xref: /titanic_44/usr/src/uts/common/fs/sockfs/socksubr.c (revision 3c112a2b34403220c06c3e2fcac403358cfba168)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 1995, 2010, Oracle and/or its affiliates. All rights reserved.
24  */
25 
26 #include <sys/types.h>
27 #include <sys/t_lock.h>
28 #include <sys/param.h>
29 #include <sys/systm.h>
30 #include <sys/buf.h>
31 #include <sys/conf.h>
32 #include <sys/cred.h>
33 #include <sys/kmem.h>
34 #include <sys/sysmacros.h>
35 #include <sys/vfs.h>
36 #include <sys/vfs_opreg.h>
37 #include <sys/vnode.h>
38 #include <sys/debug.h>
39 #include <sys/errno.h>
40 #include <sys/time.h>
41 #include <sys/file.h>
42 #include <sys/open.h>
43 #include <sys/user.h>
44 #include <sys/termios.h>
45 #include <sys/stream.h>
46 #include <sys/strsubr.h>
47 #include <sys/strsun.h>
48 #include <sys/esunddi.h>
49 #include <sys/flock.h>
50 #include <sys/modctl.h>
51 #include <sys/cmn_err.h>
52 #include <sys/mkdev.h>
53 #include <sys/pathname.h>
54 #include <sys/ddi.h>
55 #include <sys/stat.h>
56 #include <sys/fs/snode.h>
57 #include <sys/fs/dv_node.h>
58 #include <sys/zone.h>
59 
60 #include <sys/socket.h>
61 #include <sys/socketvar.h>
62 #include <netinet/in.h>
63 #include <sys/un.h>
64 #include <sys/ucred.h>
65 
66 #include <sys/tiuser.h>
67 #define	_SUN_TPI_VERSION	2
68 #include <sys/tihdr.h>
69 
70 #include <c2/audit.h>
71 
72 #include <fs/sockfs/nl7c.h>
73 #include <fs/sockfs/sockcommon.h>
74 #include <fs/sockfs/sockfilter_impl.h>
75 #include <fs/sockfs/socktpi.h>
76 #include <fs/sockfs/socktpi_impl.h>
77 #include <fs/sockfs/sodirect.h>
78 
79 /*
80  * Macros that operate on struct cmsghdr.
81  * The CMSG_VALID macro does not assume that the last option buffer is padded.
82  */
83 #define	CMSG_CONTENT(cmsg)	(&((cmsg)[1]))
84 #define	CMSG_CONTENTLEN(cmsg)	((cmsg)->cmsg_len - sizeof (struct cmsghdr))
85 #define	CMSG_VALID(cmsg, start, end)					\
86 	(ISALIGNED_cmsghdr(cmsg) &&					\
87 	((uintptr_t)(cmsg) >= (uintptr_t)(start)) &&			\
88 	((uintptr_t)(cmsg) < (uintptr_t)(end)) &&			\
89 	((ssize_t)(cmsg)->cmsg_len >= sizeof (struct cmsghdr)) &&	\
90 	((uintptr_t)(cmsg) + (cmsg)->cmsg_len <= (uintptr_t)(end)))
91 #define	SO_LOCK_WAKEUP_TIME	3000	/* Wakeup time in milliseconds */
92 
93 dev_t sockdev;	/* For fsid in getattr */
94 int sockfs_defer_nl7c_init = 0;
95 
96 struct socklist socklist;
97 
98 struct kmem_cache *socket_cache;
99 
100 /*
101  * sockconf_lock protects the socket configuration (socket types and
102  * socket filters) which is changed via the sockconfig system call.
103  */
104 krwlock_t sockconf_lock;
105 
106 static int sockfs_update(kstat_t *, int);
107 static int sockfs_snapshot(kstat_t *, void *, int);
108 extern smod_info_t *sotpi_smod_create(void);
109 
110 extern void sendfile_init();
111 
112 extern void nl7c_init(void);
113 
114 extern int modrootloaded;
115 
116 #define	ADRSTRLEN (2 * sizeof (void *) + 1)
117 /*
118  * kernel structure for passing the sockinfo data back up to the user.
119  * the strings array allows us to convert AF_UNIX addresses into strings
120  * with a common method regardless of which n-bit kernel we're running.
121  */
122 struct k_sockinfo {
123 	struct sockinfo	ks_si;
124 	char		ks_straddr[3][ADRSTRLEN];
125 };
126 
127 /*
128  * Translate from a device pathname (e.g. "/dev/tcp") to a vnode.
129  * Returns with the vnode held.
130  */
131 int
132 sogetvp(char *devpath, vnode_t **vpp, int uioflag)
133 {
134 	struct snode *csp;
135 	vnode_t *vp, *dvp;
136 	major_t maj;
137 	int error;
138 
139 	ASSERT(uioflag == UIO_SYSSPACE || uioflag == UIO_USERSPACE);
140 
141 	/*
142 	 * Lookup the underlying filesystem vnode.
143 	 */
144 	error = lookupname(devpath, uioflag, FOLLOW, NULLVPP, &vp);
145 	if (error)
146 		return (error);
147 
148 	/* Check that it is the correct vnode */
149 	if (vp->v_type != VCHR) {
150 		VN_RELE(vp);
151 		return (ENOTSOCK);
152 	}
153 
154 	/*
155 	 * If devpath went through devfs, the device should already
156 	 * be configured. If devpath is a mknod file, however, we
157 	 * need to make sure the device is properly configured.
158 	 * To do this, we do something similar to spec_open()
159 	 * except that we resolve to the minor/leaf level since
160 	 * we need to return a vnode.
161 	 */
162 	csp = VTOS(VTOS(vp)->s_commonvp);
163 	if (!(csp->s_flag & SDIPSET)) {
164 		char *pathname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
165 		error = ddi_dev_pathname(vp->v_rdev, S_IFCHR, pathname);
166 		if (error == 0)
167 			error = devfs_lookupname(pathname, NULLVPP, &dvp);
168 		VN_RELE(vp);
169 		kmem_free(pathname, MAXPATHLEN);
170 		if (error != 0)
171 			return (ENXIO);
172 		vp = dvp;	/* use the devfs vp */
173 	}
174 
175 	/* device is configured at this point */
176 	maj = getmajor(vp->v_rdev);
177 	if (!STREAMSTAB(maj)) {
178 		VN_RELE(vp);
179 		return (ENOSTR);
180 	}
181 
182 	*vpp = vp;
183 	return (0);
184 }
185 
186 /*
187  * Update the accessed, updated, or changed times in an sonode
188  * with the current time.
189  *
190  * Note that both SunOS 4.X and 4.4BSD sockets do not present reasonable
191  * attributes in a fstat call. (They return the current time and 0 for
192  * all timestamps, respectively.) We maintain the current timestamps
193  * here primarily so that should sockmod be popped the resulting
194  * file descriptor will behave like a stream w.r.t. the timestamps.
195  */
196 void
197 so_update_attrs(struct sonode *so, int flag)
198 {
199 	time_t now = gethrestime_sec();
200 
201 	if (SOCK_IS_NONSTR(so))
202 		return;
203 
204 	mutex_enter(&so->so_lock);
205 	so->so_flag |= flag;
206 	if (flag & SOACC)
207 		SOTOTPI(so)->sti_atime = now;
208 	if (flag & SOMOD)
209 		SOTOTPI(so)->sti_mtime = now;
210 	mutex_exit(&so->so_lock);
211 }
212 
213 extern so_create_func_t sock_comm_create_function;
214 extern so_destroy_func_t sock_comm_destroy_function;
215 /*
216  * Init function called when sockfs is loaded.
217  */
218 int
219 sockinit(int fstype, char *name)
220 {
221 	static const fs_operation_def_t sock_vfsops_template[] = {
222 		NULL, NULL
223 	};
224 	int error;
225 	major_t dev;
226 	char *err_str;
227 
228 	error = vfs_setfsops(fstype, sock_vfsops_template, NULL);
229 	if (error != 0) {
230 		zcmn_err(GLOBAL_ZONEID, CE_WARN,
231 		    "sockinit: bad vfs ops template");
232 		return (error);
233 	}
234 
235 	error = vn_make_ops(name, socket_vnodeops_template,
236 	    &socket_vnodeops);
237 	if (error != 0) {
238 		err_str = "sockinit: bad socket vnode ops template";
239 		/* vn_make_ops() does not reset socktpi_vnodeops on failure. */
240 		socket_vnodeops = NULL;
241 		goto failure;
242 	}
243 
244 	socket_cache = kmem_cache_create("socket_cache",
245 	    sizeof (struct sonode), 0, sonode_constructor,
246 	    sonode_destructor, NULL, NULL, NULL, 0);
247 
248 	rw_init(&sockconf_lock, NULL, RW_DEFAULT, NULL);
249 
250 	error = socktpi_init();
251 	if (error != 0) {
252 		err_str = NULL;
253 		goto failure;
254 	}
255 
256 	error = sod_init();
257 	if (error != 0) {
258 		err_str = NULL;
259 		goto failure;
260 	}
261 
262 	/*
263 	 * Set up the default create and destroy functions
264 	 */
265 	sock_comm_create_function = socket_sonode_create;
266 	sock_comm_destroy_function = socket_sonode_destroy;
267 
268 	/*
269 	 * Build initial list mapping socket parameters to vnode.
270 	 */
271 	smod_init();
272 	smod_add(sotpi_smod_create());
273 
274 	sockparams_init();
275 
276 	/*
277 	 * If sockets are needed before init runs /sbin/soconfig
278 	 * it is possible to preload the sockparams list here using
279 	 * calls like:
280 	 *	sockconfig(1,2,3, "/dev/tcp", 0);
281 	 */
282 
283 	/*
284 	 * Create a unique dev_t for use in so_fsid.
285 	 */
286 
287 	if ((dev = getudev()) == (major_t)-1)
288 		dev = 0;
289 	sockdev = makedevice(dev, 0);
290 
291 	mutex_init(&socklist.sl_lock, NULL, MUTEX_DEFAULT, NULL);
292 	sendfile_init();
293 	if (!modrootloaded) {
294 		sockfs_defer_nl7c_init = 1;
295 	} else {
296 		nl7c_init();
297 	}
298 
299 	/* Initialize socket filters */
300 	sof_init();
301 
302 	return (0);
303 
304 failure:
305 	(void) vfs_freevfsops_by_type(fstype);
306 	if (socket_vnodeops != NULL)
307 		vn_freevnodeops(socket_vnodeops);
308 	if (err_str != NULL)
309 		zcmn_err(GLOBAL_ZONEID, CE_WARN, err_str);
310 	return (error);
311 }
312 
313 /*
314  * Caller must hold the mutex. Used to set SOLOCKED.
315  */
316 void
317 so_lock_single(struct sonode *so)
318 {
319 	ASSERT(MUTEX_HELD(&so->so_lock));
320 
321 	while (so->so_flag & (SOLOCKED | SOASYNC_UNBIND)) {
322 		cv_wait_stop(&so->so_single_cv, &so->so_lock,
323 		    SO_LOCK_WAKEUP_TIME);
324 	}
325 	so->so_flag |= SOLOCKED;
326 }
327 
328 /*
329  * Caller must hold the mutex and pass in SOLOCKED or SOASYNC_UNBIND.
330  * Used to clear SOLOCKED or SOASYNC_UNBIND.
331  */
332 void
333 so_unlock_single(struct sonode *so, int flag)
334 {
335 	ASSERT(MUTEX_HELD(&so->so_lock));
336 	ASSERT(flag & (SOLOCKED|SOASYNC_UNBIND));
337 	ASSERT((flag & ~(SOLOCKED|SOASYNC_UNBIND)) == 0);
338 	ASSERT(so->so_flag & flag);
339 	/*
340 	 * Process the T_DISCON_IND on sti_discon_ind_mp.
341 	 *
342 	 * Call to so_drain_discon_ind will result in so_lock
343 	 * being dropped and re-acquired later.
344 	 */
345 	if (!SOCK_IS_NONSTR(so)) {
346 		sotpi_info_t *sti = SOTOTPI(so);
347 
348 		if (sti->sti_discon_ind_mp != NULL)
349 			so_drain_discon_ind(so);
350 	}
351 
352 	cv_signal(&so->so_single_cv);
353 	so->so_flag &= ~flag;
354 }
355 
356 /*
357  * Caller must hold the mutex. Used to set SOREADLOCKED.
358  * If the caller wants nonblocking behavior it should set fmode.
359  */
360 int
361 so_lock_read(struct sonode *so, int fmode)
362 {
363 	ASSERT(MUTEX_HELD(&so->so_lock));
364 
365 	while (so->so_flag & SOREADLOCKED) {
366 		if (fmode & (FNDELAY|FNONBLOCK))
367 			return (EWOULDBLOCK);
368 		cv_wait_stop(&so->so_read_cv, &so->so_lock,
369 		    SO_LOCK_WAKEUP_TIME);
370 	}
371 	so->so_flag |= SOREADLOCKED;
372 	return (0);
373 }
374 
375 /*
376  * Like so_lock_read above but allows signals.
377  */
378 int
379 so_lock_read_intr(struct sonode *so, int fmode)
380 {
381 	ASSERT(MUTEX_HELD(&so->so_lock));
382 
383 	while (so->so_flag & SOREADLOCKED) {
384 		if (fmode & (FNDELAY|FNONBLOCK))
385 			return (EWOULDBLOCK);
386 		if (!cv_wait_sig(&so->so_read_cv, &so->so_lock))
387 			return (EINTR);
388 	}
389 	so->so_flag |= SOREADLOCKED;
390 	return (0);
391 }
392 
393 /*
394  * Caller must hold the mutex. Used to clear SOREADLOCKED,
395  * set in so_lock_read() or so_lock_read_intr().
396  */
397 void
398 so_unlock_read(struct sonode *so)
399 {
400 	ASSERT(MUTEX_HELD(&so->so_lock));
401 	ASSERT(so->so_flag & SOREADLOCKED);
402 
403 	cv_signal(&so->so_read_cv);
404 	so->so_flag &= ~SOREADLOCKED;
405 }
406 
407 /*
408  * Verify that the specified offset falls within the mblk and
409  * that the resulting pointer is aligned.
410  * Returns NULL if not.
411  */
412 void *
413 sogetoff(mblk_t *mp, t_uscalar_t offset,
414     t_uscalar_t length, uint_t align_size)
415 {
416 	uintptr_t ptr1, ptr2;
417 
418 	ASSERT(mp && mp->b_wptr >= mp->b_rptr);
419 	ptr1 = (uintptr_t)mp->b_rptr + offset;
420 	ptr2 = (uintptr_t)ptr1 + length;
421 	if (ptr1 < (uintptr_t)mp->b_rptr || ptr2 > (uintptr_t)mp->b_wptr) {
422 		eprintline(0);
423 		return (NULL);
424 	}
425 	if ((ptr1 & (align_size - 1)) != 0) {
426 		eprintline(0);
427 		return (NULL);
428 	}
429 	return ((void *)ptr1);
430 }
431 
432 /*
433  * Return the AF_UNIX underlying filesystem vnode matching a given name.
434  * Makes sure the sending and the destination sonodes are compatible.
435  * The vnode is returned held.
436  *
437  * The underlying filesystem VSOCK vnode has a v_stream pointer that
438  * references the actual stream head (hence indirectly the actual sonode).
439  */
440 static int
441 so_ux_lookup(struct sonode *so, struct sockaddr_un *soun, int checkaccess,
442 		vnode_t **vpp)
443 {
444 	vnode_t		*vp;	/* Underlying filesystem vnode */
445 	vnode_t		*rvp;	/* real vnode */
446 	vnode_t		*svp;	/* sockfs vnode */
447 	struct sonode	*so2;
448 	int		error;
449 
450 	dprintso(so, 1, ("so_ux_lookup(%p) name <%s>\n", (void *)so,
451 	    soun->sun_path));
452 
453 	error = lookupname(soun->sun_path, UIO_SYSSPACE, FOLLOW, NULLVPP, &vp);
454 	if (error) {
455 		eprintsoline(so, error);
456 		return (error);
457 	}
458 
459 	/*
460 	 * Traverse lofs mounts get the real vnode
461 	 */
462 	if (VOP_REALVP(vp, &rvp, NULL) == 0) {
463 		VN_HOLD(rvp);		/* hold the real vnode */
464 		VN_RELE(vp);		/* release hold from lookup */
465 		vp = rvp;
466 	}
467 
468 	if (vp->v_type != VSOCK) {
469 		error = ENOTSOCK;
470 		eprintsoline(so, error);
471 		goto done2;
472 	}
473 
474 	if (checkaccess) {
475 		/*
476 		 * Check that we have permissions to access the destination
477 		 * vnode. This check is not done in BSD but it is required
478 		 * by X/Open.
479 		 */
480 		if (error = VOP_ACCESS(vp, VREAD|VWRITE, 0, CRED(), NULL)) {
481 			eprintsoline(so, error);
482 			goto done2;
483 		}
484 	}
485 
486 	/*
487 	 * Check if the remote socket has been closed.
488 	 *
489 	 * Synchronize with vn_rele_stream by holding v_lock while traversing
490 	 * v_stream->sd_vnode.
491 	 */
492 	mutex_enter(&vp->v_lock);
493 	if (vp->v_stream == NULL) {
494 		mutex_exit(&vp->v_lock);
495 		if (so->so_type == SOCK_DGRAM)
496 			error = EDESTADDRREQ;
497 		else
498 			error = ECONNREFUSED;
499 
500 		eprintsoline(so, error);
501 		goto done2;
502 	}
503 	ASSERT(vp->v_stream->sd_vnode);
504 	svp = vp->v_stream->sd_vnode;
505 	/*
506 	 * holding v_lock on underlying filesystem vnode and acquiring
507 	 * it on sockfs vnode. Assumes that no code ever attempts to
508 	 * acquire these locks in the reverse order.
509 	 */
510 	VN_HOLD(svp);
511 	mutex_exit(&vp->v_lock);
512 
513 	if (svp->v_type != VSOCK) {
514 		error = ENOTSOCK;
515 		eprintsoline(so, error);
516 		goto done;
517 	}
518 
519 	so2 = VTOSO(svp);
520 
521 	if (so->so_type != so2->so_type) {
522 		error = EPROTOTYPE;
523 		eprintsoline(so, error);
524 		goto done;
525 	}
526 
527 	VN_RELE(svp);
528 	*vpp = vp;
529 	return (0);
530 
531 done:
532 	VN_RELE(svp);
533 done2:
534 	VN_RELE(vp);
535 	return (error);
536 }
537 
538 /*
539  * Verify peer address for connect and sendto/sendmsg.
540  * Since sendto/sendmsg would not get synchronous errors from the transport
541  * provider we have to do these ugly checks in the socket layer to
542  * preserve compatibility with SunOS 4.X.
