1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2015 Nexenta Systems, Inc. All rights reserved. 24 */ 25 26 /* 27 * Copyright 2010 Sun Microsystems, Inc. All rights reserved. 28 * Use is subject to license terms. 29 */ 30 31 /* 32 * Copyright 1983,1984,1985,1986,1987,1988,1989 AT&T. 33 * All Rights Reserved 34 */ 35 36 /* 37 * Copyright (c) 2013, Joyent, Inc. All rights reserved. 38 */ 39 40 /* 41 * Copyright (c) 2014, STRATO AG. All rights reserved. 42 */ 43 44 #include <sys/param.h> 45 #include <sys/types.h> 46 #include <sys/systm.h> 47 #include <sys/cred.h> 48 #include <sys/time.h> 49 #include <sys/vnode.h> 50 #include <sys/vfs.h> 51 #include <sys/vfs_opreg.h> 52 #include <sys/file.h> 53 #include <sys/filio.h> 54 #include <sys/uio.h> 55 #include <sys/buf.h> 56 #include <sys/mman.h> 57 #include <sys/pathname.h> 58 #include <sys/dirent.h> 59 #include <sys/debug.h> 60 #include <sys/vmsystm.h> 61 #include <sys/fcntl.h> 62 #include <sys/flock.h> 63 #include <sys/swap.h> 64 #include <sys/errno.h> 65 #include <sys/strsubr.h> 66 #include <sys/sysmacros.h> 67 #include <sys/kmem.h> 68 #include <sys/cmn_err.h> 69 #include <sys/pathconf.h> 70 #include <sys/utsname.h> 71 #include <sys/dnlc.h> 72 #include <sys/acl.h> 73 #include <sys/systeminfo.h> 74 #include <sys/policy.h> 75 #include <sys/sdt.h> 76 #include <sys/list.h> 77 #include <sys/stat.h> 78 #include <sys/zone.h> 79 80 #include <rpc/types.h> 81 #include <rpc/auth.h> 82 #include <rpc/clnt.h> 83 84 #include <nfs/nfs.h> 85 #include <nfs/nfs_clnt.h> 86 #include <nfs/nfs_acl.h> 87 #include <nfs/lm.h> 88 #include <nfs/nfs4.h> 89 #include <nfs/nfs4_kprot.h> 90 #include <nfs/rnode4.h> 91 #include <nfs/nfs4_clnt.h> 92 93 #include <vm/hat.h> 94 #include <vm/as.h> 95 #include <vm/page.h> 96 #include <vm/pvn.h> 97 #include <vm/seg.h> 98 #include <vm/seg_map.h> 99 #include <vm/seg_kpm.h> 100 #include <vm/seg_vn.h> 101 102 #include <fs/fs_subr.h> 103 104 #include <sys/ddi.h> 105 #include <sys/int_fmtio.h> 106 #include <sys/fs/autofs.h> 107 108 typedef struct { 109 nfs4_ga_res_t *di_garp; 110 cred_t *di_cred; 111 hrtime_t di_time_call; 112 } dirattr_info_t; 113 114 typedef enum nfs4_acl_op { 115 NFS4_ACL_GET, 116 NFS4_ACL_SET 117 } nfs4_acl_op_t; 118 119 static struct lm_sysid *nfs4_find_sysid(mntinfo4_t *mi); 120 static int nfs4frlock_get_sysid(struct lm_sysid **, vnode_t *, flock64_t *); 121 122 static void nfs4_update_dircaches(change_info4 *, vnode_t *, vnode_t *, 123 char *, dirattr_info_t *); 124 125 static void nfs4close_otw(rnode4_t *, cred_t *, nfs4_open_owner_t *, 126 nfs4_open_stream_t *, int *, int *, nfs4_close_type_t, 127 nfs4_error_t *, int *); 128 static int nfs4_rdwrlbn(vnode_t *, page_t *, u_offset_t, size_t, int, 129 cred_t *); 130 static int nfs4write(vnode_t *, caddr_t, u_offset_t, int, cred_t *, 131 stable_how4 *); 132 static int nfs4read(vnode_t *, caddr_t, offset_t, int, size_t *, 133 cred_t *, bool_t, struct uio *); 134 static int nfs4setattr(vnode_t *, struct vattr *, int, cred_t *, 135 vsecattr_t *); 136 static int nfs4openattr(vnode_t *, vnode_t **, int, cred_t *); 137 static int nfs4lookup(vnode_t *, char *, vnode_t **, cred_t *, int); 138 static int nfs4lookup_xattr(vnode_t *, char *, vnode_t **, int, cred_t *); 139 static int nfs4lookupvalidate_otw(vnode_t *, char *, vnode_t **, cred_t *); 140 static int nfs4lookupnew_otw(vnode_t *, char *, vnode_t **, cred_t *); 141 static int nfs4mknod(vnode_t *, char *, struct vattr *, enum vcexcl, 142 int, vnode_t **, cred_t *); 143 static int nfs4open_otw(vnode_t *, char *, struct vattr *, vnode_t **, 144 cred_t *, int, int, enum createmode4, int); 145 static int nfs4rename(vnode_t *, char *, vnode_t *, char *, cred_t *, 146 caller_context_t *); 147 static int nfs4rename_persistent_fh(vnode_t *, char *, vnode_t *, 148 vnode_t *, char *, cred_t *, nfsstat4 *); 149 static int nfs4rename_volatile_fh(vnode_t *, char *, vnode_t *, 150 vnode_t *, char *, cred_t *, nfsstat4 *); 151 static int do_nfs4readdir(vnode_t *, rddir4_cache *, cred_t *); 152 static void nfs4readdir(vnode_t *, rddir4_cache *, cred_t *); 153 static int nfs4_bio(struct buf *, stable_how4 *, cred_t *, bool_t); 154 static int nfs4_getapage(vnode_t *, u_offset_t, size_t, uint_t *, 155 page_t *[], size_t, struct seg *, caddr_t, 156 enum seg_rw, cred_t *); 157 static void nfs4_readahead(vnode_t *, u_offset_t, caddr_t, struct seg *, 158 cred_t *); 159 static int nfs4_sync_putapage(vnode_t *, page_t *, u_offset_t, size_t, 160 int, cred_t *); 161 static int nfs4_sync_pageio(vnode_t *, page_t *, u_offset_t, size_t, 162 int, cred_t *); 163 static int nfs4_commit(vnode_t *, offset4, count4, cred_t *); 164 static void nfs4_set_mod(vnode_t *); 165 static void nfs4_get_commit(vnode_t *); 166 static void nfs4_get_commit_range(vnode_t *, u_offset_t, size_t); 167 static int nfs4_putpage_commit(vnode_t *, offset_t, size_t, cred_t *); 168 static int nfs4_commit_vp(vnode_t *, u_offset_t, size_t, cred_t *, int); 169 static int nfs4_sync_commit(vnode_t *, page_t *, offset3, count3, 170 cred_t *); 171 static void do_nfs4_async_commit(vnode_t *, page_t *, offset3, count3, 172 cred_t *); 173 static int nfs4_update_attrcache(nfsstat4, nfs4_ga_res_t *, 174 hrtime_t, vnode_t *, cred_t *); 175 static int nfs4_open_non_reg_file(vnode_t **, int, cred_t *); 176 