xref: /titanic_44/usr/src/uts/common/fs/nfs/nfs_vfsops.c (revision 8ba25627aaba4ea5318b8a7588142fdcdc1c765a)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  *
25  *	Copyright (c) 1983,1984,1985,1986,1987,1988,1989  AT&T.
26  *	All rights reserved.
27  */
28 
29 #pragma ident	"%Z%%M%	%I%	%E% SMI"
30 
31 #include <sys/param.h>
32 #include <sys/types.h>
33 #include <sys/systm.h>
34 #include <sys/cred.h>
35 #include <sys/vfs.h>
36 #include <sys/vnode.h>
37 #include <sys/pathname.h>
38 #include <sys/sysmacros.h>
39 #include <sys/kmem.h>
40 #include <sys/mkdev.h>
41 #include <sys/mount.h>
42 #include <sys/mntent.h>
43 #include <sys/statvfs.h>
44 #include <sys/errno.h>
45 #include <sys/debug.h>
46 #include <sys/cmn_err.h>
47 #include <sys/utsname.h>
48 #include <sys/bootconf.h>
49 #include <sys/modctl.h>
50 #include <sys/acl.h>
51 #include <sys/flock.h>
52 #include <sys/policy.h>
53 #include <sys/zone.h>
54 #include <sys/class.h>
55 #include <sys/socket.h>
56 #include <sys/netconfig.h>
57 #include <sys/mntent.h>
58 #include <sys/tsol/label.h>
59 
60 #include <rpc/types.h>
61 #include <rpc/auth.h>
62 #include <rpc/clnt.h>
63 
64 #include <nfs/nfs.h>
65 #include <nfs/nfs_clnt.h>
66 #include <nfs/rnode.h>
67 #include <nfs/mount.h>
68 #include <nfs/nfs_acl.h>
69 
70 #include <fs/fs_subr.h>
71 
72 /*
73  * From rpcsec module (common/rpcsec).
74  */
75 extern int sec_clnt_loadinfo(struct sec_data *, struct sec_data **, model_t);
76 extern void sec_clnt_freeinfo(struct sec_data *);
77 
78 static int pathconf_copyin(struct nfs_args *, struct pathcnf *);
79 static int pathconf_get(struct mntinfo *, struct nfs_args *);
80 static void pathconf_rele(struct mntinfo *);
81 
82 /*
83  * The order and contents of this structure must be kept in sync with that of
84  * rfsreqcnt_v2_tmpl in nfs_stats.c
85  */
86 static char *rfsnames_v2[] = {
87 	"null", "getattr", "setattr", "unused", "lookup", "readlink", "read",
88 	"unused", "write", "create", "remove", "rename", "link", "symlink",
89 	"mkdir", "rmdir", "readdir", "fsstat"
90 };
91 
92 /*
93  * This table maps from NFS protocol number into call type.
94  * Zero means a "Lookup" type call
95  * One  means a "Read" type call
96  * Two  means a "Write" type call
97  * This is used to select a default time-out.
98  */
99 static uchar_t call_type_v2[] = {
100 	0, 0, 1, 0, 0, 0, 1,
101 	0, 2, 2, 2, 2, 2, 2,
102 	2, 2, 1, 0
103 };
104 
105 /*
106  * Similar table, but to determine which timer to use
107  * (only real reads and writes!)
108  */
109 static uchar_t timer_type_v2[] = {
110 	0, 0, 0, 0, 0, 0, 1,
111 	0, 2, 0, 0, 0, 0, 0,
112 	0, 0, 1, 0
113 };
114 
115 /*
116  * This table maps from NFS protocol number into a call type
117  * for the semisoft mount option.
118  * Zero means do not repeat operation.
119  * One  means repeat.
120  */
121 static uchar_t ss_call_type_v2[] = {
122 	0, 0, 1, 0, 0, 0, 0,
123 	0, 1, 1, 1, 1, 1, 1,
124 	1, 1, 0, 0
125 };
126 
127 /*
128  * nfs vfs operations.
129  */
130 static int	nfs_mount(vfs_t *, vnode_t *, struct mounta *, cred_t *);
131 static int	nfs_unmount(vfs_t *, int, cred_t *);
132 static int	nfs_root(vfs_t *, vnode_t **);
133 static int	nfs_statvfs(vfs_t *, struct statvfs64 *);
134 static int	nfs_sync(vfs_t *, short, cred_t *);
135 static int	nfs_vget(vfs_t *, vnode_t **, fid_t *);
136 static int	nfs_mountroot(vfs_t *, whymountroot_t);
137 static void	nfs_freevfs(vfs_t *);
138 
139 static int	nfsrootvp(vnode_t **, vfs_t *, struct servinfo *,
140 		    int, cred_t *, zone_t *);
141 
142 /*
143  * Initialize the vfs structure
144  */
145 
146 int nfsfstyp;
147 vfsops_t *nfs_vfsops;
148 
149 /*
150  * Debug variable to check for rdma based
151  * transport startup and cleanup. Controlled
152  * through /etc/system. Off by default.
153  */
154 int rdma_debug = 0;
155 
156 int
157 nfsinit(int fstyp, char *name)
158 {
159 	static const fs_operation_def_t nfs_vfsops_template[] = {
160 		VFSNAME_MOUNT, nfs_mount,
161 		VFSNAME_UNMOUNT, nfs_unmount,
162 		VFSNAME_ROOT, nfs_root,
163 		VFSNAME_STATVFS, nfs_statvfs,
164 		VFSNAME_SYNC, (fs_generic_func_p) nfs_sync,
165 		VFSNAME_VGET, nfs_vget,
166 		VFSNAME_MOUNTROOT, nfs_mountroot,
167 		VFSNAME_FREEVFS, (fs_generic_func_p)nfs_freevfs,
168 		NULL, NULL
169 	};
170 	int error;
171 
172 	error = vfs_setfsops(fstyp, nfs_vfsops_template, &nfs_vfsops);
173 	if (error != 0) {
174 		zcmn_err(GLOBAL_ZONEID, CE_WARN,
175 		    "nfsinit: bad vfs ops template");
176 		return (error);
177 	}
178 
179 	error = vn_make_ops(name, nfs_vnodeops_template, &nfs_vnodeops);
180 	if (error != 0) {
181 		(void) vfs_freevfsops_by_type(fstyp);
182 		zcmn_err(GLOBAL_ZONEID, CE_WARN,
183 		    "nfsinit: bad vnode ops template");
184 		return (error);
185 	}
186 
187 
188 	nfsfstyp = fstyp;
189 
190 	return (0);
191 }
192 
193 void
194 nfsfini(void)
195 {
196 }
197 
198 static void
199 nfs_free_args(struct nfs_args *nargs, nfs_fhandle *fh)
200 {
201 
202 	if (fh)
203 		kmem_free(fh, sizeof (*fh));
204 
205 	if (nargs->pathconf) {
206 		kmem_free(nargs->pathconf, sizeof (struct pathcnf));
207 		nargs->pathconf = NULL;
208 	}
209 
210 	if (nargs->knconf) {
211 		if (nargs->knconf->knc_protofmly)
212 			kmem_free(nargs->knconf->knc_protofmly,
213 				KNC_STRSIZE);
214 		if (nargs->knconf->knc_proto)
215 			kmem_free(nargs->knconf->knc_proto, KNC_STRSIZE);
216 		kmem_free(nargs->knconf, sizeof (*nargs->knconf));
217 		nargs->knconf = NULL;
218 	}
219 
220 	if (nargs->fh) {
221 		kmem_free(nargs->fh, strlen(nargs->fh) + 1);
222 		nargs->fh = NULL;
223 	}
224 
225 	if (nargs->hostname) {
226 		kmem_free(nargs->hostname, strlen(nargs->hostname) + 1);
227 		nargs->hostname = NULL;
228 	}
229 
230 	if (nargs->addr) {
231 		if (nargs->addr->buf) {
232 			ASSERT(nargs->addr->len);
233 			kmem_free(nargs->addr->buf, nargs->addr->len);
234 		}
235 		kmem_free(nargs->addr, sizeof (struct netbuf));
236 		nargs->addr = NULL;
237 	}
238 
239 	if (nargs->syncaddr) {
240 		ASSERT(nargs->syncaddr->len);
241 		if (nargs->syncaddr->buf) {
242 			ASSERT(nargs->syncaddr->len);
243 			kmem_free(nargs->syncaddr->buf, nargs->syncaddr->len);
244 		}
245 		kmem_free(nargs->syncaddr, sizeof (struct netbuf));
246 		nargs->syncaddr = NULL;
247 	}
248 
249 	if (nargs->netname) {
250 		kmem_free(nargs->netname, strlen(nargs->netname) + 1);
251 		nargs->netname = NULL;
252 	}
253 
254 	if (nargs->nfs_ext_u.nfs_extA.secdata) {
255 		sec_clnt_freeinfo(
256 			nargs->nfs_ext_u.nfs_extA.secdata);
257 		nargs->nfs_ext_u.nfs_extA.secdata = NULL;
258 	}
259 }
260 
261 static int
262 nfs_copyin(char *data, int datalen, struct nfs_args *nargs, nfs_fhandle *fh)
263 {
264 
265 	int error;
266 	size_t nlen;			/* length of netname */
267 	size_t hlen;			/* length of hostname */
268 	char netname[MAXNETNAMELEN+1];	/* server's netname */
269 	struct netbuf addr;		/* server's address */
270 	struct netbuf syncaddr;		/* AUTH_DES time sync addr */
271 	struct knetconfig *knconf;	/* transport knetconfig structure */
272 	struct sec_data *secdata = NULL;	/* security data */
273 	STRUCT_DECL(nfs_args, args);		/* nfs mount arguments */
274 	STRUCT_DECL(knetconfig, knconf_tmp);
275 	STRUCT_DECL(netbuf, addr_tmp);
276 	int flags;
277 	struct pathcnf	*pc;		/* Pathconf */
278 	char *p, *pf;
279 	char *userbufptr;
280 
281 
282 	bzero(nargs, sizeof (*nargs));
283 
284 	STRUCT_INIT(args, get_udatamodel());
285 	bzero(STRUCT_BUF(args), SIZEOF_STRUCT(nfs_args, DATAMODEL_NATIVE));
286 	if (copyin(data, STRUCT_BUF(args), MIN(datalen,
287 		STRUCT_SIZE(args))))
288 		return (EFAULT);
289 
290 	nargs->wsize = STRUCT_FGET(args, wsize);
291 	nargs->rsize = STRUCT_FGET(args, rsize);
292 	nargs->timeo = STRUCT_FGET(args, timeo);
293 	nargs->retrans = STRUCT_FGET(args, retrans);
294 	nargs->acregmin = STRUCT_FGET(args, acregmin);
295 	nargs->acregmax = STRUCT_FGET(args, acregmax);
296 	nargs->acdirmin = STRUCT_FGET(args, acdirmin);
297 	nargs->acdirmax = STRUCT_FGET(args, acdirmax);
298 
299 	flags = STRUCT_FGET(args, flags);
300 	nargs->flags = flags;
301 
302 
303 	addr.buf = NULL;
304 	syncaddr.buf = NULL;
305 
306 	/*
307 	 * Allocate space for a knetconfig structure and
308 	 * its strings and copy in from user-land.
