1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 1990, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2011 Bayard G. Bell. All rights reserved. 24 * Copyright (c) 2013 by Delphix. All rights reserved. 25 * Copyright 2014 Nexenta Systems, Inc. All rights reserved. 26 * Copyright (c) 2017 Joyent Inc 27 */ 28 29 /* 30 * Copyright (c) 1983,1984,1985,1986,1987,1988,1989 AT&T. 31 * All rights reserved. 32 * Use is subject to license terms. 33 */ 34 35 #include <sys/param.h> 36 #include <sys/types.h> 37 #include <sys/systm.h> 38 #include <sys/cred.h> 39 #include <sys/proc.h> 40 #include <sys/user.h> 41 #include <sys/buf.h> 42 #include <sys/vfs.h> 43 #include <sys/vnode.h> 44 #include <sys/pathname.h> 45 #include <sys/uio.h> 46 #include <sys/file.h> 47 #include <sys/stat.h> 48 #include <sys/errno.h> 49 #include <sys/socket.h> 50 #include <sys/sysmacros.h> 51 #include <sys/siginfo.h> 52 #include <sys/tiuser.h> 53 #include <sys/statvfs.h> 54 #include <sys/stream.h> 55 #include <sys/strsun.h> 56 #include <sys/strsubr.h> 57 #include <sys/stropts.h> 58 #include <sys/timod.h> 59 #include <sys/t_kuser.h> 60 #include <sys/kmem.h> 61 #include <sys/kstat.h> 62 #include <sys/dirent.h> 63 #include <sys/cmn_err.h> 64 #include <sys/debug.h> 65 #include <sys/unistd.h> 66 #include <sys/vtrace.h> 67 #include <sys/mode.h> 68 #include <sys/acl.h> 69 #include <sys/sdt.h> 70 #include <sys/debug.h> 71 72 #include <rpc/types.h> 73 #include <rpc/auth.h> 74 #include <rpc/auth_unix.h> 75 #include <rpc/auth_des.h> 76 #include <rpc/svc.h> 77 #include <rpc/xdr.h> 78 #include <rpc/rpc_rdma.h> 79 80 #include <nfs/nfs.h> 81 #include <nfs/export.h> 82 #include <nfs/nfssys.h> 83 #include <nfs/nfs_clnt.h> 84 #include <nfs/nfs_acl.h> 85 #include <nfs/nfs_log.h> 86 #include <nfs/nfs_cmd.h> 87 #include <nfs/lm.h> 88 #include <nfs/nfs_dispatch.h> 89 #include <nfs/nfs4_drc.h> 90 91 #include <sys/modctl.h> 92 #include <sys/cladm.h> 93 #include <sys/clconf.h> 94 95 #include <sys/tsol/label.h> 96 97 #define MAXHOST 32 98 const char *kinet_ntop6(uchar_t *, char *, size_t); 99 100 /* 101 * Module linkage information. 102 */ 103 104 static struct modlmisc modlmisc = { 105 &mod_miscops, "NFS server module" 106 }; 107 108 static struct modlinkage modlinkage = { 109 MODREV_1, (void *)&modlmisc, NULL 110 }; 111 112 kmem_cache_t *nfs_xuio_cache; 113 int nfs_loaned_buffers = 0; 114 115 int 116 _init(void) 117 { 118 int status; 119 120 if ((status = nfs_srvinit()) != 0) { 121 cmn_err(CE_WARN, "_init: nfs_srvinit failed"); 122 return (status); 123 } 124 125 status = mod_install((struct modlinkage *)&modlinkage); 126 if (status != 0) { 127 /* 128 * Could not load module, cleanup previous 129 * initialization work. 130 */ 131 nfs_srvfini(); 132 133 return (status); 134 } 135 136 /* 137 * Initialise some placeholders for nfssys() calls. These have 138 * to be declared by the nfs module, since that handles nfssys() 139 * calls - also used by NFS clients - but are provided by this 140 * nfssrv module. These also then serve as confirmation to the 141 * relevant code in nfs that nfssrv has been loaded, as they're 142 * initially NULL. 143 */ 144 nfs_srv_quiesce_func = nfs_srv_quiesce_all; 145 nfs_srv_dss_func = rfs4_dss_setpaths; 146 147 /* setup DSS paths here; must be done before initial server startup */ 148 rfs4_dss_paths = rfs4_dss_oldpaths = NULL; 149 150 /* initialize the copy reduction caches */ 151 152 nfs_xuio_cache = kmem_cache_create("nfs_xuio_cache", 153 sizeof (nfs_xuio_t), 0, NULL, NULL, NULL, NULL, NULL, 0); 154 155 return (status); 156 } 157 158 int 159 _fini() 160 { 161 return (EBUSY); 162 } 163 164 int 165 _info(struct modinfo *modinfop) 166 { 167 return (mod_info(&modlinkage, modinfop)); 168 } 169 170 /* 171 * PUBLICFH_CHECK() checks if the dispatch routine supports 172 * RPC_PUBLICFH_OK, if the filesystem is exported public, and if the 173 * incoming request is using the public filehandle. The check duplicates 174 * the exportmatch() call done in checkexport(), and we should consider 175 * modifying those routines to avoid the duplication. For now, we optimize 176 * by calling exportmatch() only after checking that the dispatch routine 177 * supports RPC_PUBLICFH_OK, and if the filesystem is explicitly exported 178 * public (i.e., not the placeholder). 179 */ 180 #define PUBLICFH_CHECK(disp, exi, fsid, xfid) \ 181 ((disp->dis_flags & RPC_PUBLICFH_OK) && \ 182 ((exi->exi_export.ex_flags & EX_PUBLIC) || \ 183 (exi == exi_public && exportmatch(exi_root, \ 184 fsid, xfid)))) 185 186 static void nfs_srv_shutdown_all(int); 187 static void rfs4_server_start(int); 188 static void nullfree(void); 189 static void rfs_dispatch(struct svc_req *, SVCXPRT *); 190 static void acl_dispatch(struct svc_req *, SVCXPRT *); 191 static void common_dispatch(struct svc_req *, SVCXPRT *, 192 rpcvers_t, rpcvers_t, char *, 193 struct rpc_disptable *); 194 static void hanfsv4_failover(void); 195 static int checkauth(struct exportinfo *, struct svc_req *, cred_t *, int, 196 bool_t, bool_t *); 197 static char *client_name(struct svc_req *req); 198 static char *client_addr(struct svc_req *req, char *buf); 199 extern int sec_svc_getcred(struct svc_req *, cred_t *cr, char **, int *); 200 extern bool_t sec_svc_inrootlist(int, caddr_t, int, caddr_t *); 201 202 #define NFSLOG_COPY_NETBUF(exi, xprt, nb) { \ 203 (nb)->maxlen = (xprt)->xp_rtaddr.maxlen; \ 204 (nb)->len = (xprt)->xp_rtaddr.len; \ 205 (nb)->buf = kmem_alloc((nb)->len, KM_SLEEP); \ 206 bcopy((xprt)->xp_rtaddr.buf, (nb)->buf, (nb)->len); \ 207 } 208 209 /* 210 * Public Filehandle common nfs routines 211 */ 212 static int MCLpath(char **); 213 static void URLparse(char *); 214 215 /* 216 * NFS callout table. 217 * This table is used by svc_getreq() to dispatch a request with 218 * a given prog/vers pair to an appropriate service provider 219 * dispatch routine. 220 * 221 * NOTE: ordering is relied upon below when resetting the version min/max 222 * for NFS_PROGRAM. Careful, if this is ever changed. 223 */ 224 static SVC_CALLOUT __nfs_sc_clts[] = { 225 { NFS_PROGRAM, NFS_VERSMIN, NFS_VERSMAX, rfs_dispatch }, 226 { NFS_ACL_PROGRAM, NFS_ACL_VERSMIN, NFS_ACL_VERSMAX, acl_dispatch } 227 }; 228 229 static SVC_CALLOUT_TABLE nfs_sct_clts = { 230 sizeof (__nfs_sc_clts) / sizeof (__nfs_sc_clts[0]), FALSE, 231 __nfs_sc_clts 232 }; 233 234 static SVC_CALLOUT __nfs_sc_cots[] = { 235 { NFS_PROGRAM, NFS_VERSMIN, NFS_VERSMAX, rfs_dispatch }, 236 { NFS_ACL_PROGRAM, NFS_ACL_VERSMIN, NFS_ACL_VERSMAX, acl_dispatch } 237 }; 238 239 static SVC_CALLOUT_TABLE nfs_sct_cots = { 240 sizeof (__nfs_sc_cots) / sizeof (__nfs_sc_cots[0]), FALSE, __nfs_sc_cots 241 }; 242 243 static SVC_CALLOUT __nfs_sc_rdma[] = { 244 { NFS_PROGRAM, NFS_VERSMIN, NFS_VERSMAX, rfs_dispatch }, 245 { NFS_ACL_PROGRAM, NFS_ACL_VERSMIN, NFS_ACL_VERSMAX, acl_dispatch } 246 }; 247 248 static SVC_CALLOUT_TABLE nfs_sct_rdma = { 249 sizeof (__nfs_sc_rdma) / sizeof (__nfs_sc_rdma[0]), FALSE, __nfs_sc_rdma 250 }; 251 rpcvers_t nfs_versmin = NFS_VERSMIN_DEFAULT; 252 rpcvers_t nfs_versmax = NFS_VERSMAX_DEFAULT; 253 254 /* 255 * Used to track the state of the server so that initialization 256 * can be done properly. 257 */ 258 typedef enum { 259 NFS_SERVER_STOPPED, /* server state destroyed */ 260 NFS_SERVER_STOPPING, /* server state being destroyed */ 261 NFS_SERVER_RUNNING, 262 NFS_SERVER_QUIESCED, /* server state preserved */ 263 NFS_SERVER_OFFLINE /* server pool offline */ 264 } nfs_server_running_t; 265 266 static nfs_server_running_t nfs_server_upordown; 267 static kmutex_t nfs_server_upordown_lock; 268 static kcondvar_t nfs_server_upordown_cv; 269 270 /* 271 * DSS: distributed stable storage 272 * lists of all DSS paths: current, and before last warmstart 273 */ 274 nvlist_t *rfs4_dss_paths, *rfs4_dss_oldpaths; 275 276 int rfs4_dispatch(struct rpcdisp *, struct svc_req *, SVCXPRT *, char *); 277 bool_t rfs4_minorvers_mismatch(struct svc_req *, SVCXPRT *, void *); 278 279 /* 280 * RDMA wait variables. 281 */ 282 static kcondvar_t rdma_wait_cv; 283 static kmutex_t rdma_wait_mutex; 284 285 /* 286 * Will be called at the point the server pool is being unregistered 287 * from the pool list. From that point onwards, the pool is waiting 288 * to be drained and as such the server state is stale and pertains 289 * to the old instantiation of the NFS server pool. 290 */ 291 void 292 nfs_srv_offline(void) 293 { 294 mutex_enter(&nfs_server_upordown_lock); 295 if (nfs_server_upordown == NFS_SERVER_RUNNING) { 296 nfs_server_upordown = NFS_SERVER_OFFLINE; 297 } 298 mutex_exit(&nfs_server_upordown_lock); 299 } 300 301 /* 302 * Will be called at the point the server pool is being destroyed so 303 * all transports have been closed and no service threads are in 304 * existence. 305 * 306 * If we quiesce the server, we're shutting it down without destroying the 307 * server state. This allows it to warm start subsequently. 308 */ 309 void 310 nfs_srv_stop_all(void) 311 { 312 int quiesce = 0; 313 nfs_srv_shutdown_all(quiesce); 314 } 315 316 /* 317 * This alternative shutdown routine can be requested via nfssys() 318 */ 319 void 320 nfs_srv_quiesce_all(void) 321 { 322 int quiesce = 1; 323 nfs_srv_shutdown_all(quiesce); 324 } 325 326 static void 327 nfs_srv_shutdown_all(int quiesce) { 328 mutex_enter(&nfs_server_upordown_lock); 329 if (quiesce) { 330 if (nfs_server_upordown == NFS_SERVER_RUNNING || 331 nfs_server_upordown == NFS_SERVER_OFFLINE) { 332 nfs_server_upordown = NFS_SERVER_QUIESCED; 333 cv_signal(&nfs_server_upordown_cv); 334 335 /* reset DSS state, for subsequent warm restart */ 336 rfs4_dss_numnewpaths = 0; 337 rfs4_dss_newpaths = NULL; 338 339 cmn_err(CE_NOTE, "nfs_server: server is now quiesced; " 340 "NFSv4 state has been preserved"); 341 } 342 } else { 343 if (nfs_server_upordown == NFS_SERVER_OFFLINE) { 344 nfs_server_upordown = NFS_SERVER_STOPPING; 345 mutex_exit(&nfs_server_upordown_lock); 346 rfs4_state_fini(); 347 rfs4_fini_drc(nfs4_drc); 348 mutex_enter(&nfs_server_upordown_lock); 349 nfs_server_upordown = NFS_SERVER_STOPPED; 350 cv_signal(&nfs_server_upordown_cv); 351 } 352 } 353 mutex_exit(&nfs_server_upordown_lock); 354 } 355 356 static int 357 nfs_srv_set_sc_versions(struct file *fp, SVC_CALLOUT_TABLE **sctpp, 358 rpcvers_t versmin, rpcvers_t versmax) 359 { 360 struct strioctl strioc; 361 struct T_info_ack tinfo; 362 int error, retval; 363 364 /* 365 * Find out what type of transport this is. 366 */ 367 strioc.ic_cmd = TI_GETINFO; 368 strioc.ic_timout = -1; 369 strioc.ic_len = sizeof (tinfo); 370 strioc.ic_dp = (char *)&tinfo; 371 tinfo.PRIM_type = T_INFO_REQ; 372 373 error = strioctl(fp->f_vnode, I_STR, (intptr_t)&strioc, 0, K_TO_K, 374 CRED(), &retval); 375 if (error || retval) 376 return (error); 377 378 /* 379 * Based on our query of the transport type... 380 * 381 * Reset the min/max versions based on the caller's request 382 * NOTE: This assumes that NFS_PROGRAM is first in the array!! 383 * And the second entry is the NFS_ACL_PROGRAM. 384 */ 385 switch (tinfo.SERV_type) { 386 case T_CLTS: 387 if (versmax == NFS_V4) 388 return (EINVAL); 389 __nfs_sc_clts[0].sc_versmin = versmin; 390 __nfs_sc_clts[0].sc_versmax = versmax; 391 __nfs_sc_clts[1].sc_versmin = versmin; 392 __nfs_sc_clts[1].sc_versmax = versmax; 393 *sctpp = &nfs_sct_clts; 394 break; 395 case T_COTS: 396 case T_COTS_ORD: 397 __nfs_sc_cots[0].sc_versmin = versmin; 398 __nfs_sc_cots[0].sc_versmax = versmax; 399 /* For the NFS_ACL program, check the max version */ 400 if (versmax > NFS_ACL_VERSMAX) 401 versmax = NFS_ACL_VERSMAX; 402 __nfs_sc_cots[1].sc_versmin = versmin; 403 __nfs_sc_cots[1].sc_versmax = versmax; 404 *sctpp = &nfs_sct_cots; 405 break; 406 default: 407 error = EINVAL; 408 } 409 410 return (error); 411 } 412 413 /* 414 * NFS Server system call. 415 * Does all of the work of running a NFS server. 