static int nfs4_safelock(vnode_t *, const struct flock64 *, cred_t *); 177 static int nfs4_lockrelease(vnode_t *, int, offset_t, cred_t *); 178 static int nfs4_block_and_wait(clock_t *); 179 static cred_t *state_to_cred(nfs4_open_stream_t *); 180 static void denied_to_flk(LOCK4denied *, flock64_t *, LOCKT4args *); 181 static pid_t lo_to_pid(lock_owner4 *); 182 static void nfs4_reinstitute_local_lock_state(vnode_t *, flock64_t *, 183 cred_t *, nfs4_lock_owner_t *); 184 static void push_reinstate(vnode_t *, int, flock64_t *, cred_t *, 185 nfs4_lock_owner_t *); 186 static int open_and_get_osp(vnode_t *, cred_t *, nfs4_open_stream_t **); 187 static void nfs4_delmap_callback(struct as *, void *, uint_t); 188 static void nfs4_free_delmapcall(nfs4_delmapcall_t *); 189 static nfs4_delmapcall_t *nfs4_init_delmapcall(); 190 static int nfs4_find_and_delete_delmapcall(rnode4_t *, int *); 191 static int nfs4_is_acl_mask_valid(uint_t, nfs4_acl_op_t); 192 static int nfs4_create_getsecattr_return(vsecattr_t *, vsecattr_t *, 193 uid_t, gid_t, int); 194 195 /* 196 * Routines that implement the setting of v4 args for the misc. ops 197 */ 198 static void nfs4args_lock_free(nfs_argop4 *); 199 static void nfs4args_lockt_free(nfs_argop4 *); 200 static void nfs4args_setattr(nfs_argop4 *, vattr_t *, vsecattr_t *, 201 int, rnode4_t *, cred_t *, bitmap4, int *, 202 nfs4_stateid_types_t *); 203 static void nfs4args_setattr_free(nfs_argop4 *); 204 static int nfs4args_verify(nfs_argop4 *, vattr_t *, enum nfs_opnum4, 205 bitmap4); 206 static void nfs4args_verify_free(nfs_argop4 *); 207 static void nfs4args_write(nfs_argop4 *, stable_how4, rnode4_t *, cred_t *, 208 WRITE4args **, nfs4_stateid_types_t *); 209 210 /* 211 * These are the vnode ops functions that implement the vnode interface to 212 * the networked file system. See more comments below at nfs4_vnodeops. 213 */ 214 static int nfs4_open(vnode_t **, int, cred_t *, caller_context_t *); 215 static int nfs4_close(vnode_t *, int, int, offset_t, cred_t *, 216 caller_context_t *); 217 static int nfs4_read(vnode_t *, struct uio *, int, cred_t *, 218 caller_context_t *); 219 static int nfs4_write(vnode_t *, struct uio *, int, cred_t *, 220 caller_context_t *); 221 static int nfs4_ioctl(vnode_t *, int, intptr_t, int, cred_t *, int *, 222 caller_context_t *); 223 static int nfs4_setattr(vnode_t *, struct vattr *, int, cred_t *, 224 caller_context_t *); 225 static int nfs4_access(vnode_t *, int, int, cred_t *, caller_context_t *); 226 static int nfs4_readlink(vnode_t *, struct uio *, cred_t *, 227 caller_context_t *); 228 static int nfs4_fsync(vnode_t *, int, cred_t *, caller_context_t *); 229 static int nfs4_create(vnode_t *, char *, struct vattr *, enum vcexcl, 230 int, vnode_t **, cred_t *, int, caller_context_t *, 231 vsecattr_t *); 232 static int nfs4_remove(vnode_t *, char *, cred_t *, caller_context_t *, 233 int); 234 static int nfs4_link(vnode_t *, vnode_t *, char *, cred_t *, 235 caller_context_t *, int); 236 static int nfs4_rename(vnode_t *, char *, vnode_t *, char *, cred_t *, 237 caller_context_t *, int); 238 static int nfs4_mkdir(vnode_t *, char *, struct vattr *, vnode_t **, 239 cred_t *, caller_context_t *, int, vsecattr_t *); 240 static int nfs4_rmdir(vnode_t *, char *, vnode_t *, cred_t *, 241 caller_context_t *, int); 242 static int nfs4_symlink(vnode_t *, char *, struct vattr *, char *, 243 cred_t *, caller_context_t *, int); 244 static int nfs4_readdir(vnode_t *, struct uio *, cred_t *, int *, 245 caller_context_t *, int); 246 static int nfs4_seek(vnode_t *, offset_t, offset_t *, caller_context_t *); 247 static int nfs4_getpage(vnode_t *, offset_t, size_t, uint_t *, 248 page_t *[], size_t, struct seg *, caddr_t, 249 enum seg_rw, cred_t *, caller_context_t *); 250 static int nfs4_putpage(vnode_t *, offset_t, size_t, int, cred_t *, 251 caller_context_t *); 252 static int nfs4_map(vnode_t *, offset_t, struct as *, caddr_t *, size_t, 253 uchar_t, uchar_t, uint_t, cred_t *, caller_context_t *); 254 static int nfs4_addmap(vnode_t *, offset_t, struct as *, caddr_t, size_t, 255 uchar_t, uchar_t, uint_t, cred_t *, caller_context_t *); 256 static int nfs4_cmp(vnode_t *, vnode_t *, caller_context_t *); 257 static int nfs4_frlock(vnode_t *, int, struct flock64 *, int, offset_t, 258 struct flk_callback *, cred_t *, caller_context_t *); 259 static int nfs4_space(vnode_t *, int, struct flock64 *, int, offset_t, 260 cred_t *, caller_context_t *); 261 static int nfs4_delmap(vnode_t *, offset_t, struct as *, caddr_t, size_t, 262 uint_t, uint_t, uint_t, cred_t *, caller_context_t *); 263 static int nfs4_pageio(vnode_t *, page_t *, u_offset_t, size_t, int, 264 cred_t *, caller_context_t *); 265 static void nfs4_dispose(vnode_t *, page_t *, int, int, cred_t *, 266 caller_context_t *); 267 static int nfs4_setsecattr(vnode_t *, vsecattr_t *, int, cred_t *, 268 caller_context_t *); 269 /* 270 * These vnode ops are required to be called from outside this source file, 271 * e.g. by ephemeral mount stub vnode ops, and so may not be declared 272 * as static. 