1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #include <sys/types.h> 28 #include <sys/param.h> 29 #include <sys/signal.h> 30 #include <sys/cmn_err.h> 31 32 #include <sys/stropts.h> 33 #include <sys/socket.h> 34 #include <sys/socketvar.h> 35 #include <sys/sockio.h> 36 #include <sys/strsubr.h> 37 #include <sys/strsun.h> 38 #include <sys/atomic.h> 39 #include <sys/tihdr.h> 40 41 #include <fs/sockfs/sockcommon.h> 42 #include <fs/sockfs/socktpi.h> 43 #include <fs/sockfs/sodirect.h> 44 #include <sys/ddi.h> 45 #include <inet/ip.h> 46 #include <sys/time.h> 47 #include <sys/cmn_err.h> 48 49 #ifdef SOCK_TEST 50 extern int do_useracc; 51 extern clock_t sock_test_timelimit; 52 #endif /* SOCK_TEST */ 53 54 #define MBLK_PULL_LEN 64 55 uint32_t so_mblk_pull_len = MBLK_PULL_LEN; 56 57 #ifdef DEBUG 58 boolean_t so_debug_length = B_FALSE; 59 static boolean_t so_check_length(sonode_t *so); 60 #endif 61 62 int 63 so_acceptq_enqueue_locked(struct sonode *so, struct sonode *nso) 64 { 65 ASSERT(MUTEX_HELD(&so->so_acceptq_lock)); 66 ASSERT(nso->so_acceptq_next == NULL); 67 68 *so->so_acceptq_tail = nso; 69 so->so_acceptq_tail = &nso->so_acceptq_next; 70 so->so_acceptq_len++; 71 72 /* Wakeup a single consumer */ 73 cv_signal(&so->so_acceptq_cv); 74 75 return (so->so_acceptq_len); 76 } 77 78 /* 79 * int so_acceptq_enqueue(struct sonode *so, struct sonode *nso) 80 * 81 * Enqueue an incoming connection on a listening socket. 82 * 83 * Arguments: 84 * so - listening socket 85 * nso - new connection 86 * 87 * Returns: 88 * Number of queued connections, including the new connection 89 */ 90 int 91 so_acceptq_enqueue(struct sonode *so, struct sonode *nso) 92 { 93 int conns; 94 95 mutex_enter(&so->so_acceptq_lock); 96 conns = so_acceptq_enqueue_locked(so, nso); 97 mutex_exit(&so->so_acceptq_lock); 98 99 return (conns); 100 } 101 102 static int 103 so_acceptq_dequeue_locked(struct sonode *so, boolean_t dontblock, 104 struct sonode **nsop) 105 { 106 struct sonode *nso = NULL; 107 108 *nsop = NULL; 109 ASSERT(MUTEX_HELD(&so->so_acceptq_lock)); 110 while ((nso = so->so_acceptq_head) == NULL) { 111 /* 112 * No need to check so_error here, because it is not 113 * possible for a listening socket to be reset or otherwise 114 * disconnected. 115 * 116 * So now we just need check if it's ok to wait. 117 */ 118 if (dontblock) 119 return (EWOULDBLOCK); 120 if (so->so_state & (SS_CLOSING | SS_FALLBACK_PENDING)) 121 return (EINTR); 122 123 if (cv_wait_sig_swap(&so->so_acceptq_cv, 124 &so->so_acceptq_lock) == 0) 125 return (EINTR); 126 } 127 128 ASSERT(nso != NULL); 129 so->so_acceptq_head = nso->so_acceptq_next; 130 nso->so_acceptq_next = NULL; 131 132 if (so->so_acceptq_head == NULL) { 133 ASSERT(so->so_acceptq_tail == &nso->so_acceptq_next); 134 so->so_acceptq_tail = &so->so_acceptq_head; 135 } 136 ASSERT(so->so_acceptq_len > 0); 137 --so->so_acceptq_len; 138 139 *nsop = nso; 140 141 return (0); 142 } 143 144 /* 145 * int so_acceptq_dequeue(struct sonode *, boolean_t, struct sonode **) 146 * 147 * Pulls a connection off of the accept queue. 148 * 149 * Arguments: 150 * so - listening socket 151 * dontblock - indicate whether it's ok to sleep if there are no 152 * connections on the queue 153 * nsop - Value-return argument 154 * 155 * Return values: 156 * 0 when a connection is successfully dequeued, in which case nsop 157 * is set to point to the new connection. Upon failure a non-zero 158 * value is returned, and the value of nsop is set to NULL. 159 * 160 * Note: 161 * so_acceptq_dequeue() may return prematurly if the socket is falling 162 * back to TPI. 163 */ 164 int 165 so_acceptq_dequeue(struct sonode *so, boolean_t dontblock, 166 struct sonode **nsop) 167 { 168 int error; 169 170 mutex_enter(&so->so_acceptq_lock); 171 error = so_acceptq_dequeue_locked(so, dontblock, nsop); 172 mutex_exit(&so->so_acceptq_lock); 173 174 return (error); 175 } 176 177 /* 178 * void so_acceptq_flush(struct sonode *so) 179 * 180 * Removes all pending connections from a listening socket, and 181 * frees the associated resources. 182 * 183 * Arguments 184 * so - listening socket 185 * 186 * Return values: 187 * None. 188 * 189 * Note: 190 * The caller has to ensure that no calls to so_acceptq_enqueue() or 191 * so_acceptq_dequeue() occur while the accept queue is being flushed. 192 * So either the socket needs to be in a state where no operations 193 * would come in, or so_lock needs to be obtained. 194 */ 195 void 196 so_acceptq_flush(struct sonode *so) 197 { 198 struct sonode *nso; 199 200 nso = so->so_acceptq_head; 201 202 while (nso != NULL) { 203 struct sonode *nnso = NULL; 204 205 nnso = nso->so_acceptq_next; 206 nso->so_acceptq_next = NULL; 207 /* 208 * Since the socket is on the accept queue, there can 209 * only be one reference. We drop the reference and 210 * just blow off the socket. 211 */ 212 ASSERT(nso->so_count == 1); 213 nso->so_count--; 214 socket_destroy(nso); 215 nso = nnso; 216 } 217 218 so->so_acceptq_head = NULL; 219 so->so_acceptq_tail = &so->so_acceptq_head; 220 so->so_acceptq_len = 0; 221 } 222 223 int 224 so_wait_connected_locked(struct sonode *so, boolean_t nonblock, 225 sock_connid_t id) 226 { 227 ASSERT(MUTEX_HELD(&so->so_lock)); 228 229 /* 230 * The protocol has notified us that a connection attempt is being 231 * made, so before we wait for a notification to arrive we must 232 * clear out any errors associated with earlier connection attempts. 233 */ 234 if (so->so_error != 0 && SOCK_CONNID_LT(so->so_proto_connid, id)) 235 so->so_error = 0; 236 237 while (SOCK_CONNID_LT(so->so_proto_connid, id)) { 238 if (nonblock) 239 return (EINPROGRESS); 240 241 if (so->so_state & (SS_CLOSING | SS_FALLBACK_PENDING)) 242 return (EINTR); 243 244 if (cv_wait_sig_swap(&so->so_state_cv, &so->so_lock) == 0) 245 return (EINTR); 246 } 247 248 if (so->so_error != 0) 249 return (sogeterr(so, B_TRUE)); 250 /* 251 * Under normal circumstances, so_error should contain an error 252 * in case the connect failed. However, it is possible for another 253 * thread to come in a consume the error, so generate a sensible 254 * error in that case. 255 */ 256 if ((so->so_state & SS_ISCONNECTED) == 0) 257 return (ECONNREFUSED); 258 259 return (0); 260 } 261 262 /* 263 * int so_wait_connected(struct sonode *so, boolean_t nonblock, 264 * sock_connid_t id) 265 * 266 * Wait until the socket is connected or an error has occured. 267 * 268 * Arguments: 269 * so - socket 270 * nonblock - indicate whether it's ok to sleep if the connection has 271 * not yet been established 272 * gen - generation number that was returned by the protocol 273 * when the operation was started 274 * 275 * Returns: 276 * 0 if the connection attempt was successful, or an error indicating why 277 * the connection attempt failed. 278 */ 279 int 280 so_wait_connected(struct sonode *so, boolean_t nonblock, sock_connid_t id) 281 { 282 int error; 283 284 mutex_enter(&so->so_lock); 285 error = so_wait_connected_locked(so, nonblock, id); 286 mutex_exit(&so->so_lock); 287 288 return (error); 289 } 290 291 int 292 so_snd_wait_qnotfull_locked(struct sonode *so, boolean_t dontblock) 293 { 294 int error; 295 296 ASSERT(MUTEX_HELD(&so->so_lock)); 297 while (so->so_snd_qfull) { 298 if (so->so_state & SS_CANTSENDMORE) 299 return (EPIPE); 300 if (dontblock) 301 return (EWOULDBLOCK); 302 303 if (so->so_state & (SS_CLOSING | SS_FALLBACK_PENDING)) 304 return (EINTR); 305 306 if (so->so_sndtimeo == 0) { 307 /* 308 * Zero means disable timeout. 309 */ 310 error = cv_wait_sig(&so->so_snd_cv, &so->so_lock); 311 } else { 312 clock_t now; 313 314 time_to_wait(&now, so->so_sndtimeo); 315 error = cv_timedwait_sig(&so->so_snd_cv, &so->so_lock, 316 now); 317 } 318 if (error == 0) 319 return (EINTR); 320 else if (error == -1) 321 return (EAGAIN); 322 } 323 return (0); 324 } 325 326 /* 327 * int so_wait_sendbuf(struct sonode *so, boolean_t dontblock) 328 * 329 * Wait for the transport to notify us about send buffers becoming 330 * available. 