1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 1990, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2011 Bayard G. Bell. All rights reserved. 24 * Copyright 2012 Nexenta Systems, Inc. All rights reserved. 25 */ 26 27 /* 28 * Copyright (c) 1983,1984,1985,1986,1987,1988,1989 AT&T. 29 * All rights reserved. 30 * Use is subject to license terms. 31 */ 32 33 #include <sys/param.h> 34 #include <sys/types.h> 35 #include <sys/systm.h> 36 #include <sys/cred.h> 37 #include <sys/proc.h> 38 #include <sys/user.h> 39 #include <sys/buf.h> 40 #include <sys/vfs.h> 41 #include <sys/vnode.h> 42 #include <sys/pathname.h> 43 #include <sys/uio.h> 44 #include <sys/file.h> 45 #include <sys/stat.h> 46 #include <sys/errno.h> 47 #include <sys/socket.h> 48 #include <sys/sysmacros.h> 49 #include <sys/siginfo.h> 50 #include <sys/tiuser.h> 51 #include <sys/statvfs.h> 52 #include <sys/stream.h> 53 #include <sys/strsubr.h> 54 #include <sys/stropts.h> 55 #include <sys/timod.h> 56 #include <sys/t_kuser.h> 57 #include <sys/kmem.h> 58 #include <sys/kstat.h> 59 #include <sys/dirent.h> 60 #include <sys/cmn_err.h> 61 #include <sys/debug.h> 62 #include <sys/unistd.h> 63 #include <sys/vtrace.h> 64 #include <sys/mode.h> 65 #include <sys/acl.h> 66 #include <sys/sdt.h> 67 68 #include <rpc/types.h> 69 #include <rpc/auth.h> 70 #include <rpc/auth_unix.h> 71 #include <rpc/auth_des.h> 72 #include <rpc/svc.h> 73 #include <rpc/xdr.h> 74 #include <rpc/rpc_rdma.h> 75 76 #include <nfs/nfs.h> 77 #include <nfs/export.h> 78 #include <nfs/nfssys.h> 79 #include <nfs/nfs_clnt.h> 80 #include <nfs/nfs_acl.h> 81 #include <nfs/nfs_log.h> 82 #include <nfs/nfs_cmd.h> 83 #include <nfs/lm.h> 84 #include <nfs/nfs_dispatch.h> 85 #include <nfs/nfs4_drc.h> 86 87 #include <sys/modctl.h> 88 #include <sys/cladm.h> 89 #include <sys/clconf.h> 90 91 #include <sys/tsol/label.h> 92 93 #define MAXHOST 32 94 const char *kinet_ntop6(uchar_t *, char *, size_t); 95 96 /* 97 * Module linkage information. 98 */ 99 100 static struct modlmisc modlmisc = { 101 &mod_miscops, "NFS server module" 102 }; 103 104 static struct modlinkage modlinkage = { 105 MODREV_1, (void *)&modlmisc, NULL 106 }; 107 108 kmem_cache_t *nfs_xuio_cache; 109 int nfs_loaned_buffers = 0; 110 111 int 112 _init(void) 113 { 114 int status; 115 116 if ((status = nfs_srvinit()) != 0) { 117 cmn_err(CE_WARN, "_init: nfs_srvinit failed"); 118 return (status); 119 } 120 121 status = mod_install((struct modlinkage *)&modlinkage); 122 if (status != 0) { 123 /* 124 * Could not load module, cleanup previous 125 * initialization work. 126 */ 127 nfs_srvfini(); 128 } 129 130 /* 131 * Initialise some placeholders for nfssys() calls. These have 132 * to be declared by the nfs module, since that handles nfssys() 133 * calls - also used by NFS clients - but are provided by this 134 * nfssrv module. These also then serve as confirmation to the 135 * relevant code in nfs that nfssrv has been loaded, as they're 136 * initially NULL. 137 */ 138 nfs_srv_quiesce_func = nfs_srv_quiesce_all; 139 nfs_srv_dss_func = rfs4_dss_setpaths; 140 141 /* setup DSS paths here; must be done before initial server startup */ 142 rfs4_dss_paths = rfs4_dss_oldpaths = NULL; 143 144 /* initialize the copy reduction caches */ 145 146 nfs_xuio_cache = kmem_cache_create("nfs_xuio_cache", 147 sizeof (nfs_xuio_t), 0, NULL, NULL, NULL, NULL, NULL, 0); 148 149 return (status); 150 } 151 152 int 153 _fini() 154 { 155 return (EBUSY); 156 } 157 158 int 159 _info(struct modinfo *modinfop) 160 { 161 return (mod_info(&modlinkage, modinfop)); 162 } 163 164 /* 165 * PUBLICFH_CHECK() checks if the dispatch routine supports 166 * RPC_PUBLICFH_OK, if the filesystem is exported public, and if the 167 * incoming request is using the public filehandle. The check duplicates 168 * the exportmatch() call done in checkexport(), and we should consider 169 * modifying those routines to avoid the duplication. For now, we optimize 170 * by calling exportmatch() only after checking that the dispatch routine 171 * supports RPC_PUBLICFH_OK, and if the filesystem is explicitly exported 172 * public (i.e., not the placeholder). 173 */ 174 #define PUBLICFH_CHECK(disp, exi, fsid, xfid) \ 175 ((disp->dis_flags & RPC_PUBLICFH_OK) && \ 176 ((exi->exi_export.ex_flags & EX_PUBLIC) || \ 177 (exi == exi_public && exportmatch(exi_root, \ 178 fsid, xfid)))) 179 180 static void nfs_srv_shutdown_all(int); 181 static void rfs4_server_start(int); 182 static void nullfree(void); 183 static void rfs_dispatch(struct svc_req *, SVCXPRT *); 184 static void acl_dispatch(struct svc_req *, SVCXPRT *); 185 static void common_dispatch(struct svc_req *, SVCXPRT *, 186 rpcvers_t, rpcvers_t, char *, 187 struct rpc_disptable *); 188 static void hanfsv4_failover(void); 189 static int checkauth(struct exportinfo *, struct svc_req *, cred_t *, int, 190 bool_t); 191 static char *client_name(struct svc_req *req); 192 static char *client_addr(struct svc_req *req, char *buf); 193 extern int sec_svc_getcred(struct svc_req *, cred_t *cr, char **, int *); 194 extern bool_t sec_svc_inrootlist(int, caddr_t, int, caddr_t *); 195 196 #define NFSLOG_COPY_NETBUF(exi, xprt, nb) { \ 197 (nb)->maxlen = (xprt)->xp_rtaddr.maxlen; \ 198 (nb)->len = (xprt)->xp_rtaddr.len; \ 199 (nb)->buf = kmem_alloc((nb)->len, KM_SLEEP); \ 200 bcopy((xprt)->xp_rtaddr.buf, (nb)->buf, (nb)->len); \ 201 } 202 203 /* 204 * Public Filehandle common nfs routines 205 */ 206 static int MCLpath(char **); 207 static void URLparse(char *); 208 209 /* 210 * NFS callout table. 211 * This table is used by svc_getreq() to dispatch a request with 212 * a given prog/vers pair to an appropriate service provider 213 * dispatch routine. 214 * 215 * NOTE: ordering is relied upon below when resetting the version min/max 216 * for NFS_PROGRAM. Careful, if this is ever changed. 217 */ 218 static SVC_CALLOUT __nfs_sc_clts[] = { 219 { NFS_PROGRAM, NFS_VERSMIN, NFS_VERSMAX, rfs_dispatch }, 220 { NFS_ACL_PROGRAM, NFS_ACL_VERSMIN, NFS_ACL_VERSMAX, acl_dispatch } 221 }; 222 223 static SVC_CALLOUT_TABLE nfs_sct_clts = { 224 sizeof (__nfs_sc_clts) / sizeof (__nfs_sc_clts[0]), FALSE, 225 __nfs_sc_clts 226 }; 227 228 static SVC_CALLOUT __nfs_sc_cots[] = { 229 { NFS_PROGRAM, NFS_VERSMIN, NFS_VERSMAX, rfs_dispatch }, 230 { NFS_ACL_PROGRAM, NFS_ACL_VERSMIN, NFS_ACL_VERSMAX, acl_dispatch } 231 }; 232 233 static SVC_CALLOUT_TABLE nfs_sct_cots = { 234 sizeof (__nfs_sc_cots) / sizeof (__nfs_sc_cots[0]), FALSE, __nfs_sc_cots 235 }; 236 237 static SVC_CALLOUT __nfs_sc_rdma[] = { 238 { NFS_PROGRAM, NFS_VERSMIN, NFS_VERSMAX, rfs_dispatch }, 239 { NFS_ACL_PROGRAM, NFS_ACL_VERSMIN, NFS_ACL_VERSMAX, acl_dispatch } 240 }; 241 242 static SVC_CALLOUT_TABLE nfs_sct_rdma = { 243 sizeof (__nfs_sc_rdma) / sizeof (__nfs_sc_rdma[0]), FALSE, __nfs_sc_rdma 244 }; 245 rpcvers_t nfs_versmin = NFS_VERSMIN_DEFAULT; 246 rpcvers_t nfs_versmax = NFS_VERSMAX_DEFAULT; 247 248 /* 249 * Used to track the state of the server so that initialization 250 * can be done properly. 251 */ 252 typedef enum { 253 NFS_SERVER_STOPPED, /* server state destroyed */ 254 NFS_SERVER_STOPPING, /* server state being destroyed */ 255 NFS_SERVER_RUNNING, 256 NFS_SERVER_QUIESCED, /* server state preserved */ 257 NFS_SERVER_OFFLINE /* server pool offline */ 258 } nfs_server_running_t; 259 260 static nfs_server_running_t nfs_server_upordown; 261 static kmutex_t nfs_server_upordown_lock; 262 static kcondvar_t nfs_server_upordown_cv; 263 264 /* 265 * DSS: distributed stable storage 266 * lists of all DSS paths: current, and before last warmstart 267 */ 268 nvlist_t *rfs4_dss_paths, *rfs4_dss_oldpaths; 269 270 int rfs4_dispatch(struct rpcdisp *, struct svc_req *, SVCXPRT *, char *); 271 bool_t rfs4_minorvers_mismatch(struct svc_req *, SVCXPRT *, void *); 272 273 /* 274 * RDMA wait variables. 275 */ 276 static kcondvar_t rdma_wait_cv; 277 static kmutex_t rdma_wait_mutex; 278 279 /* 280 * Will be called at the point the server pool is being unregistered 281 * from the pool list. From that point onwards, the pool is waiting 282 * to be drained and as such the server state is stale and pertains 283 * to the old instantiation of the NFS server pool. 284 */ 285 void 286 nfs_srv_offline(void) 287 { 288 mutex_enter(&nfs_server_upordown_lock); 289 if (nfs_server_upordown == NFS_SERVER_RUNNING) { 290 nfs_server_upordown = NFS_SERVER_OFFLINE; 291 } 292 mutex_exit(&nfs_server_upordown_lock); 293 } 294 295 /* 296 * Will be called at the point the server pool is being destroyed so 297 * all transports have been closed and no service threads are in 298 * existence. 299 * 300 * If we quiesce the server, we're shutting it down without destroying the 301 * server state. This allows it to warm start subsequently. 302 */ 303 void 304 nfs_srv_stop_all(void) 305 { 306 int quiesce = 0; 307 nfs_srv_shutdown_all(quiesce); 308 } 309 310 /* 311 * This alternative shutdown routine can be requested via nfssys() 312 */ 313 void 314 nfs_srv_quiesce_all(void) 315 { 316 int quiesce = 1; 317 nfs_srv_shutdown_all(quiesce); 318 } 319 320 static void 321 nfs_srv_shutdown_all(int quiesce) { 322 mutex_enter(&nfs_server_upordown_lock); 323 if (quiesce) { 324 if (nfs_server_upordown == NFS_SERVER_RUNNING || 325 nfs_server_upordown == NFS_SERVER_OFFLINE) { 326 nfs_server_upordown = NFS_SERVER_QUIESCED; 327 cv_signal(&nfs_server_upordown_cv); 328 329 /* reset DSS state, for subsequent warm restart */ 330 rfs4_dss_numnewpaths = 0; 331 rfs4_dss_newpaths = NULL; 332 333 cmn_err(CE_NOTE, "nfs_server: server is now quiesced; " 334 "NFSv4 state has been preserved"); 335 } 336 } else { 337 if (nfs_server_upordown == NFS_SERVER_OFFLINE) { 338 nfs_server_upordown = NFS_SERVER_STOPPING; 339 mutex_exit(&nfs_server_upordown_lock); 340 rfs4_state_fini(); 341 rfs4_fini_drc(nfs4_drc); 342 mutex_enter(&nfs_server_upordown_lock); 343 nfs_server_upordown = NFS_SERVER_STOPPED; 344 cv_signal(&nfs_server_upordown_cv); 345 } 346 } 347 mutex_exit(&nfs_server_upordown_lock); 348 } 349 350 static int 351 nfs_srv_set_sc_versions(struct file *fp, SVC_CALLOUT_TABLE **sctpp, 352 rpcvers_t versmin, rpcvers_t versmax) 353 { 354 struct strioctl strioc; 355 struct T_info_ack tinfo; 356 int error, retval; 357 358 /* 359 * Find out what type of transport this is. 360 */ 361 strioc.ic_cmd = TI_GETINFO; 362 strioc.ic_timout = -1; 363 strioc.ic_len = sizeof (tinfo); 364 strioc.ic_dp = (char *)&tinfo; 365 tinfo.PRIM_type = T_INFO_REQ; 366 367 error = strioctl(fp->f_vnode, I_STR, (intptr_t)&strioc, 0, K_TO_K, 368 CRED(), &retval); 369 if (error || retval) 370 return (error); 371 372 /* 373 * Based on our query of the transport type... 374 * 375 * Reset the min/max versions based on the caller's request 376 * NOTE: This assumes that NFS_PROGRAM is first in the array!! 377 * And the second entry is the NFS_ACL_PROGRAM. 378 */ 379 switch (tinfo.SERV_type) { 380 case T_CLTS: 381 if (versmax == NFS_V4) 382 return (EINVAL); 383 __nfs_sc_clts[0].sc_versmin = versmin; 384 __nfs_sc_clts[0].sc_versmax = versmax; 385 __nfs_sc_clts[1].sc_versmin = versmin; 386 __nfs_sc_clts[1].sc_versmax = versmax; 387 *sctpp = &nfs_sct_clts; 388 break; 389 case T_COTS: 390 case T_COTS_ORD: 391 __nfs_sc_cots[0].sc_versmin = versmin; 392 __nfs_sc_cots[0].sc_versmax = versmax; 393 /* For the NFS_ACL program, check the max version */ 394 if (versmax > NFS_ACL_VERSMAX) 395 versmax = NFS_ACL_VERSMAX; 396 __nfs_sc_cots[1].sc_versmin = versmin; 397 __nfs_sc_cots[1].sc_versmax = versmax; 398 *sctpp = &nfs_sct_cots; 399 break; 400 default: 401 error = EINVAL; 402 } 403 404 return (error); 405 } 406 407 /* 408 * NFS Server system call. 409 * Does all of the work of running a NFS server. 