1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 * 25 * Copyright (c) 1983,1984,1985,1986,1987,1988,1989 AT&T. 26 * All rights reserved. 27 */ 28 29 #include <sys/param.h> 30 #include <sys/types.h> 31 #include <sys/systm.h> 32 #include <sys/cred.h> 33 #include <sys/time.h> 34 #include <sys/vnode.h> 35 #include <sys/vfs.h> 36 #include <sys/vfs_opreg.h> 37 #include <sys/file.h> 38 #include <sys/filio.h> 39 #include <sys/uio.h> 40 #include <sys/buf.h> 41 #include <sys/mman.h> 42 #include <sys/pathname.h> 43 #include <sys/dirent.h> 44 #include <sys/debug.h> 45 #include <sys/vmsystm.h> 46 #include <sys/fcntl.h> 47 #include <sys/flock.h> 48 #include <sys/swap.h> 49 #include <sys/errno.h> 50 #include <sys/strsubr.h> 51 #include <sys/sysmacros.h> 52 #include <sys/kmem.h> 53 #include <sys/cmn_err.h> 54 #include <sys/pathconf.h> 55 #include <sys/utsname.h> 56 #include <sys/dnlc.h> 57 #include <sys/acl.h> 58 #include <sys/atomic.h> 59 #include <sys/policy.h> 60 #include <sys/sdt.h> 61 62 #include <rpc/types.h> 63 #include <rpc/auth.h> 64 #include <rpc/clnt.h> 65 66 #include <nfs/nfs.h> 67 #include <nfs/nfs_clnt.h> 68 #include <nfs/rnode.h> 69 #include <nfs/nfs_acl.h> 70 #include <nfs/lm.h> 71 72 #include <vm/hat.h> 73 #include <vm/as.h> 74 #include <vm/page.h> 75 #include <vm/pvn.h> 76 #include <vm/seg.h> 77 #include <vm/seg_map.h> 78 #include <vm/seg_kpm.h> 79 #include <vm/seg_vn.h> 80 81 #include <fs/fs_subr.h> 82 83 #include <sys/ddi.h> 84 85 static int nfs_rdwrlbn(vnode_t *, page_t *, u_offset_t, size_t, int, 86 cred_t *); 87 static int nfswrite(vnode_t *, caddr_t, uint_t, int, cred_t *); 88 static int nfsread(vnode_t *, caddr_t, uint_t, int, size_t *, cred_t *); 89 static int nfssetattr(vnode_t *, struct vattr *, int, cred_t *); 90 static int nfslookup_dnlc(vnode_t *, char *, vnode_t **, cred_t *); 91 static int nfslookup_otw(vnode_t *, char *, vnode_t **, cred_t *, int); 92 static int nfsrename(vnode_t *, char *, vnode_t *, char *, cred_t *, 93 caller_context_t *); 94 static int nfsreaddir(vnode_t *, rddir_cache *, cred_t *); 95 static int nfs_bio(struct buf *, cred_t *); 96 static int nfs_getapage(vnode_t *, u_offset_t, size_t, uint_t *, 97 page_t *[], size_t, struct seg *, caddr_t, 98 enum seg_rw, cred_t *); 99 static void nfs_readahead(vnode_t *, u_offset_t, caddr_t, struct seg *, 100 cred_t *); 101 static int nfs_sync_putapage(vnode_t *, page_t *, u_offset_t, size_t, 102 int, cred_t *); 103 static int nfs_sync_pageio(vnode_t *, page_t *, u_offset_t, size_t, 104 int, cred_t *); 105 static void nfs_delmap_callback(struct as *, void *, uint_t); 106 107 /* 108 * Error flags used to pass information about certain special errors 109 * which need to be handled specially. 110 */ 111 #define NFS_EOF -98 112 113 /* 114 * These are the vnode ops routines which implement the vnode interface to 115 * the networked file system. These routines just take their parameters, 116 * make them look networkish by putting the right info into interface structs, 117 * and then calling the appropriate remote routine(s) to do the work. 118 * 119 * Note on directory name lookup cacheing: If we detect a stale fhandle, 120 * we purge the directory cache relative to that vnode. This way, the 121 * user won't get burned by the cache repeatedly. See <nfs/rnode.h> for 122 * more details on rnode locking. 123 */ 124 125 static int nfs_open(vnode_t **, int, cred_t *, caller_context_t *); 126 static int nfs_close(vnode_t *, int, int, offset_t, cred_t *, 127 caller_context_t *); 128 static int nfs_read(vnode_t *, struct uio *, int, cred_t *, 129 caller_context_t *); 130 static int nfs_write(vnode_t *, struct uio *, int, cred_t *, 131 caller_context_t *); 132 static int nfs_ioctl(vnode_t *, int, intptr_t, int, cred_t *, int *, 133 caller_context_t *); 134 static int nfs_getattr(vnode_t *, struct vattr *, int, cred_t *, 135 caller_context_t *); 136 static int nfs_setattr(vnode_t *, struct vattr *, int, cred_t *, 137 caller_context_t *); 138 static int nfs_access(vnode_t *, int, int, cred_t *, caller_context_t *); 139 static int nfs_accessx(void *, int, cred_t *); 140 static int nfs_readlink(vnode_t *, struct uio *, cred_t *, 141 caller_context_t *); 142 static int nfs_fsync(vnode_t *, int, cred_t *, caller_context_t *); 143 static void nfs_inactive(vnode_t *, cred_t *, caller_context_t *); 144 static int nfs_lookup(vnode_t *, char *, vnode_t **, struct pathname *, 145 int, vnode_t *, cred_t *, caller_context_t *, 146 int *, pathname_t *); 147 static int nfs_create(vnode_t *, char *, struct vattr *, enum vcexcl, 148 int, vnode_t **, cred_t *, int, caller_context_t *, 149 vsecattr_t *); 150 static int nfs_remove(vnode_t *, char *, cred_t *, caller_context_t *, 151 int); 152 static int nfs_link(vnode_t *, vnode_t *, char *, cred_t *, 153 caller_context_t *, int); 154 static int nfs_rename(vnode_t *, char *, vnode_t *, char *, cred_t *, 155 caller_context_t *, int); 156 static int nfs_mkdir(vnode_t *, char *, struct vattr *, vnode_t **, 157 cred_t *, caller_context_t *, int, vsecattr_t *); 158 static int nfs_rmdir(vnode_t *, char *, vnode_t *, cred_t *, 159 caller_context_t *, int); 160 static int nfs_symlink(vnode_t *, char *, struct vattr *, char *, 161 cred_t *, caller_context_t *, int); 162 static int nfs_readdir(vnode_t *, struct uio *, cred_t *, int *, 163 caller_context_t *, int); 164 static int nfs_fid(vnode_t *, fid_t *, caller_context_t *); 165 static int nfs_rwlock(vnode_t *, int, caller_context_t *); 166 static void nfs_rwunlock(vnode_t *, int, caller_context_t *); 167 static int nfs_seek(vnode_t *, offset_t, offset_t *, caller_context_t *); 168 static int nfs_getpage(vnode_t *, offset_t, size_t, uint_t *, 169 page_t *[], size_t, struct seg *, caddr_t, 170 enum seg_rw, cred_t *, caller_context_t *); 171 static int nfs_putpage(vnode_t *, offset_t, size_t, int, cred_t *, 172 caller_context_t *); 173 static int nfs_map(vnode_t *, offset_t, struct as *, caddr_t *, size_t, 174 uchar_t, uchar_t, uint_t, cred_t *, caller_context_t *); 175 static int nfs_addmap(vnode_t *, offset_t, struct as *, caddr_t, size_t, 176 uchar_t, uchar_t, uint_t, cred_t *, caller_context_t *); 177 static int nfs_frlock(vnode_t *, int, struct flock64 *, int, offset_t, 178 struct flk_callback *, cred_t *, caller_context_t *); 179 static int nfs_space(vnode_t *, int, struct flock64 *, int, offset_t, 180 cred_t *, caller_context_t *); 181 static int nfs_realvp(vnode_t *, vnode_t **, caller_context_t *); 182 static int nfs_delmap(vnode_t *, offset_t, struct as *, caddr_t, size_t, 183 uint_t, uint_t, uint_t, cred_t *, caller_context_t *); 184 static int nfs_pathconf(vnode_t *, int, ulong_t *, cred_t *, 185 caller_context_t *); 186 static int nfs_pageio(vnode_t *, page_t *, u_offset_t, size_t, int, 187 cred_t *, caller_context_t *); 188 static int nfs_setsecattr(vnode_t *, vsecattr_t *, int, cred_t *, 189 caller_context_t *); 190 static int nfs_getsecattr(vnode_t *, vsecattr_t *, int, cred_t *, 191 caller_context_t *); 192 static int nfs_shrlock(vnode_t *, int, struct shrlock *, int, cred_t *, 193 caller_context_t *); 194 195 struct vnodeops *nfs_vnodeops; 196 197 const fs_operation_def_t nfs_vnodeops_template[] = { 198 VOPNAME_OPEN, { .vop_open = nfs_open }, 199 VOPNAME_CLOSE, { .vop_close = nfs_close }, 200 VOPNAME_READ, { .vop_read = nfs_read }, 201 VOPNAME_WRITE, { .vop_write = nfs_write }, 202 VOPNAME_IOCTL, { .vop_ioctl = nfs_ioctl }, 203 VOPNAME_GETATTR, { .vop_getattr = nfs_getattr }, 204 VOPNAME_SETATTR, { .vop_setattr = nfs_setattr }, 205 VOPNAME_ACCESS, { .vop_access = nfs_access }, 206 VOPNAME_LOOKUP, { .vop_lookup = nfs_lookup }, 207 VOPNAME_CREATE, { .vop_create = nfs_create }, 208 VOPNAME_REMOVE, { .vop_remove = nfs_remove }, 209 VOPNAME_LINK, { .vop_link = nfs_link }, 210 VOPNAME_RENAME, { .vop_rename = nfs_rename }, 211 VOPNAME_MKDIR, { .vop_mkdir = nfs_mkdir }, 212 VOPNAME_RMDIR, { .vop_rmdir = nfs_rmdir }, 213 VOPNAME_READDIR, { .vop_readdir = nfs_readdir }, 214 VOPNAME_SYMLINK, { .vop_symlink = nfs_symlink }, 215 VOPNAME_READLINK, { .vop_readlink = nfs_readlink }, 216 VOPNAME_FSYNC, { .vop_fsync = nfs_fsync }, 217 VOPNAME_INACTIVE, { .vop_inactive = nfs_inactive }, 218 VOPNAME_FID, { .vop_fid = nfs_fid }, 219 VOPNAME_RWLOCK, { .vop_rwlock = nfs_rwlock }, 220 VOPNAME_RWUNLOCK, { .vop_rwunlock = nfs_rwunlock }, 221 VOPNAME_SEEK, { .vop_seek = nfs_seek }, 222 VOPNAME_FRLOCK, { .vop_frlock = nfs_frlock }, 223 VOPNAME_SPACE, { .vop_space = nfs_space }, 224 VOPNAME_REALVP, { .vop_realvp = nfs_realvp }, 225 VOPNAME_GETPAGE, { .vop_getpage = nfs_getpage }, 226 VOPNAME_PUTPAGE, { .vop_putpage = nfs_putpage }, 227 VOPNAME_MAP, { .vop_map = nfs_map }, 228 VOPNAME_ADDMAP, { .vop_addmap = nfs_addmap }, 229 VOPNAME_DELMAP, { .vop_delmap = nfs_delmap }, 230 VOPNAME_DUMP, { .vop_dump = nfs_dump }, 231 VOPNAME_PATHCONF, { .vop_pathconf = nfs_pathconf }, 232 VOPNAME_PAGEIO, { .vop_pageio = nfs_pageio }, 233 VOPNAME_SETSECATTR, { .vop_setsecattr = nfs_setsecattr }, 234 VOPNAME_GETSECATTR, { .vop_getsecattr = nfs_getsecattr }, 235 VOPNAME_SHRLOCK, { .vop_shrlock = nfs_shrlock }, 236 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 237 NULL, NULL 238 }; 239 240 /* 241 * XXX: This is referenced in modstubs.s 242 */ 243 struct vnodeops * 244 nfs_getvnodeops(void) 245 { 246 return (nfs_vnodeops); 247 } 248 249 /* ARGSUSED */ 250 static int 251 nfs_open(vnode_t **vpp, int flag, cred_t *cr, caller_context_t *ct) 252 { 253 int error; 254 struct vattr va; 255 rnode_t *rp; 256 vnode_t *vp; 257 258 vp = *vpp; 259 rp = VTOR(vp); 260 if (nfs_zone() != VTOMI(vp)->mi_zone) 261 return (EIO); 262 mutex_enter(&rp->r_statelock); 263 if (rp->r_cred == NULL) { 264 crhold(cr); 265 rp->r_cred = cr; 266 } 267 mutex_exit(&rp->r_statelock); 268 269 /* 270 * If there is no cached data or if close-to-open 271 * consistency checking is turned off, we can avoid 272 * the over the wire getattr. Otherwise, if the 273 * file system is mounted readonly, then just verify 274 * the caches are up to date using the normal mechanism. 275 * Else, if the file is not mmap'd, then just mark 276 * the attributes as timed out. They will be refreshed 277 * and the caches validated prior to being used. 278 * Else, the file system is mounted writeable so 279 * force an over the wire GETATTR in order to ensure 280 * that all cached data is valid. 281 */ 282 if (vp->v_count > 1 || 283 ((vn_has_cached_data(vp) || HAVE_RDDIR_CACHE(rp)) && 284 !(VTOMI(vp)->mi_flags & MI_NOCTO))) { 285 if (vn_is_readonly(vp)) 286 error = nfs_validate_caches(vp, cr); 287 else if (rp->r_mapcnt == 0 && vp->v_count == 1) { 288 PURGE_ATTRCACHE(vp); 289 error = 0; 290 } else { 291 va.va_mask = AT_ALL; 292 error = nfs_getattr_otw(vp, &va, cr); 293 } 294 } else 295 error = 0; 296 297 return (error); 298 } 299 300 /* ARGSUSED */ 301 static int 302 nfs_close(vnode_t *vp, int flag, int count, offset_t offset, cred_t *cr, 303 caller_context_t *ct) 304 { 305 rnode_t *rp; 306 int error; 307 struct vattr va; 308 309 /* 310 * zone_enter(2) prevents processes from changing zones with NFS files 311 * open; if we happen to get here from the wrong zone we can't do 312 * anything over the wire. 313 */ 314 if (VTOMI(vp)->mi_zone != nfs_zone()) { 315 /* 316 * We could attempt to clean up locks, except we're sure 317 * that the current process didn't acquire any locks on 318 * the file: any attempt to lock a file belong to another zone 319 * will fail, and one can't lock an NFS file and then change 320 * zones, as that fails too. 321 * 322 * Returning an error here is the sane thing to do. A 323 * subsequent call to VN_RELE() which translates to a 324 * nfs_inactive() will clean up state: if the zone of the 325 * vnode's origin is still alive and kicking, an async worker 326 * thread will handle the request (from the correct zone), and 327 * everything (minus the final nfs_getattr_otw() call) should 328 * be OK. If the zone is going away nfs_async_inactive() will 329 * throw away cached pages inline. 330 */ 331 return (EIO); 332 } 333 334 /* 335 * If we are using local locking for this filesystem, then 336 * release all of the SYSV style record locks. Otherwise, 337 * we are doing network locking and we need to release all 338 * of the network locks. All of the locks held by this 339 * process on this file are released no matter what the 340 * incoming reference count is. 341 */ 342 if (VTOMI(vp)->mi_flags & MI_LLOCK) { 343 cleanlocks(vp, ttoproc(curthread)->p_pid, 0); 344 cleanshares(vp, ttoproc(curthread)->p_pid); 345 } else 346 nfs_lockrelease(vp, flag, offset, cr); 347 348 if (count > 1) 349 return (0); 350 351 /* 352 * If the file has been `unlinked', then purge the 353 * DNLC so that this vnode will get reycled quicker 354 * and the .nfs* file on the server will get removed. 355 */ 356 rp = VTOR(vp); 357 if (rp->r_unldvp != NULL) 358 dnlc_purge_vp(vp); 359 360 /* 361 * If the file was open for write and there are pages, 362 * then if the file system was mounted using the "no-close- 363 * to-open" semantics, then start an asynchronous flush 364 * of the all of the pages in the file. 365 * else the file system was not mounted using the "no-close- 366 * to-open" semantics, then do a synchronous flush and 367 * commit of all of the dirty and uncommitted pages. 368 * 369 * The asynchronous flush of the pages in the "nocto" path 370 * mostly just associates a cred pointer with the rnode so 371 * writes which happen later will have a better chance of 372 * working. It also starts the data being written to the 373 * server, but without unnecessarily delaying the application. 374 */ 375 if ((flag & FWRITE) && vn_has_cached_data(vp)) { 376 if ((VTOMI(vp)->mi_flags & MI_NOCTO)) { 377 error = nfs_putpage(vp, (offset_t)0, 0, B_ASYNC, 378 cr, ct); 379 if (error == EAGAIN) 380 error = 0; 381 } else 382 error = nfs_putpage(vp, (offset_t)0, 0, 0, cr, ct); 383 if (!error) { 384 mutex_enter(&rp->r_statelock); 385 error = rp->r_error; 386 rp->r_error = 0; 387 mutex_exit(&rp->r_statelock); 388 } 389 } else { 390 mutex_enter(&rp->r_statelock); 391 error = rp->r_error; 392 rp->r_error = 0; 393 mutex_exit(&rp->r_statelock); 394 } 395 396 /* 397 * If RWRITEATTR is set, then issue an over the wire GETATTR to 398 * refresh the attribute cache with a set of attributes which 399 * weren't returned from a WRITE. This will enable the close- 400 * to-open processing to work. 401 */ 402 if (rp->r_flags & RWRITEATTR) 403 (void) nfs_getattr_otw(vp, &va, cr); 404 405 return (error); 406 } 407 408 /* ARGSUSED */ 409 static int 410 nfs_read(vnode_t *vp, struct uio *uiop, int ioflag, cred_t *cr, 411 caller_context_t *ct) 412 { 413 rnode_t *rp; 414 u_offset_t off; 415 offset_t diff; 416 int on; 417 size_t n; 418 caddr_t base; 419 uint_t flags; 420 int error; 421 mntinfo_t *mi; 422 423 rp = VTOR(vp); 424 mi = VTOMI(vp); 425 426 if (nfs_zone() != mi->mi_zone) 427 return (EIO); 428 429 ASSERT(nfs_rw_lock_held(&rp->r_rwlock, RW_READER)); 430 431 if (vp->v_type != VREG) 432 return (EISDIR); 433 434 if (uiop->uio_resid == 0) 435 return (0); 436 437 if (uiop->uio_loffset > MAXOFF32_T) 438 return (EFBIG); 439 440 if (uiop->uio_loffset < 0 || 441 uiop->uio_loffset + uiop->uio_resid > MAXOFF32_T) 442 return (EINVAL); 443 444 /* 445 * Bypass VM if caching has been disabled (e.g., locking) or if 446 * using client-side direct I/O and the file is not mmap'd and 447 * there are no cached pages. 448 */ 449 if ((vp->v_flag & VNOCACHE) || 450 (((rp->r_flags & RDIRECTIO) || (mi->mi_flags & MI_DIRECTIO)) && 451 rp->r_mapcnt == 0 && rp->r_inmap == 0 && 452 !vn_has_cached_data(vp))) { 453 size_t bufsize; 454 size_t resid = 0; 455 456 /* 457 * Let's try to do read in as large a chunk as we can 458 * (Filesystem (NFS client) bsize if possible/needed). 459 * For V3, this is 32K and for V2, this is 8K. 460 */ 461 bufsize = MIN(uiop->uio_resid, VTOMI(vp)->mi_curread); 462 base = kmem_alloc(bufsize, KM_SLEEP); 463 do { 464 n = MIN(uiop->uio_resid, bufsize); 465 error = nfsread(vp, base, uiop->uio_offset, n, 466 &resid, cr); 467 if (!error) { 468 n -= resid; 469 error = uiomove(base, n, UIO_READ, uiop); 470 } 471 } while (!error && uiop->uio_resid > 0 && n > 0); 472 kmem_free(base, bufsize); 473 return (error); 474 } 475 476 error = 0; 477 478 do { 479 off = uiop->uio_loffset & MAXBMASK; /* mapping offset */ 480 on = uiop->uio_loffset & MAXBOFFSET; /* Relative offset */ 481 n = MIN(MAXBSIZE - on, uiop->uio_resid); 482 483 error = nfs_validate_caches(vp, cr); 484 if (error) 485 break; 486 487 mutex_enter(&rp->r_statelock); 488 while (rp->r_flags & RINCACHEPURGE) { 489 if (!cv_wait_sig(&rp->r_cv, &rp->r_statelock)) { 490 mutex_exit(&rp->r_statelock); 491 return (EINTR); 492 } 493 } 494 diff = rp->r_size - uiop->uio_loffset; 495 mutex_exit(&rp->r_statelock); 496 if (diff <= 0) 497 break; 498 if (diff < n) 499 n = (size_t)diff; 500 501 if (vpm_enable) { 502 /* 503 * Copy data. 504 */ 505 error = vpm_data_copy(vp, off + on, n, uiop, 506 1, NULL, 0, S_READ); 507 } else { 508 base = segmap_getmapflt(segkmap, vp, off + on, n, 509 1, S_READ); 510 error = uiomove(base + on, n, UIO_READ, uiop); 511 } 512 513 if (!error) { 514 /* 515 * If read a whole block or read to eof, 516 * won't need this buffer again soon. 517 */ 518 mutex_enter(&rp->r_statelock); 519 if (n + on == MAXBSIZE || 520 uiop->uio_loffset == rp->r_size) 521 flags = SM_DONTNEED; 522 else 523 flags = 0; 524 mutex_exit(&rp->r_statelock); 525 if (vpm_enable) { 526 error = vpm_sync_pages(vp, off, n, flags); 527 } else { 528 error = segmap_release(segkmap, base, flags); 529 } 530 } else { 531 if (vpm_enable) { 532 (void) vpm_sync_pages(vp, off, n, 0); 533 } else { 534 (void) segmap_release(segkmap, base, 0); 535 } 536 } 537 } while (!error && uiop->uio_resid > 0); 538 539 return (error); 540 } 541 542 /* ARGSUSED */ 543 static int 544 nfs_write(vnode_t *vp, struct uio *uiop, int ioflag, cred_t *cr, 545 caller_context_t *ct) 546 { 547 rnode_t *rp; 548 u_offset_t off; 549 caddr_t base; 550 uint_t flags; 551 int remainder; 552 size_t n; 553 int on; 554 int error; 555 int resid; 556 offset_t offset; 557 rlim_t limit; 558 mntinfo_t *mi; 559 560 rp = VTOR(vp); 561 562 mi = VTOMI(vp); 563 if (nfs_zone() != mi->mi_zone) 564 return (EIO); 565 if (vp->v_type != VREG) 566 return (EISDIR); 567 568 if (uiop->uio_resid == 0) 569 return (0); 570 571 if (ioflag & FAPPEND) { 572 struct vattr va; 573 574 /* 575 * Must serialize if appending. 