SOF_MAXNAMELEN]; 1666 size_t len; 1667 int error; 1668 sof_entry_t *ent; 1669 1670 if ((error = copyinstr(uname, kname, SOF_MAXNAMELEN, &len)) != 0) 1671 return (error); 1672 1673 ent = sof_entry_remove_by_name(kname); 1674 if (ent == NULL) 1675 return (ENXIO); 1676 1677 mutex_enter(&ent->sofe_lock); 1678 ASSERT(!(ent->sofe_flags & SOFEF_CONDEMED)); 1679 if (ent->sofe_refcnt == 0) { 1680 mutex_exit(&ent->sofe_lock); 1681 sof_entry_free(ent); 1682 } else { 1683 /* let the last socket free the filter */ 1684 ent->sofe_flags |= SOFEF_CONDEMED; 1685 mutex_exit(&ent->sofe_lock); 1686 } 1687 1688 return (0); 1689 } 1690 1691 static int 1692 sockconfig_add_filter(const char *uname, void *ufilpropp) 1693 { 1694 struct sockconfig_filter_props filprop; 1695 sof_entry_t *ent; 1696 int error; 1697 size_t tuplesz, len; 1698 char hintbuf[SOF_MAXNAMELEN]; 1699 1700 ent = kmem_zalloc(sizeof (sof_entry_t), KM_SLEEP); 1701 mutex_init(&ent->sofe_lock, NULL, MUTEX_DEFAULT, NULL); 1702 1703 if ((error = copyinstr(uname, ent->sofe_name, SOF_MAXNAMELEN, 1704 &len)) != 0) { 1705 sof_entry_free(ent); 1706 return (error); 1707 } 1708 1709 if (get_udatamodel() == DATAMODEL_NATIVE) { 1710 if (copyin(ufilpropp, &filprop, sizeof (filprop)) != 0) { 1711 sof_entry_free(ent); 1712 return (EFAULT); 1713 } 1714 } 1715 #ifdef _SYSCALL32_IMPL 1716 else { 1717 struct sockconfig_filter_props32 filprop32; 1718 1719 if (copyin(ufilpropp, &filprop32, sizeof (filprop32)) != 0) { 1720 sof_entry_free(ent); 1721 return (EFAULT); 1722 } 1723 filprop.sfp_modname = (char *)(uintptr_t)filprop32.sfp_modname; 1724 filprop.sfp_autoattach = filprop32.sfp_autoattach; 1725 filprop.sfp_hint = filprop32.sfp_hint; 1726 filprop.sfp_hintarg = (char *)(uintptr_t)filprop32.sfp_hintarg; 1727 filprop.sfp_socktuple_cnt = filprop32.sfp_socktuple_cnt; 1728 filprop.sfp_socktuple = 1729 (sof_socktuple_t *)(uintptr_t)filprop32.sfp_socktuple; 1730 } 1731 #endif /* _SYSCALL32_IMPL */ 1732 1733 if ((error = copyinstr(filprop.sfp_modname, ent->sofe_modname, 1734 sizeof (ent->sofe_modname), &len)) != 0) { 1735 sof_entry_free(ent); 1736 return (error); 1737 } 1738 1739 /* 1740 * A filter must specify at least one socket tuple. 1741 */ 1742 if (filprop.sfp_socktuple_cnt == 0 || 1743 filprop.sfp_socktuple_cnt > SOF_MAXSOCKTUPLECNT) { 1744 sof_entry_free(ent); 1745 return (EINVAL); 1746 } 1747 ent->sofe_flags = filprop.sfp_autoattach ? SOFEF_AUTO : SOFEF_PROG; 1748 ent->sofe_hint = filprop.sfp_hint; 1749 1750 /* 1751 * Verify the hint, and copy in the hint argument, if necessary. 1752 */ 1753 switch (ent->sofe_hint) { 1754 case SOF_HINT_BEFORE: 1755 case SOF_HINT_AFTER: 1756 if ((error = copyinstr(filprop.sfp_hintarg, hintbuf, 1757 sizeof (hintbuf), &len)) != 0) { 1758 sof_entry_free(ent); 1759 return (error); 1760 } 1761 ent->sofe_hintarg = kmem_alloc(len, KM_SLEEP); 1762 bcopy(hintbuf, ent->sofe_hintarg, len); 1763 /* FALLTHRU */ 1764 case SOF_HINT_TOP: 1765 case SOF_HINT_BOTTOM: 1766 /* hints cannot be used with programmatic filters */ 1767 if (ent->sofe_flags & SOFEF_PROG) { 1768 sof_entry_free(ent); 1769 return (EINVAL); 1770 } 1771 break; 1772 case SOF_HINT_NONE: 1773 break; 1774 default: 1775 /* bad hint value */ 1776 sof_entry_free(ent); 1777 return (EINVAL); 1778 } 1779 1780 ent->sofe_socktuple_cnt = filprop.sfp_socktuple_cnt; 1781 tuplesz = sizeof (sof_socktuple_t) * ent->sofe_socktuple_cnt; 1782 ent->sofe_socktuple = kmem_alloc(tuplesz, KM_SLEEP); 1783 1784 if (get_udatamodel() == DATAMODEL_NATIVE) { 1785 if (copyin(filprop.sfp_socktuple, ent->sofe_socktuple, 1786 tuplesz)) { 1787 sof_entry_free(ent); 1788 return (EFAULT); 1789 } 1790 } 1791 #ifdef _SYSCALL32_IMPL 1792 else { 1793 int i; 1794 caddr_t data = (caddr_t)filprop.sfp_socktuple; 1795 sof_socktuple_t *tup = ent->sofe_socktuple; 1796 sof_socktuple32_t tup32; 1797 1798 tup = ent->sofe_socktuple; 1799 for (i = 0; i < ent->sofe_socktuple_cnt; i++, tup++) { 1800 ASSERT(tup < ent->sofe_socktuple + tuplesz); 1801 1802 if (copyin(data, &tup32, sizeof (tup32)) != 0) { 1803 sof_entry_free(ent); 1804 return (EFAULT); 1805 } 1806 tup->sofst_family = tup32.sofst_family; 1807 tup->sofst_type = tup32.sofst_type; 1808 tup->sofst_protocol = tup32.sofst_protocol; 1809 1810 data += sizeof (tup32); 1811 } 1812 } 1813 #endif /* _SYSCALL32_IMPL */ 1814 1815 /* Sockets can start using the filter as soon as the filter is added */ 1816 if ((error = sof_entry_add(ent)) != 0) 1817 sof_entry_free(ent); 1818 1819 return (error); 1820 } 1821 1822 /* 1823 * Socket configuration system call. It is used to add and remove 1824 * socket types. 1825 */ 1826 int 1827 sockconfig(int cmd, void *arg1, void *arg2, void *arg3, void *arg4) 1828 { 1829 int error = 0; 1830 1831 if (secpolicy_net_config(CRED(), B_FALSE) != 0) 1832 return (set_errno(EPERM)); 1833 1834 if (sockfs_defer_nl7c_init) { 1835 nl7c_init(); 1836 sockfs_defer_nl7c_init = 0; 1837 } 1838 1839 switch (cmd) { 1840 case SOCKCONFIG_ADD_SOCK: 1841 error = sockconf_add_sock((int)(uintptr_t)arg1, 1842 (int)(uintptr_t)arg2, (int)(uintptr_t)arg3, arg4); 1843 break; 1844 case SOCKCONFIG_REMOVE_SOCK: 1845 error = sockconf_remove_sock((int)(uintptr_t)arg1, 1846 (int)(uintptr_t)arg2, (int)(uintptr_t)arg3); 1847 break; 1848 case SOCKCONFIG_ADD_FILTER: 1849 error = sockconfig_add_filter((const char *)arg1, arg2); 1850 break; 1851 case SOCKCONFIG_REMOVE_FILTER: 1852 error = sockconfig_remove_filter((const char *)arg1); 1853 