273 */ 274 int nfs4_getattr(vnode_t *, struct vattr *, int, cred_t *, 275 caller_context_t *); 276 void nfs4_inactive(vnode_t *, cred_t *, caller_context_t *); 277 int nfs4_lookup(vnode_t *, char *, vnode_t **, 278 struct pathname *, int, vnode_t *, cred_t *, 279 caller_context_t *, int *, pathname_t *); 280 int nfs4_fid(vnode_t *, fid_t *, caller_context_t *); 281 int nfs4_rwlock(vnode_t *, int, caller_context_t *); 282 void nfs4_rwunlock(vnode_t *, int, caller_context_t *); 283 int nfs4_realvp(vnode_t *, vnode_t **, caller_context_t *); 284 int nfs4_pathconf(vnode_t *, int, ulong_t *, cred_t *, 285 caller_context_t *); 286 int nfs4_getsecattr(vnode_t *, vsecattr_t *, int, cred_t *, 287 caller_context_t *); 288 int nfs4_shrlock(vnode_t *, int, struct shrlock *, int, cred_t *, 289 caller_context_t *); 290 291 /* 292 * Used for nfs4_commit_vp() to indicate if we should 293 * wait on pending writes. 294 */ 295 #define NFS4_WRITE_NOWAIT 0 296 #define NFS4_WRITE_WAIT 1 297 298 /* 299 * Error flags used to pass information about certain special errors 300 * which need to be handled specially. 301 */ 302 #define NFS_EOF -98 303 #define NFS_VERF_MISMATCH -97 304 305 /* 306 * Flags used to differentiate between which operation drove the 307 * potential CLOSE OTW. (see nfs4_close_otw_if_necessary) 308 */ 309 #define NFS4_CLOSE_OP 0x1 310 #define NFS4_DELMAP_OP 0x2 311 #define NFS4_INACTIVE_OP 0x3 312 313 #define ISVDEV(t) ((t == VBLK) || (t == VCHR) || (t == VFIFO)) 314 315 /* ALIGN64 aligns the given buffer and adjust buffer size to 64 bit */ 316 #define ALIGN64(x, ptr, sz) \ 317 x = ((uintptr_t)(ptr)) & (sizeof (uint64_t) - 1); \ 318 if (x) { \ 319 x = sizeof (uint64_t) - (x); \ 320 sz -= (x); \ 321 ptr += (x); \ 322 } 323 324 #ifdef DEBUG 325 int nfs4_client_attr_debug = 0; 326 int nfs4_client_state_debug = 0; 327 int nfs4_client_shadow_debug = 0; 328 int nfs4_client_lock_debug = 0; 329 int nfs4_seqid_sync = 0; 330 int nfs4_client_map_debug = 0; 331 static int nfs4_pageio_debug = 0; 332 int nfs4_client_inactive_debug = 0; 333 int nfs4_client_recov_debug = 0; 334 int nfs4_client_failover_debug = 0; 335 int nfs4_client_call_debug = 0; 336 int nfs4_client_lookup_debug = 0; 337 int nfs4_client_zone_debug = 0; 338 int nfs4_lost_rqst_debug = 0; 339 int nfs4_rdattrerr_debug = 0; 340 int nfs4_open_stream_debug = 0; 341 342 int nfs4read_error_inject; 343 344 static int nfs4_create_misses = 0; 345 346 static int nfs4_readdir_cache_shorts = 0; 347 static int nfs4_readdir_readahead = 0; 348 349 static int nfs4_bio_do_stop = 0; 350 351 static int nfs4_lostpage = 0; /* number of times we lost original page */ 352 353 int nfs4_mmap_debug = 0; 354 355 static int nfs4_pathconf_cache_hits = 0; 356 static int nfs4_pathconf_cache_misses = 0; 357 358 int nfs4close_all_cnt; 359 int nfs4close_one_debug = 0; 360 int nfs4close_notw_debug = 0; 361 362 int denied_to_flk_debug = 0; 363 void *lockt_denied_debug; 364 365 #endif 366 367 /* 368 * In milliseconds. Should be less than half of the lease time or better, 369 * less than one second. 370 */ 371 int nfs4_base_wait_time = 20; 372 int nfs4_max_base_wait_time = 1 * 1000; /* 1 sec */ 373 374 /* 375 * How long to wait before trying again if OPEN_CONFIRM gets ETIMEDOUT 376 * or NFS4ERR_RESOURCE. 377 */ 378 static int confirm_retry_sec = 30; 379 380 static int nfs4_lookup_neg_cache = 1; 381 382 /* 383 * number of pages to read ahead 384 * optimized for 100 base-T. 385 */ 386 static int nfs4_nra = 4; 387 388 static int nfs4_do_symlink_cache = 1; 389 390 static int nfs4_pathconf_disable_cache = 0; 391 392 /* 393 * These are the vnode ops routines which implement the vnode interface to 394 * the networked file system. These routines just take their parameters, 395 * make them look networkish by putting the right info into interface structs, 396 * and then calling the appropriate remote routine(s) to do the work. 397 * 398 * Note on directory name lookup cacheing: If we detect a stale fhandle, 399 * we purge the directory cache relative to that vnode. This way, the 400 * user won't get burned by the cache repeatedly. See <nfs/rnode4.h> for 401 * more details on rnode locking. 402 */ 403 404 struct vnodeops *nfs4_vnodeops; 405 406 const fs_operation_def_t nfs4_vnodeops_template[] = { 407 VOPNAME_OPEN, { .vop_open = nfs4_open }, 408 VOPNAME_CLOSE, { .vop_close = nfs4_close }, 409 VOPNAME_READ, { .vop_read = nfs4_read }, 410 VOPNAME_WRITE, { .vop_write = nfs4_write }, 411 VOPNAME_IOCTL, { .vop_ioctl = nfs4_ioctl }, 412 VOPNAME_GETATTR, { .vop_getattr = nfs4_getattr }, 413 VOPNAME_SETATTR, { .vop_setattr = nfs4_setattr }, 414 VOPNAME_ACCESS, { .vop_access = nfs4_access }, 415 VOPNAME_LOOKUP, { .vop_lookup = nfs4_lookup }, 416 VOPNAME_CREATE, { .vop_create = nfs4_create }, 417 VOPNAME_REMOVE, { .vop_remove = nfs4_remove }, 418 VOPNAME_LINK, { .vop_link = nfs4_link }, 419 VOPNAME_RENAME, { .vop_rename = nfs4_rename }, 420 VOPNAME_MKDIR, { .vop_mkdir = nfs4_mkdir }, 421 VOPNAME_RMDIR, { .vop_rmdir = nfs4_rmdir }, 422 VOPNAME_READDIR, { .vop_readdir = nfs4_readdir }, 423 VOPNAME_SYMLINK, { .vop_symlink = nfs4_symlink }, 424 VOPNAME_READLINK, { .vop_readlink = nfs4_readlink }, 425 VOPNAME_FSYNC, { .vop_fsync = nfs4_fsync }, 426 VOPNAME_INACTIVE, { .vop_inactive = nfs4_inactive }, 427 VOPNAME_FID, { .vop_fid = nfs4_fid }, 428 VOPNAME_RWLOCK, { .vop_rwlock = nfs4_rwlock }, 429 VOPNAME_RWUNLOCK, { .vop_rwunlock = nfs4_rwunlock }, 430 VOPNAME_SEEK, { .vop_seek = nfs4_seek }, 431 VOPNAME_FRLOCK, { .vop_frlock = nfs4_frlock }, 432 