309 	 */
310 	knconf = kmem_zalloc(sizeof (*knconf), KM_SLEEP);
311 	STRUCT_INIT(knconf_tmp, get_udatamodel());
312 	if (copyin(STRUCT_FGETP(args, knconf), STRUCT_BUF(knconf_tmp),
313 		STRUCT_SIZE(knconf_tmp))) {
314 		kmem_free(knconf, sizeof (*knconf));
315 		return (EFAULT);
316 	}
317 
318 	knconf->knc_semantics = STRUCT_FGET(knconf_tmp, knc_semantics);
319 	knconf->knc_protofmly = STRUCT_FGETP(knconf_tmp, knc_protofmly);
320 	knconf->knc_proto = STRUCT_FGETP(knconf_tmp, knc_proto);
321 	if (get_udatamodel() != DATAMODEL_LP64) {
322 		knconf->knc_rdev = expldev(STRUCT_FGET(knconf_tmp, knc_rdev));
323 	} else {
324 		knconf->knc_rdev = STRUCT_FGET(knconf_tmp, knc_rdev);
325 	}
326 
327 	pf = kmem_alloc(KNC_STRSIZE, KM_SLEEP);
328 	p = kmem_alloc(KNC_STRSIZE, KM_SLEEP);
329 	error = copyinstr(knconf->knc_protofmly, pf, KNC_STRSIZE, NULL);
330 	if (error) {
331 		kmem_free(pf, KNC_STRSIZE);
332 		kmem_free(p, KNC_STRSIZE);
333 		kmem_free(knconf, sizeof (*knconf));
334 		return (error);
335 	}
336 
337 	error = copyinstr(knconf->knc_proto, p, KNC_STRSIZE, NULL);
338 	if (error) {
339 		kmem_free(pf, KNC_STRSIZE);
340 		kmem_free(p, KNC_STRSIZE);
341 		kmem_free(knconf, sizeof (*knconf));
342 		return (error);
343 	}
344 
345 
346 	knconf->knc_protofmly = pf;
347 	knconf->knc_proto = p;
348 
349 	nargs->knconf = knconf;
350 
351 	/* Copyin pathconf if there is one */
352 	if (STRUCT_FGETP(args, pathconf) != NULL) {
353 		pc = kmem_alloc(sizeof (*pc), KM_SLEEP);
354 		error = pathconf_copyin(STRUCT_BUF(args), pc);
355 		nargs->pathconf = pc;
356 		if (error)
357 			goto errout;
358 	}
359 
360 	/*
361 	 * Get server address
362 	 */
363 	STRUCT_INIT(addr_tmp, get_udatamodel());
364 	if (copyin(STRUCT_FGETP(args, addr), STRUCT_BUF(addr_tmp),
365 		STRUCT_SIZE(addr_tmp))) {
366 		error = EFAULT;
367 		goto errout;
368 	}
369 	nargs->addr = kmem_alloc(sizeof (struct netbuf), KM_SLEEP);
370 	userbufptr = STRUCT_FGETP(addr_tmp, buf);
371 	addr.len = STRUCT_FGET(addr_tmp, len);
372 	addr.buf = kmem_alloc(addr.len, KM_SLEEP);
373 	addr.maxlen = addr.len;
374 	if (copyin(userbufptr, addr.buf, addr.len)) {
375 		kmem_free(addr.buf, addr.len);
376 		error = EFAULT;
377 		goto errout;
378 	}
379 	bcopy(&addr, nargs->addr, sizeof (struct netbuf));
380 
381 	/*
382 	 * Get the root fhandle
383 	 */
384 
385 	if (copyin(STRUCT_FGETP(args, fh), &fh->fh_buf, NFS_FHSIZE)) {
386 		error = EFAULT;
387 		goto errout;
388 	}
389 	fh->fh_len = NFS_FHSIZE;
390 
391 	/*
392 	 * Get server's hostname
393 	 */
394 	if (flags & NFSMNT_HOSTNAME) {
395 		error = copyinstr(STRUCT_FGETP(args, hostname),
396 			netname, sizeof (netname), &hlen);
397 		if (error)
398 			goto errout;
399 		nargs->hostname = kmem_zalloc(hlen, KM_SLEEP);
400 		(void) strcpy(nargs->hostname, netname);
401 
402 	} else {
403 		nargs->hostname = NULL;
404 	}
405 
406 
407 	/*
408 	 * If there are syncaddr and netname data, load them in. This is
409 	 * to support data needed for NFSV4 when AUTH_DH is the negotiated
410 	 * flavor via SECINFO. (instead of using MOUNT protocol in V3).
411 	 */
412 	netname[0] = '\0';
413 	if (flags & NFSMNT_SECURE) {
414 		if (STRUCT_FGETP(args, syncaddr) == NULL) {
415 			error = EINVAL;
416 			goto errout;
417 		}
418 		/* get syncaddr */
419 		STRUCT_INIT(addr_tmp, get_udatamodel());
420 		if (copyin(STRUCT_FGETP(args, syncaddr), STRUCT_BUF(addr_tmp),
421 			STRUCT_SIZE(addr_tmp))) {
422 			error = EINVAL;
423 			goto errout;
424 		}
425 		userbufptr = STRUCT_FGETP(addr_tmp, buf);
426 		syncaddr.len = STRUCT_FGET(addr_tmp, len);
427 		syncaddr.buf = kmem_alloc(syncaddr.len, KM_SLEEP);
428 		syncaddr.maxlen = syncaddr.len;
429 		if (copyin(userbufptr, syncaddr.buf, syncaddr.len)) {
430 			kmem_free(syncaddr.buf, syncaddr.len);
431 			error = EFAULT;
432 			goto errout;
433 		}
434 
435 		nargs->syncaddr = kmem_alloc(sizeof (struct netbuf), KM_SLEEP);
436 		bcopy(&syncaddr, nargs->syncaddr, sizeof (struct netbuf));
437 
438 		ASSERT(STRUCT_FGETP(args, netname));
439 		if (copyinstr(STRUCT_FGETP(args, netname), netname,
440 			sizeof (netname), &nlen)) {
441 			error = EFAULT;
442 			goto errout;
443 		}
444 
445 		netname[nlen] = '\0';
446 		nargs->netname = kmem_zalloc(nlen, KM_SLEEP);
447 		(void) strcpy(nargs->netname, netname);
448 	}
449 
450 	/*
451 	 * Get the extention data which has the security data structure.
452 	 * This includes data for AUTH_SYS as well.