331 */ 332 int 333 so_snd_wait_qnotfull(struct sonode *so, boolean_t dontblock) 334 { 335 int error = 0; 336 337 mutex_enter(&so->so_lock); 338 if (so->so_snd_qfull) { 339 so->so_snd_wakeup = B_TRUE; 340 error = so_snd_wait_qnotfull_locked(so, dontblock); 341 so->so_snd_wakeup = B_FALSE; 342 } 343 mutex_exit(&so->so_lock); 344 345 return (error); 346 } 347 348 void 349 so_snd_qfull(struct sonode *so) 350 { 351 mutex_enter(&so->so_lock); 352 so->so_snd_qfull = B_TRUE; 353 mutex_exit(&so->so_lock); 354 } 355 356 void 357 so_snd_qnotfull(struct sonode *so) 358 { 359 mutex_enter(&so->so_lock); 360 so->so_snd_qfull = B_FALSE; 361 /* wake up everyone waiting for buffers */ 362 cv_broadcast(&so->so_snd_cv); 363 mutex_exit(&so->so_lock); 364 } 365 366 /* 367 * Change the process/process group to which SIGIO is sent. 368 */ 369 int 370 socket_chgpgrp(struct sonode *so, pid_t pid) 371 { 372 int error; 373 374 ASSERT(MUTEX_HELD(&so->so_lock)); 375 if (pid != 0) { 376 /* 377 * Permissions check by sending signal 0. 378 * Note that when kill fails it does a 379 * set_errno causing the system call to fail. 380 */ 381 error = kill(pid, 0); 382 if (error != 0) { 383 return (error); 384 } 385 } 386 so->so_pgrp = pid; 387 return (0); 388 } 389 390 391 /* 392 * Generate a SIGIO, for 'writable' events include siginfo structure, 393 * for read events just send the signal. 394 */ 395 /*ARGSUSED*/ 396 static void 397 socket_sigproc(proc_t *proc, int event) 398 { 399 k_siginfo_t info; 400 401 ASSERT(event & (SOCKETSIG_WRITE | SOCKETSIG_READ | SOCKETSIG_URG)); 402 403 if (event & SOCKETSIG_WRITE) { 404 info.si_signo = SIGPOLL; 405 info.si_code = POLL_OUT; 406 info.si_errno = 0; 407 info.si_fd = 0; 408 info.si_band = 0; 409 sigaddq(proc, NULL, &info, KM_NOSLEEP); 410 } 411 if (event & SOCKETSIG_READ) { 412 sigtoproc(proc, NULL, SIGPOLL); 413 } 414 if (event & SOCKETSIG_URG) { 415 sigtoproc(proc, NULL, SIGURG); 416 } 417 } 418 419 void 420 socket_sendsig(struct sonode *so, int event) 421 { 422 proc_t *proc; 423 424 ASSERT(MUTEX_HELD(&so->so_lock)); 425 426 if (so->so_pgrp == 0 || (!(so->so_state & SS_ASYNC) && 427 event != SOCKETSIG_URG)) { 428 return; 429 } 430 431 dprint(3, ("sending sig %d to %d\n", event, so->so_pgrp)); 432 433 if (so->so_pgrp > 0) { 434 /* 435 * XXX This unfortunately still generates 436 * a signal when a fd is closed but 437 * the proc is active. 438 */ 439 mutex_enter(&pidlock); 440 proc = prfind(so->so_pgrp); 441 if (proc == NULL) { 442 mutex_exit(&pidlock); 443 return; 444 } 445 mutex_enter(&proc->p_lock); 446 mutex_exit(&pidlock); 447 socket_sigproc(proc, event); 448 mutex_exit(&proc->p_lock); 449 } else { 450 /* 451 * Send to process group. Hold pidlock across 452 * calls to socket_sigproc(). 453 */ 454 pid_t pgrp = -so->so_pgrp; 455 456 mutex_enter(&pidlock); 457 proc = pgfind(pgrp); 458 while (proc != NULL) { 459 mutex_enter(&proc->p_lock); 460 socket_sigproc(proc, event); 461 mutex_exit(&proc->p_lock); 462 proc = proc->p_pglink; 463 } 464 mutex_exit(&pidlock); 465 } 466 } 467 468 #define MIN(a, b) ((a) < (b) ? (a) : (b)) 469 /* Copy userdata into a new mblk_t */ 470 mblk_t * 471 socopyinuio(uio_t *uiop, ssize_t iosize, size_t wroff, ssize_t maxblk, 472 size_t tail_len, int *errorp, cred_t *cr) 473 { 474 mblk_t *head = NULL, **tail = &head; 475 476 ASSERT(iosize == INFPSZ || iosize > 0); 477 478 if (iosize == INFPSZ || iosize > uiop->uio_resid) 479 iosize = uiop->uio_resid; 480 481 if (maxblk == INFPSZ) 482 maxblk = iosize; 483 484 /* Nothing to do in these cases, so we're done */ 485 if (iosize < 0 || maxblk < 0 || (maxblk == 0 && iosize > 0)) 486 goto done; 487 488 /* 489 * We will enter the loop below if iosize is 0; it will allocate an 490 * empty message block and call uiomove(9F) which will just return. 491 * We could avoid that with an extra check but would only slow 492 * down the much more likely case where iosize is larger than 0. 493 */ 494 do { 495 ssize_t blocksize; 496 mblk_t *mp; 497 498 blocksize = MIN(iosize, maxblk); 499 ASSERT(blocksize >= 0); 500 if (is_system_labeled()) 501 mp = allocb_cred(wroff + blocksize + tail_len, 502 cr, curproc->p_pid); 503 else 504 mp = allocb(wroff + blocksize + tail_len, BPRI_MED); 505 if (mp == NULL) { 506 *errorp = ENOMEM; 507 return (head); 508 } 509 mp->b_rptr += wroff; 510 mp->b_wptr = mp->b_rptr + blocksize; 511 512 *tail = mp; 513 tail = &mp->b_cont; 514 515 /* uiomove(9F) either returns 0 or EFAULT */ 516 if ((*errorp = uiomove(mp->b_rptr, (size_t)blocksize, 517 UIO_WRITE, uiop)) != 0) { 518 ASSERT(*errorp != ENOMEM); 519 freemsg(head); 520 return (NULL); 521 } 522 523 iosize -= blocksize; 524 } while (iosize > 0); 525 526 done: 527 *errorp = 0; 528 return (head); 529 } 530 531 mblk_t * 532 socopyoutuio(mblk_t *mp, struct uio *uiop, ssize_t max_read, int *errorp) 533 { 534 int error; 535 ptrdiff_t n; 536 mblk_t *nmp; 537 538 ASSERT(mp->b_wptr >= mp->b_rptr); 539 540 /* 541 * max_read is the offset of the oobmark and read can not go pass 542 * the oobmark. 543 */ 544 if (max_read == INFPSZ || max_read > uiop->uio_resid) 545 max_read = uiop->uio_resid; 546 547 do { 548 if ((n = MIN(max_read, MBLKL(mp))) != 0) { 549 ASSERT(n > 0); 550 551 error = uiomove(mp->b_rptr, n, UIO_READ, uiop); 552 if (error != 0) { 553 freemsg(mp); 554 *errorp = error; 555 return (NULL); 556 } 557 } 558 559 mp->b_rptr += n; 560 max_read -= n; 561 while (mp != NULL && (mp->b_rptr >= mp->b_wptr)) { 562 /* 563 * get rid of zero length mblks 564 */ 565 nmp = mp; 566 mp = mp->b_cont; 567 freeb(nmp); 568 } 569 } while (mp != NULL && max_read > 0); 570 571 *errorp = 0; 572 return (mp); 573 } 574 575 static void 576 so_prepend_msg(struct sonode *so, mblk_t *mp, mblk_t *last_tail) 577 { 578 ASSERT(last_tail != NULL); 579 mp->b_next = so->so_rcv_q_head; 580 mp->b_prev = last_tail; 581 ASSERT(!(DB_FLAGS(mp) & DBLK_UIOA)); 582 583 if (so->so_rcv_q_head == NULL) { 584 ASSERT(so->so_rcv_q_last_head == NULL); 585 so->so_rcv_q_last_head = mp; 586 #ifdef DEBUG 587 } else { 588 ASSERT(!(DB_FLAGS(so->so_rcv_q_head) & DBLK_UIOA)); 589 #endif 590 } 591 so->so_rcv_q_head = mp; 592 593 #ifdef DEBUG 594 if (so_debug_length) { 595 mutex_enter(&so->so_lock); 596 ASSERT(so_check_length(so)); 597 mutex_exit(&so->so_lock); 598 } 599 #endif 600 } 601 602 /* 603 * Move a mblk chain (mp_head, mp_last_head) to the sonode's rcv queue so it 604 * can be processed by so_dequeue_msg(). 605 */ 606 void 607 so_process_new_message(struct sonode *so, mblk_t *mp_head, mblk_t *mp_last_head) 608 { 609 ASSERT(mp_head->b_prev != NULL); 610 if (so->so_rcv_q_head == NULL) { 611 so->so_rcv_q_head = mp_head; 612 so->so_rcv_q_last_head = mp_last_head; 613 ASSERT(so->so_rcv_q_last_head->b_prev != NULL); 614 } else { 615 boolean_t flag_equal = ((DB_FLAGS(mp_head) & DBLK_UIOA) == 616 (DB_FLAGS(so->so_rcv_q_last_head) & DBLK_UIOA)); 617 618 if (mp_head->b_next == NULL && 619 DB_TYPE(mp_head) == M_DATA && 620 DB_TYPE(so->so_rcv_q_last_head) == M_DATA && flag_equal) { 621 so->so_rcv_q_last_head->b_prev->b_cont = mp_head; 622 so->so_rcv_q_last_head->b_prev = mp_head->b_prev; 623 mp_head->b_prev = NULL; 624 } else if (flag_equal && (DB_FLAGS(mp_head) & DBLK_UIOA)) { 625 /* 626 * Append to last_head if more than one mblks, and both 627 * mp_head and last_head are I/OAT mblks. 628 */ 629 ASSERT(mp_head->b_next != NULL); 630 so->so_rcv_q_last_head->b_prev->b_cont = mp_head; 631 so->so_rcv_q_last_head->b_prev = mp_head->b_prev; 632 mp_head->b_prev = NULL; 633 634 so->so_rcv_q_last_head->b_next = mp_head->b_next; 635 mp_head->b_next = NULL; 636 so->so_rcv_q_last_head = mp_last_head; 637 } else { 638 #ifdef DEBUG 639 { 640 mblk_t *tmp_mblk; 641 tmp_mblk = mp_head; 642 while (tmp_mblk != NULL) { 643 ASSERT(tmp_mblk->b_prev != NULL); 644 tmp_mblk = tmp_mblk->b_next; 645 } 646 } 647 #endif 648 so->so_rcv_q_last_head->b_next = mp_head; 649 so->so_rcv_q_last_head = mp_last_head; 650 } 651 } 652 } 653 654 /* 655 * Check flow control on a given sonode. Must have so_lock held, and 656 * this function will release the hold. 657 */ 658 659 static void 660 so_check_flow_control(struct sonode *so) 661 { 662 ASSERT(MUTEX_HELD(&so->so_lock)); 663 664 if (so->so_flowctrld && so->so_rcv_queued < so->so_rcvlowat) { 665 so->so_flowctrld = B_FALSE; 666 mutex_exit(&so->so_lock); 667 /* 668 * Open up flow control. SCTP does not have any downcalls, and 669 * it will clr flow ctrl in sosctp_recvmsg(). 