416 * uap->fd is the fd of an open transport provider 417 */ 418 int 419 nfs_svc(struct nfs_svc_args *arg, model_t model) 420 { 421 file_t *fp; 422 SVCMASTERXPRT *xprt; 423 int error; 424 int readsize; 425 char buf[KNC_STRSIZE]; 426 size_t len; 427 STRUCT_HANDLE(nfs_svc_args, uap); 428 struct netbuf addrmask; 429 SVC_CALLOUT_TABLE *sctp = NULL; 430 431 #ifdef lint 432 model = model; /* STRUCT macros don't always refer to it */ 433 #endif 434 435 STRUCT_SET_HANDLE(uap, model, arg); 436 437 /* Check privileges in nfssys() */ 438 439 if ((fp = getf(STRUCT_FGET(uap, fd))) == NULL) 440 return (EBADF); 441 442 /* 443 * Set read buffer size to rsize 444 * and add room for RPC headers. 445 */ 446 readsize = nfs3tsize() + (RPC_MAXDATASIZE - NFS_MAXDATA); 447 if (readsize < RPC_MAXDATASIZE) 448 readsize = RPC_MAXDATASIZE; 449 450 error = copyinstr((const char *)STRUCT_FGETP(uap, netid), buf, 451 KNC_STRSIZE, &len); 452 if (error) { 453 releasef(STRUCT_FGET(uap, fd)); 454 return (error); 455 } 456 457 addrmask.len = STRUCT_FGET(uap, addrmask.len); 458 addrmask.maxlen = STRUCT_FGET(uap, addrmask.maxlen); 459 addrmask.buf = kmem_alloc(addrmask.maxlen, KM_SLEEP); 460 error = copyin(STRUCT_FGETP(uap, addrmask.buf), addrmask.buf, 461 addrmask.len); 462 if (error) { 463 releasef(STRUCT_FGET(uap, fd)); 464 kmem_free(addrmask.buf, addrmask.maxlen); 465 return (error); 466 } 467 468 nfs_versmin = STRUCT_FGET(uap, versmin); 469 nfs_versmax = STRUCT_FGET(uap, versmax); 470 471 /* Double check the vers min/max ranges */ 472 if ((nfs_versmin > nfs_versmax) || 473 (nfs_versmin < NFS_VERSMIN) || 474 (nfs_versmax > NFS_VERSMAX)) { 475 nfs_versmin = NFS_VERSMIN_DEFAULT; 476 nfs_versmax = NFS_VERSMAX_DEFAULT; 477 } 478 479 if (error = 480 nfs_srv_set_sc_versions(fp, &sctp, nfs_versmin, nfs_versmax)) { 481 releasef(STRUCT_FGET(uap, fd)); 482 kmem_free(addrmask.buf, addrmask.maxlen); 483 return (error); 484 } 485 486 /* Initialize nfsv4 server */ 487 if (nfs_versmax == (rpcvers_t)NFS_V4) 488 rfs4_server_start(STRUCT_FGET(uap, delegation)); 489 490 /* Create a transport handle. */ 491 error = svc_tli_kcreate(fp, readsize, buf, &addrmask, &xprt, 492 sctp, NULL, NFS_SVCPOOL_ID, TRUE); 493 494 if (error) 495 kmem_free(addrmask.buf, addrmask.maxlen); 496 497 releasef(STRUCT_FGET(uap, fd)); 498 499 /* HA-NFSv4: save the cluster nodeid */ 500 if (cluster_bootflags & CLUSTER_BOOTED) 501 lm_global_nlmid = clconf_get_nodeid(); 502 503 return (error); 504 } 505 506 static void 507 rfs4_server_start(int nfs4_srv_delegation) 508 { 509 /* 510 * Determine if the server has previously been "started" and 511 * if not, do the per instance initialization 512 */ 513 mutex_enter(&nfs_server_upordown_lock); 514 515 if (nfs_server_upordown != NFS_SERVER_RUNNING) { 516 /* Do we need to stop and wait on the previous server? */ 517 while (nfs_server_upordown == NFS_SERVER_STOPPING || 518 nfs_server_upordown == NFS_SERVER_OFFLINE) 519 cv_wait(&nfs_server_upordown_cv, 520 &nfs_server_upordown_lock); 521 522 if (nfs_server_upordown != NFS_SERVER_RUNNING) { 523 (void) svc_pool_control(NFS_SVCPOOL_ID, 524 SVCPSET_UNREGISTER_PROC, (void *)&nfs_srv_offline); 525 (void) svc_pool_control(NFS_SVCPOOL_ID, 526 SVCPSET_SHUTDOWN_PROC, (void *)&nfs_srv_stop_all); 527 528 /* is this an nfsd warm start? */ 529 if (nfs_server_upordown == NFS_SERVER_QUIESCED) { 530 cmn_err(CE_NOTE, "nfs_server: " 531 "server was previously quiesced; " 532 "existing NFSv4 state will be re-used"); 533 534 /* 535 * HA-NFSv4: this is also the signal 536 * that a Resource Group failover has 537 * occurred. 538 */ 539 if (cluster_bootflags & CLUSTER_BOOTED) 540 hanfsv4_failover(); 541 } else { 542 /* cold start */ 543 rfs4_state_init(); 544 nfs4_drc = rfs4_init_drc(nfs4_drc_max, 545 nfs4_drc_hash); 546 } 547 548 /* 549 * Check to see if delegation is to be 550 * enabled at the server 551 */ 552 if (nfs4_srv_delegation != FALSE) 553 rfs4_set_deleg_policy(SRV_NORMAL_DELEGATE); 554 555 nfs_server_upordown = NFS_SERVER_RUNNING; 556 } 557 cv_signal(&nfs_server_upordown_cv); 558 } 559 mutex_exit(&nfs_server_upordown_lock); 560 } 561 562 /* 563 * If RDMA device available, 564 * start RDMA listener. 565 */ 566 int 567 rdma_start(struct rdma_svc_args *rsa) 568 { 569 int error; 570 rdma_xprt_group_t started_rdma_xprts; 571 rdma_stat stat; 572 int svc_state = 0; 573 574 /* Double check the vers min/max ranges */ 575 if ((rsa->nfs_versmin > rsa->nfs_versmax) || 576 (rsa->nfs_versmin < NFS_VERSMIN) || 577 (rsa->nfs_versmax > NFS_VERSMAX)) { 578 rsa->nfs_versmin = NFS_VERSMIN_DEFAULT; 579 rsa->nfs_versmax = NFS_VERSMAX_DEFAULT; 580 } 581 nfs_versmin = rsa->nfs_versmin; 582 nfs_versmax = rsa->nfs_versmax; 583 584 /* Set the versions in the callout table */ 585 __nfs_sc_rdma[0].sc_versmin = rsa->nfs_versmin; 586 __nfs_sc_rdma[0].sc_versmax = rsa->nfs_versmax; 587 /* For the NFS_ACL program, check the max version */ 588 __nfs_sc_rdma[1].sc_versmin = rsa->nfs_versmin; 589 if (rsa->nfs_versmax > NFS_ACL_VERSMAX) 590 __nfs_sc_rdma[1].sc_versmax = NFS_ACL_VERSMAX; 591 else 592 __nfs_sc_rdma[1].sc_versmax = rsa->nfs_versmax; 593 594 /* Initialize nfsv4 server */ 595 if (rsa->nfs_versmax == (rpcvers_t)NFS_V4) 596 rfs4_server_start(rsa->delegation); 597 598 started_rdma_xprts.rtg_count = 0; 599 started_rdma_xprts.rtg_listhead = NULL; 600 started_rdma_xprts.rtg_poolid = rsa->poolid; 601 602 restart: 603 error = svc_rdma_kcreate(rsa->netid, &nfs_sct_rdma, rsa->poolid, 604 &started_rdma_xprts); 605 606 svc_state = !error; 607 608 while (!error) { 609 610 /* 611 * wait till either interrupted by a signal on 612 * nfs service stop/restart or signalled by a 613 * rdma plugin attach/detatch. 614 */ 615 616 stat = rdma_kwait(); 617 618 /* 619 * stop services if running -- either on a HCA detach event 620 * or if the nfs service is stopped/restarted. 621 */ 622 623 if ((stat == RDMA_HCA_DETACH || stat == RDMA_INTR) && 624 svc_state) { 625 rdma_stop(&started_rdma_xprts); 626 svc_state = 0; 627 } 628 629 /* 630 * nfs service stop/restart, break out of the 631 * wait loop and return; 632 */ 633 if (stat == RDMA_INTR) 634 return (0); 635 636 /* 637 * restart stopped services on a HCA attach event 638 * (if not already running) 639 */ 640 641 if ((stat == RDMA_HCA_ATTACH) && (svc_state == 0)) 642 goto restart; 643 644 /* 645 * loop until a nfs service stop/restart 646 */ 647 } 648 649 return (error); 650 } 651 652 /* ARGSUSED */ 653 void 654 rpc_null(caddr_t *argp, caddr_t *resp, struct exportinfo *exi, 655 struct svc_req *req, cred_t *cr, bool_t ro) 656 { 657 } 658 659 /* ARGSUSED */ 660 void 661 rpc_null_v3(caddr_t *argp, caddr_t *resp, struct exportinfo *exi, 662 struct svc_req *req, cred_t *cr, bool_t ro) 663 { 664 DTRACE_NFSV3_3(op__null__start, struct svc_req *, req, 665 cred_t *, cr, vnode_t *, NULL); 666 DTRACE_NFSV3_3(op__null__done, struct svc_req *, req, 667 cred_t *, cr, vnode_t *, NULL); 668 } 669 670 /* ARGSUSED */ 671 static void 672 rfs_error(caddr_t *argp, caddr_t *resp, struct exportinfo *exi, 673 struct svc_req *req, cred_t *cr, bool_t ro) 674 { 675 /* return (EOPNOTSUPP); */ 676 } 677 678 static void 679 nullfree(void) 680 { 681 } 682 683 static char *rfscallnames_v2[] = { 684 "RFS2_NULL", 685 "RFS2_GETATTR", 686 "RFS2_SETATTR", 687 "RFS2_ROOT", 688 "RFS2_LOOKUP", 689 "RFS2_READLINK", 690 "RFS2_READ", 691 "RFS2_WRITECACHE", 692 "RFS2_WRITE", 693 "RFS2_CREATE", 694 "RFS2_REMOVE", 695 "RFS2_RENAME", 696 "RFS2_LINK", 697 "RFS2_SYMLINK", 698 "RFS2_MKDIR", 699 "RFS2_RMDIR", 700 "RFS2_READDIR", 701 "RFS2_STATFS" 702 }; 703 704 static struct rpcdisp rfsdisptab_v2[] = { 705 /* 706 * NFS VERSION 2 707 */ 708 709 /* RFS_NULL = 0 */ 710 {rpc_null, 711 xdr_void, NULL_xdrproc_t, 0, 712 xdr_void, NULL_xdrproc_t, 0, 713 nullfree, RPC_IDEMPOTENT, 714 0}, 715 716 /* RFS_GETATTR = 1 */ 717 {rfs_getattr, 718 xdr_fhandle, xdr_fastfhandle, sizeof (fhandle_t), 719 xdr_attrstat, xdr_fastattrstat, sizeof (struct nfsattrstat), 720 nullfree, RPC_IDEMPOTENT|RPC_ALLOWANON|RPC_MAPRESP, 721 rfs_getattr_getfh}, 722 723 /* RFS_SETATTR = 2 */ 724 {rfs_setattr, 725 xdr_saargs, NULL_xdrproc_t, sizeof (struct nfssaargs), 726 xdr_attrstat, xdr_fastattrstat, sizeof (struct nfsattrstat), 727 nullfree, RPC_MAPRESP, 728 rfs_setattr_getfh}, 729 730 /* RFS_ROOT = 3 *** NO LONGER SUPPORTED *** */ 731 {rfs_error, 732 xdr_void, NULL_xdrproc_t, 0, 733 xdr_void, NULL_xdrproc_t, 0, 734 nullfree, RPC_IDEMPOTENT, 735 0}, 736 737 /* RFS_LOOKUP = 4 */ 738 {rfs_lookup, 739 xdr_diropargs, NULL_xdrproc_t, sizeof (struct nfsdiropargs), 740 xdr_diropres, xdr_fastdiropres, sizeof (struct nfsdiropres), 741 nullfree, RPC_IDEMPOTENT|RPC_MAPRESP|RPC_PUBLICFH_OK, 742 rfs_lookup_getfh}, 743 744 /* RFS_READLINK = 5 */ 745 {rfs_readlink, 746 xdr_fhandle, xdr_fastfhandle, sizeof (fhandle_t), 747 xdr_rdlnres, NULL_xdrproc_t, sizeof (struct nfsrdlnres), 748 rfs_rlfree, RPC_IDEMPOTENT, 749 rfs_readlink_getfh}, 750 751 /* RFS_READ = 6 */ 752 {rfs_read, 753 xdr_readargs, NULL_xdrproc_t, sizeof (struct nfsreadargs), 754 xdr_rdresult, NULL_xdrproc_t, sizeof (struct nfsrdresult), 755 rfs_rdfree, RPC_IDEMPOTENT, 756 rfs_read_getfh}, 757 758 /* RFS_WRITECACHE = 7 *** NO LONGER SUPPORTED *** */ 759 {rfs_error, 760 xdr_void, NULL_xdrproc_t, 0, 761 xdr_void, NULL_xdrproc_t, 0, 762 nullfree, RPC_IDEMPOTENT, 763 0}, 764 765 /* RFS_WRITE = 8 */ 766 {rfs_write, 767 xdr_writeargs, NULL_xdrproc_t, sizeof (struct nfswriteargs), 768 xdr_attrstat, xdr_fastattrstat, sizeof (struct nfsattrstat), 769 nullfree, RPC_MAPRESP, 770 rfs_write_getfh}, 771 772 /* RFS_CREATE = 9 */ 773 {rfs_create, 774 xdr_creatargs, NULL_xdrproc_t, sizeof (struct nfscreatargs), 775 xdr_diropres, xdr_fastdiropres, sizeof (struct nfsdiropres), 776 nullfree, RPC_MAPRESP, 777 rfs_create_getfh}, 778 779 /* RFS_REMOVE = 10 */ 780 {rfs_remove, 781 xdr_diropargs, NULL_xdrproc_t, sizeof (struct nfsdiropargs), 782 #ifdef _LITTLE_ENDIAN 783 xdr_enum, xdr_fastenum, sizeof (enum nfsstat), 784 #else 785 xdr_enum, NULL_xdrproc_t, sizeof (enum nfsstat), 786 #endif 787 nullfree, RPC_MAPRESP, 788 rfs_remove_getfh}, 789 790 /* RFS_RENAME = 11 */ 791 {rfs_rename, 792 xdr_rnmargs, NULL_xdrproc_t, sizeof (struct nfsrnmargs), 793 #ifdef _LITTLE_ENDIAN 794 xdr_enum, xdr_fastenum, sizeof (enum nfsstat), 795 #else 796 xdr_enum, NULL_xdrproc_t, sizeof (enum nfsstat), 797 #endif 798 nullfree, RPC_MAPRESP, 799 rfs_rename_getfh}, 800 801 /* RFS_LINK = 12 */ 802 {rfs_link, 803 xdr_linkargs, NULL_xdrproc_t, sizeof (struct nfslinkargs), 804 #ifdef _LITTLE_ENDIAN 805 xdr_enum, xdr_fastenum, sizeof (enum nfsstat), 806 #else 807 xdr_enum, NULL_xdrproc_t, sizeof (enum nfsstat), 808 #endif 809 nullfree, RPC_MAPRESP, 810 rfs_link_getfh}, 811 812 /* RFS_SYMLINK = 13 */ 813 {rfs_symlink, 814 xdr_slargs, NULL_xdrproc_t, sizeof (struct nfsslargs), 815 #ifdef _LITTLE_ENDIAN 816 xdr_enum, xdr_fastenum, sizeof (enum nfsstat), 817 #else 818 xdr_enum, NULL_xdrproc_t, sizeof (enum nfsstat), 819 #endif 820 nullfree, RPC_MAPRESP, 821 rfs_symlink_getfh}, 822 823 /* RFS_MKDIR = 14 */ 824 {rfs_mkdir, 825 xdr_creatargs, NULL_xdrproc_t, sizeof (struct nfscreatargs), 826 xdr_diropres, xdr_fastdiropres, sizeof (struct nfsdiropres), 827 nullfree, RPC_MAPRESP, 828 rfs_mkdir_getfh}, 829 830 /* RFS_RMDIR = 15 */ 831 {rfs_rmdir, 832 xdr_diropargs, NULL_xdrproc_t, sizeof (struct nfsdiropargs), 833 #ifdef _LITTLE_ENDIAN 834 xdr_enum, xdr_fastenum, sizeof (enum nfsstat), 835 #else 836 xdr_enum, NULL_xdrproc_t, sizeof (enum nfsstat), 837 #endif 838 nullfree, RPC_MAPRESP, 839 rfs_rmdir_getfh}, 840 841 /* RFS_READDIR = 16 */ 842 {rfs_readdir, 843 xdr_rddirargs, NULL_xdrproc_t, sizeof (struct nfsrddirargs), 844 xdr_putrddirres, NULL_xdrproc_t, sizeof (struct nfsrddirres), 845 rfs_rddirfree, RPC_IDEMPOTENT, 846 rfs_readdir_getfh}, 847 848 /* RFS_STATFS = 17 */ 849 {rfs_statfs, 850 xdr_fhandle, xdr_fastfhandle, sizeof (fhandle_t), 851 xdr_statfs, xdr_faststatfs, sizeof (struct nfsstatfs), 852 nullfree, RPC_IDEMPOTENT|RPC_ALLOWANON|RPC_MAPRESP, 853 rfs_statfs_getfh}, 854 }; 855 856 static char *rfscallnames_v3[] = { 857 "RFS3_NULL", 858 "RFS3_GETATTR", 859 "RFS3_SETATTR", 860 "RFS3_LOOKUP", 861 "RFS3_ACCESS", 862 "RFS3_READLINK", 863 "RFS3_READ", 864 "RFS3_WRITE", 865 "RFS3_CREATE", 866 "RFS3_MKDIR", 867 "RFS3_SYMLINK", 868 "RFS3_MKNOD", 869 "RFS3_REMOVE", 870 "RFS3_RMDIR", 871 "RFS3_RENAME", 872 "RFS3_LINK", 873 "RFS3_READDIR", 874 "RFS3_READDIRPLUS", 875 "RFS3_FSSTAT", 876 "RFS3_FSINFO", 877 "RFS3_PATHCONF", 878 "RFS3_COMMIT" 879 }; 880 881 static struct rpcdisp rfsdisptab_v3[] = { 882 /* 883 * NFS VERSION 3 884 */ 885 886 /* RFS_NULL = 0 */ 887 {rpc_null_v3, 888 xdr_void, NULL_xdrproc_t, 0, 889 xdr_void, NULL_xdrproc_t, 0, 890 nullfree, RPC_IDEMPOTENT, 891 0}, 892 893 /* RFS3_GETATTR = 1 */ 894 {rfs3_getattr, 895 xdr_nfs_fh3_server, NULL_xdrproc_t, sizeof (GETATTR3args), 896 xdr_GETATTR3res, NULL_xdrproc_t, sizeof (GETATTR3res), 897 nullfree, (RPC_IDEMPOTENT | RPC_ALLOWANON), 898 rfs3_getattr_getfh}, 899 900 /* RFS3_SETATTR = 2 */ 901 {rfs3_setattr, 902 xdr_SETATTR3args, NULL_xdrproc_t, sizeof (SETATTR3args), 903 xdr_SETATTR3res, NULL_xdrproc_t, sizeof (SETATTR3res), 904 nullfree, 0, 905 rfs3_setattr_getfh}, 906 907 /* RFS3_LOOKUP = 3 */ 908 {rfs3_lookup, 909 xdr_diropargs3, NULL_xdrproc_t, sizeof (LOOKUP3args), 910 xdr_LOOKUP3res, NULL_xdrproc_t, sizeof (LOOKUP3res), 911 nullfree, (RPC_IDEMPOTENT | RPC_PUBLICFH_OK), 912 rfs3_lookup_getfh}, 913 914 /* RFS3_ACCESS = 4 */ 915 {rfs3_access, 916 xdr_ACCESS3args, NULL_xdrproc_t, sizeof (ACCESS3args), 917 xdr_ACCESS3res, NULL_xdrproc_t, sizeof (ACCESS3res), 918 nullfree, RPC_IDEMPOTENT, 919 rfs3_access_getfh}, 920 921 /* RFS3_READLINK = 5 */ 922 {rfs3_readlink, 923 xdr_nfs_fh3_server, NULL_xdrproc_t, sizeof (READLINK3args), 924 xdr_READLINK3res, NULL_xdrproc_t, sizeof (READLINK3res), 925 rfs3_readlink_free, RPC_IDEMPOTENT, 926 rfs3_readlink_getfh}, 927 928 /* RFS3_READ = 6 */ 929 {rfs3_read, 930 xdr_READ3args, NULL_xdrproc_t, sizeof (READ3args), 931 xdr_READ3res, NULL_xdrproc_t, sizeof (READ3res), 932 rfs3_read_free, RPC_IDEMPOTENT, 933 rfs3_read_getfh}, 934 935 /* RFS3_WRITE = 7 */ 936 {rfs3_write, 937 xdr_WRITE3args, NULL_xdrproc_t, sizeof (WRITE3args), 938 xdr_WRITE3res, NULL_xdrproc_t, sizeof (WRITE3res), 939 nullfree, 0, 940 rfs3_write_getfh}, 941 942 /* RFS3_CREATE = 8 */ 943 {rfs3_create, 944 xdr_CREATE3args, NULL_xdrproc_t, sizeof (CREATE3args), 945 xdr_CREATE3res, NULL_xdrproc_t, sizeof (CREATE3res), 946 nullfree, 0, 947 rfs3_create_getfh}, 948 949 /* RFS3_MKDIR = 9 */ 950 {rfs3_mkdir, 951 xdr_MKDIR3args, NULL_xdrproc_t, sizeof (MKDIR3args), 952 xdr_MKDIR3res, NULL_xdrproc_t, sizeof (MKDIR3res), 953 nullfree, 0, 954 rfs3_mkdir_getfh}, 955 956 /* RFS3_SYMLINK = 10 */ 957 {rfs3_symlink, 958 xdr_SYMLINK3args, NULL_xdrproc_t, sizeof (SYMLINK3args), 959 xdr_SYMLINK3res, NULL_xdrproc_t, sizeof (SYMLINK3res), 960 nullfree, 0, 961 rfs3_symlink_getfh}, 962 963 /* RFS3_MKNOD = 11 */ 964 {rfs3_mknod, 965 xdr_MKNOD3args, NULL_xdrproc_t, sizeof (MKNOD3args), 966 xdr_MKNOD3res, NULL_xdrproc_t, sizeof (MKNOD3res), 967 nullfree, 0, 968 rfs3_mknod_getfh}, 969 970 /* RFS3_REMOVE = 12 */ 971 {rfs3_remove, 972 xdr_diropargs3, NULL_xdrproc_t, sizeof (REMOVE3args), 973 xdr_REMOVE3res, NULL_xdrproc_t, sizeof (REMOVE3res), 974 nullfree, 0, 975 rfs3_remove_getfh}, 976 977 /* RFS3_RMDIR = 13 */ 978 {rfs3_rmdir, 979 xdr_diropargs3, NULL_xdrproc_t, sizeof (RMDIR3args), 980 xdr_RMDIR3res, NULL_xdrproc_t, sizeof (RMDIR3res), 981 nullfree, 0, 982 rfs3_rmdir_getfh}, 983 984 /* RFS3_RENAME = 14 */ 985 {rfs3_rename, 986 xdr_RENAME3args, NULL_xdrproc_t, sizeof (RENAME3args), 987 xdr_RENAME3res, NULL_xdrproc_t, sizeof (RENAME3res), 988 nullfree, 0, 989 rfs3_rename_getfh}, 990 991 /* RFS3_LINK = 15 */ 992 {rfs3_link, 993 xdr_LINK3args, NULL_xdrproc_t, sizeof (LINK3args), 994 xdr_LINK3res, NULL_xdrproc_t, sizeof (LINK3res), 995 nullfree, 0, 996 rfs3_link_getfh}, 997 998 /* RFS3_READDIR = 16 */ 999 {rfs3_readdir, 1000 xdr_READDIR3args, NULL_xdrproc_t, sizeof (READDIR3args), 1001 xdr_READDIR3res, NULL_xdrproc_t, sizeof (READDIR3res), 1002 rfs3_readdir_free, RPC_IDEMPOTENT, 1003 rfs3_readdir_getfh}, 1004 1005 /* RFS3_READDIRPLUS = 17 */ 1006 {rfs3_readdirplus, 1007 xdr_READDIRPLUS3args, NULL_xdrproc_t, sizeof (READDIRPLUS3args), 1008 xdr_READDIRPLUS3res, NULL_xdrproc_t, sizeof (READDIRPLUS3res), 1009 rfs3_readdirplus_free, RPC_AVOIDWORK, 1010 rfs3_readdirplus_getfh}, 1011 1012 /* RFS3_FSSTAT = 18 */ 1013 {rfs3_fsstat, 1014 xdr_nfs_fh3_server, NULL_xdrproc_t, sizeof (FSSTAT3args), 1015 xdr_FSSTAT3res, NULL_xdrproc_t, sizeof (FSSTAT3res), 1016 nullfree, RPC_IDEMPOTENT, 1017 rfs3_fsstat_getfh}, 1018 1019 /* RFS3_FSINFO = 19 */ 1020 {rfs3_fsinfo, 1021 xdr_nfs_fh3_server, NULL_xdrproc_t, sizeof (FSINFO3args), 1022 xdr_FSINFO3res, NULL_xdrproc_t, sizeof (FSINFO3res), 1023 nullfree, RPC_IDEMPOTENT|RPC_ALLOWANON, 1024 rfs3_fsinfo_getfh}, 1025 1026 /* RFS3_PATHCONF = 20 */ 1027 {rfs3_pathconf, 1028 xdr_nfs_fh3_server, NULL_xdrproc_t, sizeof (PATHCONF3args), 1029 xdr_PATHCONF3res, NULL_xdrproc_t, sizeof (PATHCONF3res), 1030 nullfree, RPC_IDEMPOTENT, 1031 rfs3_pathconf_getfh}, 1032 1033 /* RFS3_COMMIT = 21 */ 1034 {rfs3_commit, 1035 xdr_COMMIT3args, NULL_xdrproc_t, sizeof (COMMIT3args), 1036 xdr_COMMIT3res, NULL_xdrproc_t, sizeof (COMMIT3res), 1037 nullfree, RPC_IDEMPOTENT, 1038 rfs3_commit_getfh}, 1039 }; 1040 1041 static char *rfscallnames_v4[] = { 1042 "RFS4_NULL", 1043 "RFS4_COMPOUND", 1044 "RFS4_NULL", 1045 "RFS4_NULL", 1046 "RFS4_NULL", 1047 "RFS4_NULL", 1048 "RFS4_NULL", 1049 "RFS4_NULL", 1050 "RFS4_CREATE" 1051 }; 1052 1053 static struct rpcdisp rfsdisptab_v4[] = { 1054 /* 1055 * NFS VERSION 4 1056 */ 1057 1058 /* RFS_NULL = 0 */ 1059 {rpc_null, 1060 xdr_void, NULL_xdrproc_t, 0, 1061 xdr_void, NULL_xdrproc_t, 0, 1062 nullfree, RPC_IDEMPOTENT, 0}, 1063 1064 /* RFS4_compound = 1 */ 1065 {rfs4_compound, 1066 xdr_COMPOUND4args_srv, NULL_xdrproc_t, sizeof (COMPOUND4args), 1067 xdr_COMPOUND4res_srv, NULL_xdrproc_t, sizeof (COMPOUND4res), 1068 rfs4_compound_free, 0, 0}, 1069 }; 1070 1071 union rfs_args { 1072 /* 1073 * NFS VERSION 2 1074 */ 1075 1076 /* RFS_NULL = 0 */ 1077 1078 /* RFS_GETATTR = 1 */ 1079 fhandle_t nfs2_getattr_args; 1080 1081 /* RFS_SETATTR = 2 */ 1082 struct nfssaargs nfs2_setattr_args; 1083 1084 /* RFS_ROOT = 3 *** NO LONGER SUPPORTED *** */ 1085 1086 /* RFS_LOOKUP = 4 */ 1087 struct nfsdiropargs nfs2_lookup_args; 1088 1089 /* RFS_READLINK = 5 */ 1090 fhandle_t nfs2_readlink_args; 1091 1092 /* RFS_READ = 6 */ 1093 struct nfsreadargs nfs2_read_args; 1094 1095 /* RFS_WRITECACHE = 7 *** NO LONGER SUPPORTED *** */ 1096 1097 /* RFS_WRITE = 8 */ 1098 struct nfswriteargs nfs2_write_args; 1099 1100 /* RFS_CREATE = 9 */ 1101 struct nfscreatargs nfs2_create_args; 1102 1103 /* RFS_REMOVE = 10 */ 1104 struct nfsdiropargs nfs2_remove_args; 1105 1106 /* RFS_RENAME = 11 */ 1107 struct nfsrnmargs nfs2_rename_args; 1108 1109 /* RFS_LINK = 12 */ 1110 struct nfslinkargs nfs2_link_args; 1111 1112 /* RFS_SYMLINK = 13 */ 1113 struct nfsslargs nfs2_symlink_args; 1114 1115 /* RFS_MKDIR = 14 */ 1116 struct nfscreatargs nfs2_mkdir_args; 1117 1118 /* RFS_RMDIR = 15 */ 1119 struct nfsdiropargs nfs2_rmdir_args; 1120 1121 /* RFS_READDIR = 16 */ 1122 struct nfsrddirargs nfs2_readdir_args; 1123 1124 /* RFS_STATFS = 17 */ 1125 fhandle_t nfs2_statfs_args; 1126 1127 /* 1128 * NFS VERSION 3 1129 */ 1130 1131 /* RFS_NULL = 0 */ 1132 1133 /* RFS3_GETATTR = 1 */ 1134 GETATTR3args nfs3_getattr_args; 1135 1136 /* RFS3_SETATTR = 2 */ 1137 SETATTR3args nfs3_setattr_args; 1138 1139 /* RFS3_LOOKUP = 3 */ 1140 LOOKUP3args nfs3_lookup_args; 1141 1142 /* RFS3_ACCESS = 4 */ 1143 ACCESS3args nfs3_access_args; 1144 1145 /* RFS3_READLINK = 5 */ 1146 READLINK3args nfs3_readlink_args; 1147 1148 /* RFS3_READ = 6 */ 1149 READ3args nfs3_read_args; 1150 1151 /* RFS3_WRITE = 7 */ 1152 WRITE3args nfs3_write_args; 1153 1154 /* RFS3_CREATE = 8 */ 1155 CREATE3args nfs3_create_args; 1156 1157 /* RFS3_MKDIR = 9 */ 1158 MKDIR3args nfs3_mkdir_args; 1159 1160 /* RFS3_SYMLINK = 10 */ 1161 SYMLINK3args nfs3_symlink_args; 1162 1163 /* RFS3_MKNOD = 11 */ 1164 MKNOD3args nfs3_mknod_args; 1165 1166 /* RFS3_REMOVE = 12 */ 1167 REMOVE3args nfs3_remove_args; 1168 1169 /* RFS3_RMDIR = 13 */ 1170 RMDIR3args nfs3_rmdir_args; 1171 1172 /* RFS3_RENAME = 14 */ 1173 RENAME3args nfs3_rename_args; 1174 1175 /* RFS3_LINK = 15 */ 1176 LINK3args nfs3_link_args; 1177 1178 /* RFS3_READDIR = 16 */ 1179 READDIR3args nfs3_readdir_args; 1180 1181 /* RFS3_READDIRPLUS = 17 */ 1182 READDIRPLUS3args nfs3_readdirplus_args; 1183 1184 /* RFS3_FSSTAT = 18 */ 1185 FSSTAT3args nfs3_fsstat_args; 1186 1187 /* RFS3_FSINFO = 19 */ 1188 FSINFO3args nfs3_fsinfo_args; 1189 1190 /* RFS3_PATHCONF = 20 */ 1191 PATHCONF3args nfs3_pathconf_args; 1192 1193 /* RFS3_COMMIT = 21 */ 1194 COMMIT3args nfs3_commit_args; 1195 1196 /* 1197 * NFS VERSION 4 1198 */ 1199 1200 /* RFS_NULL = 0 */ 1201 1202 /* COMPUND = 1 */ 1203 COMPOUND4args nfs4_compound_args; 1204 }; 1205 1206 union rfs_res { 1207 /* 1208 * NFS VERSION 2 1209 */ 1210 1211 /* RFS_NULL = 0 */ 1212 1213 /* RFS_GETATTR = 1 */ 1214 struct nfsattrstat nfs2_getattr_res; 1215 1216 /* RFS_SETATTR = 2 */ 1217 struct nfsattrstat nfs2_setattr_res; 1218 1219 /* RFS_ROOT = 3 *** NO LONGER SUPPORTED *** */ 1220 1221 /* RFS_LOOKUP = 4 */ 1222 struct nfsdiropres nfs2_lookup_res; 1223 1224 /* RFS_READLINK = 5 */ 1225 struct nfsrdlnres nfs2_readlink_res; 1226 1227 /* RFS_READ = 6 */ 1228 struct nfsrdresult nfs2_read_res; 1229 1230 /* RFS_WRITECACHE = 7 *** NO LONGER SUPPORTED *** */ 1231 1232 /* RFS_WRITE = 8 */ 1233 struct nfsattrstat nfs2_write_res; 1234 1235 /* RFS_CREATE = 9 */ 1236 struct nfsdiropres nfs2_create_res; 1237 1238 /* RFS_REMOVE = 10 */ 1239 enum nfsstat nfs2_remove_res; 1240 1241 /* RFS_RENAME = 11 */ 1242 enum nfsstat nfs2_rename_res; 1243 1244 /* RFS_LINK = 12 */ 1245 enum nfsstat nfs2_link_res; 1246 1247 /* RFS_SYMLINK = 13 */ 1248 enum nfsstat nfs2_symlink_res; 1249 1250 /* RFS_MKDIR = 14 */ 1251 struct nfsdiropres nfs2_mkdir_res; 1252 1253 /* RFS_RMDIR = 15 */ 1254 enum nfsstat nfs2_rmdir_res; 1255 1256 /* RFS_READDIR = 16 */ 1257 struct nfsrddirres nfs2_readdir_res; 1258 1259 /* RFS_STATFS = 17 */ 1260 struct nfsstatfs nfs2_statfs_res; 1261 1262 /* 1263 * NFS VERSION 3 1264 */ 1265 1266 /* RFS_NULL = 0 */ 1267 1268 /* RFS3_GETATTR = 1 */ 1269 GETATTR3res nfs3_getattr_res; 1270 1271 /* RFS3_SETATTR = 2 */ 1272 SETATTR3res nfs3_setattr_res; 1273 1274 /* RFS3_LOOKUP = 3 */ 1275 LOOKUP3res nfs3_lookup_res; 1276 1277 /* RFS3_ACCESS = 4 */ 1278 ACCESS3res nfs3_access_res; 1279 1280 /* RFS3_READLINK = 5 */ 1281 READLINK3res nfs3_readlink_res; 1282 1283 /* RFS3_READ = 6 */ 1284 READ3res nfs3_read_res; 1285 1286 /* RFS3_WRITE = 7 */ 1287 WRITE3res nfs3_write_res; 1288 1289 /* RFS3_CREATE = 8 */ 1290 CREATE3res nfs3_create_res; 1291 1292 /* RFS3_MKDIR = 9 */ 1293 MKDIR3res nfs3_mkdir_res; 1294 1295 /* RFS3_SYMLINK = 10 */ 1296 SYMLINK3res nfs3_symlink_res; 1297 1298 /* RFS3_MKNOD = 11 */ 1299 MKNOD3res nfs3_mknod_res; 1300 1301 /* RFS3_REMOVE = 12 */ 1302 REMOVE3res nfs3_remove_res; 1303 1304 /* RFS3_RMDIR = 13 */ 1305 RMDIR3res nfs3_rmdir_res; 1306 1307 /* RFS3_RENAME = 14 */ 1308 RENAME3res nfs3_rename_res; 1309 1310 /* RFS3_LINK = 15 */ 1311 LINK3res nfs3_link_res; 1312 1313 /* RFS3_READDIR = 16 */ 1314 READDIR3res nfs3_readdir_res; 1315 1316 /* RFS3_READDIRPLUS = 17 */ 1317 READDIRPLUS3res nfs3_readdirplus_res; 1318 1319 /* RFS3_FSSTAT = 18 */ 1320 FSSTAT3res nfs3_fsstat_res; 1321 1322 /* RFS3_FSINFO = 19 */ 1323 FSINFO3res nfs3_fsinfo_res; 1324 1325 /* RFS3_PATHCONF = 20 */ 1326 PATHCONF3res nfs3_pathconf_res; 1327 1328 /* RFS3_COMMIT = 21 */ 1329 COMMIT3res nfs3_commit_res; 1330 1331 /* 1332 * NFS VERSION 4 1333 */ 1334 1335 /* RFS_NULL = 0 */ 1336 1337 /* RFS4_COMPOUND = 1 */ 1338 COMPOUND4res nfs4_compound_res; 1339 1340 }; 1341 1342 static struct rpc_disptable rfs_disptable[] = { 1343 {sizeof (rfsdisptab_v2) / sizeof (rfsdisptab_v2[0]), 1344 rfscallnames_v2, 1345 &rfsproccnt_v2_ptr, rfsdisptab_v2}, 1346 {sizeof (rfsdisptab_v3) / sizeof (rfsdisptab_v3[0]), 1347 rfscallnames_v3, 1348 &rfsproccnt_v3_ptr, rfsdisptab_v3}, 1349 {sizeof (rfsdisptab_v4) / sizeof (rfsdisptab_v4[0]), 1350 rfscallnames_v4, 1351 &rfsproccnt_v4_ptr, rfsdisptab_v4}, 1352 }; 1353 1354 /* 1355 * If nfs_portmon is set, then clients are required to use privileged 1356 * ports (ports < IPPORT_RESERVED) in order to get NFS services. 