576 */ 577 if (nfs_rw_lock_held(&rp->r_rwlock, RW_READER)) { 578 nfs_rw_exit(&rp->r_rwlock); 579 if (nfs_rw_enter_sig(&rp->r_rwlock, RW_WRITER, 580 INTR(vp))) 581 return (EINTR); 582 } 583 584 va.va_mask = AT_SIZE; 585 error = nfsgetattr(vp, &va, cr); 586 if (error) 587 return (error); 588 uiop->uio_loffset = va.va_size; 589 } 590 591 if (uiop->uio_loffset > MAXOFF32_T) 592 return (EFBIG); 593 594 offset = uiop->uio_loffset + uiop->uio_resid; 595 596 if (uiop->uio_loffset < 0 || offset > MAXOFF32_T) 597 return (EINVAL); 598 599 if (uiop->uio_llimit > (rlim64_t)MAXOFF32_T) { 600 limit = MAXOFF32_T; 601 } else { 602 limit = (rlim_t)uiop->uio_llimit; 603 } 604 605 /* 606 * Check to make sure that the process will not exceed 607 * its limit on file size. It is okay to write up to 608 * the limit, but not beyond. Thus, the write which 609 * reaches the limit will be short and the next write 610 * will return an error. 611 */ 612 remainder = 0; 613 if (offset > limit) { 614 remainder = offset - limit; 615 uiop->uio_resid = limit - uiop->uio_offset; 616 if (uiop->uio_resid <= 0) { 617 proc_t *p = ttoproc(curthread); 618 619 uiop->uio_resid += remainder; 620 mutex_enter(&p->p_lock); 621 (void) rctl_action(rctlproc_legacy[RLIMIT_FSIZE], 622 p->p_rctls, p, RCA_UNSAFE_SIGINFO); 623 mutex_exit(&p->p_lock); 624 return (EFBIG); 625 } 626 } 627 628 if (nfs_rw_enter_sig(&rp->r_lkserlock, RW_READER, INTR(vp))) 629 return (EINTR); 630 631 /* 632 * Bypass VM if caching has been disabled (e.g., locking) or if 633 * using client-side direct I/O and the file is not mmap'd and 634 * there are no cached pages. 635 */ 636 if ((vp->v_flag & VNOCACHE) || 637 (((rp->r_flags & RDIRECTIO) || (mi->mi_flags & MI_DIRECTIO)) && 638 rp->r_mapcnt == 0 && rp->r_inmap == 0 && 639 !vn_has_cached_data(vp))) { 640 size_t bufsize; 641 int count; 642 uint_t org_offset; 643 644 nfs_fwrite: 645 if (rp->r_flags & RSTALE) { 646 resid = uiop->uio_resid; 647 offset = uiop->uio_loffset; 648 error = rp->r_error; 649 goto bottom; 650 } 651 bufsize = MIN(uiop->uio_resid, mi->mi_curwrite); 652 base = kmem_alloc(bufsize, KM_SLEEP); 653 do { 654 resid = uiop->uio_resid; 655 offset = uiop->uio_loffset; 656 count = MIN(uiop->uio_resid, bufsize); 657 org_offset = uiop->uio_offset; 658 error = uiomove(base, count, UIO_WRITE, uiop); 659 if (!error) { 660 error = nfswrite(vp, base, org_offset, 661 count, cr); 662 } 663 } while (!error && uiop->uio_resid > 0); 664 kmem_free(base, bufsize); 665 goto bottom; 666 } 667 668 do { 669 off = uiop->uio_loffset & MAXBMASK; /* mapping offset */ 670 on = uiop->uio_loffset & MAXBOFFSET; /* Relative offset */ 671 n = MIN(MAXBSIZE - on, uiop->uio_resid); 672 673 resid = uiop->uio_resid; 674 offset = uiop->uio_loffset; 675 676 if (rp->r_flags & RSTALE) { 677 error = rp->r_error; 678 break; 679 } 680 681 /* 682 * Don't create dirty pages faster than they 683 * can be cleaned so that the system doesn't 684 * get imbalanced. If the async queue is 685 * maxed out, then wait for it to drain before 686 * creating more dirty pages. Also, wait for 687 * any threads doing pagewalks in the vop_getattr 688 * entry points so that they don't block for 689 * long periods. 690 */ 691 mutex_enter(&rp->r_statelock); 692 while ((mi->mi_max_threads != 0 && 693 rp->r_awcount > 2 * mi->mi_max_threads) || 694 rp->r_gcount > 0) 695 cv_wait(&rp->r_cv, &rp->r_statelock); 696 mutex_exit(&rp->r_statelock); 697 698 if (vpm_enable) { 699 /* 700 * It will use kpm mappings, so no need to 701 * pass an address. 702 */ 703 error = writerp(rp, NULL, n, uiop, 0); 704 } else { 705 if (segmap_kpm) { 706 int pon = uiop->uio_loffset & PAGEOFFSET; 707 size_t pn = MIN(PAGESIZE - pon, 708 uiop->uio_resid); 709 int pagecreate; 710 711 mutex_enter(&rp->r_statelock); 712 pagecreate = (pon == 0) && (pn == PAGESIZE || 713 uiop->uio_loffset + pn >= rp->r_size); 714 mutex_exit(&rp->r_statelock); 715 716 base = segmap_getmapflt(segkmap, vp, off + on, 717 pn, !pagecreate, S_WRITE); 718 719 error = writerp(rp, base + pon, n, uiop, 720 pagecreate); 721 722 } else { 723 base = segmap_getmapflt(segkmap, vp, off + on, 724 n, 0, S_READ); 725 error = writerp(rp, base + on, n, uiop, 0); 726 } 727 } 728 729 if (!error) { 730 if (mi->mi_flags & MI_NOAC) 731 flags = SM_WRITE; 732 else if (n + on == MAXBSIZE || IS_SWAPVP(vp)) { 733 /* 734 * Have written a whole block. 735 * Start an asynchronous write 736 * and mark the buffer to 737 * indicate that it won't be 738 * needed again soon. 739 */ 740 flags = SM_WRITE | SM_ASYNC | SM_DONTNEED; 741 } else 742 flags = 0; 743 if ((ioflag & (FSYNC|FDSYNC)) || 744 (rp->r_flags & ROUTOFSPACE)) { 745 flags &= ~SM_ASYNC; 746 flags |= SM_WRITE; 747 } 748 if (vpm_enable) { 749 error = vpm_sync_pages(vp, off, n, flags); 750 } else { 751 error = segmap_release(segkmap, base, flags); 752 } 753 } else { 754 if (vpm_enable) { 755 (void) vpm_sync_pages(vp, off, n, 0); 756 } else { 757 (void) segmap_release(segkmap, base, 0); 758 } 759 /* 760 * In the event that we got an access error while 761 * faulting in a page for a write-only file just 762 * force a write. 763 */ 764 if (error == EACCES) 765 goto nfs_fwrite; 766 } 767 } while (!error && uiop->uio_resid > 0); 768 769 bottom: 770 if (error) { 771 uiop->uio_resid = resid + remainder; 772 uiop->uio_loffset = offset; 773 } else 774 uiop->uio_resid += remainder; 775 776 nfs_rw_exit(&rp->r_lkserlock); 777 778 return (error); 779 } 780 781 /* 782 * Flags are composed of {B_ASYNC, B_INVAL, B_FREE, B_DONTNEED} 783 */ 784 static int 785 nfs_rdwrlbn(vnode_t *vp, page_t *pp, u_offset_t off, size_t len, 786 int flags, cred_t *cr) 787 { 788 struct buf *bp; 789 int error; 790 791 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 792 bp = pageio_setup(pp, len, vp, flags); 793 ASSERT(bp != NULL); 794 795 /* 796 * pageio_setup should have set b_addr to 0. This 797 * is correct since we want to do I/O on a page 798 * boundary. bp_mapin will use this addr to calculate 799 * an offset, and then set b_addr to the kernel virtual 800 * address it allocated for us. 801 */ 802 ASSERT(bp->b_un.b_addr == 0); 803 804 bp->b_edev = 0; 805 bp->b_dev = 0; 806 bp->b_lblkno = lbtodb(off); 807 bp->b_file = vp; 808 bp->b_offset = (offset_t)off; 809 bp_mapin(bp); 810 811 error = nfs_bio(bp, cr); 812 813 bp_mapout(bp); 814 pageio_done(bp); 815 816 return (error); 817 } 818 819 /* 820 * Write to file. Writes to remote server in largest size 821 * chunks that the server can handle. Write is synchronous. 822 */ 823 static int 824 nfswrite(vnode_t *vp, caddr_t base, uint_t offset, int count, cred_t *cr) 825 { 826 rnode_t *rp; 827 mntinfo_t *mi; 828 struct nfswriteargs wa; 829 struct nfsattrstat ns; 830 int error; 831 int tsize; 832 int douprintf; 833 834 douprintf = 1; 835 836 rp = VTOR(vp); 837 mi = VTOMI(vp); 838 839 ASSERT(nfs_zone() == mi->mi_zone); 840 841 wa.wa_args = &wa.wa_args_buf; 842 wa.wa_fhandle = *VTOFH(vp); 843 844 do { 845 tsize = MIN(mi->mi_curwrite, count); 846 wa.wa_data = base; 847 wa.wa_begoff = offset; 848 wa.wa_totcount = tsize; 849 wa.wa_count = tsize; 850 wa.wa_offset = offset; 851 852 if (mi->mi_io_kstats) { 853 mutex_enter(&mi->mi_lock); 854 kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats)); 855 mutex_exit(&mi->mi_lock); 856 } 857 wa.wa_mblk = NULL; 858 do { 859 error = rfs2call(mi, RFS_WRITE, 860 xdr_writeargs, (caddr_t)&wa, 861 xdr_attrstat, (caddr_t)&ns, cr, 862 &douprintf, &ns.ns_status, 0, NULL); 863 } while (error == ENFS_TRYAGAIN); 864 if (mi->mi_io_kstats) { 865 mutex_enter(&mi->mi_lock); 866 kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats)); 867 mutex_exit(&mi->mi_lock); 868 } 869 870 if (!error) { 871 error = geterrno(ns.ns_status); 872 /* 873 * Can't check for stale fhandle and purge caches 874 * here because pages are held by nfs_getpage. 875 * Just mark the attribute cache as timed out 876 * and set RWRITEATTR to indicate that the file 877 * was modified with a WRITE operation. 878 */ 879 if (!error) { 880 count -= tsize; 881 base += tsize; 882 offset += tsize; 883 if (mi->mi_io_kstats) { 884 mutex_enter(&mi->mi_lock); 885 KSTAT_IO_PTR(mi->mi_io_kstats)-> 886 writes++; 887 KSTAT_IO_PTR(mi->mi_io_kstats)-> 888 nwritten += tsize; 889 mutex_exit(&mi->mi_lock); 890 } 891 lwp_stat_update(LWP_STAT_OUBLK, 1); 892 mutex_enter(&rp->r_statelock); 893 PURGE_ATTRCACHE_LOCKED(rp); 894 rp->r_flags |= RWRITEATTR; 895 mutex_exit(&rp->r_statelock); 896 } 897 } 898 } while (!error && count); 899 900 return (error); 901 } 902 903 /* 904 * Read from a file. Reads data in largest chunks our interface can handle. 905 */ 906 static int 907 nfsread(vnode_t *vp, caddr_t base, uint_t offset, 908 int count, size_t *residp, cred_t *cr) 909 { 910 mntinfo_t *mi; 911 struct nfsreadargs ra; 912 struct nfsrdresult rr; 913 int tsize; 914 int error; 915 int douprintf; 916 failinfo_t fi; 917 rnode_t *rp; 918 struct vattr va; 919 hrtime_t t; 920 921 rp = VTOR(vp); 922 mi = VTOMI(vp); 923 924 ASSERT(nfs_zone() == mi->mi_zone); 925 926 douprintf = 1; 927 928 ra.ra_fhandle = *VTOFH(vp); 929 930 fi.vp = vp; 931 fi.fhp = (caddr_t)&ra.ra_fhandle; 932 fi.copyproc = nfscopyfh; 933 fi.lookupproc = nfslookup; 934 fi.xattrdirproc = acl_getxattrdir2; 935 936 do { 937 if (mi->mi_io_kstats) { 938 mutex_enter(&mi->mi_lock); 939 kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats)); 940 mutex_exit(&mi->mi_lock); 941 } 942 943 do { 944 tsize = MIN(mi->mi_curread, count); 945 rr.rr_data = base; 946 ra.ra_offset = offset; 947 ra.ra_totcount = tsize; 948 ra.ra_count = tsize; 949 ra.ra_data = base; 950 t = gethrtime(); 951 error = rfs2call(mi, RFS_READ, 952 xdr_readargs, (caddr_t)&ra, 953 xdr_rdresult, (caddr_t)&rr, cr, 954 &douprintf, &rr.rr_status, 0, &fi); 955 } while (error == ENFS_TRYAGAIN); 956 957 if (mi->mi_io_kstats) { 958 mutex_enter(&mi->mi_lock); 959 kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats)); 960 mutex_exit(&mi->mi_lock); 961 } 962 963 if (!error) { 964 error = geterrno(rr.rr_status); 965 if (!error) { 966 count -= rr.rr_count; 967 base += rr.rr_count; 968 offset += rr.rr_count; 969 if (mi->mi_io_kstats) { 970 mutex_enter(&mi->mi_lock); 971 KSTAT_IO_PTR(mi->mi_io_kstats)->reads++; 972 KSTAT_IO_PTR(mi->mi_io_kstats)->nread += 973 rr.rr_count; 974 mutex_exit(&mi->mi_lock); 975 } 976 lwp_stat_update(LWP_STAT_INBLK, 1); 977 } 978 } 979 } while (!error && count && rr.rr_count == tsize); 980 981 *residp = count; 982 983 if (!error) { 984 /* 985 * Since no error occurred, we have the current 986 * attributes and we need to do a cache check and then 987 * potentially update the cached attributes. We can't 988 * use the normal attribute check and cache mechanisms 989 * because they might cause a cache flush which would 990 * deadlock. Instead, we just check the cache to see 991 * if the attributes have changed. If it is, then we 992 * just mark the attributes as out of date. The next 993 * time that the attributes are checked, they will be 994 * out of date, new attributes will be fetched, and 995 * the page cache will be flushed. If the attributes 996 * weren't changed, then we just update the cached 997 * attributes with these attributes. 998 */ 999 /* 1000 * If NFS_ACL is supported on the server, then the 1001 * attributes returned by server may have minimal 1002 * permissions sometimes denying access to users having 1003 * proper access. To get the proper attributes, mark 1004 * the attributes as expired so that they will be 1005 * regotten via the NFS_ACL GETATTR2 procedure. 1006 */ 1007 error = nattr_to_vattr(vp, &rr.rr_attr, &va); 1008 mutex_enter(&rp->r_statelock); 1009 if (error || !CACHE_VALID(rp, va.va_mtime, va.va_size) || 1010 (mi->mi_flags & MI_ACL)) { 1011 mutex_exit(&rp->r_statelock); 1012 PURGE_ATTRCACHE(vp); 1013 } else { 1014 if (rp->r_mtime <= t) { 1015 nfs_attrcache_va(vp, &va); 1016 } 1017 mutex_exit(&rp->r_statelock); 1018 } 1019 } 1020 1021 return (error); 1022 } 1023 1024 /* ARGSUSED */ 1025 static int 1026 nfs_ioctl(vnode_t *vp, int cmd, intptr_t arg, int flag, cred_t *cr, int *rvalp, 1027 caller_context_t *ct) 1028 { 1029 1030 if (nfs_zone() != VTOMI(vp)->mi_zone) 1031 return (EIO); 1032 switch (cmd) { 1033 case _FIODIRECTIO: 1034 return (nfs_directio(vp, (int)arg, cr)); 1035 default: 1036 return (ENOTTY); 1037 } 1038 } 1039 1040 /* ARGSUSED */ 1041 static int 1042 nfs_getattr(vnode_t *vp, struct vattr *vap, int flags, cred_t *cr, 1043 caller_context_t *ct) 1044 { 1045 int error; 1046 rnode_t *rp; 1047 1048 if (nfs_zone() != VTOMI(vp)->mi_zone) 1049 return (EIO); 1050 /* 1051 * If it has been specified that the return value will 1052 * just be used as a hint, and we are only being asked 1053 * for size, fsid or rdevid, then return the client's 1054 * notion of these values without checking to make sure 1055 * that the attribute cache is up to date. 1056 * The whole point is to avoid an over the wire GETATTR 1057 * call. 1058 */ 1059 rp = VTOR(vp); 1060 if (flags & ATTR_HINT) { 1061 if (vap->va_mask == 1062 (vap->va_mask & (AT_SIZE | AT_FSID | AT_RDEV))) { 1063 mutex_enter(&rp->r_statelock); 1064 if (vap->va_mask | AT_SIZE) 1065 vap->va_size = rp->r_size; 1066 if (vap->va_mask | AT_FSID) 1067 vap->va_fsid = rp->r_attr.va_fsid; 1068 if (vap->va_mask | AT_RDEV) 1069 vap->va_rdev = rp->r_attr.va_rdev; 1070 mutex_exit(&rp->r_statelock); 1071 return (0); 1072 } 1073 } 1074 1075 /* 1076 * Only need to flush pages if asking for the mtime 1077 * and if there any dirty pages or any outstanding 1078 * asynchronous (write) requests for this file. 1079 */ 1080 if (vap->va_mask & AT_MTIME) { 1081 if (vn_has_cached_data(vp) && 1082 ((rp->r_flags & RDIRTY) || rp->r_awcount > 0)) { 1083 mutex_enter(&rp->r_statelock); 1084 rp->r_gcount++; 1085 mutex_exit(&rp->r_statelock); 1086 error = nfs_putpage(vp, (offset_t)0, 0, 0, cr, ct); 1087 mutex_enter(&rp->r_statelock); 1088 if (error && (error == ENOSPC || error == EDQUOT)) { 1089 if (!rp->r_error) 1090 rp->r_error = error; 1091 } 1092 if (--rp->r_gcount == 0) 1093 cv_broadcast(&rp->r_cv); 1094 mutex_exit(&rp->r_statelock); 1095 } 1096 } 1097 1098 return (nfsgetattr(vp, vap, cr)); 1099 } 1100 1101 /*ARGSUSED4*/ 1102 static int 1103 nfs_setattr(vnode_t *vp, struct vattr *vap, int flags, cred_t *cr, 1104 caller_context_t *ct) 1105 { 1106 int error; 1107 uint_t mask; 1108 struct vattr va; 1109 1110 mask = vap->va_mask; 1111 1112 if (mask & AT_NOSET) 1113 return (EINVAL); 1114 1115 if ((mask & AT_SIZE) && 1116 vap->va_type == VREG && 1117 vap->va_size > MAXOFF32_T) 1118 return (EFBIG); 1119 1120 if (nfs_zone() != VTOMI(vp)->mi_zone) 1121 return (EIO); 1122 1123 va.va_mask = AT_UID | AT_MODE; 1124 1125 error = nfsgetattr(vp, &va, cr); 1126 if (error) 1127 return (error); 1128 1129 error = secpolicy_vnode_setattr(cr, vp, vap, &va, flags, nfs_accessx, 1130 vp); 1131 1132 if (error) 1133 return (error); 1134 1135 return (nfssetattr(vp, vap, flags, cr)); 1136 } 1137 1138 static int 1139 nfssetattr(vnode_t *vp, struct vattr *vap, int flags, cred_t *cr) 1140 { 1141 int error; 1142 uint_t mask; 1143 struct nfssaargs args; 1144 struct nfsattrstat ns; 1145 int douprintf; 1146 rnode_t *rp; 1147 struct vattr va; 1148 mode_t omode; 1149 mntinfo_t *mi; 1150 vsecattr_t *vsp; 1151 hrtime_t t; 1152 1153 mask = vap->va_mask; 1154 1155 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 1156 1157 rp = VTOR(vp); 1158 1159 /* 1160 * Only need to flush pages if there are any pages and 1161 * if the file is marked as dirty in some fashion. The 1162 * file must be flushed so that we can accurately 1163 * determine the size of the file and the cached data 1164 * after the SETATTR returns. A file is considered to 1165 * be dirty if it is either marked with RDIRTY, has 1166 * outstanding i/o's active, or is mmap'd. In this 1167 * last case, we can't tell whether there are dirty 1168 * pages, so we flush just to be sure. 1169 */ 1170 if (vn_has_cached_data(vp) && 1171 ((rp->r_flags & RDIRTY) || 1172 rp->r_count > 0 || 1173 rp->r_mapcnt > 0)) { 1174 ASSERT(vp->v_type != VCHR); 1175 error = nfs_putpage(vp, (offset_t)0, 0, 0, cr, NULL); 1176 if (error && (error == ENOSPC || error == EDQUOT)) { 1177 mutex_enter(&rp->r_statelock); 1178 if (!rp->r_error) 1179 rp->r_error = error; 1180 mutex_exit(&rp->r_statelock); 1181 } 1182 } 1183 1184 /* 1185 * If the system call was utime(2) or utimes(2) and the 1186 * application did not specify the times, then set the 1187 * mtime nanosecond field to 1 billion. This will get 1188 * translated from 1 billion nanoseconds to 1 million 1189 * microseconds in the over the wire request. The 1190 * server will use 1 million in the microsecond field 1191 * to tell whether both the mtime and atime should be 1192 * set to the server's current time. 1193 * 1194 * This is an overload of the protocol and should be 1195 * documented in the NFS Version 2 protocol specification. 1196 */ 1197 if ((mask & AT_MTIME) && !(flags & ATTR_UTIME)) { 1198 vap->va_mtime.tv_nsec = 1000000000; 1199 if (NFS_TIME_T_OK(vap->va_mtime.tv_sec) && 1200 NFS_TIME_T_OK(vap->va_atime.tv_sec)) { 1201 error = vattr_to_sattr(vap, &args.saa_sa); 1202 } else { 1203 /* 1204 * Use server times. vap time values will not be used. 1205 * To ensure no time overflow, make sure vap has 1206 * valid values, but retain the original values. 