453 	 */
454 	if (flags & NFSMNT_NEWARGS) {
455 		nargs->nfs_args_ext = STRUCT_FGET(args, nfs_args_ext);
456 		if (nargs->nfs_args_ext == NFS_ARGS_EXTA ||
457 			nargs->nfs_args_ext == NFS_ARGS_EXTB) {
458 			/*
459 			 * Indicating the application is using the new
460 			 * sec_data structure to pass in the security
461 			 * data.
462 			 */
463 			if (STRUCT_FGETP(args,
464 				nfs_ext_u.nfs_extA.secdata) != NULL) {
465 				error = sec_clnt_loadinfo(
466 					(struct sec_data *)STRUCT_FGETP(args,
467 						nfs_ext_u.nfs_extA.secdata),
468 						&secdata, get_udatamodel());
469 			}
470 			nargs->nfs_ext_u.nfs_extA.secdata = secdata;
471 		}
472 	}
473 
474 	if (error)
475 		goto errout;
476 
477 	/*
478 	 * Failover support:
479 	 *
480 	 * We may have a linked list of nfs_args structures,
481 	 * which means the user is looking for failover.  If
482 	 * the mount is either not "read-only" or "soft",
483 	 * we want to bail out with EINVAL.
484 	 */
485 	if (nargs->nfs_args_ext == NFS_ARGS_EXTB)
486 		nargs->nfs_ext_u.nfs_extB.next =
487 			STRUCT_FGETP(args, nfs_ext_u.nfs_extB.next);
488 
489 errout:
490 	if (error)
491 		nfs_free_args(nargs, fh);
492 
493 	return (error);
494 }
495 
496 
497 /*
498  * nfs mount vfsop
499  * Set up mount info record and attach it to vfs struct.
500  */
501 static int
502 nfs_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr)
503 {
504 	char *data = uap->dataptr;
505 	int error;
506 	vnode_t *rtvp;			/* the server's root */
507 	mntinfo_t *mi;			/* mount info, pointed at by vfs */
508 	size_t nlen;			/* length of netname */
509 	struct knetconfig *knconf;	/* transport knetconfig structure */
510 	struct knetconfig *rdma_knconf;	/* rdma transport structure */
511 	rnode_t *rp;
512 	struct servinfo *svp;		/* nfs server info */
513 	struct servinfo *svp_tail = NULL; /* previous nfs server info */
514 	struct servinfo *svp_head;	/* first nfs server info */
515 	struct servinfo *svp_2ndlast;	/* 2nd last in the server info list */
516 	struct sec_data *secdata;	/* security data */
517 	struct nfs_args	*args = NULL;
518 	int flags, addr_type;
519 	zone_t *zone = nfs_zone();
520 	zone_t *mntzone = NULL;
521 	nfs_fhandle	*fhandle = NULL;
522 
523 	if ((error = secpolicy_fs_mount(cr, mvp, vfsp)) != 0)
524 		return (error);
525 
526 	if (mvp->v_type != VDIR)
527 		return (ENOTDIR);
528 
529 	/*
530 	 * get arguments
531 	 *
532 	 * nfs_args is now versioned and is extensible, so
533 	 * uap->datalen might be different from sizeof (args)
534 	 * in a compatible situation.
535 	 */
536 more:
537 
538 	if (!(uap->flags & MS_SYSSPACE)) {
539 		if (args == NULL)
540 			args = kmem_alloc(sizeof (struct nfs_args), KM_SLEEP);
541 		else {
542 			nfs_free_args(args, fhandle);
543 			fhandle = NULL;
544 		}
545 		if (fhandle == NULL)
546 			fhandle = kmem_zalloc(sizeof (nfs_fhandle), KM_SLEEP);
547 		error = nfs_copyin(data, uap->datalen, args, fhandle);
548 		if (error)  {
549 			if (args)
550 				kmem_free(args, sizeof (*args));
551 			return (error);
552 		}
553 	} else {
554 		args = (struct nfs_args *)data;
555 		fhandle = (nfs_fhandle *)args->fh;
556 	}
557 
558 
559 	flags = args->flags;
560 
561 	if (uap->flags & MS_REMOUNT) {
562 		size_t n;
563 		char name[FSTYPSZ];
564 
565 		if (uap->flags & MS_SYSSPACE)
566 			error = copystr(uap->fstype, name, FSTYPSZ, &n);
567 		else
568 			error = copyinstr(uap->fstype, name, FSTYPSZ, &n);
569 
570 		if (error) {
571 			if (error == ENAMETOOLONG)
572 				return (EINVAL);
573 			return (error);
574 		}
575 
576 
577 		/*
578 		 * This check is to ensure that the request is a
579 		 * genuine nfs remount request.
580 		 */
581 
582 		if (strncmp(name, "nfs", 3) != 0)
583 			return (EINVAL);
584 
585 		/*
586 		 * If the request changes the locking type, disallow the
587 		 * remount,
588 		 * because it's questionable whether we can transfer the
589 		 * locking state correctly.
590 		 *
591 		 * Remounts need to save the pathconf information.
592 		 * Part of the infamous static kludge.
593 		 */
594 
595 		if ((mi = VFTOMI(vfsp)) != NULL) {
596 			uint_t new_mi_llock;
597 			uint_t old_mi_llock;
598 
599 			new_mi_llock = (flags & NFSMNT_LLOCK) ? 1 : 0;
600 			old_mi_llock = (mi->mi_flags & MI_LLOCK) ? 1 : 0;
601 			if (old_mi_llock != new_mi_llock)
602 				return (EBUSY);
603 		}
604 		error = pathconf_get((struct mntinfo *)vfsp->vfs_data, args);
605 
606 		if (!(uap->flags & MS_SYSSPACE)) {
607 			nfs_free_args(args, fhandle);
608 			kmem_free(args, sizeof (*args));
609 		}
610 
611 		return (error);
612 	}
613 
614 	mutex_enter(&mvp->v_lock);
615 	if (!(uap->flags & MS_OVERLAY) &&
616 	    (mvp->v_count != 1 || (mvp->v_flag & VROOT))) {
617 		mutex_exit(&mvp->v_lock);
618 		if (!(uap->flags & MS_SYSSPACE)) {
619 			nfs_free_args(args, fhandle);
620 			kmem_free(args, sizeof (*args));
621 		}
622 		return (EBUSY);
623 	}
624 	mutex_exit(&mvp->v_lock);
625 
626 	/* make sure things are zeroed for errout: */
627 	rtvp = NULL;
628 	mi = NULL;
629 	secdata = NULL;
630 
631 	/*
632 	 * A valid knetconfig structure is required.
633 	 */
634 	if (!(flags & NFSMNT_KNCONF)) {
635 		if (!(uap->flags & MS_SYSSPACE)) {
636 			nfs_free_args(args, fhandle);
637 			kmem_free(args, sizeof (*args));
638 		}
639 		return (EINVAL);
640 	}
641 
642 	if ((strlen(args->knconf->knc_protofmly) >= KNC_STRSIZE) ||
643 		(strlen(args->knconf->knc_proto) >= KNC_STRSIZE)) {
644 		if (!(uap->flags & MS_SYSSPACE)) {
645 			nfs_free_args(args, fhandle);
646 			kmem_free(args, sizeof (*args));
647 		}
648 		return (EINVAL);
649 	}
650 
651 
652 	/*
653 	 * Allocate a servinfo struct.
654 	 */
655 	svp = kmem_zalloc(sizeof (*svp), KM_SLEEP);
656 	mutex_init(&svp->sv_lock, NULL, MUTEX_DEFAULT, NULL);
657 	if (svp_tail) {
658 		svp_2ndlast = svp_tail;
659 		svp_tail->sv_next = svp;
660 	} else {
661 		svp_head = svp;
662 		svp_2ndlast = svp;
663 	}
664 
665 	svp_tail = svp;
666 
667 	/*
668 	 * Get knetconfig and server address
669 	 */
670 	svp->sv_knconf = args->knconf;
671 	args->knconf = NULL;
672 
673 	if (args->addr == NULL || args->addr->buf == NULL) {
674 		error = EINVAL;
675 		goto errout;
676 	}
677 
678 	svp->sv_addr.maxlen = args->addr->maxlen;
679 	svp->sv_addr.len = args->addr->len;
680 	svp->sv_addr.buf = args->addr->buf;
681 	args->addr->buf = NULL;
682 
683 	/*
684 	 * Get the root fhandle
685 	 */
686 	ASSERT(fhandle);
687 
688 	bcopy(&fhandle->fh_buf, &svp->sv_fhandle.fh_buf, fhandle->fh_len);
689 	svp->sv_fhandle.fh_len = fhandle->fh_len;
690 
691 	/*
692 	 * Get server's hostname
693 	 */
694 	if (flags & NFSMNT_HOSTNAME) {
695 		if (args->hostname == NULL) {
696 			error = EINVAL;
697 			goto errout;
698 		}
699 		svp->sv_hostnamelen = strlen(args->hostname) + 1;
700 		svp->sv_hostname = args->hostname;
701 		args->hostname = NULL;
702 	} else {
703 		char *p = "unknown-host";
704 		svp->sv_hostnamelen = strlen(p) + 1;
705 		svp->sv_hostname = kmem_zalloc(svp->sv_hostnamelen, KM_SLEEP);
706 		(void) strcpy(svp->sv_hostname, p);
707 	}
708 
709 
710 	/*
711 	 * RDMA MOUNT SUPPORT FOR NFS v2:
712 	 * Establish, is it possible to use RDMA, if so overload the
713 	 * knconf with rdma specific knconf and free the orignal.