break; 1854 case SOCKCONFIG_GET_SOCKTABLE: 1855 error = sockparams_copyout_socktable((int)(uintptr_t)arg1); 1856 break; 1857 default: 1858 #ifdef DEBUG 1859 cmn_err(CE_NOTE, "sockconfig: unkonwn subcommand %d", cmd); 1860 #endif 1861 error = EINVAL; 1862 break; 1863 } 1864 1865 if (error != 0) { 1866 eprintline(error); 1867 return (set_errno(error)); 1868 } 1869 return (0); 1870 } 1871 1872 1873 /* 1874 * Sendfile is implemented through two schemes, direct I/O or by 1875 * caching in the filesystem page cache. We cache the input file by 1876 * default and use direct I/O only if sendfile_max_size is set 1877 * appropriately as explained below. Note that this logic is consistent 1878 * with other filesystems where caching is turned on by default 1879 * unless explicitly turned off by using the DIRECTIO ioctl. 1880 * 1881 * We choose a slightly different scheme here. One can turn off 1882 * caching by setting sendfile_max_size to 0. One can also enable 1883 * caching of files <= sendfile_max_size by setting sendfile_max_size 1884 * to an appropriate value. By default sendfile_max_size is set to the 1885 * maximum value so that all files are cached. In future, we may provide 1886 * better interfaces for caching the file. 1887 * 1888 * Sendfile through Direct I/O (Zero copy) 1889 * -------------------------------------- 1890 * 1891 * As disks are normally slower than the network, we can't have a 1892 * single thread that reads the disk and writes to the network. We 1893 * need to have parallelism. This is done by having the sendfile 1894 * thread create another thread that reads from the filesystem 1895 * and queues it for network processing. In this scheme, the data 1896 * is never copied anywhere i.e it is zero copy unlike the other 1897 * scheme. 1898 * 1899 * We have a sendfile queue (snfq) where each sendfile 1900 * request (snf_req_t) is queued for processing by a thread. Number 1901 * of threads is dynamically allocated and they exit if they are idling 1902 * beyond a specified amount of time. When each request (snf_req_t) is 1903 * processed by a thread, it produces a number of mblk_t structures to 1904 * be consumed by the sendfile thread. snf_deque and snf_enque are 1905 * used for consuming and producing mblks. Size of the filesystem 1906 * read is determined by the tunable (sendfile_read_size). A single 1907 * mblk holds sendfile_read_size worth of data (except the last 1908 * read of the file) which is sent down as a whole to the network. 1909 * sendfile_read_size is set to 1 MB as this seems to be the optimal 1910 * value for the UFS filesystem backed by a striped storage array. 1911 * 1912 * Synchronisation between read (producer) and write (consumer) threads. 1913 * -------------------------------------------------------------------- 1914 * 1915 * sr_lock protects sr_ib_head and sr_ib_tail. The lock is held while 1916 * adding and deleting items in this list. Error can happen anytime 1917 * during read or write. There could be unprocessed mblks in the 1918 * sr_ib_XXX list when a read or write error occurs. Whenever error 1919 * is encountered, we need two things to happen : 1920 * 1921 * a) One of the threads need to clean the mblks. 1922 * b) When one thread encounters an error, the other should stop. 1923 * 1924 * For (a), we don't want to penalize the reader thread as it could do 1925 * some useful work processing other requests. For (b), the error can 1926 * be detected by examining sr_read_error or sr_write_error. 1927 * sr_lock protects sr_read_error and sr_write_error. If both reader and 1928 * writer encounters error, we need to report the write error back to 1929 * the application as that's what would have happened if the operations 1930 * were done sequentially. With this in mind, following should work : 1931 * 1932 * - Check for errors before read or write. 1933 * - If the reader encounters error, set the error in sr_read_error. 1934 * Check sr_write_error, if it is set, send cv_signal as it is 1935 * waiting for reader to complete. If it is not set, the writer 1936 * is either running sinking data to the network or blocked 1937 * because of flow control. For handling the latter case, we 1938 * always send a signal. In any case, it will examine sr_read_error 1939 * and return. sr_read_error is marked with SR_READ_DONE to tell 1940 * the writer that the reader is done in all the cases. 1941 * - If the writer encounters error, set the error in sr_write_error. 1942 * The reader thread is either blocked because of flow control or 1943 * running reading data from the disk. For the former, we need to 1944 * wakeup the thread. Again to keep it simple, we always wake up 1945 * the reader thread. Then, wait for the read thread to complete 1946 * if it is not done yet. Cleanup and return. 1947 * 1948 * High and low water marks for the read thread. 1949 * -------------------------------------------- 1950 * 1951 * If sendfile() is used to send data over a slow network, we need to 1952 * make sure that the read thread does not produce data at a faster 1953 * rate than the network. This can happen if the disk is faster than 1954 * the network. In such a case, we don't want to build a very large queue. 1955 * But we would still like to get all of the network throughput possible. 1956 * This implies that network should never block waiting for data. 1957 * As there are lot of disk throughput/network throughput combinations 1958 * possible, it is difficult to come up with an accurate number. 