xref: /titanic_44/usr/src/uts/common/fs/sockfs/socksubr.c (revision 2d6b5ea734bb47d251c82670646fde46af15fd69)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #include <sys/types.h>
28 #include <sys/t_lock.h>
29 #include <sys/param.h>
30 #include <sys/systm.h>
31 #include <sys/buf.h>
32 #include <sys/conf.h>
33 #include <sys/cred.h>
34 #include <sys/kmem.h>
35 #include <sys/sysmacros.h>
36 #include <sys/vfs.h>
37 #include <sys/vfs_opreg.h>
38 #include <sys/vnode.h>
39 #include <sys/debug.h>
40 #include <sys/errno.h>
41 #include <sys/time.h>
42 #include <sys/file.h>
43 #include <sys/open.h>
44 #include <sys/user.h>
45 #include <sys/uio.h>
46 #include <sys/termios.h>
47 #include <sys/stream.h>
48 #include <sys/strsubr.h>
49 #include <sys/strsun.h>
50 #include <sys/esunddi.h>
51 #include <sys/flock.h>
52 #include <sys/modctl.h>
53 #include <sys/cmn_err.h>
54 #include <sys/mkdev.h>
55 #include <sys/pathname.h>
56 #include <sys/ddi.h>
57 #include <sys/stat.h>
58 #include <sys/fs/snode.h>
59 #include <sys/fs/dv_node.h>
60 #include <sys/zone.h>
61 
62 #include <sys/socket.h>
63 #include <sys/socketvar.h>
64 #include <netinet/in.h>
65 #include <sys/un.h>
66 
67 #include <sys/ucred.h>
68 
69 #include <sys/tiuser.h>
70 #define	_SUN_TPI_VERSION	2
71 #include <sys/tihdr.h>
72 
73 #include <c2/audit.h>
74 
75 #include <fs/sockfs/nl7c.h>
76 #include <fs/sockfs/sockcommon.h>
77 #include <fs/sockfs/socktpi.h>
78 #include <fs/sockfs/socktpi_impl.h>
79 
80 /*
81  * Macros that operate on struct cmsghdr.
82  * The CMSG_VALID macro does not assume that the last option buffer is padded.
83  */
84 #define	CMSG_CONTENT(cmsg)	(&((cmsg)[1]))
85 #define	CMSG_CONTENTLEN(cmsg)	((cmsg)->cmsg_len - sizeof (struct cmsghdr))
86 #define	CMSG_VALID(cmsg, start, end)					\
87 	(ISALIGNED_cmsghdr(cmsg) &&					\
88 	((uintptr_t)(cmsg) >= (uintptr_t)(start)) &&			\
89 	((uintptr_t)(cmsg) < (uintptr_t)(end)) &&			\
90 	((ssize_t)(cmsg)->cmsg_len >= sizeof (struct cmsghdr)) &&	\
91 	((uintptr_t)(cmsg) + (cmsg)->cmsg_len <= (uintptr_t)(end)))
92 #define	SO_LOCK_WAKEUP_TIME	3000	/* Wakeup time in milliseconds */
93 
94 dev_t sockdev;	/* For fsid in getattr */
95 int sockfs_defer_nl7c_init = 0;
96 
97 struct socklist socklist;
98 
99 struct kmem_cache *socket_cache;
100 
101 static int sockfs_update(kstat_t *, int);
102 static int sockfs_snapshot(kstat_t *, void *, int);
103 extern smod_info_t *sotpi_smod_create(void);
104 
105 extern void sendfile_init();
106 
107 extern void nl7c_init(void);
108 
109 extern int sostr_init();
110 
111 extern int modrootloaded;
112 
113 #define	ADRSTRLEN (2 * sizeof (void *) + 1)
114 /*
115  * kernel structure for passing the sockinfo data back up to the user.
116  * the strings array allows us to convert AF_UNIX addresses into strings
117  * with a common method regardless of which n-bit kernel we're running.
118  */
119 struct k_sockinfo {
120 	struct sockinfo	ks_si;
121 	char		ks_straddr[3][ADRSTRLEN];
122 };
123 
124 /*
125  * Translate from a device pathname (e.g. "/dev/tcp") to a vnode.
126  * Returns with the vnode held.
127  */
128 int
129 sogetvp(char *devpath, vnode_t **vpp, int uioflag)
130 {
131 	struct snode *csp;
132 	vnode_t *vp, *dvp;
133 	major_t maj;
134 	int error;
135 
136 	ASSERT(uioflag == UIO_SYSSPACE || uioflag == UIO_USERSPACE);
137 
138 	/*
139 	 * Lookup the underlying filesystem vnode.
140 	 */
141 	error = lookupname(devpath, uioflag, FOLLOW, NULLVPP, &vp);
142 	if (error)
143 		return (error);
144 
145 	/* Check that it is the correct vnode */
146 	if (vp->v_type != VCHR) {
147 		VN_RELE(vp);
148 		return (ENOTSOCK);
149 	}
150 
151 	/*
152 	 * If devpath went through devfs, the device should already
153 	 * be configured. If devpath is a mknod file, however, we
154 	 * need to make sure the device is properly configured.
155 	 * To do this, we do something similar to spec_open()
156 	 * except that we resolve to the minor/leaf level since
157 	 * we need to return a vnode.
158 	 */
159 	csp = VTOS(VTOS(vp)->s_commonvp);
160 	if (!(csp->s_flag & SDIPSET)) {
161 		char *pathname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
162 		error = ddi_dev_pathname(vp->v_rdev, S_IFCHR, pathname);
163 		if (error == 0)
164 			error = devfs_lookupname(pathname, NULLVPP, &dvp);
165 		VN_RELE(vp);
166 		kmem_free(pathname, MAXPATHLEN);
167 		if (error != 0)
168 			return (ENXIO);
169 		vp = dvp;	/* use the devfs vp */
170 	}
171 
172 	/* device is configured at this point */
173 	maj = getmajor(vp->v_rdev);
174 	if (!STREAMSTAB(maj)) {
175 		VN_RELE(vp);
176 		return (ENOSTR);
177 	}
178 
179 	*vpp = vp;
180 	return (0);
181 }
182 
183 /*
184  * Update the accessed, updated, or changed times in an sonode
185  * with the current time.
186  *
187  * Note that both SunOS 4.X and 4.4BSD sockets do not present reasonable
188  * attributes in a fstat call. (They return the current time and 0 for
189  * all timestamps, respectively.) We maintain the current timestamps
190  * here primarily so that should sockmod be popped the resulting
191  * file descriptor will behave like a stream w.r.t. the timestamps.
192  */
193 void
194 so_update_attrs(struct sonode *so, int flag)
195 {
196 	time_t now = gethrestime_sec();
197 
198 	if (SOCK_IS_NONSTR(so))
199 		return;
200 
201 	mutex_enter(&so->so_lock);
202 	so->so_flag |= flag;
203 	if (flag & SOACC)
204 		SOTOTPI(so)->sti_atime = now;
205 	if (flag & SOMOD)
206 		SOTOTPI(so)->sti_mtime = now;
207 	mutex_exit(&so->so_lock);
208 }
209 
210 extern so_create_func_t sock_comm_create_function;
211 extern so_destroy_func_t sock_comm_destroy_function;
212 /*
213  * Init function called when sockfs is loaded.
214  */
215 int
216 sockinit(int fstype, char *name)
217 {
218 	static const fs_operation_def_t sock_vfsops_template[] = {
219 		NULL, NULL
220 	};
221 	int error;
222 	major_t dev;
223 	char *err_str;
224 
225 	error = vfs_setfsops(fstype, sock_vfsops_template, NULL);
226 	if (error != 0) {
227 		zcmn_err(GLOBAL_ZONEID, CE_WARN,
228 		    "sockinit: bad vfs ops template");
229 		return (error);
230 	}
231 
232 	error = vn_make_ops(name, socket_vnodeops_template,
233 	    &socket_vnodeops);
234 	if (error != 0) {
235 		err_str = "sockinit: bad socket vnode ops template";
236 		/* vn_make_ops() does not reset socktpi_vnodeops on failure. */
237 		socket_vnodeops = NULL;
238 		goto failure;
239 	}
240 
241 	socket_cache = kmem_cache_create("socket_cache",
242 	    sizeof (struct sonode), 0, sonode_constructor,
243 	    sonode_destructor, NULL, NULL, NULL, 0);
244 
245 	error = socktpi_init();
246 	if (error != 0) {
247 		err_str = NULL;
248 		goto failure;
249 	}
250 
251 	error = sostr_init();
252 	if (error != 0) {
253 		err_str = NULL;
254 		goto failure;
255 	}
256 
257 	/*
258 	 * Set up the default create and destroy functions
259 	 */
260 	sock_comm_create_function = socket_sonode_create;
261 	sock_comm_destroy_function = socket_sonode_destroy;
262 
263 	/*
264 	 * Build initial list mapping socket parameters to vnode.
265 	 */
266 	smod_init();
267 	smod_add(sotpi_smod_create());
268 
269 	sockparams_init();
270 
271 	/*
272 	 * If sockets are needed before init runs /sbin/soconfig
273 	 * it is possible to preload the sockparams list here using
274 	 * calls like:
275 	 *	sockconfig(1,2,3, "/dev/tcp", 0);
276 	 */
277 
278 	/*
279 	 * Create a unique dev_t for use in so_fsid.