410 * uap->fd is the fd of an open transport provider 411 */ 412 int 413 nfs_svc(struct nfs_svc_args *arg, model_t model) 414 { 415 file_t *fp; 416 SVCMASTERXPRT *xprt; 417 int error; 418 int readsize; 419 char buf[KNC_STRSIZE]; 420 size_t len; 421 STRUCT_HANDLE(nfs_svc_args, uap); 422 struct netbuf addrmask; 423 SVC_CALLOUT_TABLE *sctp = NULL; 424 425 #ifdef lint 426 model = model; /* STRUCT macros don't always refer to it */ 427 #endif 428 429 STRUCT_SET_HANDLE(uap, model, arg); 430 431 /* Check privileges in nfssys() */ 432 433 if ((fp = getf(STRUCT_FGET(uap, fd))) == NULL) 434 return (EBADF); 435 436 /* 437 * Set read buffer size to rsize 438 * and add room for RPC headers. 439 */ 440 readsize = nfs3tsize() + (RPC_MAXDATASIZE - NFS_MAXDATA); 441 if (readsize < RPC_MAXDATASIZE) 442 readsize = RPC_MAXDATASIZE; 443 444 error = copyinstr((const char *)STRUCT_FGETP(uap, netid), buf, 445 KNC_STRSIZE, &len); 446 if (error) { 447 releasef(STRUCT_FGET(uap, fd)); 448 return (error); 449 } 450 451 addrmask.len = STRUCT_FGET(uap, addrmask.len); 452 addrmask.maxlen = STRUCT_FGET(uap, addrmask.maxlen); 453 addrmask.buf = kmem_alloc(addrmask.maxlen, KM_SLEEP); 454 error = copyin(STRUCT_FGETP(uap, addrmask.buf), addrmask.buf, 455 addrmask.len); 456 if (error) { 457 releasef(STRUCT_FGET(uap, fd)); 458 kmem_free(addrmask.buf, addrmask.maxlen); 459 return (error); 460 } 461 462 nfs_versmin = STRUCT_FGET(uap, versmin); 463 nfs_versmax = STRUCT_FGET(uap, versmax); 464 465 /* Double check the vers min/max ranges */ 466 if ((nfs_versmin > nfs_versmax) || 467 (nfs_versmin < NFS_VERSMIN) || 468 (nfs_versmax > NFS_VERSMAX)) { 469 nfs_versmin = NFS_VERSMIN_DEFAULT; 470 nfs_versmax = NFS_VERSMAX_DEFAULT; 471 } 472 473 if (error = 474 nfs_srv_set_sc_versions(fp, &sctp, nfs_versmin, nfs_versmax)) { 475 releasef(STRUCT_FGET(uap, fd)); 476 kmem_free(addrmask.buf, addrmask.maxlen); 477 return (error); 478 } 479 480 /* Initialize nfsv4 server */ 481 if (nfs_versmax == (rpcvers_t)NFS_V4) 482 rfs4_server_start(STRUCT_FGET(uap, delegation)); 483 484 /* Create a transport handle. */ 485 error = svc_tli_kcreate(fp, readsize, buf, &addrmask, &xprt, 486 sctp, NULL, NFS_SVCPOOL_ID, TRUE); 487 488 if (error) 489 kmem_free(addrmask.buf, addrmask.maxlen); 490 491 releasef(STRUCT_FGET(uap, fd)); 492 493 /* HA-NFSv4: save the cluster nodeid */ 494 if (cluster_bootflags & CLUSTER_BOOTED) 495 lm_global_nlmid = clconf_get_nodeid(); 496 497 return (error); 498 } 499 500 static void 501 rfs4_server_start(int nfs4_srv_delegation) 502 { 503 /* 504 * Determine if the server has previously been "started" and 505 * if not, do the per instance initialization 506 */ 507 mutex_enter(&nfs_server_upordown_lock); 508 509 if (nfs_server_upordown != NFS_SERVER_RUNNING) { 510 /* Do we need to stop and wait on the previous server? */ 511 while (nfs_server_upordown == NFS_SERVER_STOPPING || 512 nfs_server_upordown == NFS_SERVER_OFFLINE) 513 cv_wait(&nfs_server_upordown_cv, 514 &nfs_server_upordown_lock); 515 516 if (nfs_server_upordown != NFS_SERVER_RUNNING) { 517 (void) svc_pool_control(NFS_SVCPOOL_ID, 518 SVCPSET_UNREGISTER_PROC, (void *)&nfs_srv_offline); 519 (void) svc_pool_control(NFS_SVCPOOL_ID, 520 SVCPSET_SHUTDOWN_PROC, (void *)&nfs_srv_stop_all); 521 522 /* is this an nfsd warm start? */ 523 if (nfs_server_upordown == NFS_SERVER_QUIESCED) { 524 cmn_err(CE_NOTE, "nfs_server: " 525 "server was previously quiesced; " 526 "existing NFSv4 state will be re-used"); 527 528 /* 529 * HA-NFSv4: this is also the signal 530 * that a Resource Group failover has 531 * occurred. 532 */ 533 if (cluster_bootflags & CLUSTER_BOOTED) 534 hanfsv4_failover(); 535 } else { 536 /* cold start */ 537 rfs4_state_init(); 538 nfs4_drc = rfs4_init_drc(nfs4_drc_max, 539 nfs4_drc_hash); 540 } 541 542 /* 543 * Check to see if delegation is to be 544 * enabled at the server 545 */ 546 if (nfs4_srv_delegation != FALSE) 547 rfs4_set_deleg_policy(SRV_NORMAL_DELEGATE); 548 549 nfs_server_upordown = NFS_SERVER_RUNNING; 550 } 551 cv_signal(&nfs_server_upordown_cv); 552 } 553 mutex_exit(&nfs_server_upordown_lock); 554 } 555 556 /* 557 * If RDMA device available, 558 * start RDMA listener. 559 */ 560 int 561 rdma_start(struct rdma_svc_args *rsa) 562 { 563 int error; 564 rdma_xprt_group_t started_rdma_xprts; 565 rdma_stat stat; 566 int svc_state = 0; 567 568 /* Double check the vers min/max ranges */ 569 if ((rsa->nfs_versmin > rsa->nfs_versmax) || 570 (rsa->nfs_versmin < NFS_VERSMIN) || 571 (rsa->nfs_versmax > NFS_VERSMAX)) { 572 rsa->nfs_versmin = NFS_VERSMIN_DEFAULT; 573 rsa->nfs_versmax = NFS_VERSMAX_DEFAULT; 574 } 575 nfs_versmin = rsa->nfs_versmin; 576 nfs_versmax = rsa->nfs_versmax; 577 578 /* Set the versions in the callout table */ 579 __nfs_sc_rdma[0].sc_versmin = rsa->nfs_versmin; 580 __nfs_sc_rdma[0].sc_versmax = rsa->nfs_versmax; 581 /* For the NFS_ACL program, check the max version */ 582 __nfs_sc_rdma[1].sc_versmin = rsa->nfs_versmin; 583 if (rsa->nfs_versmax > NFS_ACL_VERSMAX) 584 __nfs_sc_rdma[1].sc_versmax = NFS_ACL_VERSMAX; 585 else 586 __nfs_sc_rdma[1].sc_versmax = rsa->nfs_versmax; 587 588 /* Initialize nfsv4 server */ 589 if (rsa->nfs_versmax == (rpcvers_t)NFS_V4) 590 rfs4_server_start(rsa->delegation); 591 592 started_rdma_xprts.rtg_count = 0; 593 started_rdma_xprts.rtg_listhead = NULL; 594 started_rdma_xprts.rtg_poolid = rsa->poolid; 595 596 restart: 597 error = svc_rdma_kcreate(rsa->netid, &nfs_sct_rdma, rsa->poolid, 598 &started_rdma_xprts); 599 600 svc_state = !error; 601 602 while (!error) { 603 604 /* 605 * wait till either interrupted by a signal on 606 * nfs service stop/restart or signalled by a 607 * rdma plugin attach/detatch. 608 */ 609 610 stat = rdma_kwait(); 611 612 /* 613 * stop services if running -- either on a HCA detach event 614 * or if the nfs service is stopped/restarted. 615 */ 616 617 if ((stat == RDMA_HCA_DETACH || stat == RDMA_INTR) && 618 svc_state) { 619 rdma_stop(&started_rdma_xprts); 620 svc_state = 0; 621 } 622 623 /* 624 * nfs service stop/restart, break out of the 625 * wait loop and return; 626 */ 627 if (stat == RDMA_INTR) 628 return (0); 629 630 /* 631 * restart stopped services on a HCA attach event 632 * (if not already running) 633 */ 634 635 if ((stat == RDMA_HCA_ATTACH) && (svc_state == 0)) 636 goto restart; 637 638 /* 639 * loop until a nfs service stop/restart 640 */ 641 } 642 643 return (error); 644 } 645 646 /* ARGSUSED */ 647 void 648 rpc_null(caddr_t *argp, caddr_t *resp) 649 { 650 } 651 652 /* ARGSUSED */ 653 void 654 rpc_null_v3(caddr_t *argp, caddr_t *resp, struct exportinfo *exi, 655 struct svc_req *req, cred_t *cr) 656 { 657 DTRACE_NFSV3_3(op__null__start, struct svc_req *, req, 658 cred_t *, cr, vnode_t *, NULL); 659 DTRACE_NFSV3_3(op__null__done, struct svc_req *, req, 660 cred_t *, cr, vnode_t *, NULL); 661 } 662 663 /* ARGSUSED */ 664 static void 665 rfs_error(caddr_t *argp, caddr_t *resp) 666 { 667 /* return (EOPNOTSUPP); */ 668 } 669 670 static void 671 nullfree(void) 672 { 673 } 674 675 static char *rfscallnames_v2[] = { 676 "RFS2_NULL", 677 "RFS2_GETATTR", 678 "RFS2_SETATTR", 679 "RFS2_ROOT", 680 "RFS2_LOOKUP", 681 "RFS2_READLINK", 682 "RFS2_READ", 683 "RFS2_WRITECACHE", 684 "RFS2_WRITE", 685 "RFS2_CREATE", 686 "RFS2_REMOVE", 687 "RFS2_RENAME", 688 "RFS2_LINK", 689 "RFS2_SYMLINK", 690 "RFS2_MKDIR", 691 "RFS2_RMDIR", 692 "RFS2_READDIR", 693 "RFS2_STATFS" 694 }; 695 696 static struct rpcdisp rfsdisptab_v2[] = { 697 /* 698 * NFS VERSION 2 699 */ 700 701 /* RFS_NULL = 0 */ 702 {rpc_null, 703 xdr_void, NULL_xdrproc_t, 0, 704 xdr_void, NULL_xdrproc_t, 0, 705 nullfree, RPC_IDEMPOTENT, 706 0}, 707 708 /* RFS_GETATTR = 1 */ 709 {rfs_getattr, 710 xdr_fhandle, xdr_fastfhandle, sizeof (fhandle_t), 711 xdr_attrstat, xdr_fastattrstat, sizeof (struct nfsattrstat), 712 nullfree, RPC_IDEMPOTENT|RPC_ALLOWANON|RPC_MAPRESP, 713 rfs_getattr_getfh}, 714 715 /* RFS_SETATTR = 2 */ 716 {rfs_setattr, 717 xdr_saargs, NULL_xdrproc_t, sizeof (struct nfssaargs), 718 xdr_attrstat, xdr_fastattrstat, sizeof (struct nfsattrstat), 719 nullfree, RPC_MAPRESP, 720 rfs_setattr_getfh}, 721 722 /* RFS_ROOT = 3 *** NO LONGER SUPPORTED *** */ 723 {rfs_error, 724 xdr_void, NULL_xdrproc_t, 0, 725 xdr_void, NULL_xdrproc_t, 0, 726 nullfree, RPC_IDEMPOTENT, 727 0}, 728 729 /* RFS_LOOKUP = 4 */ 730 {rfs_lookup, 731 xdr_diropargs, NULL_xdrproc_t, sizeof (struct nfsdiropargs), 732 xdr_diropres, xdr_fastdiropres, sizeof (struct nfsdiropres), 733 nullfree, RPC_IDEMPOTENT|RPC_MAPRESP|RPC_PUBLICFH_OK, 734 rfs_lookup_getfh}, 735 736 /* RFS_READLINK = 5 */ 737 {rfs_readlink, 738 xdr_fhandle, xdr_fastfhandle, sizeof (fhandle_t), 739 xdr_rdlnres, NULL_xdrproc_t, sizeof (struct nfsrdlnres), 740 rfs_rlfree, RPC_IDEMPOTENT, 741 rfs_readlink_getfh}, 742 743 /* RFS_READ = 6 */ 744 {rfs_read, 745 xdr_readargs, NULL_xdrproc_t, sizeof (struct nfsreadargs), 746 xdr_rdresult, NULL_xdrproc_t, sizeof (struct nfsrdresult), 747 rfs_rdfree, RPC_IDEMPOTENT, 748 rfs_read_getfh}, 749 750 /* RFS_WRITECACHE = 7 *** NO LONGER SUPPORTED *** */ 751 {rfs_error, 752 xdr_void, NULL_xdrproc_t, 0, 753 xdr_void, NULL_xdrproc_t, 0, 754 nullfree, RPC_IDEMPOTENT, 755 0}, 756 757 /* RFS_WRITE = 8 */ 758 {rfs_write, 759 xdr_writeargs, NULL_xdrproc_t, sizeof (struct nfswriteargs), 760 xdr_attrstat, xdr_fastattrstat, sizeof (struct nfsattrstat), 761 nullfree, RPC_MAPRESP, 762 rfs_write_getfh}, 763 764 /* RFS_CREATE = 9 */ 765 {rfs_create, 766 xdr_creatargs, NULL_xdrproc_t, sizeof (struct nfscreatargs), 767 xdr_diropres, xdr_fastdiropres, sizeof (struct nfsdiropres), 768 nullfree, RPC_MAPRESP, 769 rfs_create_getfh}, 770 771 /* RFS_REMOVE = 10 */ 772 {rfs_remove, 773 xdr_diropargs, NULL_xdrproc_t, sizeof (struct nfsdiropargs), 774 #ifdef _LITTLE_ENDIAN 775 xdr_enum, xdr_fastenum, sizeof (enum nfsstat), 776 #else 777 xdr_enum, NULL_xdrproc_t, sizeof (enum nfsstat), 778 #endif 779 nullfree, RPC_MAPRESP, 780 rfs_remove_getfh}, 781 782 /* RFS_RENAME = 11 */ 783 {rfs_rename, 784 xdr_rnmargs, NULL_xdrproc_t, sizeof (struct nfsrnmargs), 785 #ifdef _LITTLE_ENDIAN 786 xdr_enum, xdr_fastenum, sizeof (enum nfsstat), 787 #else 788 xdr_enum, NULL_xdrproc_t, sizeof (enum nfsstat), 789 #endif 790 nullfree, RPC_MAPRESP, 791 rfs_rename_getfh}, 792 793 /* RFS_LINK = 12 */ 794 {rfs_link, 795 xdr_linkargs, NULL_xdrproc_t, sizeof (struct nfslinkargs), 796 #ifdef _LITTLE_ENDIAN 797 xdr_enum, xdr_fastenum, sizeof (enum nfsstat), 798 #else 799 xdr_enum, NULL_xdrproc_t, sizeof (enum nfsstat), 800 #endif 801 nullfree, RPC_MAPRESP, 802 rfs_link_getfh}, 803 804 /* RFS_SYMLINK = 13 */ 805 {rfs_symlink, 806 xdr_slargs, NULL_xdrproc_t, sizeof (struct nfsslargs), 807 #ifdef _LITTLE_ENDIAN 808 xdr_enum, xdr_fastenum, sizeof (enum nfsstat), 809 #else 810 xdr_enum, NULL_xdrproc_t, sizeof (enum nfsstat), 811 #endif 812 nullfree, RPC_MAPRESP, 813 rfs_symlink_getfh}, 814 815 /* RFS_MKDIR = 14 */ 816 {rfs_mkdir, 817 xdr_creatargs, NULL_xdrproc_t, sizeof (struct nfscreatargs), 818 xdr_diropres, xdr_fastdiropres, sizeof (struct nfsdiropres), 819 nullfree, RPC_MAPRESP, 820 rfs_mkdir_getfh}, 821 822 /* RFS_RMDIR = 15 */ 823 {rfs_rmdir, 824 