VOPNAME_SPACE, { .vop_space = nfs4_space }, 433 VOPNAME_REALVP, { .vop_realvp = nfs4_realvp }, 434 VOPNAME_GETPAGE, { .vop_getpage = nfs4_getpage }, 435 VOPNAME_PUTPAGE, { .vop_putpage = nfs4_putpage }, 436 VOPNAME_MAP, { .vop_map = nfs4_map }, 437 VOPNAME_ADDMAP, { .vop_addmap = nfs4_addmap }, 438 VOPNAME_DELMAP, { .vop_delmap = nfs4_delmap }, 439 /* no separate nfs4_dump */ 440 VOPNAME_DUMP, { .vop_dump = nfs_dump }, 441 VOPNAME_PATHCONF, { .vop_pathconf = nfs4_pathconf }, 442 VOPNAME_PAGEIO, { .vop_pageio = nfs4_pageio }, 443 VOPNAME_DISPOSE, { .vop_dispose = nfs4_dispose }, 444 VOPNAME_SETSECATTR, { .vop_setsecattr = nfs4_setsecattr }, 445 VOPNAME_GETSECATTR, { .vop_getsecattr = nfs4_getsecattr }, 446 VOPNAME_SHRLOCK, { .vop_shrlock = nfs4_shrlock }, 447 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 448 NULL, NULL 449 }; 450 451 /* 452 * The following are subroutines and definitions to set args or get res 453 * for the different nfsv4 ops 454 */ 455 456 void 457 nfs4args_lookup_free(nfs_argop4 *argop, int arglen) 458 { 459 int i; 460 461 for (i = 0; i < arglen; i++) { 462 if (argop[i].argop == OP_LOOKUP) { 463 kmem_free( 464 argop[i].nfs_argop4_u.oplookup. 465 objname.utf8string_val, 466 argop[i].nfs_argop4_u.oplookup. 467 objname.utf8string_len); 468 } 469 } 470 } 471 472 static void 473 nfs4args_lock_free(nfs_argop4 *argop) 474 { 475 locker4 *locker = &argop->nfs_argop4_u.oplock.locker; 476 477 if (locker->new_lock_owner == TRUE) { 478 open_to_lock_owner4 *open_owner; 479 480 open_owner = &locker->locker4_u.open_owner; 481 if (open_owner->lock_owner.owner_val != NULL) { 482 kmem_free(open_owner->lock_owner.owner_val, 483 open_owner->lock_owner.owner_len); 484 } 485 } 486 } 487 488 static void 489 nfs4args_lockt_free(nfs_argop4 *argop) 490 { 491 lock_owner4 *lowner = &argop->nfs_argop4_u.oplockt.owner; 492 493 if (lowner->owner_val != NULL) { 494 kmem_free(lowner->owner_val, lowner->owner_len); 495 } 496 } 497 498 static void 499 nfs4args_setattr(nfs_argop4 *argop, vattr_t *vap, vsecattr_t *vsap, int flags, 500 rnode4_t *rp, cred_t *cr, bitmap4 supp, int *error, 501 nfs4_stateid_types_t *sid_types) 502 { 503 fattr4 *attr = &argop->nfs_argop4_u.opsetattr.obj_attributes; 504 mntinfo4_t *mi; 505 506 argop->argop = OP_SETATTR; 507 /* 508 * The stateid is set to 0 if client is not modifying the size 509 * and otherwise to whatever nfs4_get_stateid() returns. 510 * 511 * XXX Note: nfs4_get_stateid() returns 0 if no lockowner and/or no 512 * state struct could be found for the process/file pair. We may 513 * want to change this in the future (by OPENing the file). See 514 * bug # 4474852. 515 */ 516 if (vap->va_mask & AT_SIZE) { 517 518 ASSERT(rp != NULL); 519 mi = VTOMI4(RTOV4(rp)); 520 521 argop->nfs_argop4_u.opsetattr.stateid = 522 nfs4_get_stateid(cr, rp, curproc->p_pidp->pid_id, mi, 523 OP_SETATTR, sid_types, FALSE); 524 } else { 525 bzero(&argop->nfs_argop4_u.opsetattr.stateid, 526 sizeof (stateid4)); 527 } 528 529 *error = vattr_to_fattr4(vap, vsap, attr, flags, OP_SETATTR, supp); 530 if (*error) 531 bzero(attr, sizeof (*attr)); 532 } 533 534 static void 535 nfs4args_setattr_free(nfs_argop4 *argop) 536 { 537 nfs4_fattr4_free(&argop->nfs_argop4_u.opsetattr.obj_attributes); 538 } 539 540 static int 541 nfs4args_verify(nfs_argop4 *argop, vattr_t *vap, enum nfs_opnum4 op, 542 bitmap4 supp) 543 { 544 fattr4 *attr; 545 int error = 0; 546 547 argop->argop = op; 548 switch (op) { 549 case OP_VERIFY: 550 attr = &argop->nfs_argop4_u.opverify.obj_attributes; 551 break; 552 case OP_NVERIFY: 553 attr = &argop->nfs_argop4_u.opnverify.obj_attributes; 554 break; 555 default: 556 return (EINVAL); 557 } 558 if (!error) 559 error = vattr_to_fattr4(vap, NULL, attr, 0, op, supp); 560 if (error) 561 bzero(attr, sizeof (*attr)); 562 return (error); 563 } 564 565 static void 566 nfs4args_verify_free(nfs_argop4 *argop) 567 { 568 switch (argop->argop) { 569 case OP_VERIFY: 570 nfs4_fattr4_free(&argop->nfs_argop4_u.opverify.obj_attributes); 571 break; 572 case OP_NVERIFY: 573 nfs4_fattr4_free(&argop->nfs_argop4_u.opnverify.obj_attributes); 574 break; 575 default: 576 break; 577 } 578 } 579 580 static void 581 nfs4args_write(nfs_argop4 *argop, stable_how4 stable, rnode4_t *rp, cred_t *cr, 582 WRITE4args **wargs_pp, nfs4_stateid_types_t *sid_tp) 583 { 584 WRITE4args *wargs = &argop->nfs_argop4_u.opwrite; 585 mntinfo4_t *mi = VTOMI4(RTOV4(rp)); 586 587 argop->argop = OP_WRITE; 588 wargs->stable = stable; 589 wargs->stateid = nfs4_get_w_stateid(cr, rp, curproc->p_pidp->pid_id, 590 mi, OP_WRITE, sid_tp); 591 wargs->mblk = NULL; 592 *wargs_pp = wargs; 593 } 594 595 void 596 nfs4args_copen_free(OPEN4cargs *open_args) 597 { 598 if (open_args->owner.owner_val) { 599 kmem_free(open_args->owner.owner_val, 600 open_args->owner.owner_len); 601 } 602 if ((open_args->opentype == OPEN4_CREATE) && 603 (open_args->mode != EXCLUSIVE4)) { 604 nfs4_fattr4_free(&open_args->createhow4_u.createattrs); 605 } 606 } 607 608 /* 609 * XXX: This is referenced in modstubs.s 610 */ 611 struct vnodeops * 612 nfs4_getvnodeops(void) 613 { 614 return (nfs4_vnodeops); 615 } 616 617 /* 618 * The OPEN operation opens a regular file. 619 */ 620 /*ARGSUSED3*/ 621 static int 622 nfs4_open(vnode_t **vpp, int flag, cred_t *cr, caller_context_t *ct) 623 { 624 