280 	 */
281 
282 	if ((dev = getudev()) == (major_t)-1)
283 		dev = 0;
284 	sockdev = makedevice(dev, 0);
285 
286 	mutex_init(&socklist.sl_lock, NULL, MUTEX_DEFAULT, NULL);
287 	sendfile_init();
288 	if (!modrootloaded) {
289 		sockfs_defer_nl7c_init = 1;
290 	} else {
291 		nl7c_init();
292 	}
293 
294 	return (0);
295 
296 failure:
297 	(void) vfs_freevfsops_by_type(fstype);
298 	if (socket_vnodeops != NULL)
299 		vn_freevnodeops(socket_vnodeops);
300 	if (err_str != NULL)
301 		zcmn_err(GLOBAL_ZONEID, CE_WARN, err_str);
302 	return (error);
303 }
304 
305 /*
306  * Caller must hold the mutex. Used to set SOLOCKED.
307  */
308 void
309 so_lock_single(struct sonode *so)
310 {
311 	ASSERT(MUTEX_HELD(&so->so_lock));
312 
313 	while (so->so_flag & (SOLOCKED | SOASYNC_UNBIND)) {
314 		so->so_flag |= SOWANT;
315 		cv_wait_stop(&so->so_want_cv, &so->so_lock,
316 		    SO_LOCK_WAKEUP_TIME);
317 	}
318 	so->so_flag |= SOLOCKED;
319 }
320 
321 /*
322  * Caller must hold the mutex and pass in SOLOCKED or SOASYNC_UNBIND.
323  * Used to clear SOLOCKED or SOASYNC_UNBIND.
324  */
325 void
326 so_unlock_single(struct sonode *so, int flag)
327 {
328 	ASSERT(MUTEX_HELD(&so->so_lock));
329 	ASSERT(flag & (SOLOCKED|SOASYNC_UNBIND));
330 	ASSERT((flag & ~(SOLOCKED|SOASYNC_UNBIND)) == 0);
331 	ASSERT(so->so_flag & flag);
332 	/*
333 	 * Process the T_DISCON_IND on sti_discon_ind_mp.
334 	 *
335 	 * Call to so_drain_discon_ind will result in so_lock
336 	 * being dropped and re-acquired later.
337 	 */
338 	if (!SOCK_IS_NONSTR(so)) {
339 		sotpi_info_t *sti = SOTOTPI(so);
340 
341 		if (sti->sti_discon_ind_mp != NULL)
342 			so_drain_discon_ind(so);
343 	}
344 
345 	if (so->so_flag & SOWANT)
346 		cv_broadcast(&so->so_want_cv);
347 	so->so_flag &= ~(SOWANT|flag);
348 }
349 
350 /*
351  * Caller must hold the mutex. Used to set SOREADLOCKED.
352  * If the caller wants nonblocking behavior it should set fmode.
353  */
354 int
355 so_lock_read(struct sonode *so, int fmode)
356 {
357 	ASSERT(MUTEX_HELD(&so->so_lock));
358 
359 	while (so->so_flag & SOREADLOCKED) {
360 		if (fmode & (FNDELAY|FNONBLOCK))
361 			return (EWOULDBLOCK);
362 		so->so_flag |= SOWANT;
363 		cv_wait_stop(&so->so_want_cv, &so->so_lock,
364 		    SO_LOCK_WAKEUP_TIME);
365 	}
366 	so->so_flag |= SOREADLOCKED;
367 	return (0);
368 }
369 
370 /*
371  * Like so_lock_read above but allows signals.
372  */
373 int
374 so_lock_read_intr(struct sonode *so, int fmode)
375 {
376 	ASSERT(MUTEX_HELD(&so->so_lock));
377 
378 	while (so->so_flag & SOREADLOCKED) {
379 		if (fmode & (FNDELAY|FNONBLOCK))
380 			return (EWOULDBLOCK);
381 		so->so_flag |= SOWANT;
382 		if (!cv_wait_sig(&so->so_want_cv, &so->so_lock))
383 			return (EINTR);
384 	}
385 	so->so_flag |= SOREADLOCKED;
386 	return (0);
387 }
388 
389 /*
390  * Caller must hold the mutex. Used to clear SOREADLOCKED,
391  * set in so_lock_read() or so_lock_read_intr().
392  */
393 void
394 so_unlock_read(struct sonode *so)
395 {
396 	ASSERT(MUTEX_HELD(&so->so_lock));
397 	ASSERT(so->so_flag & SOREADLOCKED);
398 
399 	if (so->so_flag & SOWANT)
400 		cv_broadcast(&so->so_want_cv);
401 	so->so_flag &= ~(SOWANT|SOREADLOCKED);
402 }
403 
404 /*
405  * Verify that the specified offset falls within the mblk and
406  * that the resulting pointer is aligned.
407  * Returns NULL if not.
408  */
409 void *
410 sogetoff(mblk_t *mp, t_uscalar_t offset,
411     t_uscalar_t length, uint_t align_size)
412 {
413 	uintptr_t ptr1, ptr2;
414 
415 	ASSERT(mp && mp->b_wptr >= mp->b_rptr);
416 	ptr1 = (uintptr_t)mp->b_rptr + offset;
417 	ptr2 = (uintptr_t)ptr1 + length;
418 	if (ptr1 < (uintptr_t)mp->b_rptr || ptr2 > (uintptr_t)mp->b_wptr) {
419 		eprintline(0);
420 		return (NULL);
421 	}
422 	if ((ptr1 & (align_size - 1)) != 0) {
423 		eprintline(0);
424 		return (NULL);
425 	}
426 	return ((void *)ptr1);
427 }
428 
429 /*
430  * Return the AF_UNIX underlying filesystem vnode matching a given name.
431  * Makes sure the sending and the destination sonodes are compatible.
432  * The vnode is returned held.
433  *
434  * The underlying filesystem VSOCK vnode has a v_stream pointer that
435  * references the actual stream head (hence indirectly the actual sonode).
436  */
437 static int
438 so_ux_lookup(struct sonode *so, struct sockaddr_un *soun, int checkaccess,
439 		vnode_t **vpp)
440 {
441 	vnode_t		*vp;	/* Underlying filesystem vnode */
442 	vnode_t		*rvp;	/* real vnode */
443 	vnode_t		*svp;	/* sockfs vnode */
444 	struct sonode	*so2;
445 	int		error;
446 
447 	dprintso(so, 1, ("so_ux_lookup(%p) name <%s>\n", (void *)so,
448 	    soun->sun_path));
449 
450 	error = lookupname(soun->sun_path, UIO_SYSSPACE, FOLLOW, NULLVPP, &vp);
451 	if (error) {
452 		eprintsoline(so, error);
453 		return (error);
454 	}
455 
456 	/*
457 	 * Traverse lofs mounts get the real vnode
458 	 */
459 	if (VOP_REALVP(vp, &rvp, NULL) == 0) {
460 		VN_HOLD(rvp);		/* hold the real vnode */
461 		VN_RELE(vp);		/* release hold from lookup */
462 		vp = rvp;
463 	}
464 
465 	if (vp->v_type != VSOCK) {
466 		error = ENOTSOCK;
467 		eprintsoline(so, error);
468 		goto done2;
469 	}
470 
471 	if (checkaccess) {
472 		/*
473 		 * Check that we have permissions to access the destination
474 		 * vnode. This check is not done in BSD but it is required
475 		 * by X/Open.
476 		 */
477 		if (error = VOP_ACCESS(vp, VREAD|VWRITE, 0, CRED(), NULL)) {
478 			eprintsoline(so, error);
479 			goto done2;
480 		}
481 	}
482 
483 	/*
484 	 * Check if the remote socket has been closed.
485 	 *
486 	 * Synchronize with vn_rele_stream by holding v_lock while traversing
487 	 * v_stream->sd_vnode.
488 	 */
489 	mutex_enter(&vp->v_lock);
490 	if (vp->v_stream == NULL) {
491 		mutex_exit(&vp->v_lock);
492 		if (so->so_type == SOCK_DGRAM)
493 			error = EDESTADDRREQ;
494 		else
495 			error = ECONNREFUSED;
496 
497 		eprintsoline(so, error);
498 		goto done2;
499 	}
500 	ASSERT(vp->v_stream->sd_vnode);
501 	svp = vp->v_stream->sd_vnode;
502 	/*
503 	 * holding v_lock on underlying filesystem vnode and acquiring
504 	 * it on sockfs vnode. Assumes that no code ever attempts to
505 	 * acquire these locks in the reverse order.
506 	 */
507 	VN_HOLD(svp);
508 	mutex_exit(&vp->v_lock);
509 
510 	if (svp->v_type != VSOCK) {
511 		error = ENOTSOCK;
512 		eprintsoline(so, error);
513 		goto done;
514 	}
515 
516 	so2 = VTOSO(svp);
517 
518 	if (so->so_type != so2->so_type) {
519 		error = EPROTOTYPE;
520 		eprintsoline(so, error);
521 		goto done;
522 	}
523 
524 	VN_RELE(svp);
525 	*vpp = vp;
526 	return (0);
527 
528 done:
529 	VN_RELE(svp);
530 done2:
531 	VN_RELE(vp);
532 	return (error);
533 }
534 
535 /*
536  * Verify peer address for connect and sendto/sendmsg.
537  * Since sendto/sendmsg would not get synchronous errors from the transport
538  * provider we have to do these ugly checks in the socket layer to
539  * preserve compatibility with SunOS 4.X.