543  */
544 int
545 so_addr_verify(struct sonode *so, const struct sockaddr *name,
546     socklen_t namelen)
547 {
548 	int		family;
549 
550 	dprintso(so, 1, ("so_addr_verify(%p, %p, %d)\n",
551 	    (void *)so, (void *)name, namelen));
552 
553 	ASSERT(name != NULL);
554 
555 	family = so->so_family;
556 	switch (family) {
557 	case AF_INET:
558 		if (name->sa_family != family) {
559 			eprintsoline(so, EAFNOSUPPORT);
560 			return (EAFNOSUPPORT);
561 		}
562 		if (namelen != (socklen_t)sizeof (struct sockaddr_in)) {
563 			eprintsoline(so, EINVAL);
564 			return (EINVAL);
565 		}
566 		break;
567 	case AF_INET6: {
568 #ifdef DEBUG
569 		struct sockaddr_in6 *sin6;
570 #endif /* DEBUG */
571 
572 		if (name->sa_family != family) {
573 			eprintsoline(so, EAFNOSUPPORT);
574 			return (EAFNOSUPPORT);
575 		}
576 		if (namelen != (socklen_t)sizeof (struct sockaddr_in6)) {
577 			eprintsoline(so, EINVAL);
578 			return (EINVAL);
579 		}
580 #ifdef DEBUG
581 		/* Verify that apps don't forget to clear sin6_scope_id etc */
582 		sin6 = (struct sockaddr_in6 *)name;
583 		if (sin6->sin6_scope_id != 0 &&
584 		    !IN6_IS_ADDR_LINKSCOPE(&sin6->sin6_addr)) {
585 			zcmn_err(getzoneid(), CE_WARN,
586 			    "connect/send* with uninitialized sin6_scope_id "
587 			    "(%d) on socket. Pid = %d\n",
588 			    (int)sin6->sin6_scope_id, (int)curproc->p_pid);
589 		}
590 #endif /* DEBUG */
591 		break;
592 	}
593 	case AF_UNIX:
594 		if (SOTOTPI(so)->sti_faddr_noxlate) {
595 			return (0);
596 		}
597 		if (namelen < (socklen_t)sizeof (short)) {
598 			eprintsoline(so, ENOENT);
599 			return (ENOENT);
600 		}
601 		if (name->sa_family != family) {
602 			eprintsoline(so, EAFNOSUPPORT);
603 			return (EAFNOSUPPORT);
604 		}
605 		/* MAXPATHLEN + soun_family + nul termination */
606 		if (namelen > (socklen_t)(MAXPATHLEN + sizeof (short) + 1)) {
607 			eprintsoline(so, ENAMETOOLONG);
608 			return (ENAMETOOLONG);
609 		}
610 
611 		break;
612 
613 	default:
614 		/*
615 		 * Default is don't do any length or sa_family check
616 		 * to allow non-sockaddr style addresses.
617 		 */
618 		break;
619 	}
620 
621 	return (0);
622 }
623 
624 
625 /*
626  * Translate an AF_UNIX sockaddr_un to the transport internal name.
627  * Assumes caller has called so_addr_verify first.
628  */
629 /*ARGSUSED*/
630 int
631 so_ux_addr_xlate(struct sonode *so, struct sockaddr *name,
632     socklen_t namelen, int checkaccess,
633     void **addrp, socklen_t *addrlenp)
634 {
635 	int			error;
636 	struct sockaddr_un	*soun;
637 	vnode_t			*vp;
638 	void			*addr;
639 	socklen_t		addrlen;
640 	sotpi_info_t		*sti = SOTOTPI(so);
641 
642 	dprintso(so, 1, ("so_ux_addr_xlate(%p, %p, %d, %d)\n",
643 	    (void *)so, (void *)name, namelen, checkaccess));
644 
645 	ASSERT(name != NULL);
646 	ASSERT(so->so_family == AF_UNIX);
647 	ASSERT(!sti->sti_faddr_noxlate);
648 	ASSERT(namelen >= (socklen_t)sizeof (short));
649 	ASSERT(name->sa_family == AF_UNIX);
650 	soun = (struct sockaddr_un *)name;
651 	/*
652 	 * Lookup vnode for the specified path name and verify that
653 	 * it is a socket.
654 	 */
655 	error = so_ux_lookup(so, soun, checkaccess, &vp);
656 	if (error) {
657 		eprintsoline(so, error);
658 		return (error);
659 	}
660 	/*
661 	 * Use the address of the peer vnode as the address to send
662 	 * to. We release the peer vnode here. In case it has been
663 	 * closed by the time the T_CONN_REQ or T_UNIDATA_REQ reaches the
664 	 * transport the message will get an error or be dropped.
665 	 */
666 	sti->sti_ux_faddr.soua_vp = vp;
667 	sti->sti_ux_faddr.soua_magic = SOU_MAGIC_EXPLICIT;
668 	addr = &sti->sti_ux_faddr;
669 	addrlen = (socklen_t)sizeof (sti->sti_ux_faddr);
670 	dprintso(so, 1, ("ux_xlate UNIX: addrlen %d, vp %p\n",
671 	    addrlen, (void *)vp));
672 	VN_RELE(vp);
673 	*addrp = addr;
674 	*addrlenp = (socklen_t)addrlen;
675 	return (0);
676 }
677 
678 /*
679  * Esballoc free function for messages that contain SO_FILEP option.
680  * Decrement the reference count on the file pointers using closef.
681  */
682 void
683 fdbuf_free(struct fdbuf *fdbuf)
684 {
685 	int	i;
686 	struct file *fp;
687 
688 	dprint(1, ("fdbuf_free: %d fds\n", fdbuf->fd_numfd));
689 	for (i = 0; i < fdbuf->fd_numfd; i++) {
690 		/*
691 		 * We need pointer size alignment for fd_fds. On a LP64
692 		 * kernel, the required alignment is 8 bytes while
693 		 * the option headers and values are only 4 bytes
694 		 * aligned. So its safer to do a bcopy compared to
695 		 * assigning fdbuf->fd_fds[i] to fp.
696 		 */
697 		bcopy((char *)&fdbuf->fd_fds[i], (char *)&fp, sizeof (fp));
698 		dprint(1, ("fdbuf_free: [%d] = %p\n", i, (void *)fp));
699 		(void) closef(fp);
700 	}
701 	if (fdbuf->fd_ebuf != NULL)
702 		kmem_free(fdbuf->fd_ebuf, fdbuf->fd_ebuflen);
703 	kmem_free(fdbuf, fdbuf->fd_size);
704 }
705 
706 /*
707  * Allocate an esballoc'ed message for AF_UNIX file descriptor passing.
708  * Waits if memory is not available.
709  */
710 mblk_t *
711 fdbuf_allocmsg(int size, struct fdbuf *fdbuf)
712 {
713 	uchar_t	*buf;
714 	mblk_t	*mp;
715 
716 	dprint(1, ("fdbuf_allocmsg: size %d, %d fds\n", size, fdbuf->fd_numfd));
717 	buf = kmem_alloc(size, KM_SLEEP);
718 	fdbuf->fd_ebuf = (caddr_t)buf;
719 	fdbuf->fd_ebuflen = size;
720 	fdbuf->fd_frtn.free_func = fdbuf_free;
721 	fdbuf->fd_frtn.free_arg = (caddr_t)fdbuf;
722 
723 	mp = esballoc_wait(buf, size, BPRI_MED, &fdbuf->fd_frtn);
724 	mp->b_datap->db_type = M_PROTO;
725 	return (mp);
726 }
727 
728 /*
729  * Extract file descriptors from a fdbuf.
730  * Return list in rights/rightslen.
731  */
732 /*ARGSUSED*/
733 static int
734 fdbuf_extract(struct fdbuf *fdbuf, void *rights, int rightslen)
735 {
736 	int	i, fd;
737 	int	*rp;
738 	struct file *fp;
739 	int	numfd;
740 
741 	dprint(1, ("fdbuf_extract: %d fds, len %d\n",
742 	    fdbuf->fd_numfd, rightslen));
743 
744 	numfd = fdbuf->fd_numfd;
745 	ASSERT(rightslen == numfd * (int)sizeof (int));
746 
747 	/*
748 	 * Allocate a file descriptor and increment the f_count.
749 	 * The latter is needed since we always call fdbuf_free
750 	 * which performs a closef.
751 	 */
752 	rp = (int *)rights;
753 	for (i = 0; i < numfd; i++) {
754 		if ((fd = ufalloc(0)) == -1)
755 			goto cleanup;
756 		/*
757 		 * We need pointer size alignment for fd_fds. On a LP64
758 		 * kernel, the required alignment is 8 bytes while
759 		 * the option headers and values are only 4 bytes
760 		 * aligned. So its safer to do a bcopy compared to
761 		 * assigning fdbuf->fd_fds[i] to fp.
762 		 */
763 		bcopy((char *)&fdbuf->fd_fds[i], (char *)&fp, sizeof (fp));
764 		mutex_enter(&fp->f_tlock);
765 		fp->f_count++;
766 		mutex_exit(&fp->f_tlock);
767 		setf(fd, fp);
768 		*rp++ = fd;
769 		if (AU_AUDITING())
770 			audit_fdrecv(fd, fp);
771 		dprint(1, ("fdbuf_extract: [%d] = %d, %p refcnt %d\n",
772 		    i, fd, (void *)fp, fp->f_count));
773 	}
774 	return (0);
775 
776 cleanup:
777 	/*
778 	 * Undo whatever partial work the loop above has done.
779 	 */
780 	{
781 		int j;
782 
783 		rp = (int *)rights;
784 		for (j = 0; j < i; j++) {
785 			dprint(0,
786 			    ("fdbuf_extract: cleanup[%d] = %d\n", j, *rp));
787 			(void) closeandsetf(*rp++, NULL);
788 		}
789 	}
790 
791 	return (EMFILE);
792 }
793 
794 /*
795  * Insert file descriptors into an fdbuf.
796  * Returns a kmem_alloc'ed fdbuf. The fdbuf should be freed
797  * by calling fdbuf_free().