vnode_t *dvp = NULL; 625 rnode4_t *rp, *drp; 626 int error; 627 int just_been_created; 628 char fn[MAXNAMELEN]; 629 630 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, "nfs4_open: ")); 631 if (nfs_zone() != VTOMI4(*vpp)->mi_zone) 632 return (EIO); 633 rp = VTOR4(*vpp); 634 635 /* 636 * Check to see if opening something besides a regular file; 637 * if so skip the OTW call 638 */ 639 if ((*vpp)->v_type != VREG) { 640 error = nfs4_open_non_reg_file(vpp, flag, cr); 641 return (error); 642 } 643 644 /* 645 * XXX - would like a check right here to know if the file is 646 * executable or not, so as to skip OTW 647 */ 648 649 if ((error = vtodv(*vpp, &dvp, cr, TRUE)) != 0) 650 return (error); 651 652 drp = VTOR4(dvp); 653 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_READER, INTR4(dvp))) 654 return (EINTR); 655 656 if ((error = vtoname(*vpp, fn, MAXNAMELEN)) != 0) { 657 nfs_rw_exit(&drp->r_rwlock); 658 return (error); 659 } 660 661 /* 662 * See if this file has just been CREATEd. 663 * If so, clear the flag and update the dnlc, which was previously 664 * skipped in nfs4_create. 665 * XXX need better serilization on this. 666 * XXX move this into the nf4open_otw call, after we have 667 * XXX acquired the open owner seqid sync. 668 */ 669 mutex_enter(&rp->r_statev4_lock); 670 if (rp->created_v4) { 671 rp->created_v4 = 0; 672 mutex_exit(&rp->r_statev4_lock); 673 674 dnlc_update(dvp, fn, *vpp); 675 /* This is needed so we don't bump the open ref count */ 676 just_been_created = 1; 677 } else { 678 mutex_exit(&rp->r_statev4_lock); 679 just_been_created = 0; 680 } 681 682 /* 683 * If caller specified O_TRUNC/FTRUNC, then be sure to set 684 * FWRITE (to drive successful setattr(size=0) after open) 685 */ 686 if (flag & FTRUNC) 687 flag |= FWRITE; 688 689 error = nfs4open_otw(dvp, fn, NULL, vpp, cr, 0, flag, 0, 690 just_been_created); 691 692 if (!error && !((*vpp)->v_flag & VROOT)) 693 dnlc_update(dvp, fn, *vpp); 694 695 nfs_rw_exit(&drp->r_rwlock); 696 697 /* release the hold from vtodv */ 698 VN_RELE(dvp); 699 700 /* exchange the shadow for the master vnode, if needed */ 701 702 if (error == 0 && IS_SHADOW(*vpp, rp)) 703 sv_exchange(vpp); 704 705 return (error); 706 } 707 708 /* 709 * See if there's a "lost open" request to be saved and recovered. 710 */ 711 static void 712 nfs4open_save_lost_rqst(int error, nfs4_lost_rqst_t *lost_rqstp, 713 nfs4_open_owner_t *oop, cred_t *cr, vnode_t *vp, 714 vnode_t *dvp, OPEN4cargs *open_args) 715 { 716 vfs_t *vfsp; 717 char *srccfp; 718 719 vfsp = (dvp ? dvp->v_vfsp : vp->v_vfsp); 720 721 if (error != ETIMEDOUT && error != EINTR && 722 !NFS4_FRC_UNMT_ERR(error, vfsp)) { 723 lost_rqstp->lr_op = 0; 724 return; 725 } 726 727 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, 728 "nfs4open_save_lost_rqst: error %d", error)); 729 730 lost_rqstp->lr_op = OP_OPEN; 731 732 /* 733 * The vp (if it is not NULL) and dvp are held and rele'd via 734 * the recovery code. See nfs4_save_lost_rqst. 735 */ 736 lost_rqstp->lr_vp = vp; 737 lost_rqstp->lr_dvp = dvp; 738 lost_rqstp->lr_oop = oop; 739 lost_rqstp->lr_osp = NULL; 740 lost_rqstp->lr_lop = NULL; 741 lost_rqstp->lr_cr = cr; 742 lost_rqstp->lr_flk = NULL; 743 lost_rqstp->lr_oacc = open_args->share_access; 744 lost_rqstp->lr_odeny = open_args->share_deny; 745 lost_rqstp->lr_oclaim = open_args->claim; 746 if (open_args->claim == CLAIM_DELEGATE_CUR) { 747 lost_rqstp->lr_ostateid = 748 open_args->open_claim4_u.delegate_cur_info.delegate_stateid; 749 srccfp = open_args->open_claim4_u.delegate_cur_info.cfile; 750 } else { 751 srccfp = open_args->open_claim4_u.cfile; 752 } 753 lost_rqstp->lr_ofile.utf8string_len = 0; 754 lost_rqstp->lr_ofile.utf8string_val = NULL; 755 (void) str_to_utf8(srccfp, &lost_rqstp->lr_ofile); 756 lost_rqstp->lr_putfirst = FALSE; 757 } 758 759 struct nfs4_excl_time { 760 uint32 seconds; 761 uint32 nseconds; 762 }; 763 764 /* 765 * The OPEN operation creates and/or opens a regular file 766 * 767 * ARGSUSED 768 */ 769 static int 770 nfs4open_otw(vnode_t *dvp, char *file_name, struct vattr *in_va, 771 vnode_t **vpp, cred_t *cr, int create_flag, int open_flag, 772 enum createmode4 createmode, int file_just_been_created) 773 { 774 rnode4_t *rp; 775 rnode4_t *drp = VTOR4(dvp); 776 vnode_t *vp = NULL; 777 vnode_t *vpi = *vpp; 778 bool_t needrecov = FALSE; 779 780 int doqueue = 1; 781 782 COMPOUND4args_clnt args; 783 COMPOUND4res_clnt res; 784 nfs_argop4 *argop; 785 nfs_resop4 *resop; 786 int argoplist_size; 787 int idx_open, idx_fattr; 788 789 GETFH4res *gf_res = NULL; 790 OPEN4res *op_res = NULL; 791 nfs4_ga_res_t *garp; 792 fattr4 *attr = NULL; 793 struct nfs4_excl_time verf; 794 bool_t did_excl_setup = FALSE; 795 int created_osp; 796 797 OPEN4cargs *open_args; 798 nfs4_open_owner_t *oop = NULL; 799 nfs4_open_stream_t *osp = NULL; 800 seqid4 seqid = 0; 801 bool_t retry_open = FALSE; 802 nfs4_recov_state_t recov_state; 803 nfs4_lost_rqst_t lost_rqst; 804 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 805 hrtime_t t; 806 int acc = 0; 807 cred_t *cred_otw = NULL; /* cred used to do the RPC call */ 808 cred_t *ncr = NULL; 809 810 nfs4_sharedfh_t *otw_sfh; 811 nfs4_sharedfh_t *orig_sfh; 812 int fh_differs = 0; 813 int numops, setgid_flag; 814 int num_bseqid_retry = NFS4_NUM_RETRY_BAD_SEQID + 1; 815 816 /* 817 * Make sure we properly deal with setting the right gid on 818 * a newly created file to reflect the parent's setgid bit 819 */ 820 setgid_flag = 0; 821 if (create_flag && in_va) { 822 823 /* 824 * If there is grpid mount flag used or 825 * the parent's directory has the setgid bit set 826 * _and_ the client was able to get a valid mapping 827 * for the parent dir's owner_group, we want to 828 * append NVERIFY(owner_group == dva.va_gid) and 829 * SETATTR to the CREATE compound. 