540  */
541 int
542 so_addr_verify(struct sonode *so, const struct sockaddr *name,
543     socklen_t namelen)
544 {
545 	int		family;
546 
547 	dprintso(so, 1, ("so_addr_verify(%p, %p, %d)\n",
548 	    (void *)so, (void *)name, namelen));
549 
550 	ASSERT(name != NULL);
551 
552 	family = so->so_family;
553 	switch (family) {
554 	case AF_INET:
555 		if (name->sa_family != family) {
556 			eprintsoline(so, EAFNOSUPPORT);
557 			return (EAFNOSUPPORT);
558 		}
559 		if (namelen != (socklen_t)sizeof (struct sockaddr_in)) {
560 			eprintsoline(so, EINVAL);
561 			return (EINVAL);
562 		}
563 		break;
564 	case AF_INET6: {
565 #ifdef DEBUG
566 		struct sockaddr_in6 *sin6;
567 #endif /* DEBUG */
568 
569 		if (name->sa_family != family) {
570 			eprintsoline(so, EAFNOSUPPORT);
571 			return (EAFNOSUPPORT);
572 		}
573 		if (namelen != (socklen_t)sizeof (struct sockaddr_in6)) {
574 			eprintsoline(so, EINVAL);
575 			return (EINVAL);
576 		}
577 #ifdef DEBUG
578 		/* Verify that apps don't forget to clear sin6_scope_id etc */
579 		sin6 = (struct sockaddr_in6 *)name;
580 		if (sin6->sin6_scope_id != 0 &&
581 		    !IN6_IS_ADDR_LINKSCOPE(&sin6->sin6_addr)) {
582 			zcmn_err(getzoneid(), CE_WARN,
583 			    "connect/send* with uninitialized sin6_scope_id "
584 			    "(%d) on socket. Pid = %d\n",
585 			    (int)sin6->sin6_scope_id, (int)curproc->p_pid);
586 		}
587 #endif /* DEBUG */
588 		break;
589 	}
590 	case AF_UNIX:
591 		if (SOTOTPI(so)->sti_faddr_noxlate) {
592 			return (0);
593 		}
594 		if (namelen < (socklen_t)sizeof (short)) {
595 			eprintsoline(so, ENOENT);
596 			return (ENOENT);
597 		}
598 		if (name->sa_family != family) {
599 			eprintsoline(so, EAFNOSUPPORT);
600 			return (EAFNOSUPPORT);
601 		}
602 		/* MAXPATHLEN + soun_family + nul termination */
603 		if (namelen > (socklen_t)(MAXPATHLEN + sizeof (short) + 1)) {
604 			eprintsoline(so, ENAMETOOLONG);
605 			return (ENAMETOOLONG);
606 		}
607 
608 		break;
609 
610 	default:
611 		/*
612 		 * Default is don't do any length or sa_family check
613 		 * to allow non-sockaddr style addresses.
614 		 */
615 		break;
616 	}
617 
618 	return (0);
619 }
620 
621 
622 /*
623  * Translate an AF_UNIX sockaddr_un to the transport internal name.
624  * Assumes caller has called so_addr_verify first.
625  */
626 /*ARGSUSED*/
627 int
628 so_ux_addr_xlate(struct sonode *so, struct sockaddr *name,
629     socklen_t namelen, int checkaccess,
630     void **addrp, socklen_t *addrlenp)
631 {
632 	int			error;
633 	struct sockaddr_un	*soun;
634 	vnode_t			*vp;
635 	void			*addr;
636 	socklen_t		addrlen;
637 	sotpi_info_t		*sti = SOTOTPI(so);
638 
639 	dprintso(so, 1, ("so_ux_addr_xlate(%p, %p, %d, %d)\n",
640 	    (void *)so, (void *)name, namelen, checkaccess));
641 
642 	ASSERT(name != NULL);
643 	ASSERT(so->so_family == AF_UNIX);
644 	ASSERT(!sti->sti_faddr_noxlate);
645 	ASSERT(namelen >= (socklen_t)sizeof (short));
646 	ASSERT(name->sa_family == AF_UNIX);
647 	soun = (struct sockaddr_un *)name;
648 	/*
649 	 * Lookup vnode for the specified path name and verify that
650 	 * it is a socket.
651 	 */
652 	error = so_ux_lookup(so, soun, checkaccess, &vp);
653 	if (error) {
654 		eprintsoline(so, error);
655 		return (error);
656 	}
657 	/*
658 	 * Use the address of the peer vnode as the address to send
659 	 * to. We release the peer vnode here. In case it has been
660 	 * closed by the time the T_CONN_REQ or T_UNIDATA_REQ reaches the
661 	 * transport the message will get an error or be dropped.
662 	 */
663 	sti->sti_ux_faddr.soua_vp = vp;
664 	sti->sti_ux_faddr.soua_magic = SOU_MAGIC_EXPLICIT;
665 	addr = &sti->sti_ux_faddr;
666 	addrlen = (socklen_t)sizeof (sti->sti_ux_faddr);
667 	dprintso(so, 1, ("ux_xlate UNIX: addrlen %d, vp %p\n",
668 	    addrlen, (void *)vp));
669 	VN_RELE(vp);
670 	*addrp = addr;
671 	*addrlenp = (socklen_t)addrlen;
672 	return (0);
673 }
674 
675 /*
676  * Esballoc free function for messages that contain SO_FILEP option.
677  * Decrement the reference count on the file pointers using closef.
678  */
679 void
680 fdbuf_free(struct fdbuf *fdbuf)
681 {
682 	int	i;
683 	struct file *fp;
684 
685 	dprint(1, ("fdbuf_free: %d fds\n", fdbuf->fd_numfd));
686 	for (i = 0; i < fdbuf->fd_numfd; i++) {
687 		/*
688 		 * We need pointer size alignment for fd_fds. On a LP64
689 		 * kernel, the required alignment is 8 bytes while
690 		 * the option headers and values are only 4 bytes
691 		 * aligned. So its safer to do a bcopy compared to
692 		 * assigning fdbuf->fd_fds[i] to fp.
693 		 */
694 		bcopy((char *)&fdbuf->fd_fds[i], (char *)&fp, sizeof (fp));
695 		dprint(1, ("fdbuf_free: [%d] = %p\n", i, (void *)fp));
696 		(void) closef(fp);
697 	}
698 	if (fdbuf->fd_ebuf != NULL)
699 		kmem_free(fdbuf->fd_ebuf, fdbuf->fd_ebuflen);
700 	kmem_free(fdbuf, fdbuf->fd_size);
701 }
702 
703 /*
704  * Allocate an esballoc'ed message for AF_UNIX file descriptor passing.
705  * Waits if memory is not available.
706  */
707 mblk_t *
708 fdbuf_allocmsg(int size, struct fdbuf *fdbuf)
709 {
710 	uchar_t	*buf;
711 	mblk_t	*mp;
712 
713 	dprint(1, ("fdbuf_allocmsg: size %d, %d fds\n", size, fdbuf->fd_numfd));
714 	buf = kmem_alloc(size, KM_SLEEP);
715 	fdbuf->fd_ebuf = (caddr_t)buf;
716 	fdbuf->fd_ebuflen = size;
717 	fdbuf->fd_frtn.free_func = fdbuf_free;
718 	fdbuf->fd_frtn.free_arg = (caddr_t)fdbuf;
719 
720 	mp = esballoc_wait(buf, size, BPRI_MED, &fdbuf->fd_frtn);
721 	mp->b_datap->db_type = M_PROTO;
722 	return (mp);
723 }
724 
725 /*
726  * Extract file descriptors from a fdbuf.
727  * Return list in rights/rightslen.
728  */
729 /*ARGSUSED*/
730 static int
731 fdbuf_extract(struct fdbuf *fdbuf, void *rights, int rightslen)
732 {
733 	int	i, fd;
734 	int	*rp;
735 	struct file *fp;
736 	int	numfd;
737 
738 	dprint(1, ("fdbuf_extract: %d fds, len %d\n",
739 	    fdbuf->fd_numfd, rightslen));
740 
741 	numfd = fdbuf->fd_numfd;
742 	ASSERT(rightslen == numfd * (int)sizeof (int));
743 
744 	/*
745 	 * Allocate a file descriptor and increment the f_count.
746 	 * The latter is needed since we always call fdbuf_free
747 	 * which performs a closef.
748 	 */
749 	rp = (int *)rights;
750 	for (i = 0; i < numfd; i++) {
751 		if ((fd = ufalloc(0)) == -1)
752 			goto cleanup;
753 		/*
754 		 * We need pointer size alignment for fd_fds. On a LP64
755 		 * kernel, the required alignment is 8 bytes while
756 		 * the option headers and values are only 4 bytes
757 		 * aligned. So its safer to do a bcopy compared to
758 		 * assigning fdbuf->fd_fds[i] to fp.
759 		 */
760 		bcopy((char *)&fdbuf->fd_fds[i], (char *)&fp, sizeof (fp));
761 		mutex_enter(&fp->f_tlock);
762 		fp->f_count++;
763 		mutex_exit(&fp->f_tlock);
764 		setf(fd, fp);
765 		*rp++ = fd;
766 		if (audit_active)
767 			audit_fdrecv(fd, fp);
768 		dprint(1, ("fdbuf_extract: [%d] = %d, %p refcnt %d\n",
769 		    i, fd, (void *)fp, fp->f_count));
770 	}
771 	return (0);
772 
773 cleanup:
774 	/*
775 	 * Undo whatever partial work the loop above has done.
776 	 */
777 	{
778 		int j;
779 
780 		rp = (int *)rights;
781 		for (j = 0; j < i; j++) {
782 			dprint(0,
783 			    ("fdbuf_extract: cleanup[%d] = %d\n", j, *rp));
784 			(void) closeandsetf(*rp++, NULL);
785 		}
786 	}
787 
788 	return (EMFILE);
789 }
790 
791 /*
792  * Insert file descriptors into an fdbuf.
793  * Returns a kmem_alloc'ed fdbuf. The fdbuf should be freed
794  * by calling fdbuf_free().