1959 * A typical 10K RPM disk has a max seek latency 17ms and rotational 1960 * latency of 3ms for reading a disk block. Thus, the total latency to 1961 * initiate a new read, transfer data from the disk and queue for 1962 * transmission would take about a max of 25ms. Todays max transfer rate 1963 * for network is 100MB/sec. If the thread is blocked because of flow 1964 * control, it would take 25ms to get new data ready for transmission. 1965 * We have to make sure that network is not idling, while we are initiating 1966 * new transfers. So, at 100MB/sec, to keep network busy we would need 1967 * 2.5MB of data. Rounding off, we keep the low water mark to be 3MB of data. 1968 * We need to pick a high water mark so that the woken up thread would 1969 * do considerable work before blocking again to prevent thrashing. Currently, 1970 * we pick this to be 10 times that of the low water mark. 1971 * 1972 * Sendfile with segmap caching (One copy from page cache to mblks). 1973 * ---------------------------------------------------------------- 1974 * 1975 * We use the segmap cache for caching the file, if the size of file 1976 * is <= sendfile_max_size. In this case we don't use threads as VM 1977 * is reasonably fast enough to keep up with the network. If the underlying 1978 * transport allows, we call segmap_getmapflt() to map MAXBSIZE (8K) worth 1979 * of data into segmap space, and use the virtual address from segmap 1980 * directly through desballoc() to avoid copy. Once the transport is done 1981 * with the data, the mapping will be released through segmap_release() 1982 * called by the call-back routine. 1983 * 1984 * If zero-copy is not allowed by the transport, we simply call VOP_READ() 1985 * to copy the data from the filesystem into our temporary network buffer. 1986 * 1987 * To disable caching, set sendfile_max_size to 0. 1988 */ 1989 1990 uint_t sendfile_read_size = 1024 * 1024; 1991 #define SENDFILE_REQ_LOWAT 3 * 1024 * 1024 1992 uint_t sendfile_req_lowat = SENDFILE_REQ_LOWAT; 1993 uint_t sendfile_req_hiwat = 10 * SENDFILE_REQ_LOWAT; 1994 struct sendfile_stats sf_stats; 1995 struct sendfile_queue *snfq; 1996 clock_t snfq_timeout; 1997 off64_t sendfile_max_size; 1998 1999 static void snf_enque(snf_req_t *, mblk_t *); 2000 static mblk_t *snf_deque(snf_req_t *); 2001 2002 void 2003 sendfile_init(void) 2004 { 2005 snfq = kmem_zalloc(sizeof (struct sendfile_queue), KM_SLEEP); 2006 2007 mutex_init(&snfq->snfq_lock, NULL, MUTEX_DEFAULT, NULL); 2008 cv_init(&snfq->snfq_cv, NULL, CV_DEFAULT, NULL); 2009 snfq->snfq_max_threads = max_ncpus; 2010 snfq_timeout = SNFQ_TIMEOUT; 2011 /* Cache all files by default. */ 2012 sendfile_max_size = MAXOFFSET_T; 2013 } 2014 2015 /* 2016 * Queues a mblk_t for network processing. 2017 */ 2018 static void 2019 snf_enque(snf_req_t *sr, mblk_t *mp) 2020 { 2021 mp->b_next = NULL; 2022 mutex_enter(&sr->sr_lock); 2023 if (sr->sr_mp_head == NULL) { 2024 sr->sr_mp_head = sr->sr_mp_tail = mp; 2025 cv_signal(&sr->sr_cv); 2026 } else { 2027 sr->sr_mp_tail->b_next = mp; 2028 sr->sr_mp_tail = mp; 2029 } 2030 sr->sr_qlen += MBLKL(mp); 2031 while ((sr->sr_qlen > sr->sr_hiwat) && 2032 (sr->sr_write_error == 0)) { 2033 sf_stats.ss_full_waits++; 2034 cv_wait(&sr->sr_cv, &sr->sr_lock); 2035 } 2036 mutex_exit(&sr->sr_lock); 2037 } 2038 2039 /* 2040 * De-queues a mblk_t for network processing. 2041 */ 2042 static mblk_t * 2043 snf_deque(snf_req_t *sr) 2044 { 2045 mblk_t *mp; 2046 2047 mutex_enter(&sr->sr_lock); 2048 /* 2049 * If we have encountered an error on read or read is 2050 * completed and no more mblks, return NULL. 2051 * We need to check for NULL sr_mp_head also as 2052 * the reads could have completed and there is 2053 * nothing more to come. 2054 */ 2055 if (((sr->sr_read_error & ~SR_READ_DONE) != 0) || 2056 ((sr->sr_read_error & SR_READ_DONE) && 2057 sr->sr_mp_head == NULL)) { 2058 mutex_exit(&sr->sr_lock); 2059 return (NULL); 2060 } 2061 /* 2062 * To start with neither SR_READ_DONE is marked nor 2063 * the error is set. When we wake up from cv_wait, 2064 * following are the possibilities : 2065 * 2066 * a) sr_read_error is zero and mblks are queued. 2067 * b) sr_read_error is set to SR_READ_DONE 2068 * and mblks are queued. 2069 * c) sr_read_error is set to SR_READ_DONE 2070 * and no mblks. 2071 * d) sr_read_error is set to some error other 2072 * than SR_READ_DONE. 2073 */ 2074 2075 while ((sr->sr_read_error == 0) && (sr->sr_mp_head == NULL)) { 2076 sf_stats.ss_empty_waits++; 2077 cv_wait(&sr->sr_cv, &sr->sr_lock); 2078 } 2079 /* Handle (a) and (b) first - the normal case. */ 2080 if (((sr->sr_read_error & ~SR_READ_DONE) == 0) && 2081 (sr->sr_mp_head != NULL)) { 2082 mp = sr->sr_mp_head; 2083 sr->sr_mp_head = mp->b_next; 2084 sr->sr_qlen -= MBLKL(mp); 2085 if (sr->sr_qlen < sr->sr_lowat) 2086 cv_signal(&sr->sr_cv); 2087 mutex_exit(&sr->sr_lock); 2088 mp->b_next = NULL; 2089 return (mp); 2090 } 2091 /* Handle (c) and (d). */ 2092 mutex_exit(&sr->sr_lock); 2093 return (NULL); 2094 } 2095 2096 /* 2097 * Reads data from the filesystem and queues it for network processing. 2098 */ 2099 void 2100 snf_async_read(snf_req_t *sr) 2101 { 2102 size_t iosize; 2103 u_offset_t fileoff; 2104 u_offset_t size; 2105 int ret_size; 2106 int error; 2107 file_t *fp; 2108 mblk_t *mp; 2109 struct vnode *vp; 2110 int extra = 0; 2111 int maxblk = 0; 2112 int wroff = 0; 2113 struct sonode *so; 2114 2115 fp = sr->sr_fp; 2116 size = sr->sr_file_size; 2117 fileoff = sr->sr_file_off; 2118 2119 /* 2120 * Ignore the error for filesystems that doesn't support DIRECTIO. 