830 */ 831 mutex_enter(&drp->r_statelock); 832 if ((VTOMI4(dvp)->mi_flags & MI4_GRPID || 833 drp->r_attr.va_mode & VSGID) && 834 drp->r_attr.va_gid != GID_NOBODY) { 835 in_va->va_mask |= AT_GID; 836 in_va->va_gid = drp->r_attr.va_gid; 837 setgid_flag = 1; 838 } 839 mutex_exit(&drp->r_statelock); 840 } 841 842 /* 843 * Normal/non-create compound: 844 * PUTFH(dfh) + OPEN(create) + GETFH + GETATTR(new) 845 * 846 * Open(create) compound no setgid: 847 * PUTFH(dfh) + SAVEFH + OPEN(create) + GETFH + GETATTR(new) + 848 * RESTOREFH + GETATTR 849 * 850 * Open(create) setgid: 851 * PUTFH(dfh) + OPEN(create) + GETFH + GETATTR(new) + 852 * SAVEFH + PUTFH(dfh) + GETATTR(dvp) + RESTOREFH + 853 * NVERIFY(grp) + SETATTR 854 */ 855 if (setgid_flag) { 856 numops = 10; 857 idx_open = 1; 858 idx_fattr = 3; 859 } else if (create_flag) { 860 numops = 7; 861 idx_open = 2; 862 idx_fattr = 4; 863 } else { 864 numops = 4; 865 idx_open = 1; 866 idx_fattr = 3; 867 } 868 869 args.array_len = numops; 870 argoplist_size = numops * sizeof (nfs_argop4); 871 argop = kmem_alloc(argoplist_size, KM_SLEEP); 872 873 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, "nfs4open_otw: " 874 "open %s open flag 0x%x cred %p", file_name, open_flag, 875 (void *)cr)); 876 877 ASSERT(nfs_zone() == VTOMI4(dvp)->mi_zone); 878 if (create_flag) { 879 /* 880 * We are to create a file. Initialize the passed in vnode 881 * pointer. 882 */ 883 vpi = NULL; 884 } else { 885 /* 886 * Check to see if the client owns a read delegation and is 887 * trying to open for write. If so, then return the delegation 888 * to avoid the server doing a cb_recall and returning DELAY. 889 * NB - we don't use the statev4_lock here because we'd have 890 * to drop the lock anyway and the result would be stale. 891 */ 892 if ((open_flag & FWRITE) && 893 VTOR4(vpi)->r_deleg_type == OPEN_DELEGATE_READ) 894 (void) nfs4delegreturn(VTOR4(vpi), NFS4_DR_REOPEN); 895 896 /* 897 * If the file has a delegation, then do an access check up 898 * front. This avoids having to an access check later after 899 * we've already done start_op, which could deadlock. 900 */ 901 if (VTOR4(vpi)->r_deleg_type != OPEN_DELEGATE_NONE) { 902 if (open_flag & FREAD && 903 nfs4_access(vpi, VREAD, 0, cr, NULL) == 0) 904 acc |= VREAD; 905 if (open_flag & FWRITE && 906 nfs4_access(vpi, VWRITE, 0, cr, NULL) == 0) 907 acc |= VWRITE; 908 } 909 } 910 911 drp = VTOR4(dvp); 912 913 recov_state.rs_flags = 0; 914 recov_state.rs_num_retry_despite_err = 0; 915 cred_otw = cr; 916 917 recov_retry: 918 fh_differs = 0; 919 nfs4_error_zinit(&e); 920 921 e.error = nfs4_start_op(VTOMI4(dvp), dvp, vpi, &recov_state); 922 if (e.error) { 923 if (ncr != NULL) 924 crfree(ncr); 925 kmem_free(argop, argoplist_size); 926 return (e.error); 927 } 928 929 args.ctag = TAG_OPEN; 930 args.array_len = numops; 931 args.array = argop; 932 933 /* putfh directory fh */ 934 argop[0].argop = OP_CPUTFH; 935 argop[0].nfs_argop4_u.opcputfh.sfh = drp->r_fh; 936 937 /* OPEN: either op 1 or op 2 depending upon create/setgid flags */ 938 argop[idx_open].argop = OP_COPEN; 939 open_args = &argop[idx_open].nfs_argop4_u.opcopen; 940 open_args->claim = CLAIM_NULL; 941 942 /* name of file */ 943 open_args->open_claim4_u.cfile = file_name; 944 open_args->owner.owner_len = 0; 945 open_args->owner.owner_val = NULL; 946 947 if (create_flag) { 948 /* CREATE a file */ 949 open_args->opentype = OPEN4_CREATE; 950 open_args->mode = createmode; 951 if (createmode == EXCLUSIVE4) { 952 if (did_excl_setup == FALSE) { 953 verf.seconds = zone_get_hostid(NULL); 954 if (verf.seconds != 0) 955 verf.nseconds = newnum(); 956 else { 957 timestruc_t now; 958 959 gethrestime(&now); 960 verf.seconds = now.tv_sec; 961 verf.nseconds = now.tv_nsec; 962 } 963 /* 964 * Since the server will use this value for the 965 * mtime, make sure that it can't overflow. Zero 966 * out the MSB. The actual value does not matter 967 * here, only its uniqeness. 968 */ 969 verf.seconds &= INT32_MAX; 970 did_excl_setup = TRUE; 971 } 972 973 /* Now copy over verifier to OPEN4args. */ 974 open_args->createhow4_u.createverf = *(uint64_t *)&verf; 975 } else { 976 int v_error; 977 bitmap4 supp_attrs; 978 servinfo4_t *svp; 979 980 attr = &open_args->createhow4_u.createattrs; 981 982 svp = drp->r_server; 983 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); 984 supp_attrs = svp->sv_supp_attrs; 985 nfs_rw_exit(&svp->sv_lock); 986 987 /* GUARDED4 or UNCHECKED4 */ 988 v_error = vattr_to_fattr4(in_va, NULL, attr, 0, OP_OPEN, 989 supp_attrs); 990 if (v_error) { 991 bzero(attr, sizeof (*attr)); 992 nfs4args_copen_free(open_args); 993 nfs4_end_op(VTOMI4(dvp), dvp, vpi, 994 &recov_state, FALSE); 995 if (ncr != NULL) 996 crfree(ncr); 997 kmem_free(argop, argoplist_size); 998 return (v_error); 999 } 1000 } 1001 } else { 1002 /* NO CREATE */ 1003 open_args->opentype = OPEN4_NOCREATE; 1004 } 1005 1006 if (recov_state.rs_sp != NULL) { 1007 mutex_enter(&recov_state.rs_sp->s_lock); 1008 open_args->owner.clientid = recov_state.rs_sp->clientid; 1009 mutex_exit(&recov_state.rs_sp->s_lock); 1010 } else { 1011 /* XXX should we just fail here? */ 1012 open_args->owner.clientid = 0; 1013 } 1014 1015 /* 1016 * This increments oop's ref count or creates a temporary 'just_created' 1017 * open owner that will become valid when this OPEN/OPEN_CONFIRM call 1018 * completes. 