795  */
796 int
797 fdbuf_create(void *rights, int rightslen, struct fdbuf **fdbufp)
798 {
799 	int		numfd, i;
800 	int		*fds;
801 	struct file	*fp;
802 	struct fdbuf	*fdbuf;
803 	int		fdbufsize;
804 
805 	dprint(1, ("fdbuf_create: len %d\n", rightslen));
806 
807 	numfd = rightslen / (int)sizeof (int);
808 
809 	fdbufsize = (int)FDBUF_HDRSIZE + (numfd * (int)sizeof (struct file *));
810 	fdbuf = kmem_alloc(fdbufsize, KM_SLEEP);
811 	fdbuf->fd_size = fdbufsize;
812 	fdbuf->fd_numfd = 0;
813 	fdbuf->fd_ebuf = NULL;
814 	fdbuf->fd_ebuflen = 0;
815 	fds = (int *)rights;
816 	for (i = 0; i < numfd; i++) {
817 		if ((fp = getf(fds[i])) == NULL) {
818 			fdbuf_free(fdbuf);
819 			return (EBADF);
820 		}
821 		dprint(1, ("fdbuf_create: [%d] = %d, %p refcnt %d\n",
822 		    i, fds[i], (void *)fp, fp->f_count));
823 		mutex_enter(&fp->f_tlock);
824 		fp->f_count++;
825 		mutex_exit(&fp->f_tlock);
826 		/*
827 		 * The maximum alignment for fdbuf (or any option header
828 		 * and its value) it 4 bytes. On a LP64 kernel, the alignment
829 		 * is not sufficient for pointers (fd_fds in this case). Since
830 		 * we just did a kmem_alloc (we get a double word alignment),
831 		 * we don't need to do anything on the send side (we loose
832 		 * the double word alignment because fdbuf goes after an
833 		 * option header (eg T_unitdata_req) which is only 4 byte
834 		 * aligned). We take care of this when we extract the file
835 		 * descriptor in fdbuf_extract or fdbuf_free.
836 		 */
837 		fdbuf->fd_fds[i] = fp;
838 		fdbuf->fd_numfd++;
839 		releasef(fds[i]);
840 		if (audit_active)
841 			audit_fdsend(fds[i], fp, 0);
842 	}
843 	*fdbufp = fdbuf;
844 	return (0);
845 }
846 
847 static int
848 fdbuf_optlen(int rightslen)
849 {
850 	int numfd;
851 
852 	numfd = rightslen / (int)sizeof (int);
853 
854 	return ((int)FDBUF_HDRSIZE + (numfd * (int)sizeof (struct file *)));
855 }
856 
857 static t_uscalar_t
858 fdbuf_cmsglen(int fdbuflen)
859 {
860 	return (t_uscalar_t)((fdbuflen - FDBUF_HDRSIZE) /
861 	    (int)sizeof (struct file *) * (int)sizeof (int));
862 }
863 
864 
865 /*
866  * Return non-zero if the mblk and fdbuf are consistent.
867  */
868 static int
869 fdbuf_verify(mblk_t *mp, struct fdbuf *fdbuf, int fdbuflen)
870 {
871 	if (fdbuflen >= FDBUF_HDRSIZE &&
872 	    fdbuflen == fdbuf->fd_size) {
873 		frtn_t *frp = mp->b_datap->db_frtnp;
874 		/*
875 		 * Check that the SO_FILEP portion of the
876 		 * message has not been modified by
877 		 * the loopback transport. The sending sockfs generates
878 		 * a message that is esballoc'ed with the free function
879 		 * being fdbuf_free() and where free_arg contains the
880 		 * identical information as the SO_FILEP content.
881 		 *
882 		 * If any of these constraints are not satisfied we
883 		 * silently ignore the option.
884 		 */
885 		ASSERT(mp);
886 		if (frp != NULL &&
887 		    frp->free_func == fdbuf_free &&
888 		    frp->free_arg != NULL &&
889 		    bcmp(frp->free_arg, fdbuf, fdbuflen) == 0) {
890 			dprint(1, ("fdbuf_verify: fdbuf %p len %d\n",
891 			    (void *)fdbuf, fdbuflen));
892 			return (1);
893 		} else {
894 			zcmn_err(getzoneid(), CE_WARN,
895 			    "sockfs: mismatched fdbuf content (%p)",
896 			    (void *)mp);
897 			return (0);
898 		}
899 	} else {
900 		zcmn_err(getzoneid(), CE_WARN,
901 		    "sockfs: mismatched fdbuf len %d, %d\n",
902 		    fdbuflen, fdbuf->fd_size);
903 		return (0);
904 	}
905 }
906 
907 /*
908  * When the file descriptors returned by sorecvmsg can not be passed
909  * to the application this routine will cleanup the references on
910  * the files. Start at startoff bytes into the buffer.
911  */
912 static void
913 close_fds(void *fdbuf, int fdbuflen, int startoff)
914 {
915 	int *fds = (int *)fdbuf;
916 	int numfd = fdbuflen / (int)sizeof (int);
917 	int i;
918 
919 	dprint(1, ("close_fds(%p, %d, %d)\n", fdbuf, fdbuflen, startoff));
920 
921 	for (i = 0; i < numfd; i++) {
922 		if (startoff < 0)
923 			startoff = 0;
924 		if (startoff < (int)sizeof (int)) {
925 			/*
926 			 * This file descriptor is partially or fully after
927 			 * the offset
928 			 */
929 			dprint(0,
930 			    ("close_fds: cleanup[%d] = %d\n", i, fds[i]));
931 			(void) closeandsetf(fds[i], NULL);
932 		}
933 		startoff -= (int)sizeof (int);
934 	}
935 }
936 
937 /*
938  * Close all file descriptors contained in the control part starting at
939  * the startoffset.
940  */
941 void
942 so_closefds(void *control, t_uscalar_t controllen, int oldflg,
943     int startoff)
944 {
945 	struct cmsghdr *cmsg;
946 
947 	if (control == NULL)
948 		return;
949 
950 	if (oldflg) {
951 		close_fds(control, controllen, startoff);
952 		return;
953 	}
954 	/* Scan control part for file descriptors. */
955 	for (cmsg = (struct cmsghdr *)control;
956 	    CMSG_VALID(cmsg, control, (uintptr_t)control + controllen);
957 	    cmsg = CMSG_NEXT(cmsg)) {
958 		if (cmsg->cmsg_level == SOL_SOCKET &&
959 		    cmsg->cmsg_type == SCM_RIGHTS) {
960 			close_fds(CMSG_CONTENT(cmsg),
961 			    (int)CMSG_CONTENTLEN(cmsg),
962 			    startoff - (int)sizeof (struct cmsghdr));
963 		}
964 		startoff -= cmsg->cmsg_len;
965 	}
966 }
967 
968 /*
969  * Returns a pointer/length for the file descriptors contained
970  * in the control buffer. Returns with *fdlenp == -1 if there are no
971  * file descriptor options present. This is different than there being
972  * a zero-length file descriptor option.
973  * Fail if there are multiple SCM_RIGHT cmsgs.
974  */
975 int
976 so_getfdopt(void *control, t_uscalar_t controllen, int oldflg,
977     void **fdsp, int *fdlenp)
978 {
979 	struct cmsghdr *cmsg;
980 	void *fds;
981 	int fdlen;
982 
983 	if (control == NULL) {
984 		*fdsp = NULL;
985 		*fdlenp = -1;
986 		return (0);
987 	}
988 
989 	if (oldflg) {
990 		*fdsp = control;
991 		if (controllen == 0)
992 			*fdlenp = -1;
993 		else
994 			*fdlenp = controllen;
995 		dprint(1, ("so_getfdopt: old %d\n", *fdlenp));
996 		return (0);
997 	}
998 
999 	fds = NULL;
1000 	fdlen = 0;
1001 
1002 	for (cmsg = (struct cmsghdr *)control;
1003 	    CMSG_VALID(cmsg, control, (uintptr_t)control + controllen);
1004 	    cmsg = CMSG_NEXT(cmsg)) {
1005 		if (cmsg->cmsg_level == SOL_SOCKET &&
1006 		    cmsg->cmsg_type == SCM_RIGHTS) {
1007 			if (fds != NULL)
1008 				return (EINVAL);
1009 			fds = CMSG_CONTENT(cmsg);
1010 			fdlen = (int)CMSG_CONTENTLEN(cmsg);
1011 			dprint(1, ("so_getfdopt: new %lu\n",
1012 			    (size_t)CMSG_CONTENTLEN(cmsg)));
1013 		}
1014 	}
1015 	if (fds == NULL) {
1016 		dprint(1, ("so_getfdopt: NONE\n"));
1017 		*fdlenp = -1;
1018 	} else
1019 		*fdlenp = fdlen;
1020 	*fdsp = fds;
1021 	return (0);
1022 }
1023 
1024 /*
1025  * Return the length of the options including any file descriptor options.
1026  */
1027 t_uscalar_t
1028 so_optlen(void *control, t_uscalar_t controllen, int oldflg)
1029 {
1030 	struct cmsghdr *cmsg;
1031 	t_uscalar_t optlen = 0;
1032 	t_uscalar_t len;
1033 
1034 	if (control == NULL)
1035 		return (0);
1036 
1037 	if (oldflg)
1038 		return ((t_uscalar_t)(sizeof (struct T_opthdr) +
1039 		    fdbuf_optlen(controllen)));
1040 
1041 	for (cmsg = (struct cmsghdr *)control;
1042 	    CMSG_VALID(cmsg, control, (uintptr_t)control + controllen);
1043 	    cmsg = CMSG_NEXT(cmsg)) {
1044 		if (cmsg->cmsg_level == SOL_SOCKET &&
1045 		    cmsg->cmsg_type == SCM_RIGHTS) {
1046 			len = fdbuf_optlen((int)CMSG_CONTENTLEN(cmsg));
1047 		} else {
1048 			len = (t_uscalar_t)CMSG_CONTENTLEN(cmsg);
1049 		}
1050 		optlen += (t_uscalar_t)(_TPI_ALIGN_TOPT(len) +
1051 		    sizeof (struct T_opthdr));
1052 	}
1053 	dprint(1, ("so_optlen: controllen %d, flg %d -> optlen %d\n",
1054 	    controllen, oldflg, optlen));
1055 	return (optlen);
1056 }
1057 
1058 /*
1059  * Copy options from control to the mblk. Skip any file descriptor options.