2121 */ 2122 (void) VOP_IOCTL(fp->f_vnode, _FIODIRECTIO, DIRECTIO_ON, 0, 2123 kcred, NULL, NULL); 2124 2125 vp = sr->sr_vp; 2126 if (vp->v_type == VSOCK) { 2127 stdata_t *stp; 2128 2129 /* 2130 * Get the extra space to insert a header and a trailer. 2131 */ 2132 so = VTOSO(vp); 2133 stp = vp->v_stream; 2134 if (stp == NULL) { 2135 wroff = so->so_proto_props.sopp_wroff; 2136 maxblk = so->so_proto_props.sopp_maxblk; 2137 extra = wroff + so->so_proto_props.sopp_tail; 2138 } else { 2139 wroff = (int)(stp->sd_wroff); 2140 maxblk = (int)(stp->sd_maxblk); 2141 extra = wroff + (int)(stp->sd_tail); 2142 } 2143 } 2144 2145 while ((size != 0) && (sr->sr_write_error == 0)) { 2146 2147 iosize = (int)MIN(sr->sr_maxpsz, size); 2148 2149 /* 2150 * Socket filters can limit the mblk size, 2151 * so limit reads to maxblk if there are 2152 * filters present. 2153 */ 2154 if (vp->v_type == VSOCK && 2155 so->so_filter_active > 0 && maxblk != INFPSZ) 2156 iosize = (int)MIN(iosize, maxblk); 2157 2158 if (is_system_labeled()) { 2159 mp = allocb_cred(iosize + extra, CRED(), 2160 curproc->p_pid); 2161 } else { 2162 mp = allocb(iosize + extra, BPRI_MED); 2163 } 2164 if (mp == NULL) { 2165 error = EAGAIN; 2166 break; 2167 } 2168 2169 mp->b_rptr += wroff; 2170 2171 ret_size = soreadfile(fp, mp->b_rptr, fileoff, &error, iosize); 2172 2173 /* Error or Reached EOF ? */ 2174 if ((error != 0) || (ret_size == 0)) { 2175 freeb(mp); 2176 break; 2177 } 2178 mp->b_wptr = mp->b_rptr + ret_size; 2179 2180 snf_enque(sr, mp); 2181 size -= ret_size; 2182 fileoff += ret_size; 2183 } 2184 (void) VOP_IOCTL(fp->f_vnode, _FIODIRECTIO, DIRECTIO_OFF, 0, 2185 kcred, NULL, NULL); 2186 mutex_enter(&sr->sr_lock); 2187 sr->sr_read_error = error; 2188 sr->sr_read_error |= SR_READ_DONE; 2189 cv_signal(&sr->sr_cv); 2190 mutex_exit(&sr->sr_lock); 2191 } 2192 2193 void 2194 snf_async_thread(void) 2195 { 2196 snf_req_t *sr; 2197 callb_cpr_t cprinfo; 2198 clock_t time_left = 1; 2199 2200 CALLB_CPR_INIT(&cprinfo, &snfq->snfq_lock, callb_generic_cpr, "snfq"); 2201 2202 mutex_enter(&snfq->snfq_lock); 2203 for (;;) { 2204 /* 2205 * If we didn't find a entry, then block until woken up 2206 * again and then look through the queues again. 2207 */ 2208 while ((sr = snfq->snfq_req_head) == NULL) { 2209 CALLB_CPR_SAFE_BEGIN(&cprinfo); 2210 if (time_left <= 0) { 2211 snfq->snfq_svc_threads--; 2212 CALLB_CPR_EXIT(&cprinfo); 2213 thread_exit(); 2214 /* NOTREACHED */ 2215 } 2216 snfq->snfq_idle_cnt++; 2217 2218 time_left = cv_reltimedwait(&snfq->snfq_cv, 2219 &snfq->snfq_lock, snfq_timeout, TR_CLOCK_TICK); 2220 snfq->snfq_idle_cnt--; 2221 2222 CALLB_CPR_SAFE_END(&cprinfo, &snfq->snfq_lock); 2223 } 2224 snfq->snfq_req_head = sr->sr_next; 2225 snfq->snfq_req_cnt--; 2226 mutex_exit(&snfq->snfq_lock); 2227 snf_async_read(sr); 2228 mutex_enter(&snfq->snfq_lock); 2229 } 2230 } 2231 2232 2233 snf_req_t * 2234 create_thread(int operation, struct vnode *vp, file_t *fp, 2235 u_offset_t fileoff, u_offset_t size) 2236 { 2237 snf_req_t *sr; 2238 stdata_t *stp; 2239 2240 sr = (snf_req_t *)kmem_zalloc(sizeof (snf_req_t), KM_SLEEP); 2241 2242 sr->sr_vp = vp; 2243 sr->sr_fp = fp; 2244 stp = vp->v_stream; 2245 2246 /* 2247 * store sd_qn_maxpsz into sr_maxpsz while we have stream head. 2248 * stream might be closed before thread returns from snf_async_read. 2249 */ 2250 if (stp != NULL && stp->sd_qn_maxpsz > 0) { 2251 sr->sr_maxpsz = MIN(MAXBSIZE, stp->sd_qn_maxpsz); 2252 } else { 2253 sr->sr_maxpsz = MAXBSIZE; 2254 } 2255 2256 sr->sr_operation = operation; 2257 sr->sr_file_off = fileoff; 2258 sr->sr_file_size = size; 2259 sr->sr_hiwat = sendfile_req_hiwat; 2260 sr->sr_lowat = sendfile_req_lowat; 2261 mutex_init(&sr->sr_lock, NULL, MUTEX_DEFAULT, NULL); 2262 cv_init(&sr->sr_cv, NULL, CV_DEFAULT, NULL); 2263 /* 2264 * See whether we need another thread for servicing this 2265 * request. If there are already enough requests queued 2266 * for the threads, create one if not exceeding 2267 * snfq_max_threads. 2268 */ 2269 mutex_enter(&snfq->snfq_lock); 2270 if (snfq->snfq_req_cnt >= snfq->snfq_idle_cnt && 2271 snfq->snfq_svc_threads < snfq->snfq_max_threads) { 2272 (void) thread_create(NULL, 0, &snf_async_thread, 0, 0, &p0, 2273 TS_RUN, minclsyspri); 2274 snfq->snfq_svc_threads++; 2275 } 2276 if (snfq->snfq_req_head == NULL) { 2277 snfq->snfq_req_head = snfq->snfq_req_tail = sr; 2278 cv_signal(&snfq->snfq_cv); 2279 } else { 2280 snfq->snfq_req_tail->sr_next = sr; 2281 snfq->snfq_req_tail = sr; 2282 } 2283 snfq->snfq_req_cnt++; 2284 mutex_exit(&snfq->snfq_lock); 2285 return (sr); 2286 } 2287 2288 int 2289 snf_direct_io(file_t *fp, file_t *rfp, u_offset_t fileoff, u_offset_t size, 2290 ssize_t *count) 2291 { 2292 snf_req_t *sr; 2293 mblk_t *mp; 2294 int iosize; 2295 int error = 0; 2296 short fflag; 2297 struct vnode *vp; 2298 int ksize; 2299 struct nmsghdr msg; 2300 2301 ksize = 0; 2302 *count = 0; 2303 bzero(&msg, sizeof (msg)); 2304 2305 vp = fp->f_vnode; 2306 fflag = fp->f_flag; 2307 if ((sr = create_thread(READ_OP, vp, rfp, fileoff, size)) == NULL) 2308 return (EAGAIN); 2309 2310 /* 2311 * We check for read error in snf_deque. It has to check 2312 * for successful READ_DONE and return NULL, and we might 2313 * as well make an additional check there. 