1357 * 1358 * N.B.: this attempt to carry forward the already ill-conceived notion 1359 * of privileged ports for TCP/UDP is really quite ineffectual. Not only 1360 * is it transport-dependent, it's laughably easy to spoof. If you're 1361 * really interested in security, you must start with secure RPC instead. 1362 */ 1363 static int nfs_portmon = 0; 1364 1365 #ifdef DEBUG 1366 static int cred_hits = 0; 1367 static int cred_misses = 0; 1368 #endif 1369 1370 1371 #ifdef DEBUG 1372 /* 1373 * Debug code to allow disabling of rfs_dispatch() use of 1374 * fastxdrargs() and fastxdrres() calls for testing purposes. 1375 */ 1376 static int rfs_no_fast_xdrargs = 0; 1377 static int rfs_no_fast_xdrres = 0; 1378 #endif 1379 1380 union acl_args { 1381 /* 1382 * ACL VERSION 2 1383 */ 1384 1385 /* ACL2_NULL = 0 */ 1386 1387 /* ACL2_GETACL = 1 */ 1388 GETACL2args acl2_getacl_args; 1389 1390 /* ACL2_SETACL = 2 */ 1391 SETACL2args acl2_setacl_args; 1392 1393 /* ACL2_GETATTR = 3 */ 1394 GETATTR2args acl2_getattr_args; 1395 1396 /* ACL2_ACCESS = 4 */ 1397 ACCESS2args acl2_access_args; 1398 1399 /* ACL2_GETXATTRDIR = 5 */ 1400 GETXATTRDIR2args acl2_getxattrdir_args; 1401 1402 /* 1403 * ACL VERSION 3 1404 */ 1405 1406 /* ACL3_NULL = 0 */ 1407 1408 /* ACL3_GETACL = 1 */ 1409 GETACL3args acl3_getacl_args; 1410 1411 /* ACL3_SETACL = 2 */ 1412 SETACL3args acl3_setacl; 1413 1414 /* ACL3_GETXATTRDIR = 3 */ 1415 GETXATTRDIR3args acl3_getxattrdir_args; 1416 1417 }; 1418 1419 union acl_res { 1420 /* 1421 * ACL VERSION 2 1422 */ 1423 1424 /* ACL2_NULL = 0 */ 1425 1426 /* ACL2_GETACL = 1 */ 1427 GETACL2res acl2_getacl_res; 1428 1429 /* ACL2_SETACL = 2 */ 1430 SETACL2res acl2_setacl_res; 1431 1432 /* ACL2_GETATTR = 3 */ 1433 GETATTR2res acl2_getattr_res; 1434 1435 /* ACL2_ACCESS = 4 */ 1436 ACCESS2res acl2_access_res; 1437 1438 /* ACL2_GETXATTRDIR = 5 */ 1439 GETXATTRDIR2args acl2_getxattrdir_res; 1440 1441 /* 1442 * ACL VERSION 3 1443 */ 1444 1445 /* ACL3_NULL = 0 */ 1446 1447 /* ACL3_GETACL = 1 */ 1448 GETACL3res acl3_getacl_res; 1449 1450 /* ACL3_SETACL = 2 */ 1451 SETACL3res acl3_setacl_res; 1452 1453 /* ACL3_GETXATTRDIR = 3 */ 1454 GETXATTRDIR3res acl3_getxattrdir_res; 1455 1456 }; 1457 1458 static bool_t 1459 auth_tooweak(struct svc_req *req, char *res) 1460 { 1461 1462 if (req->rq_vers == NFS_VERSION && req->rq_proc == RFS_LOOKUP) { 1463 struct nfsdiropres *dr = (struct nfsdiropres *)res; 1464 if ((enum wnfsstat)dr->dr_status == WNFSERR_CLNT_FLAVOR) 1465 return (TRUE); 1466 } else if (req->rq_vers == NFS_V3 && req->rq_proc == NFSPROC3_LOOKUP) { 1467 LOOKUP3res *resp = (LOOKUP3res *)res; 1468 if ((enum wnfsstat)resp->status == WNFSERR_CLNT_FLAVOR) 1469 return (TRUE); 1470 } 1471 return (FALSE); 1472 } 1473 1474 1475 static void 1476 common_dispatch(struct svc_req *req, SVCXPRT *xprt, rpcvers_t min_vers, 1477 rpcvers_t max_vers, char *pgmname, 1478 struct rpc_disptable *disptable) 1479 { 1480 int which; 1481 rpcvers_t vers; 1482 char *args; 1483 union { 1484 union rfs_args ra; 1485 union acl_args aa; 1486 } args_buf; 1487 char *res; 1488 union { 1489 union rfs_res rr; 1490 union acl_res ar; 1491 } res_buf; 1492 struct rpcdisp *disp = NULL; 1493 int dis_flags = 0; 1494 cred_t *cr; 1495 int error = 0; 1496 int anon_ok; 1497 struct exportinfo *exi = NULL; 1498 unsigned int nfslog_rec_id; 1499 int dupstat; 1500 struct dupreq *dr; 1501 int authres; 1502 bool_t publicfh_ok = FALSE; 1503 enum_t auth_flavor; 1504 bool_t dupcached = FALSE; 1505 struct netbuf nb; 1506 bool_t logging_enabled = FALSE; 1507 struct exportinfo *nfslog_exi = NULL; 1508 char **procnames; 1509 char cbuf[INET6_ADDRSTRLEN]; /* to hold both IPv4 and IPv6 addr */ 1510 bool_t ro = FALSE; 1511 1512 vers = req->rq_vers; 1513 1514 if (vers < min_vers || vers > max_vers) { 1515 svcerr_progvers(req->rq_xprt, min_vers, max_vers); 1516 error++; 1517 cmn_err(CE_NOTE, "%s: bad version number %u", pgmname, vers); 1518 goto done; 1519 } 1520 vers -= min_vers; 1521 1522 which = req->rq_proc; 1523 if (which < 0 || which >= disptable[(int)vers].dis_nprocs) { 1524 svcerr_noproc(req->rq_xprt); 1525 error++; 1526 goto done; 1527 } 1528 1529 (*(disptable[(int)vers].dis_proccntp))[which].value.ui64++; 1530 1531 disp = &disptable[(int)vers].dis_table[which]; 1532 procnames = disptable[(int)vers].dis_procnames; 1533 1534 auth_flavor = req->rq_cred.oa_flavor; 1535 1536 /* 1537 * Deserialize into the args struct. 1538 */ 1539 args = (char *)&args_buf; 1540 1541 #ifdef DEBUG 1542 if (rfs_no_fast_xdrargs || (auth_flavor == RPCSEC_GSS) || 1543 disp->dis_fastxdrargs == NULL_xdrproc_t || 1544 !SVC_GETARGS(xprt, disp->dis_fastxdrargs, (char *)&args)) 1545 #else 1546 if ((auth_flavor == RPCSEC_GSS) || 1547 disp->dis_fastxdrargs == NULL_xdrproc_t || 1548 !SVC_GETARGS(xprt, disp->dis_fastxdrargs, (char *)&args)) 1549 #endif 1550 { 1551 bzero(args, disp->dis_argsz); 1552 if (!SVC_GETARGS(xprt, disp->dis_xdrargs, args)) { 1553 error++; 1554 /* 1555 * Check if we are outside our capabilities. 1556 */ 1557 if (rfs4_minorvers_mismatch(req, xprt, (void *)args)) 1558 goto done; 1559 1560 svcerr_decode(xprt); 1561 cmn_err(CE_NOTE, 1562 "Failed to decode arguments for %s version %u " 1563 "procedure %s client %s%s", 1564 pgmname, vers + min_vers, procnames[which], 1565 client_name(req), client_addr(req, cbuf)); 1566 goto done; 1567 } 1568 } 1569 1570 /* 1571 * If Version 4 use that specific dispatch function. 1572 */ 1573 if (req->rq_vers == 4) { 1574 error += rfs4_dispatch(disp, req, xprt, args); 1575 goto done; 1576 } 1577 1578 dis_flags = disp->dis_flags; 1579 1580 /* 1581 * Find export information and check authentication, 1582 * setting the credential if everything is ok. 1583 */ 1584 if (disp->dis_getfh != NULL) { 1585 void *fh; 1586 fsid_t *fsid; 1587 fid_t *fid, *xfid; 1588 fhandle_t *fh2; 1589 nfs_fh3 *fh3; 1590 1591 fh = (*disp->dis_getfh)(args); 1592 switch (req->rq_vers) { 1593 case NFS_VERSION: 1594 fh2 = (fhandle_t *)fh; 1595 fsid = &fh2->fh_fsid; 1596 fid = (fid_t *)&fh2->fh_len; 1597 xfid = (fid_t *)&fh2->fh_xlen; 1598 break; 1599 case NFS_V3: 1600 fh3 = (nfs_fh3 *)fh; 1601 fsid = &fh3->fh3_fsid; 1602 fid = FH3TOFIDP(fh3); 1603 xfid = FH3TOXFIDP(fh3); 1604 break; 1605 } 1606 1607 /* 1608 * Fix for bug 1038302 - corbin 1609 * There is a problem here if anonymous access is 1610 * disallowed. If the current request is part of the 1611 * client's mount process for the requested filesystem, 1612 * then it will carry root (uid 0) credentials on it, and 1613 * will be denied by checkauth if that client does not 1614 * have explicit root=0 permission. This will cause the 1615 * client's mount operation to fail. As a work-around, 1616 * we check here to see if the request is a getattr or 1617 * statfs operation on the exported vnode itself, and 1618 * pass a flag to checkauth with the result of this test. 1619 * 1620 * The filehandle refers to the mountpoint itself if 1621 * the fh_data and fh_xdata portions of the filehandle 1622 * are equal. 1623 * 1624 * Added anon_ok argument to checkauth(). 1625 */ 1626 1627 if ((dis_flags & RPC_ALLOWANON) && EQFID(fid, xfid)) 1628 anon_ok = 1; 1629 else 1630 anon_ok = 0; 1631 1632 cr = xprt->xp_cred; 1633 ASSERT(cr != NULL); 1634 #ifdef DEBUG 1635 if (crgetref(cr) != 1) { 1636 crfree(cr); 1637 cr = crget(); 1638 xprt->xp_cred = cr; 1639 cred_misses++; 1640 } else 1641 cred_hits++; 1642 #else 1643 if (crgetref(cr) != 1) { 1644 crfree(cr); 1645 cr = crget(); 1646 xprt->xp_cred = cr; 1647 } 1648 #endif 1649 1650 exi = checkexport(fsid, xfid, NULL); 1651 1652 if (exi != NULL) { 1653 publicfh_ok = PUBLICFH_CHECK(disp, exi, fsid, xfid); 1654 1655 /* 1656 * Don't allow non-V4 clients access 1657 * to pseudo exports 1658 */ 1659 if (PSEUDO(exi)) { 1660 svcerr_weakauth(xprt); 1661 error++; 1662 goto done; 1663 } 1664 1665 authres = checkauth(exi, req, cr, anon_ok, publicfh_ok, 1666 &ro); 1667 /* 1668 * authres > 0: authentication OK - proceed 1669 * authres == 0: authentication weak - return error 1670 * authres < 0: authentication timeout - drop 1671 */ 1672 if (authres <= 0) { 1673 if (authres == 0) { 1674 svcerr_weakauth(xprt); 1675 error++; 1676 } 1677 goto done; 1678 } 1679 } 1680 } else 1681 cr = NULL; 1682 1683 if ((dis_flags & RPC_MAPRESP) && (auth_flavor != RPCSEC_GSS)) { 1684 res = (char *)SVC_GETRES(xprt, disp->dis_ressz); 1685 if (res == NULL) 1686 res = (char *)&res_buf; 1687 } else 1688 res = (char *)&res_buf; 1689 1690 if (!(dis_flags & RPC_IDEMPOTENT)) { 1691 dupstat = SVC_DUP_EXT(xprt, req, res, disp->dis_ressz, &dr, 1692 &dupcached); 1693 1694 switch (dupstat) { 1695 case DUP_ERROR: 1696 svcerr_systemerr(xprt); 1697 error++; 1698 goto done; 1699 /* NOTREACHED */ 1700 case DUP_INPROGRESS: 1701 if (res != (char *)&res_buf) 1702 SVC_FREERES(xprt); 1703 error++; 1704 goto done; 1705 /* NOTREACHED */ 1706 case DUP_NEW: 1707 case DUP_DROP: 1708 curthread->t_flag |= T_DONTPEND; 1709 1710 (*disp->dis_proc)(args, res, exi, req, cr, ro); 1711 1712 curthread->t_flag &= ~T_DONTPEND; 1713 if (curthread->t_flag & T_WOULDBLOCK) { 1714 curthread->t_flag &= ~T_WOULDBLOCK; 1715 SVC_DUPDONE_EXT(xprt, dr, res, NULL, 1716 disp->dis_ressz, DUP_DROP); 1717 if (res != (char *)&res_buf) 1718 SVC_FREERES(xprt); 1719 error++; 1720 goto done; 1721 } 1722 if (dis_flags & RPC_AVOIDWORK) { 1723 SVC_DUPDONE_EXT(xprt, dr, res, NULL, 1724 disp->dis_ressz, DUP_DROP); 1725 } else { 1726 SVC_DUPDONE_EXT(xprt, dr, res, 1727 disp->dis_resfree == nullfree ? NULL : 1728 disp->dis_resfree, 1729 disp->dis_ressz, DUP_DONE); 1730 dupcached = TRUE; 1731 } 1732 break; 1733 case DUP_DONE: 1734 break; 1735 } 1736 1737 } else { 1738 curthread->t_flag |= T_DONTPEND; 1739 1740 (*disp->dis_proc)(args, res, exi, req, cr, ro); 1741 1742 curthread->t_flag &= ~T_DONTPEND; 1743 if (curthread->t_flag & T_WOULDBLOCK) { 1744 curthread->t_flag &= ~T_WOULDBLOCK; 1745 if (res != (char *)&res_buf) 1746 SVC_FREERES(xprt); 1747 error++; 1748 goto done; 1749 } 1750 } 1751 1752 if (auth_tooweak(req, res)) { 1753 svcerr_weakauth(xprt); 1754 error++; 1755 goto done; 1756 } 1757 1758 /* 1759 * Check to see if logging has been enabled on the server. 1760 * If so, then obtain the export info struct to be used for 1761 * the later writing of the log record. This is done for 1762 * the case that a lookup is done across a non-logged public 1763 * file system. 1764 */ 1765 if (nfslog_buffer_list != NULL) { 1766 nfslog_exi = nfslog_get_exi(exi, req, res, &nfslog_rec_id); 1767 /* 1768 * Is logging enabled? 1769 */ 1770 logging_enabled = (nfslog_exi != NULL); 1771 1772 /* 1773 * Copy the netbuf for logging purposes, before it is 1774 * freed by svc_sendreply(). 1775 */ 1776 if (logging_enabled) { 1777 NFSLOG_COPY_NETBUF(nfslog_exi, xprt, &nb); 1778 /* 1779 * If RPC_MAPRESP flag set (i.e. in V2 ops) the 1780 * res gets copied directly into the mbuf and 1781 * may be freed soon after the sendreply. So we 1782 * must copy it here to a safe place... 