1207 */ 1208 timestruc_t mtime = vap->va_mtime; 1209 timestruc_t atime = vap->va_atime; 1210 time_t now; 1211 1212 now = gethrestime_sec(); 1213 if (NFS_TIME_T_OK(now)) { 1214 /* Just in case server does not know of this */ 1215 vap->va_mtime.tv_sec = now; 1216 vap->va_atime.tv_sec = now; 1217 } else { 1218 vap->va_mtime.tv_sec = 0; 1219 vap->va_atime.tv_sec = 0; 1220 } 1221 error = vattr_to_sattr(vap, &args.saa_sa); 1222 /* set vap times back on */ 1223 vap->va_mtime = mtime; 1224 vap->va_atime = atime; 1225 } 1226 } else { 1227 /* Either do not set times or use the client specified times */ 1228 error = vattr_to_sattr(vap, &args.saa_sa); 1229 } 1230 if (error) { 1231 /* req time field(s) overflow - return immediately */ 1232 return (error); 1233 } 1234 args.saa_fh = *VTOFH(vp); 1235 1236 va.va_mask = AT_MODE; 1237 error = nfsgetattr(vp, &va, cr); 1238 if (error) 1239 return (error); 1240 omode = va.va_mode; 1241 1242 mi = VTOMI(vp); 1243 1244 douprintf = 1; 1245 1246 t = gethrtime(); 1247 1248 error = rfs2call(mi, RFS_SETATTR, 1249 xdr_saargs, (caddr_t)&args, 1250 xdr_attrstat, (caddr_t)&ns, cr, 1251 &douprintf, &ns.ns_status, 0, NULL); 1252 1253 /* 1254 * Purge the access cache and ACL cache if changing either the 1255 * owner of the file, the group owner, or the mode. These may 1256 * change the access permissions of the file, so purge old 1257 * information and start over again. 1258 */ 1259 if ((mask & (AT_UID | AT_GID | AT_MODE)) && (mi->mi_flags & MI_ACL)) { 1260 (void) nfs_access_purge_rp(rp); 1261 if (rp->r_secattr != NULL) { 1262 mutex_enter(&rp->r_statelock); 1263 vsp = rp->r_secattr; 1264 rp->r_secattr = NULL; 1265 mutex_exit(&rp->r_statelock); 1266 if (vsp != NULL) 1267 nfs_acl_free(vsp); 1268 } 1269 } 1270 1271 if (!error) { 1272 error = geterrno(ns.ns_status); 1273 if (!error) { 1274 /* 1275 * If changing the size of the file, invalidate 1276 * any local cached data which is no longer part 1277 * of the file. We also possibly invalidate the 1278 * last page in the file. We could use 1279 * pvn_vpzero(), but this would mark the page as 1280 * modified and require it to be written back to 1281 * the server for no particularly good reason. 1282 * This way, if we access it, then we bring it 1283 * back in. A read should be cheaper than a 1284 * write. 1285 */ 1286 if (mask & AT_SIZE) { 1287 nfs_invalidate_pages(vp, 1288 (vap->va_size & PAGEMASK), cr); 1289 } 1290 (void) nfs_cache_fattr(vp, &ns.ns_attr, &va, t, cr); 1291 /* 1292 * If NFS_ACL is supported on the server, then the 1293 * attributes returned by server may have minimal 1294 * permissions sometimes denying access to users having 1295 * proper access. To get the proper attributes, mark 1296 * the attributes as expired so that they will be 1297 * regotten via the NFS_ACL GETATTR2 procedure. 1298 */ 1299 if (mi->mi_flags & MI_ACL) { 1300 PURGE_ATTRCACHE(vp); 1301 } 1302 /* 1303 * This next check attempts to deal with NFS 1304 * servers which can not handle increasing 1305 * the size of the file via setattr. Most 1306 * of these servers do not return an error, 1307 * but do not change the size of the file. 1308 * Hence, this check and then attempt to set 1309 * the file size by writing 1 byte at the 1310 * offset of the end of the file that we need. 1311 */ 1312 if ((mask & AT_SIZE) && 1313 ns.ns_attr.na_size < (uint32_t)vap->va_size) { 1314 char zb = '\0'; 1315 1316 error = nfswrite(vp, &zb, 1317 vap->va_size - sizeof (zb), 1318 sizeof (zb), cr); 1319 } 1320 /* 1321 * Some servers will change the mode to clear the setuid 1322 * and setgid bits when changing the uid or gid. The 1323 * client needs to compensate appropriately. 1324 */ 1325 if (mask & (AT_UID | AT_GID)) { 1326 int terror; 1327 1328 va.va_mask = AT_MODE; 1329 terror = nfsgetattr(vp, &va, cr); 1330 if (!terror && 1331 (((mask & AT_MODE) && 1332 va.va_mode != vap->va_mode) || 1333 (!(mask & AT_MODE) && 1334 va.va_mode != omode))) { 1335 va.va_mask = AT_MODE; 1336 if (mask & AT_MODE) 1337 va.va_mode = vap->va_mode; 1338 else 1339 va.va_mode = omode; 1340 (void) nfssetattr(vp, &va, 0, cr); 1341 } 1342 } 1343 } else { 1344 PURGE_ATTRCACHE(vp); 1345 PURGE_STALE_FH(error, vp, cr); 1346 } 1347 } else { 1348 PURGE_ATTRCACHE(vp); 1349 } 1350 1351 return (error); 1352 } 1353 1354 static int 1355 nfs_accessx(void *vp, int mode, cred_t *cr) 1356 { 1357 ASSERT(nfs_zone() == VTOMI((vnode_t *)vp)->mi_zone); 1358 return (nfs_access(vp, mode, 0, cr, NULL)); 1359 } 1360 1361 /* ARGSUSED */ 1362 static int 1363 nfs_access(vnode_t *vp, int mode, int flags, cred_t *cr, caller_context_t *ct) 1364 { 1365 struct vattr va; 1366 int error; 1367 mntinfo_t *mi; 1368 int shift = 0; 1369 1370 mi = VTOMI(vp); 1371 1372 if (nfs_zone() != mi->mi_zone) 1373 return (EIO); 1374 if (mi->mi_flags & MI_ACL) { 1375 error = acl_access2(vp, mode, flags, cr); 1376 if (mi->mi_flags & MI_ACL) 1377 return (error); 1378 } 1379 1380 va.va_mask = AT_MODE | AT_UID | AT_GID; 1381 error = nfsgetattr(vp, &va, cr); 1382 if (error) 1383 return (error); 1384 1385 /* 1386 * Disallow write attempts on read-only 1387 * file systems, unless the file is a 1388 * device node. 1389 */ 1390 if ((mode & VWRITE) && vn_is_readonly(vp) && !IS_DEVVP(vp)) 1391 return (EROFS); 1392 1393 /* 1394 * Disallow attempts to access mandatory lock files. 1395 */ 1396 if ((mode & (VWRITE | VREAD | VEXEC)) && 1397 MANDLOCK(vp, va.va_mode)) 1398 return (EACCES); 1399 1400 /* 1401 * Access check is based on only 1402 * one of owner, group, public. 1403 * If not owner, then check group. 1404 * If not a member of the group, 1405 * then check public access. 1406 */ 1407 if (crgetuid(cr) != va.va_uid) { 1408 shift += 3; 1409 if (!groupmember(va.va_gid, cr)) 1410 shift += 3; 1411 } 1412 found: 1413 mode &= ~(va.va_mode << shift); 1414 if (mode == 0) 1415 return (0); 1416 1417 return (secpolicy_vnode_access(cr, vp, va.va_uid, mode)); 1418 } 1419 1420 static int nfs_do_symlink_cache = 1; 1421 1422 /* ARGSUSED */ 1423 static int 1424 nfs_readlink(vnode_t *vp, struct uio *uiop, cred_t *cr, caller_context_t *ct) 1425 { 1426 int error; 1427 struct nfsrdlnres rl; 1428 rnode_t *rp; 1429 int douprintf; 1430 failinfo_t fi; 1431 1432 /* 1433 * We want to be consistent with UFS semantics so we will return 1434 * EINVAL instead of ENXIO. This violates the XNFS spec and 1435 * the RFC 1094, which are wrong any way. BUGID 1138002. 1436 */ 1437 if (vp->v_type != VLNK) 1438 return (EINVAL); 1439 1440 if (nfs_zone() != VTOMI(vp)->mi_zone) 1441 return (EIO); 1442 1443 rp = VTOR(vp); 1444 if (nfs_do_symlink_cache && rp->r_symlink.contents != NULL) { 1445 error = nfs_validate_caches(vp, cr); 1446 if (error) 1447 return (error); 1448 mutex_enter(&rp->r_statelock); 1449 if (rp->r_symlink.contents != NULL) { 1450 error = uiomove(rp->r_symlink.contents, 1451 rp->r_symlink.len, UIO_READ, uiop); 1452 mutex_exit(&rp->r_statelock); 1453 return (error); 1454 } 1455 mutex_exit(&rp->r_statelock); 1456 } 1457 1458 1459 rl.rl_data = kmem_alloc(NFS_MAXPATHLEN, KM_SLEEP); 1460 1461 fi.vp = vp; 1462 fi.fhp = NULL; /* no need to update, filehandle not copied */ 1463 fi.copyproc = nfscopyfh; 1464 fi.lookupproc = nfslookup; 1465 fi.xattrdirproc = acl_getxattrdir2; 1466 1467 douprintf = 1; 1468 1469 error = rfs2call(VTOMI(vp), RFS_READLINK, 1470 xdr_readlink, (caddr_t)VTOFH(vp), 1471 xdr_rdlnres, (caddr_t)&rl, cr, 1472 &douprintf, &rl.rl_status, 0, &fi); 1473 1474 if (error) { 1475 1476 kmem_free((void *)rl.rl_data, NFS_MAXPATHLEN); 1477 return (error); 1478 } 1479 1480 error = geterrno(rl.rl_status); 1481 if (!error) { 1482 error = uiomove(rl.rl_data, (int)rl.rl_count, UIO_READ, uiop); 1483 if (nfs_do_symlink_cache && rp->r_symlink.contents == NULL) { 1484 mutex_enter(&rp->r_statelock); 1485 if (rp->r_symlink.contents == NULL) { 1486 rp->r_symlink.contents = rl.rl_data; 1487 rp->r_symlink.len = (int)rl.rl_count; 1488 rp->r_symlink.size = NFS_MAXPATHLEN; 1489 mutex_exit(&rp->r_statelock); 1490 } else { 1491 mutex_exit(&rp->r_statelock); 1492 1493 kmem_free((void *)rl.rl_data, 1494 NFS_MAXPATHLEN); 1495 } 1496 } else { 1497 1498 kmem_free((void *)rl.rl_data, NFS_MAXPATHLEN); 1499 } 1500 } else { 1501 PURGE_STALE_FH(error, vp, cr); 1502 1503 kmem_free((void *)rl.rl_data, NFS_MAXPATHLEN); 1504 } 1505 1506 /* 1507 * Conform to UFS semantics (see comment above) 1508 */ 1509 return (error == ENXIO ? EINVAL : error); 1510 } 1511 1512 /* 1513 * Flush local dirty pages to stable storage on the server. 1514 * 1515 * If FNODSYNC is specified, then there is nothing to do because 1516 * metadata changes are not cached on the client before being 1517 * sent to the server. 1518 */ 1519 /* ARGSUSED */ 1520 static int 1521 nfs_fsync(vnode_t *vp, int syncflag, cred_t *cr, caller_context_t *ct) 1522 { 1523 int error; 1524 1525 if ((syncflag & FNODSYNC) || IS_SWAPVP(vp)) 1526 return (0); 1527 1528 if (nfs_zone() != VTOMI(vp)->mi_zone) 1529 return (EIO); 1530 1531 error = nfs_putpage(vp, (offset_t)0, 0, 0, cr, ct); 1532 if (!error) 1533 error = VTOR(vp)->r_error; 1534 return (error); 1535 } 1536 1537 1538 /* 1539 * Weirdness: if the file was removed or the target of a rename 1540 * operation while it was open, it got renamed instead. Here we 1541 * remove the renamed file. 1542 */ 1543 /* ARGSUSED */ 1544 static void 1545 nfs_inactive(vnode_t *vp, cred_t *cr, caller_context_t *ct) 1546 { 1547 rnode_t *rp; 1548 1549 ASSERT(vp != DNLC_NO_VNODE); 1550 1551 /* 1552 * If this is coming from the wrong zone, we let someone in the right 1553 * zone take care of it asynchronously. We can get here due to 1554 * VN_RELE() being called from pageout() or fsflush(). This call may 1555 * potentially turn into an expensive no-op if, for instance, v_count 1556 * gets incremented in the meantime, but it's still correct. 1557 */ 1558 if (nfs_zone() != VTOMI(vp)->mi_zone) { 1559 nfs_async_inactive(vp, cr, nfs_inactive); 1560 return; 1561 } 1562 1563 rp = VTOR(vp); 1564 redo: 1565 if (rp->r_unldvp != NULL) { 1566 /* 1567 * Save the vnode pointer for the directory where the 1568 * unlinked-open file got renamed, then set it to NULL 1569 * to prevent another thread from getting here before 1570 * we're done with the remove. While we have the 1571 * statelock, make local copies of the pertinent rnode 1572 * fields. If we weren't to do this in an atomic way, the 1573 * the unl* fields could become inconsistent with respect 1574 * to each other due to a race condition between this 1575 * code and nfs_remove(). See bug report 1034328. 1576 */ 1577 mutex_enter(&rp->r_statelock); 1578 if (rp->r_unldvp != NULL) { 1579 vnode_t *unldvp; 1580 char *unlname; 1581 cred_t *unlcred; 1582 struct nfsdiropargs da; 1583 enum nfsstat status; 1584 int douprintf; 1585 int error; 1586 1587 unldvp = rp->r_unldvp; 1588 rp->r_unldvp = NULL; 1589 unlname = rp->r_unlname; 1590 rp->r_unlname = NULL; 1591 unlcred = rp->r_unlcred; 1592 rp->r_unlcred = NULL; 1593 mutex_exit(&rp->r_statelock); 1594 1595 /* 1596 * If there are any dirty pages left, then flush 1597 * them. This is unfortunate because they just 1598 * may get thrown away during the remove operation, 1599 * but we have to do this for correctness. 1600 */ 1601 if (vn_has_cached_data(vp) && 1602 ((rp->r_flags & RDIRTY) || rp->r_count > 0)) { 1603 ASSERT(vp->v_type != VCHR); 1604 error = nfs_putpage(vp, (offset_t)0, 0, 0, 1605 cr, ct); 1606 if (error) { 1607 mutex_enter(&rp->r_statelock); 1608 if (!rp->r_error) 1609 rp->r_error = error; 1610 mutex_exit(&rp->r_statelock); 1611 } 1612 } 1613 1614 /* 1615 * Do the remove operation on the renamed file 1616 */ 1617 setdiropargs(&da, unlname, unldvp); 1618 1619 douprintf = 1; 1620 1621 (void) rfs2call(VTOMI(unldvp), RFS_REMOVE, 1622 xdr_diropargs, (caddr_t)&da, 1623 xdr_enum, (caddr_t)&status, unlcred, 1624 &douprintf, &status, 0, NULL); 1625 1626 if (HAVE_RDDIR_CACHE(VTOR(unldvp))) 1627 nfs_purge_rddir_cache(unldvp); 1628 PURGE_ATTRCACHE(unldvp); 1629 1630 /* 1631 * Release stuff held for the remove 1632 */ 1633 VN_RELE(unldvp); 1634 kmem_free(unlname, MAXNAMELEN); 1635 crfree(unlcred); 1636 goto redo; 1637 } 1638 mutex_exit(&rp->r_statelock); 1639 } 1640 1641 rp_addfree(rp, cr); 1642 } 1643 1644 /* 1645 * Remote file system operations having to do with directory manipulation. 1646 */ 1647 1648 /* ARGSUSED */ 1649 static int 1650 nfs_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp, 1651 int flags, vnode_t *rdir, cred_t *cr, caller_context_t *ct, 1652 int *direntflags, pathname_t *realpnp) 1653 { 1654 int error; 1655 vnode_t *vp; 1656 vnode_t *avp = NULL; 1657 rnode_t *drp; 1658 1659 if (nfs_zone() != VTOMI(dvp)->mi_zone) 1660 return (EPERM); 1661 1662 drp = VTOR(dvp); 1663 1664 /* 1665 * Are we looking up extended attributes? If so, "dvp" is 1666 * the file or directory for which we want attributes, and 1667 * we need a lookup of the hidden attribute directory 1668 * before we lookup the rest of the path. 1669 */ 1670 if (flags & LOOKUP_XATTR) { 1671 bool_t cflag = ((flags & CREATE_XATTR_DIR) != 0); 1672 mntinfo_t *mi; 1673 1674 mi = VTOMI(dvp); 1675 if (!(mi->mi_flags & MI_EXTATTR)) 1676 return (EINVAL); 1677 1678 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_READER, INTR(dvp))) 1679 return (EINTR); 1680 1681 (void) nfslookup_dnlc(dvp, XATTR_DIR_NAME, &avp, cr); 1682 if (avp == NULL) 1683 error = acl_getxattrdir2(dvp, &avp, cflag, cr, 0); 1684 else 1685 error = 0; 1686 1687 nfs_rw_exit(&drp->r_rwlock); 1688 1689 if (error) { 1690 if (mi->mi_flags & MI_EXTATTR) 1691 return (error); 1692 return (EINVAL); 1693 } 1694 dvp = avp; 1695 drp = VTOR(dvp); 1696 } 1697 1698 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_READER, INTR(dvp))) { 1699 error = EINTR; 1700 goto out; 1701 } 1702 1703 error = nfslookup(dvp, nm, vpp, pnp, flags, rdir, cr, 0); 1704 1705 nfs_rw_exit(&drp->r_rwlock); 1706 1707 /* 1708 * If vnode is a device, create special vnode. 1709 */ 1710 if (!error && IS_DEVVP(*vpp)) { 1711 vp = *vpp; 1712 *vpp = specvp(vp, vp->v_rdev, vp->v_type, cr); 1713 VN_RELE(vp); 1714 } 1715 1716 out: 1717 if (avp != NULL) 1718 VN_RELE(avp); 1719 1720 return (error); 1721 } 1722 1723 static int nfs_lookup_neg_cache = 1; 1724 1725 #ifdef DEBUG 1726 static int nfs_lookup_dnlc_hits = 0; 1727 static int nfs_lookup_dnlc_misses = 0; 1728 static int nfs_lookup_dnlc_neg_hits = 0; 1729 static int nfs_lookup_dnlc_disappears = 0; 1730 static int nfs_lookup_dnlc_lookups = 0; 1731 #endif 1732 1733 /* ARGSUSED */ 1734 int 1735 nfslookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp, 1736 int flags, vnode_t *rdir, cred_t *cr, int rfscall_flags) 1737 { 1738 int error; 1739 1740 ASSERT(nfs_zone() == VTOMI(dvp)->mi_zone); 1741 1742 /* 1743 * If lookup is for "", just return dvp. Don't need 1744 * to send it over the wire, look it up in the dnlc, 1745 * or perform any access checks. 1746 */ 1747 if (*nm == '\0') { 1748 VN_HOLD(dvp); 1749 *vpp = dvp; 1750 return (0); 1751 } 1752 1753 /* 1754 * Can't do lookups in non-directories. 1755 */ 1756 if (dvp->v_type != VDIR) 1757 return (ENOTDIR); 1758 1759 /* 1760 * If we're called with RFSCALL_SOFT, it's important that 1761 * the only rfscall is one we make directly; if we permit 1762 * an access call because we're looking up "." or validating 1763 * a dnlc hit, we'll deadlock because that rfscall will not 1764 * have the RFSCALL_SOFT set. 1765 */ 1766 if (rfscall_flags & RFSCALL_SOFT) 1767 goto callit; 1768 1769 /* 1770 * If lookup is for ".", just return dvp. Don't need 1771 * to send it over the wire or look it up in the dnlc, 1772 * just need to check access. 1773 */ 1774 if (strcmp(nm, ".") == 0) { 1775 error = nfs_access(dvp, VEXEC, 0, cr, NULL); 1776 if (error) 1777 return (error); 1778 VN_HOLD(dvp); 1779 *vpp = dvp; 1780 return (0); 1781 } 1782 1783 /* 1784 * Lookup this name in the DNLC. If there was a valid entry, 1785 * then return the results of the lookup. 1786 */ 1787 error = nfslookup_dnlc(dvp, nm, vpp, cr); 1788 if (error || *vpp != NULL) 1789 return (error); 1790 1791 callit: 1792 error = nfslookup_otw(dvp, nm, vpp, cr, rfscall_flags); 1793 1794 return (error); 1795 } 1796 1797 static int 1798 nfslookup_dnlc(vnode_t *dvp, char *nm, vnode_t **vpp, cred_t *cr) 1799 { 1800 int error; 1801 vnode_t *vp; 1802 1803 ASSERT(*nm != '\0'); 1804 ASSERT(nfs_zone() == VTOMI(dvp)->mi_zone); 1805 1806 /* 1807 * Lookup this name in the DNLC. If successful, then validate 1808 * the caches and then recheck the DNLC. The DNLC is rechecked 1809 * just in case this entry got invalidated during the call 1810 * to nfs_validate_caches. 1811 * 1812 * An assumption is being made that it is safe to say that a 1813 * file exists which may not on the server. Any operations to 1814 * the server will fail with ESTALE. 1815 */ 1816 #ifdef DEBUG 1817 nfs_lookup_dnlc_lookups++; 1818 #endif 1819 vp = dnlc_lookup(dvp, nm); 1820 if (vp != NULL) { 1821 VN_RELE(vp); 1822 if (vp == DNLC_NO_VNODE && !vn_is_readonly(dvp)) { 1823 PURGE_ATTRCACHE(dvp); 1824 } 1825 error = nfs_validate_caches(dvp, cr); 1826 if (error) 1827 return (error); 1828 vp = dnlc_lookup(dvp, nm); 1829 if (vp != NULL) { 1830 error = nfs_access(dvp, VEXEC, 0, cr, NULL); 1831 if (error) { 1832 VN_RELE(vp); 1833 return (error); 1834 } 1835 if (vp == DNLC_NO_VNODE) { 1836 VN_RELE(vp); 1837 #ifdef DEBUG 1838 nfs_lookup_dnlc_neg_hits++; 1839 #endif 1840 return (ENOENT); 1841 } 1842 *vpp = vp; 1843 #ifdef DEBUG 1844 nfs_lookup_dnlc_hits++; 1845 #endif 1846 return (0); 1847 } 1848 #ifdef DEBUG 1849 nfs_lookup_dnlc_disappears++; 1850 #endif 1851 } 1852 #ifdef DEBUG 1853 else 1854 nfs_lookup_dnlc_misses++; 1855 #endif 1856 1857 *vpp = NULL; 1858 1859 return (0); 1860 } 1861 1862 static int 1863 nfslookup_otw(vnode_t *dvp, char *nm, vnode_t **vpp, cred_t *cr, 1864 int rfscall_flags) 1865 { 1866 int error; 1867 struct nfsdiropargs da; 1868 struct nfsdiropres dr; 1869 int douprintf; 1870 failinfo_t fi; 1871 hrtime_t t; 1872 1873 ASSERT(*nm != '\0'); 1874 ASSERT(dvp->v_type == VDIR); 1875 ASSERT(nfs_zone() == VTOMI(dvp)->mi_zone); 1876 1877 setdiropargs(&da, nm, dvp); 1878 1879 fi.vp = dvp; 1880 fi.fhp = NULL; /* no need to update, filehandle not copied */ 1881 fi.copyproc = nfscopyfh; 1882 fi.lookupproc = nfslookup; 1883 fi.xattrdirproc = acl_getxattrdir2; 1884 1885 douprintf = 1; 1886 1887 t = gethrtime(); 1888 1889 error = rfs2call(VTOMI(dvp), RFS_LOOKUP, 1890 xdr_diropargs, (caddr_t)&da, 1891 xdr_diropres, (caddr_t)&dr, cr, 1892 &douprintf, &dr.dr_status, rfscall_flags, &fi); 1893 1894 if (!error) { 1895 error = geterrno(dr.dr_status); 1896 if (!error) { 1897 *vpp = makenfsnode(&dr.dr_fhandle, &dr.dr_attr, 1898 dvp->v_vfsp, t, cr, VTOR(dvp)->r_path, nm); 1899 /* 1900 * If NFS_ACL is supported on the server, then the 1901 * attributes returned by server may have minimal 1902 * permissions sometimes denying access to users having 1903 * proper access. To get the proper attributes, mark 1904 * the attributes as expired so that they will be 1905 * regotten via the NFS_ACL GETATTR2 procedure. 