xdr_diropargs, NULL_xdrproc_t, sizeof (struct nfsdiropargs), 825 #ifdef _LITTLE_ENDIAN 826 xdr_enum, xdr_fastenum, sizeof (enum nfsstat), 827 #else 828 xdr_enum, NULL_xdrproc_t, sizeof (enum nfsstat), 829 #endif 830 nullfree, RPC_MAPRESP, 831 rfs_rmdir_getfh}, 832 833 /* RFS_READDIR = 16 */ 834 {rfs_readdir, 835 xdr_rddirargs, NULL_xdrproc_t, sizeof (struct nfsrddirargs), 836 xdr_putrddirres, NULL_xdrproc_t, sizeof (struct nfsrddirres), 837 rfs_rddirfree, RPC_IDEMPOTENT, 838 rfs_readdir_getfh}, 839 840 /* RFS_STATFS = 17 */ 841 {rfs_statfs, 842 xdr_fhandle, xdr_fastfhandle, sizeof (fhandle_t), 843 xdr_statfs, xdr_faststatfs, sizeof (struct nfsstatfs), 844 nullfree, RPC_IDEMPOTENT|RPC_ALLOWANON|RPC_MAPRESP, 845 rfs_statfs_getfh}, 846 }; 847 848 static char *rfscallnames_v3[] = { 849 "RFS3_NULL", 850 "RFS3_GETATTR", 851 "RFS3_SETATTR", 852 "RFS3_LOOKUP", 853 "RFS3_ACCESS", 854 "RFS3_READLINK", 855 "RFS3_READ", 856 "RFS3_WRITE", 857 "RFS3_CREATE", 858 "RFS3_MKDIR", 859 "RFS3_SYMLINK", 860 "RFS3_MKNOD", 861 "RFS3_REMOVE", 862 "RFS3_RMDIR", 863 "RFS3_RENAME", 864 "RFS3_LINK", 865 "RFS3_READDIR", 866 "RFS3_READDIRPLUS", 867 "RFS3_FSSTAT", 868 "RFS3_FSINFO", 869 "RFS3_PATHCONF", 870 "RFS3_COMMIT" 871 }; 872 873 static struct rpcdisp rfsdisptab_v3[] = { 874 /* 875 * NFS VERSION 3 876 */ 877 878 /* RFS_NULL = 0 */ 879 {rpc_null_v3, 880 xdr_void, NULL_xdrproc_t, 0, 881 xdr_void, NULL_xdrproc_t, 0, 882 nullfree, RPC_IDEMPOTENT, 883 0}, 884 885 /* RFS3_GETATTR = 1 */ 886 {rfs3_getattr, 887 xdr_nfs_fh3_server, NULL_xdrproc_t, sizeof (GETATTR3args), 888 xdr_GETATTR3res, NULL_xdrproc_t, sizeof (GETATTR3res), 889 nullfree, (RPC_IDEMPOTENT | RPC_ALLOWANON), 890 rfs3_getattr_getfh}, 891 892 /* RFS3_SETATTR = 2 */ 893 {rfs3_setattr, 894 xdr_SETATTR3args, NULL_xdrproc_t, sizeof (SETATTR3args), 895 xdr_SETATTR3res, NULL_xdrproc_t, sizeof (SETATTR3res), 896 nullfree, 0, 897 rfs3_setattr_getfh}, 898 899 /* RFS3_LOOKUP = 3 */ 900 {rfs3_lookup, 901 xdr_diropargs3, NULL_xdrproc_t, sizeof (LOOKUP3args), 902 xdr_LOOKUP3res, NULL_xdrproc_t, sizeof (LOOKUP3res), 903 nullfree, (RPC_IDEMPOTENT | RPC_PUBLICFH_OK), 904 rfs3_lookup_getfh}, 905 906 /* RFS3_ACCESS = 4 */ 907 {rfs3_access, 908 xdr_ACCESS3args, NULL_xdrproc_t, sizeof (ACCESS3args), 909 xdr_ACCESS3res, NULL_xdrproc_t, sizeof (ACCESS3res), 910 nullfree, RPC_IDEMPOTENT, 911 rfs3_access_getfh}, 912 913 /* RFS3_READLINK = 5 */ 914 {rfs3_readlink, 915 xdr_nfs_fh3_server, NULL_xdrproc_t, sizeof (READLINK3args), 916 xdr_READLINK3res, NULL_xdrproc_t, sizeof (READLINK3res), 917 rfs3_readlink_free, RPC_IDEMPOTENT, 918 rfs3_readlink_getfh}, 919 920 /* RFS3_READ = 6 */ 921 {rfs3_read, 922 xdr_READ3args, NULL_xdrproc_t, sizeof (READ3args), 923 xdr_READ3res, NULL_xdrproc_t, sizeof (READ3res), 924 rfs3_read_free, RPC_IDEMPOTENT, 925 rfs3_read_getfh}, 926 927 /* RFS3_WRITE = 7 */ 928 {rfs3_write, 929 xdr_WRITE3args, NULL_xdrproc_t, sizeof (WRITE3args), 930 xdr_WRITE3res, NULL_xdrproc_t, sizeof (WRITE3res), 931 nullfree, 0, 932 rfs3_write_getfh}, 933 934 /* RFS3_CREATE = 8 */ 935 {rfs3_create, 936 xdr_CREATE3args, NULL_xdrproc_t, sizeof (CREATE3args), 937 xdr_CREATE3res, NULL_xdrproc_t, sizeof (CREATE3res), 938 nullfree, 0, 939 rfs3_create_getfh}, 940 941 /* RFS3_MKDIR = 9 */ 942 {rfs3_mkdir, 943 xdr_MKDIR3args, NULL_xdrproc_t, sizeof (MKDIR3args), 944 xdr_MKDIR3res, NULL_xdrproc_t, sizeof (MKDIR3res), 945 nullfree, 0, 946 rfs3_mkdir_getfh}, 947 948 /* RFS3_SYMLINK = 10 */ 949 {rfs3_symlink, 950 xdr_SYMLINK3args, NULL_xdrproc_t, sizeof (SYMLINK3args), 951 xdr_SYMLINK3res, NULL_xdrproc_t, sizeof (SYMLINK3res), 952 nullfree, 0, 953 rfs3_symlink_getfh}, 954 955 /* RFS3_MKNOD = 11 */ 956 {rfs3_mknod, 957 xdr_MKNOD3args, NULL_xdrproc_t, sizeof (MKNOD3args), 958 xdr_MKNOD3res, NULL_xdrproc_t, sizeof (MKNOD3res), 959 nullfree, 0, 960 rfs3_mknod_getfh}, 961 962 /* RFS3_REMOVE = 12 */ 963 {rfs3_remove, 964 xdr_diropargs3, NULL_xdrproc_t, sizeof (REMOVE3args), 965 xdr_REMOVE3res, NULL_xdrproc_t, sizeof (REMOVE3res), 966 nullfree, 0, 967 rfs3_remove_getfh}, 968 969 /* RFS3_RMDIR = 13 */ 970 {rfs3_rmdir, 971 xdr_diropargs3, NULL_xdrproc_t, sizeof (RMDIR3args), 972 xdr_RMDIR3res, NULL_xdrproc_t, sizeof (RMDIR3res), 973 nullfree, 0, 974 rfs3_rmdir_getfh}, 975 976 /* RFS3_RENAME = 14 */ 977 {rfs3_rename, 978 xdr_RENAME3args, NULL_xdrproc_t, sizeof (RENAME3args), 979 xdr_RENAME3res, NULL_xdrproc_t, sizeof (RENAME3res), 980 nullfree, 0, 981 rfs3_rename_getfh}, 982 983 /* RFS3_LINK = 15 */ 984 {rfs3_link, 985 xdr_LINK3args, NULL_xdrproc_t, sizeof (LINK3args), 986 xdr_LINK3res, NULL_xdrproc_t, sizeof (LINK3res), 987 nullfree, 0, 988 rfs3_link_getfh}, 989 990 /* RFS3_READDIR = 16 */ 991 {rfs3_readdir, 992 xdr_READDIR3args, NULL_xdrproc_t, sizeof (READDIR3args), 993 xdr_READDIR3res, NULL_xdrproc_t, sizeof (READDIR3res), 994 rfs3_readdir_free, RPC_IDEMPOTENT, 995 rfs3_readdir_getfh}, 996 997 /* RFS3_READDIRPLUS = 17 */ 998 {rfs3_readdirplus, 999 xdr_READDIRPLUS3args, NULL_xdrproc_t, sizeof (READDIRPLUS3args), 1000 xdr_READDIRPLUS3res, NULL_xdrproc_t, sizeof (READDIRPLUS3res), 1001 rfs3_readdirplus_free, RPC_AVOIDWORK, 1002 rfs3_readdirplus_getfh}, 1003 1004 /* RFS3_FSSTAT = 18 */ 1005 {rfs3_fsstat, 1006 xdr_nfs_fh3_server, NULL_xdrproc_t, sizeof (FSSTAT3args), 1007 xdr_FSSTAT3res, NULL_xdrproc_t, sizeof (FSSTAT3res), 1008 nullfree, RPC_IDEMPOTENT, 1009 rfs3_fsstat_getfh}, 1010 1011 /* RFS3_FSINFO = 19 */ 1012 {rfs3_fsinfo, 1013 xdr_nfs_fh3_server, NULL_xdrproc_t, sizeof (FSINFO3args), 1014 xdr_FSINFO3res, NULL_xdrproc_t, sizeof (FSINFO3res), 1015 nullfree, RPC_IDEMPOTENT|RPC_ALLOWANON, 1016 rfs3_fsinfo_getfh}, 1017 1018 /* RFS3_PATHCONF = 20 */ 1019 {rfs3_pathconf, 1020 xdr_nfs_fh3_server, NULL_xdrproc_t, sizeof (PATHCONF3args), 1021 xdr_PATHCONF3res, NULL_xdrproc_t, sizeof (PATHCONF3res), 1022 nullfree, RPC_IDEMPOTENT, 1023 rfs3_pathconf_getfh}, 1024 1025 /* RFS3_COMMIT = 21 */ 1026 {rfs3_commit, 1027 xdr_COMMIT3args, NULL_xdrproc_t, sizeof (COMMIT3args), 1028 xdr_COMMIT3res, NULL_xdrproc_t, sizeof (COMMIT3res), 1029 nullfree, RPC_IDEMPOTENT, 1030 rfs3_commit_getfh}, 1031 }; 1032 1033 static char *rfscallnames_v4[] = { 1034 "RFS4_NULL", 1035 "RFS4_COMPOUND", 1036 "RFS4_NULL", 1037 "RFS4_NULL", 1038 "RFS4_NULL", 1039 "RFS4_NULL", 1040 "RFS4_NULL", 1041 "RFS4_NULL", 1042 "RFS4_CREATE" 1043 }; 1044 1045 static struct rpcdisp rfsdisptab_v4[] = { 1046 /* 1047 * NFS VERSION 4 1048 */ 1049 1050 /* RFS_NULL = 0 */ 1051 {rpc_null, 1052 xdr_void, NULL_xdrproc_t, 0, 1053 xdr_void, NULL_xdrproc_t, 0, 1054 nullfree, RPC_IDEMPOTENT, 0}, 1055 1056 /* RFS4_compound = 1 */ 1057 {rfs4_compound, 1058 xdr_COMPOUND4args_srv, NULL_xdrproc_t, sizeof (COMPOUND4args), 1059 xdr_COMPOUND4res_srv, NULL_xdrproc_t, sizeof (COMPOUND4res), 1060 rfs4_compound_free, 0, 0}, 1061 }; 1062 1063 union rfs_args { 1064 /* 1065 * NFS VERSION 2 1066 */ 1067 1068 /* RFS_NULL = 0 */ 1069 1070 /* RFS_GETATTR = 1 */ 1071 fhandle_t nfs2_getattr_args; 1072 1073 /* RFS_SETATTR = 2 */ 1074 struct nfssaargs nfs2_setattr_args; 1075 1076 /* RFS_ROOT = 3 *** NO LONGER SUPPORTED *** */ 1077 1078 /* RFS_LOOKUP = 4 */ 1079 struct nfsdiropargs nfs2_lookup_args; 1080 1081 /* RFS_READLINK = 5 */ 1082 fhandle_t nfs2_readlink_args; 1083 1084 /* RFS_READ = 6 */ 1085 struct nfsreadargs nfs2_read_args; 1086 1087 /* RFS_WRITECACHE = 7 *** NO LONGER SUPPORTED *** */ 1088 1089 /* RFS_WRITE = 8 */ 1090 struct nfswriteargs nfs2_write_args; 1091 1092 /* RFS_CREATE = 9 */ 1093 struct nfscreatargs nfs2_create_args; 1094 1095 /* RFS_REMOVE = 10 */ 1096 struct nfsdiropargs nfs2_remove_args; 1097 1098 /* RFS_RENAME = 11 */ 1099 struct nfsrnmargs nfs2_rename_args; 1100 1101 /* RFS_LINK = 12 */ 1102 struct nfslinkargs nfs2_link_args; 1103 1104 /* RFS_SYMLINK = 13 */ 1105 struct nfsslargs nfs2_symlink_args; 1106 1107 /* RFS_MKDIR = 14 */ 1108 struct nfscreatargs nfs2_mkdir_args; 1109 1110 /* RFS_RMDIR = 15 */ 1111 struct nfsdiropargs nfs2_rmdir_args; 1112 1113 /* RFS_READDIR = 16 */ 1114 struct nfsrddirargs nfs2_readdir_args; 1115 1116 /* RFS_STATFS = 17 */ 1117 fhandle_t nfs2_statfs_args; 1118 1119 /* 1120 * NFS VERSION 3 1121 */ 1122 1123 /* RFS_NULL = 0 */ 1124 1125 /* RFS3_GETATTR = 1 */ 1126 GETATTR3args nfs3_getattr_args; 1127 1128 /* RFS3_SETATTR = 2 */ 1129 SETATTR3args nfs3_setattr_args; 1130 1131 /* RFS3_LOOKUP = 3 */ 1132 LOOKUP3args nfs3_lookup_args; 1133 1134 /* RFS3_ACCESS = 4 */ 1135 ACCESS3args nfs3_access_args; 1136 1137 /* RFS3_READLINK = 5 */ 1138 READLINK3args nfs3_readlink_args; 1139 1140 /* RFS3_READ = 6 */ 1141 READ3args nfs3_read_args; 1142 1143 /* RFS3_WRITE = 7 */ 1144 WRITE3args nfs3_write_args; 1145 1146 /* RFS3_CREATE = 8 */ 1147 CREATE3args nfs3_create_args; 1148 1149 /* RFS3_MKDIR = 9 */ 1150 MKDIR3args nfs3_mkdir_args; 1151 1152 /* RFS3_SYMLINK = 10 */ 1153 SYMLINK3args nfs3_symlink_args; 1154 1155 /* RFS3_MKNOD = 11 */ 1156 MKNOD3args nfs3_mknod_args; 1157 1158 /* RFS3_REMOVE = 12 */ 1159 REMOVE3args nfs3_remove_args; 1160 1161 /* RFS3_RMDIR = 13 */ 1162 RMDIR3args nfs3_rmdir_args; 1163 1164 /* RFS3_RENAME = 14 */ 1165 RENAME3args nfs3_rename_args; 1166 1167 /* RFS3_LINK = 15 */ 1168 LINK3args nfs3_link_args; 1169 1170 /* RFS3_READDIR = 16 */ 1171 READDIR3args nfs3_readdir_args; 1172 1173 /* RFS3_READDIRPLUS = 17 */ 1174 READDIRPLUS3args nfs3_readdirplus_args; 1175 1176 /* RFS3_FSSTAT = 18 */ 1177 FSSTAT3args nfs3_fsstat_args; 1178 1179 /* RFS3_FSINFO = 19 */ 1180 FSINFO3args nfs3_fsinfo_args; 1181 1182 /* RFS3_PATHCONF = 20 */ 1183 PATHCONF3args nfs3_pathconf_args; 1184 1185 /* RFS3_COMMIT = 21 */ 1186 COMMIT3args nfs3_commit_args; 1187 1188 /* 1189 * NFS VERSION 4 1190 */ 1191 1192 /* RFS_NULL = 0 */ 1193 1194 /* COMPUND = 1 */ 1195 COMPOUND4args nfs4_compound_args; 1196 }; 1197 1198 union rfs_res { 1199 /* 1200 * NFS VERSION 2 1201 */ 1202 1203 /* RFS_NULL = 0 */ 1204 1205 /* RFS_GETATTR = 1 */ 1206 struct nfsattrstat nfs2_getattr_res; 1207 1208 /* RFS_SETATTR = 2 */ 1209 struct nfsattrstat nfs2_setattr_res; 1210 1211 /* RFS_ROOT = 3 *** NO LONGER SUPPORTED *** */ 1212 1213 /* RFS_LOOKUP = 4 */ 1214 struct nfsdiropres nfs2_lookup_res; 1215 1216 /* RFS_READLINK = 5 */ 1217 struct nfsrdlnres nfs2_readlink_res; 1218 1219 /* RFS_READ = 6 */ 1220 struct nfsrdresult nfs2_read_res; 1221 1222 /* RFS_WRITECACHE = 7 *** NO LONGER SUPPORTED *** */ 1223 1224 /* RFS_WRITE = 8 */ 1225 struct nfsattrstat nfs2_write_res; 1226 1227 /* RFS_CREATE = 9 */ 1228 struct nfsdiropres nfs2_create_res; 1229 1230 /* RFS_REMOVE = 10 */ 1231 enum nfsstat nfs2_remove_res; 1232 1233 /* RFS_RENAME = 11 */ 1234 enum nfsstat nfs2_rename_res; 1235 1236 /* RFS_LINK = 12 */ 1237 enum nfsstat nfs2_link_res; 1238 1239 /* RFS_SYMLINK = 13 */ 1240 enum nfsstat nfs2_symlink_res; 1241 1242 /* RFS_MKDIR = 14 */ 1243 struct nfsdiropres nfs2_mkdir_res; 1244 1245 /* RFS_RMDIR = 15 */ 1246 enum nfsstat nfs2_rmdir_res; 1247 1248 /* RFS_READDIR = 16 */ 1249 struct nfsrddirres nfs2_readdir_res; 1250 1251 /* RFS_STATFS = 17 */ 1252 struct nfsstatfs nfs2_statfs_res; 1253 1254 /* 1255 * NFS VERSION 3 1256 */ 1257 1258 /* RFS_NULL = 0 */ 1259 1260 /* RFS3_GETATTR = 1 */ 1261 GETATTR3res nfs3_getattr_res; 1262 1263 /* RFS3_SETATTR = 2 */ 1264 SETATTR3res nfs3_setattr_res; 1265 1266 /* RFS3_LOOKUP = 3 */ 1267 LOOKUP3res nfs3_lookup_res; 1268 1269 /* RFS3_ACCESS = 4 */ 1270 ACCESS3res nfs3_access_res; 1271 1272 /* RFS3_READLINK = 5 */ 1273 READLINK3res nfs3_readlink_res; 1274 1275 /* RFS3_READ = 6 */ 1276 READ3res nfs3_read_res; 1277 1278 /* RFS3_WRITE = 7 */ 1279 WRITE3res nfs3_write_res; 1280 1281 /* RFS3_CREATE = 8 */ 1282 CREATE3res nfs3_create_res; 1283 1284 /* RFS3_MKDIR = 9 */ 1285 MKDIR3res nfs3_mkdir_res; 1286 1287 /* RFS3_SYMLINK = 10 */ 1288 SYMLINK3res nfs3_symlink_res; 1289 1290 /* RFS3_MKNOD = 11 */ 1291 MKNOD3res nfs3_mknod_res; 1292 1293 /* RFS3_REMOVE = 12 */ 1294 REMOVE3res nfs3_remove_res; 1295 1296 /* RFS3_RMDIR = 13 */ 1297 RMDIR3res nfs3_rmdir_res; 1298 1299 /* RFS3_RENAME = 14 */ 1300 RENAME3res nfs3_rename_res; 1301 1302 /* RFS3_LINK = 15 */ 1303 LINK3res nfs3_link_res; 1304 1305 /* RFS3_READDIR = 16 */ 1306 READDIR3res nfs3_readdir_res; 1307 1308 /* RFS3_READDIRPLUS = 17 */ 1309 READDIRPLUS3res nfs3_readdirplus_res; 1310 1311 /* RFS3_FSSTAT = 18 */ 1312 FSSTAT3res nfs3_fsstat_res; 1313 1314 /* RFS3_FSINFO = 19 */ 1315 FSINFO3res nfs3_fsinfo_res; 1316 1317 /* RFS3_PATHCONF = 20 */ 1318 PATHCONF3res nfs3_pathconf_res; 1319 1320 /* RFS3_COMMIT = 21 */ 1321 COMMIT3res nfs3_commit_res; 1322 1323 /* 1324 * NFS VERSION 4 1325 */ 1326 1327 /* RFS_NULL = 0 */ 1328 1329 /* RFS4_COMPOUND = 1 */ 1330 COMPOUND4res nfs4_compound_res; 1331 1332 }; 1333 1334 static struct rpc_disptable rfs_disptable[] = { 1335 {sizeof (rfsdisptab_v2) / sizeof (rfsdisptab_v2[0]), 1336 rfscallnames_v2, 1337 &rfsproccnt_v2_ptr, rfsdisptab_v2}, 1338 {sizeof (rfsdisptab_v3) / sizeof (rfsdisptab_v3[0]), 1339 rfscallnames_v3, 1340 &rfsproccnt_v3_ptr, rfsdisptab_v3}, 1341 {sizeof (rfsdisptab_v4) / sizeof (rfsdisptab_v4[0]), 1342 rfscallnames_v4, 1343 &rfsproccnt_v4_ptr, rfsdisptab_v4}, 1344 }; 1345 1346 /* 1347 * If nfs_portmon is set, then clients are required to use privileged 1348 * ports (ports < IPPORT_RESERVED) in order to get NFS services. 1349 * 1350 * N.B.: this attempt to carry forward the already ill-conceived notion 1351 * of privileged ports for TCP/UDP is really quite ineffectual. Not only 1352 * is it transport-dependent, it's laughably easy to spoof. If you're 1353 * really interested in security, you must start with secure RPC instead. 1354 */ 1355 static int nfs_portmon = 0; 1356 1357 #ifdef DEBUG 1358 static int cred_hits = 0; 1359 static int cred_misses = 0; 1360 #endif 1361 1362 1363 #ifdef DEBUG 1364 /* 1365 * Debug code to allow disabling of rfs_dispatch() use of 1366 * fastxdrargs() and fastxdrres() calls for testing purposes. 1367 */ 1368 static int rfs_no_fast_xdrargs = 0; 1369 static int rfs_no_fast_xdrres = 0; 1370 #endif 1371 1372 union acl_args { 1373 /* 1374 * ACL VERSION 2 1375 */ 1376 1377 /* ACL2_NULL = 0 */ 1378 1379 /* ACL2_GETACL = 1 */ 1380 GETACL2args acl2_getacl_args; 1381 1382 /* ACL2_SETACL = 2 */ 1383 SETACL2args acl2_setacl_args; 1384 1385 /* ACL2_GETATTR = 3 */ 1386 GETATTR2args acl2_getattr_args; 1387 1388 /* ACL2_ACCESS = 4 */ 1389 ACCESS2args acl2_access_args; 1390 1391 /* ACL2_GETXATTRDIR = 5 */ 1392 GETXATTRDIR2args acl2_getxattrdir_args; 1393 1394 /* 1395 * ACL VERSION 3 1396 */ 1397 1398 /* ACL3_NULL = 0 */ 1399 1400 /* ACL3_GETACL = 1 */ 1401 GETACL3args acl3_getacl_args; 1402 1403 /* ACL3_SETACL = 2 */ 1404 SETACL3args acl3_setacl; 1405 1406 /* ACL3_GETXATTRDIR = 3 */ 1407 GETXATTRDIR3args acl3_getxattrdir_args; 1408 1409 }; 1410 1411 union acl_res { 1412 /* 1413 * ACL VERSION 2 1414 */ 1415 1416 /* ACL2_NULL = 0 */ 1417 1418 /* ACL2_GETACL = 1 */ 1419 GETACL2res acl2_getacl_res; 1420 1421 /* ACL2_SETACL = 2 */ 1422 SETACL2res acl2_setacl_res; 1423 1424 /* ACL2_GETATTR = 3 */ 1425 GETATTR2res acl2_getattr_res; 1426 1427 /* ACL2_ACCESS = 4 */ 1428 ACCESS2res acl2_access_res; 1429 1430 /* ACL2_GETXATTRDIR = 5 */ 1431 GETXATTRDIR2args acl2_getxattrdir_res; 1432 1433 /* 1434 * ACL VERSION 3 1435 */ 1436 1437 /* ACL3_NULL = 0 */ 1438 1439 /* ACL3_GETACL = 1 */ 1440 GETACL3res acl3_getacl_res; 1441 1442 /* ACL3_SETACL = 2 */ 1443 SETACL3res acl3_setacl_res; 1444 1445 /* ACL3_GETXATTRDIR = 3 */ 1446 GETXATTRDIR3res acl3_getxattrdir_res; 1447 1448 }; 1449 1450 static bool_t 1451 auth_tooweak(struct svc_req *req, char *res) 1452 { 1453 1454 if (req->rq_vers == NFS_VERSION && req->rq_proc == RFS_LOOKUP) { 1455 struct nfsdiropres *dr = (struct nfsdiropres *)res; 1456 if ((enum wnfsstat)dr->dr_status == WNFSERR_CLNT_FLAVOR) 1457 return (TRUE); 1458 } else if (req->rq_vers == NFS_V3 && req->rq_proc == NFSPROC3_LOOKUP) { 1459 LOOKUP3res *resp = (LOOKUP3res *)res; 1460 if ((enum wnfsstat)resp->status == WNFSERR_CLNT_FLAVOR) 1461 return (TRUE); 1462 } 1463 return (FALSE); 1464 } 1465 1466 1467 static void 1468 common_dispatch(struct svc_req *req, SVCXPRT *xprt, rpcvers_t min_vers, 1469 rpcvers_t max_vers, char *pgmname, 1470 struct rpc_disptable *disptable) 1471 { 1472 int which; 1473 rpcvers_t vers; 1474 char *args; 1475 union { 1476 union rfs_args ra; 1477 union acl_args aa; 1478 } args_buf; 1479 char *res; 1480 union { 1481 union rfs_res rr; 1482 union acl_res ar; 1483 } res_buf; 1484 struct rpcdisp *disp = NULL; 1485 int dis_flags = 0; 1486 cred_t *cr; 1487 int error = 0; 1488 int anon_ok; 1489 struct exportinfo *exi = NULL; 1490 unsigned int nfslog_rec_id; 1491 int dupstat; 1492 struct dupreq *dr; 1493 int authres; 1494 bool_t publicfh_ok = FALSE; 1495 enum_t auth_flavor; 1496 bool_t dupcached = FALSE; 1497 struct netbuf nb; 1498 bool_t logging_enabled = FALSE; 1499 struct exportinfo *nfslog_exi = NULL; 1500 char **procnames; 1501 char cbuf[INET6_ADDRSTRLEN]; /* to hold both IPv4 and IPv6 addr */ 1502 1503 vers = req->rq_vers; 1504 1505 if (vers < min_vers || vers > max_vers) { 1506 svcerr_progvers(req->rq_xprt, min_vers, max_vers); 1507 error++; 1508 cmn_err(CE_NOTE, "%s: bad version number %u", pgmname, vers); 1509 goto done; 1510 } 1511 vers -= min_vers; 1512 1513 which = req->rq_proc; 1514 if (which < 0 || which >= disptable[(int)vers].dis_nprocs) { 1515 svcerr_noproc(req->rq_xprt); 1516 error++; 1517 goto done; 1518 } 1519 1520 (*(disptable[(int)vers].dis_proccntp))[which].value.ui64++; 1521 1522 disp = &disptable[(int)vers].dis_table[which]; 1523 procnames = disptable[(int)vers].dis_procnames; 1524 1525 auth_flavor = req->rq_cred.oa_flavor; 1526 1527 /* 1528 * Deserialize into the args struct. 1529 */ 1530 args = (char *)&args_buf; 1531 1532 #ifdef DEBUG 1533 if (rfs_no_fast_xdrargs || (auth_flavor == RPCSEC_GSS) || 1534 disp->dis_fastxdrargs == NULL_xdrproc_t || 1535 !SVC_GETARGS(xprt, disp->dis_fastxdrargs, (char *)&args)) 1536 #else 1537 if ((auth_flavor == RPCSEC_GSS) || 1538 disp->dis_fastxdrargs == NULL_xdrproc_t || 1539 !SVC_GETARGS(xprt, disp->dis_fastxdrargs, (char *)&args)) 1540 #endif 1541 { 1542 bzero(args, disp->dis_argsz); 1543 if (!SVC_GETARGS(xprt, disp->dis_xdrargs, args)) { 1544 error++; 1545 /* 1546 * Check if we are outside our capabilities. 1547 */ 1548 if (rfs4_minorvers_mismatch(req, xprt, (void *)args)) 1549 goto done; 1550 1551 svcerr_decode(xprt); 1552 cmn_err(CE_NOTE, 1553 "Failed to decode arguments for %s version %u " 1554 "procedure %s client %s%s", 1555 pgmname, vers + min_vers, procnames[which], 1556 client_name(req), client_addr(req, cbuf)); 1557 goto done; 1558 } 1559 } 1560 1561 /* 1562 * If Version 4 use that specific dispatch function. 1563 */ 1564 if (req->rq_vers == 4) { 1565 error += rfs4_dispatch(disp, req, xprt, args); 1566 goto done; 1567 } 1568 1569 dis_flags = disp->dis_flags; 1570 1571 /* 1572 * Find export information and check authentication, 1573 * setting the credential if everything is ok. 1574 */ 1575 if (disp->dis_getfh != NULL) { 1576 void *fh; 1577 fsid_t *fsid; 1578 fid_t *fid, *xfid; 1579 fhandle_t *fh2; 1580 nfs_fh3 *fh3; 1581 1582 fh = (*disp->dis_getfh)(args); 1583 switch (req->rq_vers) { 1584 case NFS_VERSION: 1585 fh2 = (fhandle_t *)fh; 1586 fsid = &fh2->fh_fsid; 1587 fid = (fid_t *)&fh2->fh_len; 1588 xfid = (fid_t *)&fh2->fh_xlen; 1589 break; 1590 case NFS_V3: 1591 fh3 = (nfs_fh3 *)fh; 1592 fsid = &fh3->fh3_fsid; 1593 fid = FH3TOFIDP(fh3); 1594 xfid = FH3TOXFIDP(fh3); 1595 break; 1596 } 1597 1598 /* 1599 * Fix for bug 1038302 - corbin 1600 * There is a problem here if anonymous access is 1601 * disallowed. If the current request is part of the 1602 * client's mount process for the requested filesystem, 1603 * then it will carry root (uid 0) credentials on it, and 1604 * will be denied by checkauth if that client does not 1605 * have explicit root=0 permission. This will cause the 1606 * client's mount operation to fail. As a work-around, 1607 * we check here to see if the request is a getattr or 1608 * statfs operation on the exported vnode itself, and 1609 * pass a flag to checkauth with the result of this test. 1610 * 1611 * The filehandle refers to the mountpoint itself if 1612 * the fh_data and fh_xdata portions of the filehandle 1613 * are equal. 1614 * 1615 * Added anon_ok argument to checkauth(). 1616 */ 1617 1618 if ((dis_flags & RPC_ALLOWANON) && EQFID(fid, xfid)) 1619 anon_ok = 1; 1620 else 1621 anon_ok = 0; 1622 1623 cr = xprt->xp_cred; 1624 ASSERT(cr != NULL); 1625 #ifdef DEBUG 1626 if (crgetref(cr) != 1) { 1627 crfree(cr); 1628 cr = crget(); 1629 xprt->xp_cred = cr; 1630 cred_misses++; 1631 } else 1632 cred_hits++; 1633 #else 1634 if (crgetref(cr) != 1) { 1635 crfree(cr); 1636 cr = crget(); 1637 xprt->xp_cred = cr; 1638 } 1639 #endif 1640 1641 exi = checkexport(fsid, xfid); 1642 1643 if (exi != NULL) { 1644 publicfh_ok = PUBLICFH_CHECK(disp, exi, fsid, xfid); 1645 1646 /* 1647 * Don't allow non-V4 clients access 1648 * to pseudo exports 1649 */ 1650 if (PSEUDO(exi)) { 1651 svcerr_weakauth(xprt); 1652 error++; 1653 goto done; 1654 } 1655 1656 authres = checkauth(exi, req, cr, anon_ok, publicfh_ok); 1657 /* 1658 * authres > 0: authentication OK - proceed 1659 * authres == 0: authentication weak - return error 1660 * authres < 0: authentication timeout - drop 1661 */ 1662 if (authres <= 0) { 1663 if (authres == 0) { 1664 svcerr_weakauth(xprt); 1665 error++; 1666 } 1667 goto done; 1668 } 1669 } 1670 } else 1671 cr = NULL; 1672 1673 if ((dis_flags & RPC_MAPRESP) && (auth_flavor != RPCSEC_GSS)) { 1674 res = (char *)SVC_GETRES(xprt, disp->dis_ressz); 1675 if (res == NULL) 1676 res = (char *)&res_buf; 1677 } else 1678 res = (char *)&res_buf; 1679 1680 if (!(dis_flags & RPC_IDEMPOTENT)) { 1681 dupstat = SVC_DUP_EXT(xprt, req, res, disp->dis_ressz, &dr, 1682 &dupcached); 1683 1684 switch (dupstat) { 1685 case DUP_ERROR: 1686 svcerr_systemerr(xprt); 1687 error++; 1688 goto done; 1689 /* NOTREACHED */ 1690 case DUP_INPROGRESS: 1691 if (res != (char *)&res_buf) 1692 SVC_FREERES(xprt); 1693 error++; 1694 goto done; 1695 /* NOTREACHED */ 1696 case DUP_NEW: 1697 case DUP_DROP: 1698 curthread->t_flag |= T_DONTPEND; 1699 1700 (*disp->dis_proc)(args, res, exi, req, cr); 1701 1702 curthread->t_flag &= ~T_DONTPEND; 1703 if (curthread->t_flag & T_WOULDBLOCK) { 1704 curthread->t_flag &= ~T_WOULDBLOCK; 1705 SVC_DUPDONE_EXT(xprt, dr, res, NULL, 1706 disp->dis_ressz, DUP_DROP); 1707 if (res != (char *)&res_buf) 1708 SVC_FREERES(xprt); 1709 error++; 1710 goto done; 1711 } 1712 if (dis_flags & RPC_AVOIDWORK) { 1713 SVC_DUPDONE_EXT(xprt, dr, res, NULL, 1714 disp->dis_ressz, DUP_DROP); 1715 } else { 1716 SVC_DUPDONE_EXT(xprt, dr, res, 1717 disp->dis_resfree == nullfree ? NULL : 1718 disp->dis_resfree, 1719 disp->dis_ressz, DUP_DONE); 1720 dupcached = TRUE; 1721 } 1722 break; 1723 case DUP_DONE: 1724 break; 1725 } 1726 1727 } else { 1728 curthread->t_flag |= T_DONTPEND; 1729 1730 (*disp->dis_proc)(args, res, exi, req, cr); 1731 1732 curthread->t_flag &= ~T_DONTPEND; 1733 if (curthread->t_flag & T_WOULDBLOCK) { 1734 curthread->t_flag &= ~T_WOULDBLOCK; 1735 if (res != (char *)&res_buf) 1736 SVC_FREERES(xprt); 1737 error++; 1738 goto done; 1739 } 1740 } 1741 1742 if (auth_tooweak(req, res)) { 1743 svcerr_weakauth(xprt); 1744 error++; 1745 goto done; 1746 } 1747 1748 /* 1749 * Check to see if logging has been enabled on the server. 