798  */
799 int
800 fdbuf_create(void *rights, int rightslen, struct fdbuf **fdbufp)
801 {
802 	int		numfd, i;
803 	int		*fds;
804 	struct file	*fp;
805 	struct fdbuf	*fdbuf;
806 	int		fdbufsize;
807 
808 	dprint(1, ("fdbuf_create: len %d\n", rightslen));
809 
810 	numfd = rightslen / (int)sizeof (int);
811 
812 	fdbufsize = (int)FDBUF_HDRSIZE + (numfd * (int)sizeof (struct file *));
813 	fdbuf = kmem_alloc(fdbufsize, KM_SLEEP);
814 	fdbuf->fd_size = fdbufsize;
815 	fdbuf->fd_numfd = 0;
816 	fdbuf->fd_ebuf = NULL;
817 	fdbuf->fd_ebuflen = 0;
818 	fds = (int *)rights;
819 	for (i = 0; i < numfd; i++) {
820 		if ((fp = getf(fds[i])) == NULL) {
821 			fdbuf_free(fdbuf);
822 			return (EBADF);
823 		}
824 		dprint(1, ("fdbuf_create: [%d] = %d, %p refcnt %d\n",
825 		    i, fds[i], (void *)fp, fp->f_count));
826 		mutex_enter(&fp->f_tlock);
827 		fp->f_count++;
828 		mutex_exit(&fp->f_tlock);
829 		/*
830 		 * The maximum alignment for fdbuf (or any option header
831 		 * and its value) it 4 bytes. On a LP64 kernel, the alignment
832 		 * is not sufficient for pointers (fd_fds in this case). Since
833 		 * we just did a kmem_alloc (we get a double word alignment),
834 		 * we don't need to do anything on the send side (we loose
835 		 * the double word alignment because fdbuf goes after an
836 		 * option header (eg T_unitdata_req) which is only 4 byte
837 		 * aligned). We take care of this when we extract the file
838 		 * descriptor in fdbuf_extract or fdbuf_free.
839 		 */
840 		fdbuf->fd_fds[i] = fp;
841 		fdbuf->fd_numfd++;
842 		releasef(fds[i]);
843 		if (AU_AUDITING())
844 			audit_fdsend(fds[i], fp, 0);
845 	}
846 	*fdbufp = fdbuf;
847 	return (0);
848 }
849 
850 static int
851 fdbuf_optlen(int rightslen)
852 {
853 	int numfd;
854 
855 	numfd = rightslen / (int)sizeof (int);
856 
857 	return ((int)FDBUF_HDRSIZE + (numfd * (int)sizeof (struct file *)));
858 }
859 
860 static t_uscalar_t
861 fdbuf_cmsglen(int fdbuflen)
862 {
863 	return (t_uscalar_t)((fdbuflen - FDBUF_HDRSIZE) /
864 	    (int)sizeof (struct file *) * (int)sizeof (int));
865 }
866 
867 
868 /*
869  * Return non-zero if the mblk and fdbuf are consistent.
870  */
871 static int
872 fdbuf_verify(mblk_t *mp, struct fdbuf *fdbuf, int fdbuflen)
873 {
874 	if (fdbuflen >= FDBUF_HDRSIZE &&
875 	    fdbuflen == fdbuf->fd_size) {
876 		frtn_t *frp = mp->b_datap->db_frtnp;
877 		/*
878 		 * Check that the SO_FILEP portion of the
879 		 * message has not been modified by
880 		 * the loopback transport. The sending sockfs generates
881 		 * a message that is esballoc'ed with the free function
882 		 * being fdbuf_free() and where free_arg contains the
883 		 * identical information as the SO_FILEP content.
884 		 *
885 		 * If any of these constraints are not satisfied we
886 		 * silently ignore the option.
887 		 */
888 		ASSERT(mp);
889 		if (frp != NULL &&
890 		    frp->free_func == fdbuf_free &&
891 		    frp->free_arg != NULL &&
892 		    bcmp(frp->free_arg, fdbuf, fdbuflen) == 0) {
893 			dprint(1, ("fdbuf_verify: fdbuf %p len %d\n",
894 			    (void *)fdbuf, fdbuflen));
895 			return (1);
896 		} else {
897 			zcmn_err(getzoneid(), CE_WARN,
898 			    "sockfs: mismatched fdbuf content (%p)",
899 			    (void *)mp);
900 			return (0);
901 		}
902 	} else {
903 		zcmn_err(getzoneid(), CE_WARN,
904 		    "sockfs: mismatched fdbuf len %d, %d\n",
905 		    fdbuflen, fdbuf->fd_size);
906 		return (0);
907 	}
908 }
909 
910 /*
911  * When the file descriptors returned by sorecvmsg can not be passed
912  * to the application this routine will cleanup the references on
913  * the files. Start at startoff bytes into the buffer.
914  */
915 static void
916 close_fds(void *fdbuf, int fdbuflen, int startoff)
917 {
918 	int *fds = (int *)fdbuf;
919 	int numfd = fdbuflen / (int)sizeof (int);
920 	int i;
921 
922 	dprint(1, ("close_fds(%p, %d, %d)\n", fdbuf, fdbuflen, startoff));
923 
924 	for (i = 0; i < numfd; i++) {
925 		if (startoff < 0)
926 			startoff = 0;
927 		if (startoff < (int)sizeof (int)) {
928 			/*
929 			 * This file descriptor is partially or fully after
930 			 * the offset
931 			 */
932 			dprint(0,
933 			    ("close_fds: cleanup[%d] = %d\n", i, fds[i]));
934 			(void) closeandsetf(fds[i], NULL);
935 		}
936 		startoff -= (int)sizeof (int);
937 	}
938 }
939 
940 /*
941  * Close all file descriptors contained in the control part starting at
942  * the startoffset.
943  */
944 void
945 so_closefds(void *control, t_uscalar_t controllen, int oldflg,
946     int startoff)
947 {
948 	struct cmsghdr *cmsg;
949 
950 	if (control == NULL)
951 		return;
952 
953 	if (oldflg) {
954 		close_fds(control, controllen, startoff);
955 		return;
956 	}
957 	/* Scan control part for file descriptors. */
958 	for (cmsg = (struct cmsghdr *)control;
959 	    CMSG_VALID(cmsg, control, (uintptr_t)control + controllen);
960 	    cmsg = CMSG_NEXT(cmsg)) {
961 		if (cmsg->cmsg_level == SOL_SOCKET &&
962 		    cmsg->cmsg_type == SCM_RIGHTS) {
963 			close_fds(CMSG_CONTENT(cmsg),
964 			    (int)CMSG_CONTENTLEN(cmsg),
965 			    startoff - (int)sizeof (struct cmsghdr));
966 		}
967 		startoff -= cmsg->cmsg_len;
968 	}
969 }
970 
971 /*
972  * Returns a pointer/length for the file descriptors contained
973  * in the control buffer. Returns with *fdlenp == -1 if there are no
974  * file descriptor options present. This is different than there being
975  * a zero-length file descriptor option.
976  * Fail if there are multiple SCM_RIGHT cmsgs.
977  */
978 int
979 so_getfdopt(void *control, t_uscalar_t controllen, int oldflg,
980     void **fdsp, int *fdlenp)
981 {
982 	struct cmsghdr *cmsg;
983 	void *fds;
984 	int fdlen;
985 
986 	if (control == NULL) {
987 		*fdsp = NULL;
988 		*fdlenp = -1;
989 		return (0);
990 	}
991 
992 	if (oldflg) {
993 		*fdsp = control;
994 		if (controllen == 0)
995 			*fdlenp = -1;
996 		else
997 			*fdlenp = controllen;
998 		dprint(1, ("so_getfdopt: old %d\n", *fdlenp));
999 		return (0);
1000 	}
1001 
1002 	fds = NULL;
1003 	fdlen = 0;
1004 
1005 	for (cmsg = (struct cmsghdr *)control;
1006 	    CMSG_VALID(cmsg, control, (uintptr_t)control + controllen);
1007 	    cmsg = CMSG_NEXT(cmsg)) {
1008 		if (cmsg->cmsg_level == SOL_SOCKET &&
1009 		    cmsg->cmsg_type == SCM_RIGHTS) {
1010 			if (fds != NULL)
1011 				return (EINVAL);
1012 			fds = CMSG_CONTENT(cmsg);
1013 			fdlen = (int)CMSG_CONTENTLEN(cmsg);
1014 			dprint(1, ("so_getfdopt: new %lu\n",
1015 			    (size_t)CMSG_CONTENTLEN(cmsg)));
1016 		}
1017 	}
1018 	if (fds == NULL) {
1019 		dprint(1, ("so_getfdopt: NONE\n"));
1020 		*fdlenp = -1;
1021 	} else
1022 		*fdlenp = fdlen;
1023 	*fdsp = fds;
1024 	return (0);
1025 }
1026 
1027 /*
1028  * Return the length of the options including any file descriptor options.
1029  */
1030 t_uscalar_t
1031 so_optlen(void *control, t_uscalar_t controllen, int oldflg)
1032 {
1033 	struct cmsghdr *cmsg;
1034 	t_uscalar_t optlen = 0;
1035 	t_uscalar_t len;
1036 
1037 	if (control == NULL)
1038 		return (0);
1039 
1040 	if (oldflg)
1041 		return ((t_uscalar_t)(sizeof (struct T_opthdr) +
1042 		    fdbuf_optlen(controllen)));
1043 
1044 	for (cmsg = (struct cmsghdr *)control;
1045 	    CMSG_VALID(cmsg, control, (uintptr_t)control + controllen);
1046 	    cmsg = CMSG_NEXT(cmsg)) {
1047 		if (cmsg->cmsg_level == SOL_SOCKET &&
1048 		    cmsg->cmsg_type == SCM_RIGHTS) {
1049 			len = fdbuf_optlen((int)CMSG_CONTENTLEN(cmsg));
1050 		} else {
1051 			len = (t_uscalar_t)CMSG_CONTENTLEN(cmsg);
1052 		}
1053 		optlen += (t_uscalar_t)(_TPI_ALIGN_TOPT(len) +
1054 		    sizeof (struct T_opthdr));
1055 	}
1056 	dprint(1, ("so_optlen: controllen %d, flg %d -> optlen %d\n",
1057 	    controllen, oldflg, optlen));
1058 	return (optlen);
1059 }
1060 
1061 /*
1062  * Copy options from control to the mblk. Skip any file descriptor options.