1906 */ 1907 if (VTOMI(*vpp)->mi_flags & MI_ACL) { 1908 PURGE_ATTRCACHE(*vpp); 1909 } 1910 if (!(rfscall_flags & RFSCALL_SOFT)) 1911 dnlc_update(dvp, nm, *vpp); 1912 } else { 1913 PURGE_STALE_FH(error, dvp, cr); 1914 if (error == ENOENT && nfs_lookup_neg_cache) 1915 dnlc_enter(dvp, nm, DNLC_NO_VNODE); 1916 } 1917 } 1918 1919 return (error); 1920 } 1921 1922 /* ARGSUSED */ 1923 static int 1924 nfs_create(vnode_t *dvp, char *nm, struct vattr *va, enum vcexcl exclusive, 1925 int mode, vnode_t **vpp, cred_t *cr, int lfaware, caller_context_t *ct, 1926 vsecattr_t *vsecp) 1927 { 1928 int error; 1929 struct nfscreatargs args; 1930 struct nfsdiropres dr; 1931 int douprintf; 1932 vnode_t *vp; 1933 rnode_t *rp; 1934 struct vattr vattr; 1935 rnode_t *drp; 1936 vnode_t *tempvp; 1937 hrtime_t t; 1938 1939 drp = VTOR(dvp); 1940 1941 if (nfs_zone() != VTOMI(dvp)->mi_zone) 1942 return (EPERM); 1943 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR(dvp))) 1944 return (EINTR); 1945 1946 /* 1947 * We make a copy of the attributes because the caller does not 1948 * expect us to change what va points to. 1949 */ 1950 vattr = *va; 1951 1952 /* 1953 * If the pathname is "", just use dvp. Don't need 1954 * to send it over the wire, look it up in the dnlc, 1955 * or perform any access checks. 1956 */ 1957 if (*nm == '\0') { 1958 error = 0; 1959 VN_HOLD(dvp); 1960 vp = dvp; 1961 /* 1962 * If the pathname is ".", just use dvp. Don't need 1963 * to send it over the wire or look it up in the dnlc, 1964 * just need to check access. 1965 */ 1966 } else if (strcmp(nm, ".") == 0) { 1967 error = nfs_access(dvp, VEXEC, 0, cr, ct); 1968 if (error) { 1969 nfs_rw_exit(&drp->r_rwlock); 1970 return (error); 1971 } 1972 VN_HOLD(dvp); 1973 vp = dvp; 1974 /* 1975 * We need to go over the wire, just to be sure whether the 1976 * file exists or not. Using the DNLC can be dangerous in 1977 * this case when making a decision regarding existence. 1978 */ 1979 } else { 1980 error = nfslookup_otw(dvp, nm, &vp, cr, 0); 1981 } 1982 if (!error) { 1983 if (exclusive == EXCL) 1984 error = EEXIST; 1985 else if (vp->v_type == VDIR && (mode & VWRITE)) 1986 error = EISDIR; 1987 else { 1988 /* 1989 * If vnode is a device, create special vnode. 1990 */ 1991 if (IS_DEVVP(vp)) { 1992 tempvp = vp; 1993 vp = specvp(vp, vp->v_rdev, vp->v_type, cr); 1994 VN_RELE(tempvp); 1995 } 1996 if (!(error = VOP_ACCESS(vp, mode, 0, cr, ct))) { 1997 if ((vattr.va_mask & AT_SIZE) && 1998 vp->v_type == VREG) { 1999 vattr.va_mask = AT_SIZE; 2000 error = nfssetattr(vp, &vattr, 0, cr); 2001 } 2002 } 2003 } 2004 nfs_rw_exit(&drp->r_rwlock); 2005 if (error) { 2006 VN_RELE(vp); 2007 } else { 2008 /* 2009 * existing file got truncated, notify. 2010 */ 2011 vnevent_create(vp, ct); 2012 *vpp = vp; 2013 } 2014 return (error); 2015 } 2016 2017 ASSERT(vattr.va_mask & AT_TYPE); 2018 if (vattr.va_type == VREG) { 2019 ASSERT(vattr.va_mask & AT_MODE); 2020 if (MANDMODE(vattr.va_mode)) { 2021 nfs_rw_exit(&drp->r_rwlock); 2022 return (EACCES); 2023 } 2024 } 2025 2026 dnlc_remove(dvp, nm); 2027 2028 setdiropargs(&args.ca_da, nm, dvp); 2029 2030 /* 2031 * Decide what the group-id of the created file should be. 2032 * Set it in attribute list as advisory...then do a setattr 2033 * if the server didn't get it right the first time. 2034 */ 2035 error = setdirgid(dvp, &vattr.va_gid, cr); 2036 if (error) { 2037 nfs_rw_exit(&drp->r_rwlock); 2038 return (error); 2039 } 2040 vattr.va_mask |= AT_GID; 2041 2042 /* 2043 * This is a completely gross hack to make mknod 2044 * work over the wire until we can wack the protocol 2045 */ 2046 #define IFCHR 0020000 /* character special */ 2047 #define IFBLK 0060000 /* block special */ 2048 #define IFSOCK 0140000 /* socket */ 2049 2050 /* 2051 * dev_t is uint_t in 5.x and short in 4.x. Both 4.x 2052 * supports 8 bit majors. 5.x supports 14 bit majors. 5.x supports 18 2053 * bits in the minor number where 4.x supports 8 bits. If the 5.x 2054 * minor/major numbers <= 8 bits long, compress the device 2055 * number before sending it. Otherwise, the 4.x server will not 2056 * create the device with the correct device number and nothing can be 2057 * done about this. 2058 */ 2059 if (vattr.va_type == VCHR || vattr.va_type == VBLK) { 2060 dev_t d = vattr.va_rdev; 2061 dev32_t dev32; 2062 2063 if (vattr.va_type == VCHR) 2064 vattr.va_mode |= IFCHR; 2065 else 2066 vattr.va_mode |= IFBLK; 2067 2068 (void) cmpldev(&dev32, d); 2069 if (dev32 & ~((SO4_MAXMAJ << L_BITSMINOR32) | SO4_MAXMIN)) 2070 vattr.va_size = (u_offset_t)dev32; 2071 else 2072 vattr.va_size = (u_offset_t)nfsv2_cmpdev(d); 2073 2074 vattr.va_mask |= AT_MODE|AT_SIZE; 2075 } else if (vattr.va_type == VFIFO) { 2076 vattr.va_mode |= IFCHR; /* xtra kludge for namedpipe */ 2077 vattr.va_size = (u_offset_t)NFS_FIFO_DEV; /* blech */ 2078 vattr.va_mask |= AT_MODE|AT_SIZE; 2079 } else if (vattr.va_type == VSOCK) { 2080 vattr.va_mode |= IFSOCK; 2081 /* 2082 * To avoid triggering bugs in the servers set AT_SIZE 2083 * (all other RFS_CREATE calls set this). 2084 */ 2085 vattr.va_size = 0; 2086 vattr.va_mask |= AT_MODE|AT_SIZE; 2087 } 2088 2089 args.ca_sa = &args.ca_sa_buf; 2090 error = vattr_to_sattr(&vattr, args.ca_sa); 2091 if (error) { 2092 /* req time field(s) overflow - return immediately */ 2093 nfs_rw_exit(&drp->r_rwlock); 2094 return (error); 2095 } 2096 2097 douprintf = 1; 2098 2099 t = gethrtime(); 2100 2101 error = rfs2call(VTOMI(dvp), RFS_CREATE, 2102 xdr_creatargs, (caddr_t)&args, 2103 xdr_diropres, (caddr_t)&dr, cr, 2104 &douprintf, &dr.dr_status, 0, NULL); 2105 2106 PURGE_ATTRCACHE(dvp); /* mod time changed */ 2107 2108 if (!error) { 2109 error = geterrno(dr.dr_status); 2110 if (!error) { 2111 if (HAVE_RDDIR_CACHE(drp)) 2112 nfs_purge_rddir_cache(dvp); 2113 vp = makenfsnode(&dr.dr_fhandle, &dr.dr_attr, 2114 dvp->v_vfsp, t, cr, NULL, NULL); 2115 /* 2116 * If NFS_ACL is supported on the server, then the 2117 * attributes returned by server may have minimal 2118 * permissions sometimes denying access to users having 2119 * proper access. To get the proper attributes, mark 2120 * the attributes as expired so that they will be 2121 * regotten via the NFS_ACL GETATTR2 procedure. 2122 */ 2123 if (VTOMI(vp)->mi_flags & MI_ACL) { 2124 PURGE_ATTRCACHE(vp); 2125 } 2126 dnlc_update(dvp, nm, vp); 2127 rp = VTOR(vp); 2128 if (vattr.va_size == 0) { 2129 mutex_enter(&rp->r_statelock); 2130 rp->r_size = 0; 2131 mutex_exit(&rp->r_statelock); 2132 if (vn_has_cached_data(vp)) { 2133 ASSERT(vp->v_type != VCHR); 2134 nfs_invalidate_pages(vp, 2135 (u_offset_t)0, cr); 2136 } 2137 } 2138 2139 /* 2140 * Make sure the gid was set correctly. 2141 * If not, try to set it (but don't lose 2142 * any sleep over it). 2143 */ 2144 if (vattr.va_gid != rp->r_attr.va_gid) { 2145 vattr.va_mask = AT_GID; 2146 (void) nfssetattr(vp, &vattr, 0, cr); 2147 } 2148 2149 /* 2150 * If vnode is a device create special vnode 2151 */ 2152 if (IS_DEVVP(vp)) { 2153 *vpp = specvp(vp, vp->v_rdev, vp->v_type, cr); 2154 VN_RELE(vp); 2155 } else 2156 *vpp = vp; 2157 } else { 2158 PURGE_STALE_FH(error, dvp, cr); 2159 } 2160 } 2161 2162 nfs_rw_exit(&drp->r_rwlock); 2163 2164 return (error); 2165 } 2166 2167 /* 2168 * Weirdness: if the vnode to be removed is open 2169 * we rename it instead of removing it and nfs_inactive 2170 * will remove the new name. 2171 */ 2172 /* ARGSUSED */ 2173 static int 2174 nfs_remove(vnode_t *dvp, char *nm, cred_t *cr, caller_context_t *ct, int flags) 2175 { 2176 int error; 2177 struct nfsdiropargs da; 2178 enum nfsstat status; 2179 vnode_t *vp; 2180 char *tmpname; 2181 int douprintf; 2182 rnode_t *rp; 2183 rnode_t *drp; 2184 2185 if (nfs_zone() != VTOMI(dvp)->mi_zone) 2186 return (EPERM); 2187 drp = VTOR(dvp); 2188 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR(dvp))) 2189 return (EINTR); 2190 2191 error = nfslookup(dvp, nm, &vp, NULL, 0, NULL, cr, 0); 2192 if (error) { 2193 nfs_rw_exit(&drp->r_rwlock); 2194 return (error); 2195 } 2196 2197 if (vp->v_type == VDIR && secpolicy_fs_linkdir(cr, dvp->v_vfsp)) { 2198 VN_RELE(vp); 2199 nfs_rw_exit(&drp->r_rwlock); 2200 return (EPERM); 2201 } 2202 2203 /* 2204 * First just remove the entry from the name cache, as it 2205 * is most likely the only entry for this vp. 2206 */ 2207 dnlc_remove(dvp, nm); 2208 2209 /* 2210 * If the file has a v_count > 1 then there may be more than one 2211 * entry in the name cache due multiple links or an open file, 2212 * but we don't have the real reference count so flush all 2213 * possible entries. 2214 */ 2215 if (vp->v_count > 1) 2216 dnlc_purge_vp(vp); 2217 2218 /* 2219 * Now we have the real reference count on the vnode 2220 */ 2221 rp = VTOR(vp); 2222 mutex_enter(&rp->r_statelock); 2223 if (vp->v_count > 1 && 2224 (rp->r_unldvp == NULL || strcmp(nm, rp->r_unlname) == 0)) { 2225 mutex_exit(&rp->r_statelock); 2226 tmpname = newname(); 2227 error = nfsrename(dvp, nm, dvp, tmpname, cr, ct); 2228 if (error) 2229 kmem_free(tmpname, MAXNAMELEN); 2230 else { 2231 mutex_enter(&rp->r_statelock); 2232 if (rp->r_unldvp == NULL) { 2233 VN_HOLD(dvp); 2234 rp->r_unldvp = dvp; 2235 if (rp->r_unlcred != NULL) 2236 crfree(rp->r_unlcred); 2237 crhold(cr); 2238 rp->r_unlcred = cr; 2239 rp->r_unlname = tmpname; 2240 } else { 2241 kmem_free(rp->r_unlname, MAXNAMELEN); 2242 rp->r_unlname = tmpname; 2243 } 2244 mutex_exit(&rp->r_statelock); 2245 } 2246 } else { 2247 mutex_exit(&rp->r_statelock); 2248 /* 2249 * We need to flush any dirty pages which happen to 2250 * be hanging around before removing the file. This 2251 * shouldn't happen very often and mostly on file 2252 * systems mounted "nocto". 2253 */ 2254 if (vn_has_cached_data(vp) && 2255 ((rp->r_flags & RDIRTY) || rp->r_count > 0)) { 2256 error = nfs_putpage(vp, (offset_t)0, 0, 0, cr, ct); 2257 if (error && (error == ENOSPC || error == EDQUOT)) { 2258 mutex_enter(&rp->r_statelock); 2259 if (!rp->r_error) 2260 rp->r_error = error; 2261 mutex_exit(&rp->r_statelock); 2262 } 2263 } 2264 2265 setdiropargs(&da, nm, dvp); 2266 2267 douprintf = 1; 2268 2269 error = rfs2call(VTOMI(dvp), RFS_REMOVE, 2270 xdr_diropargs, (caddr_t)&da, 2271 xdr_enum, (caddr_t)&status, cr, 2272 &douprintf, &status, 0, NULL); 2273 2274 /* 2275 * The xattr dir may be gone after last attr is removed, 2276 * so flush it from dnlc. 2277 */ 2278 if (dvp->v_flag & V_XATTRDIR) 2279 dnlc_purge_vp(dvp); 2280 2281 PURGE_ATTRCACHE(dvp); /* mod time changed */ 2282 PURGE_ATTRCACHE(vp); /* link count changed */ 2283 2284 if (!error) { 2285 error = geterrno(status); 2286 if (!error) { 2287 if (HAVE_RDDIR_CACHE(drp)) 2288 nfs_purge_rddir_cache(dvp); 2289 } else { 2290 PURGE_STALE_FH(error, dvp, cr); 2291 } 2292 } 2293 } 2294 2295 if (error == 0) { 2296 vnevent_remove(vp, dvp, nm, ct); 2297 } 2298 VN_RELE(vp); 2299 2300 nfs_rw_exit(&drp->r_rwlock); 2301 2302 return (error); 2303 } 2304 2305 /* ARGSUSED */ 2306 static int 2307 nfs_link(vnode_t *tdvp, vnode_t *svp, char *tnm, cred_t *cr, 2308 caller_context_t *ct, int flags) 2309 { 2310 int error; 2311 struct nfslinkargs args; 2312 enum nfsstat status; 2313 vnode_t *realvp; 2314 int douprintf; 2315 rnode_t *tdrp; 2316 2317 if (nfs_zone() != VTOMI(tdvp)->mi_zone) 2318 return (EPERM); 2319 if (VOP_REALVP(svp, &realvp, ct) == 0) 2320 svp = realvp; 2321 2322 args.la_from = VTOFH(svp); 2323 setdiropargs(&args.la_to, tnm, tdvp); 2324 2325 tdrp = VTOR(tdvp); 2326 if (nfs_rw_enter_sig(&tdrp->r_rwlock, RW_WRITER, INTR(tdvp))) 2327 return (EINTR); 2328 2329 dnlc_remove(tdvp, tnm); 2330 2331 douprintf = 1; 2332 2333 error = rfs2call(VTOMI(svp), RFS_LINK, 2334 xdr_linkargs, (caddr_t)&args, 2335 xdr_enum, (caddr_t)&status, cr, 2336 &douprintf, &status, 0, NULL); 2337 2338 PURGE_ATTRCACHE(tdvp); /* mod time changed */ 2339 PURGE_ATTRCACHE(svp); /* link count changed */ 2340 2341 if (!error) { 2342 error = geterrno(status); 2343 if (!error) { 2344 if (HAVE_RDDIR_CACHE(tdrp)) 2345 nfs_purge_rddir_cache(tdvp); 2346 } 2347 } 2348 2349 nfs_rw_exit(&tdrp->r_rwlock); 2350 2351 if (!error) { 2352 /* 2353 * Notify the source file of this link operation. 2354 */ 2355 vnevent_link(svp, ct); 2356 } 2357 return (error); 2358 } 2359 2360 /* ARGSUSED */ 2361 static int 2362 nfs_rename(vnode_t *odvp, char *onm, vnode_t *ndvp, char *nnm, cred_t *cr, 2363 caller_context_t *ct, int flags) 2364 { 2365 vnode_t *realvp; 2366 2367 if (nfs_zone() != VTOMI(odvp)->mi_zone) 2368 return (EPERM); 2369 if (VOP_REALVP(ndvp, &realvp, ct) == 0) 2370 ndvp = realvp; 2371 2372 return (nfsrename(odvp, onm, ndvp, nnm, cr, ct)); 2373 } 2374 2375 /* 2376 * nfsrename does the real work of renaming in NFS Version 2. 2377 */ 2378 static int 2379 nfsrename(vnode_t *odvp, char *onm, vnode_t *ndvp, char *nnm, cred_t *cr, 2380 caller_context_t *ct) 2381 { 2382 int error; 2383 enum nfsstat status; 2384 struct nfsrnmargs args; 2385 int douprintf; 2386 vnode_t *nvp = NULL; 2387 vnode_t *ovp = NULL; 2388 char *tmpname; 2389 rnode_t *rp; 2390 rnode_t *odrp; 2391 rnode_t *ndrp; 2392 2393 ASSERT(nfs_zone() == VTOMI(odvp)->mi_zone); 2394 if (strcmp(onm, ".") == 0 || strcmp(onm, "..") == 0 || 2395 strcmp(nnm, ".") == 0 || strcmp(nnm, "..") == 0) 2396 return (EINVAL); 2397 2398 odrp = VTOR(odvp); 2399 ndrp = VTOR(ndvp); 2400 if ((intptr_t)odrp < (intptr_t)ndrp) { 2401 if (nfs_rw_enter_sig(&odrp->r_rwlock, RW_WRITER, INTR(odvp))) 2402 return (EINTR); 2403 if (nfs_rw_enter_sig(&ndrp->r_rwlock, RW_WRITER, INTR(ndvp))) { 2404 nfs_rw_exit(&odrp->r_rwlock); 2405 return (EINTR); 2406 } 2407 } else { 2408 if (nfs_rw_enter_sig(&ndrp->r_rwlock, RW_WRITER, INTR(ndvp))) 2409 return (EINTR); 2410 if (nfs_rw_enter_sig(&odrp->r_rwlock, RW_WRITER, INTR(odvp))) { 2411 nfs_rw_exit(&ndrp->r_rwlock); 2412 return (EINTR); 2413 } 2414 } 2415 2416 /* 2417 * Lookup the target file. If it exists, it needs to be 2418 * checked to see whether it is a mount point and whether 2419 * it is active (open). 2420 */ 2421 error = nfslookup(ndvp, nnm, &nvp, NULL, 0, NULL, cr, 0); 2422 if (!error) { 2423 /* 2424 * If this file has been mounted on, then just 2425 * return busy because renaming to it would remove 2426 * the mounted file system from the name space. 2427 */ 2428 if (vn_mountedvfs(nvp) != NULL) { 2429 VN_RELE(nvp); 2430 nfs_rw_exit(&odrp->r_rwlock); 2431 nfs_rw_exit(&ndrp->r_rwlock); 2432 return (EBUSY); 2433 } 2434 2435 /* 2436 * Purge the name cache of all references to this vnode 2437 * so that we can check the reference count to infer 2438 * whether it is active or not. 2439 */ 2440 /* 2441 * First just remove the entry from the name cache, as it 2442 * is most likely the only entry for this vp. 2443 */ 2444 dnlc_remove(ndvp, nnm); 2445 /* 2446 * If the file has a v_count > 1 then there may be more 2447 * than one entry in the name cache due multiple links 2448 * or an open file, but we don't have the real reference 2449 * count so flush all possible entries. 2450 */ 2451 if (nvp->v_count > 1) 2452 dnlc_purge_vp(nvp); 2453 2454 /* 2455 * If the vnode is active and is not a directory, 2456 * arrange to rename it to a 2457 * temporary file so that it will continue to be 2458 * accessible. This implements the "unlink-open-file" 2459 * semantics for the target of a rename operation. 2460 * Before doing this though, make sure that the 2461 * source and target files are not already the same. 2462 */ 2463 if (nvp->v_count > 1 && nvp->v_type != VDIR) { 2464 /* 2465 * Lookup the source name. 2466 */ 2467 error = nfslookup(odvp, onm, &ovp, NULL, 0, NULL, 2468 cr, 0); 2469 2470 /* 2471 * The source name *should* already exist. 2472 */ 2473 if (error) { 2474 VN_RELE(nvp); 2475 nfs_rw_exit(&odrp->r_rwlock); 2476 nfs_rw_exit(&ndrp->r_rwlock); 2477 return (error); 2478 } 2479 2480 /* 2481 * Compare the two vnodes. If they are the same, 2482 * just release all held vnodes and return success. 2483 */ 2484 if (ovp == nvp) { 2485 VN_RELE(ovp); 2486 VN_RELE(nvp); 2487 nfs_rw_exit(&odrp->r_rwlock); 2488 nfs_rw_exit(&ndrp->r_rwlock); 2489 return (0); 2490 } 2491 2492 /* 2493 * Can't mix and match directories and non- 2494 * directories in rename operations. We already 2495 * know that the target is not a directory. If 2496 * the source is a directory, return an error. 2497 */ 2498 if (ovp->v_type == VDIR) { 2499 VN_RELE(ovp); 2500 VN_RELE(nvp); 2501 nfs_rw_exit(&odrp->r_rwlock); 2502 nfs_rw_exit(&ndrp->r_rwlock); 2503 return (ENOTDIR); 2504 } 2505 2506 /* 2507 * The target file exists, is not the same as 2508 * the source file, and is active. Link it 2509 * to a temporary filename to avoid having 2510 * the server removing the file completely. 