1019 */ 1020 mutex_enter(&VTOMI4(dvp)->mi_lock); 1021 1022 /* See if a permanent or just created open owner exists */ 1023 oop = find_open_owner_nolock(cr, NFS4_JUST_CREATED, VTOMI4(dvp)); 1024 if (!oop) { 1025 /* 1026 * This open owner does not exist so create a temporary 1027 * just created one. 1028 */ 1029 oop = create_open_owner(cr, VTOMI4(dvp)); 1030 ASSERT(oop != NULL); 1031 } 1032 mutex_exit(&VTOMI4(dvp)->mi_lock); 1033 1034 /* this length never changes, do alloc before seqid sync */ 1035 open_args->owner.owner_len = sizeof (oop->oo_name); 1036 open_args->owner.owner_val = 1037 kmem_alloc(open_args->owner.owner_len, KM_SLEEP); 1038 1039 e.error = nfs4_start_open_seqid_sync(oop, VTOMI4(dvp)); 1040 if (e.error == EAGAIN) { 1041 open_owner_rele(oop); 1042 nfs4args_copen_free(open_args); 1043 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, TRUE); 1044 if (ncr != NULL) { 1045 crfree(ncr); 1046 ncr = NULL; 1047 } 1048 goto recov_retry; 1049 } 1050 1051 /* Check to see if we need to do the OTW call */ 1052 if (!create_flag) { 1053 if (!nfs4_is_otw_open_necessary(oop, open_flag, vpi, 1054 file_just_been_created, &e.error, acc, &recov_state)) { 1055 1056 /* 1057 * The OTW open is not necessary. Either 1058 * the open can succeed without it (eg. 1059 * delegation, error == 0) or the open 1060 * must fail due to an access failure 1061 * (error != 0). In either case, tidy 1062 * up and return. 1063 */ 1064 1065 nfs4_end_open_seqid_sync(oop); 1066 open_owner_rele(oop); 1067 nfs4args_copen_free(open_args); 1068 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, FALSE); 1069 if (ncr != NULL) 1070 crfree(ncr); 1071 kmem_free(argop, argoplist_size); 1072 return (e.error); 1073 } 1074 } 1075 1076 bcopy(&oop->oo_name, open_args->owner.owner_val, 1077 open_args->owner.owner_len); 1078 1079 seqid = nfs4_get_open_seqid(oop) + 1; 1080 open_args->seqid = seqid; 1081 open_args->share_access = 0; 1082 if (open_flag & FREAD) 1083 open_args->share_access |= OPEN4_SHARE_ACCESS_READ; 1084 if (open_flag & FWRITE) 1085 open_args->share_access |= OPEN4_SHARE_ACCESS_WRITE; 1086 open_args->share_deny = OPEN4_SHARE_DENY_NONE; 1087 1088 1089 1090 /* 1091 * getfh w/sanity check for idx_open/idx_fattr 1092 */ 1093 ASSERT((idx_open + 1) == (idx_fattr - 1)); 1094 argop[idx_open + 1].argop = OP_GETFH; 1095 1096 /* getattr */ 1097 argop[idx_fattr].argop = OP_GETATTR; 1098 argop[idx_fattr].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 1099 argop[idx_fattr].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp); 1100 1101 if (setgid_flag) { 1102 vattr_t _v; 1103 servinfo4_t *svp; 1104 bitmap4 supp_attrs; 1105 1106 svp = drp->r_server; 1107 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); 1108 supp_attrs = svp->sv_supp_attrs; 1109 nfs_rw_exit(&svp->sv_lock); 1110 1111 /* 1112 * For setgid case, we need to: 1113 * 4:savefh(new) 5:putfh(dir) 6:getattr(dir) 7:restorefh(new) 1114 */ 1115 argop[4].argop = OP_SAVEFH; 1116 1117 argop[5].argop = OP_CPUTFH; 1118 argop[5].nfs_argop4_u.opcputfh.sfh = drp->r_fh; 1119 1120 argop[6].argop = OP_GETATTR; 1121 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 1122 argop[6].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp); 1123 1124 argop[7].argop = OP_RESTOREFH; 1125 1126 /* 1127 * nverify 1128 */ 1129 _v.va_mask = AT_GID; 1130 _v.va_gid = in_va->va_gid; 1131 if (!(e.error = nfs4args_verify(&argop[8], &_v, OP_NVERIFY, 1132 supp_attrs))) { 1133 1134 /* 1135 * setattr 1136 * 1137 * We _know_ we're not messing with AT_SIZE or 1138 * AT_XTIME, so no need for stateid or flags. 1139 * Also we specify NULL rp since we're only 1140 * interested in setting owner_group attributes. 1141 */ 1142 nfs4args_setattr(&argop[9], &_v, NULL, 0, NULL, cr, 1143 supp_attrs, &e.error, 0); 1144 if (e.error) 1145 nfs4args_verify_free(&argop[8]); 1146 } 1147 1148 if (e.error) { 1149 /* 1150 * XXX - Revisit the last argument to nfs4_end_op() 1151 * once 5020486 is fixed. 1152 */ 1153 nfs4_end_open_seqid_sync(oop); 1154 open_owner_rele(oop); 1155 nfs4args_copen_free(open_args); 1156 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, TRUE); 1157 if (ncr != NULL) 1158 crfree(ncr); 1159 kmem_free(argop, argoplist_size); 1160 return (e.error); 1161 } 1162 } else if (create_flag) { 1163 argop[1].argop = OP_SAVEFH; 1164 1165 argop[5].argop = OP_RESTOREFH; 1166 1167 argop[6].argop = OP_GETATTR; 1168 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 1169 argop[6].