1783 */ 1784 if (res != (char *)&res_buf) { 1785 bcopy(res, (char *)&res_buf, disp->dis_ressz); 1786 } 1787 } 1788 } 1789 1790 /* 1791 * Serialize and send results struct 1792 */ 1793 #ifdef DEBUG 1794 if (rfs_no_fast_xdrres == 0 && res != (char *)&res_buf) 1795 #else 1796 if (res != (char *)&res_buf) 1797 #endif 1798 { 1799 if (!svc_sendreply(xprt, disp->dis_fastxdrres, res)) { 1800 cmn_err(CE_NOTE, "%s: bad sendreply", pgmname); 1801 svcerr_systemerr(xprt); 1802 error++; 1803 } 1804 } else { 1805 if (!svc_sendreply(xprt, disp->dis_xdrres, res)) { 1806 cmn_err(CE_NOTE, "%s: bad sendreply", pgmname); 1807 svcerr_systemerr(xprt); 1808 error++; 1809 } 1810 } 1811 1812 /* 1813 * Log if needed 1814 */ 1815 if (logging_enabled) { 1816 nfslog_write_record(nfslog_exi, req, args, (char *)&res_buf, 1817 cr, &nb, nfslog_rec_id, NFSLOG_ONE_BUFFER); 1818 exi_rele(nfslog_exi); 1819 kmem_free((&nb)->buf, (&nb)->len); 1820 } 1821 1822 /* 1823 * Free results struct. With the addition of NFS V4 we can 1824 * have non-idempotent procedures with functions. 1825 */ 1826 if (disp->dis_resfree != nullfree && dupcached == FALSE) { 1827 (*disp->dis_resfree)(res); 1828 } 1829 1830 done: 1831 /* 1832 * Free arguments struct 1833 */ 1834 if (disp) { 1835 if (!SVC_FREEARGS(xprt, disp->dis_xdrargs, args)) { 1836 cmn_err(CE_NOTE, "%s: bad freeargs", pgmname); 1837 error++; 1838 } 1839 } else { 1840 if (!SVC_FREEARGS(xprt, (xdrproc_t)0, (caddr_t)0)) { 1841 cmn_err(CE_NOTE, "%s: bad freeargs", pgmname); 1842 error++; 1843 } 1844 } 1845 1846 if (exi != NULL) 1847 exi_rele(exi); 1848 1849 global_svstat_ptr[req->rq_vers][NFS_BADCALLS].value.ui64 += error; 1850 1851 global_svstat_ptr[req->rq_vers][NFS_CALLS].value.ui64++; 1852 } 1853 1854 static void 1855 rfs_dispatch(struct svc_req *req, SVCXPRT *xprt) 1856 { 1857 common_dispatch(req, xprt, NFS_VERSMIN, NFS_VERSMAX, 1858 "NFS", rfs_disptable); 1859 } 1860 1861 static char *aclcallnames_v2[] = { 1862 "ACL2_NULL", 1863 "ACL2_GETACL", 1864 "ACL2_SETACL", 1865 "ACL2_GETATTR", 1866 "ACL2_ACCESS", 1867 "ACL2_GETXATTRDIR" 1868 }; 1869 1870 static struct rpcdisp acldisptab_v2[] = { 1871 /* 1872 * ACL VERSION 2 1873 */ 1874 1875 /* ACL2_NULL = 0 */ 1876 {rpc_null, 1877 xdr_void, NULL_xdrproc_t, 0, 1878 xdr_void, NULL_xdrproc_t, 0, 1879 nullfree, RPC_IDEMPOTENT, 1880 0}, 1881 1882 /* ACL2_GETACL = 1 */ 1883 {acl2_getacl, 1884 xdr_GETACL2args, xdr_fastGETACL2args, sizeof (GETACL2args), 1885 xdr_GETACL2res, NULL_xdrproc_t, sizeof (GETACL2res), 1886 acl2_getacl_free, RPC_IDEMPOTENT, 1887 acl2_getacl_getfh}, 1888 1889 /* ACL2_SETACL = 2 */ 1890 {acl2_setacl, 1891 xdr_SETACL2args, NULL_xdrproc_t, sizeof (SETACL2args), 1892 #ifdef _LITTLE_ENDIAN 1893 xdr_SETACL2res, xdr_fastSETACL2res, sizeof (SETACL2res), 1894 #else 1895 xdr_SETACL2res, NULL_xdrproc_t, sizeof (SETACL2res), 1896 #endif 1897 nullfree, RPC_MAPRESP, 1898 acl2_setacl_getfh}, 1899 1900 /* ACL2_GETATTR = 3 */ 1901 {acl2_getattr, 1902 xdr_GETATTR2args, xdr_fastGETATTR2args, sizeof (GETATTR2args), 1903 #ifdef _LITTLE_ENDIAN 1904 xdr_GETATTR2res, xdr_fastGETATTR2res, sizeof (GETATTR2res), 1905 #else 1906 xdr_GETATTR2res, NULL_xdrproc_t, sizeof (GETATTR2res), 1907 #endif 1908 nullfree, RPC_IDEMPOTENT|RPC_ALLOWANON|RPC_MAPRESP, 1909 acl2_getattr_getfh}, 1910 1911 /* ACL2_ACCESS = 4 */ 1912 {acl2_access, 1913 xdr_ACCESS2args, xdr_fastACCESS2args, sizeof (ACCESS2args), 1914 #ifdef _LITTLE_ENDIAN 1915 xdr_ACCESS2res, xdr_fastACCESS2res, sizeof (ACCESS2res), 1916 #else 1917 xdr_ACCESS2res, NULL_xdrproc_t, sizeof (ACCESS2res), 1918 #endif 1919 nullfree, RPC_IDEMPOTENT|RPC_MAPRESP, 1920 acl2_access_getfh}, 1921 1922 /* ACL2_GETXATTRDIR = 5 */ 1923 {acl2_getxattrdir, 1924 xdr_GETXATTRDIR2args, NULL_xdrproc_t, sizeof (GETXATTRDIR2args), 1925 xdr_GETXATTRDIR2res, NULL_xdrproc_t, sizeof (GETXATTRDIR2res), 1926 nullfree, RPC_IDEMPOTENT, 1927 acl2_getxattrdir_getfh}, 1928 }; 1929 1930 static char *aclcallnames_v3[] = { 1931 "ACL3_NULL", 1932 "ACL3_GETACL", 1933 "ACL3_SETACL", 1934 "ACL3_GETXATTRDIR" 1935 }; 1936 1937 static struct rpcdisp acldisptab_v3[] = { 1938 /* 1939 * ACL VERSION 3 1940 */ 1941 1942 /* ACL3_NULL = 0 */ 1943 {rpc_null, 1944 xdr_void, NULL_xdrproc_t, 0, 1945 xdr_void, NULL_xdrproc_t, 0, 1946 nullfree, RPC_IDEMPOTENT, 1947 0}, 1948 1949 /* ACL3_GETACL = 1 */ 1950 {acl3_getacl, 1951 xdr_GETACL3args, NULL_xdrproc_t, sizeof (GETACL3args), 1952 xdr_GETACL3res, NULL_xdrproc_t, sizeof (GETACL3res), 1953 acl3_getacl_free, RPC_IDEMPOTENT, 1954 acl3_getacl_getfh}, 1955 1956 /* ACL3_SETACL = 2 */ 1957 {acl3_setacl, 1958 xdr_SETACL3args, NULL_xdrproc_t, sizeof (SETACL3args), 1959 xdr_SETACL3res, NULL_xdrproc_t, sizeof (SETACL3res), 1960 nullfree, 0, 1961 acl3_setacl_getfh}, 1962 1963 /* ACL3_GETXATTRDIR = 3 */ 1964 {acl3_getxattrdir, 1965 xdr_GETXATTRDIR3args, NULL_xdrproc_t, sizeof (GETXATTRDIR3args), 1966 xdr_GETXATTRDIR3res, NULL_xdrproc_t, sizeof (GETXATTRDIR3res), 1967 nullfree, RPC_IDEMPOTENT, 1968 acl3_getxattrdir_getfh}, 1969 }; 1970 1971 static struct rpc_disptable acl_disptable[] = { 1972 {sizeof (acldisptab_v2) / sizeof (acldisptab_v2[0]), 1973 aclcallnames_v2, 1974 &aclproccnt_v2_ptr, acldisptab_v2}, 1975 {sizeof (acldisptab_v3) / sizeof (acldisptab_v3[0]), 1976 aclcallnames_v3, 1977 &aclproccnt_v3_ptr, acldisptab_v3}, 1978 }; 1979 1980 static void 1981 acl_dispatch(struct svc_req *req, SVCXPRT *xprt) 1982 { 1983 common_dispatch(req, xprt, NFS_ACL_VERSMIN, NFS_ACL_VERSMAX, 1984 "ACL", acl_disptable); 1985 } 1986 1987 int 1988 checkwin(int flavor, int window, struct svc_req *req) 1989 { 1990 struct authdes_cred *adc; 1991 1992 switch (flavor) { 1993 case AUTH_DES: 1994 adc = (struct authdes_cred *)req->rq_clntcred; 1995 CTASSERT(sizeof (struct authdes_cred) <= RQCRED_SIZE); 1996 if (adc->adc_fullname.window > window) 1997 return (0); 1998 break; 1999 2000 default: 2001 break; 2002 } 2003 return (1); 2004 } 2005 2006 2007 /* 2008 * checkauth() will check the access permission against the export 2009 * information. Then map root uid/gid to appropriate uid/gid. 2010 * 2011 * This routine is used by NFS V3 and V2 code. 2012 */ 2013 static int 2014 checkauth(struct exportinfo *exi, struct svc_req *req, cred_t *cr, int anon_ok, 2015 bool_t publicfh_ok, bool_t *ro) 2016 { 2017 int i, nfsflavor, rpcflavor, stat, access; 2018 struct secinfo *secp; 2019 caddr_t principal; 2020 char buf[INET6_ADDRSTRLEN]; /* to hold both IPv4 and IPv6 addr */ 2021 int anon_res = 0; 2022 2023 uid_t uid; 2024 gid_t gid; 2025 uint_t ngids; 2026 gid_t *gids; 2027 2028 /* 2029 * Check for privileged port number 2030 * N.B.: this assumes that we know the format of a netbuf. 2031 */ 2032 if (nfs_portmon) { 2033 struct sockaddr *ca; 2034 ca = (struct sockaddr *)svc_getrpccaller(req->rq_xprt)->buf; 2035 2036 if (ca == NULL) 2037 return (0); 2038 2039 if ((ca->sa_family == AF_INET && 2040 ntohs(((struct sockaddr_in *)ca)->sin_port) >= 2041 IPPORT_RESERVED) || 2042 (ca->sa_family == AF_INET6 && 2043 ntohs(((struct sockaddr_in6 *)ca)->sin6_port) >= 2044 IPPORT_RESERVED)) { 2045 cmn_err(CE_NOTE, 2046 "nfs_server: client %s%ssent NFS request from " 2047 "unprivileged port", 2048 client_name(req), client_addr(req, buf)); 2049 return (0); 2050 } 2051 } 2052 2053 /* 2054 * return 1 on success or 0 on failure 2055 */ 2056 stat = sec_svc_getcred(req, cr, &principal, &nfsflavor); 2057 2058 /* 2059 * A failed AUTH_UNIX sec_svc_getcred() implies we couldn't set 2060 * the credentials; below we map that to anonymous. 2061 */ 2062 if (!stat && nfsflavor != AUTH_UNIX) { 2063 cmn_err(CE_NOTE, 2064 "nfs_server: couldn't get unix cred for %s", 2065 client_name(req)); 2066 return (0); 2067 } 2068 2069 /* 2070 * Short circuit checkauth() on operations that support the 2071 * public filehandle, and if the request for that operation 2072 * is using the public filehandle. Note that we must call 2073 * sec_svc_getcred() first so that xp_cookie is set to the 2074 * right value. Normally xp_cookie is just the RPC flavor 2075 * of the the request, but in the case of RPCSEC_GSS it 2076 * could be a pseudo flavor. 2077 */ 2078 if (publicfh_ok) 2079 return (1); 2080 2081 rpcflavor = req->rq_cred.oa_flavor; 2082 /* 2083 * Check if the auth flavor is valid for this export 2084 */ 2085 access = nfsauth_access(exi, req, cr, &uid, &gid, &ngids, &gids); 2086 if (access & NFSAUTH_DROP) 2087 return (-1); /* drop the request */ 2088 2089 if (access & NFSAUTH_RO) 2090 *ro = TRUE; 2091 2092 if (access & NFSAUTH_DENIED) { 2093 /* 2094 * If anon_ok == 1 and we got NFSAUTH_DENIED, it was 2095 * probably due to the flavor not matching during 2096 * the mount attempt. So map the flavor to AUTH_NONE 2097 * so that the credentials get mapped to the anonymous 2098 * user. 2099 */ 2100 if (anon_ok == 1) 2101 rpcflavor = AUTH_NONE; 2102 else 2103 return (0); /* deny access */ 2104 2105 } else if (access & NFSAUTH_MAPNONE) { 2106 /* 2107 * Access was granted even though the flavor mismatched 2108 * because AUTH_NONE was one of the exported flavors. 2109 */ 2110 rpcflavor = AUTH_NONE; 2111 2112 } else if (access & NFSAUTH_WRONGSEC) { 2113 /* 2114 * NFSAUTH_WRONGSEC is used for NFSv4. If we get here, 2115 * it means a client ignored the list of allowed flavors 2116 * returned via the MOUNT protocol. So we just disallow it! 2117 */ 2118 return (0); 2119 } 2120 2121 if (rpcflavor != AUTH_SYS) 2122 kmem_free(gids, ngids * sizeof (gid_t)); 2123 2124 switch (rpcflavor) { 2125 case AUTH_NONE: 2126 anon_res = crsetugid(cr, exi->exi_export.ex_anon, 2127 exi->exi_export.ex_anon); 2128 (void) crsetgroups(cr, 0, NULL); 2129 break; 2130 2131 case AUTH_UNIX: 2132 if (!stat || crgetuid(cr) == 0 && !(access & NFSAUTH_UIDMAP)) { 2133 anon_res = crsetugid(cr, exi->exi_export.ex_anon, 2134 exi->exi_export.ex_anon); 2135 (void) crsetgroups(cr, 0, NULL); 2136 } else if (crgetuid(cr) == 0 && access & NFSAUTH_ROOT) { 2137 /* 2138 * It is root, so apply rootid to get real UID 2139 * Find the secinfo structure. We should be able 2140 * to find it by the time we reach here. 2141 * nfsauth_access() has done the checking. 2142 */ 2143 secp = NULL; 2144 for (i = 0; i < exi->exi_export.ex_seccnt; i++) { 2145 struct secinfo *sptr; 2146 sptr = &exi->exi_export.ex_secinfo[i]; 2147 if (sptr->s_secinfo.sc_nfsnum == nfsflavor) { 2148 secp = sptr; 2149 break; 2150 } 2151 } 2152 if (secp != NULL) { 2153 (void) crsetugid(cr, secp->s_rootid, 2154 secp->s_rootid); 2155 (void) crsetgroups(cr, 0, NULL); 2156 } 2157 } else if (crgetuid(cr) != uid || crgetgid(cr) != gid) { 2158 if (crsetugid(cr, uid, gid) != 0) 2159 anon_res = crsetugid(cr, 2160 exi->exi_export.ex_anon, 2161 exi->exi_export.ex_anon); 2162 (void) crsetgroups(cr, 0, NULL); 2163 } else if (access & NFSAUTH_GROUPS) { 2164 (void) crsetgroups(cr, ngids, gids); 2165 } 2166 2167 kmem_free(gids, ngids * sizeof (gid_t)); 2168 2169 break; 2170 2171 case AUTH_DES: 2172 case RPCSEC_GSS: 2173 /* 2174 * Find the secinfo structure. We should be able 2175 * to find it by the time we reach here. 2176 * nfsauth_access() has done the checking. 2177 */ 2178 secp = NULL; 2179 for (i = 0; i < exi->exi_export.ex_seccnt; i++) { 2180 if (exi->exi_export.ex_secinfo[i].s_secinfo.sc_nfsnum == 2181 nfsflavor) { 2182 secp = &exi->exi_export.ex_secinfo[i]; 2183 break; 2184 } 2185 } 2186 2187 if (!secp) { 2188 cmn_err(CE_NOTE, "nfs_server: client %s%shad " 2189 "no secinfo data for flavor %d", 2190 client_name(req), client_addr(req, buf), 2191 nfsflavor); 2192 return (0); 2193 } 2194 2195 if (!checkwin(rpcflavor, secp->s_window, req)) { 2196 cmn_err(CE_NOTE, 2197 "nfs_server: client %s%sused invalid " 2198 "auth window value", 2199 client_name(req), client_addr(req, buf)); 2200 return (0); 2201 } 2202 2203 /* 2204 * Map root principals listed in the share's root= list to root, 2205 * and map any others principals that were mapped to root by RPC 2206 * to anon. 2207 */ 2208 if (principal && sec_svc_inrootlist(rpcflavor, principal, 2209 secp->s_rootcnt, secp->s_rootnames)) { 2210 if (crgetuid(cr) == 0 && secp->s_rootid == 0) 2211 return (1); 2212 2213 2214 (void) crsetugid(cr, secp->s_rootid, secp->s_rootid); 2215 2216 /* 2217 * NOTE: If and when kernel-land privilege tracing is 2218 * added this may have to be replaced with code that 2219 * retrieves root's supplementary groups (e.g., using 2220 * kgss_get_group_info(). In the meantime principals 2221 * mapped to uid 0 get all privileges, so setting cr's 2222 * supplementary groups for them does nothing. 