670 */ 671 if (so->so_downcalls != NULL && 672 so->so_downcalls->sd_clr_flowctrl != NULL) { 673 (*so->so_downcalls->sd_clr_flowctrl) 674 (so->so_proto_handle); 675 } 676 } else { 677 mutex_exit(&so->so_lock); 678 } 679 } 680 681 int 682 so_dequeue_msg(struct sonode *so, mblk_t **mctlp, struct uio *uiop, 683 rval_t *rvalp, int flags) 684 { 685 mblk_t *mp, *nmp; 686 mblk_t *savemp, *savemptail; 687 mblk_t *new_msg_head; 688 mblk_t *new_msg_last_head; 689 mblk_t *last_tail; 690 boolean_t partial_read; 691 boolean_t reset_atmark = B_FALSE; 692 int more = 0; 693 int error; 694 ssize_t oobmark; 695 sodirect_t *sodp = so->so_direct; 696 697 partial_read = B_FALSE; 698 *mctlp = NULL; 699 again: 700 mutex_enter(&so->so_lock); 701 again1: 702 #ifdef DEBUG 703 if (so_debug_length) { 704 ASSERT(so_check_length(so)); 705 } 706 #endif 707 if (so->so_state & SS_RCVATMARK) { 708 /* Check whether the caller is OK to read past the mark */ 709 if (flags & MSG_NOMARK) { 710 mutex_exit(&so->so_lock); 711 return (EWOULDBLOCK); 712 } 713 reset_atmark = B_TRUE; 714 } 715 /* 716 * First move messages from the dump area to processing area 717 */ 718 if (sodp != NULL) { 719 if (sodp->sod_enabled) { 720 if (sodp->sod_uioa.uioa_state & UIOA_ALLOC) { 721 /* nothing to uioamove */ 722 sodp = NULL; 723 } else if (sodp->sod_uioa.uioa_state & UIOA_INIT) { 724 sodp->sod_uioa.uioa_state &= UIOA_CLR; 725 sodp->sod_uioa.uioa_state |= UIOA_ENABLED; 726 /* 727 * try to uioamove() the data that 728 * has already queued. 729 */ 730 sod_uioa_so_init(so, sodp, uiop); 731 } 732 } else { 733 sodp = NULL; 734 } 735 } 736 new_msg_head = so->so_rcv_head; 737 new_msg_last_head = so->so_rcv_last_head; 738 so->so_rcv_head = NULL; 739 so->so_rcv_last_head = NULL; 740 oobmark = so->so_oobmark; 741 /* 742 * We can release the lock as there can only be one reader 743 */ 744 mutex_exit(&so->so_lock); 745 746 if (new_msg_head != NULL) { 747 so_process_new_message(so, new_msg_head, new_msg_last_head); 748 } 749 savemp = savemptail = NULL; 750 rvalp->r_val1 = 0; 751 error = 0; 752 mp = so->so_rcv_q_head; 753 754 if (mp != NULL && 755 (so->so_rcv_timer_tid == 0 || 756 so->so_rcv_queued >= so->so_rcv_thresh)) { 757 partial_read = B_FALSE; 758 759 if (flags & MSG_PEEK) { 760 if ((nmp = dupmsg(mp)) == NULL && 761 (nmp = copymsg(mp)) == NULL) { 762 size_t size = msgsize(mp); 763 764 error = strwaitbuf(size, BPRI_HI); 765 if (error) { 766 return (error); 767 } 768 goto again; 769 } 770 mp = nmp; 771 } else { 772 ASSERT(mp->b_prev != NULL); 773 last_tail = mp->b_prev; 774 mp->b_prev = NULL; 775 so->so_rcv_q_head = mp->b_next; 776 if (so->so_rcv_q_head == NULL) { 777 so->so_rcv_q_last_head = NULL; 778 } 779 mp->b_next = NULL; 780 } 781 782 ASSERT(mctlp != NULL); 783 /* 784 * First process PROTO or PCPROTO blocks, if any. 785 */ 786 if (DB_TYPE(mp) != M_DATA) { 787 *mctlp = mp; 788 savemp = mp; 789 savemptail = mp; 790 ASSERT(DB_TYPE(mp) == M_PROTO || 791 DB_TYPE(mp) == M_PCPROTO); 792 while (mp->b_cont != NULL && 793 DB_TYPE(mp->b_cont) != M_DATA) { 794 ASSERT(DB_TYPE(mp->b_cont) == M_PROTO || 795 DB_TYPE(mp->b_cont) == M_PCPROTO); 796 mp = mp->b_cont; 797 savemptail = mp; 798 } 799 mp = savemptail->b_cont; 800 savemptail->b_cont = NULL; 801 } 802 803 ASSERT(DB_TYPE(mp) == M_DATA); 804 /* 805 * Now process DATA blocks, if any. Note that for sodirect 806 * enabled socket, uio_resid can be 0. 807 */ 808 if (uiop->uio_resid >= 0) { 809 ssize_t copied = 0; 810 811 if (sodp != NULL && (DB_FLAGS(mp) & DBLK_UIOA)) { 812 mutex_enter(&so->so_lock); 813 ASSERT(uiop == (uio_t *)&sodp->sod_uioa); 814 copied = sod_uioa_mblk(so, mp); 815 if (copied > 0) 816 partial_read = B_TRUE; 817 mutex_exit(&so->so_lock); 818 /* mark this mblk as processed */ 819 mp = NULL; 820 } else { 821 ssize_t oldresid = uiop->uio_resid; 822 823 if (MBLKL(mp) < so_mblk_pull_len) { 824 if (pullupmsg(mp, -1) == 1) { 825 last_tail = mp; 826 } 827 } 828 /* 829 * Can not read beyond the oobmark 830 */ 831 mp = socopyoutuio(mp, uiop, 832 oobmark == 0 ? INFPSZ : oobmark, &error); 833 if (error != 0) { 834 freemsg(*mctlp); 835 *mctlp = NULL; 836 more = 0; 837 goto done; 838 } 839 ASSERT(oldresid >= uiop->uio_resid); 840 copied = oldresid - uiop->uio_resid; 841 if (oldresid > uiop->uio_resid) 842 partial_read = B_TRUE; 843 } 844 ASSERT(copied >= 0); 845 if (copied > 0 && !(flags & MSG_PEEK)) { 846 mutex_enter(&so->so_lock); 847 so->so_rcv_queued -= copied; 848 ASSERT(so->so_oobmark >= 0); 849 if (so->so_oobmark > 0) { 850 so->so_oobmark -= copied; 851 ASSERT(so->so_oobmark >= 0); 852 if (so->so_oobmark == 0) { 853 ASSERT(so->so_state & 854 SS_OOBPEND); 855 so->so_oobmark = 0; 856 so->so_state |= SS_RCVATMARK; 857 } 858 } 859 /* 860 * so_check_flow_control() will drop 861 * so->so_lock. 862 */ 863 so_check_flow_control(so); 864 } 865 } 866 if (mp != NULL) { /* more data blocks in msg */ 867 more |= MOREDATA; 868 if ((flags & (MSG_PEEK|MSG_TRUNC))) { 869 if (flags & MSG_PEEK) { 870 freemsg(mp); 871 } else { 872 unsigned int msize = msgdsize(mp); 873 874 freemsg(mp); 875 mutex_enter(&so->so_lock); 876 so->so_rcv_queued -= msize; 877 /* 878 * so_check_flow_control() will drop 879 * so->so_lock. 880 */ 881 so_check_flow_control(so); 882 } 883 } else if (partial_read && !somsghasdata(mp)) { 884 /* 885 * Avoid queuing a zero-length tail part of 886 * a message. partial_read == 1 indicates that 887 * we read some of the message. 888 */ 889 freemsg(mp); 890 more &= ~MOREDATA; 891 } else { 892 if (savemp != NULL && 893 (flags & MSG_DUPCTRL)) { 894 mblk_t *nmp; 895 /* 896 * There should only be non data mblks 897 */ 898 ASSERT(DB_TYPE(savemp) != M_DATA && 899 DB_TYPE(savemptail) != M_DATA); 900 try_again: 901 if ((nmp = dupmsg(savemp)) == NULL && 902 (nmp = copymsg(savemp)) == NULL) { 903 904 size_t size = msgsize(savemp); 905 906 error = strwaitbuf(size, 907 BPRI_HI); 908 if (error != 0) { 909 /* 910 * In case we 911 * cannot copy 912 * control data 913 * free the remaining 914 * data. 915 */ 916 freemsg(mp); 917 goto done; 918 } 919 goto try_again; 920 } 921 922 ASSERT(nmp != NULL); 923 ASSERT(DB_TYPE(nmp) != M_DATA); 924 savemptail->b_cont = mp; 925 *mctlp = nmp; 926 mp = savemp; 927 } 928 /* 929 * putback mp 930 */ 931 so_prepend_msg(so, mp, last_tail); 932 } 933 } 934 935 /* fast check so_rcv_head if there is more data */ 936 if (partial_read && !(so->so_state & SS_RCVATMARK) && 937 *mctlp == NULL && uiop->uio_resid > 0 && 938 !(flags & MSG_PEEK) && so->so_rcv_head != NULL) { 939 goto again; 940 } 941 } else if (!partial_read) { 942 mutex_enter(&so->so_lock); 943 if (so->so_error != 0) { 944 error = sogeterr(so, !(flags & MSG_PEEK)); 945 mutex_exit(&so->so_lock); 946 return (error); 947 } 948 /* 949 * No pending data. Return right away for nonblocking 950 * socket, otherwise sleep waiting for data. 951 */ 952 if (!(so->so_state & SS_CANTRCVMORE) && uiop->uio_resid > 0) { 953 if ((uiop->uio_fmode & (FNDELAY|FNONBLOCK)) || 954 (flags & MSG_DONTWAIT)) { 955 error = EWOULDBLOCK; 956 } else { 957 if (so->so_state & (SS_CLOSING | 958 SS_FALLBACK_PENDING)) { 959 mutex_exit(&so->so_lock); 960 error = EINTR; 961 goto done; 962 } 963 964 if (so->so_rcv_head != NULL) { 965 goto again1; 966 } 967 so->so_rcv_wakeup = B_TRUE; 968 so->so_rcv_wanted = uiop->uio_resid; 969 if (so->so_rcvtimeo == 0) { 970 /* 971 * Zero means disable timeout. 