714 	 */
715 	if ((flags & NFSMNT_TRYRDMA) || (flags & NFSMNT_DORDMA)) {
716 		/*
717 		 * Determine the addr type for RDMA, IPv4 or v6.
718 		 */
719 		if (strcmp(svp->sv_knconf->knc_protofmly, NC_INET) == 0)
720 			addr_type = AF_INET;
721 		else if (strcmp(svp->sv_knconf->knc_protofmly, NC_INET6) == 0)
722 			addr_type = AF_INET6;
723 
724 		if (rdma_reachable(addr_type, &svp->sv_addr,
725 			&rdma_knconf) == 0) {
726 			/*
727 			 * If successful, hijack, the orignal knconf and
728 			 * replace with a new one, depending on the flags.
729 			 */
730 			svp->sv_origknconf = svp->sv_knconf;
731 			svp->sv_knconf = rdma_knconf;
732 			knconf = rdma_knconf;
733 		} else {
734 			if (flags & NFSMNT_TRYRDMA) {
735 #ifdef	DEBUG
736 				if (rdma_debug)
737 					zcmn_err(getzoneid(), CE_WARN,
738 					    "no RDMA onboard, revert\n");
739 #endif
740 			}
741 
742 			if (flags & NFSMNT_DORDMA) {
743 				/*
744 				 * If proto=rdma is specified and no RDMA
745 				 * path to this server is avialable then
746 				 * ditch this server.
747 				 * This is not included in the mountable
748 				 * server list or the replica list.
749 				 * Check if more servers are specified;
750 				 * Failover case, otherwise bail out of mount.
751 				 */
752 				if (args->nfs_args_ext ==
753 				    NFS_ARGS_EXTB &&
754 					args->nfs_ext_u.nfs_extB.next
755 					!= NULL) {
756 					data = (char *)
757 						args->nfs_ext_u.nfs_extB.next;
758 					if (uap->flags & MS_RDONLY &&
759 					    !(flags & NFSMNT_SOFT)) {
760 						if (svp_head->sv_next == NULL) {
761 							svp_tail = NULL;
762 							svp_2ndlast = NULL;
763 							sv_free(svp_head);
764 							goto more;
765 						} else {
766 							svp_tail = svp_2ndlast;
767 							svp_2ndlast->sv_next =
768 							    NULL;
769 							sv_free(svp);
770 							goto more;
771 						}
772 					}
773 				} else {
774 					/*
775 					 * This is the last server specified
776 					 * in the nfs_args list passed down
777 					 * and its not rdma capable.
778 					 */
779 					if (svp_head->sv_next == NULL) {
780 						/*
781 						 * Is this the only one
782 						 */
783 						error = EINVAL;
784 #ifdef	DEBUG
785 						if (rdma_debug)
786 							zcmn_err(getzoneid(),
787 							    CE_WARN,
788 							    "No RDMA srv");
789 #endif
790 						goto errout;
791 					} else {
792 						/*
793 						 * There is list, since some
794 						 * servers specified before
795 						 * this passed all requirements
796 						 */
797 						svp_tail = svp_2ndlast;
798 						svp_2ndlast->sv_next = NULL;
799 						sv_free(svp);
800 						goto proceed;
801 					}
802 				}
803 			}
804 		}
805 	}
806 
807 	/*
808 	 * Get the extention data which has the new security data structure.
809 	 */
810 	if (flags & NFSMNT_NEWARGS) {
811 		switch (args->nfs_args_ext) {
812 		case NFS_ARGS_EXTA:
813 		case NFS_ARGS_EXTB:
814 			/*
815 			 * Indicating the application is using the new
816 			 * sec_data structure to pass in the security
817 			 * data.
818 			 */
819 			secdata = args->nfs_ext_u.nfs_extA.secdata;
820 			if (secdata == NULL) {
821 				error = EINVAL;
822 			} else {
823 				/*
824 				 * Need to validate the flavor here if
825 				 * sysspace, userspace was already
826 				 * validate from the nfs_copyin function.
827 				 */
828 				switch (secdata->rpcflavor) {
829 					case AUTH_NONE:
830 					case AUTH_UNIX:
831 					case AUTH_LOOPBACK:
832 					case AUTH_DES:
833 					case RPCSEC_GSS:
834 						break;
835 					default:
836 						error = EINVAL;
837 						goto errout;
838 				}
839 			}
840 			args->nfs_ext_u.nfs_extA.secdata = NULL;
841 			break;
842 
843 		default:
844 			error = EINVAL;
845 			break;
846 		}
847 	} else if (flags & NFSMNT_SECURE) {
848 		/*
849 		 * Keep this for backward compatibility to support
850 		 * NFSMNT_SECURE/NFSMNT_RPCTIMESYNC flags.
851 		 */
852 		if (args->syncaddr == NULL || args->syncaddr->buf == NULL) {
853 			error = EINVAL;
854 			goto errout;
855 		}
856 
857 		/*
858 		 * get time sync address.
859 		 */
860 		if (args->syncaddr == NULL) {
861 			error = EFAULT;
862 			goto errout;
863 		}
864 
865 		/*
866 		 * Move security related data to the sec_data structure.
867 		 */
868 		{
869 			dh_k4_clntdata_t *data;
870 			char *pf, *p;
871 
872 			secdata = kmem_alloc(sizeof (*secdata), KM_SLEEP);
873 			if (flags & NFSMNT_RPCTIMESYNC)
874 				secdata->flags |= AUTH_F_RPCTIMESYNC;
875 			data = kmem_alloc(sizeof (*data), KM_SLEEP);
876 			bcopy(args->syncaddr, &data->syncaddr,
877 				sizeof (*args->syncaddr));
878 
879 
880 			/*
881 			 * duplicate the knconf information for the
882 			 * new opaque data.
883 			 */
884 			data->knconf = kmem_alloc(sizeof (*knconf), KM_SLEEP);
885 			*data->knconf = *knconf;
886 			pf = kmem_alloc(KNC_STRSIZE, KM_SLEEP);
887 			p = kmem_alloc(KNC_STRSIZE, KM_SLEEP);
888 			bcopy(knconf->knc_protofmly, pf, KNC_STRSIZE);
889 			bcopy(knconf->knc_proto, pf, KNC_STRSIZE);
890 			data->knconf->knc_protofmly = pf;
891 			data->knconf->knc_proto = p;
892 
893 			/* move server netname to the sec_data structure */
894 			nlen = strlen(args->hostname) + 1;
895 			if (nlen != 0) {
896 				data->netname = kmem_alloc(nlen, KM_SLEEP);
897 				bcopy(args->hostname, data->netname, nlen);
898 				data->netnamelen = (int)nlen;
899 			}
900 			secdata->secmod = secdata->rpcflavor = AUTH_DES;
901 			secdata->data = (caddr_t)data;
902 		}
903 	} else {
904 		secdata = kmem_alloc(sizeof (*secdata), KM_SLEEP);
905 		secdata->secmod = secdata->rpcflavor = AUTH_UNIX;
906 		secdata->data = NULL;
907 	}
908 	svp->sv_secdata = secdata;
909 
910 	/*
911 	 * See bug 1180236.
912 	 * If mount secure failed, we will fall back to AUTH_NONE
913 	 * and try again.  nfs3rootvp() will turn this back off.
914 	 *
915 	 * The NFS Version 2 mount uses GETATTR and STATFS procedures.
916 	 * The server does not care if these procedures have the proper
917 	 * authentication flavor, so if mount retries using AUTH_NONE
918 	 * that does not require a credential setup for root then the
919 	 * automounter would work without requiring root to be
920 	 * keylogged into AUTH_DES.
921 	 */
922 	if (secdata->rpcflavor != AUTH_UNIX &&
923 	    secdata->rpcflavor != AUTH_LOOPBACK)
924 		secdata->flags |= AUTH_F_TRYNONE;
925 
926 	/*
927 	 * Failover support:
928 	 *
929 	 * We may have a linked list of nfs_args structures,
930 	 * which means the user is looking for failover.  If
931 	 * the mount is either not "read-only" or "soft",
932 	 * we want to bail out with EINVAL.
933 	 */
934 	if (args->nfs_args_ext == NFS_ARGS_EXTB &&
935 	    args->nfs_ext_u.nfs_extB.next != NULL) {
936 		if (uap->flags & MS_RDONLY && !(flags & NFSMNT_SOFT)) {
937 			data = (char *)args->nfs_ext_u.nfs_extB.next;
938 			goto more;
939 		}
940 		error = EINVAL;
941 		goto errout;
942 	}
943 
944 	/*
945 	 * Determine the zone we're being mounted into.