2511 */ 2512 tmpname = newname(); 2513 error = nfs_link(ndvp, nvp, tmpname, cr, NULL, 0); 2514 if (error == EOPNOTSUPP) { 2515 error = nfs_rename(ndvp, nnm, ndvp, tmpname, 2516 cr, NULL, 0); 2517 } 2518 if (error) { 2519 kmem_free(tmpname, MAXNAMELEN); 2520 VN_RELE(ovp); 2521 VN_RELE(nvp); 2522 nfs_rw_exit(&odrp->r_rwlock); 2523 nfs_rw_exit(&ndrp->r_rwlock); 2524 return (error); 2525 } 2526 rp = VTOR(nvp); 2527 mutex_enter(&rp->r_statelock); 2528 if (rp->r_unldvp == NULL) { 2529 VN_HOLD(ndvp); 2530 rp->r_unldvp = ndvp; 2531 if (rp->r_unlcred != NULL) 2532 crfree(rp->r_unlcred); 2533 crhold(cr); 2534 rp->r_unlcred = cr; 2535 rp->r_unlname = tmpname; 2536 } else { 2537 kmem_free(rp->r_unlname, MAXNAMELEN); 2538 rp->r_unlname = tmpname; 2539 } 2540 mutex_exit(&rp->r_statelock); 2541 } 2542 } 2543 2544 if (ovp == NULL) { 2545 /* 2546 * When renaming directories to be a subdirectory of a 2547 * different parent, the dnlc entry for ".." will no 2548 * longer be valid, so it must be removed. 2549 * 2550 * We do a lookup here to determine whether we are renaming 2551 * a directory and we need to check if we are renaming 2552 * an unlinked file. This might have already been done 2553 * in previous code, so we check ovp == NULL to avoid 2554 * doing it twice. 2555 */ 2556 2557 error = nfslookup(odvp, onm, &ovp, NULL, 0, NULL, cr, 0); 2558 2559 /* 2560 * The source name *should* already exist. 2561 */ 2562 if (error) { 2563 nfs_rw_exit(&odrp->r_rwlock); 2564 nfs_rw_exit(&ndrp->r_rwlock); 2565 if (nvp) { 2566 VN_RELE(nvp); 2567 } 2568 return (error); 2569 } 2570 ASSERT(ovp != NULL); 2571 } 2572 2573 dnlc_remove(odvp, onm); 2574 dnlc_remove(ndvp, nnm); 2575 2576 setdiropargs(&args.rna_from, onm, odvp); 2577 setdiropargs(&args.rna_to, nnm, ndvp); 2578 2579 douprintf = 1; 2580 2581 error = rfs2call(VTOMI(odvp), RFS_RENAME, 2582 xdr_rnmargs, (caddr_t)&args, 2583 xdr_enum, (caddr_t)&status, cr, 2584 &douprintf, &status, 0, NULL); 2585 2586 PURGE_ATTRCACHE(odvp); /* mod time changed */ 2587 PURGE_ATTRCACHE(ndvp); /* mod time changed */ 2588 2589 if (!error) { 2590 error = geterrno(status); 2591 if (!error) { 2592 if (HAVE_RDDIR_CACHE(odrp)) 2593 nfs_purge_rddir_cache(odvp); 2594 if (HAVE_RDDIR_CACHE(ndrp)) 2595 nfs_purge_rddir_cache(ndvp); 2596 /* 2597 * when renaming directories to be a subdirectory of a 2598 * different parent, the dnlc entry for ".." will no 2599 * longer be valid, so it must be removed 2600 */ 2601 rp = VTOR(ovp); 2602 if (ndvp != odvp) { 2603 if (ovp->v_type == VDIR) { 2604 dnlc_remove(ovp, ".."); 2605 if (HAVE_RDDIR_CACHE(rp)) 2606 nfs_purge_rddir_cache(ovp); 2607 } 2608 } 2609 2610 /* 2611 * If we are renaming the unlinked file, update the 2612 * r_unldvp and r_unlname as needed. 2613 */ 2614 mutex_enter(&rp->r_statelock); 2615 if (rp->r_unldvp != NULL) { 2616 if (strcmp(rp->r_unlname, onm) == 0) { 2617 (void) strncpy(rp->r_unlname, 2618 nnm, MAXNAMELEN); 2619 rp->r_unlname[MAXNAMELEN - 1] = '\0'; 2620 2621 if (ndvp != rp->r_unldvp) { 2622 VN_RELE(rp->r_unldvp); 2623 rp->r_unldvp = ndvp; 2624 VN_HOLD(ndvp); 2625 } 2626 } 2627 } 2628 mutex_exit(&rp->r_statelock); 2629 } else { 2630 /* 2631 * System V defines rename to return EEXIST, not 2632 * ENOTEMPTY if the target directory is not empty. 2633 * Over the wire, the error is NFSERR_ENOTEMPTY 2634 * which geterrno maps to ENOTEMPTY. 2635 */ 2636 if (error == ENOTEMPTY) 2637 error = EEXIST; 2638 } 2639 } 2640 2641 if (error == 0) { 2642 if (nvp) 2643 vnevent_rename_dest(nvp, ndvp, nnm, ct); 2644 2645 if (odvp != ndvp) 2646 vnevent_rename_dest_dir(ndvp, ct); 2647 2648 ASSERT(ovp != NULL); 2649 vnevent_rename_src(ovp, odvp, onm, ct); 2650 } 2651 2652 if (nvp) { 2653 VN_RELE(nvp); 2654 } 2655 VN_RELE(ovp); 2656 2657 nfs_rw_exit(&odrp->r_rwlock); 2658 nfs_rw_exit(&ndrp->r_rwlock); 2659 2660 return (error); 2661 } 2662 2663 /* ARGSUSED */ 2664 static int 2665 nfs_mkdir(vnode_t *dvp, char *nm, struct vattr *va, vnode_t **vpp, cred_t *cr, 2666 caller_context_t *ct, int flags, vsecattr_t *vsecp) 2667 { 2668 int error; 2669 struct nfscreatargs args; 2670 struct nfsdiropres dr; 2671 int douprintf; 2672 rnode_t *drp; 2673 hrtime_t t; 2674 2675 if (nfs_zone() != VTOMI(dvp)->mi_zone) 2676 return (EPERM); 2677 2678 setdiropargs(&args.ca_da, nm, dvp); 2679 2680 /* 2681 * Decide what the group-id and set-gid bit of the created directory 2682 * should be. May have to do a setattr to get the gid right. 2683 */ 2684 error = setdirgid(dvp, &va->va_gid, cr); 2685 if (error) 2686 return (error); 2687 error = setdirmode(dvp, &va->va_mode, cr); 2688 if (error) 2689 return (error); 2690 va->va_mask |= AT_MODE|AT_GID; 2691 2692 args.ca_sa = &args.ca_sa_buf; 2693 error = vattr_to_sattr(va, args.ca_sa); 2694 if (error) { 2695 /* req time field(s) overflow - return immediately */ 2696 return (error); 2697 } 2698 2699 drp = VTOR(dvp); 2700 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR(dvp))) 2701 return (EINTR); 2702 2703 dnlc_remove(dvp, nm); 2704 2705 douprintf = 1; 2706 2707 t = gethrtime(); 2708 2709 error = rfs2call(VTOMI(dvp), RFS_MKDIR, 2710 xdr_creatargs, (caddr_t)&args, 2711 xdr_diropres, (caddr_t)&dr, cr, 2712 &douprintf, &dr.dr_status, 0, NULL); 2713 2714 PURGE_ATTRCACHE(dvp); /* mod time changed */ 2715 2716 if (!error) { 2717 error = geterrno(dr.dr_status); 2718 if (!error) { 2719 if (HAVE_RDDIR_CACHE(drp)) 2720 nfs_purge_rddir_cache(dvp); 2721 /* 2722 * The attributes returned by RFS_MKDIR can not 2723 * be depended upon, so mark the attribute cache 2724 * as purged. A subsequent GETATTR will get the 2725 * correct attributes from the server. 2726 */ 2727 *vpp = makenfsnode(&dr.dr_fhandle, &dr.dr_attr, 2728 dvp->v_vfsp, t, cr, NULL, NULL); 2729 PURGE_ATTRCACHE(*vpp); 2730 dnlc_update(dvp, nm, *vpp); 2731 2732 /* 2733 * Make sure the gid was set correctly. 2734 * If not, try to set it (but don't lose 2735 * any sleep over it). 2736 */ 2737 if (va->va_gid != VTOR(*vpp)->r_attr.va_gid) { 2738 va->va_mask = AT_GID; 2739 (void) nfssetattr(*vpp, va, 0, cr); 2740 } 2741 } else { 2742 PURGE_STALE_FH(error, dvp, cr); 2743 } 2744 } 2745 2746 nfs_rw_exit(&drp->r_rwlock); 2747 2748 return (error); 2749 } 2750 2751 /* ARGSUSED */ 2752 static int 2753 nfs_rmdir(vnode_t *dvp, char *nm, vnode_t *cdir, cred_t *cr, 2754 caller_context_t *ct, int flags) 2755 { 2756 int error; 2757 enum nfsstat status; 2758 struct nfsdiropargs da; 2759 vnode_t *vp; 2760 int douprintf; 2761 rnode_t *drp; 2762 2763 if (nfs_zone() != VTOMI(dvp)->mi_zone) 2764 return (EPERM); 2765 drp = VTOR(dvp); 2766 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR(dvp))) 2767 return (EINTR); 2768 2769 /* 2770 * Attempt to prevent a rmdir(".") from succeeding. 2771 */ 2772 error = nfslookup(dvp, nm, &vp, NULL, 0, NULL, cr, 0); 2773 if (error) { 2774 nfs_rw_exit(&drp->r_rwlock); 2775 return (error); 2776 } 2777 2778 if (vp == cdir) { 2779 VN_RELE(vp); 2780 nfs_rw_exit(&drp->r_rwlock); 2781 return (EINVAL); 2782 } 2783 2784 setdiropargs(&da, nm, dvp); 2785 2786 /* 2787 * First just remove the entry from the name cache, as it 2788 * is most likely an entry for this vp. 2789 */ 2790 dnlc_remove(dvp, nm); 2791 2792 /* 2793 * If there vnode reference count is greater than one, then 2794 * there may be additional references in the DNLC which will 2795 * need to be purged. First, trying removing the entry for 2796 * the parent directory and see if that removes the additional 2797 * reference(s). If that doesn't do it, then use dnlc_purge_vp 2798 * to completely remove any references to the directory which 2799 * might still exist in the DNLC. 2800 */ 2801 if (vp->v_count > 1) { 2802 dnlc_remove(vp, ".."); 2803 if (vp->v_count > 1) 2804 dnlc_purge_vp(vp); 2805 } 2806 2807 douprintf = 1; 2808 2809 error = rfs2call(VTOMI(dvp), RFS_RMDIR, 2810 xdr_diropargs, (caddr_t)&da, 2811 xdr_enum, (caddr_t)&status, cr, 2812 &douprintf, &status, 0, NULL); 2813 2814 PURGE_ATTRCACHE(dvp); /* mod time changed */ 2815 2816 if (error) { 2817 VN_RELE(vp); 2818 nfs_rw_exit(&drp->r_rwlock); 2819 return (error); 2820 } 2821 2822 error = geterrno(status); 2823 if (!error) { 2824 if (HAVE_RDDIR_CACHE(drp)) 2825 nfs_purge_rddir_cache(dvp); 2826 if (HAVE_RDDIR_CACHE(VTOR(vp))) 2827 nfs_purge_rddir_cache(vp); 2828 } else { 2829 PURGE_STALE_FH(error, dvp, cr); 2830 /* 2831 * System V defines rmdir to return EEXIST, not 2832 * ENOTEMPTY if the directory is not empty. Over 2833 * the wire, the error is NFSERR_ENOTEMPTY which 2834 * geterrno maps to ENOTEMPTY. 2835 */ 2836 if (error == ENOTEMPTY) 2837 error = EEXIST; 2838 } 2839 2840 if (error == 0) { 2841 vnevent_rmdir(vp, dvp, nm, ct); 2842 } 2843 VN_RELE(vp); 2844 2845 nfs_rw_exit(&drp->r_rwlock); 2846 2847 return (error); 2848 } 2849 2850 /* ARGSUSED */ 2851 static int 2852 nfs_symlink(vnode_t *dvp, char *lnm, struct vattr *tva, char *tnm, cred_t *cr, 2853 caller_context_t *ct, int flags) 2854 { 2855 int error; 2856 struct nfsslargs args; 2857 enum nfsstat status; 2858 int douprintf; 2859 rnode_t *drp; 2860 2861 if (nfs_zone() != VTOMI(dvp)->mi_zone) 2862 return (EPERM); 2863 setdiropargs(&args.sla_from, lnm, dvp); 2864 args.sla_sa = &args.sla_sa_buf; 2865 error = vattr_to_sattr(tva, args.sla_sa); 2866 if (error) { 2867 /* req time field(s) overflow - return immediately */ 2868 return (error); 2869 } 2870 args.sla_tnm = tnm; 2871 2872 drp = VTOR(dvp); 2873 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR(dvp))) 2874 return (EINTR); 2875 2876 dnlc_remove(dvp, lnm); 2877 2878 douprintf = 1; 2879 2880 error = rfs2call(VTOMI(dvp), RFS_SYMLINK, 2881 xdr_slargs, (caddr_t)&args, 2882 xdr_enum, (caddr_t)&status, cr, 2883 &douprintf, &status, 0, NULL); 2884 2885 PURGE_ATTRCACHE(dvp); /* mod time changed */ 2886 2887 if (!error) { 2888 error = geterrno(status); 2889 if (!error) { 2890 if (HAVE_RDDIR_CACHE(drp)) 2891 nfs_purge_rddir_cache(dvp); 2892 } else { 2893 PURGE_STALE_FH(error, dvp, cr); 2894 } 2895 } 2896 2897 nfs_rw_exit(&drp->r_rwlock); 2898 2899 return (error); 2900 } 2901 2902 #ifdef DEBUG 2903 static int nfs_readdir_cache_hits = 0; 2904 static int nfs_readdir_cache_shorts = 0; 2905 static int nfs_readdir_cache_waits = 0; 2906 static int nfs_readdir_cache_misses = 0; 2907 static int nfs_readdir_readahead = 0; 2908 #endif 2909 2910 static int nfs_shrinkreaddir = 0; 2911 2912 /* 2913 * Read directory entries. 2914 * There are some weird things to look out for here. The uio_offset 2915 * field is either 0 or it is the offset returned from a previous 2916 * readdir. It is an opaque value used by the server to find the 2917 * correct directory block to read. The count field is the number 2918 * of blocks to read on the server. This is advisory only, the server 2919 * may return only one block's worth of entries. Entries may be compressed 2920 * on the server. 2921 */ 2922 /* ARGSUSED */ 2923 static int 2924 nfs_readdir(vnode_t *vp, struct uio *uiop, cred_t *cr, int *eofp, 2925 caller_context_t *ct, int flags) 2926 { 2927 int error; 2928 size_t count; 2929 rnode_t *rp; 2930 rddir_cache *rdc; 2931 rddir_cache *nrdc; 2932 rddir_cache *rrdc; 2933 #ifdef DEBUG 2934 int missed; 2935 #endif 2936 rddir_cache srdc; 2937 avl_index_t where; 2938 2939 rp = VTOR(vp); 2940 2941 ASSERT(nfs_rw_lock_held(&rp->r_rwlock, RW_READER)); 2942 if (nfs_zone() != VTOMI(vp)->mi_zone) 2943 return (EIO); 2944 /* 2945 * Make sure that the directory cache is valid. 2946 */ 2947 if (HAVE_RDDIR_CACHE(rp)) { 2948 if (nfs_disable_rddir_cache) { 2949 /* 2950 * Setting nfs_disable_rddir_cache in /etc/system 2951 * allows interoperability with servers that do not 2952 * properly update the attributes of directories. 2953 * Any cached information gets purged before an 2954 * access is made to it. 2955 */ 2956 nfs_purge_rddir_cache(vp); 2957 } else { 2958 error = nfs_validate_caches(vp, cr); 2959 if (error) 2960 return (error); 2961 } 2962 } 2963 2964 /* 2965 * UGLINESS: SunOS 3.2 servers apparently cannot always handle an 2966 * RFS_READDIR request with rda_count set to more than 0x400. So 2967 * we reduce the request size here purely for compatibility. 2968 * 2969 * In general, this is no longer required. However, if a server 2970 * is discovered which can not handle requests larger than 1024, 2971 * nfs_shrinkreaddir can be set to 1 to enable this backwards 2972 * compatibility. 2973 * 2974 * In any case, the request size is limited to NFS_MAXDATA bytes. 2975 */ 2976 count = MIN(uiop->uio_iov->iov_len, 2977 nfs_shrinkreaddir ? 0x400 : NFS_MAXDATA); 2978 2979 nrdc = NULL; 2980 #ifdef DEBUG 2981 missed = 0; 2982 #endif 2983 top: 2984 /* 2985 * Short circuit last readdir which always returns 0 bytes. 2986 * This can be done after the directory has been read through 2987 * completely at least once. This will set r_direof which 2988 * can be used to find the value of the last cookie. 2989 */ 2990 mutex_enter(&rp->r_statelock); 2991 if (rp->r_direof != NULL && 2992 uiop->uio_offset == rp->r_direof->nfs_ncookie) { 2993 mutex_exit(&rp->r_statelock); 2994 #ifdef DEBUG 2995 nfs_readdir_cache_shorts++; 2996 #endif 2997 if (eofp) 2998 *eofp = 1; 2999 if (nrdc != NULL) 3000 rddir_cache_rele(nrdc); 3001 return (0); 3002 } 3003 /* 3004 * Look for a cache entry. Cache entries are identified 3005 * by the NFS cookie value and the byte count requested. 3006 */ 3007 srdc.nfs_cookie = uiop->uio_offset; 3008 srdc.buflen = count; 3009 rdc = avl_find(&rp->r_dir, &srdc, &where); 3010 if (rdc != NULL) { 3011 rddir_cache_hold(rdc); 3012 /* 3013 * If the cache entry is in the process of being 3014 * filled in, wait until this completes. The 3015 * RDDIRWAIT bit is set to indicate that someone 3016 * is waiting and then the thread currently 3017 * filling the entry is done, it should do a 3018 * cv_broadcast to wakeup all of the threads 3019 * waiting for it to finish. 3020 */ 3021 if (rdc->flags & RDDIR) { 3022 nfs_rw_exit(&rp->r_rwlock); 3023 rdc->flags |= RDDIRWAIT; 3024 #ifdef DEBUG 3025 nfs_readdir_cache_waits++; 3026 #endif 3027 if (!cv_wait_sig(&rdc->cv, &rp->r_statelock)) { 3028 /* 3029 * We got interrupted, probably 3030 * the user typed ^C or an alarm 3031 * fired. We free the new entry 3032 * if we allocated one. 3033 */ 3034 mutex_exit(&rp->r_statelock); 3035 (void) nfs_rw_enter_sig(&rp->r_rwlock, 3036 RW_READER, FALSE); 3037 rddir_cache_rele(rdc); 3038 if (nrdc != NULL) 3039 rddir_cache_rele(nrdc); 3040 return (EINTR); 3041 } 3042 mutex_exit(&rp->r_statelock); 3043 (void) nfs_rw_enter_sig(&rp->r_rwlock, 3044 RW_READER, FALSE); 3045 rddir_cache_rele(rdc); 3046 goto top; 3047 } 3048 /* 3049 * Check to see if a readdir is required to 3050 * fill the entry. If so, mark this entry 3051 * as being filled, remove our reference, 3052 * and branch to the code to fill the entry. 3053 */ 3054 if (rdc->flags & RDDIRREQ) { 3055 rdc->flags &= ~RDDIRREQ; 3056 rdc->flags |= RDDIR; 3057 if (nrdc != NULL) 3058 rddir_cache_rele(nrdc); 3059 nrdc = rdc; 3060 mutex_exit(&rp->r_statelock); 3061 goto bottom; 3062 } 3063 #ifdef DEBUG 3064 if (!missed) 3065 nfs_readdir_cache_hits++; 3066 #endif 3067 /* 3068 * If an error occurred while attempting 3069 * to fill the cache entry, just return it. 3070 */ 3071 if (rdc->error) { 3072 error = rdc->error; 3073 mutex_exit(&rp->r_statelock); 3074 rddir_cache_rele(rdc); 3075 if (nrdc != NULL) 3076 rddir_cache_rele(nrdc); 3077 return (error); 3078 } 3079 3080 /* 3081 * The cache entry is complete and good, 3082 * copyout the dirent structs to the calling 3083 * thread. 3084 */ 3085 error = uiomove(rdc->entries, rdc->entlen, UIO_READ, uiop); 3086 3087 /* 3088 * If no error occurred during the copyout, 3089 * update the offset in the uio struct to 3090 * contain the value of the next cookie 3091 * and set the eof value appropriately. 3092 */ 3093 if (!error) { 3094 uiop->uio_offset = rdc->nfs_ncookie; 3095 if (eofp) 3096 *eofp = rdc->eof; 3097 } 3098 3099 /* 3100 * Decide whether to do readahead. Don't if 3101 * have already read to the end of directory. 3102 */ 3103 if (rdc->eof) { 3104 rp->r_direof = rdc; 3105 mutex_exit(&rp->r_statelock); 3106 rddir_cache_rele(rdc); 3107 if (nrdc != NULL) 3108 rddir_cache_rele(nrdc); 3109 return (error); 3110 } 3111 3112 /* 3113 * Check to see whether we found an entry 3114 * for the readahead. If so, we don't need 3115 * to do anything further, so free the new 3116 * entry if one was allocated. Otherwise, 3117 * allocate a new entry, add it to the cache, 3118 * and then initiate an asynchronous readdir 3119 * operation to fill it. 3120 */ 3121 srdc.nfs_cookie = rdc->nfs_ncookie; 3122 srdc.buflen = count; 3123 rrdc = avl_find(&rp->r_dir, &srdc, &where); 3124 if (rrdc != NULL) { 3125 if (nrdc != NULL) 3126 rddir_cache_rele(nrdc); 3127 } else { 3128 if (nrdc != NULL) 3129 rrdc = nrdc; 3130 else { 3131 rrdc = rddir_cache_alloc(KM_NOSLEEP); 3132 } 3133 if (rrdc != NULL) { 3134 rrdc->nfs_cookie = rdc->nfs_ncookie; 3135 rrdc->buflen = count; 3136 avl_insert(&rp->r_dir, rrdc, where); 3137 rddir_cache_hold(rrdc); 3138 mutex_exit(&rp->r_statelock); 3139 rddir_cache_rele(rdc); 3140 #ifdef DEBUG 3141 nfs_readdir_readahead++; 3142 #endif 3143 nfs_async_readdir(vp, rrdc, cr, nfsreaddir); 3144 return (error); 3145 } 3146 } 3147 3148 mutex_exit(&rp->r_statelock); 3149 rddir_cache_rele(rdc); 3150 return (error); 3151 } 3152 3153 /* 3154 * Didn't find an entry in the cache. Construct a new empty 3155 * entry and link it into the cache. Other processes attempting 3156 * to access this entry will need to wait until it is filled in. 3157 * 3158 * Since kmem_alloc may block, another pass through the cache 3159 * will need to be taken to make sure that another process 3160 * hasn't already added an entry to the cache for this request. 3161 */ 3162 if (nrdc == NULL) { 3163 mutex_exit(&rp->r_statelock); 3164 nrdc = rddir_cache_alloc(KM_SLEEP); 3165 nrdc->nfs_cookie = uiop->uio_offset; 3166 nrdc->buflen = count; 3167 goto top; 3168 } 3169 3170 /* 3171 * Add this entry to the cache. 3172 */ 3173 avl_insert(&rp->r_dir, nrdc, where); 3174 rddir_cache_hold(nrdc); 3175 mutex_exit(&rp->r_statelock); 3176 3177 bottom: 3178 #ifdef DEBUG 3179 missed = 1; 3180 nfs_readdir_cache_misses++; 3181 #endif 3182 /* 3183 * Do the readdir. 