1060  */
1061 void
1062 so_cmsg2opt(void *control, t_uscalar_t controllen, int oldflg, mblk_t *mp)
1063 {
1064 	struct T_opthdr toh;
1065 	struct cmsghdr *cmsg;
1066 
1067 	if (control == NULL)
1068 		return;
1069 
1070 	if (oldflg) {
1071 		/* No real options - caller has handled file descriptors */
1072 		return;
1073 	}
1074 	for (cmsg = (struct cmsghdr *)control;
1075 	    CMSG_VALID(cmsg, control, (uintptr_t)control + controllen);
1076 	    cmsg = CMSG_NEXT(cmsg)) {
1077 		/*
1078 		 * Note: The caller handles file descriptors prior
1079 		 * to calling this function.
1080 		 */
1081 		t_uscalar_t len;
1082 
1083 		if (cmsg->cmsg_level == SOL_SOCKET &&
1084 		    cmsg->cmsg_type == SCM_RIGHTS)
1085 			continue;
1086 
1087 		len = (t_uscalar_t)CMSG_CONTENTLEN(cmsg);
1088 		toh.level = cmsg->cmsg_level;
1089 		toh.name = cmsg->cmsg_type;
1090 		toh.len = len + (t_uscalar_t)sizeof (struct T_opthdr);
1091 		toh.status = 0;
1092 
1093 		soappendmsg(mp, &toh, sizeof (toh));
1094 		soappendmsg(mp, CMSG_CONTENT(cmsg), len);
1095 		mp->b_wptr += _TPI_ALIGN_TOPT(len) - len;
1096 		ASSERT(mp->b_wptr <= mp->b_datap->db_lim);
1097 	}
1098 }
1099 
1100 /*
1101  * Return the length of the control message derived from the options.
1102  * Exclude SO_SRCADDR and SO_UNIX_CLOSE options. Include SO_FILEP.
1103  * When oldflg is set only include SO_FILEP.
1104  * so_opt2cmsg and so_cmsglen are inter-related since so_cmsglen
1105  * allocates the space that so_opt2cmsg fills. If one changes, the other should
1106  * also be checked for any possible impacts.
1107  */
1108 t_uscalar_t
1109 so_cmsglen(mblk_t *mp, void *opt, t_uscalar_t optlen, int oldflg)
1110 {
1111 	t_uscalar_t cmsglen = 0;
1112 	struct T_opthdr *tohp;
1113 	t_uscalar_t len;
1114 	t_uscalar_t last_roundup = 0;
1115 
1116 	ASSERT(__TPI_TOPT_ISALIGNED(opt));
1117 
1118 	for (tohp = (struct T_opthdr *)opt;
1119 	    tohp && _TPI_TOPT_VALID(tohp, opt, (uintptr_t)opt + optlen);
1120 	    tohp = _TPI_TOPT_NEXTHDR(opt, optlen, tohp)) {
1121 		dprint(1, ("so_cmsglen: level 0x%x, name %d, len %d\n",
1122 		    tohp->level, tohp->name, tohp->len));
1123 		if (tohp->level == SOL_SOCKET &&
1124 		    (tohp->name == SO_SRCADDR ||
1125 		    tohp->name == SO_UNIX_CLOSE)) {
1126 			continue;
1127 		}
1128 		if (tohp->level == SOL_SOCKET && tohp->name == SO_FILEP) {
1129 			struct fdbuf *fdbuf;
1130 			int fdbuflen;
1131 
1132 			fdbuf = (struct fdbuf *)_TPI_TOPT_DATA(tohp);
1133 			fdbuflen = (int)_TPI_TOPT_DATALEN(tohp);
1134 
1135 			if (!fdbuf_verify(mp, fdbuf, fdbuflen))
1136 				continue;
1137 			if (oldflg) {
1138 				cmsglen += fdbuf_cmsglen(fdbuflen);
1139 				continue;
1140 			}
1141 			len = fdbuf_cmsglen(fdbuflen);
1142 		} else if (tohp->level == SOL_SOCKET &&
1143 		    tohp->name == SCM_TIMESTAMP) {
1144 			if (oldflg)
1145 				continue;
1146 
1147 			if (get_udatamodel() == DATAMODEL_NATIVE) {
1148 				len = sizeof (struct timeval);
1149 			} else {
1150 				len = sizeof (struct timeval32);
1151 			}
1152 		} else {
1153 			if (oldflg)
1154 				continue;
1155 			len = (t_uscalar_t)_TPI_TOPT_DATALEN(tohp);
1156 		}
1157 		/*
1158 		 * Exclude roundup for last option to not set
1159 		 * MSG_CTRUNC when the cmsg fits but the padding doesn't fit.
1160 		 */
1161 		last_roundup = (t_uscalar_t)
1162 		    (ROUNDUP_cmsglen(len + (int)sizeof (struct cmsghdr)) -
1163 		    (len + (int)sizeof (struct cmsghdr)));
1164 		cmsglen += (t_uscalar_t)(len + (int)sizeof (struct cmsghdr)) +
1165 		    last_roundup;
1166 	}
1167 	cmsglen -= last_roundup;
1168 	dprint(1, ("so_cmsglen: optlen %d, flg %d -> cmsglen %d\n",
1169 	    optlen, oldflg, cmsglen));
1170 	return (cmsglen);
1171 }
1172 
1173 /*
1174  * Copy options from options to the control. Convert SO_FILEP to
1175  * file descriptors.
1176  * Returns errno or zero.
1177  * so_opt2cmsg and so_cmsglen are inter-related since so_cmsglen
1178  * allocates the space that so_opt2cmsg fills. If one changes, the other should
1179  * also be checked for any possible impacts.
1180  */
1181 int
1182 so_opt2cmsg(mblk_t *mp, void *opt, t_uscalar_t optlen, int oldflg,
1183     void *control, t_uscalar_t controllen)
1184 {
1185 	struct T_opthdr *tohp;
1186 	struct cmsghdr *cmsg;
1187 	struct fdbuf *fdbuf;
1188 	int fdbuflen;
1189 	int error;
1190 #if defined(DEBUG) || defined(__lint)
1191 	struct cmsghdr *cend = (struct cmsghdr *)
1192 	    (((uint8_t *)control) + ROUNDUP_cmsglen(controllen));
1193 #endif
1194 	cmsg = (struct cmsghdr *)control;
1195 
1196 	ASSERT(__TPI_TOPT_ISALIGNED(opt));
1197 
1198 	for (tohp = (struct T_opthdr *)opt;
1199 	    tohp && _TPI_TOPT_VALID(tohp, opt, (uintptr_t)opt + optlen);
1200 	    tohp = _TPI_TOPT_NEXTHDR(opt, optlen, tohp)) {
1201 		dprint(1, ("so_opt2cmsg: level 0x%x, name %d, len %d\n",
1202 		    tohp->level, tohp->name, tohp->len));
1203 
1204 		if (tohp->level == SOL_SOCKET &&
1205 		    (tohp->name == SO_SRCADDR ||
1206 		    tohp->name == SO_UNIX_CLOSE)) {
1207 			continue;
1208 		}
1209 		ASSERT((uintptr_t)cmsg <= (uintptr_t)control + controllen);
1210 		if (tohp->level == SOL_SOCKET && tohp->name == SO_FILEP) {
1211 			fdbuf = (struct fdbuf *)_TPI_TOPT_DATA(tohp);
1212 			fdbuflen = (int)_TPI_TOPT_DATALEN(tohp);
1213 
1214 			if (!fdbuf_verify(mp, fdbuf, fdbuflen))
1215 				return (EPROTO);
1216 			if (oldflg) {
1217 				error = fdbuf_extract(fdbuf, control,
1218 				    (int)controllen);
1219 				if (error != 0)
1220 					return (error);
1221 				continue;
1222 			} else {
1223 				int fdlen;
1224 
1225 				fdlen = (int)fdbuf_cmsglen(
1226 				    (int)_TPI_TOPT_DATALEN(tohp));
1227 
1228 				cmsg->cmsg_level = tohp->level;
1229 				cmsg->cmsg_type = SCM_RIGHTS;
1230 				cmsg->cmsg_len = (socklen_t)(fdlen +
1231 				    sizeof (struct cmsghdr));
1232 
1233 				error = fdbuf_extract(fdbuf,
1234 				    CMSG_CONTENT(cmsg), fdlen);
1235 				if (error != 0)
1236 					return (error);
1237 			}
1238 		} else if (tohp->level == SOL_SOCKET &&
1239 		    tohp->name == SCM_TIMESTAMP) {
1240 			timestruc_t *timestamp;
1241 
1242 			if (oldflg)
1243 				continue;
1244 
1245 			cmsg->cmsg_level = tohp->level;
1246 			cmsg->cmsg_type = tohp->name;
1247 
1248 			timestamp =
1249 			    (timestruc_t *)P2ROUNDUP((intptr_t)&tohp[1],
1250 			    sizeof (intptr_t));
1251 
1252 			if (get_udatamodel() == DATAMODEL_NATIVE) {
1253 				struct timeval tv;
1254 
1255 				cmsg->cmsg_len = sizeof (struct timeval) +
1256 				    sizeof (struct cmsghdr);
1257 				tv.tv_sec = timestamp->tv_sec;
1258 				tv.tv_usec = timestamp->tv_nsec /
1259 				    (NANOSEC / MICROSEC);
1260 				/*
1261 				 * on LP64 systems, the struct timeval in
1262 				 * the destination will not be 8-byte aligned,
1263 				 * so use bcopy to avoid alignment trouble
1264 				 */
1265 				bcopy(&tv, CMSG_CONTENT(cmsg), sizeof (tv));
1266 			} else {
1267 				struct timeval32 *time32;
1268 
1269 				cmsg->cmsg_len = sizeof (struct timeval32) +
1270 				    sizeof (struct cmsghdr);
1271 				time32 = (struct timeval32 *)CMSG_CONTENT(cmsg);
1272 				time32->tv_sec = (time32_t)timestamp->tv_sec;
1273 				time32->tv_usec =
1274 				    (int32_t)(timestamp->tv_nsec /
1275 				    (NANOSEC / MICROSEC));
1276 			}
1277 
1278 		} else {
1279 			if (oldflg)
1280 				continue;
1281 
1282 			cmsg->cmsg_level = tohp->level;
1283 			cmsg->cmsg_type = tohp->name;
1284 			cmsg->cmsg_len = (socklen_t)(_TPI_TOPT_DATALEN(tohp) +
1285 			    sizeof (struct cmsghdr));
1286 
1287 			/* copy content to control data part */
1288 			bcopy(&tohp[1], CMSG_CONTENT(cmsg),
1289 			    CMSG_CONTENTLEN(cmsg));
1290 		}
1291 		/* move to next CMSG structure! */
1292 		cmsg = CMSG_NEXT(cmsg);
1293 	}
1294 	dprint(1, ("so_opt2cmsg: buf %p len %d; cend %p; final cmsg %p\n",
1295 	    control, controllen, (void *)cend, (void *)cmsg));
1296 	ASSERT(cmsg <= cend);
1297 	return (0);
1298 }
1299 
1300 /*
1301  * Extract the SO_SRCADDR option value if present.