2223 */ 2224 (void) crsetgroups(cr, 0, NULL); 2225 2226 return (1); 2227 } 2228 2229 /* 2230 * Not a root princ, or not in root list, map UID 0/nobody to 2231 * the anon ID for the share. (RPC sets cr's UIDs and GIDs to 2232 * UID_NOBODY and GID_NOBODY, respectively.) 2233 */ 2234 if (crgetuid(cr) != 0 && 2235 (crgetuid(cr) != UID_NOBODY || crgetgid(cr) != GID_NOBODY)) 2236 return (1); 2237 2238 anon_res = crsetugid(cr, exi->exi_export.ex_anon, 2239 exi->exi_export.ex_anon); 2240 (void) crsetgroups(cr, 0, NULL); 2241 break; 2242 default: 2243 return (0); 2244 } /* switch on rpcflavor */ 2245 2246 /* 2247 * Even if anon access is disallowed via ex_anon == -1, we allow 2248 * this access if anon_ok is set. So set creds to the default 2249 * "nobody" id. 2250 */ 2251 if (anon_res != 0) { 2252 if (anon_ok == 0) { 2253 cmn_err(CE_NOTE, 2254 "nfs_server: client %s%ssent wrong " 2255 "authentication for %s", 2256 client_name(req), client_addr(req, buf), 2257 exi->exi_export.ex_path ? 2258 exi->exi_export.ex_path : "?"); 2259 return (0); 2260 } 2261 2262 if (crsetugid(cr, UID_NOBODY, GID_NOBODY) != 0) 2263 return (0); 2264 } 2265 2266 return (1); 2267 } 2268 2269 /* 2270 * returns 0 on failure, -1 on a drop, -2 on wrong security flavor, 2271 * and 1 on success 2272 */ 2273 int 2274 checkauth4(struct compound_state *cs, struct svc_req *req) 2275 { 2276 int i, rpcflavor, access; 2277 struct secinfo *secp; 2278 char buf[MAXHOST + 1]; 2279 int anon_res = 0, nfsflavor; 2280 struct exportinfo *exi; 2281 cred_t *cr; 2282 caddr_t principal; 2283 2284 uid_t uid; 2285 gid_t gid; 2286 uint_t ngids; 2287 gid_t *gids; 2288 2289 exi = cs->exi; 2290 cr = cs->cr; 2291 principal = cs->principal; 2292 nfsflavor = cs->nfsflavor; 2293 2294 ASSERT(cr != NULL); 2295 2296 rpcflavor = req->rq_cred.oa_flavor; 2297 cs->access &= ~CS_ACCESS_LIMITED; 2298 2299 /* 2300 * Check for privileged port number 2301 * N.B.: this assumes that we know the format of a netbuf. 2302 */ 2303 if (nfs_portmon) { 2304 struct sockaddr *ca; 2305 ca = (struct sockaddr *)svc_getrpccaller(req->rq_xprt)->buf; 2306 2307 if (ca == NULL) 2308 return (0); 2309 2310 if ((ca->sa_family == AF_INET && 2311 ntohs(((struct sockaddr_in *)ca)->sin_port) >= 2312 IPPORT_RESERVED) || 2313 (ca->sa_family == AF_INET6 && 2314 ntohs(((struct sockaddr_in6 *)ca)->sin6_port) >= 2315 IPPORT_RESERVED)) { 2316 cmn_err(CE_NOTE, 2317 "nfs_server: client %s%ssent NFSv4 request from " 2318 "unprivileged port", 2319 client_name(req), client_addr(req, buf)); 2320 return (0); 2321 } 2322 } 2323 2324 /* 2325 * Check the access right per auth flavor on the vnode of 2326 * this export for the given request. 2327 */ 2328 access = nfsauth4_access(cs->exi, cs->vp, req, cr, &uid, &gid, &ngids, 2329 &gids); 2330 2331 if (access & NFSAUTH_WRONGSEC) 2332 return (-2); /* no access for this security flavor */ 2333 2334 if (access & NFSAUTH_DROP) 2335 return (-1); /* drop the request */ 2336 2337 if (access & NFSAUTH_DENIED) { 2338 2339 if (exi->exi_export.ex_seccnt > 0) 2340 return (0); /* deny access */ 2341 2342 } else if (access & NFSAUTH_LIMITED) { 2343 2344 cs->access |= CS_ACCESS_LIMITED; 2345 2346 } else if (access & NFSAUTH_MAPNONE) { 2347 /* 2348 * Access was granted even though the flavor mismatched 2349 * because AUTH_NONE was one of the exported flavors. 2350 */ 2351 rpcflavor = AUTH_NONE; 2352 } 2353 2354 /* 2355 * XXX probably need to redo some of it for nfsv4? 2356 * return 1 on success or 0 on failure 2357 */ 2358 2359 if (rpcflavor != AUTH_SYS) 2360 kmem_free(gids, ngids * sizeof (gid_t)); 2361 2362 switch (rpcflavor) { 2363 case AUTH_NONE: 2364 anon_res = crsetugid(cr, exi->exi_export.ex_anon, 2365 exi->exi_export.ex_anon); 2366 (void) crsetgroups(cr, 0, NULL); 2367 break; 2368 2369 case AUTH_UNIX: 2370 if (crgetuid(cr) == 0 && !(access & NFSAUTH_UIDMAP)) { 2371 anon_res = crsetugid(cr, exi->exi_export.ex_anon, 2372 exi->exi_export.ex_anon); 2373 (void) crsetgroups(cr, 0, NULL); 2374 } else if (crgetuid(cr) == 0 && access & NFSAUTH_ROOT) { 2375 /* 2376 * It is root, so apply rootid to get real UID 2377 * Find the secinfo structure. We should be able 2378 * to find it by the time we reach here. 2379 * nfsauth_access() has done the checking. 2380 */ 2381 secp = NULL; 2382 for (i = 0; i < exi->exi_export.ex_seccnt; i++) { 2383 struct secinfo *sptr; 2384 sptr = &exi->exi_export.ex_secinfo[i]; 2385 if (sptr->s_secinfo.sc_nfsnum == nfsflavor) { 2386 secp = &exi->exi_export.ex_secinfo[i]; 2387 break; 2388 } 2389 } 2390 if (secp != NULL) { 2391 (void) crsetugid(cr, secp->s_rootid, 2392 secp->s_rootid); 2393 (void) crsetgroups(cr, 0, NULL); 2394 } 2395 } else if (crgetuid(cr) != uid || crgetgid(cr) != gid) { 2396 if (crsetugid(cr, uid, gid) != 0) 2397 anon_res = crsetugid(cr, 2398 exi->exi_export.ex_anon, 2399 exi->exi_export.ex_anon); 2400 (void) crsetgroups(cr, 0, NULL); 2401 } if (access & NFSAUTH_GROUPS) { 2402 (void) crsetgroups(cr, ngids, gids); 2403 } 2404 2405 kmem_free(gids, ngids * sizeof (gid_t)); 2406 2407 break; 2408 2409 default: 2410 /* 2411 * Find the secinfo structure. We should be able 2412 * to find it by the time we reach here. 2413 * nfsauth_access() has done the checking. 2414 */ 2415 secp = NULL; 2416 for (i = 0; i < exi->exi_export.ex_seccnt; i++) { 2417 if (exi->exi_export.ex_secinfo[i].s_secinfo.sc_nfsnum == 2418 nfsflavor) { 2419 secp = &exi->exi_export.ex_secinfo[i]; 2420 break; 2421 } 2422 } 2423 2424 if (!secp) { 2425 cmn_err(CE_NOTE, "nfs_server: client %s%shad " 2426 "no secinfo data for flavor %d", 2427 client_name(req), client_addr(req, buf), 2428 nfsflavor); 2429 return (0); 2430 } 2431 2432 if (!checkwin(rpcflavor, secp->s_window, req)) { 2433 cmn_err(CE_NOTE, 2434 "nfs_server: client %s%sused invalid " 2435 "auth window value", 2436 client_name(req), client_addr(req, buf)); 2437 return (0); 2438 } 2439 2440 /* 2441 * Map root principals listed in the share's root= list to root, 2442 * and map any others principals that were mapped to root by RPC 2443 * to anon. If not going to anon, set to rootid (root_mapping). 2444 */ 2445 if (principal && sec_svc_inrootlist(rpcflavor, principal, 2446 secp->s_rootcnt, secp->s_rootnames)) { 2447 if (crgetuid(cr) == 0 && secp->s_rootid == 0) 2448 return (1); 2449 2450 (void) crsetugid(cr, secp->s_rootid, secp->s_rootid); 2451 2452 /* 2453 * NOTE: If and when kernel-land privilege tracing is 2454 * added this may have to be replaced with code that 2455 * retrieves root's supplementary groups (e.g., using 2456 * kgss_get_group_info(). In the meantime principals 2457 * mapped to uid 0 get all privileges, so setting cr's 2458 * supplementary groups for them does nothing. 2459 */ 2460 (void) crsetgroups(cr, 0, NULL); 2461 2462 return (1); 2463 } 2464 2465 /* 2466 * Not a root princ, or not in root list, map UID 0/nobody to 2467 * the anon ID for the share. (RPC sets cr's UIDs and GIDs to 2468 * UID_NOBODY and GID_NOBODY, respectively.) 2469 */ 2470 if (crgetuid(cr) != 0 && 2471 (crgetuid(cr) != UID_NOBODY || crgetgid(cr) != GID_NOBODY)) 2472 return (1); 2473 2474 anon_res = crsetugid(cr, exi->exi_export.ex_anon, 2475 exi->exi_export.ex_anon); 2476 (void) crsetgroups(cr, 0, NULL); 2477 break; 2478 } /* switch on rpcflavor */ 2479 2480 /* 2481 * Even if anon access is disallowed via ex_anon == -1, we allow 2482 * this access if anon_ok is set. So set creds to the default 2483 * "nobody" id. 2484 */ 2485 2486 if (anon_res != 0) { 2487 cmn_err(CE_NOTE, 2488 "nfs_server: client %s%ssent wrong " 2489 "authentication for %s", 2490 client_name(req), client_addr(req, buf), 2491 exi->exi_export.ex_path ? 2492 exi->exi_export.ex_path : "?"); 2493 return (0); 2494 } 2495 2496 return (1); 2497 } 2498 2499 2500 static char * 2501 client_name(struct svc_req *req) 2502 { 2503 char *hostname = NULL; 2504 2505 /* 2506 * If it's a Unix cred then use the 2507 * hostname from the credential. 2508 */ 2509 if (req->rq_cred.oa_flavor == AUTH_UNIX) { 2510 hostname = ((struct authunix_parms *) 2511 req->rq_clntcred)->aup_machname; 2512 } 2513 if (hostname == NULL) 2514 hostname = ""; 2515 2516 return (hostname); 2517 } 2518 2519 static char * 2520 client_addr(struct svc_req *req, char *buf) 2521 { 2522 struct sockaddr *ca; 2523 uchar_t *b; 2524 char *frontspace = ""; 2525 2526 /* 2527 * We assume we are called in tandem with client_name and the 2528 * format string looks like "...client %s%sblah blah..." 2529 * 2530 * If it's a Unix cred then client_name returned 2531 * a host name, so we need insert a space between host name 2532 * and IP address. 2533 */ 2534 if (req->rq_cred.oa_flavor == AUTH_UNIX) 2535 frontspace = " "; 2536 2537 /* 2538 * Convert the caller's IP address to a dotted string 2539 */ 2540 ca = (struct sockaddr *)svc_getrpccaller(req->rq_xprt)->buf; 2541 2542 if (ca->sa_family == AF_INET) { 2543 b = (uchar_t *)&((struct sockaddr_in *)ca)->sin_addr; 2544 (void) sprintf(buf, "%s(%d.%d.%d.%d) ", frontspace, 2545 b[0] & 0xFF, b[1] & 0xFF, b[2] & 0xFF, b[3] & 0xFF); 2546 } else if (ca->sa_family == AF_INET6) { 2547 struct sockaddr_in6 *sin6; 2548 sin6 = (struct sockaddr_in6 *)ca; 2549 (void) kinet_ntop6((uchar_t *)&sin6->sin6_addr, 2550 buf, INET6_ADDRSTRLEN); 2551 2552 } else { 2553 2554 /* 2555 * No IP address to print. If there was a host name 2556 * printed, then we print a space. 2557 */ 2558 (void) sprintf(buf, frontspace); 2559 } 2560 2561 return (buf); 2562 } 2563 2564 /* 2565 * NFS Server initialization routine. This routine should only be called 2566 * once. It performs the following tasks: 2567 * - Call sub-initialization routines (localize access to variables) 2568 * - Initialize all locks 2569 * - initialize the version 3 write verifier 2570 */ 2571 int 2572 nfs_srvinit(void) 2573 { 2574 int error; 2575 2576 error = nfs_exportinit(); 2577 if (error != 0) 2578 return (error); 2579 error = rfs4_srvrinit(); 2580 if (error != 0) { 2581 nfs_exportfini(); 2582 return (error); 2583 } 2584 rfs_srvrinit(); 2585 rfs3_srvrinit(); 2586 nfsauth_init(); 2587 2588 /* Init the stuff to control start/stop */ 2589 nfs_server_upordown = NFS_SERVER_STOPPED; 2590 mutex_init(&nfs_server_upordown_lock, NULL, MUTEX_DEFAULT, NULL); 2591 cv_init(&nfs_server_upordown_cv, NULL, CV_DEFAULT, NULL); 2592 mutex_init(&rdma_wait_mutex, NULL, MUTEX_DEFAULT, NULL); 2593 cv_init(&rdma_wait_cv, NULL, CV_DEFAULT, NULL); 2594 2595 return (0); 2596 } 2597 2598 /* 2599 * NFS Server finalization routine. This routine is called to cleanup the 2600 * initialization work previously performed if the NFS server module could 2601 * not be loaded correctly. 2602 */ 2603 void 2604 nfs_srvfini(void) 2605 { 2606 nfsauth_fini(); 2607 rfs3_srvrfini(); 2608 rfs_srvrfini(); 2609 nfs_exportfini(); 2610 2611 mutex_destroy(&nfs_server_upordown_lock); 2612 cv_destroy(&nfs_server_upordown_cv); 2613 mutex_destroy(&rdma_wait_mutex); 2614 cv_destroy(&rdma_wait_cv); 2615 } 2616 2617 /* 2618 * Set up an iovec array of up to cnt pointers. 2619 */ 2620 2621 void 2622 mblk_to_iov(mblk_t *m, int cnt, struct iovec *iovp) 2623 { 2624 while (m != NULL && cnt-- > 0) { 2625 iovp->iov_base = (caddr_t)m->b_rptr; 2626 iovp->iov_len = (m->b_wptr - m->b_rptr); 2627 iovp++; 2628 m = m->b_cont; 2629 } 2630 } 2631 2632 /* 2633 * Common code between NFS Version 2 and NFS Version 3 for the public 2634 * filehandle multicomponent lookups. 