2314 */ 2315 while ((mp = snf_deque(sr)) != NULL) { 2316 2317 if (ISSIG(curthread, JUSTLOOKING)) { 2318 freeb(mp); 2319 error = EINTR; 2320 break; 2321 } 2322 iosize = MBLKL(mp); 2323 2324 error = socket_sendmblk(VTOSO(vp), &msg, fflag, CRED(), &mp); 2325 2326 if (error != 0) { 2327 if (mp != NULL) 2328 freeb(mp); 2329 break; 2330 } 2331 ksize += iosize; 2332 } 2333 *count = ksize; 2334 2335 mutex_enter(&sr->sr_lock); 2336 sr->sr_write_error = error; 2337 /* Look at the big comments on why we cv_signal here. */ 2338 cv_signal(&sr->sr_cv); 2339 2340 /* Wait for the reader to complete always. */ 2341 while (!(sr->sr_read_error & SR_READ_DONE)) { 2342 cv_wait(&sr->sr_cv, &sr->sr_lock); 2343 } 2344 /* If there is no write error, check for read error. */ 2345 if (error == 0) 2346 error = (sr->sr_read_error & ~SR_READ_DONE); 2347 2348 if (error != 0) { 2349 mblk_t *next_mp; 2350 2351 mp = sr->sr_mp_head; 2352 while (mp != NULL) { 2353 next_mp = mp->b_next; 2354 mp->b_next = NULL; 2355 freeb(mp); 2356 mp = next_mp; 2357 } 2358 } 2359 mutex_exit(&sr->sr_lock); 2360 kmem_free(sr, sizeof (snf_req_t)); 2361 return (error); 2362 } 2363 2364 /* Maximum no.of pages allocated by vpm for sendfile at a time */ 2365 #define SNF_VPMMAXPGS (VPMMAXPGS/2) 2366 2367 /* 2368 * Maximum no.of elements in the list returned by vpm, including 2369 * NULL for the last entry 2370 */ 2371 #define SNF_MAXVMAPS (SNF_VPMMAXPGS + 1) 2372 2373 typedef struct { 2374 unsigned int snfv_ref; 2375 frtn_t snfv_frtn; 2376 vnode_t *snfv_vp; 2377 struct vmap snfv_vml[SNF_MAXVMAPS]; 2378 } snf_vmap_desbinfo; 2379 2380 typedef struct { 2381 frtn_t snfi_frtn; 2382 caddr_t snfi_base; 2383 uint_t snfi_mapoff; 2384 size_t snfi_len; 2385 vnode_t *snfi_vp; 2386 } snf_smap_desbinfo; 2387 2388 /* 2389 * The callback function used for vpm mapped mblks called when the last ref of 2390 * the mblk is dropped which normally occurs when TCP receives the ack. But it 2391 * can be the driver too due to lazy reclaim. 2392 */ 2393 void 2394 snf_vmap_desbfree(snf_vmap_desbinfo *snfv) 2395 { 2396 ASSERT(snfv->snfv_ref != 0); 2397 if (atomic_dec_32_nv(&snfv->snfv_ref) == 0) { 2398 vpm_unmap_pages(snfv->snfv_vml, S_READ); 2399 VN_RELE(snfv->snfv_vp); 2400 kmem_free(snfv, sizeof (snf_vmap_desbinfo)); 2401 } 2402 } 2403 2404 /* 2405 * The callback function used for segmap'ped mblks called when the last ref of 2406 * the mblk is dropped which normally occurs when TCP receives the ack. But it 2407 * can be the driver too due to lazy reclaim. 2408 */ 2409 void 2410 snf_smap_desbfree(snf_smap_desbinfo *snfi) 2411 { 2412 if (! IS_KPM_ADDR(snfi->snfi_base)) { 2413 /* 2414 * We don't need to call segmap_fault(F_SOFTUNLOCK) for 2415 * segmap_kpm as long as the latter never falls back to 2416 * "use_segmap_range". (See segmap_getmapflt().) 2417 * 2418 * Using S_OTHER saves an redundant hat_setref() in 2419 * segmap_unlock() 2420 */ 2421 (void) segmap_fault(kas.a_hat, segkmap, 2422 (caddr_t)(uintptr_t)(((uintptr_t)snfi->snfi_base + 2423 snfi->snfi_mapoff) & PAGEMASK), snfi->snfi_len, 2424 F_SOFTUNLOCK, S_OTHER); 2425 } 2426 (void) segmap_release(segkmap, snfi->snfi_base, SM_DONTNEED); 2427 VN_RELE(snfi->snfi_vp); 2428 kmem_free(snfi, sizeof (*snfi)); 2429 } 2430 2431 /* 2432 * Use segmap or vpm instead of bcopy to send down a desballoca'ed, mblk. 2433 * When segmap is used, the mblk contains a segmap slot of no more 2434 * than MAXBSIZE. 2435 * 2436 * With vpm, a maximum of SNF_MAXVMAPS page-sized mappings can be obtained 2437 * in each iteration and sent by socket_sendmblk until an error occurs or 2438 * the requested size has been transferred. An mblk is esballoca'ed from 2439 * each mapped page and a chain of these mblk is sent to the transport layer. 2440 * vpm will be called to unmap the pages when all mblks have been freed by 2441 * free_func. 2442 * 2443 * At the end of the whole sendfile() operation, we wait till the data from 2444 * the last mblk is ack'ed by the transport before returning so that the 2445 * caller of sendfile() can safely modify the file content. 2446 * 2447 * The caller of this function should make sure that total_size does not exceed 2448 * the actual file size of fvp. 2449 */ 2450 int 2451 snf_segmap(file_t *fp, vnode_t *fvp, u_offset_t fileoff, u_offset_t total_size, 2452 ssize_t *count, boolean_t nowait) 2453 { 2454 caddr_t base; 2455 int mapoff; 2456 vnode_t *vp; 2457 mblk_t *mp = NULL; 2458 int chain_size; 2459 int error; 2460 clock_t deadlk_wait; 2461 short fflag; 2462 int ksize; 2463 struct vattr va; 2464 boolean_t dowait = B_FALSE; 2465 struct nmsghdr msg; 2466 2467 vp = fp->f_vnode; 2468 fflag = fp->f_flag; 2469 ksize = 0; 2470 bzero(&msg, sizeof (msg)); 2471 2472 for (;;) { 2473 if (ISSIG(curthread, JUSTLOOKING)) { 2474 error = EINTR; 2475 break; 2476 } 2477 2478 if (vpm_enable) { 2479 snf_vmap_desbinfo *snfv; 2480 mblk_t *nmp; 2481 int mblk_size; 2482 int maxsize; 2483 int i; 2484 2485 mapoff = fileoff & PAGEOFFSET; 2486 maxsize = MIN((SNF_VPMMAXPGS * PAGESIZE), total_size); 2487 2488 snfv = kmem_zalloc(sizeof (snf_vmap_desbinfo), 2489 KM_SLEEP); 2490 2491 /* 2492 * Get vpm mappings for maxsize with read access. 2493 * If the pages aren't available yet, we get 2494 * DEADLK, so wait and try again a little later using 2495 * an increasing wait. We might be here a long time. 2496 * 2497 * If delay_sig returns EINTR, be sure to exit and 2498 * pass it up to the caller. 