972 */ 973 error = cv_wait_sig(&so->so_rcv_cv, 974 &so->so_lock); 975 } else { 976 clock_t now; 977 time_to_wait(&now, so->so_rcvtimeo); 978 error = cv_timedwait_sig(&so->so_rcv_cv, 979 &so->so_lock, now); 980 } 981 so->so_rcv_wakeup = B_FALSE; 982 so->so_rcv_wanted = 0; 983 984 if (error == 0) { 985 error = EINTR; 986 } else if (error == -1) { 987 error = EAGAIN; 988 } else { 989 goto again1; 990 } 991 } 992 } 993 mutex_exit(&so->so_lock); 994 } 995 if (reset_atmark && partial_read && !(flags & MSG_PEEK)) { 996 /* 997 * We are passed the mark, update state 998 * 4.3BSD and 4.4BSD clears the mark when peeking across it. 999 * The draft Posix socket spec states that the mark should 1000 * not be cleared when peeking. We follow the latter. 1001 */ 1002 mutex_enter(&so->so_lock); 1003 ASSERT(so_verify_oobstate(so)); 1004 so->so_state &= ~(SS_OOBPEND|SS_HAVEOOBDATA|SS_RCVATMARK); 1005 freemsg(so->so_oobmsg); 1006 so->so_oobmsg = NULL; 1007 ASSERT(so_verify_oobstate(so)); 1008 mutex_exit(&so->so_lock); 1009 } 1010 ASSERT(so->so_rcv_wakeup == B_FALSE); 1011 done: 1012 if (sodp != NULL) { 1013 mutex_enter(&so->so_lock); 1014 if (sodp->sod_enabled && 1015 (sodp->sod_uioa.uioa_state & UIOA_ENABLED)) { 1016 SOD_UIOAFINI(sodp); 1017 if (sodp->sod_uioa.uioa_mbytes > 0) { 1018 ASSERT(so->so_rcv_q_head != NULL || 1019 so->so_rcv_head != NULL); 1020 so->so_rcv_queued -= sod_uioa_mblk(so, NULL); 1021 if (error == EWOULDBLOCK) 1022 error = 0; 1023 } 1024 } 1025 mutex_exit(&so->so_lock); 1026 } 1027 #ifdef DEBUG 1028 if (so_debug_length) { 1029 mutex_enter(&so->so_lock); 1030 ASSERT(so_check_length(so)); 1031 mutex_exit(&so->so_lock); 1032 } 1033 #endif 1034 rvalp->r_val1 = more; 1035 ASSERT(MUTEX_NOT_HELD(&so->so_lock)); 1036 return (error); 1037 } 1038 1039 /* 1040 * Enqueue data from the protocol on the socket's rcv queue. 1041 * 1042 * We try to hook new M_DATA mblks onto an existing chain, however, 1043 * that cannot be done if the existing chain has already been 1044 * processed by I/OAT. Non-M_DATA mblks are just linked together via 1045 * b_next. In all cases the b_prev of the enqueued mblk is set to 1046 * point to the last mblk in its b_cont chain. 1047 */ 1048 void 1049 so_enqueue_msg(struct sonode *so, mblk_t *mp, size_t msg_size) 1050 { 1051 ASSERT(MUTEX_HELD(&so->so_lock)); 1052 1053 #ifdef DEBUG 1054 if (so_debug_length) { 1055 ASSERT(so_check_length(so)); 1056 } 1057 #endif 1058 so->so_rcv_queued += msg_size; 1059 1060 if (so->so_rcv_head == NULL) { 1061 ASSERT(so->so_rcv_last_head == NULL); 1062 so->so_rcv_head = mp; 1063 so->so_rcv_last_head = mp; 1064 } else if ((DB_TYPE(mp) == M_DATA && 1065 DB_TYPE(so->so_rcv_last_head) == M_DATA) && 1066 ((DB_FLAGS(mp) & DBLK_UIOA) == 1067 (DB_FLAGS(so->so_rcv_last_head) & DBLK_UIOA))) { 1068 /* Added to the end */ 1069 ASSERT(so->so_rcv_last_head != NULL); 1070 ASSERT(so->so_rcv_last_head->b_prev != NULL); 1071 so->so_rcv_last_head->b_prev->b_cont = mp; 1072 } else { 1073 /* Start a new end */ 1074 so->so_rcv_last_head->b_next = mp; 1075 so->so_rcv_last_head = mp; 1076 } 1077 while (mp->b_cont != NULL) 1078 mp = mp->b_cont; 1079 1080 so->so_rcv_last_head->b_prev = mp; 1081 #ifdef DEBUG 1082 if (so_debug_length) { 1083 ASSERT(so_check_length(so)); 1084 } 1085 #endif 1086 } 1087 1088 /* 1089 * Return B_TRUE if there is data in the message, B_FALSE otherwise. 1090 */ 1091 boolean_t 1092 somsghasdata(mblk_t *mp) 1093 { 1094 for (; mp; mp = mp->b_cont) 1095 if (mp->b_datap->db_type == M_DATA) { 1096 ASSERT(mp->b_wptr >= mp->b_rptr); 1097 if (mp->b_wptr > mp->b_rptr) 1098 return (B_TRUE); 1099 } 1100 return (B_FALSE); 1101 } 1102 1103 /* 1104 * Flush the read side of sockfs. 1105 * 1106 * The caller must be sure that a reader is not already active when the 1107 * buffer is being flushed. 1108 */ 1109 void 1110 so_rcv_flush(struct sonode *so) 1111 { 1112 mblk_t *mp; 1113 1114 ASSERT(MUTEX_HELD(&so->so_lock)); 1115 1116 if (so->so_oobmsg != NULL) { 1117 freemsg(so->so_oobmsg); 1118 so->so_oobmsg = NULL; 1119 so->so_oobmark = 0; 1120 so->so_state &= 1121 ~(SS_OOBPEND|SS_HAVEOOBDATA|SS_HADOOBDATA|SS_RCVATMARK); 1122 } 1123 1124 /* 1125 * Free messages sitting in the send and recv queue 1126 */ 1127 while (so->so_rcv_q_head != NULL) { 1128 mp = so->so_rcv_q_head; 1129 so->so_rcv_q_head = mp->b_next; 1130 mp->b_next = mp->b_prev = NULL; 1131 freemsg(mp); 1132 } 1133 while (so->so_rcv_head != NULL) { 1134 mp = so->so_rcv_head; 1135 so->so_rcv_head = mp->b_next; 1136 mp->b_next = mp->b_prev = NULL; 1137 freemsg(mp); 1138 } 1139 so->so_rcv_queued = 0; 1140 so->so_rcv_q_head = NULL; 1141 so->so_rcv_q_last_head = NULL; 1142 so->so_rcv_head = NULL; 1143 so->so_rcv_last_head = NULL; 1144 } 1145 1146 /* 1147 * Handle recv* calls that set MSG_OOB or MSG_OOB together with MSG_PEEK. 1148 */ 1149 int 1150 sorecvoob(struct sonode *so, struct nmsghdr *msg, struct uio *uiop, int flags, 1151 boolean_t oob_inline) 1152 { 1153 mblk_t *mp, *nmp; 1154 int error; 1155 1156 dprintso(so, 1, ("sorecvoob(%p, %p, 0x%x)\n", (void *)so, (void *)msg, 1157 flags)); 1158 1159 if (msg != NULL) { 1160 /* 1161 * There is never any oob data with addresses or control since 1162 * the T_EXDATA_IND does not carry any options. 1163 */ 1164 msg->msg_controllen = 0; 1165 msg->msg_namelen = 0; 1166 msg->msg_flags = 0; 1167 } 1168 1169 mutex_enter(&so->so_lock); 1170 ASSERT(so_verify_oobstate(so)); 1171 if (oob_inline || 1172 (so->so_state & (SS_OOBPEND|SS_HADOOBDATA)) != SS_OOBPEND) { 1173 dprintso(so, 1, ("sorecvoob: inline or data consumed\n")); 1174 mutex_exit(&so->so_lock); 1175 return (EINVAL); 1176 } 1177 if (!(so->so_state & SS_HAVEOOBDATA)) { 1178 dprintso(so, 1, ("sorecvoob: no data yet\n")); 1179 mutex_exit(&so->so_lock); 1180 return (EWOULDBLOCK); 1181 } 1182 ASSERT(so->so_oobmsg != NULL); 1183 mp = so->so_oobmsg; 1184 if (flags & MSG_PEEK) { 1185 /* 1186 * Since recv* can not return ENOBUFS we can not use dupmsg. 1187 * Instead we revert to the consolidation private 1188 * allocb_wait plus bcopy. 1189 */ 1190 mblk_t *mp1; 1191 1192 mp1 = allocb_wait(msgdsize(mp), BPRI_MED, STR_NOSIG, NULL); 1193 ASSERT(mp1); 1194 1195 while (mp != NULL) { 1196 ssize_t size; 1197 1198 size = MBLKL(mp); 1199 bcopy(mp->b_rptr, mp1->b_wptr, size); 1200 mp1->b_wptr += size; 1201 ASSERT(mp1->b_wptr <= mp1->b_datap->db_lim); 1202 mp = mp->b_cont; 1203 } 1204 mp = mp1; 1205 } else { 1206 /* 1207 * Update the state indicating that the data has been consumed. 1208 * Keep SS_OOBPEND set until data is consumed past the mark. 1209 */ 1210 so->so_oobmsg = NULL; 1211 so->so_state ^= SS_HAVEOOBDATA|SS_HADOOBDATA; 1212 } 1213 ASSERT(so_verify_oobstate(so)); 1214 mutex_exit(&so->so_lock); 1215 1216 error = 0; 1217 nmp = mp; 1218 while (nmp != NULL && uiop->uio_resid > 0) { 1219 ssize_t n = MBLKL(nmp); 1220 1221 n = MIN(n, uiop->uio_resid); 1222 if (n > 0) 1223 error = uiomove(nmp->b_rptr, n, 1224 UIO_READ, uiop); 1225 if (error) 1226 break; 1227 nmp = nmp->b_cont; 1228 } 1229 ASSERT(mp->b_next == NULL && mp->b_prev == NULL); 1230 freemsg(mp); 1231 return (error); 1232 } 1233 1234 /* 1235 * Allocate and initializ sonode 1236 */ 1237 /* ARGSUSED */ 1238 struct sonode * 1239 socket_sonode_create(struct sockparams *sp, int family, int type, 1240 int protocol, int version, int sflags, int *errorp, struct cred *cr) 1241 { 1242 sonode_t *so; 1243 int kmflags; 1244 1245 /* 1246 * Choose the right set of sonodeops based on the upcall and 1247 * down call version that the protocol has provided 1248 */ 1249 if (SOCK_UC_VERSION != sp->sp_smod_info->smod_uc_version || 1250 SOCK_DC_VERSION != sp->sp_smod_info->smod_dc_version) { 1251 /* 1252 * mismatch 1253 */ 1254 #ifdef DEBUG 1255 cmn_err(CE_CONT, "protocol and socket module version mismatch"); 1256 #endif 1257 *errorp = EINVAL; 1258 return (NULL); 1259 } 1260 1261 kmflags = (sflags & SOCKET_NOSLEEP) ? KM_NOSLEEP : KM_SLEEP; 1262 1263 so = kmem_cache_alloc(socket_cache, kmflags); 1264 if (so == NULL) { 1265 *errorp = ENOMEM; 1266 return (NULL); 1267 } 1268 1269 sonode_init(so, sp, family, type, protocol, &so_sonodeops); 1270 1271 if (version == SOV_DEFAULT) 1272 version = so_default_version; 1273 1274 so->so_version = (short)version; 1275 1276 /* 1277 * set the default values to be INFPSZ 1278 * if a protocol desires it can change the value later 1279 */ 1280 so->so_proto_props.sopp_rxhiwat = SOCKET_RECVHIWATER; 1281 so->so_proto_props.sopp_rxlowat = SOCKET_RECVLOWATER; 1282 so->so_proto_props.sopp_maxpsz = INFPSZ; 1283 so->so_proto_props.sopp_maxblk = INFPSZ; 1284 1285 return (so); 1286 } 1287 1288 int 1289 socket_init_common(struct sonode *so, struct sonode *pso, int flags, cred_t *cr) 1290 { 1291 int error = 0; 1292 1293 if (pso != NULL) { 1294 /* 1295 * We have a passive open, so inherit basic state from 1296 * the parent (listener). 