3184 */ 3185 error = nfsreaddir(vp, nrdc, cr); 3186 3187 /* 3188 * If this operation failed, just return the error which occurred. 3189 */ 3190 if (error != 0) 3191 return (error); 3192 3193 /* 3194 * Since the RPC operation will have taken sometime and blocked 3195 * this process, another pass through the cache will need to be 3196 * taken to find the correct cache entry. It is possible that 3197 * the correct cache entry will not be there (although one was 3198 * added) because the directory changed during the RPC operation 3199 * and the readdir cache was flushed. In this case, just start 3200 * over. It is hoped that this will not happen too often... :-) 3201 */ 3202 nrdc = NULL; 3203 goto top; 3204 /* NOTREACHED */ 3205 } 3206 3207 static int 3208 nfsreaddir(vnode_t *vp, rddir_cache *rdc, cred_t *cr) 3209 { 3210 int error; 3211 struct nfsrddirargs rda; 3212 struct nfsrddirres rd; 3213 rnode_t *rp; 3214 mntinfo_t *mi; 3215 uint_t count; 3216 int douprintf; 3217 failinfo_t fi, *fip; 3218 3219 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 3220 count = rdc->buflen; 3221 3222 rp = VTOR(vp); 3223 mi = VTOMI(vp); 3224 3225 rda.rda_fh = *VTOFH(vp); 3226 rda.rda_offset = rdc->nfs_cookie; 3227 3228 /* 3229 * NFS client failover support 3230 * suppress failover unless we have a zero cookie 3231 */ 3232 if (rdc->nfs_cookie == (off_t)0) { 3233 fi.vp = vp; 3234 fi.fhp = (caddr_t)&rda.rda_fh; 3235 fi.copyproc = nfscopyfh; 3236 fi.lookupproc = nfslookup; 3237 fi.xattrdirproc = acl_getxattrdir2; 3238 fip = &fi; 3239 } else { 3240 fip = NULL; 3241 } 3242 3243 rd.rd_entries = kmem_alloc(rdc->buflen, KM_SLEEP); 3244 rd.rd_size = count; 3245 rd.rd_offset = rda.rda_offset; 3246 3247 douprintf = 1; 3248 3249 if (mi->mi_io_kstats) { 3250 mutex_enter(&mi->mi_lock); 3251 kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats)); 3252 mutex_exit(&mi->mi_lock); 3253 } 3254 3255 do { 3256 rda.rda_count = MIN(count, mi->mi_curread); 3257 error = rfs2call(mi, RFS_READDIR, 3258 xdr_rddirargs, (caddr_t)&rda, 3259 xdr_getrddirres, (caddr_t)&rd, cr, 3260 &douprintf, &rd.rd_status, 0, fip); 3261 } while (error == ENFS_TRYAGAIN); 3262 3263 if (mi->mi_io_kstats) { 3264 mutex_enter(&mi->mi_lock); 3265 kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats)); 3266 mutex_exit(&mi->mi_lock); 3267 } 3268 3269 /* 3270 * Since we are actually doing a READDIR RPC, we must have 3271 * exclusive access to the cache entry being filled. Thus, 3272 * it is safe to update all fields except for the flags 3273 * field. The r_statelock in the rnode must be held to 3274 * prevent two different threads from simultaneously 3275 * attempting to update the flags field. This can happen 3276 * if we are turning off RDDIR and the other thread is 3277 * trying to set RDDIRWAIT. 3278 */ 3279 ASSERT(rdc->flags & RDDIR); 3280 if (!error) { 3281 error = geterrno(rd.rd_status); 3282 if (!error) { 3283 rdc->nfs_ncookie = rd.rd_offset; 3284 rdc->eof = rd.rd_eof ? 1 : 0; 3285 rdc->entlen = rd.rd_size; 3286 ASSERT(rdc->entlen <= rdc->buflen); 3287 #ifdef DEBUG 3288 rdc->entries = rddir_cache_buf_alloc(rdc->buflen, 3289 KM_SLEEP); 3290 #else 3291 rdc->entries = kmem_alloc(rdc->buflen, KM_SLEEP); 3292 #endif 3293 bcopy(rd.rd_entries, rdc->entries, rdc->entlen); 3294 rdc->error = 0; 3295 if (mi->mi_io_kstats) { 3296 mutex_enter(&mi->mi_lock); 3297 KSTAT_IO_PTR(mi->mi_io_kstats)->reads++; 3298 KSTAT_IO_PTR(mi->mi_io_kstats)->nread += 3299 rd.rd_size; 3300 mutex_exit(&mi->mi_lock); 3301 } 3302 } else { 3303 PURGE_STALE_FH(error, vp, cr); 3304 } 3305 } 3306 if (error) { 3307 rdc->entries = NULL; 3308 rdc->error = error; 3309 } 3310 kmem_free(rd.rd_entries, rdc->buflen); 3311 3312 mutex_enter(&rp->r_statelock); 3313 rdc->flags &= ~RDDIR; 3314 if (rdc->flags & RDDIRWAIT) { 3315 rdc->flags &= ~RDDIRWAIT; 3316 cv_broadcast(&rdc->cv); 3317 } 3318 if (error) 3319 rdc->flags |= RDDIRREQ; 3320 mutex_exit(&rp->r_statelock); 3321 3322 rddir_cache_rele(rdc); 3323 3324 return (error); 3325 } 3326 3327 #ifdef DEBUG 3328 static int nfs_bio_do_stop = 0; 3329 #endif 3330 3331 static int 3332 nfs_bio(struct buf *bp, cred_t *cr) 3333 { 3334 rnode_t *rp = VTOR(bp->b_vp); 3335 int count; 3336 int error; 3337 cred_t *cred; 3338 uint_t offset; 3339 3340 DTRACE_IO1(start, struct buf *, bp); 3341 3342 ASSERT(nfs_zone() == VTOMI(bp->b_vp)->mi_zone); 3343 offset = dbtob(bp->b_blkno); 3344 3345 if (bp->b_flags & B_READ) { 3346 mutex_enter(&rp->r_statelock); 3347 if (rp->r_cred != NULL) { 3348 cred = rp->r_cred; 3349 crhold(cred); 3350 } else { 3351 rp->r_cred = cr; 3352 crhold(cr); 3353 cred = cr; 3354 crhold(cred); 3355 } 3356 mutex_exit(&rp->r_statelock); 3357 read_again: 3358 error = bp->b_error = nfsread(bp->b_vp, bp->b_un.b_addr, 3359 offset, bp->b_bcount, &bp->b_resid, cred); 3360 3361 crfree(cred); 3362 if (!error) { 3363 if (bp->b_resid) { 3364 /* 3365 * Didn't get it all because we hit EOF, 3366 * zero all the memory beyond the EOF. 3367 */ 3368 /* bzero(rdaddr + */ 3369 bzero(bp->b_un.b_addr + 3370 bp->b_bcount - bp->b_resid, bp->b_resid); 3371 } 3372 mutex_enter(&rp->r_statelock); 3373 if (bp->b_resid == bp->b_bcount && 3374 offset >= rp->r_size) { 3375 /* 3376 * We didn't read anything at all as we are 3377 * past EOF. Return an error indicator back 3378 * but don't destroy the pages (yet). 3379 */ 3380 error = NFS_EOF; 3381 } 3382 mutex_exit(&rp->r_statelock); 3383 } else if (error == EACCES) { 3384 mutex_enter(&rp->r_statelock); 3385 if (cred != cr) { 3386 if (rp->r_cred != NULL) 3387 crfree(rp->r_cred); 3388 rp->r_cred = cr; 3389 crhold(cr); 3390 cred = cr; 3391 crhold(cred); 3392 mutex_exit(&rp->r_statelock); 3393 goto read_again; 3394 } 3395 mutex_exit(&rp->r_statelock); 3396 } 3397 } else { 3398 if (!(rp->r_flags & RSTALE)) { 3399 mutex_enter(&rp->r_statelock); 3400 if (rp->r_cred != NULL) { 3401 cred = rp->r_cred; 3402 crhold(cred); 3403 } else { 3404 rp->r_cred = cr; 3405 crhold(cr); 3406 cred = cr; 3407 crhold(cred); 3408 } 3409 mutex_exit(&rp->r_statelock); 3410 write_again: 3411 mutex_enter(&rp->r_statelock); 3412 count = MIN(bp->b_bcount, rp->r_size - offset); 3413 mutex_exit(&rp->r_statelock); 3414 if (count < 0) 3415 cmn_err(CE_PANIC, "nfs_bio: write count < 0"); 3416 #ifdef DEBUG 3417 if (count == 0) { 3418 zcmn_err(getzoneid(), CE_WARN, 3419 "nfs_bio: zero length write at %d", 3420 offset); 3421 nfs_printfhandle(&rp->r_fh); 3422 if (nfs_bio_do_stop) 3423 debug_enter("nfs_bio"); 3424 } 3425 #endif 3426 error = nfswrite(bp->b_vp, bp->b_un.b_addr, offset, 3427 count, cred); 3428 if (error == EACCES) { 3429 mutex_enter(&rp->r_statelock); 3430 if (cred != cr) { 3431 if (rp->r_cred != NULL) 3432 crfree(rp->r_cred); 3433 rp->r_cred = cr; 3434 crhold(cr); 3435 crfree(cred); 3436 cred = cr; 3437 crhold(cred); 3438 mutex_exit(&rp->r_statelock); 3439 goto write_again; 3440 } 3441 mutex_exit(&rp->r_statelock); 3442 } 3443 bp->b_error = error; 3444 if (error && error != EINTR) { 3445 /* 3446 * Don't print EDQUOT errors on the console. 3447 * Don't print asynchronous EACCES errors. 3448 * Don't print EFBIG errors. 3449 * Print all other write errors. 3450 */ 3451 if (error != EDQUOT && error != EFBIG && 3452 (error != EACCES || 3453 !(bp->b_flags & B_ASYNC))) 3454 nfs_write_error(bp->b_vp, error, cred); 3455 /* 3456 * Update r_error and r_flags as appropriate. 3457 * If the error was ESTALE, then mark the 3458 * rnode as not being writeable and save 3459 * the error status. Otherwise, save any 3460 * errors which occur from asynchronous 3461 * page invalidations. Any errors occurring 3462 * from other operations should be saved 3463 * by the caller. 3464 */ 3465 mutex_enter(&rp->r_statelock); 3466 if (error == ESTALE) { 3467 rp->r_flags |= RSTALE; 3468 if (!rp->r_error) 3469 rp->r_error = error; 3470 } else if (!rp->r_error && 3471 (bp->b_flags & 3472 (B_INVAL|B_FORCE|B_ASYNC)) == 3473 (B_INVAL|B_FORCE|B_ASYNC)) { 3474 rp->r_error = error; 3475 } 3476 mutex_exit(&rp->r_statelock); 3477 } 3478 crfree(cred); 3479 } else 3480 error = rp->r_error; 3481 } 3482 3483 if (error != 0 && error != NFS_EOF) 3484 bp->b_flags |= B_ERROR; 3485 3486 DTRACE_IO1(done, struct buf *, bp); 3487 3488 return (error); 3489 } 3490 3491 /* ARGSUSED */ 3492 static int 3493 nfs_fid(vnode_t *vp, fid_t *fidp, caller_context_t *ct) 3494 { 3495 struct nfs_fid *fp; 3496 rnode_t *rp; 3497 3498 rp = VTOR(vp); 3499 3500 if (fidp->fid_len < (sizeof (struct nfs_fid) - sizeof (short))) { 3501 fidp->fid_len = sizeof (struct nfs_fid) - sizeof (short); 3502 return (ENOSPC); 3503 } 3504 fp = (struct nfs_fid *)fidp; 3505 fp->nf_pad = 0; 3506 fp->nf_len = sizeof (struct nfs_fid) - sizeof (short); 3507 bcopy(rp->r_fh.fh_buf, fp->nf_data, NFS_FHSIZE); 3508 return (0); 3509 } 3510 3511 /* ARGSUSED2 */ 3512 static int 3513 nfs_rwlock(vnode_t *vp, int write_lock, caller_context_t *ctp) 3514 { 3515 rnode_t *rp = VTOR(vp); 3516 3517 if (!write_lock) { 3518 (void) nfs_rw_enter_sig(&rp->r_rwlock, RW_READER, FALSE); 3519 return (V_WRITELOCK_FALSE); 3520 } 3521 3522 if ((rp->r_flags & RDIRECTIO) || (VTOMI(vp)->mi_flags & MI_DIRECTIO)) { 3523 (void) nfs_rw_enter_sig(&rp->r_rwlock, RW_READER, FALSE); 3524 if (rp->r_mapcnt == 0 && !vn_has_cached_data(vp)) 3525 return (V_WRITELOCK_FALSE); 3526 nfs_rw_exit(&rp->r_rwlock); 3527 } 3528 3529 (void) nfs_rw_enter_sig(&rp->r_rwlock, RW_WRITER, FALSE); 3530 return (V_WRITELOCK_TRUE); 3531 } 3532 3533 /* ARGSUSED */ 3534 static void 3535 nfs_rwunlock(vnode_t *vp, int write_lock, caller_context_t *ctp) 3536 { 3537 rnode_t *rp = VTOR(vp); 3538 3539 nfs_rw_exit(&rp->r_rwlock); 3540 } 3541 3542 /* ARGSUSED */ 3543 static int 3544 nfs_seek(vnode_t *vp, offset_t ooff, offset_t *noffp, caller_context_t *ct) 3545 { 3546 3547 /* 3548 * Because we stuff the readdir cookie into the offset field 3549 * someone may attempt to do an lseek with the cookie which 3550 * we want to succeed. 3551 */ 3552 if (vp->v_type == VDIR) 3553 return (0); 3554 if (*noffp < 0 || *noffp > MAXOFF32_T) 3555 return (EINVAL); 3556 return (0); 3557 } 3558 3559 /* 3560 * number of NFS_MAXDATA blocks to read ahead 3561 * optimized for 100 base-T. 3562 */ 3563 static int nfs_nra = 4; 3564 3565 #ifdef DEBUG 3566 static int nfs_lostpage = 0; /* number of times we lost original page */ 3567 #endif 3568 3569 /* 3570 * Return all the pages from [off..off+len) in file 3571 */ 3572 /* ARGSUSED */ 3573 static int 3574 nfs_getpage(vnode_t *vp, offset_t off, size_t len, uint_t *protp, 3575 page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr, 3576 enum seg_rw rw, cred_t *cr, caller_context_t *ct) 3577 { 3578 rnode_t *rp; 3579 int error; 3580 mntinfo_t *mi; 3581 3582 if (vp->v_flag & VNOMAP) 3583 return (ENOSYS); 3584 3585 ASSERT(off <= MAXOFF32_T); 3586 if (nfs_zone() != VTOMI(vp)->mi_zone) 3587 return (EIO); 3588 if (protp != NULL) 3589 *protp = PROT_ALL; 3590 3591 /* 3592 * Now valididate that the caches are up to date. 3593 */ 3594 error = nfs_validate_caches(vp, cr); 3595 if (error) 3596 return (error); 3597 3598 rp = VTOR(vp); 3599 mi = VTOMI(vp); 3600 retry: 3601 mutex_enter(&rp->r_statelock); 3602 3603 /* 3604 * Don't create dirty pages faster than they 3605 * can be cleaned so that the system doesn't 3606 * get imbalanced. If the async queue is 3607 * maxed out, then wait for it to drain before 3608 * creating more dirty pages. Also, wait for 3609 * any threads doing pagewalks in the vop_getattr 3610 * entry points so that they don't block for 3611 * long periods. 3612 */ 3613 if (rw == S_CREATE) { 3614 while ((mi->mi_max_threads != 0 && 3615 rp->r_awcount > 2 * mi->mi_max_threads) || 3616 rp->r_gcount > 0) 3617 cv_wait(&rp->r_cv, &rp->r_statelock); 3618 } 3619 3620 /* 3621 * If we are getting called as a side effect of an nfs_write() 3622 * operation the local file size might not be extended yet. 3623 * In this case we want to be able to return pages of zeroes. 3624 */ 3625 if (off + len > rp->r_size + PAGEOFFSET && seg != segkmap) { 3626 mutex_exit(&rp->r_statelock); 3627 return (EFAULT); /* beyond EOF */ 3628 } 3629 3630 mutex_exit(&rp->r_statelock); 3631 3632 if (len <= PAGESIZE) { 3633 error = nfs_getapage(vp, off, len, protp, pl, plsz, 3634 seg, addr, rw, cr); 3635 } else { 3636 error = pvn_getpages(nfs_getapage, vp, off, len, protp, 3637 pl, plsz, seg, addr, rw, cr); 3638 } 3639 3640 switch (error) { 3641 case NFS_EOF: 3642 nfs_purge_caches(vp, NFS_NOPURGE_DNLC, cr); 3643 goto retry; 3644 case ESTALE: 3645 PURGE_STALE_FH(error, vp, cr); 3646 } 3647 3648 return (error); 3649 } 3650 3651 /* 3652 * Called from pvn_getpages or nfs_getpage to get a particular page. 3653 */ 3654 /* ARGSUSED */ 3655 static int 3656 nfs_getapage(vnode_t *vp, u_offset_t off, size_t len, uint_t *protp, 3657 page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr, 3658 enum seg_rw rw, cred_t *cr) 3659 { 3660 rnode_t *rp; 3661 uint_t bsize; 3662 struct buf *bp; 3663 page_t *pp; 3664 u_offset_t lbn; 3665 u_offset_t io_off; 3666 u_offset_t blkoff; 3667 u_offset_t rablkoff; 3668 size_t io_len; 3669 uint_t blksize; 3670 int error; 3671 int readahead; 3672 int readahead_issued = 0; 3673 int ra_window; /* readahead window */ 3674 page_t *pagefound; 3675 3676 if (nfs_zone() != VTOMI(vp)->mi_zone) 3677 return (EIO); 3678 rp = VTOR(vp); 3679 bsize = MAX(vp->v_vfsp->vfs_bsize, PAGESIZE); 3680 3681 reread: 3682 bp = NULL; 3683 pp = NULL; 3684 pagefound = NULL; 3685 3686 if (pl != NULL) 3687 pl[0] = NULL; 3688 3689 error = 0; 3690 lbn = off / bsize; 3691 blkoff = lbn * bsize; 3692 3693 /* 3694 * Queueing up the readahead before doing the synchronous read 3695 * results in a significant increase in read throughput because 3696 * of the increased parallelism between the async threads and 3697 * the process context. 3698 */ 3699 if ((off & ((vp->v_vfsp->vfs_bsize) - 1)) == 0 && 3700 rw != S_CREATE && 3701 !(vp->v_flag & VNOCACHE)) { 3702 mutex_enter(&rp->r_statelock); 3703 3704 /* 3705 * Calculate the number of readaheads to do. 3706 * a) No readaheads at offset = 0. 3707 * b) Do maximum(nfs_nra) readaheads when the readahead 3708 * window is closed. 3709 * c) Do readaheads between 1 to (nfs_nra - 1) depending 3710 * upon how far the readahead window is open or close. 3711 * d) No readaheads if rp->r_nextr is not within the scope 3712 * of the readahead window (random i/o). 3713 */ 3714 3715 if (off == 0) 3716 readahead = 0; 3717 else if (blkoff == rp->r_nextr) 3718 readahead = nfs_nra; 3719 else if (rp->r_nextr > blkoff && 3720 ((ra_window = (rp->r_nextr - blkoff) / bsize) 3721 <= (nfs_nra - 1))) 3722 readahead = nfs_nra - ra_window; 3723 else 3724 readahead = 0; 3725 3726 rablkoff = rp->r_nextr; 3727 while (readahead > 0 && rablkoff + bsize < rp->r_size) { 3728 mutex_exit(&rp->r_statelock); 3729 if (nfs_async_readahead(vp, rablkoff + bsize, 3730 addr + (rablkoff + bsize - off), seg, cr, 3731 nfs_readahead) < 0) { 3732 mutex_enter(&rp->r_statelock); 3733 break; 3734 } 3735 readahead--; 3736 rablkoff += bsize; 3737 /* 3738 * Indicate that we did a readahead so 3739 * readahead offset is not updated 3740 * by the synchronous read below. 3741 */ 3742 readahead_issued = 1; 3743 mutex_enter(&rp->r_statelock); 3744 /* 3745 * set readahead offset to 3746 * offset of last async readahead 3747 * request. 3748 */ 3749 rp->r_nextr = rablkoff; 3750 } 3751 mutex_exit(&rp->r_statelock); 3752 } 3753 3754 again: 3755 if ((pagefound = page_exists(vp, off)) == NULL) { 3756 if (pl == NULL) { 3757 (void) nfs_async_readahead(vp, blkoff, addr, seg, cr, 3758 nfs_readahead); 3759 } else if (rw == S_CREATE) { 3760 /* 3761 * Block for this page is not allocated, or the offset 3762 * is beyond the current allocation size, or we're 3763 * allocating a swap slot and the page was not found, 3764 * so allocate it and return a zero page. 3765 */ 3766 if ((pp = page_create_va(vp, off, 3767 PAGESIZE, PG_WAIT, seg, addr)) == NULL) 3768 cmn_err(CE_PANIC, "nfs_getapage: page_create"); 3769 io_len = PAGESIZE; 3770 mutex_enter(&rp->r_statelock); 3771 rp->r_nextr = off + PAGESIZE; 3772 mutex_exit(&rp->r_statelock); 3773 } else { 3774 /* 3775 * Need to go to server to get a BLOCK, exception to 3776 * that being while reading at offset = 0 or doing 3777 * random i/o, in that case read only a PAGE. 3778 */ 3779 mutex_enter(&rp->r_statelock); 3780 if (blkoff < rp->r_size && 3781 blkoff + bsize >= rp->r_size) { 3782 /* 3783 * If only a block or less is left in 3784 * the file, read all that is remaining. 3785 */ 3786 if (rp->r_size <= off) { 3787 /* 3788 * Trying to access beyond EOF, 3789 * set up to get at least one page. 3790 */ 3791 blksize = off + PAGESIZE - blkoff; 3792 } else 3793 blksize = rp->r_size - blkoff; 3794 } else if ((off == 0) || 3795 (off != rp->r_nextr && !readahead_issued)) { 3796 blksize = PAGESIZE; 3797 blkoff = off; /* block = page here */ 3798 } else 3799 blksize = bsize; 3800 mutex_exit(&rp->r_statelock); 3801 3802 pp = pvn_read_kluster(vp, off, seg, addr, &io_off, 3803 &io_len, blkoff, blksize, 0); 3804 3805 /* 3806 * Some other thread has entered the page, 3807 * so just use it. 3808 */ 3809 if (pp == NULL) 3810 goto again; 3811 3812 /* 3813 * Now round the request size up to page boundaries. 3814 * This ensures that the entire page will be 3815 * initialized to zeroes if EOF is encountered. 