1063  */
1064 void
1065 so_cmsg2opt(void *control, t_uscalar_t controllen, int oldflg, mblk_t *mp)
1066 {
1067 	struct T_opthdr toh;
1068 	struct cmsghdr *cmsg;
1069 
1070 	if (control == NULL)
1071 		return;
1072 
1073 	if (oldflg) {
1074 		/* No real options - caller has handled file descriptors */
1075 		return;
1076 	}
1077 	for (cmsg = (struct cmsghdr *)control;
1078 	    CMSG_VALID(cmsg, control, (uintptr_t)control + controllen);
1079 	    cmsg = CMSG_NEXT(cmsg)) {
1080 		/*
1081 		 * Note: The caller handles file descriptors prior
1082 		 * to calling this function.
1083 		 */
1084 		t_uscalar_t len;
1085 
1086 		if (cmsg->cmsg_level == SOL_SOCKET &&
1087 		    cmsg->cmsg_type == SCM_RIGHTS)
1088 			continue;
1089 
1090 		len = (t_uscalar_t)CMSG_CONTENTLEN(cmsg);
1091 		toh.level = cmsg->cmsg_level;
1092 		toh.name = cmsg->cmsg_type;
1093 		toh.len = len + (t_uscalar_t)sizeof (struct T_opthdr);
1094 		toh.status = 0;
1095 
1096 		soappendmsg(mp, &toh, sizeof (toh));
1097 		soappendmsg(mp, CMSG_CONTENT(cmsg), len);
1098 		mp->b_wptr += _TPI_ALIGN_TOPT(len) - len;
1099 		ASSERT(mp->b_wptr <= mp->b_datap->db_lim);
1100 	}
1101 }
1102 
1103 /*
1104  * Return the length of the control message derived from the options.
1105  * Exclude SO_SRCADDR and SO_UNIX_CLOSE options. Include SO_FILEP.
1106  * When oldflg is set only include SO_FILEP.
1107  * so_opt2cmsg and so_cmsglen are inter-related since so_cmsglen
1108  * allocates the space that so_opt2cmsg fills. If one changes, the other should
1109  * also be checked for any possible impacts.
1110  */
1111 t_uscalar_t
1112 so_cmsglen(mblk_t *mp, void *opt, t_uscalar_t optlen, int oldflg)
1113 {
1114 	t_uscalar_t cmsglen = 0;
1115 	struct T_opthdr *tohp;
1116 	t_uscalar_t len;
1117 	t_uscalar_t last_roundup = 0;
1118 
1119 	ASSERT(__TPI_TOPT_ISALIGNED(opt));
1120 
1121 	for (tohp = (struct T_opthdr *)opt;
1122 	    tohp && _TPI_TOPT_VALID(tohp, opt, (uintptr_t)opt + optlen);
1123 	    tohp = _TPI_TOPT_NEXTHDR(opt, optlen, tohp)) {
1124 		dprint(1, ("so_cmsglen: level 0x%x, name %d, len %d\n",
1125 		    tohp->level, tohp->name, tohp->len));
1126 		if (tohp->level == SOL_SOCKET &&
1127 		    (tohp->name == SO_SRCADDR ||
1128 		    tohp->name == SO_UNIX_CLOSE)) {
1129 			continue;
1130 		}
1131 		if (tohp->level == SOL_SOCKET && tohp->name == SO_FILEP) {
1132 			struct fdbuf *fdbuf;
1133 			int fdbuflen;
1134 
1135 			fdbuf = (struct fdbuf *)_TPI_TOPT_DATA(tohp);
1136 			fdbuflen = (int)_TPI_TOPT_DATALEN(tohp);
1137 
1138 			if (!fdbuf_verify(mp, fdbuf, fdbuflen))
1139 				continue;
1140 			if (oldflg) {
1141 				cmsglen += fdbuf_cmsglen(fdbuflen);
1142 				continue;
1143 			}
1144 			len = fdbuf_cmsglen(fdbuflen);
1145 		} else if (tohp->level == SOL_SOCKET &&
1146 		    tohp->name == SCM_TIMESTAMP) {
1147 			if (oldflg)
1148 				continue;
1149 
1150 			if (get_udatamodel() == DATAMODEL_NATIVE) {
1151 				len = sizeof (struct timeval);
1152 			} else {
1153 				len = sizeof (struct timeval32);
1154 			}
1155 		} else {
1156 			if (oldflg)
1157 				continue;
1158 			len = (t_uscalar_t)_TPI_TOPT_DATALEN(tohp);
1159 		}
1160 		/*
1161 		 * Exclude roundup for last option to not set
1162 		 * MSG_CTRUNC when the cmsg fits but the padding doesn't fit.
1163 		 */
1164 		last_roundup = (t_uscalar_t)
1165 		    (ROUNDUP_cmsglen(len + (int)sizeof (struct cmsghdr)) -
1166 		    (len + (int)sizeof (struct cmsghdr)));
1167 		cmsglen += (t_uscalar_t)(len + (int)sizeof (struct cmsghdr)) +
1168 		    last_roundup;
1169 	}
1170 	cmsglen -= last_roundup;
1171 	dprint(1, ("so_cmsglen: optlen %d, flg %d -> cmsglen %d\n",
1172 	    optlen, oldflg, cmsglen));
1173 	return (cmsglen);
1174 }
1175 
1176 /*
1177  * Copy options from options to the control. Convert SO_FILEP to
1178  * file descriptors.
1179  * Returns errno or zero.
1180  * so_opt2cmsg and so_cmsglen are inter-related since so_cmsglen
1181  * allocates the space that so_opt2cmsg fills. If one changes, the other should
1182  * also be checked for any possible impacts.
1183  */
1184 int
1185 so_opt2cmsg(mblk_t *mp, void *opt, t_uscalar_t optlen, int oldflg,
1186     void *control, t_uscalar_t controllen)
1187 {
1188 	struct T_opthdr *tohp;
1189 	struct cmsghdr *cmsg;
1190 	struct fdbuf *fdbuf;
1191 	int fdbuflen;
1192 	int error;
1193 #if defined(DEBUG) || defined(__lint)
1194 	struct cmsghdr *cend = (struct cmsghdr *)
1195 	    (((uint8_t *)control) + ROUNDUP_cmsglen(controllen));
1196 #endif
1197 	cmsg = (struct cmsghdr *)control;
1198 
1199 	ASSERT(__TPI_TOPT_ISALIGNED(opt));
1200 
1201 	for (tohp = (struct T_opthdr *)opt;
1202 	    tohp && _TPI_TOPT_VALID(tohp, opt, (uintptr_t)opt + optlen);
1203 	    tohp = _TPI_TOPT_NEXTHDR(opt, optlen, tohp)) {
1204 		dprint(1, ("so_opt2cmsg: level 0x%x, name %d, len %d\n",
1205 		    tohp->level, tohp->name, tohp->len));
1206 
1207 		if (tohp->level == SOL_SOCKET &&
1208 		    (tohp->name == SO_SRCADDR ||
1209 		    tohp->name == SO_UNIX_CLOSE)) {
1210 			continue;
1211 		}
1212 		ASSERT((uintptr_t)cmsg <= (uintptr_t)control + controllen);
1213 		if (tohp->level == SOL_SOCKET && tohp->name == SO_FILEP) {
1214 			fdbuf = (struct fdbuf *)_TPI_TOPT_DATA(tohp);
1215 			fdbuflen = (int)_TPI_TOPT_DATALEN(tohp);
1216 
1217 			if (!fdbuf_verify(mp, fdbuf, fdbuflen))
1218 				return (EPROTO);
1219 			if (oldflg) {
1220 				error = fdbuf_extract(fdbuf, control,
1221 				    (int)controllen);
1222 				if (error != 0)
1223 					return (error);
1224 				continue;
1225 			} else {
1226 				int fdlen;
1227 
1228 				fdlen = (int)fdbuf_cmsglen(
1229 				    (int)_TPI_TOPT_DATALEN(tohp));
1230 
1231 				cmsg->cmsg_level = tohp->level;
1232 				cmsg->cmsg_type = SCM_RIGHTS;
1233 				cmsg->cmsg_len = (socklen_t)(fdlen +
1234 				    sizeof (struct cmsghdr));
1235 
1236 				error = fdbuf_extract(fdbuf,
1237 				    CMSG_CONTENT(cmsg), fdlen);
1238 				if (error != 0)
1239 					return (error);
1240 			}
1241 		} else if (tohp->level == SOL_SOCKET &&
1242 		    tohp->name == SCM_TIMESTAMP) {
1243 			timestruc_t *timestamp;
1244 
1245 			if (oldflg)
1246 				continue;
1247 
1248 			cmsg->cmsg_level = tohp->level;
1249 			cmsg->cmsg_type = tohp->name;
1250 
1251 			timestamp =
1252 			    (timestruc_t *)P2ROUNDUP((intptr_t)&tohp[1],
1253 			    sizeof (intptr_t));
1254 
1255 			if (get_udatamodel() == DATAMODEL_NATIVE) {
1256 				struct timeval tv;
1257 
1258 				cmsg->cmsg_len = sizeof (struct timeval) +
1259 				    sizeof (struct cmsghdr);
1260 				tv.tv_sec = timestamp->tv_sec;
1261 				tv.tv_usec = timestamp->tv_nsec /
1262 				    (NANOSEC / MICROSEC);
1263 				/*
1264 				 * on LP64 systems, the struct timeval in
1265 				 * the destination will not be 8-byte aligned,
1266 				 * so use bcopy to avoid alignment trouble
1267 				 */
1268 				bcopy(&tv, CMSG_CONTENT(cmsg), sizeof (tv));
1269 			} else {
1270 				struct timeval32 *time32;
1271 
1272 				cmsg->cmsg_len = sizeof (struct timeval32) +
1273 				    sizeof (struct cmsghdr);
1274 				time32 = (struct timeval32 *)CMSG_CONTENT(cmsg);
1275 				time32->tv_sec = (time32_t)timestamp->tv_sec;
1276 				time32->tv_usec =
1277 				    (int32_t)(timestamp->tv_nsec /
1278 				    (NANOSEC / MICROSEC));
1279 			}
1280 
1281 		} else {
1282 			if (oldflg)
1283 				continue;
1284 
1285 			cmsg->cmsg_level = tohp->level;
1286 			cmsg->cmsg_type = tohp->name;
1287 			cmsg->cmsg_len = (socklen_t)(_TPI_TOPT_DATALEN(tohp) +
1288 			    sizeof (struct cmsghdr));
1289 
1290 			/* copy content to control data part */
1291 			bcopy(&tohp[1], CMSG_CONTENT(cmsg),
1292 			    CMSG_CONTENTLEN(cmsg));
1293 		}
1294 		/* move to next CMSG structure! */
1295 		cmsg = CMSG_NEXT(cmsg);
1296 	}
1297 	dprint(1, ("so_opt2cmsg: buf %p len %d; cend %p; final cmsg %p\n",
1298 	    control, controllen, (void *)cend, (void *)cmsg));
1299 	ASSERT(cmsg <= cend);
1300 	return (0);
1301 }
1302 
1303 /*
1304  * Extract the SO_SRCADDR option value if present.