1297 * 1298 * No need to grab the new sonode's lock, since there is no 1299 * one that can have a reference to it. 1300 */ 1301 mutex_enter(&pso->so_lock); 1302 1303 so->so_state |= SS_ISCONNECTED | (pso->so_state & SS_ASYNC); 1304 so->so_pgrp = pso->so_pgrp; 1305 so->so_rcvtimeo = pso->so_rcvtimeo; 1306 so->so_sndtimeo = pso->so_sndtimeo; 1307 so->so_xpg_rcvbuf = pso->so_xpg_rcvbuf; 1308 /* 1309 * Make note of the socket level options. TCP and IP level 1310 * options are already inherited. We could do all this after 1311 * accept is successful but doing it here simplifies code and 1312 * no harm done for error case. 1313 */ 1314 so->so_options = pso->so_options & (SO_DEBUG|SO_REUSEADDR| 1315 SO_KEEPALIVE|SO_DONTROUTE|SO_BROADCAST|SO_USELOOPBACK| 1316 SO_OOBINLINE|SO_DGRAM_ERRIND|SO_LINGER); 1317 so->so_proto_props = pso->so_proto_props; 1318 so->so_mode = pso->so_mode; 1319 so->so_pollev = pso->so_pollev & SO_POLLEV_ALWAYS; 1320 1321 mutex_exit(&pso->so_lock); 1322 } else { 1323 struct sockparams *sp = so->so_sockparams; 1324 sock_upcalls_t *upcalls_to_use; 1325 1326 /* 1327 * Based on the version number select the right upcalls to 1328 * pass down. Currently we only have one version so choose 1329 * default 1330 */ 1331 upcalls_to_use = &so_upcalls; 1332 1333 /* active open, so create a lower handle */ 1334 so->so_proto_handle = 1335 sp->sp_smod_info->smod_proto_create_func(so->so_family, 1336 so->so_type, so->so_protocol, &so->so_downcalls, 1337 &so->so_mode, &error, flags, cr); 1338 1339 if (so->so_proto_handle == NULL) { 1340 ASSERT(error != 0); 1341 /* 1342 * To be safe; if a lower handle cannot be created, and 1343 * the proto does not give a reason why, assume there 1344 * was a lack of memory. 1345 */ 1346 return ((error == 0) ? ENOMEM : error); 1347 } 1348 ASSERT(so->so_downcalls != NULL); 1349 ASSERT(so->so_downcalls->sd_send != NULL || 1350 so->so_downcalls->sd_send_uio != NULL); 1351 if (so->so_downcalls->sd_recv_uio != NULL) { 1352 ASSERT(so->so_downcalls->sd_poll != NULL); 1353 so->so_pollev |= SO_POLLEV_ALWAYS; 1354 } 1355 1356 (*so->so_downcalls->sd_activate)(so->so_proto_handle, 1357 (sock_upper_handle_t)so, upcalls_to_use, 0, cr); 1358 1359 /* Wildcard */ 1360 1361 /* 1362 * FIXME No need for this, the protocol can deal with it in 1363 * sd_create(). Should update ICMP. 1364 */ 1365 if (so->so_protocol != so->so_sockparams->sp_protocol) { 1366 int protocol = so->so_protocol; 1367 int error; 1368 /* 1369 * Issue SO_PROTOTYPE setsockopt. 1370 */ 1371 error = socket_setsockopt(so, SOL_SOCKET, SO_PROTOTYPE, 1372 &protocol, (t_uscalar_t)sizeof (protocol), cr); 1373 if (error) { 1374 (void) (*so->so_downcalls->sd_close) 1375 (so->so_proto_handle, 0, cr); 1376 1377 mutex_enter(&so->so_lock); 1378 so_rcv_flush(so); 1379 mutex_exit(&so->so_lock); 1380 /* 1381 * Setsockopt often fails with ENOPROTOOPT but 1382 * socket() should fail with 1383 * EPROTONOSUPPORT/EPROTOTYPE. 1384 */ 1385 return (EPROTONOSUPPORT); 1386 } 1387 } 1388 } 1389 1390 if (uioasync.enabled) 1391 sod_sock_init(so); 1392 1393 return (0); 1394 } 1395 1396 /* 1397 * int socket_ioctl_common(struct sonode *so, int cmd, intptr_t arg, int mode, 1398 * struct cred *cr, int32_t *rvalp) 1399 * 1400 * Handle ioctls that manipulate basic socket state; non-blocking, 1401 * async, etc. 1402 * 1403 * Returns: 1404 * < 0 - ioctl was not handle 1405 * >= 0 - ioctl was handled, if > 0, then it is an errno 1406 * 1407 * Notes: 1408 * Assumes the standard receive buffer is used to obtain info for 1409 * NREAD. 1410 */ 1411 /* ARGSUSED */ 1412 int 1413 socket_ioctl_common(struct sonode *so, int cmd, intptr_t arg, int mode, 1414 struct cred *cr, int32_t *rvalp) 1415 { 1416 switch (cmd) { 1417 case SIOCSQPTR: 1418 /* 1419 * SIOCSQPTR is valid only when helper stream is created 1420 * by the protocol. 1421 */ 1422 1423 return (EOPNOTSUPP); 1424 case FIONBIO: { 1425 int32_t value; 1426 1427 if (so_copyin((void *)arg, &value, sizeof (int32_t), 1428 (mode & (int)FKIOCTL))) 1429 return (EFAULT); 1430 1431 mutex_enter(&so->so_lock); 1432 if (value) { 1433 so->so_state |= SS_NDELAY; 1434 } else { 1435 so->so_state &= ~SS_NDELAY; 1436 } 1437 mutex_exit(&so->so_lock); 1438 return (0); 1439 } 1440 case FIOASYNC: { 1441 int32_t value; 1442 1443 if (so_copyin((void *)arg, &value, sizeof (int32_t), 1444 (mode & (int)FKIOCTL))) 1445 return (EFAULT); 1446 1447 mutex_enter(&so->so_lock); 1448 1449 if (value) { 1450 /* Turn on SIGIO */ 1451 so->so_state |= SS_ASYNC; 1452 } else { 1453 /* Turn off SIGIO */ 1454 so->so_state &= ~SS_ASYNC; 1455 } 1456 mutex_exit(&so->so_lock); 1457 1458 return (0); 1459 } 1460 1461 case SIOCSPGRP: 1462 case FIOSETOWN: { 1463 int error; 1464 pid_t pid; 1465 1466 if (so_copyin((void *)arg, &pid, sizeof (pid_t), 1467 (mode & (int)FKIOCTL))) 1468 return (EFAULT); 1469 1470 mutex_enter(&so->so_lock); 1471 error = (pid != so->so_pgrp) ? socket_chgpgrp(so, pid) : 0; 1472 mutex_exit(&so->so_lock); 1473 return (error); 1474 } 1475 case SIOCGPGRP: 1476 case FIOGETOWN: 1477 if (so_copyout(&so->so_pgrp, (void *)arg, 1478 sizeof (pid_t), (mode & (int)FKIOCTL))) 1479 return (EFAULT); 1480 1481 return (0); 1482 case SIOCATMARK: { 1483 int retval; 1484 1485 /* 1486 * Only protocols that support urgent data can handle ATMARK. 1487 */ 1488 if ((so->so_mode & SM_EXDATA) == 0) 1489 return (EINVAL); 1490 1491 /* 1492 * If the protocol is maintaining its own buffer, then the 1493 * request must be passed down. 1494 */ 1495 if (so->so_downcalls->sd_recv_uio != NULL) 1496 return (-1); 1497 1498 retval = (so->so_state & SS_RCVATMARK) != 0; 1499 1500 if (so_copyout(&retval, (void *)arg, sizeof (int), 1501 (mode & (int)FKIOCTL))) { 1502 return (EFAULT); 1503 } 1504 return (0); 1505 } 1506 1507 case FIONREAD: { 1508 int retval; 1509 1510 /* 1511 * If the protocol is maintaining its own buffer, then the 1512 * request must be passed down. 1513 */ 1514 if (so->so_downcalls->sd_recv_uio != NULL) 1515 return (-1); 1516 1517 retval = MIN(so->so_rcv_queued, INT_MAX); 1518 1519 if (so_copyout(&retval, (void *)arg, 1520 sizeof (retval), (mode & (int)FKIOCTL))) { 1521 return (EFAULT); 1522 } 1523 return (0); 1524 } 1525 1526 case _I_GETPEERCRED: { 1527 int error = 0; 1528 1529 if ((mode & FKIOCTL) == 0) 1530 return (EINVAL); 1531 1532 mutex_enter(&so->so_lock); 1533 if ((so->so_mode & SM_CONNREQUIRED) == 0) { 1534 error = ENOTSUP; 1535 } else if ((so->so_state & SS_ISCONNECTED) == 0) { 1536 error = ENOTCONN; 1537 } else if (so->so_peercred != NULL) { 1538 k_peercred_t *kp = (k_peercred_t *)arg; 1539 kp->pc_cr = so->so_peercred; 1540 kp->pc_cpid = so->so_cpid; 1541 crhold(so->so_peercred); 1542 } else { 1543 error = EINVAL; 1544 } 1545 mutex_exit(&so->so_lock); 1546 return (error); 1547 } 1548 default: 1549 return (-1); 1550 } 1551 } 1552 1553 /* 1554 * Handle the I_NREAD STREAM ioctl. 1555 */ 1556 static int 1557 so_strioc_nread(struct sonode *so, intptr_t arg, int mode, int32_t *rvalp) 1558 { 1559 size_t size = 0; 1560 int retval; 1561 int count = 0; 1562 mblk_t *mp; 1563 1564 if (so->so_downcalls == NULL || 1565 so->so_downcalls->sd_recv_uio != NULL) 1566 return (EINVAL); 1567 1568 mutex_enter(&so->so_lock); 1569 /* Wait for reader to get out of the way. */ 1570 while (so->so_flag & SOREADLOCKED) { 1571 /* 1572 * If reader is waiting for data, then there should be nothing 1573 * on the rcv queue. 