946 	 */
947 	zone_hold(mntzone = zone);		/* start with this assumption */
948 	if (getzoneid() == GLOBAL_ZONEID) {
949 		zone_rele(mntzone);
950 		mntzone = zone_find_by_path(refstr_value(vfsp->vfs_mntpt));
951 		ASSERT(mntzone != NULL);
952 		if (mntzone != zone) {
953 			error = EBUSY;
954 			goto errout;
955 		}
956 	}
957 
958 	if (is_system_labeled()) {
959 		error = nfs_mount_label_policy(vfsp, &svp->sv_addr,
960 		    svp->sv_knconf, cr);
961 
962 		if (error > 0)
963 			goto errout;
964 
965 		if (error == -1) {
966 			/* change mount to read-only to prevent write-down */
967 			vfs_setmntopt(vfsp, MNTOPT_RO, NULL, 0);
968 		}
969 	}
970 
971 	/*
972 	 * Stop the mount from going any further if the zone is going away.
973 	 */
974 	if (zone_status_get(mntzone) >= ZONE_IS_SHUTTING_DOWN) {
975 		error = EBUSY;
976 		goto errout;
977 	}
978 
979 	/*
980 	 * Get root vnode.
981 	 */
982 proceed:
983 	error = nfsrootvp(&rtvp, vfsp, svp_head, flags, cr, mntzone);
984 
985 	if (error)
986 		goto errout;
987 
988 	/*
989 	 * Set option fields in the mount info record
990 	 */
991 	mi = VTOMI(rtvp);
992 
993 	if (svp_head->sv_next)
994 		mi->mi_flags |= MI_LLOCK;
995 
996 	error = nfs_setopts(rtvp, DATAMODEL_NATIVE, args);
997 	if (!error) {
998 		/* static pathconf kludge */
999 		error = pathconf_get(mi, args);
1000 	}
1001 
1002 errout:
1003 	if (error) {
1004 		if (rtvp != NULL) {
1005 			rp = VTOR(rtvp);
1006 			if (rp->r_flags & RHASHED)
1007 				rp_rmhash(rp);
1008 		}
1009 		sv_free(svp_head);
1010 		if (mi != NULL) {
1011 			nfs_async_stop(vfsp);
1012 			nfs_async_manager_stop(vfsp);
1013 			if (mi->mi_io_kstats) {
1014 				kstat_delete(mi->mi_io_kstats);
1015 				mi->mi_io_kstats = NULL;
1016 			}
1017 			if (mi->mi_ro_kstats) {
1018 				kstat_delete(mi->mi_ro_kstats);
1019 				mi->mi_ro_kstats = NULL;
1020 			}
1021 			nfs_free_mi(mi);
1022 		}
1023 	}
1024 
1025 	if (!(uap->flags & MS_SYSSPACE)) {
1026 		nfs_free_args(args, fhandle);
1027 		kmem_free(args, sizeof (*args));
1028 	}
1029 
1030 	if (rtvp != NULL)
1031 		VN_RELE(rtvp);
1032 
1033 	if (mntzone != NULL)
1034 		zone_rele(mntzone);
1035 
1036 	return (error);
1037 }
1038 
1039 /*
1040  * The pathconf information is kept on a linked list of kmem_alloc'ed
1041  * structs. We search the list & add a new struct iff there is no other
1042  * struct with the same information.
1043  * See sys/pathconf.h for ``the rest of the story.''
1044  */
1045 static struct pathcnf *allpc = NULL;
1046 
1047 static int
1048 pathconf_copyin(struct nfs_args *args, struct pathcnf *pc)
1049 {
1050 	STRUCT_DECL(pathcnf, pc_tmp);
1051 	STRUCT_HANDLE(nfs_args, ap);
1052 	int i;
1053 	model_t	model;
1054 
1055 	model = get_udatamodel();
1056 	STRUCT_INIT(pc_tmp, model);
1057 	STRUCT_SET_HANDLE(ap, model, args);
1058 
1059 	if ((STRUCT_FGET(ap, flags) & NFSMNT_POSIX) &&
1060 	    STRUCT_FGETP(ap, pathconf) != NULL) {
1061 		if (copyin(STRUCT_FGETP(ap, pathconf), STRUCT_BUF(pc_tmp),
1062 		    STRUCT_SIZE(pc_tmp)))
1063 			return (EFAULT);
1064 		if (_PC_ISSET(_PC_ERROR, STRUCT_FGET(pc_tmp, pc_mask)))
1065 			return (EINVAL);
1066 
1067 		pc->pc_link_max = STRUCT_FGET(pc_tmp, pc_link_max);
1068 		pc->pc_max_canon = STRUCT_FGET(pc_tmp, pc_max_canon);
1069 		pc->pc_max_input = STRUCT_FGET(pc_tmp, pc_max_input);
1070 		pc->pc_name_max = STRUCT_FGET(pc_tmp, pc_name_max);
1071 		pc->pc_path_max = STRUCT_FGET(pc_tmp, pc_path_max);
1072 		pc->pc_pipe_buf = STRUCT_FGET(pc_tmp, pc_pipe_buf);
1073 		pc->pc_vdisable = STRUCT_FGET(pc_tmp, pc_vdisable);
1074 		pc->pc_xxx = STRUCT_FGET(pc_tmp, pc_xxx);
1075 		for (i = 0; i < _PC_N; i++)
1076 			pc->pc_mask[i] = STRUCT_FGET(pc_tmp, pc_mask[i]);
1077 	}
1078 	return (0);
1079 }
1080 
1081 static int
1082 pathconf_get(struct mntinfo *mi, struct nfs_args *args)
1083 {
1084 	struct pathcnf *p, *pc;
1085 
1086 	pc = args->pathconf;
1087 	if (mi->mi_pathconf != NULL) {
1088 		pathconf_rele(mi);
1089 		mi->mi_pathconf = NULL;
1090 	}
1091 	if (args->flags & NFSMNT_POSIX &&
1092 		args->pathconf != NULL) {
1093 
1094 		if (_PC_ISSET(_PC_ERROR, pc->pc_mask))
1095 			return (EINVAL);
1096 
1097 		for (p = allpc; p != NULL; p = p->pc_next) {
1098 			if (PCCMP(p, pc) == 0)
1099 				break;
1100 		}
1101 		if (p != NULL) {
1102 			mi->mi_pathconf = p;
1103 			p->pc_refcnt++;
1104 		} else {
1105 			p = kmem_alloc(sizeof (*p), KM_SLEEP);
1106 			bcopy(pc, p, sizeof (struct pathcnf));
1107 			p->pc_next = allpc;
1108 			p->pc_refcnt = 1;
1109 			allpc = mi->mi_pathconf = p;
1110 		}
1111 	}
1112 	return (0);
1113 }
1114 
1115 /*
1116  * release the static pathconf information
1117  */
1118 static void
1119 pathconf_rele(struct mntinfo *mi)
1120 {
1121 	if (mi->mi_pathconf != NULL) {
1122 		if (--mi->mi_pathconf->pc_refcnt == 0) {
1123 			struct pathcnf *p;
1124 			struct pathcnf *p2;
1125 
1126 			p2 = p = allpc;
1127 			while (p != NULL && p != mi->mi_pathconf) {
1128 				p2 = p;
1129 				p = p->pc_next;
1130 			}
1131 			if (p == NULL) {
1132 				panic("mi->pathconf");
1133 				/*NOTREACHED*/
1134 			}
1135 			if (p == allpc)
1136 				allpc = p->pc_next;
1137 			else
1138 				p2->pc_next = p->pc_next;
1139 			kmem_free(p, sizeof (*p));
1140 			mi->mi_pathconf = NULL;
1141 		}
1142 	}
1143 }
1144 
1145 static int nfs_dynamic = 1;	/* global variable to enable dynamic retrans. */
1146 static ushort_t nfs_max_threads = 8;	/* max number of active async threads */
1147 static uint_t nfs_async_clusters = 1;	/* # of reqs from each async queue */
1148 static uint_t nfs_cots_timeo = NFS_COTS_TIMEO;
1149 
1150 static int
1151 nfsrootvp(vnode_t **rtvpp, vfs_t *vfsp, struct servinfo *svp,
1152 	int flags, cred_t *cr, zone_t *zone)
1153 {
1154 	vnode_t *rtvp;
1155 	mntinfo_t *mi;
1156 	dev_t nfs_dev;
1157 	struct vattr va;
1158 	int error;
1159 	rnode_t *rp;
1160 	int i;
1161 	struct nfs_stats *nfsstatsp;
1162 	cred_t *lcr = NULL, *tcr = cr;
1163 
1164 	nfsstatsp = zone_getspecific(nfsstat_zone_key, nfs_zone());
1165 	ASSERT(nfsstatsp != NULL);
1166 
1167 	/*
1168 	 * Create a mount record and link it to the vfs struct.