1750 * If so, then obtain the export info struct to be used for 1751 * the later writing of the log record. This is done for 1752 * the case that a lookup is done across a non-logged public 1753 * file system. 1754 */ 1755 if (nfslog_buffer_list != NULL) { 1756 nfslog_exi = nfslog_get_exi(exi, req, res, &nfslog_rec_id); 1757 /* 1758 * Is logging enabled? 1759 */ 1760 logging_enabled = (nfslog_exi != NULL); 1761 1762 /* 1763 * Copy the netbuf for logging purposes, before it is 1764 * freed by svc_sendreply(). 1765 */ 1766 if (logging_enabled) { 1767 NFSLOG_COPY_NETBUF(nfslog_exi, xprt, &nb); 1768 /* 1769 * If RPC_MAPRESP flag set (i.e. in V2 ops) the 1770 * res gets copied directly into the mbuf and 1771 * may be freed soon after the sendreply. So we 1772 * must copy it here to a safe place... 1773 */ 1774 if (res != (char *)&res_buf) { 1775 bcopy(res, (char *)&res_buf, disp->dis_ressz); 1776 } 1777 } 1778 } 1779 1780 /* 1781 * Serialize and send results struct 1782 */ 1783 #ifdef DEBUG 1784 if (rfs_no_fast_xdrres == 0 && res != (char *)&res_buf) 1785 #else 1786 if (res != (char *)&res_buf) 1787 #endif 1788 { 1789 if (!svc_sendreply(xprt, disp->dis_fastxdrres, res)) { 1790 cmn_err(CE_NOTE, "%s: bad sendreply", pgmname); 1791 svcerr_systemerr(xprt); 1792 error++; 1793 } 1794 } else { 1795 if (!svc_sendreply(xprt, disp->dis_xdrres, res)) { 1796 cmn_err(CE_NOTE, "%s: bad sendreply", pgmname); 1797 svcerr_systemerr(xprt); 1798 error++; 1799 } 1800 } 1801 1802 /* 1803 * Log if needed 1804 */ 1805 if (logging_enabled) { 1806 nfslog_write_record(nfslog_exi, req, args, (char *)&res_buf, 1807 cr, &nb, nfslog_rec_id, NFSLOG_ONE_BUFFER); 1808 exi_rele(nfslog_exi); 1809 kmem_free((&nb)->buf, (&nb)->len); 1810 } 1811 1812 /* 1813 * Free results struct. With the addition of NFS V4 we can 1814 * have non-idempotent procedures with functions. 1815 */ 1816 if (disp->dis_resfree != nullfree && dupcached == FALSE) { 1817 (*disp->dis_resfree)(res); 1818 } 1819 1820 done: 1821 /* 1822 * Free arguments struct 1823 */ 1824 if (disp) { 1825 if (!SVC_FREEARGS(xprt, disp->dis_xdrargs, args)) { 1826 cmn_err(CE_NOTE, "%s: bad freeargs", pgmname); 1827 error++; 1828 } 1829 } else { 1830 if (!SVC_FREEARGS(xprt, (xdrproc_t)0, (caddr_t)0)) { 1831 cmn_err(CE_NOTE, "%s: bad freeargs", pgmname); 1832 error++; 1833 } 1834 } 1835 1836 if (exi != NULL) 1837 exi_rele(exi); 1838 1839 global_svstat_ptr[req->rq_vers][NFS_BADCALLS].value.ui64 += error; 1840 1841 global_svstat_ptr[req->rq_vers][NFS_CALLS].value.ui64++; 1842 } 1843 1844 static void 1845 rfs_dispatch(struct svc_req *req, SVCXPRT *xprt) 1846 { 1847 common_dispatch(req, xprt, NFS_VERSMIN, NFS_VERSMAX, 1848 "NFS", rfs_disptable); 1849 } 1850 1851 static char *aclcallnames_v2[] = { 1852 "ACL2_NULL", 1853 "ACL2_GETACL", 1854 "ACL2_SETACL", 1855 "ACL2_GETATTR", 1856 "ACL2_ACCESS", 1857 "ACL2_GETXATTRDIR" 1858 }; 1859 1860 static struct rpcdisp acldisptab_v2[] = { 1861 /* 1862 * ACL VERSION 2 1863 */ 1864 1865 /* ACL2_NULL = 0 */ 1866 {rpc_null, 1867 xdr_void, NULL_xdrproc_t, 0, 1868 xdr_void, NULL_xdrproc_t, 0, 1869 nullfree, RPC_IDEMPOTENT, 1870 0}, 1871 1872 /* ACL2_GETACL = 1 */ 1873 {acl2_getacl, 1874 xdr_GETACL2args, xdr_fastGETACL2args, sizeof (GETACL2args), 1875 xdr_GETACL2res, NULL_xdrproc_t, sizeof (GETACL2res), 1876 acl2_getacl_free, RPC_IDEMPOTENT, 1877 acl2_getacl_getfh}, 1878 1879 /* ACL2_SETACL = 2 */ 1880 {acl2_setacl, 1881 xdr_SETACL2args, NULL_xdrproc_t, sizeof (SETACL2args), 1882 #ifdef _LITTLE_ENDIAN 1883 xdr_SETACL2res, xdr_fastSETACL2res, sizeof (SETACL2res), 1884 #else 1885 xdr_SETACL2res, NULL_xdrproc_t, sizeof (SETACL2res), 1886 #endif 1887 nullfree, RPC_MAPRESP, 1888 acl2_setacl_getfh}, 1889 1890 /* ACL2_GETATTR = 3 */ 1891 {acl2_getattr, 1892 xdr_GETATTR2args, xdr_fastGETATTR2args, sizeof (GETATTR2args), 1893 #ifdef _LITTLE_ENDIAN 1894 xdr_GETATTR2res, xdr_fastGETATTR2res, sizeof (GETATTR2res), 1895 #else 1896 xdr_GETATTR2res, NULL_xdrproc_t, sizeof (GETATTR2res), 1897 #endif 1898 nullfree, RPC_IDEMPOTENT|RPC_ALLOWANON|RPC_MAPRESP, 1899 acl2_getattr_getfh}, 1900 1901 /* ACL2_ACCESS = 4 */ 1902 {acl2_access, 1903 xdr_ACCESS2args, xdr_fastACCESS2args, sizeof (ACCESS2args), 1904 #ifdef _LITTLE_ENDIAN 1905 xdr_ACCESS2res, xdr_fastACCESS2res, sizeof (ACCESS2res), 1906 #else 1907 xdr_ACCESS2res, NULL_xdrproc_t, sizeof (ACCESS2res), 1908 #endif 1909 nullfree, RPC_IDEMPOTENT|RPC_MAPRESP, 1910 acl2_access_getfh}, 1911 1912 /* ACL2_GETXATTRDIR = 5 */ 1913 {acl2_getxattrdir, 1914 xdr_GETXATTRDIR2args, NULL_xdrproc_t, sizeof (GETXATTRDIR2args), 1915 xdr_GETXATTRDIR2res, NULL_xdrproc_t, sizeof (GETXATTRDIR2res), 1916 nullfree, RPC_IDEMPOTENT, 1917 acl2_getxattrdir_getfh}, 1918 }; 1919 1920 static char *aclcallnames_v3[] = { 1921 "ACL3_NULL", 1922 "ACL3_GETACL", 1923 "ACL3_SETACL", 1924 "ACL3_GETXATTRDIR" 1925 }; 1926 1927 static struct rpcdisp acldisptab_v3[] = { 1928 /* 1929 * ACL VERSION 3 1930 */ 1931 1932 /* ACL3_NULL = 0 */ 1933 {rpc_null, 1934 xdr_void, NULL_xdrproc_t, 0, 1935 xdr_void, NULL_xdrproc_t, 0, 1936 nullfree, RPC_IDEMPOTENT, 1937 0}, 1938 1939 /* ACL3_GETACL = 1 */ 1940 {acl3_getacl, 1941 xdr_GETACL3args, NULL_xdrproc_t, sizeof (GETACL3args), 1942 xdr_GETACL3res, NULL_xdrproc_t, sizeof (GETACL3res), 1943 acl3_getacl_free, RPC_IDEMPOTENT, 1944 acl3_getacl_getfh}, 1945 1946 /* ACL3_SETACL = 2 */ 1947 {acl3_setacl, 1948 xdr_SETACL3args, NULL_xdrproc_t, sizeof (SETACL3args), 1949 xdr_SETACL3res, NULL_xdrproc_t, sizeof (SETACL3res), 1950 nullfree, 0, 1951 acl3_setacl_getfh}, 1952 1953 /* ACL3_GETXATTRDIR = 3 */ 1954 {acl3_getxattrdir, 1955 xdr_GETXATTRDIR3args, NULL_xdrproc_t, sizeof (GETXATTRDIR3args), 1956 xdr_GETXATTRDIR3res, NULL_xdrproc_t, sizeof (GETXATTRDIR3res), 1957 nullfree, RPC_IDEMPOTENT, 1958 acl3_getxattrdir_getfh}, 1959 }; 1960 1961 static struct rpc_disptable acl_disptable[] = { 1962 {sizeof (acldisptab_v2) / sizeof (acldisptab_v2[0]), 1963 aclcallnames_v2, 1964 &aclproccnt_v2_ptr, acldisptab_v2}, 1965 {sizeof (acldisptab_v3) / sizeof (acldisptab_v3[0]), 1966 aclcallnames_v3, 1967 &aclproccnt_v3_ptr, acldisptab_v3}, 1968 }; 1969 1970 static void 1971 acl_dispatch(struct svc_req *req, SVCXPRT *xprt) 1972 { 1973 common_dispatch(req, xprt, NFS_ACL_VERSMIN, NFS_ACL_VERSMAX, 1974 "ACL", acl_disptable); 1975 } 1976 1977 int 1978 checkwin(int flavor, int window, struct svc_req *req) 1979 { 1980 struct authdes_cred *adc; 1981 1982 switch (flavor) { 1983 case AUTH_DES: 1984 adc = (struct authdes_cred *)req->rq_clntcred; 1985 if (adc->adc_fullname.window > window) 1986 return (0); 1987 break; 1988 1989 default: 1990 break; 1991 } 1992 return (1); 1993 } 1994 1995 1996 /* 1997 * checkauth() will check the access permission against the export 1998 * information. Then map root uid/gid to appropriate uid/gid. 1999 * 2000 * This routine is used by NFS V3 and V2 code. 2001 */ 2002 static int 2003 checkauth(struct exportinfo *exi, struct svc_req *req, cred_t *cr, int anon_ok, 2004 bool_t publicfh_ok) 2005 { 2006 int i, nfsflavor, rpcflavor, stat, access; 2007 struct secinfo *secp; 2008 caddr_t principal; 2009 char buf[INET6_ADDRSTRLEN]; /* to hold both IPv4 and IPv6 addr */ 2010 int anon_res = 0; 2011 2012 /* 2013 * Check for privileged port number 2014 * N.B.: this assumes that we know the format of a netbuf. 2015 */ 2016 if (nfs_portmon) { 2017 struct sockaddr *ca; 2018 ca = (struct sockaddr *)svc_getrpccaller(req->rq_xprt)->buf; 2019 2020 if (ca == NULL) 2021 return (0); 2022 2023 if ((ca->sa_family == AF_INET && 2024 ntohs(((struct sockaddr_in *)ca)->sin_port) >= 2025 IPPORT_RESERVED) || 2026 (ca->sa_family == AF_INET6 && 2027 ntohs(((struct sockaddr_in6 *)ca)->sin6_port) >= 2028 IPPORT_RESERVED)) { 2029 cmn_err(CE_NOTE, 2030 "nfs_server: client %s%ssent NFS request from " 2031 "unprivileged port", 2032 client_name(req), client_addr(req, buf)); 2033 return (0); 2034 } 2035 } 2036 2037 /* 2038 * return 1 on success or 0 on failure 2039 */ 2040 stat = sec_svc_getcred(req, cr, &principal, &nfsflavor); 2041 2042 /* 2043 * A failed AUTH_UNIX svc_get_cred() implies we couldn't set 2044 * the credentials; below we map that to anonymous. 2045 */ 2046 if (!stat && nfsflavor != AUTH_UNIX) { 2047 cmn_err(CE_NOTE, 2048 "nfs_server: couldn't get unix cred for %s", 2049 client_name(req)); 2050 return (0); 2051 } 2052 2053 /* 2054 * Short circuit checkauth() on operations that support the 2055 * public filehandle, and if the request for that operation 2056 * is using the public filehandle. Note that we must call 2057 * sec_svc_getcred() first so that xp_cookie is set to the 2058 * right value. Normally xp_cookie is just the RPC flavor 2059 * of the the request, but in the case of RPCSEC_GSS it 2060 * could be a pseudo flavor. 2061 */ 2062 if (publicfh_ok) 2063 return (1); 2064 2065 rpcflavor = req->rq_cred.oa_flavor; 2066 /* 2067 * Check if the auth flavor is valid for this export 2068 */ 2069 access = nfsauth_access(exi, req); 2070 if (access & NFSAUTH_DROP) 2071 return (-1); /* drop the request */ 2072 2073 if (access & NFSAUTH_DENIED) { 2074 /* 2075 * If anon_ok == 1 and we got NFSAUTH_DENIED, it was 2076 * probably due to the flavor not matching during the 2077 * the mount attempt. So map the flavor to AUTH_NONE 2078 * so that the credentials get mapped to the anonymous 2079 * user. 2080 */ 2081 if (anon_ok == 1) 2082 rpcflavor = AUTH_NONE; 2083 else 2084 return (0); /* deny access */ 2085 2086 } else if (access & NFSAUTH_MAPNONE) { 2087 /* 2088 * Access was granted even though the flavor mismatched 2089 * because AUTH_NONE was one of the exported flavors. 2090 */ 2091 rpcflavor = AUTH_NONE; 2092 2093 } else if (access & NFSAUTH_WRONGSEC) { 2094 /* 2095 * NFSAUTH_WRONGSEC is used for NFSv4. If we get here, 2096 * it means a client ignored the list of allowed flavors 2097 * returned via the MOUNT protocol. So we just disallow it! 2098 */ 2099 return (0); 2100 } 2101 2102 switch (rpcflavor) { 2103 case AUTH_NONE: 2104 anon_res = crsetugid(cr, exi->exi_export.ex_anon, 2105 exi->exi_export.ex_anon); 2106 (void) crsetgroups(cr, 0, NULL); 2107 break; 2108 2109 case AUTH_UNIX: 2110 if (!stat || crgetuid(cr) == 0 && !(access & NFSAUTH_ROOT)) { 2111 anon_res = crsetugid(cr, exi->exi_export.ex_anon, 2112 exi->exi_export.ex_anon); 2113 (void) crsetgroups(cr, 0, NULL); 2114 } else if (!stat || crgetuid(cr) == 0 && 2115 access & NFSAUTH_ROOT) { 2116 /* 2117 * It is root, so apply rootid to get real UID 2118 * Find the secinfo structure. We should be able 2119 * to find it by the time we reach here. 2120 * nfsauth_access() has done the checking. 2121 */ 2122 secp = NULL; 2123 for (i = 0; i < exi->exi_export.ex_seccnt; i++) { 2124 struct secinfo *sptr; 2125 sptr = &exi->exi_export.ex_secinfo[i]; 2126 if (sptr->s_secinfo.sc_nfsnum == nfsflavor) { 2127 secp = sptr; 2128 break; 2129 } 2130 } 2131 if (secp != NULL) { 2132 (void) crsetugid(cr, secp->s_rootid, 2133 secp->s_rootid); 2134 (void) crsetgroups(cr, 0, NULL); 2135 } 2136 } 2137 break; 2138 2139 case AUTH_DES: 2140 case RPCSEC_GSS: 2141 /* 2142 * Find the secinfo structure. We should be able 2143 * to find it by the time we reach here. 2144 * nfsauth_access() has done the checking. 