1305  */
1306 void
1307 so_getopt_srcaddr(void *opt, t_uscalar_t optlen, void **srcp,
1308     t_uscalar_t *srclenp)
1309 {
1310 	struct T_opthdr		*tohp;
1311 
1312 	ASSERT(__TPI_TOPT_ISALIGNED(opt));
1313 
1314 	ASSERT(srcp != NULL && srclenp != NULL);
1315 	*srcp = NULL;
1316 	*srclenp = 0;
1317 
1318 	for (tohp = (struct T_opthdr *)opt;
1319 	    tohp && _TPI_TOPT_VALID(tohp, opt, (uintptr_t)opt + optlen);
1320 	    tohp = _TPI_TOPT_NEXTHDR(opt, optlen, tohp)) {
1321 		dprint(1, ("so_getopt_srcaddr: level 0x%x, name %d, len %d\n",
1322 		    tohp->level, tohp->name, tohp->len));
1323 		if (tohp->level == SOL_SOCKET &&
1324 		    tohp->name == SO_SRCADDR) {
1325 			*srcp = _TPI_TOPT_DATA(tohp);
1326 			*srclenp = (t_uscalar_t)_TPI_TOPT_DATALEN(tohp);
1327 		}
1328 	}
1329 }
1330 
1331 /*
1332  * Verify if the SO_UNIX_CLOSE option is present.
1333  */
1334 int
1335 so_getopt_unix_close(void *opt, t_uscalar_t optlen)
1336 {
1337 	struct T_opthdr		*tohp;
1338 
1339 	ASSERT(__TPI_TOPT_ISALIGNED(opt));
1340 
1341 	for (tohp = (struct T_opthdr *)opt;
1342 	    tohp && _TPI_TOPT_VALID(tohp, opt, (uintptr_t)opt + optlen);
1343 	    tohp = _TPI_TOPT_NEXTHDR(opt, optlen, tohp)) {
1344 		dprint(1,
1345 		    ("so_getopt_unix_close: level 0x%x, name %d, len %d\n",
1346 		    tohp->level, tohp->name, tohp->len));
1347 		if (tohp->level == SOL_SOCKET &&
1348 		    tohp->name == SO_UNIX_CLOSE)
1349 			return (1);
1350 	}
1351 	return (0);
1352 }
1353 
1354 /*
1355  * Allocate an M_PROTO message.
1356  *
1357  * If allocation fails the behavior depends on sleepflg:
1358  *	_ALLOC_NOSLEEP	fail immediately
1359  *	_ALLOC_INTR	sleep for memory until a signal is caught
1360  *	_ALLOC_SLEEP	sleep forever. Don't return NULL.
1361  */
1362 mblk_t *
1363 soallocproto(size_t size, int sleepflg, cred_t *cr)
1364 {
1365 	mblk_t	*mp;
1366 
1367 	/* Round up size for reuse */
1368 	size = MAX(size, 64);
1369 	if (cr != NULL)
1370 		mp = allocb_cred(size, cr, curproc->p_pid);
1371 	else
1372 		mp = allocb(size, BPRI_MED);
1373 
1374 	if (mp == NULL) {
1375 		int error;	/* Dummy - error not returned to caller */
1376 
1377 		switch (sleepflg) {
1378 		case _ALLOC_SLEEP:
1379 			if (cr != NULL) {
1380 				mp = allocb_cred_wait(size, STR_NOSIG, &error,
1381 				    cr, curproc->p_pid);
1382 			} else {
1383 				mp = allocb_wait(size, BPRI_MED, STR_NOSIG,
1384 				    &error);
1385 			}
1386 			ASSERT(mp);
1387 			break;
1388 		case _ALLOC_INTR:
1389 			if (cr != NULL) {
1390 				mp = allocb_cred_wait(size, 0, &error, cr,
1391 				    curproc->p_pid);
1392 			} else {
1393 				mp = allocb_wait(size, BPRI_MED, 0, &error);
1394 			}
1395 			if (mp == NULL) {
1396 				/* Caught signal while sleeping for memory */
1397 				eprintline(ENOBUFS);
1398 				return (NULL);
1399 			}
1400 			break;
1401 		case _ALLOC_NOSLEEP:
1402 		default:
1403 			eprintline(ENOBUFS);
1404 			return (NULL);
1405 		}
1406 	}
1407 	DB_TYPE(mp) = M_PROTO;
1408 	return (mp);
1409 }
1410 
1411 /*
1412  * Allocate an M_PROTO message with a single component.
1413  * len is the length of buf. size is the amount to allocate.
1414  *
1415  * buf can be NULL with a non-zero len.
1416  * This results in a bzero'ed chunk being placed the message.
1417  */
1418 mblk_t *
1419 soallocproto1(const void *buf, ssize_t len, ssize_t size, int sleepflg,
1420     cred_t *cr)
1421 {
1422 	mblk_t	*mp;
1423 
1424 	if (size == 0)
1425 		size = len;
1426 
1427 	ASSERT(size >= len);
1428 	/* Round up size for reuse */
1429 	size = MAX(size, 64);
1430 	mp = soallocproto(size, sleepflg, cr);
1431 	if (mp == NULL)
1432 		return (NULL);
1433 	mp->b_datap->db_type = M_PROTO;
1434 	if (len != 0) {
1435 		if (buf != NULL)
1436 			bcopy(buf, mp->b_wptr, len);
1437 		else
1438 			bzero(mp->b_wptr, len);
1439 		mp->b_wptr += len;
1440 	}
1441 	return (mp);
1442 }
1443 
1444 /*
1445  * Append buf/len to mp.
1446  * The caller has to ensure that there is enough room in the mblk.
1447  *
1448  * buf can be NULL with a non-zero len.
1449  * This results in a bzero'ed chunk being placed the message.
1450  */
1451 void
1452 soappendmsg(mblk_t *mp, const void *buf, ssize_t len)
1453 {
1454 	ASSERT(mp);
1455 
1456 	if (len != 0) {
1457 		/* Assert for room left */
1458 		ASSERT(mp->b_datap->db_lim - mp->b_wptr >= len);
1459 		if (buf != NULL)
1460 			bcopy(buf, mp->b_wptr, len);
1461 		else
1462 			bzero(mp->b_wptr, len);
1463 	}
1464 	mp->b_wptr += len;
1465 }
1466 
1467 /*
1468  * Create a message using two kernel buffers.
1469  * If size is set that will determine the allocation size (e.g. for future
1470  * soappendmsg calls). If size is zero it is derived from the buffer
1471  * lengths.
1472  */
1473 mblk_t *
1474 soallocproto2(const void *buf1, ssize_t len1, const void *buf2, ssize_t len2,
1475     ssize_t size, int sleepflg, cred_t *cr)
1476 {
1477 	mblk_t *mp;
1478 
1479 	if (size == 0)
1480 		size = len1 + len2;
1481 	ASSERT(size >= len1 + len2);
1482 
1483 	mp = soallocproto1(buf1, len1, size, sleepflg, cr);
1484 	if (mp)
1485 		soappendmsg(mp, buf2, len2);
1486 	return (mp);
1487 }
1488 
1489 /*
1490  * Create a message using three kernel buffers.
1491  * If size is set that will determine the allocation size (for future
1492  * soappendmsg calls). If size is zero it is derived from the buffer
1493  * lengths.