1574 */ 1575 if (so->so_rcv_wakeup) 1576 goto out; 1577 1578 so->so_flag |= SOWANT; 1579 /* Do a timed sleep, in case the reader goes to sleep. */ 1580 (void) cv_timedwait(&so->so_state_cv, &so->so_lock, 1581 lbolt + drv_usectohz(10)); 1582 } 1583 1584 /* 1585 * Since we are holding so_lock no new reader will come in, and the 1586 * protocol will not be able to enqueue data. So it's safe to walk 1587 * both rcv queues. 1588 */ 1589 mp = so->so_rcv_q_head; 1590 if (mp != NULL) { 1591 size = msgdsize(so->so_rcv_q_head); 1592 for (; mp != NULL; mp = mp->b_next) 1593 count++; 1594 } else { 1595 /* 1596 * In case the processing list was empty, get the size of the 1597 * next msg in line. 1598 */ 1599 size = msgdsize(so->so_rcv_head); 1600 } 1601 1602 for (mp = so->so_rcv_head; mp != NULL; mp = mp->b_next) 1603 count++; 1604 out: 1605 mutex_exit(&so->so_lock); 1606 1607 /* 1608 * Drop down from size_t to the "int" required by the 1609 * interface. Cap at INT_MAX. 1610 */ 1611 retval = MIN(size, INT_MAX); 1612 if (so_copyout(&retval, (void *)arg, sizeof (retval), 1613 (mode & (int)FKIOCTL))) { 1614 return (EFAULT); 1615 } else { 1616 *rvalp = count; 1617 return (0); 1618 } 1619 } 1620 1621 /* 1622 * Process STREAM ioctls. 1623 * 1624 * Returns: 1625 * < 0 - ioctl was not handle 1626 * >= 0 - ioctl was handled, if > 0, then it is an errno 1627 */ 1628 int 1629 socket_strioc_common(struct sonode *so, int cmd, intptr_t arg, int mode, 1630 struct cred *cr, int32_t *rvalp) 1631 { 1632 int retval; 1633 1634 /* Only STREAM iotcls are handled here */ 1635 if ((cmd & 0xffffff00U) != STR) 1636 return (-1); 1637 1638 switch (cmd) { 1639 case I_CANPUT: 1640 /* 1641 * We return an error for I_CANPUT so that isastream(3C) will 1642 * not report the socket as being a STREAM. 1643 */ 1644 return (EOPNOTSUPP); 1645 case I_NREAD: 1646 /* Avoid doing a fallback for I_NREAD. */ 1647 return (so_strioc_nread(so, arg, mode, rvalp)); 1648 case I_LOOK: 1649 /* Avoid doing a fallback for I_LOOK. */ 1650 if (so_copyout("sockmod", (void *)arg, strlen("sockmod") + 1, 1651 (mode & (int)FKIOCTL))) { 1652 return (EFAULT); 1653 } 1654 return (0); 1655 default: 1656 break; 1657 } 1658 1659 /* 1660 * Try to fall back to TPI, and if successful, reissue the ioctl. 1661 */ 1662 if ((retval = so_tpi_fallback(so, cr)) == 0) { 1663 /* Reissue the ioctl */ 1664 ASSERT(so->so_rcv_q_head == NULL); 1665 return (SOP_IOCTL(so, cmd, arg, mode, cr, rvalp)); 1666 } else { 1667 return (retval); 1668 } 1669 } 1670 1671 /* 1672 * This is called for all socket types to verify that the buffer size is large 1673 * enough for the option, and if we can, handle the request as well. Most 1674 * options will be forwarded to the protocol. 1675 */ 1676 int 1677 socket_getopt_common(struct sonode *so, int level, int option_name, 1678 void *optval, socklen_t *optlenp, int flags) 1679 { 1680 if (level != SOL_SOCKET) 1681 return (-1); 1682 1683 switch (option_name) { 1684 case SO_ERROR: 1685 case SO_DOMAIN: 1686 case SO_TYPE: 1687 case SO_ACCEPTCONN: { 1688 int32_t value; 1689 socklen_t optlen = *optlenp; 1690 1691 if (optlen < (t_uscalar_t)sizeof (int32_t)) { 1692 return (EINVAL); 1693 } 1694 1695 switch (option_name) { 1696 case SO_ERROR: 1697 mutex_enter(&so->so_lock); 1698 value = sogeterr(so, B_TRUE); 1699 mutex_exit(&so->so_lock); 1700 break; 1701 case SO_DOMAIN: 1702 value = so->so_family; 1703 break; 1704 case SO_TYPE: 1705 value = so->so_type; 1706 break; 1707 case SO_ACCEPTCONN: 1708 if (so->so_state & SS_ACCEPTCONN) 1709 value = SO_ACCEPTCONN; 1710 else 1711 value = 0; 1712 break; 1713 } 1714 1715 bcopy(&value, optval, sizeof (value)); 1716 *optlenp = sizeof (value); 1717 1718 return (0); 1719 } 1720 case SO_SNDTIMEO: 1721 case SO_RCVTIMEO: { 1722 clock_t value; 1723 socklen_t optlen = *optlenp; 1724 1725 if (get_udatamodel() == DATAMODEL_NONE || 1726 get_udatamodel() == DATAMODEL_NATIVE) { 1727 if (optlen < sizeof (struct timeval)) 1728 return (EINVAL); 1729 } else { 1730 if (optlen < sizeof (struct timeval32)) 1731 return (EINVAL); 1732 } 1733 if (option_name == SO_RCVTIMEO) 1734 value = drv_hztousec(so->so_rcvtimeo); 1735 else 1736 value = drv_hztousec(so->so_sndtimeo); 1737 1738 if (get_udatamodel() == DATAMODEL_NONE || 1739 get_udatamodel() == DATAMODEL_NATIVE) { 1740 ((struct timeval *)(optval))->tv_sec = 1741 value / (1000 * 1000); 1742 ((struct timeval *)(optval))->tv_usec = 1743 value % (1000 * 1000); 1744 *optlenp = sizeof (struct timeval); 1745 } else { 1746 ((struct timeval32 *)(optval))->tv_sec = 1747 value / (1000 * 1000); 1748 ((struct timeval32 *)(optval))->tv_usec = 1749 value % (1000 * 1000); 1750 *optlenp = sizeof (struct timeval32); 1751 } 1752 return (0); 1753 } 1754 case SO_DEBUG: 1755 case SO_REUSEADDR: 1756 case SO_KEEPALIVE: 1757 case SO_DONTROUTE: 1758 case SO_BROADCAST: 1759 case SO_USELOOPBACK: 1760 case SO_OOBINLINE: 1761 case SO_SNDBUF: 1762 #ifdef notyet 1763 case SO_SNDLOWAT: 1764 case SO_RCVLOWAT: 1765 #endif /* notyet */ 1766 case SO_DGRAM_ERRIND: { 1767 socklen_t optlen = *optlenp; 1768 1769 if (optlen < (t_uscalar_t)sizeof (int32_t)) 1770 return (EINVAL); 1771 break; 1772 } 1773 case SO_RCVBUF: { 1774 socklen_t optlen = *optlenp; 1775 1776 if (optlen < (t_uscalar_t)sizeof (int32_t)) 1777 return (EINVAL); 1778 1779 if ((flags & _SOGETSOCKOPT_XPG4_2) && so->so_xpg_rcvbuf != 0) { 1780 /* 1781 * XXX If SO_RCVBUF has been set and this is an 1782 * XPG 4.2 application then do not ask the transport 1783 * since the transport might adjust the value and not 1784 * return exactly what was set by the application. 1785 * For non-XPG 4.2 application we return the value 1786 * that the transport is actually using. 1787 */ 1788 *(int32_t *)optval = so->so_xpg_rcvbuf; 1789 *optlenp = sizeof (so->so_xpg_rcvbuf); 1790 return (0); 1791 } 1792 /* 1793 * If the option has not been set then get a default 1794 * value from the transport. 1795 */ 1796 break; 1797 } 1798 case SO_LINGER: { 1799 socklen_t optlen = *optlenp; 1800 1801 if (optlen < (t_uscalar_t)sizeof (struct linger)) 1802 return (EINVAL); 1803 break; 1804 } 1805 case SO_SND_BUFINFO: { 1806 socklen_t optlen = *optlenp; 1807 1808 if (optlen < (t_uscalar_t)sizeof (struct so_snd_bufinfo)) 1809 return (EINVAL); 1810 ((struct so_snd_bufinfo *)(optval))->sbi_wroff = 1811 (so->so_proto_props).sopp_wroff; 1812 ((struct so_snd_bufinfo *)(optval))->sbi_maxblk = 1813 (so->so_proto_props).sopp_maxblk; 1814 ((struct so_snd_bufinfo *)(optval))->sbi_maxpsz = 1815 (so->so_proto_props).sopp_maxpsz; 1816 ((struct so_snd_bufinfo *)(optval))->sbi_tail = 1817 (so->so_proto_props).sopp_tail; 1818 *optlenp = sizeof (struct so_snd_bufinfo); 1819 return (0); 1820 } 1821 default: 1822 break; 1823 } 1824 1825 /* Unknown Option */ 1826 return (-1); 1827 } 1828 1829 void 1830 socket_sonode_destroy(struct sonode *so) 1831 { 1832 sonode_fini(so); 1833 kmem_cache_free(socket_cache, so); 1834 } 1835 1836 int 1837 so_zcopy_wait(struct sonode *so) 1838 { 1839 int error = 0; 1840 1841 mutex_enter(&so->so_lock); 1842 while (!