3816 */ 3817 io_len = ptob(btopr(io_len)); 3818 3819 bp = pageio_setup(pp, io_len, vp, B_READ); 3820 ASSERT(bp != NULL); 3821 3822 /* 3823 * pageio_setup should have set b_addr to 0. This 3824 * is correct since we want to do I/O on a page 3825 * boundary. bp_mapin will use this addr to calculate 3826 * an offset, and then set b_addr to the kernel virtual 3827 * address it allocated for us. 3828 */ 3829 ASSERT(bp->b_un.b_addr == 0); 3830 3831 bp->b_edev = 0; 3832 bp->b_dev = 0; 3833 bp->b_lblkno = lbtodb(io_off); 3834 bp->b_file = vp; 3835 bp->b_offset = (offset_t)off; 3836 bp_mapin(bp); 3837 3838 /* 3839 * If doing a write beyond what we believe is EOF, 3840 * don't bother trying to read the pages from the 3841 * server, we'll just zero the pages here. We 3842 * don't check that the rw flag is S_WRITE here 3843 * because some implementations may attempt a 3844 * read access to the buffer before copying data. 3845 */ 3846 mutex_enter(&rp->r_statelock); 3847 if (io_off >= rp->r_size && seg == segkmap) { 3848 mutex_exit(&rp->r_statelock); 3849 bzero(bp->b_un.b_addr, io_len); 3850 } else { 3851 mutex_exit(&rp->r_statelock); 3852 error = nfs_bio(bp, cr); 3853 } 3854 3855 /* 3856 * Unmap the buffer before freeing it. 3857 */ 3858 bp_mapout(bp); 3859 pageio_done(bp); 3860 3861 if (error == NFS_EOF) { 3862 /* 3863 * If doing a write system call just return 3864 * zeroed pages, else user tried to get pages 3865 * beyond EOF, return error. We don't check 3866 * that the rw flag is S_WRITE here because 3867 * some implementations may attempt a read 3868 * access to the buffer before copying data. 3869 */ 3870 if (seg == segkmap) 3871 error = 0; 3872 else 3873 error = EFAULT; 3874 } 3875 3876 if (!readahead_issued && !error) { 3877 mutex_enter(&rp->r_statelock); 3878 rp->r_nextr = io_off + io_len; 3879 mutex_exit(&rp->r_statelock); 3880 } 3881 } 3882 } 3883 3884 out: 3885 if (pl == NULL) 3886 return (error); 3887 3888 if (error) { 3889 if (pp != NULL) 3890 pvn_read_done(pp, B_ERROR); 3891 return (error); 3892 } 3893 3894 if (pagefound) { 3895 se_t se = (rw == S_CREATE ? SE_EXCL : SE_SHARED); 3896 3897 /* 3898 * Page exists in the cache, acquire the appropriate lock. 3899 * If this fails, start all over again. 3900 */ 3901 if ((pp = page_lookup(vp, off, se)) == NULL) { 3902 #ifdef DEBUG 3903 nfs_lostpage++; 3904 #endif 3905 goto reread; 3906 } 3907 pl[0] = pp; 3908 pl[1] = NULL; 3909 return (0); 3910 } 3911 3912 if (pp != NULL) 3913 pvn_plist_init(pp, pl, plsz, off, io_len, rw); 3914 3915 return (error); 3916 } 3917 3918 static void 3919 nfs_readahead(vnode_t *vp, u_offset_t blkoff, caddr_t addr, struct seg *seg, 3920 cred_t *cr) 3921 { 3922 int error; 3923 page_t *pp; 3924 u_offset_t io_off; 3925 size_t io_len; 3926 struct buf *bp; 3927 uint_t bsize, blksize; 3928 rnode_t *rp = VTOR(vp); 3929 3930 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 3931 3932 bsize = MAX(vp->v_vfsp->vfs_bsize, PAGESIZE); 3933 3934 mutex_enter(&rp->r_statelock); 3935 if (blkoff < rp->r_size && blkoff + bsize > rp->r_size) { 3936 /* 3937 * If less than a block left in file read less 3938 * than a block. 3939 */ 3940 blksize = rp->r_size - blkoff; 3941 } else 3942 blksize = bsize; 3943 mutex_exit(&rp->r_statelock); 3944 3945 pp = pvn_read_kluster(vp, blkoff, segkmap, addr, 3946 &io_off, &io_len, blkoff, blksize, 1); 3947 /* 3948 * The isra flag passed to the kluster function is 1, we may have 3949 * gotten a return value of NULL for a variety of reasons (# of free 3950 * pages < minfree, someone entered the page on the vnode etc). In all 3951 * cases, we want to punt on the readahead. 3952 */ 3953 if (pp == NULL) 3954 return; 3955 3956 /* 3957 * Now round the request size up to page boundaries. 3958 * This ensures that the entire page will be 3959 * initialized to zeroes if EOF is encountered. 3960 */ 3961 io_len = ptob(btopr(io_len)); 3962 3963 bp = pageio_setup(pp, io_len, vp, B_READ); 3964 ASSERT(bp != NULL); 3965 3966 /* 3967 * pageio_setup should have set b_addr to 0. This is correct since 3968 * we want to do I/O on a page boundary. bp_mapin() will use this addr 3969 * to calculate an offset, and then set b_addr to the kernel virtual 3970 * address it allocated for us. 3971 */ 3972 ASSERT(bp->b_un.b_addr == 0); 3973 3974 bp->b_edev = 0; 3975 bp->b_dev = 0; 3976 bp->b_lblkno = lbtodb(io_off); 3977 bp->b_file = vp; 3978 bp->b_offset = (offset_t)blkoff; 3979 bp_mapin(bp); 3980 3981 /* 3982 * If doing a write beyond what we believe is EOF, don't bother trying 3983 * to read the pages from the server, we'll just zero the pages here. 3984 * We don't check that the rw flag is S_WRITE here because some 3985 * implementations may attempt a read access to the buffer before 3986 * copying data. 3987 */ 3988 mutex_enter(&rp->r_statelock); 3989 if (io_off >= rp->r_size && seg == segkmap) { 3990 mutex_exit(&rp->r_statelock); 3991 bzero(bp->b_un.b_addr, io_len); 3992 error = 0; 3993 } else { 3994 mutex_exit(&rp->r_statelock); 3995 error = nfs_bio(bp, cr); 3996 if (error == NFS_EOF) 3997 error = 0; 3998 } 3999 4000 /* 4001 * Unmap the buffer before freeing it. 4002 */ 4003 bp_mapout(bp); 4004 pageio_done(bp); 4005 4006 pvn_read_done(pp, error ? B_READ | B_ERROR : B_READ); 4007 4008 /* 4009 * In case of error set readahead offset 4010 * to the lowest offset. 4011 * pvn_read_done() calls VN_DISPOSE to destroy the pages 4012 */ 4013 if (error && rp->r_nextr > io_off) { 4014 mutex_enter(&rp->r_statelock); 4015 if (rp->r_nextr > io_off) 4016 rp->r_nextr = io_off; 4017 mutex_exit(&rp->r_statelock); 4018 } 4019 } 4020 4021 /* 4022 * Flags are composed of {B_INVAL, B_FREE, B_DONTNEED, B_FORCE} 4023 * If len == 0, do from off to EOF. 4024 * 4025 * The normal cases should be len == 0 && off == 0 (entire vp list), 4026 * len == MAXBSIZE (from segmap_release actions), and len == PAGESIZE 4027 * (from pageout). 4028 */ 4029 /* ARGSUSED */ 4030 static int 4031 nfs_putpage(vnode_t *vp, offset_t off, size_t len, int flags, cred_t *cr, 4032 caller_context_t *ct) 4033 { 4034 int error; 4035 rnode_t *rp; 4036 4037 ASSERT(cr != NULL); 4038 4039 /* 4040 * XXX - Why should this check be made here? 4041 */ 4042 if (vp->v_flag & VNOMAP) 4043 return (ENOSYS); 4044 4045 if (len == 0 && !(flags & B_INVAL) && vn_is_readonly(vp)) 4046 return (0); 4047 4048 if (!(flags & B_ASYNC) && nfs_zone() != VTOMI(vp)->mi_zone) 4049 return (EIO); 4050 ASSERT(off <= MAXOFF32_T); 4051 4052 rp = VTOR(vp); 4053 mutex_enter(&rp->r_statelock); 4054 rp->r_count++; 4055 mutex_exit(&rp->r_statelock); 4056 error = nfs_putpages(vp, off, len, flags, cr); 4057 mutex_enter(&rp->r_statelock); 4058 rp->r_count--; 4059 cv_broadcast(&rp->r_cv); 4060 mutex_exit(&rp->r_statelock); 4061 4062 return (error); 4063 } 4064 4065 /* 4066 * Write out a single page, possibly klustering adjacent dirty pages. 4067 */ 4068 int 4069 nfs_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp, size_t *lenp, 4070 int flags, cred_t *cr) 4071 { 4072 u_offset_t io_off; 4073 u_offset_t lbn_off; 4074 u_offset_t lbn; 4075 size_t io_len; 4076 uint_t bsize; 4077 int error; 4078 rnode_t *rp; 4079 4080 ASSERT(!vn_is_readonly(vp)); 4081 ASSERT(pp != NULL); 4082 ASSERT(cr != NULL); 4083 ASSERT((flags & B_ASYNC) || nfs_zone() == VTOMI(vp)->mi_zone); 4084 4085 rp = VTOR(vp); 4086 ASSERT(rp->r_count > 0); 4087 4088 ASSERT(pp->p_offset <= MAXOFF32_T); 4089 4090 bsize = MAX(vp->v_vfsp->vfs_bsize, PAGESIZE); 4091 lbn = pp->p_offset / bsize; 4092 lbn_off = lbn * bsize; 4093 4094 /* 4095 * Find a kluster that fits in one block, or in 4096 * one page if pages are bigger than blocks. If 4097 * there is less file space allocated than a whole 4098 * page, we'll shorten the i/o request below. 4099 */ 4100 pp = pvn_write_kluster(vp, pp, &io_off, &io_len, lbn_off, 4101 roundup(bsize, PAGESIZE), flags); 4102 4103 /* 4104 * pvn_write_kluster shouldn't have returned a page with offset 4105 * behind the original page we were given. Verify that. 4106 */ 4107 ASSERT((pp->p_offset / bsize) >= lbn); 4108 4109 /* 4110 * Now pp will have the list of kept dirty pages marked for 4111 * write back. It will also handle invalidation and freeing 4112 * of pages that are not dirty. Check for page length rounding 4113 * problems. 4114 */ 4115 if (io_off + io_len > lbn_off + bsize) { 4116 ASSERT((io_off + io_len) - (lbn_off + bsize) < PAGESIZE); 4117 io_len = lbn_off + bsize - io_off; 4118 } 4119 /* 4120 * The RMODINPROGRESS flag makes sure that nfs(3)_bio() sees a 4121 * consistent value of r_size. RMODINPROGRESS is set in writerp(). 4122 * When RMODINPROGRESS is set it indicates that a uiomove() is in 4123 * progress and the r_size has not been made consistent with the 4124 * new size of the file. When the uiomove() completes the r_size is 4125 * updated and the RMODINPROGRESS flag is cleared. 4126 * 4127 * The RMODINPROGRESS flag makes sure that nfs(3)_bio() sees a 4128 * consistent value of r_size. Without this handshaking, it is 4129 * possible that nfs(3)_bio() picks up the old value of r_size 4130 * before the uiomove() in writerp() completes. This will result 4131 * in the write through nfs(3)_bio() being dropped. 4132 * 4133 * More precisely, there is a window between the time the uiomove() 4134 * completes and the time the r_size is updated. If a VOP_PUTPAGE() 4135 * operation intervenes in this window, the page will be picked up, 4136 * because it is dirty (it will be unlocked, unless it was 4137 * pagecreate'd). When the page is picked up as dirty, the dirty 4138 * bit is reset (pvn_getdirty()). In nfs(3)write(), r_size is 4139 * checked. This will still be the old size. Therefore the page will 4140 * not be written out. When segmap_release() calls VOP_PUTPAGE(), 4141 * the page will be found to be clean and the write will be dropped. 4142 */ 4143 if (rp->r_flags & RMODINPROGRESS) { 4144 mutex_enter(&rp->r_statelock); 4145 if ((rp->r_flags & RMODINPROGRESS) && 4146 rp->r_modaddr + MAXBSIZE > io_off && 4147 rp->r_modaddr < io_off + io_len) { 4148 page_t *plist; 4149 /* 4150 * A write is in progress for this region of the file. 4151 * If we did not detect RMODINPROGRESS here then this 4152 * path through nfs_putapage() would eventually go to 4153 * nfs(3)_bio() and may not write out all of the data 4154 * in the pages. We end up losing data. So we decide 4155 * to set the modified bit on each page in the page 4156 * list and mark the rnode with RDIRTY. This write 4157 * will be restarted at some later time. 4158 */ 4159 plist = pp; 4160 while (plist != NULL) { 4161 pp = plist; 4162 page_sub(&plist, pp); 4163 hat_setmod(pp); 4164 page_io_unlock(pp); 4165 page_unlock(pp); 4166 } 4167 rp->r_flags |= RDIRTY; 4168 mutex_exit(&rp->r_statelock); 4169 if (offp) 4170 *offp = io_off; 4171 if (lenp) 4172 *lenp = io_len; 4173 return (0); 4174 } 4175 mutex_exit(&rp->r_statelock); 4176 } 4177 4178 if (flags & B_ASYNC) { 4179 error = nfs_async_putapage(vp, pp, io_off, io_len, flags, cr, 4180 nfs_sync_putapage); 4181 } else 4182 error = nfs_sync_putapage(vp, pp, io_off, io_len, flags, cr); 4183 4184 if (offp) 4185 *offp = io_off; 4186 if (lenp) 4187 *lenp = io_len; 4188 return (error); 4189 } 4190 4191 static int 4192 nfs_sync_putapage(vnode_t *vp, page_t *pp, u_offset_t io_off, size_t io_len, 4193 int flags, cred_t *cr) 4194 { 4195 int error; 4196 rnode_t *rp; 4197 4198 flags |= B_WRITE; 4199 4200 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 4201 error = nfs_rdwrlbn(vp, pp, io_off, io_len, flags, cr); 4202 4203 rp = VTOR(vp); 4204 4205 if ((error == ENOSPC || error == EDQUOT || error == EACCES) && 4206 (flags & (B_INVAL|B_FORCE)) != (B_INVAL|B_FORCE)) { 4207 if (!(rp->r_flags & ROUTOFSPACE)) { 4208 mutex_enter(&rp->r_statelock); 4209 rp->r_flags |= ROUTOFSPACE; 4210 mutex_exit(&rp->r_statelock); 4211 } 4212 flags |= B_ERROR; 4213 pvn_write_done(pp, flags); 4214 /* 4215 * If this was not an async thread, then try again to 4216 * write out the pages, but this time, also destroy 4217 * them whether or not the write is successful. This 4218 * will prevent memory from filling up with these 4219 * pages and destroying them is the only alternative 4220 * if they can't be written out. 4221 * 4222 * Don't do this if this is an async thread because 4223 * when the pages are unlocked in pvn_write_done, 4224 * some other thread could have come along, locked 4225 * them, and queued for an async thread. It would be 4226 * possible for all of the async threads to be tied 4227 * up waiting to lock the pages again and they would 4228 * all already be locked and waiting for an async 4229 * thread to handle them. Deadlock. 4230 */ 4231 if (!(flags & B_ASYNC)) { 4232 error = nfs_putpage(vp, io_off, io_len, 4233 B_INVAL | B_FORCE, cr, NULL); 4234 } 4235 } else { 4236 if (error) 4237 flags |= B_ERROR; 4238 else if (rp->r_flags & ROUTOFSPACE) { 4239 mutex_enter(&rp->r_statelock); 4240 rp->r_flags &= ~ROUTOFSPACE; 4241 mutex_exit(&rp->r_statelock); 4242 } 4243 pvn_write_done(pp, flags); 4244 } 4245 4246 return (error); 4247 } 4248 4249 /* ARGSUSED */ 4250 static int 4251 nfs_map(vnode_t *vp, offset_t off, struct as *as, caddr_t *addrp, 4252 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr, 4253 caller_context_t *ct) 4254 { 4255 struct segvn_crargs vn_a; 4256 int error; 4257 rnode_t *rp; 4258 struct vattr va; 4259 4260 if (nfs_zone() != VTOMI(vp)->mi_zone) 4261 return (EIO); 4262 4263 if (vp->v_flag & VNOMAP) 4264 return (ENOSYS); 4265 4266 if (off > MAXOFF32_T) 4267 return (EFBIG); 4268 4269 if (off < 0 || off + len < 0) 4270 return (ENXIO); 4271 4272 if (vp->v_type != VREG) 4273 return (ENODEV); 4274 4275 /* 4276 * If there is cached data and if close-to-open consistency 4277 * checking is not turned off and if the file system is not 4278 * mounted readonly, then force an over the wire getattr. 4279 * Otherwise, just invoke nfsgetattr to get a copy of the 4280 * attributes. The attribute cache will be used unless it 4281 * is timed out and if it is, then an over the wire getattr 4282 * will be issued. 4283 */ 4284 va.va_mask = AT_ALL; 4285 if (vn_has_cached_data(vp) && 4286 !(VTOMI(vp)->mi_flags & MI_NOCTO) && !vn_is_readonly(vp)) 4287 error = nfs_getattr_otw(vp, &va, cr); 4288 else 4289 error = nfsgetattr(vp, &va, cr); 4290 if (error) 4291 return (error); 4292 4293 /* 4294 * Check to see if the vnode is currently marked as not cachable. 4295 * This means portions of the file are locked (through VOP_FRLOCK). 4296 * In this case the map request must be refused. We use 4297 * rp->r_lkserlock to avoid a race with concurrent lock requests. 4298 */ 4299 rp = VTOR(vp); 4300 4301 /* 4302 * Atomically increment r_inmap after acquiring r_rwlock. The 4303 * idea here is to acquire r_rwlock to block read/write and 4304 * not to protect r_inmap. r_inmap will inform nfs_read/write() 4305 * that we are in nfs_map(). Now, r_rwlock is acquired in order 4306 * and we can prevent the deadlock that would have occurred 4307 * when nfs_addmap() would have acquired it out of order. 4308 * 4309 * Since we are not protecting r_inmap by any lock, we do not 4310 * hold any lock when we decrement it. We atomically decrement 4311 * r_inmap after we release r_lkserlock. 4312 */ 4313 4314 if (nfs_rw_enter_sig(&rp->r_rwlock, RW_WRITER, INTR(vp))) 4315 return (EINTR); 4316 atomic_add_int(&rp->r_inmap, 1); 4317 nfs_rw_exit(&rp->r_rwlock); 4318 4319 if (nfs_rw_enter_sig(&rp->r_lkserlock, RW_READER, INTR(vp))) { 4320 atomic_add_int(&rp->r_inmap, -1); 4321 return (EINTR); 4322 } 4323 if (vp->v_flag & VNOCACHE) { 4324 error = EAGAIN; 4325 goto done; 4326 } 4327 4328 /* 4329 * Don't allow concurrent locks and mapping if mandatory locking is 4330 * enabled. 4331 */ 4332 if ((flk_has_remote_locks(vp) || lm_has_sleep(vp)) && 4333 MANDLOCK(vp, va.va_mode)) { 4334 error = EAGAIN; 4335 goto done; 4336 } 4337 4338 as_rangelock(as); 4339 error = choose_addr(as, addrp, len, off, ADDR_VACALIGN, flags); 4340 if (error != 0) { 4341 as_rangeunlock(as); 4342 goto done; 4343 } 4344 4345 vn_a.vp = vp; 4346 vn_a.offset = off; 4347 vn_a.type = (flags & MAP_TYPE); 4348 vn_a.prot = (uchar_t)prot; 4349 vn_a.maxprot = (uchar_t)maxprot; 4350 vn_a.flags = (flags & ~MAP_TYPE); 4351 vn_a.cred = cr; 4352 vn_a.amp = NULL; 4353 vn_a.szc = 0; 4354 vn_a.lgrp_mem_policy_flags = 0; 4355 4356 error = as_map(as, *addrp, len, segvn_create, &vn_a); 4357 as_rangeunlock(as); 4358 4359 done: 4360 nfs_rw_exit(&rp->r_lkserlock); 4361 atomic_add_int(&rp->r_inmap, -1); 4362 return (error); 4363 } 4364 4365 /* ARGSUSED */ 4366 static int 4367 nfs_addmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr, 4368 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr, 4369 caller_context_t *ct) 4370 { 4371 rnode_t *rp; 4372 4373 if (vp->v_flag & VNOMAP) 4374 return (ENOSYS); 4375 if (nfs_zone() != VTOMI(vp)->mi_zone) 4376 return (EIO); 4377 4378 rp = VTOR(vp); 4379 atomic_add_long((ulong_t *)&rp->r_mapcnt, btopr(len)); 4380 4381 return (0); 4382 } 4383 4384 /* ARGSUSED */ 4385 static int 4386 nfs_frlock(vnode_t *vp, int cmd, struct flock64 *bfp, int flag, offset_t offset, 4387 struct flk_callback *flk_cbp, cred_t *cr, caller_context_t *ct) 4388 { 4389 netobj lm_fh; 4390 int rc; 4391 u_offset_t start, end; 4392 rnode_t *rp; 4393 int error = 0, intr = INTR(vp); 4394 4395 /* check for valid cmd parameter */ 4396 if (cmd != F_GETLK && cmd != F_SETLK && cmd != F_SETLKW) 4397 return (EINVAL); 4398 if (nfs_zone() != VTOMI(vp)->mi_zone) 4399 return (EIO); 4400 4401 /* Verify l_type. */ 4402 switch (bfp->l_type) { 4403 case F_RDLCK: 4404 if (cmd != F_GETLK && !(flag & FREAD)) 4405 return (EBADF); 4406 break; 4407 case F_WRLCK: 4408 if (cmd != F_GETLK && !(flag & FWRITE)) 4409 return (EBADF); 4410 break; 4411 case F_UNLCK: 4412 intr = 0; 4413 break; 4414 4415 default: 4416 return (EINVAL); 4417 } 4418 4419 /* check the validity of the lock range */ 4420 if (rc = flk_convert_lock_data(vp, bfp, &start, &end, offset)) 4421 return (rc); 4422 if (rc = flk_check_lock_data(start, end, MAXOFF32_T)) 4423 return (rc); 4424 4425 /* 4426 * If the filesystem is mounted using local locking, pass the 4427 * request off to the local locking code. 4428 */ 4429 if (VTOMI(vp)->mi_flags & MI_LLOCK) { 4430 if (offset > MAXOFF32_T) 4431 return (EFBIG); 4432 if (cmd == F_SETLK || cmd == F_SETLKW) { 4433 /* 4434 * For complete safety, we should be holding 4435 * r_lkserlock. However, we can't call 4436 * lm_safelock and then fs_frlock while 4437 * holding r_lkserlock, so just invoke 4438 * lm_safelock and expect that this will 4439 * catch enough of the cases. 