1494  */
1495 mblk_t *
1496 soallocproto3(const void *buf1, ssize_t len1, const void *buf2, ssize_t len2,
1497     const void *buf3, ssize_t len3, ssize_t size, int sleepflg, cred_t *cr)
1498 {
1499 	mblk_t *mp;
1500 
1501 	if (size == 0)
1502 		size = len1 + len2 +len3;
1503 	ASSERT(size >= len1 + len2 + len3);
1504 
1505 	mp = soallocproto1(buf1, len1, size, sleepflg, cr);
1506 	if (mp != NULL) {
1507 		soappendmsg(mp, buf2, len2);
1508 		soappendmsg(mp, buf3, len3);
1509 	}
1510 	return (mp);
1511 }
1512 
1513 #ifdef DEBUG
1514 char *
1515 pr_state(uint_t state, uint_t mode)
1516 {
1517 	static char buf[1024];
1518 
1519 	buf[0] = 0;
1520 	if (state & SS_ISCONNECTED)
1521 		(void) strcat(buf, "ISCONNECTED ");
1522 	if (state & SS_ISCONNECTING)
1523 		(void) strcat(buf, "ISCONNECTING ");
1524 	if (state & SS_ISDISCONNECTING)
1525 		(void) strcat(buf, "ISDISCONNECTING ");
1526 	if (state & SS_CANTSENDMORE)
1527 		(void) strcat(buf, "CANTSENDMORE ");
1528 
1529 	if (state & SS_CANTRCVMORE)
1530 		(void) strcat(buf, "CANTRCVMORE ");
1531 	if (state & SS_ISBOUND)
1532 		(void) strcat(buf, "ISBOUND ");
1533 	if (state & SS_NDELAY)
1534 		(void) strcat(buf, "NDELAY ");
1535 	if (state & SS_NONBLOCK)
1536 		(void) strcat(buf, "NONBLOCK ");
1537 
1538 	if (state & SS_ASYNC)
1539 		(void) strcat(buf, "ASYNC ");
1540 	if (state & SS_ACCEPTCONN)
1541 		(void) strcat(buf, "ACCEPTCONN ");
1542 	if (state & SS_SAVEDEOR)
1543 		(void) strcat(buf, "SAVEDEOR ");
1544 
1545 	if (state & SS_RCVATMARK)
1546 		(void) strcat(buf, "RCVATMARK ");
1547 	if (state & SS_OOBPEND)
1548 		(void) strcat(buf, "OOBPEND ");
1549 	if (state & SS_HAVEOOBDATA)
1550 		(void) strcat(buf, "HAVEOOBDATA ");
1551 	if (state & SS_HADOOBDATA)
1552 		(void) strcat(buf, "HADOOBDATA ");
1553 
1554 	if (mode & SM_PRIV)
1555 		(void) strcat(buf, "PRIV ");
1556 	if (mode & SM_ATOMIC)
1557 		(void) strcat(buf, "ATOMIC ");
1558 	if (mode & SM_ADDR)
1559 		(void) strcat(buf, "ADDR ");
1560 	if (mode & SM_CONNREQUIRED)
1561 		(void) strcat(buf, "CONNREQUIRED ");
1562 
1563 	if (mode & SM_FDPASSING)
1564 		(void) strcat(buf, "FDPASSING ");
1565 	if (mode & SM_EXDATA)
1566 		(void) strcat(buf, "EXDATA ");
1567 	if (mode & SM_OPTDATA)
1568 		(void) strcat(buf, "OPTDATA ");
1569 	if (mode & SM_BYTESTREAM)
1570 		(void) strcat(buf, "BYTESTREAM ");
1571 	return (buf);
1572 }
1573 
1574 char *
1575 pr_addr(int family, struct sockaddr *addr, t_uscalar_t addrlen)
1576 {
1577 	static char buf[1024];
1578 
1579 	if (addr == NULL || addrlen == 0) {
1580 		(void) sprintf(buf, "(len %d) %p", addrlen, (void *)addr);
1581 		return (buf);
1582 	}
1583 	switch (family) {
1584 	case AF_INET: {
1585 		struct sockaddr_in sin;
1586 
1587 		bcopy(addr, &sin, sizeof (sin));
1588 
1589 		(void) sprintf(buf, "(len %d) %x/%d",
1590 		    addrlen, ntohl(sin.sin_addr.s_addr), ntohs(sin.sin_port));
1591 		break;
1592 	}
1593 	case AF_INET6: {
1594 		struct sockaddr_in6 sin6;
1595 		uint16_t *piece = (uint16_t *)&sin6.sin6_addr;
1596 
1597 		bcopy((char *)addr, (char *)&sin6, sizeof (sin6));
1598 		(void) sprintf(buf, "(len %d) %x:%x:%x:%x:%x:%x:%x:%x/%d",
1599 		    addrlen,
1600 		    ntohs(piece[0]), ntohs(piece[1]),
1601 		    ntohs(piece[2]), ntohs(piece[3]),
1602 		    ntohs(piece[4]), ntohs(piece[5]),
1603 		    ntohs(piece[6]), ntohs(piece[7]),
1604 		    ntohs(sin6.sin6_port));
1605 		break;
1606 	}
1607 	case AF_UNIX: {
1608 		struct sockaddr_un *soun = (struct sockaddr_un *)addr;
1609 
1610 		(void) sprintf(buf, "(len %d) %s", addrlen,
1611 		    (soun == NULL) ? "(none)" : soun->sun_path);
1612 		break;
1613 	}
1614 	default:
1615 		(void) sprintf(buf, "(unknown af %d)", family);
1616 		break;
1617 	}
1618 	return (buf);
1619 }
1620 
1621 /* The logical equivalence operator (a if-and-only-if b) */
1622 #define	EQUIVALENT(a, b)	(((a) && (b)) || (!(a) && (!(b))))
1623 
1624 /*
1625  * Verify limitations and invariants on oob state.
1626  * Return 1 if OK, otherwise 0 so that it can be used as
1627  *	ASSERT(verify_oobstate(so));
1628  */
1629 int
1630 so_verify_oobstate(struct sonode *so)
1631 {
1632 	boolean_t havemark;
1633 
1634 	ASSERT(MUTEX_HELD(&so->so_lock));
1635 
1636 	/*
1637 	 * The possible state combinations are:
1638 	 *	0
1639 	 *	SS_OOBPEND
1640 	 *	SS_OOBPEND|SS_HAVEOOBDATA
1641 	 *	SS_OOBPEND|SS_HADOOBDATA
1642 	 *	SS_HADOOBDATA
1643 	 */
1644 	switch (so->so_state & (SS_OOBPEND|SS_HAVEOOBDATA|SS_HADOOBDATA)) {
1645 	case 0:
1646 	case SS_OOBPEND:
1647 	case SS_OOBPEND|SS_HAVEOOBDATA:
1648 	case SS_OOBPEND|SS_HADOOBDATA:
1649 	case SS_HADOOBDATA:
1650 		break;
1651 	default:
1652 		printf("Bad oob state 1 (%p): state %s\n",
1653 		    (void *)so, pr_state(so->so_state, so->so_mode));
1654 		return (0);
1655 	}
1656 
1657 	/* SS_RCVATMARK should only be set when SS_OOBPEND is set */
1658 	if ((so->so_state & (SS_RCVATMARK|SS_OOBPEND)) == SS_RCVATMARK) {
1659 		printf("Bad oob state 2 (%p): state %s\n",
1660 		    (void *)so, pr_state(so->so_state, so->so_mode));
1661 		return (0);
1662 	}
1663 
1664 	/*
1665 	 * (havemark != 0 or SS_RCVATMARK) iff SS_OOBPEND
1666 	 * For TPI, the presence of a "mark" is indicated by sti_oobsigcnt.
1667 	 */
1668 	havemark = (SOCK_IS_NONSTR(so)) ? so->so_oobmark > 0 :
1669 	    SOTOTPI(so)->sti_oobsigcnt > 0;
1670 
1671 	if (!EQUIVALENT(havemark || (so->so_state & SS_RCVATMARK),
1672 	    so->so_state & SS_OOBPEND)) {
1673 		printf("Bad oob state 3 (%p): state %s\n",
1674 		    (void *)so, pr_state(so->so_state, so->so_mode));
1675 		return (0);
1676 	}
1677 
1678 	/*
1679 	 * Unless SO_OOBINLINE we have so_oobmsg != NULL iff SS_HAVEOOBDATA
1680 	 */
1681 	if (!(so->so_options & SO_OOBINLINE) &&
1682 	    !EQUIVALENT(so->so_oobmsg != NULL, so->so_state & SS_HAVEOOBDATA)) {
1683 		printf("Bad oob state 4 (%p): state %s\n",
1684 		    (void *)so, pr_state(so->so_state, so->so_mode));
1685 		return (0);
1686 	}
1687 
1688 	if (!SOCK_IS_NONSTR(so) &&
1689 	    SOTOTPI(so)->sti_oobsigcnt < SOTOTPI(so)->sti_oobcnt) {
1690 		printf("Bad oob state 5 (%p): counts %d/%d state %s\n",
1691 		    (void *)so, SOTOTPI(so)->sti_oobsigcnt,
1692 		    SOTOTPI(so)->sti_oobcnt,
1693 		    pr_state(so->so_state, so->so_mode));
1694 		return (0);
1695 	}
1696 
1697 	return (1);
1698 }
1699 #undef	EQUIVALENT
1700 #endif /* DEBUG */
1701 
1702 /* initialize sockfs zone specific kstat related items			*/
1703 void *
1704 sock_kstat_init(zoneid_t zoneid)
1705 {
1706 	kstat_t	*ksp;
1707 
1708 	ksp = kstat_create_zone("sockfs", 0, "sock_unix_list", "misc",
1709 	    KSTAT_TYPE_RAW, 0, KSTAT_FLAG_VAR_SIZE|KSTAT_FLAG_VIRTUAL, zoneid);
1710 
1711 	if (ksp != NULL) {
1712 		ksp->ks_update = sockfs_update;
1713 		ksp->ks_snapshot = sockfs_snapshot;
1714 		ksp->ks_lock = &socklist.sl_lock;
1715 		ksp->ks_private = (void *)(uintptr_t)zoneid;
1716 		kstat_install(ksp);
1717 	}
1718 
1719 	return (ksp);
1720 }
1721 
1722 /* tear down sockfs zone specific kstat related items			*/
1723 /*ARGSUSED*/
1724 void
1725 sock_kstat_fini(zoneid_t zoneid, void *arg)
1726 {
1727 	kstat_t *ksp = (kstat_t *)arg;
1728 
1729 	if (ksp != NULL) {
1730 		ASSERT(zoneid == (zoneid_t)(uintptr_t)ksp->ks_private);
1731 		kstat_delete(ksp);
1732 	}
1733 }
1734 
1735 /*
1736  * Zones:
1737  * Note that nactive is going to be different for each zone.