1302  */
1303 void
1304 so_getopt_srcaddr(void *opt, t_uscalar_t optlen, void **srcp,
1305     t_uscalar_t *srclenp)
1306 {
1307 	struct T_opthdr		*tohp;
1308 
1309 	ASSERT(__TPI_TOPT_ISALIGNED(opt));
1310 
1311 	ASSERT(srcp != NULL && srclenp != NULL);
1312 	*srcp = NULL;
1313 	*srclenp = 0;
1314 
1315 	for (tohp = (struct T_opthdr *)opt;
1316 	    tohp && _TPI_TOPT_VALID(tohp, opt, (uintptr_t)opt + optlen);
1317 	    tohp = _TPI_TOPT_NEXTHDR(opt, optlen, tohp)) {
1318 		dprint(1, ("so_getopt_srcaddr: level 0x%x, name %d, len %d\n",
1319 		    tohp->level, tohp->name, tohp->len));
1320 		if (tohp->level == SOL_SOCKET &&
1321 		    tohp->name == SO_SRCADDR) {
1322 			*srcp = _TPI_TOPT_DATA(tohp);
1323 			*srclenp = (t_uscalar_t)_TPI_TOPT_DATALEN(tohp);
1324 		}
1325 	}
1326 }
1327 
1328 /*
1329  * Verify if the SO_UNIX_CLOSE option is present.
1330  */
1331 int
1332 so_getopt_unix_close(void *opt, t_uscalar_t optlen)
1333 {
1334 	struct T_opthdr		*tohp;
1335 
1336 	ASSERT(__TPI_TOPT_ISALIGNED(opt));
1337 
1338 	for (tohp = (struct T_opthdr *)opt;
1339 	    tohp && _TPI_TOPT_VALID(tohp, opt, (uintptr_t)opt + optlen);
1340 	    tohp = _TPI_TOPT_NEXTHDR(opt, optlen, tohp)) {
1341 		dprint(1,
1342 		    ("so_getopt_unix_close: level 0x%x, name %d, len %d\n",
1343 		    tohp->level, tohp->name, tohp->len));
1344 		if (tohp->level == SOL_SOCKET &&
1345 		    tohp->name == SO_UNIX_CLOSE)
1346 			return (1);
1347 	}
1348 	return (0);
1349 }
1350 
1351 /*
1352  * Allocate an M_PROTO message.
1353  *
1354  * If allocation fails the behavior depends on sleepflg:
1355  *	_ALLOC_NOSLEEP	fail immediately
1356  *	_ALLOC_INTR	sleep for memory until a signal is caught
1357  *	_ALLOC_SLEEP	sleep forever. Don't return NULL.
1358  */
1359 mblk_t *
1360 soallocproto(size_t size, int sleepflg)
1361 {
1362 	mblk_t	*mp;
1363 
1364 	/* Round up size for reuse */
1365 	size = MAX(size, 64);
1366 	mp = allocb(size, BPRI_MED);
1367 	if (mp == NULL) {
1368 		int error;	/* Dummy - error not returned to caller */
1369 
1370 		switch (sleepflg) {
1371 		case _ALLOC_SLEEP:
1372 			mp = allocb_wait(size, BPRI_MED, STR_NOSIG, &error);
1373 			ASSERT(mp);
1374 			break;
1375 		case _ALLOC_INTR:
1376 			mp = allocb_wait(size, BPRI_MED, 0, &error);
1377 			if (mp == NULL) {
1378 				/* Caught signal while sleeping for memory */
1379 				eprintline(ENOBUFS);
1380 				return (NULL);
1381 			}
1382 			break;
1383 		case _ALLOC_NOSLEEP:
1384 		default:
1385 			eprintline(ENOBUFS);
1386 			return (NULL);
1387 		}
1388 	}
1389 	DB_TYPE(mp) = M_PROTO;
1390 	return (mp);
1391 }
1392 
1393 /*
1394  * Allocate an M_PROTO message with a single component.
1395  * len is the length of buf. size is the amount to allocate.
1396  *
1397  * buf can be NULL with a non-zero len.
1398  * This results in a bzero'ed chunk being placed the message.
1399  */
1400 mblk_t *
1401 soallocproto1(const void *buf, ssize_t len, ssize_t size, int sleepflg)
1402 {
1403 	mblk_t	*mp;
1404 
1405 	if (size == 0)
1406 		size = len;
1407 
1408 	ASSERT(size >= len);
1409 	/* Round up size for reuse */
1410 	size = MAX(size, 64);
1411 	mp = soallocproto(size, sleepflg);
1412 	if (mp == NULL)
1413 		return (NULL);
1414 	mp->b_datap->db_type = M_PROTO;
1415 	if (len != 0) {
1416 		if (buf != NULL)
1417 			bcopy(buf, mp->b_wptr, len);
1418 		else
1419 			bzero(mp->b_wptr, len);
1420 		mp->b_wptr += len;
1421 	}
1422 	return (mp);
1423 }
1424 
1425 /*
1426  * Append buf/len to mp.
1427  * The caller has to ensure that there is enough room in the mblk.
1428  *
1429  * buf can be NULL with a non-zero len.
1430  * This results in a bzero'ed chunk being placed the message.
1431  */
1432 void
1433 soappendmsg(mblk_t *mp, const void *buf, ssize_t len)
1434 {
1435 	ASSERT(mp);
1436 
1437 	if (len != 0) {
1438 		/* Assert for room left */
1439 		ASSERT(mp->b_datap->db_lim - mp->b_wptr >= len);
1440 		if (buf != NULL)
1441 			bcopy(buf, mp->b_wptr, len);
1442 		else
1443 			bzero(mp->b_wptr, len);
1444 	}
1445 	mp->b_wptr += len;
1446 }
1447 
1448 /*
1449  * Create a message using two kernel buffers.
1450  * If size is set that will determine the allocation size (e.g. for future
1451  * soappendmsg calls). If size is zero it is derived from the buffer
1452  * lengths.
1453  */
1454 mblk_t *
1455 soallocproto2(const void *buf1, ssize_t len1, const void *buf2, ssize_t len2,
1456     ssize_t size, int sleepflg)
1457 {
1458 	mblk_t *mp;
1459 
1460 	if (size == 0)
1461 		size = len1 + len2;
1462 	ASSERT(size >= len1 + len2);
1463 
1464 	mp = soallocproto1(buf1, len1, size, sleepflg);
1465 	if (mp)
1466 		soappendmsg(mp, buf2, len2);
1467 	return (mp);
1468 }
1469 
1470 /*
1471  * Create a message using three kernel buffers.
1472  * If size is set that will determine the allocation size (for future
1473  * soappendmsg calls). If size is zero it is derived from the buffer
1474  * lengths.