4440 */ 4441 if (!lm_safelock(vp, bfp, cr)) 4442 return (EAGAIN); 4443 } 4444 return (fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr, ct)); 4445 } 4446 4447 rp = VTOR(vp); 4448 4449 /* 4450 * Check whether the given lock request can proceed, given the 4451 * current file mappings. 4452 */ 4453 if (nfs_rw_enter_sig(&rp->r_lkserlock, RW_WRITER, intr)) 4454 return (EINTR); 4455 if (cmd == F_SETLK || cmd == F_SETLKW) { 4456 if (!lm_safelock(vp, bfp, cr)) { 4457 rc = EAGAIN; 4458 goto done; 4459 } 4460 } 4461 4462 /* 4463 * Flush the cache after waiting for async I/O to finish. For new 4464 * locks, this is so that the process gets the latest bits from the 4465 * server. For unlocks, this is so that other clients see the 4466 * latest bits once the file has been unlocked. If currently dirty 4467 * pages can't be flushed, then don't allow a lock to be set. But 4468 * allow unlocks to succeed, to avoid having orphan locks on the 4469 * server. 4470 */ 4471 if (cmd != F_GETLK) { 4472 mutex_enter(&rp->r_statelock); 4473 while (rp->r_count > 0) { 4474 if (intr) { 4475 klwp_t *lwp = ttolwp(curthread); 4476 4477 if (lwp != NULL) 4478 lwp->lwp_nostop++; 4479 if (cv_wait_sig(&rp->r_cv, &rp->r_statelock) 4480 == 0) { 4481 if (lwp != NULL) 4482 lwp->lwp_nostop--; 4483 rc = EINTR; 4484 break; 4485 } 4486 if (lwp != NULL) 4487 lwp->lwp_nostop--; 4488 } else 4489 cv_wait(&rp->r_cv, &rp->r_statelock); 4490 } 4491 mutex_exit(&rp->r_statelock); 4492 if (rc != 0) 4493 goto done; 4494 error = nfs_putpage(vp, (offset_t)0, 0, B_INVAL, cr, ct); 4495 if (error) { 4496 if (error == ENOSPC || error == EDQUOT) { 4497 mutex_enter(&rp->r_statelock); 4498 if (!rp->r_error) 4499 rp->r_error = error; 4500 mutex_exit(&rp->r_statelock); 4501 } 4502 if (bfp->l_type != F_UNLCK) { 4503 rc = ENOLCK; 4504 goto done; 4505 } 4506 } 4507 } 4508 4509 lm_fh.n_len = sizeof (fhandle_t); 4510 lm_fh.n_bytes = (char *)VTOFH(vp); 4511 4512 /* 4513 * Call the lock manager to do the real work of contacting 4514 * the server and obtaining the lock. 4515 */ 4516 rc = lm_frlock(vp, cmd, bfp, flag, offset, cr, &lm_fh, flk_cbp); 4517 4518 if (rc == 0) 4519 nfs_lockcompletion(vp, cmd); 4520 4521 done: 4522 nfs_rw_exit(&rp->r_lkserlock); 4523 return (rc); 4524 } 4525 4526 /* 4527 * Free storage space associated with the specified vnode. The portion 4528 * to be freed is specified by bfp->l_start and bfp->l_len (already 4529 * normalized to a "whence" of 0). 4530 * 4531 * This is an experimental facility whose continued existence is not 4532 * guaranteed. Currently, we only support the special case 4533 * of l_len == 0, meaning free to end of file. 4534 */ 4535 /* ARGSUSED */ 4536 static int 4537 nfs_space(vnode_t *vp, int cmd, struct flock64 *bfp, int flag, 4538 offset_t offset, cred_t *cr, caller_context_t *ct) 4539 { 4540 int error; 4541 4542 ASSERT(vp->v_type == VREG); 4543 if (cmd != F_FREESP) 4544 return (EINVAL); 4545 4546 if (offset > MAXOFF32_T) 4547 return (EFBIG); 4548 4549 if ((bfp->l_start > MAXOFF32_T) || (bfp->l_end > MAXOFF32_T) || 4550 (bfp->l_len > MAXOFF32_T)) 4551 return (EFBIG); 4552 4553 if (nfs_zone() != VTOMI(vp)->mi_zone) 4554 return (EIO); 4555 4556 error = convoff(vp, bfp, 0, offset); 4557 if (!error) { 4558 ASSERT(bfp->l_start >= 0); 4559 if (bfp->l_len == 0) { 4560 struct vattr va; 4561 4562 /* 4563 * ftruncate should not change the ctime and 4564 * mtime if we truncate the file to its 4565 * previous size. 4566 */ 4567 va.va_mask = AT_SIZE; 4568 error = nfsgetattr(vp, &va, cr); 4569 if (error || va.va_size == bfp->l_start) 4570 return (error); 4571 va.va_mask = AT_SIZE; 4572 va.va_size = bfp->l_start; 4573 error = nfssetattr(vp, &va, 0, cr); 4574 } else 4575 error = EINVAL; 4576 } 4577 4578 return (error); 4579 } 4580 4581 /* ARGSUSED */ 4582 static int 4583 nfs_realvp(vnode_t *vp, vnode_t **vpp, caller_context_t *ct) 4584 { 4585 4586 return (EINVAL); 4587 } 4588 4589 /* 4590 * Setup and add an address space callback to do the work of the delmap call. 4591 * The callback will (and must be) deleted in the actual callback function. 4592 * 4593 * This is done in order to take care of the problem that we have with holding 4594 * the address space's a_lock for a long period of time (e.g. if the NFS server 4595 * is down). Callbacks will be executed in the address space code while the 4596 * a_lock is not held. Holding the address space's a_lock causes things such 4597 * as ps and fork to hang because they are trying to acquire this lock as well. 4598 */ 4599 /* ARGSUSED */ 4600 static int 4601 nfs_delmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr, 4602 size_t len, uint_t prot, uint_t maxprot, uint_t flags, cred_t *cr, 4603 caller_context_t *ct) 4604 { 4605 int caller_found; 4606 int error; 4607 rnode_t *rp; 4608 nfs_delmap_args_t *dmapp; 4609 nfs_delmapcall_t *delmap_call; 4610 4611 if (vp->v_flag & VNOMAP) 4612 return (ENOSYS); 4613 /* 4614 * A process may not change zones if it has NFS pages mmap'ed 4615 * in, so we can't legitimately get here from the wrong zone. 4616 */ 4617 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 4618 4619 rp = VTOR(vp); 4620 4621 /* 4622 * The way that the address space of this process deletes its mapping 4623 * of this file is via the following call chains: 4624 * - as_free()->SEGOP_UNMAP()/segvn_unmap()->VOP_DELMAP()/nfs_delmap() 4625 * - as_unmap()->SEGOP_UNMAP()/segvn_unmap()->VOP_DELMAP()/nfs_delmap() 4626 * 4627 * With the use of address space callbacks we are allowed to drop the 4628 * address space lock, a_lock, while executing the NFS operations that 4629 * need to go over the wire. Returning EAGAIN to the caller of this 4630 * function is what drives the execution of the callback that we add 4631 * below. The callback will be executed by the address space code 4632 * after dropping the a_lock. When the callback is finished, since 4633 * we dropped the a_lock, it must be re-acquired and segvn_unmap() 4634 * is called again on the same segment to finish the rest of the work 4635 * that needs to happen during unmapping. 4636 * 4637 * This action of calling back into the segment driver causes 4638 * nfs_delmap() to get called again, but since the callback was 4639 * already executed at this point, it already did the work and there 4640 * is nothing left for us to do. 4641 * 4642 * To Summarize: 4643 * - The first time nfs_delmap is called by the current thread is when 4644 * we add the caller associated with this delmap to the delmap caller 4645 * list, add the callback, and return EAGAIN. 4646 * - The second time in this call chain when nfs_delmap is called we 4647 * will find this caller in the delmap caller list and realize there 4648 * is no more work to do thus removing this caller from the list and 4649 * returning the error that was set in the callback execution. 4650 */ 4651 caller_found = nfs_find_and_delete_delmapcall(rp, &error); 4652 if (caller_found) { 4653 /* 4654 * 'error' is from the actual delmap operations. To avoid 4655 * hangs, we need to handle the return of EAGAIN differently 4656 * since this is what drives the callback execution. 4657 * In this case, we don't want to return EAGAIN and do the 4658 * callback execution because there are none to execute. 4659 */ 4660 if (error == EAGAIN) 4661 return (0); 4662 else 4663 return (error); 4664 } 4665 4666 /* current caller was not in the list */ 4667 delmap_call = nfs_init_delmapcall(); 4668 4669 mutex_enter(&rp->r_statelock); 4670 list_insert_tail(&rp->r_indelmap, delmap_call); 4671 mutex_exit(&rp->r_statelock); 4672 4673 dmapp = kmem_alloc(sizeof (nfs_delmap_args_t), KM_SLEEP); 4674 4675 dmapp->vp = vp; 4676 dmapp->off = off; 4677 dmapp->addr = addr; 4678 dmapp->len = len; 4679 dmapp->prot = prot; 4680 dmapp->maxprot = maxprot; 4681 dmapp->flags = flags; 4682 dmapp->cr = cr; 4683 dmapp->caller = delmap_call; 4684 4685 error = as_add_callback(as, nfs_delmap_callback, dmapp, 4686 AS_UNMAP_EVENT, addr, len, KM_SLEEP); 4687 4688 return (error ? error : EAGAIN); 4689 } 4690 4691 /* 4692 * Remove some pages from an mmap'd vnode. Just update the 4693 * count of pages. If doing close-to-open, then flush all 4694 * of the pages associated with this file. Otherwise, start 4695 * an asynchronous page flush to write out any dirty pages. 4696 * This will also associate a credential with the rnode which 4697 * can be used to write the pages. 4698 */ 4699 /* ARGSUSED */ 4700 static void 4701 nfs_delmap_callback(struct as *as, void *arg, uint_t event) 4702 { 4703 int error; 4704 rnode_t *rp; 4705 mntinfo_t *mi; 4706 nfs_delmap_args_t *dmapp = (nfs_delmap_args_t *)arg; 4707 4708 rp = VTOR(dmapp->vp); 4709 mi = VTOMI(dmapp->vp); 4710 4711 atomic_add_long((ulong_t *)&rp->r_mapcnt, -btopr(dmapp->len)); 4712 ASSERT(rp->r_mapcnt >= 0); 4713 4714 /* 4715 * Initiate a page flush if there are pages, the file system 4716 * was not mounted readonly, the segment was mapped shared, and 4717 * the pages themselves were writeable. 4718 */ 4719 if (vn_has_cached_data(dmapp->vp) && !vn_is_readonly(dmapp->vp) && 4720 dmapp->flags == MAP_SHARED && (dmapp->maxprot & PROT_WRITE)) { 4721 mutex_enter(&rp->r_statelock); 4722 rp->r_flags |= RDIRTY; 4723 mutex_exit(&rp->r_statelock); 4724 /* 4725 * If this is a cross-zone access a sync putpage won't work, so 4726 * the best we can do is try an async putpage. That seems 4727 * better than something more draconian such as discarding the 4728 * dirty pages. 4729 */ 4730 if ((mi->mi_flags & MI_NOCTO) || 4731 nfs_zone() != mi->mi_zone) 4732 error = nfs_putpage(dmapp->vp, dmapp->off, dmapp->len, 4733 B_ASYNC, dmapp->cr, NULL); 4734 else 4735 error = nfs_putpage(dmapp->vp, dmapp->off, dmapp->len, 4736 0, dmapp->cr, NULL); 4737 if (!error) { 4738 mutex_enter(&rp->r_statelock); 4739 error = rp->r_error; 4740 rp->r_error = 0; 4741 mutex_exit(&rp->r_statelock); 4742 } 4743 } else 4744 error = 0; 4745 4746 if ((rp->r_flags & RDIRECTIO) || (mi->mi_flags & MI_DIRECTIO)) 4747 (void) nfs_putpage(dmapp->vp, dmapp->off, dmapp->len, 4748 B_INVAL, dmapp->cr, NULL); 4749 4750 dmapp->caller->error = error; 4751 (void) as_delete_callback(as, arg); 4752 kmem_free(dmapp, sizeof (nfs_delmap_args_t)); 4753 } 4754 4755 /* ARGSUSED */ 4756 static int 4757 nfs_pathconf(vnode_t *vp, int cmd, ulong_t *valp, cred_t *cr, 4758 caller_context_t *ct) 4759 { 4760 int error = 0; 4761 4762 if (nfs_zone() != VTOMI(vp)->mi_zone) 4763 return (EIO); 4764 /* 4765 * This looks a little weird because it's written in a general 4766 * manner but we make little use of cases. If cntl() ever gets 4767 * widely used, the outer switch will make more sense. 4768 */ 4769 4770 switch (cmd) { 4771 4772 /* 4773 * Large file spec - need to base answer new query with 4774 * hardcoded constant based on the protocol. 4775 */ 4776 case _PC_FILESIZEBITS: 4777 *valp = 32; 4778 return (0); 4779 4780 case _PC_LINK_MAX: 4781 case _PC_NAME_MAX: 4782 case _PC_PATH_MAX: 4783 case _PC_SYMLINK_MAX: 4784 case _PC_CHOWN_RESTRICTED: 4785 case _PC_NO_TRUNC: { 4786 mntinfo_t *mi; 4787 struct pathcnf *pc; 4788 4789 if ((mi = VTOMI(vp)) == NULL || (pc = mi->mi_pathconf) == NULL) 4790 return (EINVAL); 4791 error = _PC_ISSET(cmd, pc->pc_mask); /* error or bool */ 4792 switch (cmd) { 4793 case _PC_LINK_MAX: 4794 *valp = pc->pc_link_max; 4795 break; 4796 case _PC_NAME_MAX: 4797 *valp = pc->pc_name_max; 4798 break; 4799 case _PC_PATH_MAX: 4800 case _PC_SYMLINK_MAX: 4801 *valp = pc->pc_path_max; 4802 break; 4803 case _PC_CHOWN_RESTRICTED: 4804 /* 4805 * if we got here, error is really a boolean which 4806 * indicates whether cmd is set or not. 4807 */ 4808 *valp = error ? 1 : 0; /* see above */ 4809 error = 0; 4810 break; 4811 case _PC_NO_TRUNC: 4812 /* 4813 * if we got here, error is really a boolean which 4814 * indicates whether cmd is set or not. 4815 */ 4816 *valp = error ? 1 : 0; /* see above */ 4817 error = 0; 4818 break; 4819 } 4820 return (error ? EINVAL : 0); 4821 } 4822 4823 case _PC_XATTR_EXISTS: 4824 *valp = 0; 4825 if (vp->v_vfsp->vfs_flag & VFS_XATTR) { 4826 vnode_t *avp; 4827 rnode_t *rp; 4828 mntinfo_t *mi = VTOMI(vp); 4829 4830 if (!(mi->mi_flags & MI_EXTATTR)) 4831 return (0); 4832 4833 rp = VTOR(vp); 4834 if (nfs_rw_enter_sig(&rp->r_rwlock, RW_READER, 4835 INTR(vp))) 4836 return (EINTR); 4837 4838 error = nfslookup_dnlc(vp, XATTR_DIR_NAME, &avp, cr); 4839 if (error || avp == NULL) 4840 error = acl_getxattrdir2(vp, &avp, 0, cr, 0); 4841 4842 nfs_rw_exit(&rp->r_rwlock); 4843 4844 if (error == 0 && avp != NULL) { 4845 error = do_xattr_exists_check(avp, valp, cr); 4846 VN_RELE(avp); 4847 } 4848 } 4849 return (error ? EINVAL : 0); 4850 4851 case _PC_ACL_ENABLED: 4852 *valp = _ACL_ACLENT_ENABLED; 4853 return (0); 4854 4855 default: 4856 return (EINVAL); 4857 } 4858 } 4859 4860 /* 4861 * Called by async thread to do synchronous pageio. Do the i/o, wait 4862 * for it to complete, and cleanup the page list when done. 4863 */ 4864 static int 4865 nfs_sync_pageio(vnode_t *vp, page_t *pp, u_offset_t io_off, size_t io_len, 4866 int flags, cred_t *cr) 4867 { 4868 int error; 4869 4870 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 4871 error = nfs_rdwrlbn(vp, pp, io_off, io_len, flags, cr); 4872 if (flags & B_READ) 4873 pvn_read_done(pp, (error ? B_ERROR : 0) | flags); 4874 else 4875 pvn_write_done(pp, (error ? B_ERROR : 0) | flags); 4876 return (error); 4877 } 4878 4879 /* ARGSUSED */ 4880 static int 4881 nfs_pageio(vnode_t *vp, page_t *pp, u_offset_t io_off, size_t io_len, 4882 int flags, cred_t *cr, caller_context_t *ct) 4883 { 4884 int error; 4885 rnode_t *rp; 4886 4887 if (pp == NULL) 4888 return (EINVAL); 4889 4890 if (io_off > MAXOFF32_T) 4891 return (EFBIG); 4892 if (nfs_zone() != VTOMI(vp)->mi_zone) 4893 return (EIO); 4894 rp = VTOR(vp); 4895 mutex_enter(&rp->r_statelock); 4896 rp->r_count++; 4897 mutex_exit(&rp->r_statelock); 4898 4899 if (flags & B_ASYNC) { 4900 error = nfs_async_pageio(vp, pp, io_off, io_len, flags, cr, 4901 nfs_sync_pageio); 4902 } else 4903 error = nfs_rdwrlbn(vp, pp, io_off, io_len, flags, cr); 4904 mutex_enter(&rp->r_statelock); 4905 rp->r_count--; 4906 cv_broadcast(&rp->r_cv); 4907 mutex_exit(&rp->r_statelock); 4908 return (error); 4909 } 4910 4911 /* ARGSUSED */ 4912 static int 4913 nfs_setsecattr(vnode_t *vp, vsecattr_t *vsecattr, int flag, cred_t *cr, 4914 caller_context_t *ct) 4915 { 4916 int error; 4917 mntinfo_t *mi; 4918 4919 mi = VTOMI(vp); 4920 4921 if (nfs_zone() != mi->mi_zone) 4922 return (EIO); 4923 if (mi->mi_flags & MI_ACL) { 4924 error = acl_setacl2(vp, vsecattr, flag, cr); 4925 if (mi->mi_flags & MI_ACL) 4926 return (error); 4927 } 4928 4929 return (ENOSYS); 4930 } 4931 4932 /* ARGSUSED */ 4933 static int 4934 nfs_getsecattr(vnode_t *vp, vsecattr_t *vsecattr, int flag, cred_t *cr, 4935 caller_context_t *ct) 4936 { 4937 int error; 4938 mntinfo_t *mi; 4939 4940 mi = VTOMI(vp); 4941 4942 if (nfs_zone() != mi->mi_zone) 4943 return (EIO); 4944 if (mi->mi_flags & MI_ACL) { 4945 error = acl_getacl2(vp, vsecattr, flag, cr); 4946 if (mi->mi_flags & MI_ACL) 4947 return (error); 4948 } 4949 4950 return (fs_fab_acl(vp, vsecattr, flag, cr, ct)); 4951 } 4952 4953 /* ARGSUSED */ 4954 static int 4955 nfs_shrlock(vnode_t *vp, int cmd, struct shrlock *shr, int flag, cred_t *cr, 4956 caller_context_t *ct) 4957 { 4958 int error; 4959 struct shrlock nshr; 4960 struct nfs_owner nfs_owner; 4961 netobj lm_fh; 4962 4963 if (nfs_zone() != VTOMI(vp)->mi_zone) 4964 return (EIO); 4965 4966 /* 4967 * check for valid cmd parameter 4968 */ 4969 if (cmd != F_SHARE && cmd != F_UNSHARE && cmd != F_HASREMOTELOCKS) 4970 return (EINVAL); 4971 4972 /* 4973 * Check access permissions 4974 */ 4975 if (cmd == F_SHARE && 4976 (((shr->s_access & F_RDACC) && !(flag & FREAD)) || 4977 ((shr->s_access & F_WRACC) && !(flag & FWRITE)))) 4978 return (EBADF); 4979 4980 /* 4981 * If the filesystem is mounted using local locking, pass the 4982 * request off to the local share code. 4983 */ 4984 if (VTOMI(vp)->mi_flags & MI_LLOCK) 4985 return (fs_shrlock(vp, cmd, shr, flag, cr, ct)); 4986 4987 switch (cmd) { 4988 case F_SHARE: 4989 case F_UNSHARE: 4990 lm_fh.n_len = sizeof (fhandle_t); 4991 lm_fh.n_bytes = (char *)VTOFH(vp); 4992 4993 /* 4994 * If passed an owner that is too large to fit in an 4995 * nfs_owner it is likely a recursive call from the 4996 * lock manager client and pass it straight through. If 4997 * it is not a nfs_owner then simply return an error. 4998 */ 4999 if (shr->s_own_len > sizeof (nfs_owner.lowner)) { 5000 if (((struct nfs_owner *)shr->s_owner)->magic != 5001 NFS_OWNER_MAGIC) 5002 return (EINVAL); 5003 5004 if (error = lm_shrlock(vp, cmd, shr, flag, &lm_fh)) { 5005 error = set_errno(error); 5006 } 5007 return (error); 5008 } 5009 /* 5010 * Remote share reservations owner is a combination of 5011 * a magic number, hostname, and the local owner 5012 */ 5013 bzero(&nfs_owner, sizeof (nfs_owner)); 5014 nfs_owner.magic = NFS_OWNER_MAGIC; 5015 (void) strncpy(nfs_owner.hname, uts_nodename(), 5016 sizeof (nfs_owner.hname)); 5017 bcopy(shr->s_owner, nfs_owner.lowner, shr->s_own_len); 5018 nshr.s_access = shr->s_access; 5019 nshr.s_deny = shr->s_deny; 5020 nshr.s_sysid = 0; 5021 nshr.s_pid = ttoproc(curthread)->p_pid; 5022 nshr.s_own_len = sizeof (nfs_owner); 5023 nshr.s_owner = (caddr_t)&nfs_owner; 5024 5025 if (error = lm_shrlock(vp, cmd, &nshr, flag, &lm_fh)) { 5026 error = set_errno(error); 5027 } 5028 5029 break; 5030 5031 case F_HASREMOTELOCKS: 5032 /* 5033 * NFS client can't store remote locks itself 5034 */ 5035 shr->s_access = 0; 5036 error = 0; 5037 break; 5038 5039 default: 5040 error = EINVAL; 5041 break; 5042 } 5043 5044 return (error); 5045 } 5046