2499 */ 2500 deadlk_wait = 0; 2501 while ((error = vpm_map_pages(fvp, fileoff, 2502 (size_t)maxsize, (VPM_FETCHPAGE), snfv->snfv_vml, 2503 SNF_MAXVMAPS, NULL, S_READ)) == EDEADLK) { 2504 deadlk_wait += (deadlk_wait < 5) ? 1 : 4; 2505 if ((error = delay_sig(deadlk_wait)) != 0) { 2506 break; 2507 } 2508 } 2509 if (error != 0) { 2510 kmem_free(snfv, sizeof (snf_vmap_desbinfo)); 2511 error = (error == EINTR) ? EINTR : EIO; 2512 goto out; 2513 } 2514 snfv->snfv_frtn.free_func = snf_vmap_desbfree; 2515 snfv->snfv_frtn.free_arg = (caddr_t)snfv; 2516 2517 /* Construct the mblk chain from the page mappings */ 2518 chain_size = 0; 2519 for (i = 0; (snfv->snfv_vml[i].vs_addr != NULL) && 2520 total_size > 0; i++) { 2521 ASSERT(chain_size < maxsize); 2522 mblk_size = MIN(snfv->snfv_vml[i].vs_len - 2523 mapoff, total_size); 2524 nmp = esballoca( 2525 (uchar_t *)snfv->snfv_vml[i].vs_addr + 2526 mapoff, mblk_size, BPRI_HI, 2527 &snfv->snfv_frtn); 2528 2529 /* 2530 * We return EAGAIN after unmapping the pages 2531 * if we cannot allocate the the head of the 2532 * chain. Otherwise, we continue sending the 2533 * mblks constructed so far. 2534 */ 2535 if (nmp == NULL) { 2536 if (i == 0) { 2537 vpm_unmap_pages(snfv->snfv_vml, 2538 S_READ); 2539 kmem_free(snfv, 2540 sizeof (snf_vmap_desbinfo)); 2541 error = EAGAIN; 2542 goto out; 2543 } 2544 break; 2545 } 2546 /* Mark this dblk with the zero-copy flag */ 2547 nmp->b_datap->db_struioflag |= STRUIO_ZC; 2548 nmp->b_wptr += mblk_size; 2549 chain_size += mblk_size; 2550 fileoff += mblk_size; 2551 total_size -= mblk_size; 2552 snfv->snfv_ref++; 2553 mapoff = 0; 2554 if (i > 0) 2555 linkb(mp, nmp); 2556 else 2557 mp = nmp; 2558 } 2559 VN_HOLD(fvp); 2560 snfv->snfv_vp = fvp; 2561 } else { 2562 /* vpm not supported. fallback to segmap */ 2563 snf_smap_desbinfo *snfi; 2564 2565 mapoff = fileoff & MAXBOFFSET; 2566 chain_size = MAXBSIZE - mapoff; 2567 if (chain_size > total_size) 2568 chain_size = total_size; 2569 /* 2570 * we don't forcefault because we'll call 2571 * segmap_fault(F_SOFTLOCK) next. 2572 * 2573 * S_READ will get the ref bit set (by either 2574 * segmap_getmapflt() or segmap_fault()) and page 2575 * shared locked. 2576 */ 2577 base = segmap_getmapflt(segkmap, fvp, fileoff, 2578 chain_size, segmap_kpm ? SM_FAULT : 0, S_READ); 2579 2580 snfi = kmem_alloc(sizeof (*snfi), KM_SLEEP); 2581 snfi->snfi_len = (size_t)roundup(mapoff+chain_size, 2582 PAGESIZE)- (mapoff & PAGEMASK); 2583 /* 2584 * We must call segmap_fault() even for segmap_kpm 2585 * because that's how error gets returned. 2586 * (segmap_getmapflt() never fails but segmap_fault() 2587 * does.) 2588 * 2589 * If the pages aren't available yet, we get 2590 * DEADLK, so wait and try again a little later using 2591 * an increasing wait. We might be here a long time. 2592 * 2593 * If delay_sig returns EINTR, be sure to exit and 2594 * pass it up to the caller. 2595 */ 2596 deadlk_wait = 0; 2597 while ((error = FC_ERRNO(segmap_fault(kas.a_hat, 2598 segkmap, (caddr_t)(uintptr_t)(((uintptr_t)base + 2599 mapoff) & PAGEMASK), snfi->snfi_len, F_SOFTLOCK, 2600 S_READ))) == EDEADLK) { 2601 deadlk_wait += (deadlk_wait < 5) ? 1 : 4; 2602 if ((error = delay_sig(deadlk_wait)) != 0) { 2603 break; 2604 } 2605 } 2606 if (error != 0) { 2607 (void) segmap_release(segkmap, base, 0); 2608 kmem_free(snfi, sizeof (*snfi)); 2609 error = (error == EINTR) ? EINTR : EIO; 2610 goto out; 2611 } 2612 snfi->snfi_frtn.free_func = snf_smap_desbfree; 2613 snfi->snfi_frtn.free_arg = (caddr_t)snfi; 2614 snfi->snfi_base = base; 2615 snfi->snfi_mapoff = mapoff; 2616 mp = esballoca((uchar_t *)base + mapoff, chain_size, 2617 BPRI_HI, &snfi->snfi_frtn); 2618 2619 if (mp == NULL) { 2620 (void) segmap_fault(kas.a_hat, segkmap, 2621 (caddr_t)(uintptr_t)(((uintptr_t)base + 2622 mapoff) & PAGEMASK), snfi->snfi_len, 2623 F_SOFTUNLOCK, S_OTHER); 2624 (void) segmap_release(segkmap, base, 0); 2625 kmem_free(snfi, sizeof (*snfi)); 2626 freemsg(mp); 2627 error = EAGAIN; 2628 goto out; 2629 } 2630 VN_HOLD(fvp); 2631 snfi->snfi_vp = fvp; 2632 mp->b_wptr += chain_size; 2633 2634 /* Mark this dblk with the zero-copy flag */ 2635 mp->b_datap->db_struioflag |= STRUIO_ZC; 2636 fileoff += chain_size; 2637 total_size -= chain_size; 2638 } 2639 2640 if (total_size == 0 && !nowait) { 2641 ASSERT(!dowait); 2642 dowait = B_TRUE; 2643 mp->b_datap->db_struioflag |= STRUIO_ZCNOTIFY; 2644 } 2645 VOP_RWUNLOCK(fvp, V_WRITELOCK_FALSE, NULL); 2646 error = socket_sendmblk(VTOSO(vp), &msg, fflag, CRED(), &mp); 2647 if (error != 0) { 2648 /* 2649 * mp contains the mblks that were not sent by 2650 * socket_sendmblk. Use its size to update *count 2651 */ 2652 *count = ksize + (chain_size - msgdsize(mp)); 2653 if (mp != NULL) 2654 freemsg(mp); 2655 return (error); 2656 } 2657 ksize += chain_size; 2658 if (total_size == 0) 2659 goto done; 2660 2661 (void) VOP_RWLOCK(fvp, V_WRITELOCK_FALSE, NULL); 2662 va.va_mask = AT_SIZE; 2663 error = VOP_GETATTR(fvp, &va, 0, kcred, NULL); 2664 if (error) 2665 break; 2666 /* Read as much as possible. */ 2667 if (fileoff >= va.va_size) 2668 break; 2669 if (total_size + fileoff > va.va_size) 2670 total_size = va.va_size - fileoff; 2671 } 2672 out: 2673 VOP_RWUNLOCK(fvp, V_WRITELOCK_FALSE, NULL); 2674 done: 2675 *count = ksize; 2676 if (dowait) { 2677 stdata_t *stp; 2678 2679 stp = vp->v_stream; 2680 if (stp == NULL) { 2681 struct sonode *so; 2682 so = VTOSO(vp); 2683 error = so_zcopy_wait(so); 2684 } else { 2685 mutex_enter(&stp->sd_lock); 2686 while (!