(so->so_copyflag & STZCNOTIFY)) { 1843 if (so->so_state & SS_CLOSING) { 1844 mutex_exit(&so->so_lock); 1845 return (EINTR); 1846 } 1847 if (cv_wait_sig(&so->so_copy_cv, &so->so_lock) == 0) { 1848 error = EINTR; 1849 break; 1850 } 1851 } 1852 so->so_copyflag &= ~STZCNOTIFY; 1853 mutex_exit(&so->so_lock); 1854 return (error); 1855 } 1856 1857 void 1858 so_timer_callback(void *arg) 1859 { 1860 struct sonode *so = (struct sonode *)arg; 1861 1862 mutex_enter(&so->so_lock); 1863 1864 so->so_rcv_timer_tid = 0; 1865 if (so->so_rcv_queued > 0) { 1866 so_notify_data(so, so->so_rcv_queued); 1867 } else { 1868 mutex_exit(&so->so_lock); 1869 } 1870 } 1871 1872 #ifdef DEBUG 1873 /* 1874 * Verify that the length stored in so_rcv_queued and the length of data blocks 1875 * queued is same. 1876 */ 1877 static boolean_t 1878 so_check_length(sonode_t *so) 1879 { 1880 mblk_t *mp = so->so_rcv_q_head; 1881 int len = 0; 1882 1883 ASSERT(MUTEX_HELD(&so->so_lock)); 1884 1885 if (mp != NULL) { 1886 len = msgdsize(mp); 1887 while ((mp = mp->b_next) != NULL) 1888 len += msgdsize(mp); 1889 } 1890 mp = so->so_rcv_head; 1891 if (mp != NULL) { 1892 len += msgdsize(mp); 1893 while ((mp = mp->b_next) != NULL) 1894 len += msgdsize(mp); 1895 } 1896 return ((len == so->so_rcv_queued) ? B_TRUE : B_FALSE); 1897 } 1898 #endif 1899 1900 int 1901 so_get_mod_version(struct sockparams *sp) 1902 { 1903 ASSERT(sp != NULL && sp->sp_smod_info != NULL); 1904 return (sp->sp_smod_info->smod_version); 1905 } 1906 1907 /* 1908 * so_start_fallback() 1909 * 1910 * Block new socket operations from coming in, and wait for active operations 1911 * to complete. Threads that are sleeping will be woken up so they can get 1912 * out of the way. 1913 * 1914 * The caller must be a reader on so_fallback_rwlock. 1915 */ 1916 static boolean_t 1917 so_start_fallback(struct sonode *so) 1918 { 1919 ASSERT(RW_READ_HELD(&so->so_fallback_rwlock)); 1920 1921 mutex_enter(&so->so_lock); 1922 if (so->so_state & SS_FALLBACK_PENDING) { 1923 mutex_exit(&so->so_lock); 1924 return (B_FALSE); 1925 } 1926 so->so_state |= SS_FALLBACK_PENDING; 1927 /* 1928 * Poke all threads that might be sleeping. Any operation that comes 1929 * in after the cv_broadcast will observe the fallback pending flag 1930 * which cause the call to return where it would normally sleep. 1931 */ 1932 cv_broadcast(&so->so_state_cv); /* threads in connect() */ 1933 cv_broadcast(&so->so_rcv_cv); /* threads in recvmsg() */ 1934 cv_broadcast(&so->so_snd_cv); /* threads in sendmsg() */ 1935 mutex_enter(&so->so_acceptq_lock); 1936 cv_broadcast(&so->so_acceptq_cv); /* threads in accept() */ 1937 mutex_exit(&so->so_acceptq_lock); 1938 mutex_exit(&so->so_lock); 1939 1940 /* 1941 * The main reason for the rw_tryupgrade call is to provide 1942 * observability during the fallback process. We want to 1943 * be able to see if there are pending operations. 1944 */ 1945 if (rw_tryupgrade(&so->so_fallback_rwlock) == 0) { 1946 /* 1947 * It is safe to drop and reaquire the fallback lock, because 1948 * we are guaranteed that another fallback cannot take place. 1949 */ 1950 rw_exit(&so->so_fallback_rwlock); 1951 DTRACE_PROBE1(pending__ops__wait, (struct sonode *), so); 1952 rw_enter(&so->so_fallback_rwlock, RW_WRITER); 1953 DTRACE_PROBE1(pending__ops__complete, (struct sonode *), so); 1954 } 1955 1956 return (B_TRUE); 1957 } 1958 1959 /* 1960 * so_end_fallback() 1961 * 1962 * Allow socket opertions back in. 1963 * 1964 * The caller must be a writer on so_fallback_rwlock. 1965 */ 1966 static void 1967 so_end_fallback(struct sonode *so) 1968 { 1969 ASSERT(RW_ISWRITER(&so->so_fallback_rwlock)); 1970 1971 mutex_enter(&so->so_lock); 1972 so->so_state &= ~(SS_FALLBACK_PENDING|SS_FALLBACK_DRAIN); 1973 mutex_exit(&so->so_lock); 1974 1975 rw_downgrade(&so->so_fallback_rwlock); 1976 } 1977 1978 /* 1979 * so_quiesced_cb() 1980 * 1981 * Callback passed to the protocol during fallback. It is called once 1982 * the endpoint is quiescent. 1983 * 1984 * No requests from the user, no notifications from the protocol, so it 1985 * is safe to synchronize the state. Data can also be moved without 1986 * risk for reordering. 1987 * 1988 * We do not need to hold so_lock, since there can be only one thread 1989 * operating on the sonode. 1990 */ 1991 static void 1992 so_quiesced_cb(sock_upper_handle_t sock_handle, queue_t *q, 1993 struct T_capability_ack *tcap, struct sockaddr *laddr, socklen_t laddrlen, 1994 struct sockaddr *faddr, socklen_t faddrlen, short opts) 1995 { 1996 struct sonode *so = (struct sonode *)sock_handle; 1997 boolean_t atmark; 1998 1999 sotpi_update_state(so, tcap, laddr, laddrlen, faddr, faddrlen, opts); 2000 2001 /* 2002 * Some protocols do not quiece the data path during fallback. Once 2003 * we set the SS_FALLBACK_DRAIN flag any attempt to queue data will 2004 * fail and the protocol is responsible for saving the data for later 2005 * delivery (i.e., once the fallback has completed). 2006 */ 2007 mutex_enter(&so->so_lock); 2008 so->so_state |= SS_FALLBACK_DRAIN; 2009 SOCKET_TIMER_CANCEL(so); 2010 mutex_exit(&so->so_lock); 2011 2012 if (so->so_rcv_head != NULL) { 2013 if (so->so_rcv_q_last_head == NULL) 2014 so->so_rcv_q_head = so->so_rcv_head; 2015 else 2016 so->so_rcv_q_last_head->b_next = so->so_rcv_head; 2017 so->so_rcv_q_last_head = so->so_rcv_last_head; 2018 } 2019 2020 atmark = (so->so_state & SS_RCVATMARK) != 0; 2021 /* 2022 * Clear any OOB state having to do with pending data. The TPI 2023 * code path will set the appropriate oob state when we move the 2024 * oob data to the STREAM head. We leave SS_HADOOBDATA since the oob 2025 * data has already been consumed. 2026 */ 2027 so->so_state &= ~(SS_RCVATMARK|SS_OOBPEND|SS_HAVEOOBDATA); 2028 2029 ASSERT(so->so_oobmsg != NULL || so->so_oobmark <= so->so_rcv_queued); 2030 2031 /* 2032 * Move data to the STREAM head. 2033 */ 2034 while (so->so_rcv_q_head != NULL) { 2035 mblk_t *mp = so->so_rcv_q_head; 2036 size_t mlen = msgdsize(mp); 2037 2038 so->so_rcv_q_head = mp->b_next; 2039 mp->b_next = NULL; 2040 mp->b_prev = NULL; 2041 2042 /* 2043 * Send T_EXDATA_IND if we are at the oob mark. 2044 */ 2045 if (atmark) { 2046 struct T_exdata_ind *tei; 2047 mblk_t *mp1 = SOTOTPI(so)->sti_exdata_mp; 2048 2049 SOTOTPI(so)->sti_exdata_mp = NULL; 2050 ASSERT(mp1 != NULL); 2051 mp1->b_datap->db_type = M_PROTO; 2052 tei = (struct T_exdata_ind *)mp1->b_rptr; 2053 tei->PRIM_type = T_EXDATA_IND; 2054 tei->MORE_flag = 0; 2055 mp1->b_wptr = (uchar_t *)&tei[1]; 2056 2057 if (IS_SO_OOB_INLINE(so)) { 2058 mp1->b_cont = mp; 2059 } else { 2060 ASSERT(so->so_oobmsg != NULL); 2061 mp1->b_cont = so->so_oobmsg; 2062 so->so_oobmsg = NULL; 2063 2064 /* process current mp next time around */ 2065 mp->b_next = so->so_rcv_q_head; 2066 so->so_rcv_q_head = mp; 2067 mlen = 0; 2068 } 2069 mp = mp1; 2070 2071 /* we have consumed the oob mark */ 2072 atmark = B_FALSE; 2073 } else if (so->so_oobmark > 0) { 2074 /* 2075 * Check if the OOB mark is within the current 2076 * mblk chain. In that case we have to split it up. 2077 */ 2078 if (so->so_oobmark < mlen) { 2079 mblk_t *urg_mp = mp; 2080 2081 atmark = B_TRUE; 2082 mp = NULL; 2083 mlen = so->so_oobmark; 2084 2085 /* 2086 * It is assumed that the OOB mark does 2087 * not land within a mblk. 2088 */ 2089 do { 2090 so->so_oobmark -= MBLKL(urg_mp); 2091 mp = urg_mp; 2092 urg_mp = urg_mp->b_cont; 2093 } while (so->so_oobmark > 0); 2094 mp->b_cont = NULL; 2095 if (urg_mp != NULL) { 2096 urg_mp->b_next = so->so_rcv_q_head; 2097 so->so_rcv_q_head = urg_mp; 2098 } 2099 } else { 2100 so->so_oobmark -= mlen; 2101 if (so->so_oobmark == 0) 2102 atmark = B_TRUE; 2103 } 2104 } 2105 2106 /* 2107 * Queue data on the STREAM head. 2108 */ 2109 so->so_rcv_queued -= mlen; 2110 putnext(q, mp); 2111 } 2112 so->so_rcv_head = NULL; 2113 so->so_rcv_last_head = NULL; 2114 so->so_rcv_q_head = NULL; 2115 so->so_rcv_q_last_head = NULL; 2116 2117 /* 2118 * Check if the oob byte is at the end of the data stream, or if the 2119 * oob byte has not yet arrived. In the latter case we have to send a 2120 * SIGURG and a mark indicator to the STREAM head. The mark indicator 2121 * is needed to guarantee correct behavior for SIOCATMARK. See block 2122 * comment in socktpi.h for more details. 