2145 */ 2146 secp = NULL; 2147 for (i = 0; i < exi->exi_export.ex_seccnt; i++) { 2148 if (exi->exi_export.ex_secinfo[i].s_secinfo.sc_nfsnum == 2149 nfsflavor) { 2150 secp = &exi->exi_export.ex_secinfo[i]; 2151 break; 2152 } 2153 } 2154 2155 if (!secp) { 2156 cmn_err(CE_NOTE, "nfs_server: client %s%shad " 2157 "no secinfo data for flavor %d", 2158 client_name(req), client_addr(req, buf), 2159 nfsflavor); 2160 return (0); 2161 } 2162 2163 if (!checkwin(rpcflavor, secp->s_window, req)) { 2164 cmn_err(CE_NOTE, 2165 "nfs_server: client %s%sused invalid " 2166 "auth window value", 2167 client_name(req), client_addr(req, buf)); 2168 return (0); 2169 } 2170 2171 /* 2172 * Map root principals listed in the share's root= list to root, 2173 * and map any others principals that were mapped to root by RPC 2174 * to anon. 2175 */ 2176 if (principal && sec_svc_inrootlist(rpcflavor, principal, 2177 secp->s_rootcnt, secp->s_rootnames)) { 2178 if (crgetuid(cr) == 0 && secp->s_rootid == 0) 2179 return (1); 2180 2181 2182 (void) crsetugid(cr, secp->s_rootid, secp->s_rootid); 2183 2184 /* 2185 * NOTE: If and when kernel-land privilege tracing is 2186 * added this may have to be replaced with code that 2187 * retrieves root's supplementary groups (e.g., using 2188 * kgss_get_group_info(). In the meantime principals 2189 * mapped to uid 0 get all privileges, so setting cr's 2190 * supplementary groups for them does nothing. 2191 */ 2192 (void) crsetgroups(cr, 0, NULL); 2193 2194 return (1); 2195 } 2196 2197 /* 2198 * Not a root princ, or not in root list, map UID 0/nobody to 2199 * the anon ID for the share. (RPC sets cr's UIDs and GIDs to 2200 * UID_NOBODY and GID_NOBODY, respectively.) 2201 */ 2202 if (crgetuid(cr) != 0 && 2203 (crgetuid(cr) != UID_NOBODY || crgetgid(cr) != GID_NOBODY)) 2204 return (1); 2205 2206 anon_res = crsetugid(cr, exi->exi_export.ex_anon, 2207 exi->exi_export.ex_anon); 2208 (void) crsetgroups(cr, 0, NULL); 2209 break; 2210 default: 2211 return (0); 2212 } /* switch on rpcflavor */ 2213 2214 /* 2215 * Even if anon access is disallowed via ex_anon == -1, we allow 2216 * this access if anon_ok is set. So set creds to the default 2217 * "nobody" id. 2218 */ 2219 if (anon_res != 0) { 2220 if (anon_ok == 0) { 2221 cmn_err(CE_NOTE, 2222 "nfs_server: client %s%ssent wrong " 2223 "authentication for %s", 2224 client_name(req), client_addr(req, buf), 2225 exi->exi_export.ex_path ? 2226 exi->exi_export.ex_path : "?"); 2227 return (0); 2228 } 2229 2230 if (crsetugid(cr, UID_NOBODY, GID_NOBODY) != 0) 2231 return (0); 2232 } 2233 2234 return (1); 2235 } 2236 2237 /* 2238 * returns 0 on failure, -1 on a drop, -2 on wrong security flavor, 2239 * and 1 on success 2240 */ 2241 int 2242 checkauth4(struct compound_state *cs, struct svc_req *req) 2243 { 2244 int i, rpcflavor, access; 2245 struct secinfo *secp; 2246 char buf[MAXHOST + 1]; 2247 int anon_res = 0, nfsflavor; 2248 struct exportinfo *exi; 2249 cred_t *cr; 2250 caddr_t principal; 2251 2252 exi = cs->exi; 2253 cr = cs->cr; 2254 principal = cs->principal; 2255 nfsflavor = cs->nfsflavor; 2256 2257 ASSERT(cr != NULL); 2258 2259 rpcflavor = req->rq_cred.oa_flavor; 2260 cs->access &= ~CS_ACCESS_LIMITED; 2261 2262 /* 2263 * Check for privileged port number 2264 * N.B.: this assumes that we know the format of a netbuf. 2265 */ 2266 if (nfs_portmon) { 2267 struct sockaddr *ca; 2268 ca = (struct sockaddr *)svc_getrpccaller(req->rq_xprt)->buf; 2269 2270 if (ca == NULL) 2271 return (0); 2272 2273 if ((ca->sa_family == AF_INET && 2274 ntohs(((struct sockaddr_in *)ca)->sin_port) >= 2275 IPPORT_RESERVED) || 2276 (ca->sa_family == AF_INET6 && 2277 ntohs(((struct sockaddr_in6 *)ca)->sin6_port) >= 2278 IPPORT_RESERVED)) { 2279 cmn_err(CE_NOTE, 2280 "nfs_server: client %s%ssent NFSv4 request from " 2281 "unprivileged port", 2282 client_name(req), client_addr(req, buf)); 2283 return (0); 2284 } 2285 } 2286 2287 /* 2288 * Check the access right per auth flavor on the vnode of 2289 * this export for the given request. 2290 */ 2291 access = nfsauth4_access(cs->exi, cs->vp, req); 2292 2293 if (access & NFSAUTH_WRONGSEC) 2294 return (-2); /* no access for this security flavor */ 2295 2296 if (access & NFSAUTH_DROP) 2297 return (-1); /* drop the request */ 2298 2299 if (access & NFSAUTH_DENIED) { 2300 2301 if (exi->exi_export.ex_seccnt > 0) 2302 return (0); /* deny access */ 2303 2304 } else if (access & NFSAUTH_LIMITED) { 2305 2306 cs->access |= CS_ACCESS_LIMITED; 2307 2308 } else if (access & NFSAUTH_MAPNONE) { 2309 /* 2310 * Access was granted even though the flavor mismatched 2311 * because AUTH_NONE was one of the exported flavors. 2312 */ 2313 rpcflavor = AUTH_NONE; 2314 } 2315 2316 /* 2317 * XXX probably need to redo some of it for nfsv4? 2318 * return 1 on success or 0 on failure 2319 */ 2320 2321 switch (rpcflavor) { 2322 case AUTH_NONE: 2323 anon_res = crsetugid(cr, exi->exi_export.ex_anon, 2324 exi->exi_export.ex_anon); 2325 (void) crsetgroups(cr, 0, NULL); 2326 break; 2327 2328 case AUTH_UNIX: 2329 if (crgetuid(cr) == 0 && !(access & NFSAUTH_ROOT)) { 2330 anon_res = crsetugid(cr, exi->exi_export.ex_anon, 2331 exi->exi_export.ex_anon); 2332 (void) crsetgroups(cr, 0, NULL); 2333 } else if (crgetuid(cr) == 0 && access & NFSAUTH_ROOT) { 2334 /* 2335 * It is root, so apply rootid to get real UID 2336 * Find the secinfo structure. We should be able 2337 * to find it by the time we reach here. 2338 * nfsauth_access() has done the checking. 2339 */ 2340 secp = NULL; 2341 for (i = 0; i < exi->exi_export.ex_seccnt; i++) { 2342 struct secinfo *sptr; 2343 sptr = &exi->exi_export.ex_secinfo[i]; 2344 if (sptr->s_secinfo.sc_nfsnum == nfsflavor) { 2345 secp = &exi->exi_export.ex_secinfo[i]; 2346 break; 2347 } 2348 } 2349 if (secp != NULL) { 2350 (void) crsetugid(cr, secp->s_rootid, 2351 secp->s_rootid); 2352 (void) crsetgroups(cr, 0, NULL); 2353 } 2354 } 2355 break; 2356 2357 default: 2358 /* 2359 * Find the secinfo structure. We should be able 2360 * to find it by the time we reach here. 2361 * nfsauth_access() has done the checking. 2362 */ 2363 secp = NULL; 2364 for (i = 0; i < exi->exi_export.ex_seccnt; i++) { 2365 if (exi->exi_export.ex_secinfo[i].s_secinfo.sc_nfsnum == 2366 nfsflavor) { 2367 secp = &exi->exi_export.ex_secinfo[i]; 2368 break; 2369 } 2370 } 2371 2372 if (!secp) { 2373 cmn_err(CE_NOTE, "nfs_server: client %s%shad " 2374 "no secinfo data for flavor %d", 2375 client_name(req), client_addr(req, buf), 2376 nfsflavor); 2377 return (0); 2378 } 2379 2380 if (!checkwin(rpcflavor, secp->s_window, req)) { 2381 cmn_err(CE_NOTE, 2382 "nfs_server: client %s%sused invalid " 2383 "auth window value", 2384 client_name(req), client_addr(req, buf)); 2385 return (0); 2386 } 2387 2388 /* 2389 * Map root principals listed in the share's root= list to root, 2390 * and map any others principals that were mapped to root by RPC 2391 * to anon. If not going to anon, set to rootid (root_mapping). 2392 */ 2393 if (principal && sec_svc_inrootlist(rpcflavor, principal, 2394 secp->s_rootcnt, secp->s_rootnames)) { 2395 if (crgetuid(cr) == 0 && secp->s_rootid == 0) 2396 return (1); 2397 2398 (void) crsetugid(cr, secp->s_rootid, secp->s_rootid); 2399 2400 /* 2401 * NOTE: If and when kernel-land privilege tracing is 2402 * added this may have to be replaced with code that 2403 * retrieves root's supplementary groups (e.g., using 2404 * kgss_get_group_info(). In the meantime principals 2405 * mapped to uid 0 get all privileges, so setting cr's 2406 * supplementary groups for them does nothing. 2407 */ 2408 (void) crsetgroups(cr, 0, NULL); 2409 2410 return (1); 2411 } 2412 2413 /* 2414 * Not a root princ, or not in root list, map UID 0/nobody to 2415 * the anon ID for the share. (RPC sets cr's UIDs and GIDs to 2416 * UID_NOBODY and GID_NOBODY, respectively.) 2417 */ 2418 if (crgetuid(cr) != 0 && 2419 (crgetuid(cr) != UID_NOBODY || crgetgid(cr) != GID_NOBODY)) 2420 return (1); 2421 2422 anon_res = crsetugid(cr, exi->exi_export.ex_anon, 2423 exi->exi_export.ex_anon); 2424 (void) crsetgroups(cr, 0, NULL); 2425 break; 2426 } /* switch on rpcflavor */ 2427 2428 /* 2429 * Even if anon access is disallowed via ex_anon == -1, we allow 2430 * this access if anon_ok is set. So set creds to the default 2431 * "nobody" id. 2432 */ 2433 2434 if (anon_res != 0) { 2435 cmn_err(CE_NOTE, 2436 "nfs_server: client %s%ssent wrong " 2437 "authentication for %s", 2438 client_name(req), client_addr(req, buf), 2439 exi->exi_export.ex_path ? 2440 exi->exi_export.ex_path : "?"); 2441 return (0); 2442 } 2443 2444 return (1); 2445 } 2446 2447 2448 static char * 2449 client_name(struct svc_req *req) 2450 { 2451 char *hostname = NULL; 2452 2453 /* 2454 * If it's a Unix cred then use the 2455 * hostname from the credential. 2456 */ 2457 if (req->rq_cred.oa_flavor == AUTH_UNIX) { 2458 hostname = ((struct authunix_parms *) 2459 req->rq_clntcred)->aup_machname; 2460 } 2461 if (hostname == NULL) 2462 hostname = ""; 2463 2464 return (hostname); 2465 } 2466 2467 static char * 2468 client_addr(struct svc_req *req, char *buf) 2469 { 2470 struct sockaddr *ca; 2471 uchar_t *b; 2472 char *frontspace = ""; 2473 2474 /* 2475 * We assume we are called in tandem with client_name and the 2476 * format string looks like "...client %s%sblah blah..." 2477 * 2478 * If it's a Unix cred then client_name returned 2479 * a host name, so we need insert a space between host name 2480 * and IP address. 2481 */ 2482 if (req->rq_cred.oa_flavor == AUTH_UNIX) 2483 frontspace = " "; 2484 2485 /* 2486 * Convert the caller's IP address to a dotted string 2487 */ 2488 ca = (struct sockaddr *)svc_getrpccaller(req->rq_xprt)->buf; 2489 2490 if (ca->sa_family == AF_INET) { 2491 b = (uchar_t *)&((struct sockaddr_in *)ca)->sin_addr; 2492 (void) sprintf(buf, "%s(%d.%d.%d.%d) ", frontspace, 2493 b[0] & 0xFF, b[1] & 0xFF, b[2] & 0xFF, b[3] & 0xFF); 2494 } else if (ca->sa_family == AF_INET6) { 2495 struct sockaddr_in6 *sin6; 2496 sin6 = (struct sockaddr_in6 *)ca; 2497 (void) kinet_ntop6((uchar_t *)&sin6->sin6_addr, 2498 buf, INET6_ADDRSTRLEN); 2499 2500 } else { 2501 2502 /* 2503 * No IP address to print. If there was a host name 2504 * printed, then we print a space. 2505 */ 2506 (void) sprintf(buf, frontspace); 2507 } 2508 2509 return (buf); 2510 } 2511 2512 /* 2513 * NFS Server initialization routine. This routine should only be called 2514 * once. It performs the following tasks: 2515 * - Call sub-initialization routines (localize access to variables) 2516 * - Initialize all locks 2517 * - initialize the version 3 write verifier 2518 */ 2519 int 2520 nfs_srvinit(void) 2521 { 2522 int error; 2523 2524 error = nfs_exportinit(); 2525 if (error != 0) 2526 return (error); 2527 error = rfs4_srvrinit(); 2528 if (error != 0) { 2529 nfs_exportfini(); 2530 return (error); 2531 } 2532 rfs_srvrinit(); 2533 rfs3_srvrinit(); 2534 nfsauth_init(); 2535 2536 /* Init the stuff to control start/stop */ 2537 nfs_server_upordown = NFS_SERVER_STOPPED; 2538 mutex_init(&nfs_server_upordown_lock, NULL, MUTEX_DEFAULT, NULL); 2539 cv_init(&nfs_server_upordown_cv, NULL, CV_DEFAULT, NULL); 2540 mutex_init(&rdma_wait_mutex, NULL, MUTEX_DEFAULT, NULL); 2541 cv_init(&rdma_wait_cv, NULL, CV_DEFAULT, NULL); 2542 2543 return (0); 2544 } 2545 2546 /* 2547 * NFS Server finalization routine. This routine is called to cleanup the 2548 * initialization work previously performed if the NFS server module could 2549 * not be loaded correctly. 