2635 */ 2636 2637 /* 2638 * Public filehandle evaluation of a multi-component lookup, following 2639 * symbolic links, if necessary. This may result in a vnode in another 2640 * filesystem, which is OK as long as the other filesystem is exported. 2641 * 2642 * Note that the exi will be set either to NULL or a new reference to the 2643 * exportinfo struct that corresponds to the vnode of the multi-component path. 2644 * It is the callers responsibility to release this reference. 2645 */ 2646 int 2647 rfs_publicfh_mclookup(char *p, vnode_t *dvp, cred_t *cr, vnode_t **vpp, 2648 struct exportinfo **exi, struct sec_ol *sec) 2649 { 2650 int pathflag; 2651 vnode_t *mc_dvp = NULL; 2652 vnode_t *realvp; 2653 int error; 2654 2655 *exi = NULL; 2656 2657 /* 2658 * check if the given path is a url or native path. Since p is 2659 * modified by MCLpath(), it may be empty after returning from 2660 * there, and should be checked. 2661 */ 2662 if ((pathflag = MCLpath(&p)) == -1) 2663 return (EIO); 2664 2665 /* 2666 * If pathflag is SECURITY_QUERY, turn the SEC_QUERY bit 2667 * on in sec->sec_flags. This bit will later serve as an 2668 * indication in makefh_ol() or makefh3_ol() to overload the 2669 * filehandle to contain the sec modes used by the server for 2670 * the path. 2671 */ 2672 if (pathflag == SECURITY_QUERY) { 2673 if ((sec->sec_index = (uint_t)(*p)) > 0) { 2674 sec->sec_flags |= SEC_QUERY; 2675 p++; 2676 if ((pathflag = MCLpath(&p)) == -1) 2677 return (EIO); 2678 } else { 2679 cmn_err(CE_NOTE, 2680 "nfs_server: invalid security index %d, " 2681 "violating WebNFS SNEGO protocol.", sec->sec_index); 2682 return (EIO); 2683 } 2684 } 2685 2686 if (p[0] == '\0') { 2687 error = ENOENT; 2688 goto publicfh_done; 2689 } 2690 2691 error = rfs_pathname(p, &mc_dvp, vpp, dvp, cr, pathflag); 2692 2693 /* 2694 * If name resolves to "/" we get EINVAL since we asked for 2695 * the vnode of the directory that the file is in. Try again 2696 * with NULL directory vnode. 2697 */ 2698 if (error == EINVAL) { 2699 error = rfs_pathname(p, NULL, vpp, dvp, cr, pathflag); 2700 if (!error) { 2701 ASSERT(*vpp != NULL); 2702 if ((*vpp)->v_type == VDIR) { 2703 VN_HOLD(*vpp); 2704 mc_dvp = *vpp; 2705 } else { 2706 /* 2707 * This should not happen, the filesystem is 2708 * in an inconsistent state. Fail the lookup 2709 * at this point. 2710 */ 2711 VN_RELE(*vpp); 2712 error = EINVAL; 2713 } 2714 } 2715 } 2716 2717 if (error) 2718 goto publicfh_done; 2719 2720 if (*vpp == NULL) { 2721 error = ENOENT; 2722 goto publicfh_done; 2723 } 2724 2725 ASSERT(mc_dvp != NULL); 2726 ASSERT(*vpp != NULL); 2727 2728 if ((*vpp)->v_type == VDIR) { 2729 do { 2730 /* 2731 * *vpp may be an AutoFS node, so we perform 2732 * a VOP_ACCESS() to trigger the mount of the intended 2733 * filesystem, so we can perform the lookup in the 2734 * intended filesystem. 2735 */ 2736 (void) VOP_ACCESS(*vpp, 0, 0, cr, NULL); 2737 2738 /* 2739 * If vnode is covered, get the 2740 * the topmost vnode. 2741 */ 2742 if (vn_mountedvfs(*vpp) != NULL) { 2743 error = traverse(vpp); 2744 if (error) { 2745 VN_RELE(*vpp); 2746 goto publicfh_done; 2747 } 2748 } 2749 2750 if (VOP_REALVP(*vpp, &realvp, NULL) == 0 && 2751 realvp != *vpp) { 2752 /* 2753 * If realvp is different from *vpp 2754 * then release our reference on *vpp, so that 2755 * the export access check be performed on the 2756 * real filesystem instead. 2757 */ 2758 VN_HOLD(realvp); 2759 VN_RELE(*vpp); 2760 *vpp = realvp; 2761 } else { 2762 break; 2763 } 2764 /* LINTED */ 2765 } while (TRUE); 2766 2767 /* 2768 * Let nfs_vptexi() figure what the real parent is. 2769 */ 2770 VN_RELE(mc_dvp); 2771 mc_dvp = NULL; 2772 2773 } else { 2774 /* 2775 * If vnode is covered, get the 2776 * the topmost vnode. 2777 */ 2778 if (vn_mountedvfs(mc_dvp) != NULL) { 2779 error = traverse(&mc_dvp); 2780 if (error) { 2781 VN_RELE(*vpp); 2782 goto publicfh_done; 2783 } 2784 } 2785 2786 if (VOP_REALVP(mc_dvp, &realvp, NULL) == 0 && 2787 realvp != mc_dvp) { 2788 /* 2789 * *vpp is a file, obtain realvp of the parent 2790 * directory vnode. 2791 */ 2792 VN_HOLD(realvp); 2793 VN_RELE(mc_dvp); 2794 mc_dvp = realvp; 2795 } 2796 } 2797 2798 /* 2799 * The pathname may take us from the public filesystem to another. 2800 * If that's the case then just set the exportinfo to the new export 2801 * and build filehandle for it. Thanks to per-access checking there's 2802 * no security issues with doing this. If the client is not allowed 2803 * access to this new export then it will get an access error when it 2804 * tries to use the filehandle 2805 */ 2806 if (error = nfs_check_vpexi(mc_dvp, *vpp, kcred, exi)) { 2807 VN_RELE(*vpp); 2808 goto publicfh_done; 2809 } 2810 2811 /* 2812 * Not allowed access to pseudo exports. 2813 */ 2814 if (PSEUDO(*exi)) { 2815 error = ENOENT; 2816 VN_RELE(*vpp); 2817 goto publicfh_done; 2818 } 2819 2820 /* 2821 * Do a lookup for the index file. We know the index option doesn't 2822 * allow paths through handling in the share command, so mc_dvp will 2823 * be the parent for the index file vnode, if its present. Use 2824 * temporary pointers to preserve and reuse the vnode pointers of the 2825 * original directory in case there's no index file. Note that the 2826 * index file is a native path, and should not be interpreted by 2827 * the URL parser in rfs_pathname() 2828 */ 2829 if (((*exi)->exi_export.ex_flags & EX_INDEX) && 2830 ((*vpp)->v_type == VDIR) && (pathflag == URLPATH)) { 2831 vnode_t *tvp, *tmc_dvp; /* temporary vnode pointers */ 2832 2833 tmc_dvp = mc_dvp; 2834 mc_dvp = tvp = *vpp; 2835 2836 error = rfs_pathname((*exi)->exi_export.ex_index, NULL, vpp, 2837 mc_dvp, cr, NATIVEPATH); 2838 2839 if (error == ENOENT) { 2840 *vpp = tvp; 2841 mc_dvp = tmc_dvp; 2842 error = 0; 2843 } else { /* ok or error other than ENOENT */ 2844 if (tmc_dvp) 2845 VN_RELE(tmc_dvp); 2846 if (error) 2847 goto publicfh_done; 2848 2849 /* 2850 * Found a valid vp for index "filename". Sanity check 2851 * for odd case where a directory is provided as index 2852 * option argument and leads us to another filesystem 2853 */ 2854 2855 /* Release the reference on the old exi value */ 2856 ASSERT(*exi != NULL); 2857 exi_rele(*exi); 2858 2859 if (error = nfs_check_vpexi(mc_dvp, *vpp, kcred, exi)) { 2860 VN_RELE(*vpp); 2861 goto publicfh_done; 2862 } 2863 } 2864 } 2865 2866 publicfh_done: 2867 if (mc_dvp) 2868 VN_RELE(mc_dvp); 2869 2870 return (error); 2871 } 2872 2873 /* 2874 * Evaluate a multi-component path 2875 */ 2876 int 2877 rfs_pathname( 2878 char *path, /* pathname to evaluate */ 2879 vnode_t **dirvpp, /* ret for ptr to parent dir vnode */ 2880 vnode_t **compvpp, /* ret for ptr to component vnode */ 2881 vnode_t *startdvp, /* starting vnode */ 2882 cred_t *cr, /* user's credential */ 2883 int pathflag) /* flag to identify path, e.g. URL */ 2884 { 2885 char namebuf[TYPICALMAXPATHLEN]; 2886 struct pathname pn; 2887 int error; 2888 2889 /* 2890 * If pathname starts with '/', then set startdvp to root. 2891 */ 2892 if (*path == '/') { 2893 while (*path == '/') 2894 path++; 2895 2896 startdvp = rootdir; 2897 } 2898 2899 error = pn_get_buf(path, UIO_SYSSPACE, &pn, namebuf, sizeof (namebuf)); 2900 if (error == 0) { 2901 /* 2902 * Call the URL parser for URL paths to modify the original 2903 * string to handle any '%' encoded characters that exist. 2904 * Done here to avoid an extra bcopy in the lookup. 2905 * We need to be careful about pathlen's. We know that 2906 * rfs_pathname() is called with a non-empty path. However, 2907 * it could be emptied due to the path simply being all /'s, 2908 * which is valid to proceed with the lookup, or due to the 2909 * URL parser finding an encoded null character at the 2910 * beginning of path which should not proceed with the lookup. 2911 */ 2912 if (pn.pn_pathlen != 0 && pathflag == URLPATH) { 2913 URLparse(pn.pn_path); 2914 if ((pn.pn_pathlen = strlen(pn.pn_path)) == 0) 2915 return (ENOENT); 2916 } 2917 VN_HOLD(startdvp); 2918 error = lookuppnvp(&pn, NULL, NO_FOLLOW, dirvpp, compvpp, 2919 rootdir, startdvp, cr); 2920 } 2921 if (error == ENAMETOOLONG) { 2922 /* 2923 * This thread used a pathname > TYPICALMAXPATHLEN bytes long. 2924 */ 2925 if (error = pn_get(path, UIO_SYSSPACE, &pn)) 2926 return (error); 2927 if (pn.pn_pathlen != 0 && pathflag == URLPATH) { 2928 URLparse(pn.pn_path); 2929 if ((pn.pn_pathlen = strlen(pn.pn_path)) == 0) { 2930 pn_free(&pn); 2931 return (ENOENT); 2932 } 2933 } 2934 VN_HOLD(startdvp); 2935 error = lookuppnvp(&pn, NULL, NO_FOLLOW, dirvpp, compvpp, 2936 rootdir, startdvp, cr); 2937 pn_free(&pn); 2938 } 2939 2940 return (error); 2941 } 2942 2943 /* 2944 * Adapt the multicomponent lookup path depending on the pathtype 2945 */ 2946 static int 2947 MCLpath(char **path) 2948 { 2949 unsigned char c = (unsigned char)**path; 2950 2951 /* 2952 * If the MCL path is between 0x20 and 0x7E (graphic printable 2953 * character of the US-ASCII coded character set), its a URL path, 2954 * per RFC 1738. 2955 */ 2956 if (c >= 0x20 && c <= 0x7E) 2957 return (URLPATH); 2958 2959 /* 2960 * If the first octet of the MCL path is not an ASCII character 2961 * then it must be interpreted as a tag value that describes the 2962 * format of the remaining octets of the MCL path. 2963 * 2964 * If the first octet of the MCL path is 0x81 it is a query 2965 * for the security info. 2966 */ 2967 switch (c) { 2968 case 0x80: /* native path, i.e. MCL via mount protocol */ 2969 (*path)++; 2970 return (NATIVEPATH); 2971 case 0x81: /* security query */ 2972 (*path)++; 2973 return (SECURITY_QUERY); 2974 default: 2975 return (-1); 2976 } 2977 } 2978 2979 #define fromhex(c) ((c >= '0' && c <= '9') ? (c - '0') : \ 2980 ((c >= 'A' && c <= 'F') ? (c - 'A' + 10) :\ 2981 ((c >= 'a' && c <= 'f') ? (c - 'a' + 10) : 0))) 2982 2983 /* 2984 * The implementation of URLparse guarantees that the final string will 2985 * fit in the original one. Replaces '%' occurrences followed by 2 characters 2986 * with its corresponding hexadecimal character. 2987 */ 2988 static void 2989 URLparse(char *str) 2990 { 2991 char *p, *q; 2992 2993 p = q = str; 2994 while (*p) { 2995 *q = *p; 2996 if (*p++ == '%') { 2997 if (*p) { 2998 *q = fromhex(*p) * 16; 2999 p++; 3000 if (*p) { 3001 *q += fromhex(*p); 3002 p++; 3003 } 3004 } 3005 } 3006 q++; 3007 } 3008 *q = '\0'; 3009 } 3010 3011 3012 /* 3013 * Get the export information for the lookup vnode, and verify its 3014 * useable. 3015 */ 3016 int 3017 nfs_check_vpexi(vnode_t *mc_dvp, vnode_t *vp, cred_t *cr, 3018 struct exportinfo **exi) 3019 { 3020 int walk; 3021 int error = 0; 3022 3023 *exi = nfs_vptoexi(mc_dvp, vp, cr, &walk, NULL, FALSE); 3024 if (*exi == NULL) 3025 error = EACCES; 3026 else { 3027 /* 3028 * If nosub is set for this export then 3029 * a lookup relative to the public fh 3030 * must not terminate below the 3031 * exported directory. 3032 */ 3033 if ((*exi)->exi_export.ex_flags & EX_NOSUB && walk > 0) 3034 error = EACCES; 3035 } 3036 3037 return (error); 3038 } 3039 3040 /* 3041 * Do the main work of handling HA-NFSv4 Resource Group failover on 3042 * Sun Cluster. 3043 * We need to detect whether any RG admin paths have been added or removed, 3044 * and adjust resources accordingly. 3045 * Currently we're using a very inefficient algorithm, ~ 2 * O(n**2). In 3046 * order to scale, the list and array of paths need to be held in more 3047 * suitable data structures. 3048 */ 3049 static void 3050 hanfsv4_failover(void) 3051 { 3052 int i, start_grace, numadded_paths = 0; 3053 char **added_paths = NULL; 3054 rfs4_dss_path_t *dss_path; 3055 3056 /* 3057 * Note: currently, rfs4_dss_pathlist cannot be NULL, since 3058 * it will always include an entry for NFS4_DSS_VAR_DIR. If we 3059 * make the latter dynamically specified too, the following will 3060 * need to be adjusted. 