1169 	 */
1170 	mi = kmem_zalloc(sizeof (*mi), KM_SLEEP);
1171 	mutex_init(&mi->mi_lock, NULL, MUTEX_DEFAULT, NULL);
1172 	mutex_init(&mi->mi_remap_lock, NULL, MUTEX_DEFAULT, NULL);
1173 	mi->mi_flags = MI_ACL | MI_EXTATTR;
1174 	if (!(flags & NFSMNT_SOFT))
1175 		mi->mi_flags |= MI_HARD;
1176 	if ((flags & NFSMNT_SEMISOFT))
1177 		mi->mi_flags |= MI_SEMISOFT;
1178 	if ((flags & NFSMNT_NOPRINT))
1179 		mi->mi_flags |= MI_NOPRINT;
1180 	if (flags & NFSMNT_INT)
1181 		mi->mi_flags |= MI_INT;
1182 	mi->mi_retrans = NFS_RETRIES;
1183 	if (svp->sv_knconf->knc_semantics == NC_TPI_COTS_ORD ||
1184 	    svp->sv_knconf->knc_semantics == NC_TPI_COTS)
1185 		mi->mi_timeo = nfs_cots_timeo;
1186 	else
1187 		mi->mi_timeo = NFS_TIMEO;
1188 	mi->mi_prog = NFS_PROGRAM;
1189 	mi->mi_vers = NFS_VERSION;
1190 	mi->mi_rfsnames = rfsnames_v2;
1191 	mi->mi_reqs = nfsstatsp->nfs_stats_v2.rfsreqcnt_ptr;
1192 	mi->mi_call_type = call_type_v2;
1193 	mi->mi_ss_call_type = ss_call_type_v2;
1194 	mi->mi_timer_type = timer_type_v2;
1195 	mi->mi_aclnames = aclnames_v2;
1196 	mi->mi_aclreqs = nfsstatsp->nfs_stats_v2.aclreqcnt_ptr;
1197 	mi->mi_acl_call_type = acl_call_type_v2;
1198 	mi->mi_acl_ss_call_type = acl_ss_call_type_v2;
1199 	mi->mi_acl_timer_type = acl_timer_type_v2;
1200 	cv_init(&mi->mi_failover_cv, NULL, CV_DEFAULT, NULL);
1201 	mi->mi_servers = svp;
1202 	mi->mi_curr_serv = svp;
1203 	mi->mi_acregmin = SEC2HR(ACREGMIN);
1204 	mi->mi_acregmax = SEC2HR(ACREGMAX);
1205 	mi->mi_acdirmin = SEC2HR(ACDIRMIN);
1206 	mi->mi_acdirmax = SEC2HR(ACDIRMAX);
1207 
1208 	if (nfs_dynamic)
1209 		mi->mi_flags |= MI_DYNAMIC;
1210 
1211 	if (flags & NFSMNT_DIRECTIO)
1212 		mi->mi_flags |= MI_DIRECTIO;
1213 
1214 	/*
1215 	 * Make a vfs struct for nfs.  We do this here instead of below
1216 	 * because rtvp needs a vfs before we can do a getattr on it.
1217 	 *
1218 	 * Assign a unique device id to the mount
1219 	 */
1220 	mutex_enter(&nfs_minor_lock);
1221 	do {
1222 		nfs_minor = (nfs_minor + 1) & MAXMIN32;
1223 		nfs_dev = makedevice(nfs_major, nfs_minor);
1224 	} while (vfs_devismounted(nfs_dev));
1225 	mutex_exit(&nfs_minor_lock);
1226 
1227 	vfsp->vfs_dev = nfs_dev;
1228 	vfs_make_fsid(&vfsp->vfs_fsid, nfs_dev, nfsfstyp);
1229 	vfsp->vfs_data = (caddr_t)mi;
1230 	vfsp->vfs_fstype = nfsfstyp;
1231 	vfsp->vfs_bsize = NFS_MAXDATA;
1232 
1233 	/*
1234 	 * Initialize fields used to support async putpage operations.
1235 	 */
1236 	for (i = 0; i < NFS_ASYNC_TYPES; i++)
1237 		mi->mi_async_clusters[i] = nfs_async_clusters;
1238 	mi->mi_async_init_clusters = nfs_async_clusters;
1239 	mi->mi_async_curr = &mi->mi_async_reqs[0];
1240 	mi->mi_max_threads = nfs_max_threads;
1241 	mutex_init(&mi->mi_async_lock, NULL, MUTEX_DEFAULT, NULL);
1242 	cv_init(&mi->mi_async_reqs_cv, NULL, CV_DEFAULT, NULL);
1243 	cv_init(&mi->mi_async_work_cv, NULL, CV_DEFAULT, NULL);
1244 	cv_init(&mi->mi_async_cv, NULL, CV_DEFAULT, NULL);
1245 
1246 	mi->mi_vfsp = vfsp;
1247 	zone_hold(mi->mi_zone = zone);
1248 	nfs_mi_zonelist_add(mi);
1249 
1250 	/*
1251 	 * Make the root vnode, use it to get attributes,
1252 	 * then remake it with the attributes.
1253 	 */
1254 	rtvp = makenfsnode((fhandle_t *)svp->sv_fhandle.fh_buf,
1255 	    NULL, vfsp, gethrtime(), cr, NULL, NULL);
1256 
1257 	va.va_mask = AT_ALL;
1258 
1259 	/*
1260 	 * If the uid is set then set the creds for secure mounts
1261 	 * by proxy processes such as automountd.
1262 	 */
1263 	if (svp->sv_secdata->uid != 0 &&
1264 	    svp->sv_secdata->rpcflavor == RPCSEC_GSS) {
1265 		lcr = crdup(cr);
1266 		(void) crsetugid(lcr, svp->sv_secdata->uid, crgetgid(cr));
1267 		tcr = lcr;
1268 	}
1269 
1270 	error = nfsgetattr(rtvp, &va, tcr);
1271 	if (error)
1272 		goto bad;
1273 	rtvp->v_type = va.va_type;
1274 
1275 	/*
1276 	 * Poll every server to get the filesystem stats; we're
1277 	 * only interested in the server's transfer size, and we
1278 	 * want the minimum.
1279 	 *
1280 	 * While we're looping, we'll turn off AUTH_F_TRYNONE,
1281 	 * which is only for the mount operation.
1282 	 */
1283 
1284 	mi->mi_tsize = MIN(NFS_MAXDATA, nfstsize());
1285 	mi->mi_stsize = MIN(NFS_MAXDATA, nfstsize());
1286 
1287 	for (svp = mi->mi_servers; svp != NULL; svp = svp->sv_next) {
1288 		struct nfsstatfs fs;
1289 		int douprintf;
1290 
1291 		douprintf = 1;
1292 		mi->mi_curr_serv = svp;
1293 
1294 		error = rfs2call(mi, RFS_STATFS,
1295 			xdr_fhandle, (caddr_t)svp->sv_fhandle.fh_buf,
1296 			xdr_statfs, (caddr_t)&fs, tcr, &douprintf,
1297 			&fs.fs_status, 0, NULL);
1298 		if (error)
1299 			goto bad;
1300 		mi->mi_stsize = MIN(mi->mi_stsize, fs.fs_tsize);
1301 		svp->sv_secdata->flags &= ~AUTH_F_TRYNONE;
1302 	}
1303 	mi->mi_curr_serv = mi->mi_servers;
1304 	mi->mi_curread = mi->mi_tsize;
1305 	mi->mi_curwrite = mi->mi_stsize;
1306 
1307 	/*
1308 	 * Start the manager thread responsible for handling async worker
1309 	 * threads.
1310 	 */
1311 	VFS_HOLD(vfsp);	/* add reference for thread */
1312 	mi->mi_manager_thread = zthread_create(NULL, 0, nfs_async_manager,
1313 					vfsp, 0, minclsyspri);
1314 	ASSERT(mi->mi_manager_thread != NULL);
1315 
1316 	/*
1317 	 * Initialize kstats
1318 	 */
1319 	nfs_mnt_kstat_init(vfsp);
1320 
1321 	mi->mi_type = rtvp->v_type;
1322 
1323 	*rtvpp = rtvp;
1324 	if (lcr != NULL)
1325 		crfree(lcr);
1326 
1327 	return (0);
1328 bad:
1329 	/*
1330 	 * An error occurred somewhere, need to clean up...
1331 	 * We need to release our reference to the root vnode and
1332 	 * destroy the mntinfo struct that we just created.