2550 */ 2551 void 2552 nfs_srvfini(void) 2553 { 2554 nfsauth_fini(); 2555 rfs3_srvrfini(); 2556 rfs_srvrfini(); 2557 nfs_exportfini(); 2558 2559 mutex_destroy(&nfs_server_upordown_lock); 2560 cv_destroy(&nfs_server_upordown_cv); 2561 mutex_destroy(&rdma_wait_mutex); 2562 cv_destroy(&rdma_wait_cv); 2563 } 2564 2565 /* 2566 * Set up an iovec array of up to cnt pointers. 2567 */ 2568 2569 void 2570 mblk_to_iov(mblk_t *m, int cnt, struct iovec *iovp) 2571 { 2572 while (m != NULL && cnt-- > 0) { 2573 iovp->iov_base = (caddr_t)m->b_rptr; 2574 iovp->iov_len = (m->b_wptr - m->b_rptr); 2575 iovp++; 2576 m = m->b_cont; 2577 } 2578 } 2579 2580 /* 2581 * Common code between NFS Version 2 and NFS Version 3 for the public 2582 * filehandle multicomponent lookups. 2583 */ 2584 2585 /* 2586 * Public filehandle evaluation of a multi-component lookup, following 2587 * symbolic links, if necessary. This may result in a vnode in another 2588 * filesystem, which is OK as long as the other filesystem is exported. 2589 * 2590 * Note that the exi will be set either to NULL or a new reference to the 2591 * exportinfo struct that corresponds to the vnode of the multi-component path. 2592 * It is the callers responsibility to release this reference. 2593 */ 2594 int 2595 rfs_publicfh_mclookup(char *p, vnode_t *dvp, cred_t *cr, vnode_t **vpp, 2596 struct exportinfo **exi, struct sec_ol *sec) 2597 { 2598 int pathflag; 2599 vnode_t *mc_dvp = NULL; 2600 vnode_t *realvp; 2601 int error; 2602 2603 *exi = NULL; 2604 2605 /* 2606 * check if the given path is a url or native path. Since p is 2607 * modified by MCLpath(), it may be empty after returning from 2608 * there, and should be checked. 2609 */ 2610 if ((pathflag = MCLpath(&p)) == -1) 2611 return (EIO); 2612 2613 /* 2614 * If pathflag is SECURITY_QUERY, turn the SEC_QUERY bit 2615 * on in sec->sec_flags. This bit will later serve as an 2616 * indication in makefh_ol() or makefh3_ol() to overload the 2617 * filehandle to contain the sec modes used by the server for 2618 * the path. 2619 */ 2620 if (pathflag == SECURITY_QUERY) { 2621 if ((sec->sec_index = (uint_t)(*p)) > 0) { 2622 sec->sec_flags |= SEC_QUERY; 2623 p++; 2624 if ((pathflag = MCLpath(&p)) == -1) 2625 return (EIO); 2626 } else { 2627 cmn_err(CE_NOTE, 2628 "nfs_server: invalid security index %d, " 2629 "violating WebNFS SNEGO protocol.", sec->sec_index); 2630 return (EIO); 2631 } 2632 } 2633 2634 if (p[0] == '\0') { 2635 error = ENOENT; 2636 goto publicfh_done; 2637 } 2638 2639 error = rfs_pathname(p, &mc_dvp, vpp, dvp, cr, pathflag); 2640 2641 /* 2642 * If name resolves to "/" we get EINVAL since we asked for 2643 * the vnode of the directory that the file is in. Try again 2644 * with NULL directory vnode. 2645 */ 2646 if (error == EINVAL) { 2647 error = rfs_pathname(p, NULL, vpp, dvp, cr, pathflag); 2648 if (!error) { 2649 ASSERT(*vpp != NULL); 2650 if ((*vpp)->v_type == VDIR) { 2651 VN_HOLD(*vpp); 2652 mc_dvp = *vpp; 2653 } else { 2654 /* 2655 * This should not happen, the filesystem is 2656 * in an inconsistent state. Fail the lookup 2657 * at this point. 2658 */ 2659 VN_RELE(*vpp); 2660 error = EINVAL; 2661 } 2662 } 2663 } 2664 2665 if (error) 2666 goto publicfh_done; 2667 2668 if (*vpp == NULL) { 2669 error = ENOENT; 2670 goto publicfh_done; 2671 } 2672 2673 ASSERT(mc_dvp != NULL); 2674 ASSERT(*vpp != NULL); 2675 2676 if ((*vpp)->v_type == VDIR) { 2677 do { 2678 /* 2679 * *vpp may be an AutoFS node, so we perform 2680 * a VOP_ACCESS() to trigger the mount of the intended 2681 * filesystem, so we can perform the lookup in the 2682 * intended filesystem. 2683 */ 2684 (void) VOP_ACCESS(*vpp, 0, 0, cr, NULL); 2685 2686 /* 2687 * If vnode is covered, get the 2688 * the topmost vnode. 2689 */ 2690 if (vn_mountedvfs(*vpp) != NULL) { 2691 error = traverse(vpp); 2692 if (error) { 2693 VN_RELE(*vpp); 2694 goto publicfh_done; 2695 } 2696 } 2697 2698 if (VOP_REALVP(*vpp, &realvp, NULL) == 0 && 2699 realvp != *vpp) { 2700 /* 2701 * If realvp is different from *vpp 2702 * then release our reference on *vpp, so that 2703 * the export access check be performed on the 2704 * real filesystem instead. 2705 */ 2706 VN_HOLD(realvp); 2707 VN_RELE(*vpp); 2708 *vpp = realvp; 2709 } else { 2710 break; 2711 } 2712 /* LINTED */ 2713 } while (TRUE); 2714 2715 /* 2716 * Let nfs_vptexi() figure what the real parent is. 2717 */ 2718 VN_RELE(mc_dvp); 2719 mc_dvp = NULL; 2720 2721 } else { 2722 /* 2723 * If vnode is covered, get the 2724 * the topmost vnode. 2725 */ 2726 if (vn_mountedvfs(mc_dvp) != NULL) { 2727 error = traverse(&mc_dvp); 2728 if (error) { 2729 VN_RELE(*vpp); 2730 goto publicfh_done; 2731 } 2732 } 2733 2734 if (VOP_REALVP(mc_dvp, &realvp, NULL) == 0 && 2735 realvp != mc_dvp) { 2736 /* 2737 * *vpp is a file, obtain realvp of the parent 2738 * directory vnode. 2739 */ 2740 VN_HOLD(realvp); 2741 VN_RELE(mc_dvp); 2742 mc_dvp = realvp; 2743 } 2744 } 2745 2746 /* 2747 * The pathname may take us from the public filesystem to another. 2748 * If that's the case then just set the exportinfo to the new export 2749 * and build filehandle for it. Thanks to per-access checking there's 2750 * no security issues with doing this. If the client is not allowed 2751 * access to this new export then it will get an access error when it 2752 * tries to use the filehandle 2753 */ 2754 if (error = nfs_check_vpexi(mc_dvp, *vpp, kcred, exi)) { 2755 VN_RELE(*vpp); 2756 goto publicfh_done; 2757 } 2758 2759 /* 2760 * Not allowed access to pseudo exports. 2761 */ 2762 if (PSEUDO(*exi)) { 2763 error = ENOENT; 2764 VN_RELE(*vpp); 2765 goto publicfh_done; 2766 } 2767 2768 /* 2769 * Do a lookup for the index file. We know the index option doesn't 2770 * allow paths through handling in the share command, so mc_dvp will 2771 * be the parent for the index file vnode, if its present. Use 2772 * temporary pointers to preserve and reuse the vnode pointers of the 2773 * original directory in case there's no index file. Note that the 2774 * index file is a native path, and should not be interpreted by 2775 * the URL parser in rfs_pathname() 2776 */ 2777 if (((*exi)->exi_export.ex_flags & EX_INDEX) && 2778 ((*vpp)->v_type == VDIR) && (pathflag == URLPATH)) { 2779 vnode_t *tvp, *tmc_dvp; /* temporary vnode pointers */ 2780 2781 tmc_dvp = mc_dvp; 2782 mc_dvp = tvp = *vpp; 2783 2784 error = rfs_pathname((*exi)->exi_export.ex_index, NULL, vpp, 2785 mc_dvp, cr, NATIVEPATH); 2786 2787 if (error == ENOENT) { 2788 *vpp = tvp; 2789 mc_dvp = tmc_dvp; 2790 error = 0; 2791 } else { /* ok or error other than ENOENT */ 2792 if (tmc_dvp) 2793 VN_RELE(tmc_dvp); 2794 if (error) 2795 goto publicfh_done; 2796 2797 /* 2798 * Found a valid vp for index "filename". Sanity check 2799 * for odd case where a directory is provided as index 2800 * option argument and leads us to another filesystem 2801 */ 2802 2803 /* Release the reference on the old exi value */ 2804 exi_rele(*exi); 2805 *exi = NULL; 2806 2807 if (error = nfs_check_vpexi(mc_dvp, *vpp, kcred, exi)) { 2808 VN_RELE(*vpp); 2809 goto publicfh_done; 2810 } 2811 } 2812 } 2813 2814 publicfh_done: 2815 if (mc_dvp) 2816 VN_RELE(mc_dvp); 2817 2818 if (error && *exi != NULL) 2819 exi_rele(*exi); 2820 2821 return (error); 2822 } 2823 2824 /* 2825 * Evaluate a multi-component path 2826 */ 2827 int 2828 rfs_pathname( 2829 char *path, /* pathname to evaluate */ 2830 vnode_t **dirvpp, /* ret for ptr to parent dir vnode */ 2831 vnode_t **compvpp, /* ret for ptr to component vnode */ 2832 vnode_t *startdvp, /* starting vnode */ 2833 cred_t *cr, /* user's credential */ 2834 int pathflag) /* flag to identify path, e.g. URL */ 2835 { 2836 char namebuf[TYPICALMAXPATHLEN]; 2837 struct pathname pn; 2838 int error; 2839 2840 /* 2841 * If pathname starts with '/', then set startdvp to root. 2842 */ 2843 if (*path == '/') { 2844 while (*path == '/') 2845 path++; 2846 2847 startdvp = rootdir; 2848 } 2849 2850 error = pn_get_buf(path, UIO_SYSSPACE, &pn, namebuf, sizeof (namebuf)); 2851 if (error == 0) { 2852 /* 2853 * Call the URL parser for URL paths to modify the original 2854 * string to handle any '%' encoded characters that exist. 2855 * Done here to avoid an extra bcopy in the lookup. 2856 * We need to be careful about pathlen's. We know that 2857 * rfs_pathname() is called with a non-empty path. However, 2858 * it could be emptied due to the path simply being all /'s, 2859 * which is valid to proceed with the lookup, or due to the 2860 * URL parser finding an encoded null character at the 2861 * beginning of path which should not proceed with the lookup. 2862 */ 2863 if (pn.pn_pathlen != 0 && pathflag == URLPATH) { 2864 URLparse(pn.pn_path); 2865 if ((pn.pn_pathlen = strlen(pn.pn_path)) == 0) 2866 return (ENOENT); 2867 } 2868 VN_HOLD(startdvp); 2869 error = lookuppnvp(&pn, NULL, NO_FOLLOW, dirvpp, compvpp, 2870 rootdir, startdvp, cr); 2871 } 2872 if (error == ENAMETOOLONG) { 2873 /* 2874 * This thread used a pathname > TYPICALMAXPATHLEN bytes long. 2875 */ 2876 if (error = pn_get(path, UIO_SYSSPACE, &pn)) 2877 return (error); 2878 if (pn.pn_pathlen != 0 && pathflag == URLPATH) { 2879 URLparse(pn.pn_path); 2880 if ((pn.pn_pathlen = strlen(pn.pn_path)) == 0) { 2881 pn_free(&pn); 2882 return (ENOENT); 2883 } 2884 } 2885 VN_HOLD(startdvp); 2886 error = lookuppnvp(&pn, NULL, NO_FOLLOW, dirvpp, compvpp, 2887 rootdir, startdvp, cr); 2888 pn_free(&pn); 2889 } 2890 2891 return (error); 2892 } 2893 2894 /* 2895 * Adapt the multicomponent lookup path depending on the pathtype 2896 */ 2897 static int 2898 MCLpath(char **path) 2899 { 2900 unsigned char c = (unsigned char)**path; 2901 2902 /* 2903 * If the MCL path is between 0x20 and 0x7E (graphic printable 2904 * character of the US-ASCII coded character set), its a URL path, 2905 * per RFC 1738. 2906 */ 2907 if (c >= 0x20 && c <= 0x7E) 2908 return (URLPATH); 2909 2910 /* 2911 * If the first octet of the MCL path is not an ASCII character 2912 * then it must be interpreted as a tag value that describes the 2913 * format of the remaining octets of the MCL path. 2914 * 2915 * If the first octet of the MCL path is 0x81 it is a query 2916 * for the security info. 2917 */ 2918 switch (c) { 2919 case 0x80: /* native path, i.e. MCL via mount protocol */ 2920 (*path)++; 2921 return (NATIVEPATH); 2922 case 0x81: /* security query */ 2923 (*path)++; 2924 return (SECURITY_QUERY); 2925 default: 2926 return (-1); 2927 } 2928 } 2929 2930 #define fromhex(c) ((c >= '0' && c <= '9') ? (c - '0') : \ 2931 ((c >= 'A' && c <= 'F') ? (c - 'A' + 10) :\ 2932 ((c >= 'a' && c <= 'f') ? (c - 'a' + 10) : 0))) 2933 2934 /* 2935 * The implementation of URLparse guarantees that the final string will 2936 * fit in the original one. Replaces '%' occurrences followed by 2 characters 2937 * with its corresponding hexadecimal character. 2938 */ 2939 static void 2940 URLparse(char *str) 2941 { 2942 char *p, *q; 2943 2944 p = q = str; 2945 while (*p) { 2946 *q = *p; 2947 if (*p++ == '%') { 2948 if (*p) { 2949 *q = fromhex(*p) * 16; 2950 p++; 2951 if (*p) { 2952 *q += fromhex(*p); 2953 p++; 2954 } 2955 } 2956 } 2957 q++; 2958 } 2959 *q = '\0'; 2960 } 2961 2962 2963 /* 2964 * Get the export information for the lookup vnode, and verify its 2965 * useable. 