3061 */ 3062 3063 /* 3064 * First, look for removed paths: RGs that have been failed-over 3065 * away from this node. 3066 * Walk the "currently-serving" rfs4_dss_pathlist and, for each 3067 * path, check if it is on the "passed-in" rfs4_dss_newpaths array 3068 * from nfsd. If not, that RG path has been removed. 3069 * 3070 * Note that nfsd has sorted rfs4_dss_newpaths for us, and removed 3071 * any duplicates. 3072 */ 3073 dss_path = rfs4_dss_pathlist; 3074 do { 3075 int found = 0; 3076 char *path = dss_path->path; 3077 3078 /* used only for non-HA so may not be removed */ 3079 if (strcmp(path, NFS4_DSS_VAR_DIR) == 0) { 3080 dss_path = dss_path->next; 3081 continue; 3082 } 3083 3084 for (i = 0; i < rfs4_dss_numnewpaths; i++) { 3085 int cmpret; 3086 char *newpath = rfs4_dss_newpaths[i]; 3087 3088 /* 3089 * Since nfsd has sorted rfs4_dss_newpaths for us, 3090 * once the return from strcmp is negative we know 3091 * we've passed the point where "path" should be, 3092 * and can stop searching: "path" has been removed. 3093 */ 3094 cmpret = strcmp(path, newpath); 3095 if (cmpret < 0) 3096 break; 3097 if (cmpret == 0) { 3098 found = 1; 3099 break; 3100 } 3101 } 3102 3103 if (found == 0) { 3104 unsigned index = dss_path->index; 3105 rfs4_servinst_t *sip = dss_path->sip; 3106 rfs4_dss_path_t *path_next = dss_path->next; 3107 3108 /* 3109 * This path has been removed. 3110 * We must clear out the servinst reference to 3111 * it, since it's now owned by another 3112 * node: we should not attempt to touch it. 3113 */ 3114 ASSERT(dss_path == sip->dss_paths[index]); 3115 sip->dss_paths[index] = NULL; 3116 3117 /* remove from "currently-serving" list, and destroy */ 3118 remque(dss_path); 3119 /* allow for NUL */ 3120 kmem_free(dss_path->path, strlen(dss_path->path) + 1); 3121 kmem_free(dss_path, sizeof (rfs4_dss_path_t)); 3122 3123 dss_path = path_next; 3124 } else { 3125 /* path was found; not removed */ 3126 dss_path = dss_path->next; 3127 } 3128 } while (dss_path != rfs4_dss_pathlist); 3129 3130 /* 3131 * Now, look for added paths: RGs that have been failed-over 3132 * to this node. 3133 * Walk the "passed-in" rfs4_dss_newpaths array from nfsd and, 3134 * for each path, check if it is on the "currently-serving" 3135 * rfs4_dss_pathlist. If not, that RG path has been added. 3136 * 3137 * Note: we don't do duplicate detection here; nfsd does that for us. 3138 * 3139 * Note: numadded_paths <= rfs4_dss_numnewpaths, which gives us 3140 * an upper bound for the size needed for added_paths[numadded_paths]. 3141 */ 3142 3143 /* probably more space than we need, but guaranteed to be enough */ 3144 if (rfs4_dss_numnewpaths > 0) { 3145 size_t sz = rfs4_dss_numnewpaths * sizeof (char *); 3146 added_paths = kmem_zalloc(sz, KM_SLEEP); 3147 } 3148 3149 /* walk the "passed-in" rfs4_dss_newpaths array from nfsd */ 3150 for (i = 0; i < rfs4_dss_numnewpaths; i++) { 3151 int found = 0; 3152 char *newpath = rfs4_dss_newpaths[i]; 3153 3154 dss_path = rfs4_dss_pathlist; 3155 do { 3156 char *path = dss_path->path; 3157 3158 /* used only for non-HA */ 3159 if (strcmp(path, NFS4_DSS_VAR_DIR) == 0) { 3160 dss_path = dss_path->next; 3161 continue; 3162 } 3163 3164 if (strncmp(path, newpath, strlen(path)) == 0) { 3165 found = 1; 3166 break; 3167 } 3168 3169 dss_path = dss_path->next; 3170 } while (dss_path != rfs4_dss_pathlist); 3171 3172 if (found == 0) { 3173 added_paths[numadded_paths] = newpath; 3174 numadded_paths++; 3175 } 3176 } 3177 3178 /* did we find any added paths? */ 3179 if (numadded_paths > 0) { 3180 /* create a new server instance, and start its grace period */ 3181 start_grace = 1; 3182 rfs4_servinst_create(start_grace, numadded_paths, added_paths); 3183 3184 /* read in the stable storage state from these paths */ 3185 rfs4_dss_readstate(numadded_paths, added_paths); 3186 3187 /* 3188 * Multiple failovers during a grace period will cause 3189 * clients of the same resource group to be partitioned 3190 * into different server instances, with different 3191 * grace periods. Since clients of the same resource 3192 * group must be subject to the same grace period, 3193 * we need to reset all currently active grace periods. 3194 */ 3195 rfs4_grace_reset_all(); 3196 } 3197 3198 if (rfs4_dss_numnewpaths > 0) 3199 kmem_free(added_paths, rfs4_dss_numnewpaths * sizeof (char *)); 3200 } 3201 3202 /* 3203 * Used by NFSv3 and NFSv4 server to query label of 3204 * a pathname component during lookup/access ops. 3205 */ 3206 ts_label_t * 3207 nfs_getflabel(vnode_t *vp, struct exportinfo *exi) 3208 { 3209 zone_t *zone; 3210 ts_label_t *zone_label; 3211 char *path; 3212 3213 mutex_enter(&vp->v_lock); 3214 if (vp->v_path != NULL) { 3215 zone = zone_find_by_any_path(vp->v_path, B_FALSE); 3216 mutex_exit(&vp->v_lock); 3217 } else { 3218 /* 3219 * v_path not cached. Fall back on pathname of exported 3220 * file system as we rely on pathname from which we can 3221 * derive a label. The exported file system portion of 3222 * path is sufficient to obtain a label. 3223 */ 3224 path = exi->exi_export.ex_path; 3225 if (path == NULL) { 3226 mutex_exit(&vp->v_lock); 3227 return (NULL); 3228 } 3229 zone = zone_find_by_any_path(path, B_FALSE); 3230 mutex_exit(&vp->v_lock); 3231 } 3232 /* 3233 * Caller has verified that the file is either 3234 * exported or visible. So if the path falls in 3235 * global zone, admin_low is returned; otherwise 3236 * the zone's label is returned. 3237 */ 3238 zone_label = zone->zone_slabel; 3239 label_hold(zone_label); 3240 zone_rele(zone); 3241 return (zone_label); 3242 } 3243 3244 /* 3245 * TX NFS routine used by NFSv3 and NFSv4 to do label check 3246 * on client label and server's file object lable. 3247 */ 3248 boolean_t 3249 do_rfs_label_check(bslabel_t *clabel, vnode_t *vp, int flag, 3250 struct exportinfo *exi) 3251 { 3252 bslabel_t *slabel; 3253 ts_label_t *tslabel; 3254 boolean_t result; 3255 3256 if ((tslabel = nfs_getflabel(vp, exi)) == NULL) { 3257 return (B_FALSE); 3258 } 3259 slabel = label2bslabel(tslabel); 3260 DTRACE_PROBE4(tx__rfs__log__info__labelcheck, char *, 3261 "comparing server's file label(1) with client label(2) (vp(3))", 3262 bslabel_t *, slabel, bslabel_t *, clabel, vnode_t *, vp); 3263 3264 if (flag == EQUALITY_CHECK) 3265 result = blequal(clabel, slabel); 3266 else 3267 result = bldominates(clabel, slabel); 3268 label_rele(tslabel); 3269 return (result); 3270 } 3271 3272 /* 3273 * Callback function to return the loaned buffers. 3274 * Calls VOP_RETZCBUF() only after all uio_iov[] 3275 * buffers are returned. nu_ref maintains the count. 3276 */ 3277 void 3278 rfs_free_xuio(void *free_arg) 3279 { 3280 uint_t ref; 3281 nfs_xuio_t *nfsuiop = (nfs_xuio_t *)free_arg; 3282 3283 ref = atomic_dec_uint_nv(&nfsuiop->nu_ref); 3284 3285 /* 3286 * Call VOP_RETZCBUF() only when all the iov buffers 3287 * are sent OTW. 3288 */ 3289 if (ref != 0) 3290 return; 3291 3292 if (((uio_t *)nfsuiop)->uio_extflg & UIO_XUIO) { 3293 (void) VOP_RETZCBUF(nfsuiop->nu_vp, (xuio_t *)free_arg, NULL, 3294 NULL); 3295 VN_RELE(nfsuiop->nu_vp); 3296 } 3297 3298 kmem_cache_free(nfs_xuio_cache, free_arg); 3299 } 3300 3301 xuio_t * 3302 rfs_setup_xuio(vnode_t *vp) 3303 { 3304 nfs_xuio_t *nfsuiop; 3305 3306 nfsuiop = kmem_cache_alloc(nfs_xuio_cache, KM_SLEEP); 3307 3308 bzero(nfsuiop, sizeof (nfs_xuio_t)); 3309 nfsuiop->nu_vp = vp; 3310 3311 /* 3312 * ref count set to 1. more may be added 3313 * if multiple mblks refer to multiple iov's. 3314 * This is done in uio_to_mblk(). 3315 */ 3316 3317 nfsuiop->nu_ref = 1; 3318 3319 nfsuiop->nu_frtn.free_func = rfs_free_xuio; 3320 nfsuiop->nu_frtn.free_arg = (char *)nfsuiop; 3321 3322 nfsuiop->nu_uio.xu_type = UIOTYPE_ZEROCOPY; 3323 3324 return (&nfsuiop->nu_uio); 3325 } 3326 3327 mblk_t * 3328 uio_to_mblk(uio_t *uiop) 3329 { 3330 struct iovec *iovp; 3331 int i; 3332 mblk_t *mp, *mp1; 3333 nfs_xuio_t *nfsuiop = (nfs_xuio_t *)uiop; 3334 3335 if (uiop->uio_iovcnt == 0) 3336 return (NULL); 3337 3338 iovp = uiop->uio_iov; 3339 mp = mp1 = esballoca((uchar_t *)iovp->iov_base, iovp->iov_len, 3340 BPRI_MED, &nfsuiop->nu_frtn); 3341 ASSERT(mp != NULL); 3342 3343 mp->b_wptr += iovp->iov_len; 3344 mp->b_datap->db_type = M_DATA; 3345 3346 for (i = 1; i < uiop->uio_iovcnt; i++) { 3347 iovp = (uiop->uio_iov + i); 3348 3349 mp1->b_cont = esballoca( 3350 (uchar_t *)iovp->iov_base, iovp->iov_len, BPRI_MED, 3351 &nfsuiop->nu_frtn); 3352 3353 mp1 = mp1->b_cont; 3354 ASSERT(mp1 != NULL); 3355 mp1->b_wptr += iovp->iov_len; 3356 mp1->b_datap->db_type = M_DATA; 3357 } 3358 3359 nfsuiop->nu_ref = uiop->uio_iovcnt; 3360 3361 return (mp); 3362 } 3363 3364 /* 3365 * Allocate memory to hold data for a read request of len bytes. 3366 * 3367 * We don't allocate buffers greater than kmem_max_cached in size to avoid 3368 * allocating memory from the kmem_oversized arena. If we allocate oversized 3369 * buffers, we incur heavy cross-call activity when freeing these large buffers 3370 * in the TCP receive path. Note that we can't set b_wptr here since the 3371 * length of the data returned may differ from the length requested when 3372 * reading the end of a file; we set b_wptr in rfs_rndup_mblks() once the 3373 * length of the read is known. 3374 */ 3375 mblk_t * 3376 rfs_read_alloc(uint_t len, struct iovec **iov, int *iovcnt) 3377 { 3378 struct iovec *iovarr; 3379 mblk_t *mp, **mpp = ∓ 3380 size_t mpsize; 3381 uint_t remain = len; 3382 int i, err = 0; 3383 3384 *iovcnt = howmany(len, kmem_max_cached); 3385 3386 iovarr = kmem_alloc(*iovcnt * sizeof (struct iovec), KM_SLEEP); 3387 *iov = iovarr; 3388 3389 for (i = 0; i < *iovcnt; remain -= mpsize, i++) { 3390 ASSERT(remain <= len); 3391 /* 3392 * We roundup the size we allocate to a multiple of 3393 * BYTES_PER_XDR_UNIT (4 bytes) so that the call to 3394 * xdrmblk_putmblk() never fails. 3395 */ 3396 ASSERT(kmem_max_cached % BYTES_PER_XDR_UNIT == 0); 3397 mpsize = MIN(kmem_max_cached, remain); 3398 *mpp = allocb_wait(RNDUP(mpsize), BPRI_MED, STR_NOSIG, &err); 3399 ASSERT(*mpp != NULL); 3400 ASSERT(err == 0); 3401 3402 iovarr[i].iov_base = (caddr_t)(*mpp)->b_rptr; 3403 iovarr[i].iov_len = mpsize; 3404 mpp = &(*mpp)->b_cont; 3405 } 3406 return (mp); 3407 } 3408 3409 void 3410 rfs_rndup_mblks(mblk_t *mp, uint_t len, int buf_loaned) 3411 { 3412 int i; 3413 int alloc_err = 0; 3414 mblk_t *rmp; 3415 uint_t mpsize, remainder; 3416 3417 remainder = P2NPHASE(len, BYTES_PER_XDR_UNIT); 3418 3419 /* 3420 * Non copy-reduction case. This function assumes that blocks were 3421 * allocated in multiples of BYTES_PER_XDR_UNIT bytes, which makes this 3422 * padding safe without bounds checking. 3423 */ 3424 if (!buf_loaned) { 3425 /* 3426 * Set the size of each mblk in the chain until we've consumed 3427 * the specified length for all but the last one. 3428 */ 3429 while ((mpsize = MBLKSIZE(mp)) < len) { 3430 ASSERT(mpsize % BYTES_PER_XDR_UNIT == 0); 3431 mp->b_wptr += mpsize; 3432 len -= mpsize; 3433 mp = mp->b_cont; 3434 ASSERT(mp != NULL); 3435 } 3436 3437 ASSERT(len + remainder <= mpsize); 3438 mp->b_wptr += len; 3439 for (i = 0; i < remainder; i++) 3440 *mp->b_wptr++ = '\0'; 3441 return; 3442 } 3443 3444 /* 3445 * No remainder mblk required. 3446 */ 3447 if (remainder == 0) 3448 return; 3449 3450 /* 3451 * Get to the last mblk in the chain. 3452 */ 3453 while (mp->b_cont != NULL) 3454 mp = mp->b_cont; 3455 3456 /* 3457 * In case of copy-reduction mblks, the size of the mblks are fixed 3458 * and are of the size of the loaned buffers. Allocate a remainder 3459 * mblk and chain it to the data buffers. This is sub-optimal, but not 3460 * expected to happen commonly. 3461 */ 3462 rmp = allocb_wait(remainder, BPRI_MED, STR_NOSIG, &alloc_err); 3463 ASSERT(rmp != NULL); 3464 ASSERT(alloc_err == 0); 3465 3466 for (i = 0; i < remainder; i++) 3467 *rmp->b_wptr++ = '\0'; 3468 3469 rmp->b_datap->db_type = M_DATA; 3470 mp->b_cont = rmp; 3471 } 3472