1333 	 */
1334 	if (lcr != NULL)
1335 		crfree(lcr);
1336 	rp = VTOR(rtvp);
1337 	if (rp->r_flags & RHASHED)
1338 		rp_rmhash(rp);
1339 	VN_RELE(rtvp);
1340 	nfs_async_stop(vfsp);
1341 	nfs_async_manager_stop(vfsp);
1342 	if (mi->mi_io_kstats) {
1343 		kstat_delete(mi->mi_io_kstats);
1344 		mi->mi_io_kstats = NULL;
1345 	}
1346 	if (mi->mi_ro_kstats) {
1347 		kstat_delete(mi->mi_ro_kstats);
1348 		mi->mi_ro_kstats = NULL;
1349 	}
1350 	nfs_free_mi(mi);
1351 	*rtvpp = NULL;
1352 	return (error);
1353 }
1354 
1355 /*
1356  * vfs operations
1357  */
1358 static int
1359 nfs_unmount(vfs_t *vfsp, int flag, cred_t *cr)
1360 {
1361 	mntinfo_t *mi;
1362 	ushort_t omax;
1363 
1364 	if (secpolicy_fs_unmount(cr, vfsp) != 0)
1365 		return (EPERM);
1366 
1367 	mi = VFTOMI(vfsp);
1368 	if (flag & MS_FORCE) {
1369 
1370 		vfsp->vfs_flag |= VFS_UNMOUNTED;
1371 
1372 		/*
1373 		 * We are about to stop the async manager.
1374 		 * Let every one know not to schedule any
1375 		 * more async requests.
1376 		 */
1377 		mutex_enter(&mi->mi_async_lock);
1378 		mi->mi_max_threads = 0;
1379 		cv_broadcast(&mi->mi_async_work_cv);
1380 		mutex_exit(&mi->mi_async_lock);
1381 
1382 		/*
1383 		 * We need to stop the manager thread explicitly; the worker
1384 		 * threads can time out and exit on their own.
1385 		 */
1386 		nfs_async_manager_stop(vfsp);
1387 		destroy_rtable(vfsp, cr);
1388 		if (mi->mi_io_kstats) {
1389 			kstat_delete(mi->mi_io_kstats);
1390 			mi->mi_io_kstats = NULL;
1391 		}
1392 		if (mi->mi_ro_kstats) {
1393 			kstat_delete(mi->mi_ro_kstats);
1394 			mi->mi_ro_kstats = NULL;
1395 		}
1396 		return (0);
1397 	}
1398 	/*
1399 	 * Wait until all asynchronous putpage operations on
1400 	 * this file system are complete before flushing rnodes
1401 	 * from the cache.
1402 	 */
1403 	omax = mi->mi_max_threads;
1404 	if (nfs_async_stop_sig(vfsp)) {
1405 		return (EINTR);
1406 	}
1407 	rflush(vfsp, cr);
1408 	/*
1409 	 * If there are any active vnodes on this file system,
1410 	 * then the file system is busy and can't be umounted.
1411 	 */
1412 	if (check_rtable(vfsp)) {
1413 		mutex_enter(&mi->mi_async_lock);
1414 		mi->mi_max_threads = omax;
1415 		mutex_exit(&mi->mi_async_lock);
1416 		return (EBUSY);
1417 	}
1418 	/*
1419 	 * The unmount can't fail from now on; stop the manager thread.
1420 	 */
1421 	nfs_async_manager_stop(vfsp);
1422 	/*
1423 	 * Destroy all rnodes belonging to this file system from the
1424 	 * rnode hash queues and purge any resources allocated to
1425 	 * them.
1426 	 */
1427 	destroy_rtable(vfsp, cr);
1428 	if (mi->mi_io_kstats) {
1429 		kstat_delete(mi->mi_io_kstats);
1430 		mi->mi_io_kstats = NULL;
1431 	}
1432 	if (mi->mi_ro_kstats) {
1433 		kstat_delete(mi->mi_ro_kstats);
1434 		mi->mi_ro_kstats = NULL;
1435 	}
1436 	return (0);
1437 }
1438 
1439 /*
1440  * find root of nfs
1441  */
1442 static int
1443 nfs_root(vfs_t *vfsp, vnode_t **vpp)
1444 {
1445 	mntinfo_t *mi;
1446 	vnode_t *vp;
1447 	servinfo_t *svp;
1448 
1449 	mi = VFTOMI(vfsp);
1450 
1451 	if (nfs_zone() != mi->mi_zone)
1452 		return (EPERM);
1453 
1454 	svp = mi->mi_curr_serv;
1455 	if (svp && (svp->sv_flags & SV_ROOT_STALE)) {
1456 		mutex_enter(&svp->sv_lock);
1457 		svp->sv_flags &= ~SV_ROOT_STALE;
1458 		mutex_exit(&svp->sv_lock);
1459 		return (ENOENT);
1460 	}
1461 
1462 	vp = makenfsnode((fhandle_t *)mi->mi_curr_serv->sv_fhandle.fh_buf,
1463 	    NULL, vfsp, gethrtime(), CRED(), NULL, NULL);
1464 
1465 	if (VTOR(vp)->r_flags & RSTALE) {
1466 		VN_RELE(vp);
1467 		return (ENOENT);
1468 	}
1469 
1470 	ASSERT(vp->v_type == VNON || vp->v_type == mi->mi_type);
1471 
1472 	vp->v_type = mi->mi_type;
1473 
1474 	*vpp = vp;
1475 
1476 	return (0);
1477 }
1478 
1479 /*
1480  * Get file system statistics.
1481  */
1482 static int
1483 nfs_statvfs(vfs_t *vfsp, struct statvfs64 *sbp)
1484 {
1485 	int error;
1486 	mntinfo_t *mi;
1487 	struct nfsstatfs fs;
1488 	int douprintf;
1489 	failinfo_t fi;
1490 	vnode_t *vp;
1491 
1492 	error = nfs_root(vfsp, &vp);
1493 	if (error)
1494 		return (error);
1495 
1496 	mi = VFTOMI(vfsp);
1497 	douprintf = 1;
1498 	fi.vp = vp;
1499 	fi.fhp = NULL;		/* no need to update, filehandle not copied */
1500 	fi.copyproc = nfscopyfh;
1501 	fi.lookupproc = nfslookup;
1502 	fi.xattrdirproc = acl_getxattrdir2;
1503 
1504 	error = rfs2call(mi, RFS_STATFS,
1505 			xdr_fhandle, (caddr_t)VTOFH(vp),
1506 			xdr_statfs, (caddr_t)&fs, CRED(), &douprintf,
1507 			&fs.fs_status, 0, &fi);
1508 
1509 	if (!error) {
1510 		error = geterrno(fs.fs_status);
1511 		if (!error) {
1512 			mutex_enter(&mi->mi_lock);
1513 			if (mi->mi_stsize) {
1514 				mi->mi_stsize = MIN(mi->mi_stsize, fs.fs_tsize);
1515 			} else {
1516 				mi->mi_stsize = fs.fs_tsize;
1517 				mi->mi_curwrite = mi->mi_stsize;
1518 			}
1519 			mutex_exit(&mi->mi_lock);
1520 			sbp->f_bsize = fs.fs_bsize;
1521 			sbp->f_frsize = fs.fs_bsize;
1522 			sbp->f_blocks = (fsblkcnt64_t)fs.fs_blocks;
1523 			sbp->f_bfree = (fsblkcnt64_t)fs.fs_bfree;
1524 			/*
1525 			 * Some servers may return negative available
1526 			 * block counts.  They may do this because they
1527 			 * calculate the number of available blocks by
1528 			 * subtracting the number of used blocks from
1529 			 * the total number of blocks modified by the
1530 			 * minimum free value.  For example, if the
1531 			 * minumum free percentage is 10 and the file
1532 			 * system is greater than 90 percent full, then
1533 			 * 90 percent of the total blocks minus the
1534 			 * actual number of used blocks may be a
1535 			 * negative number.
1536 			 *
1537 			 * In this case, we need to sign extend the
1538 			 * negative number through the assignment from
1539 			 * the 32 bit bavail count to the 64 bit bavail
1540 			 * count.
1541 			 *
1542 			 * We need to be able to discern between there
1543 			 * just being a lot of available blocks on the
1544 			 * file system and the case described above.
1545 			 * We are making the assumption that it does
1546 			 * not make sense to have more available blocks
1547 			 * than there are free blocks.  So, if there
1548 			 * are, then we treat the number as if it were
1549 			 * a negative number and arrange to have it
1550 			 * sign extended when it is converted from 32
1551 			 * bits to 64 bits.
1552 			 */
1553 			if (fs.fs_bavail <= fs.fs_bfree)
1554 				sbp->f_bavail = (fsblkcnt64_t)fs.fs_bavail;
1555 			else {
1556 				sbp->f_bavail =
1557 					(fsblkcnt64_t)((long)fs.fs_bavail);
1558 			}
1559 			sbp->f_files = (fsfilcnt64_t)-1;
1560 			sbp->f_ffree = (fsfilcnt64_t)-1;
1561 			sbp->f_favail = (fsfilcnt64_t)-1;
1562 			sbp->f_fsid = (unsigned long)vfsp->vfs_fsid.val[0];
1563 			(void) strncpy(sbp->f_basetype,
1564 				vfssw[vfsp->vfs_fstype].vsw_name, FSTYPSZ);
1565 			sbp->f_flag = vf_to_stf(vfsp->vfs_flag);
1566 			sbp->f_namemax = (uint32_t)-1;
1567 		} else {
1568 			PURGE_STALE_FH(error, vp, CRED());
1569 		}
1570 	}
1571 
1572 	VN_RELE(vp);
1573 
1574 	return (error);
1575 }
1576 
1577 static kmutex_t nfs_syncbusy;
1578 
1579 /*
1580  * Flush dirty nfs files for file system vfsp.