2966 * 2967 * Set @exip only in success 2968 */ 2969 int 2970 nfs_check_vpexi(vnode_t *mc_dvp, vnode_t *vp, cred_t *cr, 2971 struct exportinfo **exip) 2972 { 2973 int walk; 2974 int error = 0; 2975 struct exportinfo *exi; 2976 2977 exi = nfs_vptoexi(mc_dvp, vp, cr, &walk, NULL, FALSE); 2978 if (exi == NULL) 2979 error = EACCES; 2980 else { 2981 /* 2982 * If nosub is set for this export then 2983 * a lookup relative to the public fh 2984 * must not terminate below the 2985 * exported directory. 2986 */ 2987 if (exi->exi_export.ex_flags & EX_NOSUB && walk > 0) { 2988 error = EACCES; 2989 exi_rele(exi); 2990 } 2991 } 2992 if (error == 0) 2993 *exip = exi; 2994 return (error); 2995 } 2996 2997 /* 2998 * Do the main work of handling HA-NFSv4 Resource Group failover on 2999 * Sun Cluster. 3000 * We need to detect whether any RG admin paths have been added or removed, 3001 * and adjust resources accordingly. 3002 * Currently we're using a very inefficient algorithm, ~ 2 * O(n**2). In 3003 * order to scale, the list and array of paths need to be held in more 3004 * suitable data structures. 3005 */ 3006 static void 3007 hanfsv4_failover(void) 3008 { 3009 int i, start_grace, numadded_paths = 0; 3010 char **added_paths = NULL; 3011 rfs4_dss_path_t *dss_path; 3012 3013 /* 3014 * Note: currently, rfs4_dss_pathlist cannot be NULL, since 3015 * it will always include an entry for NFS4_DSS_VAR_DIR. If we 3016 * make the latter dynamically specified too, the following will 3017 * need to be adjusted. 3018 */ 3019 3020 /* 3021 * First, look for removed paths: RGs that have been failed-over 3022 * away from this node. 3023 * Walk the "currently-serving" rfs4_dss_pathlist and, for each 3024 * path, check if it is on the "passed-in" rfs4_dss_newpaths array 3025 * from nfsd. If not, that RG path has been removed. 3026 * 3027 * Note that nfsd has sorted rfs4_dss_newpaths for us, and removed 3028 * any duplicates. 3029 */ 3030 dss_path = rfs4_dss_pathlist; 3031 do { 3032 int found = 0; 3033 char *path = dss_path->path; 3034 3035 /* used only for non-HA so may not be removed */ 3036 if (strcmp(path, NFS4_DSS_VAR_DIR) == 0) { 3037 dss_path = dss_path->next; 3038 continue; 3039 } 3040 3041 for (i = 0; i < rfs4_dss_numnewpaths; i++) { 3042 int cmpret; 3043 char *newpath = rfs4_dss_newpaths[i]; 3044 3045 /* 3046 * Since nfsd has sorted rfs4_dss_newpaths for us, 3047 * once the return from strcmp is negative we know 3048 * we've passed the point where "path" should be, 3049 * and can stop searching: "path" has been removed. 3050 */ 3051 cmpret = strcmp(path, newpath); 3052 if (cmpret < 0) 3053 break; 3054 if (cmpret == 0) { 3055 found = 1; 3056 break; 3057 } 3058 } 3059 3060 if (found == 0) { 3061 unsigned index = dss_path->index; 3062 rfs4_servinst_t *sip = dss_path->sip; 3063 rfs4_dss_path_t *path_next = dss_path->next; 3064 3065 /* 3066 * This path has been removed. 3067 * We must clear out the servinst reference to 3068 * it, since it's now owned by another 3069 * node: we should not attempt to touch it. 3070 */ 3071 ASSERT(dss_path == sip->dss_paths[index]); 3072 sip->dss_paths[index] = NULL; 3073 3074 /* remove from "currently-serving" list, and destroy */ 3075 remque(dss_path); 3076 /* allow for NUL */ 3077 kmem_free(dss_path->path, strlen(dss_path->path) + 1); 3078 kmem_free(dss_path, sizeof (rfs4_dss_path_t)); 3079 3080 dss_path = path_next; 3081 } else { 3082 /* path was found; not removed */ 3083 dss_path = dss_path->next; 3084 } 3085 } while (dss_path != rfs4_dss_pathlist); 3086 3087 /* 3088 * Now, look for added paths: RGs that have been failed-over 3089 * to this node. 3090 * Walk the "passed-in" rfs4_dss_newpaths array from nfsd and, 3091 * for each path, check if it is on the "currently-serving" 3092 * rfs4_dss_pathlist. If not, that RG path has been added. 3093 * 3094 * Note: we don't do duplicate detection here; nfsd does that for us. 3095 * 3096 * Note: numadded_paths <= rfs4_dss_numnewpaths, which gives us 3097 * an upper bound for the size needed for added_paths[numadded_paths]. 3098 */ 3099 3100 /* probably more space than we need, but guaranteed to be enough */ 3101 if (rfs4_dss_numnewpaths > 0) { 3102 size_t sz = rfs4_dss_numnewpaths * sizeof (char *); 3103 added_paths = kmem_zalloc(sz, KM_SLEEP); 3104 } 3105 3106 /* walk the "passed-in" rfs4_dss_newpaths array from nfsd */ 3107 for (i = 0; i < rfs4_dss_numnewpaths; i++) { 3108 int found = 0; 3109 char *newpath = rfs4_dss_newpaths[i]; 3110 3111 dss_path = rfs4_dss_pathlist; 3112 do { 3113 char *path = dss_path->path; 3114 3115 /* used only for non-HA */ 3116 if (strcmp(path, NFS4_DSS_VAR_DIR) == 0) { 3117 dss_path = dss_path->next; 3118 continue; 3119 } 3120 3121 if (strncmp(path, newpath, strlen(path)) == 0) { 3122 found = 1; 3123 break; 3124 } 3125 3126 dss_path = dss_path->next; 3127 } while (dss_path != rfs4_dss_pathlist); 3128 3129 if (found == 0) { 3130 added_paths[numadded_paths] = newpath; 3131 numadded_paths++; 3132 } 3133 } 3134 3135 /* did we find any added paths? */ 3136 if (numadded_paths > 0) { 3137 /* create a new server instance, and start its grace period */ 3138 start_grace = 1; 3139 rfs4_servinst_create(start_grace, numadded_paths, added_paths); 3140 3141 /* read in the stable storage state from these paths */ 3142 rfs4_dss_readstate(numadded_paths, added_paths); 3143 3144 /* 3145 * Multiple failovers during a grace period will cause 3146 * clients of the same resource group to be partitioned 3147 * into different server instances, with different 3148 * grace periods. Since clients of the same resource 3149 * group must be subject to the same grace period, 3150 * we need to reset all currently active grace periods. 3151 */ 3152 rfs4_grace_reset_all(); 3153 } 3154 3155 if (rfs4_dss_numnewpaths > 0) 3156 kmem_free(added_paths, rfs4_dss_numnewpaths * sizeof (char *)); 3157 } 3158 3159 /* 3160 * Used by NFSv3 and NFSv4 server to query label of 3161 * a pathname component during lookup/access ops. 3162 */ 3163 ts_label_t * 3164 nfs_getflabel(vnode_t *vp, struct exportinfo *exi) 3165 { 3166 zone_t *zone; 3167 ts_label_t *zone_label; 3168 char *path; 3169 3170 mutex_enter(&vp->v_lock); 3171 if (vp->v_path != NULL) { 3172 zone = zone_find_by_any_path(vp->v_path, B_FALSE); 3173 mutex_exit(&vp->v_lock); 3174 } else { 3175 /* 3176 * v_path not cached. Fall back on pathname of exported 3177 * file system as we rely on pathname from which we can 3178 * derive a label. The exported file system portion of 3179 * path is sufficient to obtain a label. 3180 */ 3181 path = exi->exi_export.ex_path; 3182 if (path == NULL) { 3183 mutex_exit(&vp->v_lock); 3184 return (NULL); 3185 } 3186 zone = zone_find_by_any_path(path, B_FALSE); 3187 mutex_exit(&vp->v_lock); 3188 } 3189 /* 3190 * Caller has verified that the file is either 3191 * exported or visible. So if the path falls in 3192 * global zone, admin_low is returned; otherwise 3193 * the zone's label is returned. 3194 */ 3195 zone_label = zone->zone_slabel; 3196 label_hold(zone_label); 3197 zone_rele(zone); 3198 return (zone_label); 3199 } 3200 3201 /* 3202 * TX NFS routine used by NFSv3 and NFSv4 to do label check 3203 * on client label and server's file object lable. 3204 */ 3205 boolean_t 3206 do_rfs_label_check(bslabel_t *clabel, vnode_t *vp, int flag, 3207 struct exportinfo *exi) 3208 { 3209 bslabel_t *slabel; 3210 ts_label_t *tslabel; 3211 boolean_t result; 3212 3213 if ((tslabel = nfs_getflabel(vp, exi)) == NULL) { 3214 return (B_FALSE); 3215 } 3216 slabel = label2bslabel(tslabel); 3217 DTRACE_PROBE4(tx__rfs__log__info__labelcheck, char *, 3218 "comparing server's file label(1) with client label(2) (vp(3))", 3219 bslabel_t *, slabel, bslabel_t *, clabel, vnode_t *, vp); 3220 3221 if (flag == EQUALITY_CHECK) 3222 result = blequal(clabel, slabel); 3223 else 3224 result = bldominates(clabel, slabel); 3225 label_rele(tslabel); 3226 return (result); 3227 } 3228 3229 /* 3230 * Callback function to return the loaned buffers. 3231 * Calls VOP_RETZCBUF() only after all uio_iov[] 3232 * buffers are returned. nu_ref maintains the count. 3233 */ 3234 void 3235 rfs_free_xuio(void *free_arg) 3236 { 3237 uint_t ref; 3238 nfs_xuio_t *nfsuiop = (nfs_xuio_t *)free_arg; 3239 3240 ref = atomic_dec_uint_nv(&nfsuiop->nu_ref); 3241 3242 /* 3243 * Call VOP_RETZCBUF() only when all the iov buffers 3244 * are sent OTW. 3245 */ 3246 if (ref != 0) 3247 return; 3248 3249 if (((uio_t *)nfsuiop)->uio_extflg & UIO_XUIO) { 3250 (void) VOP_RETZCBUF(nfsuiop->nu_vp, (xuio_t *)free_arg, NULL, 3251 NULL); 3252 VN_RELE(nfsuiop->nu_vp); 3253 } 3254 3255 kmem_cache_free(nfs_xuio_cache, free_arg); 3256 } 3257 3258 xuio_t * 3259 rfs_setup_xuio(vnode_t *vp) 3260 { 3261 nfs_xuio_t *nfsuiop; 3262 3263 nfsuiop = kmem_cache_alloc(nfs_xuio_cache, KM_SLEEP); 3264 3265 bzero(nfsuiop, sizeof (nfs_xuio_t)); 3266 nfsuiop->nu_vp = vp; 3267 3268 /* 3269 * ref count set to 1. more may be added 3270 * if multiple mblks refer to multiple iov's. 3271 * This is done in uio_to_mblk(). 3272 */ 3273 3274 nfsuiop->nu_ref = 1; 3275 3276 nfsuiop->nu_frtn.free_func = rfs_free_xuio; 3277 nfsuiop->nu_frtn.free_arg = (char *)nfsuiop; 3278 3279 nfsuiop->nu_uio.xu_type = UIOTYPE_ZEROCOPY; 3280 3281 return (&nfsuiop->nu_uio); 3282 } 3283 3284 mblk_t * 3285 uio_to_mblk(uio_t *uiop) 3286 { 3287 struct iovec *iovp; 3288 int i; 3289 mblk_t *mp, *mp1; 3290 nfs_xuio_t *nfsuiop = (nfs_xuio_t *)uiop; 3291 3292 if (uiop->uio_iovcnt == 0) 3293 return (NULL); 3294 3295 iovp = uiop->uio_iov; 3296 mp = mp1 = esballoca((uchar_t *)iovp->iov_base, iovp->iov_len, 3297 BPRI_MED, &nfsuiop->nu_frtn); 3298 ASSERT(mp != NULL); 3299 3300 mp->b_wptr += iovp->iov_len; 3301 mp->b_datap->db_type = M_DATA; 3302 3303 for (i = 1; i < uiop->uio_iovcnt; i++) { 3304 iovp = (uiop->uio_iov + i); 3305 3306 mp1->b_cont = esballoca( 3307 (uchar_t *)iovp->iov_base, iovp->iov_len, BPRI_MED, 3308 &nfsuiop->nu_frtn); 3309 3310 mp1 = mp1->b_cont; 3311 ASSERT(mp1 != NULL); 3312 mp1->b_wptr += iovp->iov_len; 3313 mp1->b_datap->db_type = M_DATA; 3314 } 3315 3316 nfsuiop->nu_ref = uiop->uio_iovcnt; 3317 3318 return (mp); 3319 } 3320 3321 void 3322 rfs_rndup_mblks(mblk_t *mp, uint_t len, int buf_loaned) 3323 { 3324 int i, rndup; 3325 int alloc_err = 0; 3326 mblk_t *rmp; 3327 3328 rndup = BYTES_PER_XDR_UNIT - (len % BYTES_PER_XDR_UNIT); 3329 3330 /* single mblk_t non copy-reduction case */ 3331 if (!buf_loaned) { 3332 mp->b_wptr += len; 3333 if (rndup != BYTES_PER_XDR_UNIT) { 3334 for (i = 0; i < rndup; i++) 3335 *mp->b_wptr++ = '\0'; 3336 } 3337 return; 3338 } 3339 3340 /* no need for extra rndup */ 3341 if (rndup == BYTES_PER_XDR_UNIT) 3342 return; 3343 3344 while (mp->b_cont) 3345 mp = mp->b_cont; 3346 3347 /* 3348 * In case of copy-reduction mblks, the size of the mblks 3349 * are fixed and are of the size of the loaned buffers. 3350 * Allocate a roundup mblk and chain it to the data 3351 * buffers. This is sub-optimal, but not expected to 3352 * happen in regular common workloads. 3353 */ 3354 3355 rmp = allocb_wait(rndup, BPRI_MED, STR_NOSIG, &alloc_err); 3356 ASSERT(rmp != NULL); 3357 ASSERT(alloc_err == 0); 3358 3359 for (i = 0; i < rndup; i++) 3360 *rmp->b_wptr++ = '\0'; 3361 3362 rmp->b_datap->db_type = M_DATA; 3363 mp->b_cont = rmp; 3364 } 3365