1475  */
1476 mblk_t *
1477 soallocproto3(const void *buf1, ssize_t len1, const void *buf2, ssize_t len2,
1478     const void *buf3, ssize_t len3, ssize_t size, int sleepflg)
1479 {
1480 	mblk_t *mp;
1481 
1482 	if (size == 0)
1483 		size = len1 + len2 +len3;
1484 	ASSERT(size >= len1 + len2 + len3);
1485 
1486 	mp = soallocproto1(buf1, len1, size, sleepflg);
1487 	if (mp != NULL) {
1488 		soappendmsg(mp, buf2, len2);
1489 		soappendmsg(mp, buf3, len3);
1490 	}
1491 	return (mp);
1492 }
1493 
1494 #ifdef DEBUG
1495 char *
1496 pr_state(uint_t state, uint_t mode)
1497 {
1498 	static char buf[1024];
1499 
1500 	buf[0] = 0;
1501 	if (state & SS_ISCONNECTED)
1502 		(void) strcat(buf, "ISCONNECTED ");
1503 	if (state & SS_ISCONNECTING)
1504 		(void) strcat(buf, "ISCONNECTING ");
1505 	if (state & SS_ISDISCONNECTING)
1506 		(void) strcat(buf, "ISDISCONNECTING ");
1507 	if (state & SS_CANTSENDMORE)
1508 		(void) strcat(buf, "CANTSENDMORE ");
1509 
1510 	if (state & SS_CANTRCVMORE)
1511 		(void) strcat(buf, "CANTRCVMORE ");
1512 	if (state & SS_ISBOUND)
1513 		(void) strcat(buf, "ISBOUND ");
1514 	if (state & SS_NDELAY)
1515 		(void) strcat(buf, "NDELAY ");
1516 	if (state & SS_NONBLOCK)
1517 		(void) strcat(buf, "NONBLOCK ");
1518 
1519 	if (state & SS_ASYNC)
1520 		(void) strcat(buf, "ASYNC ");
1521 	if (state & SS_ACCEPTCONN)
1522 		(void) strcat(buf, "ACCEPTCONN ");
1523 	if (state & SS_SAVEDEOR)
1524 		(void) strcat(buf, "SAVEDEOR ");
1525 
1526 	if (state & SS_RCVATMARK)
1527 		(void) strcat(buf, "RCVATMARK ");
1528 	if (state & SS_OOBPEND)
1529 		(void) strcat(buf, "OOBPEND ");
1530 	if (state & SS_HAVEOOBDATA)
1531 		(void) strcat(buf, "HAVEOOBDATA ");
1532 	if (state & SS_HADOOBDATA)
1533 		(void) strcat(buf, "HADOOBDATA ");
1534 
1535 	if (mode & SM_PRIV)
1536 		(void) strcat(buf, "PRIV ");
1537 	if (mode & SM_ATOMIC)
1538 		(void) strcat(buf, "ATOMIC ");
1539 	if (mode & SM_ADDR)
1540 		(void) strcat(buf, "ADDR ");
1541 	if (mode & SM_CONNREQUIRED)
1542 		(void) strcat(buf, "CONNREQUIRED ");
1543 
1544 	if (mode & SM_FDPASSING)
1545 		(void) strcat(buf, "FDPASSING ");
1546 	if (mode & SM_EXDATA)
1547 		(void) strcat(buf, "EXDATA ");
1548 	if (mode & SM_OPTDATA)
1549 		(void) strcat(buf, "OPTDATA ");
1550 	if (mode & SM_BYTESTREAM)
1551 		(void) strcat(buf, "BYTESTREAM ");
1552 	return (buf);
1553 }
1554 
1555 char *
1556 pr_addr(int family, struct sockaddr *addr, t_uscalar_t addrlen)
1557 {
1558 	static char buf[1024];
1559 
1560 	if (addr == NULL || addrlen == 0) {
1561 		(void) sprintf(buf, "(len %d) %p", addrlen, (void *)addr);
1562 		return (buf);
1563 	}
1564 	switch (family) {
1565 	case AF_INET: {
1566 		struct sockaddr_in sin;
1567 
1568 		bcopy(addr, &sin, sizeof (sin));
1569 
1570 		(void) sprintf(buf, "(len %d) %x/%d",
1571 		    addrlen, ntohl(sin.sin_addr.s_addr), ntohs(sin.sin_port));
1572 		break;
1573 	}
1574 	case AF_INET6: {
1575 		struct sockaddr_in6 sin6;
1576 		uint16_t *piece = (uint16_t *)&sin6.sin6_addr;
1577 
1578 		bcopy((char *)addr, (char *)&sin6, sizeof (sin6));
1579 		(void) sprintf(buf, "(len %d) %x:%x:%x:%x:%x:%x:%x:%x/%d",
1580 		    addrlen,
1581 		    ntohs(piece[0]), ntohs(piece[1]),
1582 		    ntohs(piece[2]), ntohs(piece[3]),
1583 		    ntohs(piece[4]), ntohs(piece[5]),
1584 		    ntohs(piece[6]), ntohs(piece[7]),
1585 		    ntohs(sin6.sin6_port));
1586 		break;
1587 	}
1588 	case AF_UNIX: {
1589 		struct sockaddr_un *soun = (struct sockaddr_un *)addr;
1590 
1591 		(void) sprintf(buf, "(len %d) %s", addrlen,
1592 		    (soun == NULL) ? "(none)" : soun->sun_path);
1593 		break;
1594 	}
1595 	default:
1596 		(void) sprintf(buf, "(unknown af %d)", family);
1597 		break;
1598 	}
1599 	return (buf);
1600 }
1601 
1602 /* The logical equivalence operator (a if-and-only-if b) */
1603 #define	EQUIV(a, b)	(((a) && (b)) || (!(a) && (!(b))))
1604 
1605 /*
1606  * Verify limitations and invariants on oob state.
1607  * Return 1 if OK, otherwise 0 so that it can be used as
1608  *	ASSERT(verify_oobstate(so));
1609  */
1610 int
1611 so_verify_oobstate(struct sonode *so)
1612 {
1613 	boolean_t havemark;
1614 
1615 	ASSERT(MUTEX_HELD(&so->so_lock));
1616 
1617 	/*
1618 	 * The possible state combinations are:
1619 	 *	0
1620 	 *	SS_OOBPEND
1621 	 *	SS_OOBPEND|SS_HAVEOOBDATA
1622 	 *	SS_OOBPEND|SS_HADOOBDATA
1623 	 *	SS_HADOOBDATA
1624 	 */
1625 	switch (so->so_state & (SS_OOBPEND|SS_HAVEOOBDATA|SS_HADOOBDATA)) {
1626 	case 0:
1627 	case SS_OOBPEND:
1628 	case SS_OOBPEND|SS_HAVEOOBDATA:
1629 	case SS_OOBPEND|SS_HADOOBDATA:
1630 	case SS_HADOOBDATA:
1631 		break;
1632 	default:
1633 		printf("Bad oob state 1 (%p): state %s\n",
1634 		    (void *)so, pr_state(so->so_state, so->so_mode));
1635 		return (0);
1636 	}
1637 
1638 	/* SS_RCVATMARK should only be set when SS_OOBPEND is set */
1639 	if ((so->so_state & (SS_RCVATMARK|SS_OOBPEND)) == SS_RCVATMARK) {
1640 		printf("Bad oob state 2 (%p): state %s\n",
1641 		    (void *)so, pr_state(so->so_state, so->so_mode));
1642 		return (0);
1643 	}
1644 
1645 	/*
1646 	 * (havemark != 0 or SS_RCVATMARK) iff SS_OOBPEND
1647 	 * For TPI, the presence of a "mark" is indicated by sti_oobsigcnt.
1648 	 */
1649 	havemark = (SOCK_IS_NONSTR(so)) ? so->so_oobmark > 0 :
1650 	    SOTOTPI(so)->sti_oobsigcnt > 0;
1651 
1652 	if (!EQUIV(havemark || (so->so_state & SS_RCVATMARK),
1653 	    so->so_state & SS_OOBPEND)) {
1654 		printf("Bad oob state 3 (%p): state %s\n",
1655 		    (void *)so, pr_state(so->so_state, so->so_mode));
1656 		return (0);
1657 	}
1658 
1659 	/*
1660 	 * Unless SO_OOBINLINE we have so_oobmsg != NULL iff SS_HAVEOOBDATA
1661 	 */
1662 	if (!(so->so_options & SO_OOBINLINE) &&
1663 	    !EQUIV(so->so_oobmsg != NULL, so->so_state & SS_HAVEOOBDATA)) {
1664 		printf("Bad oob state 4 (%p): state %s\n",
1665 		    (void *)so, pr_state(so->so_state, so->so_mode));
1666 		return (0);
1667 	}
1668 
1669 	if (!SOCK_IS_NONSTR(so) &&
1670 	    SOTOTPI(so)->sti_oobsigcnt < SOTOTPI(so)->sti_oobcnt) {
1671 		printf("Bad oob state 5 (%p): counts %d/%d state %s\n",
1672 		    (void *)so, SOTOTPI(so)->sti_oobsigcnt,
1673 		    SOTOTPI(so)->sti_oobcnt,
1674 		    pr_state(so->so_state, so->so_mode));
1675 		return (0);
1676 	}
1677 
1678 	return (1);
1679 }
1680 #undef	EQUIV
1681 #endif /* DEBUG */
1682 
1683 /* initialize sockfs zone specific kstat related items			*/
1684 void *
1685 sock_kstat_init(zoneid_t zoneid)
1686 {
1687 	kstat_t	*ksp;
1688 
1689 	ksp = kstat_create_zone("sockfs", 0, "sock_unix_list", "misc",
1690 	    KSTAT_TYPE_RAW, 0, KSTAT_FLAG_VAR_SIZE|KSTAT_FLAG_VIRTUAL, zoneid);
1691 
1692 	if (ksp != NULL) {
1693 		ksp->ks_update = sockfs_update;
1694 		ksp->ks_snapshot = sockfs_snapshot;
1695 		ksp->ks_lock = &socklist.sl_lock;
1696 		ksp->ks_private = (void *)(uintptr_t)zoneid;
1697 		kstat_install(ksp);
1698 	}
1699 
1700 	return (ksp);
1701 }
1702 
1703 /* tear down sockfs zone specific kstat related items			*/
1704 /*ARGSUSED*/
1705 void
1706 sock_kstat_fini(zoneid_t zoneid, void *arg)
1707 {
1708 	kstat_t *ksp = (kstat_t *)arg;
1709 
1710 	if (ksp != NULL) {
1711 		ASSERT(zoneid == (zoneid_t)(uintptr_t)ksp->ks_private);
1712 		kstat_delete(ksp);
1713 	}
1714 }
1715 
1716 /*
1717  * Zones:
1718  * Note that nactive is going to be different for each zone.