1738  * This means we require kstat to call sockfs_update and then sockfs_snapshot
1739  * for the same zone, or sockfs_snapshot will be taken into the wrong size
1740  * buffer. This is safe, but if the buffer is too small, user will not be
1741  * given details of all sockets. However, as this kstat has a ks_lock, kstat
1742  * driver will keep it locked between the update and the snapshot, so no
1743  * other process (zone) can currently get inbetween resulting in a wrong size
1744  * buffer allocation.
1745  */
1746 static int
1747 sockfs_update(kstat_t *ksp, int rw)
1748 {
1749 	uint_t	nactive = 0;		/* # of active AF_UNIX sockets	*/
1750 	struct sonode	*so;		/* current sonode on socklist	*/
1751 	zoneid_t	myzoneid = (zoneid_t)(uintptr_t)ksp->ks_private;
1752 
1753 	ASSERT((zoneid_t)(uintptr_t)ksp->ks_private == getzoneid());
1754 
1755 	if (rw == KSTAT_WRITE) {	/* bounce all writes		*/
1756 		return (EACCES);
1757 	}
1758 
1759 	for (so = socklist.sl_list; so != NULL; so = SOTOTPI(so)->sti_next_so) {
1760 		if (so->so_count != 0 && so->so_zoneid == myzoneid) {
1761 			nactive++;
1762 		}
1763 	}
1764 	ksp->ks_ndata = nactive;
1765 	ksp->ks_data_size = nactive * sizeof (struct k_sockinfo);
1766 
1767 	return (0);
1768 }
1769 
1770 static int
1771 sockfs_snapshot(kstat_t *ksp, void *buf, int rw)
1772 {
1773 	int			ns;	/* # of sonodes we've copied	*/
1774 	struct sonode		*so;	/* current sonode on socklist	*/
1775 	struct k_sockinfo	*pksi;	/* where we put sockinfo data	*/
1776 	t_uscalar_t		sn_len;	/* soa_len			*/
1777 	zoneid_t		myzoneid = (zoneid_t)(uintptr_t)ksp->ks_private;
1778 	sotpi_info_t 		*sti;
1779 
1780 	ASSERT((zoneid_t)(uintptr_t)ksp->ks_private == getzoneid());
1781 
1782 	ksp->ks_snaptime = gethrtime();
1783 
1784 	if (rw == KSTAT_WRITE) {	/* bounce all writes		*/
1785 		return (EACCES);
1786 	}
1787 
1788 	/*
1789 	 * for each sonode on the socklist, we massage the important
1790 	 * info into buf, in k_sockinfo format.
1791 	 */
1792 	pksi = (struct k_sockinfo *)buf;
1793 	ns = 0;
1794 	for (so = socklist.sl_list; so != NULL; so = SOTOTPI(so)->sti_next_so) {
1795 		/* only stuff active sonodes and the same zone:		*/
1796 		if (so->so_count == 0 || so->so_zoneid != myzoneid) {
1797 			continue;
1798 		}
1799 
1800 		/*
1801 		 * If the sonode was activated between the update and the
1802 		 * snapshot, we're done - as this is only a snapshot.
1803 		 */
1804 		if ((caddr_t)(pksi) >= (caddr_t)buf + ksp->ks_data_size) {
1805 			break;
1806 		}
1807 
1808 		sti = SOTOTPI(so);
1809 		/* copy important info into buf:			*/
1810 		pksi->ks_si.si_size = sizeof (struct k_sockinfo);
1811 		pksi->ks_si.si_family = so->so_family;
1812 		pksi->ks_si.si_type = so->so_type;
1813 		pksi->ks_si.si_flag = so->so_flag;
1814 		pksi->ks_si.si_state = so->so_state;
1815 		pksi->ks_si.si_serv_type = sti->sti_serv_type;
1816 		pksi->ks_si.si_ux_laddr_sou_magic =
1817 		    sti->sti_ux_laddr.soua_magic;
1818 		pksi->ks_si.si_ux_faddr_sou_magic =
1819 		    sti->sti_ux_faddr.soua_magic;
1820 		pksi->ks_si.si_laddr_soa_len = sti->sti_laddr.soa_len;
1821 		pksi->ks_si.si_faddr_soa_len = sti->sti_faddr.soa_len;
1822 		pksi->ks_si.si_szoneid = so->so_zoneid;
1823 		pksi->ks_si.si_faddr_noxlate = sti->sti_faddr_noxlate;
1824 
1825 		mutex_enter(&so->so_lock);
1826 
1827 		if (sti->sti_laddr_sa != NULL) {
1828 			ASSERT(sti->sti_laddr_sa->sa_data != NULL);
1829 			sn_len = sti->sti_laddr_len;
1830 			ASSERT(sn_len <= sizeof (short) +
1831 			    sizeof (pksi->ks_si.si_laddr_sun_path));
1832 
1833 			pksi->ks_si.si_laddr_family =
1834 			    sti->sti_laddr_sa->sa_family;
1835 			if (sn_len != 0) {
1836 				/* AF_UNIX socket names are NULL terminated */
1837 				(void) strncpy(pksi->ks_si.si_laddr_sun_path,
1838 				    sti->sti_laddr_sa->sa_data,
1839 				    sizeof (pksi->ks_si.si_laddr_sun_path));
1840 				sn_len = strlen(pksi->ks_si.si_laddr_sun_path);
1841 			}
1842 			pksi->ks_si.si_laddr_sun_path[sn_len] = 0;
1843 		}
1844 
1845 		if (sti->sti_faddr_sa != NULL) {
1846 			ASSERT(sti->sti_faddr_sa->sa_data != NULL);
1847 			sn_len = sti->sti_faddr_len;
1848 			ASSERT(sn_len <= sizeof (short) +
1849 			    sizeof (pksi->ks_si.si_faddr_sun_path));
1850 
1851 			pksi->ks_si.si_faddr_family =
1852 			    sti->sti_faddr_sa->sa_family;
1853 			if (sn_len != 0) {
1854 				(void) strncpy(pksi->ks_si.si_faddr_sun_path,
1855 				    sti->sti_faddr_sa->sa_data,
1856 				    sizeof (pksi->ks_si.si_faddr_sun_path));
1857 				sn_len = strlen(pksi->ks_si.si_faddr_sun_path);
1858 			}
1859 			pksi->ks_si.si_faddr_sun_path[sn_len] = 0;
1860 		}
1861 
1862 		mutex_exit(&so->so_lock);
1863 
1864 		(void) sprintf(pksi->ks_straddr[0], "%p", (void *)so);
1865 		(void) sprintf(pksi->ks_straddr[1], "%p",
1866 		    (void *)sti->sti_ux_laddr.soua_vp);
1867 		(void) sprintf(pksi->ks_straddr[2], "%p",
1868 		    (void *)sti->sti_ux_faddr.soua_vp);
1869 
1870 		ns++;
1871 		pksi++;
1872 	}
1873 
1874 	ksp->ks_ndata = ns;
1875 	return (0);
1876 }
1877 
1878 ssize_t
1879 soreadfile(file_t *fp, uchar_t *buf, u_offset_t fileoff, int *err, size_t size)
1880 {
1881 	struct uio auio;
1882 	struct iovec aiov[MSG_MAXIOVLEN];
1883 	register vnode_t *vp;
1884 	int ioflag, rwflag;
1885 	ssize_t cnt;
1886 	int error = 0;
1887 	int iovcnt = 0;
1888 	short fflag;
1889 
1890 	vp = fp->f_vnode;
1891 	fflag = fp->f_flag;
1892 
1893 	rwflag = 0;
1894 	aiov[0].iov_base = (caddr_t)buf;
1895 	aiov[0].iov_len = size;
1896 	iovcnt = 1;
1897 	cnt = (ssize_t)size;
1898 	(void) VOP_RWLOCK(vp, rwflag, NULL);
1899 
1900 	auio.uio_loffset = fileoff;
1901 	auio.uio_iov = aiov;
1902 	auio.uio_iovcnt = iovcnt;
1903 	auio.uio_resid = cnt;
1904 	auio.uio_segflg = UIO_SYSSPACE;
1905 	auio.uio_llimit = MAXOFFSET_T;
1906 	auio.uio_fmode = fflag;
1907 	auio.uio_extflg = UIO_COPY_CACHED;
1908 
1909 	ioflag = auio.uio_fmode & (FAPPEND|FSYNC|FDSYNC|FRSYNC);
1910 
1911 	/* If read sync is not asked for, filter sync flags */
1912 	if ((ioflag & FRSYNC) == 0)
1913 		ioflag &= ~(FSYNC|FDSYNC);
1914 	error = VOP_READ(vp, &auio, ioflag, fp->f_cred, NULL);
1915 	cnt -= auio.uio_resid;
1916 
1917 	VOP_RWUNLOCK(vp, rwflag, NULL);
1918 
1919 	if (error == EINTR && cnt != 0)
1920 		error = 0;
1921 out:
1922 	if (error != 0) {
1923 		*err = error;
1924 		return (0);
1925 	} else {
1926 		*err = 0;
1927 		return (cnt);
1928 	}
1929 }
1930 
1931 int
1932 so_copyin(const void *from, void *to, size_t size, int fromkernel)
1933 {
1934 	if (fromkernel) {
1935 		bcopy(from, to, size);
1936 		return (0);
1937 	}
1938 	return (xcopyin(from, to, size));
1939 }
1940 
1941 int
1942 so_copyout(const void *from, void *to, size_t size, int tokernel)
1943 {
1944 	if (tokernel) {
1945 		bcopy(from, to, size);
1946 		return (0);
1947 	}
1948 	return (xcopyout(from, to, size));
1949 }
1950