2123 */ 2124 if (atmark || so->so_oobmark > 0) { 2125 mblk_t *mp; 2126 2127 if (atmark && so->so_oobmsg != NULL) { 2128 struct T_exdata_ind *tei; 2129 2130 mp = SOTOTPI(so)->sti_exdata_mp; 2131 SOTOTPI(so)->sti_exdata_mp = NULL; 2132 ASSERT(mp != NULL); 2133 mp->b_datap->db_type = M_PROTO; 2134 tei = (struct T_exdata_ind *)mp->b_rptr; 2135 tei->PRIM_type = T_EXDATA_IND; 2136 tei->MORE_flag = 0; 2137 mp->b_wptr = (uchar_t *)&tei[1]; 2138 2139 mp->b_cont = so->so_oobmsg; 2140 so->so_oobmsg = NULL; 2141 2142 putnext(q, mp); 2143 } else { 2144 /* Send up the signal */ 2145 mp = SOTOTPI(so)->sti_exdata_mp; 2146 SOTOTPI(so)->sti_exdata_mp = NULL; 2147 ASSERT(mp != NULL); 2148 DB_TYPE(mp) = M_PCSIG; 2149 *mp->b_wptr++ = (uchar_t)SIGURG; 2150 putnext(q, mp); 2151 2152 /* Send up the mark indicator */ 2153 mp = SOTOTPI(so)->sti_urgmark_mp; 2154 SOTOTPI(so)->sti_urgmark_mp = NULL; 2155 mp->b_flag = atmark ? MSGMARKNEXT : MSGNOTMARKNEXT; 2156 putnext(q, mp); 2157 2158 so->so_oobmark = 0; 2159 } 2160 } 2161 2162 if (SOTOTPI(so)->sti_exdata_mp != NULL) { 2163 freeb(SOTOTPI(so)->sti_exdata_mp); 2164 SOTOTPI(so)->sti_exdata_mp = NULL; 2165 } 2166 2167 if (SOTOTPI(so)->sti_urgmark_mp != NULL) { 2168 freeb(SOTOTPI(so)->sti_urgmark_mp); 2169 SOTOTPI(so)->sti_urgmark_mp = NULL; 2170 } 2171 2172 ASSERT(so->so_oobmark == 0); 2173 ASSERT(so->so_rcv_queued == 0); 2174 } 2175 2176 #ifdef DEBUG 2177 /* 2178 * Do an integrity check of the sonode. This should be done if a 2179 * fallback fails after sonode has initially been converted to use 2180 * TPI and subsequently have to be reverted. 2181 * 2182 * Failure to pass the integrity check will panic the system. 2183 */ 2184 void 2185 so_integrity_check(struct sonode *cur, struct sonode *orig) 2186 { 2187 VERIFY(cur->so_vnode == orig->so_vnode); 2188 VERIFY(cur->so_ops == orig->so_ops); 2189 /* 2190 * For so_state we can only VERIFY the state flags in CHECK_STATE. 2191 * The other state flags might be affected by a notification from the 2192 * protocol. 2193 */ 2194 #define CHECK_STATE (SS_CANTRCVMORE|SS_CANTSENDMORE|SS_NDELAY|SS_NONBLOCK| \ 2195 SS_ASYNC|SS_ACCEPTCONN|SS_SAVEDEOR|SS_RCVATMARK|SS_OOBPEND| \ 2196 SS_HAVEOOBDATA|SS_HADOOBDATA|SS_SENTLASTREADSIG|SS_SENTLASTWRITESIG) 2197 VERIFY((cur->so_state & (orig->so_state & CHECK_STATE)) == 2198 (orig->so_state & CHECK_STATE)); 2199 VERIFY(cur->so_mode == orig->so_mode); 2200 VERIFY(cur->so_flag == orig->so_flag); 2201 VERIFY(cur->so_count == orig->so_count); 2202 /* Cannot VERIFY so_proto_connid; proto can update it */ 2203 VERIFY(cur->so_sockparams == orig->so_sockparams); 2204 /* an error might have been recorded, but it can not be lost */ 2205 VERIFY(cur->so_error != 0 || orig->so_error == 0); 2206 VERIFY(cur->so_family == orig->so_family); 2207 VERIFY(cur->so_type == orig->so_type); 2208 VERIFY(cur->so_protocol == orig->so_protocol); 2209 VERIFY(cur->so_version == orig->so_version); 2210 /* New conns might have arrived, but none should have been lost */ 2211 VERIFY(cur->so_acceptq_len >= orig->so_acceptq_len); 2212 VERIFY(cur->so_acceptq_head == orig->so_acceptq_head); 2213 VERIFY(cur->so_backlog == orig->so_backlog); 2214 /* New OOB migth have arrived, but mark should not have been lost */ 2215 VERIFY(cur->so_oobmark >= orig->so_oobmark); 2216 /* Cannot VERIFY so_oobmsg; the proto might have sent up a new one */ 2217 VERIFY(cur->so_pgrp == orig->so_pgrp); 2218 VERIFY(cur->so_peercred == orig->so_peercred); 2219 VERIFY(cur->so_cpid == orig->so_cpid); 2220 VERIFY(cur->so_zoneid == orig->so_zoneid); 2221 /* New data migth have arrived, but none should have been lost */ 2222 VERIFY(cur->so_rcv_queued >= orig->so_rcv_queued); 2223 VERIFY(cur->so_rcv_q_head == orig->so_rcv_q_head); 2224 VERIFY(cur->so_rcv_head == orig->so_rcv_head); 2225 VERIFY(cur->so_proto_handle == orig->so_proto_handle); 2226 VERIFY(cur->so_downcalls == orig->so_downcalls); 2227 /* Cannot VERIFY so_proto_props; they can be updated by proto */ 2228 } 2229 #endif 2230 2231 /* 2232 * so_tpi_fallback() 2233 * 2234 * This is the fallback initation routine; things start here. 2235 * 2236 * Basic strategy: 2237 * o Block new socket operations from coming in 2238 * o Allocate/initate info needed by TPI 2239 * o Quiesce the connection, at which point we sync 2240 * state and move data 2241 * o Change operations (sonodeops) associated with the socket 2242 * o Unblock threads waiting for the fallback to finish 2243 */ 2244 int 2245 so_tpi_fallback(struct sonode *so, struct cred *cr) 2246 { 2247 int error; 2248 queue_t *q; 2249 struct sockparams *sp; 2250 struct sockparams *newsp = NULL; 2251 so_proto_fallback_func_t fbfunc; 2252 boolean_t direct; 2253 struct sonode *nso; 2254 #ifdef DEBUG 2255 struct sonode origso; 2256 #endif 2257 error = 0; 2258 sp = so->so_sockparams; 2259 fbfunc = sp->sp_smod_info->smod_proto_fallback_func; 2260 2261 /* 2262 * Fallback can only happen if there is a device associated 2263 * with the sonode, and the socket module has a fallback function. 2264 */ 2265 if (!SOCKPARAMS_HAS_DEVICE(sp) || fbfunc == NULL) 2266 return (EINVAL); 2267 2268 /* 2269 * Initiate fallback; upon success we know that no new requests 2270 * will come in from the user. 2271 */ 2272 if (!so_start_fallback(so)) 2273 return (EAGAIN); 2274 #ifdef DEBUG 2275 /* 2276 * Make a copy of the sonode in case we need to make an integrity 2277 * check later on. 2278 */ 2279 bcopy(so, &origso, sizeof (*so)); 2280 #endif 2281 2282 sp->sp_stats.sps_nfallback.value.ui64++; 2283 2284 newsp = sockparams_hold_ephemeral_bydev(so->so_family, so->so_type, 2285 so->so_protocol, so->so_sockparams->sp_sdev_info.sd_devpath, 2286 KM_SLEEP, &error); 2287 if (error != 0) 2288 goto out; 2289 2290 if (so->so_direct != NULL) { 2291 sodirect_t *sodp = so->so_direct; 2292 mutex_enter(&so->so_lock); 2293 2294 so->so_direct->sod_enabled = B_FALSE; 2295 so->so_state &= ~SS_SODIRECT; 2296 ASSERT(sodp->sod_uioafh == NULL); 2297 mutex_exit(&so->so_lock); 2298 } 2299 2300 /* Turn sonode into a TPI socket */ 2301 error = sotpi_convert_sonode(so, newsp, &direct, &q, cr); 2302 if (error != 0) 2303 goto out; 2304 2305 2306 /* 2307 * Now tell the protocol to start using TPI. so_quiesced_cb be 2308 * called once it's safe to synchronize state. 2309 */ 2310 DTRACE_PROBE1(proto__fallback__begin, struct sonode *, so); 2311 error = (*fbfunc)(so->so_proto_handle, q, direct, so_quiesced_cb); 2312 DTRACE_PROBE1(proto__fallback__end, struct sonode *, so); 2313 2314 if (error != 0) { 2315 /* protocol was unable to do a fallback, revert the sonode */ 2316 sotpi_revert_sonode(so, cr); 2317 goto out; 2318 } 2319 2320 /* 2321 * Walk the accept queue and notify the proto that they should 2322 * fall back to TPI. The protocol will send up the T_CONN_IND. 2323 */ 2324 nso = so->so_acceptq_head; 2325 while (nso != NULL) { 2326 int rval; 2327 2328 DTRACE_PROBE1(proto__fallback__begin, struct sonode *, nso); 2329 rval = (*fbfunc)(nso->so_proto_handle, NULL, direct, NULL); 2330 DTRACE_PROBE1(proto__fallback__end, struct sonode *, nso); 2331 if (rval != 0) { 2332 zcmn_err(getzoneid(), CE_WARN, 2333 "Failed to convert socket in accept queue to TPI. " 2334 "Pid = %d\n", curproc->p_pid); 2335 } 2336 nso = nso->so_acceptq_next; 2337 } 2338 2339 /* 2340 * Now flush the acceptq, this will destroy all sockets. They will 2341 * be recreated in sotpi_accept(). 2342 */ 2343 so_acceptq_flush(so); 2344 2345 mutex_enter(&so->so_lock); 2346 so->so_state |= SS_FALLBACK_COMP; 2347 mutex_exit(&so->so_lock); 2348 2349 /* 2350 * Swap the sonode ops. Socket opertations that come in once this 2351 * is done will proceed without blocking. 2352 */ 2353 so->so_ops = &sotpi_sonodeops; 2354 2355 /* 2356 * Wake up any threads stuck in poll. This is needed since the poll 2357 * head changes when the fallback happens (moves from the sonode to 2358 * the STREAMS head). 2359 */ 2360 pollwakeup(&so->so_poll_list, POLLERR); 2361 out: 2362 so_end_fallback(so); 2363 2364 if (error != 0) { 2365 #ifdef DEBUG 2366 so_integrity_check(so, &origso); 2367 #endif 2368 zcmn_err(getzoneid(), CE_WARN, 2369 "Failed to convert socket to TPI (err=%d). Pid = %d\n", 2370 error, curproc->p_pid); 2371 if (newsp != NULL) 2372 SOCKPARAMS_DEC_REF(newsp); 2373 } 2374 2375 return (error); 2376 } 2377