(stp->sd_flag & STZCNOTIFY)) { 2687 if (cv_wait_sig(&stp->sd_zcopy_wait, 2688 &stp->sd_lock) == 0) { 2689 error = EINTR; 2690 break; 2691 } 2692 } 2693 stp->sd_flag &= ~STZCNOTIFY; 2694 mutex_exit(&stp->sd_lock); 2695 } 2696 } 2697 return (error); 2698 } 2699 2700 int 2701 snf_cache(file_t *fp, vnode_t *fvp, u_offset_t fileoff, u_offset_t size, 2702 uint_t maxpsz, ssize_t *count) 2703 { 2704 struct vnode *vp; 2705 mblk_t *mp; 2706 int iosize; 2707 int extra = 0; 2708 int error; 2709 short fflag; 2710 int ksize; 2711 int ioflag; 2712 struct uio auio; 2713 struct iovec aiov; 2714 struct vattr va; 2715 int maxblk = 0; 2716 int wroff = 0; 2717 struct sonode *so; 2718 struct nmsghdr msg; 2719 2720 vp = fp->f_vnode; 2721 if (vp->v_type == VSOCK) { 2722 stdata_t *stp; 2723 2724 /* 2725 * Get the extra space to insert a header and a trailer. 2726 */ 2727 so = VTOSO(vp); 2728 stp = vp->v_stream; 2729 if (stp == NULL) { 2730 wroff = so->so_proto_props.sopp_wroff; 2731 maxblk = so->so_proto_props.sopp_maxblk; 2732 extra = wroff + so->so_proto_props.sopp_tail; 2733 } else { 2734 wroff = (int)(stp->sd_wroff); 2735 maxblk = (int)(stp->sd_maxblk); 2736 extra = wroff + (int)(stp->sd_tail); 2737 } 2738 } 2739 bzero(&msg, sizeof (msg)); 2740 fflag = fp->f_flag; 2741 ksize = 0; 2742 auio.uio_iov = &aiov; 2743 auio.uio_iovcnt = 1; 2744 auio.uio_segflg = UIO_SYSSPACE; 2745 auio.uio_llimit = MAXOFFSET_T; 2746 auio.uio_fmode = fflag; 2747 auio.uio_extflg = UIO_COPY_CACHED; 2748 ioflag = auio.uio_fmode & (FSYNC|FDSYNC|FRSYNC); 2749 /* If read sync is not asked for, filter sync flags */ 2750 if ((ioflag & FRSYNC) == 0) 2751 ioflag &= ~(FSYNC|FDSYNC); 2752 for (;;) { 2753 if (ISSIG(curthread, JUSTLOOKING)) { 2754 error = EINTR; 2755 break; 2756 } 2757 iosize = (int)MIN(maxpsz, size); 2758 2759 /* 2760 * Socket filters can limit the mblk size, 2761 * so limit reads to maxblk if there are 2762 * filters present. 2763 */ 2764 if (vp->v_type == VSOCK && 2765 so->so_filter_active > 0 && maxblk != INFPSZ) 2766 iosize = (int)MIN(iosize, maxblk); 2767 2768 if (is_system_labeled()) { 2769 mp = allocb_cred(iosize + extra, CRED(), 2770 curproc->p_pid); 2771 } else { 2772 mp = allocb(iosize + extra, BPRI_MED); 2773 } 2774 if (mp == NULL) { 2775 error = EAGAIN; 2776 break; 2777 } 2778 2779 mp->b_rptr += wroff; 2780 2781 aiov.iov_base = (caddr_t)mp->b_rptr; 2782 aiov.iov_len = iosize; 2783 auio.uio_loffset = fileoff; 2784 auio.uio_resid = iosize; 2785 2786 error = VOP_READ(fvp, &auio, ioflag, fp->f_cred, NULL); 2787 iosize -= auio.uio_resid; 2788 2789 if (error == EINTR && iosize != 0) 2790 error = 0; 2791 2792 if (error != 0 || iosize == 0) { 2793 freeb(mp); 2794 break; 2795 } 2796 mp->b_wptr = mp->b_rptr + iosize; 2797 2798 VOP_RWUNLOCK(fvp, V_WRITELOCK_FALSE, NULL); 2799 2800 error = socket_sendmblk(VTOSO(vp), &msg, fflag, CRED(), &mp); 2801 2802 if (error != 0) { 2803 *count = ksize; 2804 if (mp != NULL) 2805 freeb(mp); 2806 return (error); 2807 } 2808 ksize += iosize; 2809 size -= iosize; 2810 if (size == 0) 2811 goto done; 2812 2813 fileoff += iosize; 2814 (void) VOP_RWLOCK(fvp, V_WRITELOCK_FALSE, NULL); 2815 va.va_mask = AT_SIZE; 2816 error = VOP_GETATTR(fvp, &va, 0, kcred, NULL); 2817 if (error) 2818 break; 2819 /* Read as much as possible. */ 2820 if (fileoff >= va.va_size) 2821 size = 0; 2822 else if (size + fileoff > va.va_size) 2823 size = va.va_size - fileoff; 2824 } 2825 VOP_RWUNLOCK(fvp, V_WRITELOCK_FALSE, NULL); 2826 done: 2827 *count = ksize; 2828 return (error); 2829 } 2830 2831 #if defined(_SYSCALL32_IMPL) || defined(_ILP32) 2832 /* 2833 * Largefile support for 32 bit applications only. 2834 */ 2835 int 2836 sosendfile64(file_t *fp, file_t *rfp, const struct ksendfilevec64 *sfv, 2837 ssize32_t *count32) 2838 { 2839 ssize32_t sfv_len; 2840 u_offset_t sfv_off, va_size; 2841 struct vnode *vp, *fvp, *realvp; 2842 struct vattr va; 2843 stdata_t *stp; 2844 ssize_t count = 0; 2845 int error = 0; 2846 boolean_t dozcopy = B_FALSE; 2847 uint_t maxpsz; 2848 2849 sfv_len = (ssize32_t)sfv->sfv_len; 2850 if (sfv_len < 0) { 2851 error = EINVAL; 2852 goto out; 2853 } 2854 2855 if (sfv_len == 0) goto out; 2856 2857 sfv_off = (u_offset_t)sfv->sfv_off; 2858 2859 /* Same checks as in pread */ 2860 if (sfv_off > MAXOFFSET_T) { 2861 error = EINVAL; 2862 goto out; 2863 } 2864 if (sfv_off + sfv_len > MAXOFFSET_T) 2865 sfv_len = (ssize32_t)(MAXOFFSET_T - sfv_off); 2866 2867 /* 2868 * There are no more checks on sfv_len. So, we cast it to 2869 * u_offset_t and share the snf_direct_io/snf_cache code between 2870 * 32 bit and 64 bit. 2871 * 2872 * TODO: should do nbl_need_check() like read()? 2873 */ 2874 if (sfv_len > sendfile_max_size) { 2875 sf_stats.ss_file_not_cached++; 2876 error = snf_direct_io(fp, rfp, sfv_off, (u_offset_t)sfv_len, 2877 &count); 2878 goto out; 2879 } 2880 fvp = rfp->f_vnode; 2881 if (VOP_REALVP(fvp, &realvp, NULL) == 0) 2882 fvp = realvp; 2883 /* 2884 * Grab the lock as a reader to prevent the file size 2885 * from changing underneath. 2886 */ 2887 (void) VOP_RWLOCK(fvp, V_WRITELOCK_FALSE, NULL); 2888 va.va_mask = AT_SIZE; 2889 error = VOP_GETATTR(fvp, &va, 0, kcred, NULL); 2890 va_size = va.va_size; 2891 if ((error != 0) || (va_size == 0) || (sfv_off >= va_size)) { 2892 VOP_RWUNLOCK(fvp, V_WRITELOCK_FALSE, NULL); 2893 goto out; 2894 } 2895 /* Read as much as possible. */ 2896 if (sfv_off + sfv_len > va_size) 2897 sfv_len = va_size - sfv_off; 2898 2899 vp = fp->f_vnode; 2900 stp = vp->v_stream; 2901 /* 2902 * When the NOWAIT flag is not set, we enable zero-copy only if the 2903 * transfer size is large enough. This prevents performance loss 2904 * when the caller sends the file piece by piece. 