1581  * If vfsp == NULL, all nfs files are flushed.
1582  */
1583 /* ARGSUSED */
1584 static int
1585 nfs_sync(vfs_t *vfsp, short flag, cred_t *cr)
1586 {
1587 	/*
1588 	 * Cross-zone calls are OK here, since this translates to a
1589 	 * VOP_PUTPAGE(B_ASYNC), which gets picked up by the right zone.
1590 	 */
1591 	if (!(flag & SYNC_ATTR) && mutex_tryenter(&nfs_syncbusy) != 0) {
1592 		rflush(vfsp, cr);
1593 		mutex_exit(&nfs_syncbusy);
1594 	}
1595 	return (0);
1596 }
1597 
1598 /* ARGSUSED */
1599 static int
1600 nfs_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp)
1601 {
1602 	int error;
1603 	vnode_t *vp;
1604 	struct vattr va;
1605 	struct nfs_fid *nfsfidp = (struct nfs_fid *)fidp;
1606 	zoneid_t zoneid = VFTOMI(vfsp)->mi_zone->zone_id;
1607 
1608 	if (nfs_zone() != VFTOMI(vfsp)->mi_zone)
1609 		return (EPERM);
1610 	if (fidp->fid_len != (sizeof (*nfsfidp) - sizeof (short))) {
1611 #ifdef DEBUG
1612 		zcmn_err(zoneid, CE_WARN,
1613 		    "nfs_vget: bad fid len, %d/%d", fidp->fid_len,
1614 		    (int)(sizeof (*nfsfidp) - sizeof (short)));
1615 #endif
1616 		*vpp = NULL;
1617 		return (ESTALE);
1618 	}
1619 
1620 	vp = makenfsnode((fhandle_t *)(nfsfidp->nf_data), NULL, vfsp,
1621 	    gethrtime(), CRED(), NULL, NULL);
1622 
1623 	if (VTOR(vp)->r_flags & RSTALE) {
1624 		VN_RELE(vp);
1625 		*vpp = NULL;
1626 		return (ENOENT);
1627 	}
1628 
1629 	if (vp->v_type == VNON) {
1630 		va.va_mask = AT_ALL;
1631 		error = nfsgetattr(vp, &va, CRED());
1632 		if (error) {
1633 			VN_RELE(vp);
1634 			*vpp = NULL;
1635 			return (error);
1636 		}
1637 		vp->v_type = va.va_type;
1638 	}
1639 
1640 	*vpp = vp;
1641 
1642 	return (0);
1643 }
1644 
1645 /* ARGSUSED */
1646 static int
1647 nfs_mountroot(vfs_t *vfsp, whymountroot_t why)
1648 {
1649 	vnode_t *rtvp;
1650 	char root_hostname[SYS_NMLN+1];
1651 	struct servinfo *svp;
1652 	int error;
1653 	int vfsflags;
1654 	size_t size;
1655 	char *root_path;
1656 	struct pathname pn;
1657 	char *name;
1658 	cred_t *cr;
1659 	struct nfs_args args;		/* nfs mount arguments */
1660 	static char token[10];
1661 
1662 	bzero(&args, sizeof (args));
1663 
1664 	/* do this BEFORE getfile which causes xid stamps to be initialized */
1665 	clkset(-1L);		/* hack for now - until we get time svc? */
1666 
1667 	if (why == ROOT_REMOUNT) {
1668 		/*
1669 		 * Shouldn't happen.
1670 		 */
1671 		panic("nfs_mountroot: why == ROOT_REMOUNT");
1672 	}
1673 
1674 	if (why == ROOT_UNMOUNT) {
1675 		/*
1676 		 * Nothing to do for NFS.
1677 		 */
1678 		return (0);
1679 	}
1680 
1681 	/*
1682 	 * why == ROOT_INIT
1683 	 */
1684 
1685 	name = token;
1686 	*name = 0;
1687 	getfsname("root", name, sizeof (token));
1688 
1689 	pn_alloc(&pn);
1690 	root_path = pn.pn_path;
1691 
1692 	svp = kmem_zalloc(sizeof (*svp), KM_SLEEP);
1693 	svp->sv_knconf = kmem_zalloc(sizeof (*svp->sv_knconf), KM_SLEEP);
1694 	svp->sv_knconf->knc_protofmly = kmem_alloc(KNC_STRSIZE, KM_SLEEP);
1695 	svp->sv_knconf->knc_proto = kmem_alloc(KNC_STRSIZE, KM_SLEEP);
1696 
1697 	/*
1698 	 * Get server address
1699 	 * Get the root fhandle
1700 	 * Get server's transport
1701 	 * Get server's hostname
1702 	 * Get options
1703 	 */
1704 	args.addr = &svp->sv_addr;
1705 	args.fh = (char *)&svp->sv_fhandle.fh_buf;
1706 	args.knconf = svp->sv_knconf;
1707 	args.hostname = root_hostname;
1708 	vfsflags = 0;
1709 	if (error = mount_root(*name ? name : "root", root_path, NFS_VERSION,
1710 	    &args, &vfsflags)) {
1711 		nfs_cmn_err(error, CE_WARN,
1712 		    "nfs_mountroot: mount_root failed: %m");
1713 		sv_free(svp);
1714 		pn_free(&pn);
1715 		return (error);
1716 	}
1717 	svp->sv_fhandle.fh_len = NFS_FHSIZE;
1718 	svp->sv_hostnamelen = (int)(strlen(root_hostname) + 1);
1719 	svp->sv_hostname = kmem_alloc(svp->sv_hostnamelen, KM_SLEEP);
1720 	(void) strcpy(svp->sv_hostname, root_hostname);
1721 
1722 	/*
1723 	 * Force root partition to always be mounted with AUTH_UNIX for now
1724 	 */
1725 	svp->sv_secdata = kmem_alloc(sizeof (*svp->sv_secdata), KM_SLEEP);
1726 	svp->sv_secdata->secmod = AUTH_UNIX;
1727 	svp->sv_secdata->rpcflavor = AUTH_UNIX;
1728 	svp->sv_secdata->data = NULL;
1729 
1730 	cr = crgetcred();
1731 	rtvp = NULL;
1732 
1733 	error = nfsrootvp(&rtvp, vfsp, svp, args.flags, cr, global_zone);
1734 
1735 	crfree(cr);
1736 
1737 	if (error) {
1738 		pn_free(&pn);
1739 		goto errout;
1740 	}
1741 
1742 	error = nfs_setopts(rtvp, DATAMODEL_NATIVE, &args);
1743 	if (error) {
1744 		nfs_cmn_err(error, CE_WARN,
1745 		    "nfs_mountroot: invalid root mount options");
1746 		pn_free(&pn);
1747 		goto errout;
1748 	}
1749 
1750 	(void) vfs_lock_wait(vfsp);
1751 	vfs_add(NULL, vfsp, vfsflags);
1752 	vfs_unlock(vfsp);
1753 
1754 	size = strlen(svp->sv_hostname);
1755 	(void) strcpy(rootfs.bo_name, svp->sv_hostname);
1756 	rootfs.bo_name[size] = ':';
1757 	(void) strcpy(&rootfs.bo_name[size + 1], root_path);
1758 
1759 	pn_free(&pn);
1760 
1761 errout:
1762 	if (error) {
1763 		sv_free(svp);
1764 		nfs_async_stop(vfsp);
1765 		nfs_async_manager_stop(vfsp);
1766 	}
1767 
1768 	if (rtvp != NULL)
1769 		VN_RELE(rtvp);
1770 
1771 	return (error);
1772 }
1773 
1774 /*
1775  * Initialization routine for VFS routines.  Should only be called once
1776  */
1777 int
1778 nfs_vfsinit(void)
1779 {
1780 	mutex_init(&nfs_syncbusy, NULL, MUTEX_DEFAULT, NULL);
1781 	return (0);
1782 }
1783 
1784 void
1785 nfs_vfsfini(void)
1786 {
1787 	mutex_destroy(&nfs_syncbusy);
1788 }
1789 
1790 void
1791 nfs_freevfs(vfs_t *vfsp)
1792 {
1793 	mntinfo_t *mi;
1794 	servinfo_t *svp;
1795 
1796 	/* free up the resources */
1797 	mi = VFTOMI(vfsp);
1798 	pathconf_rele(mi);
1799 	svp = mi->mi_servers;
1800 	mi->mi_servers = mi->mi_curr_serv = NULL;
1801 	sv_free(svp);
1802 
1803 	/*
1804 	 * By this time we should have already deleted the
1805 	 * mi kstats in the unmount code. If they are still around
1806 	 * somethings wrong
1807 	 */
1808 	ASSERT(mi->mi_io_kstats == NULL);
1809 	nfs_free_mi(mi);
1810 }
1811