1719  * This means we require kstat to call sockfs_update and then sockfs_snapshot
1720  * for the same zone, or sockfs_snapshot will be taken into the wrong size
1721  * buffer. This is safe, but if the buffer is too small, user will not be
1722  * given details of all sockets. However, as this kstat has a ks_lock, kstat
1723  * driver will keep it locked between the update and the snapshot, so no
1724  * other process (zone) can currently get inbetween resulting in a wrong size
1725  * buffer allocation.
1726  */
1727 static int
1728 sockfs_update(kstat_t *ksp, int rw)
1729 {
1730 	uint_t	nactive = 0;		/* # of active AF_UNIX sockets	*/
1731 	struct sonode	*so;		/* current sonode on socklist	*/
1732 	zoneid_t	myzoneid = (zoneid_t)(uintptr_t)ksp->ks_private;
1733 
1734 	ASSERT((zoneid_t)(uintptr_t)ksp->ks_private == getzoneid());
1735 
1736 	if (rw == KSTAT_WRITE) {	/* bounce all writes		*/
1737 		return (EACCES);
1738 	}
1739 
1740 	for (so = socklist.sl_list; so != NULL; so = SOTOTPI(so)->sti_next_so) {
1741 		if (so->so_count != 0 && so->so_zoneid == myzoneid) {
1742 			nactive++;
1743 		}
1744 	}
1745 	ksp->ks_ndata = nactive;
1746 	ksp->ks_data_size = nactive * sizeof (struct k_sockinfo);
1747 
1748 	return (0);
1749 }
1750 
1751 static int
1752 sockfs_snapshot(kstat_t *ksp, void *buf, int rw)
1753 {
1754 	int			ns;	/* # of sonodes we've copied	*/
1755 	struct sonode		*so;	/* current sonode on socklist	*/
1756 	struct k_sockinfo	*pksi;	/* where we put sockinfo data	*/
1757 	t_uscalar_t		sn_len;	/* soa_len			*/
1758 	zoneid_t		myzoneid = (zoneid_t)(uintptr_t)ksp->ks_private;
1759 	sotpi_info_t 		*sti;
1760 
1761 	ASSERT((zoneid_t)(uintptr_t)ksp->ks_private == getzoneid());
1762 
1763 	ksp->ks_snaptime = gethrtime();
1764 
1765 	if (rw == KSTAT_WRITE) {	/* bounce all writes		*/
1766 		return (EACCES);
1767 	}
1768 
1769 	/*
1770 	 * for each sonode on the socklist, we massage the important
1771 	 * info into buf, in k_sockinfo format.
1772 	 */
1773 	pksi = (struct k_sockinfo *)buf;
1774 	ns = 0;
1775 	for (so = socklist.sl_list; so != NULL; so = SOTOTPI(so)->sti_next_so) {
1776 		/* only stuff active sonodes and the same zone:		*/
1777 		if (so->so_count == 0 || so->so_zoneid != myzoneid) {
1778 			continue;
1779 		}
1780 
1781 		/*
1782 		 * If the sonode was activated between the update and the
1783 		 * snapshot, we're done - as this is only a snapshot.
1784 		 */
1785 		if ((caddr_t)(pksi) >= (caddr_t)buf + ksp->ks_data_size) {
1786 			break;
1787 		}
1788 
1789 		sti = SOTOTPI(so);
1790 		/* copy important info into buf:			*/
1791 		pksi->ks_si.si_size = sizeof (struct k_sockinfo);
1792 		pksi->ks_si.si_family = so->so_family;
1793 		pksi->ks_si.si_type = so->so_type;
1794 		pksi->ks_si.si_flag = so->so_flag;
1795 		pksi->ks_si.si_state = so->so_state;
1796 		pksi->ks_si.si_serv_type = sti->sti_serv_type;
1797 		pksi->ks_si.si_ux_laddr_sou_magic =
1798 		    sti->sti_ux_laddr.soua_magic;
1799 		pksi->ks_si.si_ux_faddr_sou_magic =
1800 		    sti->sti_ux_faddr.soua_magic;
1801 		pksi->ks_si.si_laddr_soa_len = sti->sti_laddr.soa_len;
1802 		pksi->ks_si.si_faddr_soa_len = sti->sti_faddr.soa_len;
1803 		pksi->ks_si.si_szoneid = so->so_zoneid;
1804 		pksi->ks_si.si_faddr_noxlate = sti->sti_faddr_noxlate;
1805 
1806 		mutex_enter(&so->so_lock);
1807 
1808 		if (sti->sti_laddr_sa != NULL) {
1809 			ASSERT(sti->sti_laddr_sa->sa_data != NULL);
1810 			sn_len = sti->sti_laddr_len;
1811 			ASSERT(sn_len <= sizeof (short) +
1812 			    sizeof (pksi->ks_si.si_laddr_sun_path));
1813 
1814 			pksi->ks_si.si_laddr_family =
1815 			    sti->sti_laddr_sa->sa_family;
1816 			if (sn_len != 0) {
1817 				/* AF_UNIX socket names are NULL terminated */
1818 				(void) strncpy(pksi->ks_si.si_laddr_sun_path,
1819 				    sti->sti_laddr_sa->sa_data,
1820 				    sizeof (pksi->ks_si.si_laddr_sun_path));
1821 				sn_len = strlen(pksi->ks_si.si_laddr_sun_path);
1822 			}
1823 			pksi->ks_si.si_laddr_sun_path[sn_len] = 0;
1824 		}
1825 
1826 		if (sti->sti_faddr_sa != NULL) {
1827 			ASSERT(sti->sti_faddr_sa->sa_data != NULL);
1828 			sn_len = sti->sti_faddr_len;
1829 			ASSERT(sn_len <= sizeof (short) +
1830 			    sizeof (pksi->ks_si.si_faddr_sun_path));
1831 
1832 			pksi->ks_si.si_faddr_family =
1833 			    sti->sti_faddr_sa->sa_family;
1834 			if (sn_len != 0) {
1835 				(void) strncpy(pksi->ks_si.si_faddr_sun_path,
1836 				    sti->sti_faddr_sa->sa_data,
1837 				    sizeof (pksi->ks_si.si_faddr_sun_path));
1838 				sn_len = strlen(pksi->ks_si.si_faddr_sun_path);
1839 			}
1840 			pksi->ks_si.si_faddr_sun_path[sn_len] = 0;
1841 		}
1842 
1843 		mutex_exit(&so->so_lock);
1844 
1845 		(void) sprintf(pksi->ks_straddr[0], "%p", (void *)so);
1846 		(void) sprintf(pksi->ks_straddr[1], "%p",
1847 		    (void *)sti->sti_ux_laddr.soua_vp);
1848 		(void) sprintf(pksi->ks_straddr[2], "%p",
1849 		    (void *)sti->sti_ux_faddr.soua_vp);
1850 
1851 		ns++;
1852 		pksi++;
1853 	}
1854 
1855 	ksp->ks_ndata = ns;
1856 	return (0);
1857 }
1858 
1859 ssize_t
1860 soreadfile(file_t *fp, uchar_t *buf, u_offset_t fileoff, int *err, size_t size)
1861 {
1862 	struct uio auio;
1863 	struct iovec aiov[MSG_MAXIOVLEN];
1864 	register vnode_t *vp;
1865 	int ioflag, rwflag;
1866 	ssize_t cnt;
1867 	int error = 0;
1868 	int iovcnt = 0;
1869 	short fflag;
1870 
1871 	vp = fp->f_vnode;
1872 	fflag = fp->f_flag;
1873 
1874 	rwflag = 0;
1875 	aiov[0].iov_base = (caddr_t)buf;
1876 	aiov[0].iov_len = size;
1877 	iovcnt = 1;
1878 	cnt = (ssize_t)size;
1879 	(void) VOP_RWLOCK(vp, rwflag, NULL);
1880 
1881 	auio.uio_loffset = fileoff;
1882 	auio.uio_iov = aiov;
1883 	auio.uio_iovcnt = iovcnt;
1884 	auio.uio_resid = cnt;
1885 	auio.uio_segflg = UIO_SYSSPACE;
1886 	auio.uio_llimit = MAXOFFSET_T;
1887 	auio.uio_fmode = fflag;
1888 	auio.uio_extflg = UIO_COPY_CACHED;
1889 
1890 	ioflag = auio.uio_fmode & (FAPPEND|FSYNC|FDSYNC|FRSYNC);
1891 
1892 	/* If read sync is not asked for, filter sync flags */
1893 	if ((ioflag & FRSYNC) == 0)
1894 		ioflag &= ~(FSYNC|FDSYNC);
1895 	error = VOP_READ(vp, &auio, ioflag, fp->f_cred, NULL);
1896 	cnt -= auio.uio_resid;
1897 
1898 	VOP_RWUNLOCK(vp, rwflag, NULL);
1899 
1900 	if (error == EINTR && cnt != 0)
1901 		error = 0;
1902 out:
1903 	if (error != 0) {
1904 		*err = error;
1905 		return (0);
1906 	} else {
1907 		*err = 0;
1908 		return (cnt);
1909 	}
1910 }
1911 
1912 int
1913 so_copyin(const void *from, void *to, size_t size, int fromkernel)
1914 {
1915 	if (fromkernel) {
1916 		bcopy(from, to, size);
1917 		return (0);
1918 	}
1919 	return (xcopyin(from, to, size));
1920 }
1921 
1922 int
1923 so_copyout(const void *from, void *to, size_t size, int tokernel)
1924 {
1925 	if (tokernel) {
1926 		bcopy(from, to, size);
1927 		return (0);
1928 	}
1929 	return (xcopyout(from, to, size));
1930 }
1931