2905 */ 2906 if (sfv_len >= MAXBSIZE && (sfv_len >= (va_size >> 1) || 2907 (sfv->sfv_flag & SFV_NOWAIT) || sfv_len >= 0x1000000) && 2908 !vn_has_flocks(fvp) && !(fvp->v_flag & VNOMAP)) { 2909 uint_t copyflag; 2910 copyflag = stp != NULL ? stp->sd_copyflag : 2911 VTOSO(vp)->so_proto_props.sopp_zcopyflag; 2912 if ((copyflag & (STZCVMSAFE|STZCVMUNSAFE)) == 0) { 2913 int on = 1; 2914 2915 if (socket_setsockopt(VTOSO(vp), SOL_SOCKET, 2916 SO_SND_COPYAVOID, &on, sizeof (on), CRED()) == 0) 2917 dozcopy = B_TRUE; 2918 } else { 2919 dozcopy = copyflag & STZCVMSAFE; 2920 } 2921 } 2922 if (dozcopy) { 2923 sf_stats.ss_file_segmap++; 2924 error = snf_segmap(fp, fvp, sfv_off, (u_offset_t)sfv_len, 2925 &count, ((sfv->sfv_flag & SFV_NOWAIT) != 0)); 2926 } else { 2927 if (vp->v_type == VSOCK && stp == NULL) { 2928 sonode_t *so = VTOSO(vp); 2929 maxpsz = so->so_proto_props.sopp_maxpsz; 2930 } else if (stp != NULL) { 2931 maxpsz = stp->sd_qn_maxpsz; 2932 } else { 2933 maxpsz = maxphys; 2934 } 2935 2936 if (maxpsz == INFPSZ) 2937 maxpsz = maxphys; 2938 else 2939 maxpsz = roundup(maxpsz, MAXBSIZE); 2940 sf_stats.ss_file_cached++; 2941 error = snf_cache(fp, fvp, sfv_off, (u_offset_t)sfv_len, 2942 maxpsz, &count); 2943 } 2944 out: 2945 releasef(sfv->sfv_fd); 2946 *count32 = (ssize32_t)count; 2947 return (error); 2948 } 2949 #endif 2950 2951 #ifdef _SYSCALL32_IMPL 2952 /* 2953 * recv32(), recvfrom32(), send32(), sendto32(): intentionally return a 2954 * ssize_t rather than ssize32_t; see the comments above read32 for details. 2955 */ 2956 2957 ssize_t 2958 recv32(int32_t sock, caddr32_t buffer, size32_t len, int32_t flags) 2959 { 2960 return (recv(sock, (void *)(uintptr_t)buffer, (ssize32_t)len, flags)); 2961 } 2962 2963 ssize_t 2964 recvfrom32(int32_t sock, caddr32_t buffer, size32_t len, int32_t flags, 2965 caddr32_t name, caddr32_t namelenp) 2966 { 2967 return (recvfrom(sock, (void *)(uintptr_t)buffer, (ssize32_t)len, flags, 2968 (void *)(uintptr_t)name, (void *)(uintptr_t)namelenp)); 2969 } 2970 2971 ssize_t 2972 send32(int32_t sock, caddr32_t buffer, size32_t len, int32_t flags) 2973 { 2974 return (send(sock, (void *)(uintptr_t)buffer, (ssize32_t)len, flags)); 2975 } 2976 2977 ssize_t 2978 sendto32(int32_t sock, caddr32_t buffer, size32_t len, int32_t flags, 2979 caddr32_t name, socklen_t namelen) 2980 { 2981 return (sendto(sock, (void *)(uintptr_t)buffer, (ssize32_t)len, flags, 2982 (void *)(uintptr_t)name, namelen)); 2983 } 2984 #endif /* _SYSCALL32_IMPL */ 2985 2986 /* 2987 * Function wrappers (mostly around the sonode switch) for 2988 * backward compatibility. 2989 */ 2990 2991 int 2992 soaccept(struct sonode *so, int fflag, struct sonode **nsop) 2993 { 2994 return (socket_accept(so, fflag, CRED(), nsop)); 2995 } 2996 2997 int 2998 sobind(struct sonode *so, struct sockaddr *name, socklen_t namelen, 2999 int backlog, int flags) 3000 { 3001 int error; 3002 3003 error = socket_bind(so, name, namelen, flags, CRED()); 3004 if (error == 0 && backlog != 0) 3005 return (socket_listen(so, backlog, CRED())); 3006 3007 return (error); 3008 } 3009 3010 int 3011 solisten(struct sonode *so, int backlog) 3012 { 3013 return (socket_listen(so, backlog, CRED())); 3014 } 3015 3016 int 3017 soconnect(struct sonode *so, struct sockaddr *name, socklen_t namelen, 3018 int fflag, int flags) 3019 { 3020 return (socket_connect(so, name, namelen, fflag, flags, CRED())); 3021 } 3022 3023 int 3024 sorecvmsg(struct sonode *so, struct nmsghdr *msg, struct uio *uiop) 3025 { 3026 return (socket_recvmsg(so, msg, uiop, CRED())); 3027 } 3028 3029 int 3030 sosendmsg(struct sonode *so, struct nmsghdr *msg, struct uio *uiop) 3031 { 3032 return (socket_sendmsg(so, msg, uiop, CRED())); 3033 } 3034 3035 int 3036 soshutdown(struct sonode *so, int how) 3037 { 3038 return (socket_shutdown(so, how, CRED())); 3039 } 3040 3041 int 3042 sogetsockopt(struct sonode *so, int level, int option_name, void *optval, 3043 socklen_t *optlenp, int flags) 3044 { 3045 return (socket_getsockopt(so, level, option_name, optval, optlenp, 3046 flags, CRED())); 3047 } 3048 3049 int 3050 sosetsockopt(struct sonode *so, int level, int option_name, const void *optval, 3051 t_uscalar_t optlen) 3052 { 3053 return (socket_setsockopt(so, level, option_name, optval, optlen, 3054 CRED())); 3055 } 3056 3057 /* 3058 * Because this is backward compatibility interface it only needs to be 3059 * able to handle the creation of TPI sockfs sockets. 3060 */ 3061 struct sonode * 3062 socreate(struct sockparams *sp, int family, int type, int protocol, int version, 3063 int *errorp) 3064 { 3065 struct sonode *so; 3066 3067 ASSERT(sp != NULL); 3068 3069 so = sp->sp_smod_info->smod_sock_create_func(sp, family, type, protocol, 3070 version, SOCKET_SLEEP, errorp, CRED()); 3071 if (so == NULL) { 3072 SOCKPARAMS_DEC_REF(sp); 3073 } else { 3074 if ((*errorp = SOP_INIT(so, NULL, CRED(), SOCKET_SLEEP)) == 0) { 3075 /* Cannot fail, only bumps so_count */ 3076 (void) VOP_OPEN(&SOTOV(so), FREAD|FWRITE, CRED(), NULL); 3077 } else { 3078 socket_destroy(so); 3079 so = NULL; 3080 } 3081 } 3082 return (so); 3083 } 3084