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp); 1170 } 1171 1172 NFS4_DEBUG(nfs4_client_call_debug, (CE_NOTE, 1173 "nfs4open_otw: %s call, nm %s, rp %s", 1174 needrecov ? "recov" : "first", file_name, 1175 rnode4info(VTOR4(dvp)))); 1176 1177 t = gethrtime(); 1178 1179 rfs4call(VTOMI4(dvp), &args, &res, cred_otw, &doqueue, 0, &e); 1180 1181 if (!e.error && nfs4_need_to_bump_seqid(&res)) 1182 nfs4_set_open_seqid(seqid, oop, args.ctag); 1183 1184 needrecov = nfs4_needs_recovery(&e, TRUE, dvp->v_vfsp); 1185 1186 if (e.error || needrecov) { 1187 bool_t abort = FALSE; 1188 1189 if (needrecov) { 1190 nfs4_bseqid_entry_t *bsep = NULL; 1191 1192 nfs4open_save_lost_rqst(e.error, &lost_rqst, oop, 1193 cred_otw, vpi, dvp, open_args); 1194 1195 if (!e.error && res.status == NFS4ERR_BAD_SEQID) { 1196 bsep = nfs4_create_bseqid_entry(oop, NULL, 1197 vpi, 0, args.ctag, open_args->seqid); 1198 num_bseqid_retry--; 1199 } 1200 1201 abort = nfs4_start_recovery(&e, VTOMI4(dvp), dvp, vpi, 1202 NULL, lost_rqst.lr_op == OP_OPEN ? 1203 &lost_rqst : NULL, OP_OPEN, bsep, NULL, NULL); 1204 1205 if (bsep) 1206 kmem_free(bsep, sizeof (*bsep)); 1207 /* give up if we keep getting BAD_SEQID */ 1208 if (num_bseqid_retry == 0) 1209 abort = TRUE; 1210 if (abort == TRUE && e.error == 0) 1211 e.error = geterrno4(res.status); 1212 } 1213 nfs4_end_open_seqid_sync(oop); 1214 open_owner_rele(oop); 1215 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, needrecov); 1216 nfs4args_copen_free(open_args); 1217 if (setgid_flag) { 1218 nfs4args_verify_free(&argop[8]); 1219 nfs4args_setattr_free(&argop[9]); 1220 } 1221 if (!e.error) 1222 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1223 if (ncr != NULL) { 1224 crfree(ncr); 1225 ncr = NULL; 1226 } 1227 if (!needrecov || abort == TRUE || e.error == EINTR || 1228 NFS4_FRC_UNMT_ERR(e.error, dvp->v_vfsp)) { 1229 kmem_free(argop, argoplist_size); 1230 return (e.error); 1231 } 1232 goto recov_retry; 1233 } 1234 1235 /* 1236 * Will check and update lease after checking the rflag for 1237 * OPEN_CONFIRM in the successful OPEN call. 1238 */ 1239 if (res.status != NFS4_OK && res.array_len <= idx_fattr + 1) { 1240 1241 /* 1242 * XXX what if we're crossing mount points from server1:/drp 1243 * to server2:/drp/rp. 1244 */ 1245 1246 /* Signal our end of use of the open seqid */ 1247 nfs4_end_open_seqid_sync(oop); 1248 1249 /* 1250 * This will destroy the open owner if it was just created, 1251 * and no one else has put a reference on it. 1252 */ 1253 open_owner_rele(oop); 1254 if (create_flag && (createmode != EXCLUSIVE4) && 1255 res.status == NFS4ERR_BADOWNER) 1256 nfs4_log_badowner(VTOMI4(dvp), OP_OPEN); 1257 1258 e.error = geterrno4(res.status); 1259 nfs4args_copen_free(open_args); 1260 if (setgid_flag) { 1261 nfs4args_verify_free(&argop[8]); 1262 nfs4args_setattr_free(&argop[9]); 1263 } 1264 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1265 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, needrecov); 1266 /* 1267 * If the reply is NFS4ERR_ACCESS, it may be because 1268 * we are root (no root net access). If the real uid 1269 * is not root, then retry with the real uid instead. 1270 */ 1271 if (ncr != NULL) { 1272 crfree(ncr); 1273 ncr = NULL; 1274 } 1275 if (res.status == NFS4ERR_ACCESS && 1276 (ncr = crnetadjust(cred_otw)) != NULL) { 1277 cred_otw = ncr; 1278 goto recov_retry; 1279 } 1280 kmem_free(argop, argoplist_size); 1281 return (e.error); 1282 } 1283 1284 resop = &res.array[idx_open]; /* open res */ 1285 op_res = &resop->nfs_resop4_u.opopen; 1286 1287 #ifdef DEBUG 1288 /* 1289 * verify attrset bitmap 1290 */ 1291 if (create_flag && 1292 (createmode == UNCHECKED4 || createmode == GUARDED4)) { 1293 /* make sure attrset returned is what we asked for */ 1294 /* XXX Ignore this 'error' for now */ 1295 if (attr->attrmask != op_res->attrset) 1296 /* EMPTY */; 1297 } 1298 #endif 1299 1300 if (op_res->rflags & OPEN4_RESULT_LOCKTYPE_POSIX) { 1301 mutex_enter(&VTOMI4(dvp)->mi_lock); 1302 VTOMI4(dvp)->mi_flags |= MI4_POSIX_LOCK; 1303 mutex_exit(&VTOMI4(dvp)->mi_lock); 1304 } 1305 1306 resop = &res.array[idx_open + 1]; /* getfh res */ 1307 gf_res = &resop->nfs_resop4_u.opgetfh; 1308 1309 otw_sfh = sfh4_get(&gf_res->object, VTOMI4(dvp)); 1310 1311 /* 1312 * The open stateid has been updated on the server but not 1313 * on the client yet. There is a path: makenfs4node->nfs4_attr_cache-> 1314 * flush_pages->VOP_PUTPAGE->...->nfs4write where we will issue an OTW 1315 * WRITE call. That, however, will use the old stateid, so go ahead 1316 * and upate the open stateid now, before any call to makenfs4node. 1317 */ 1318 if (vpi) { 1319 nfs4_open_stream_t *tmp_osp; 1320 rnode4_t *tmp_rp = VTOR4(vpi); 1321 1322 tmp_osp = find_open_stream(oop, tmp_rp); 1323 if (tmp_osp) { 1324 tmp_osp->open_stateid = op_res->stateid; 1325 mutex_exit(&tmp_osp->os_sync_lock); 1326 open_stream_rele(tmp_osp, tmp_rp); 1327 } 1328 1329 /* 1330 * We must determine if the file handle given by the otw open 1331 * is the same as the file handle which was passed in with 1332 * *vpp. This case can be reached if the file we are trying 1333 * to open has been removed and another file has been created 1334 * having the same file name. The passed in vnode is released 1335 * later. 1336 */ 1337 orig_sfh = VTOR4(vpi)->r_fh; 1338 fh_differs = nfs4cmpfh(&orig_sfh->sfh_fh, &otw_sfh->sfh_fh); 1339 } 1340 1341 garp = &res.array[idx_fattr].nfs_resop4_u.opgetattr.ga_res; 1342 1343 if (create_flag || fh_differs) { 1344 int rnode_err = 0; 1345 1346 vp = makenfs4node(otw_sfh, garp, dvp->v_vfsp, t, cr, 1347 dvp, fn_get(VTOSV(dvp)->sv_name, file_name, otw_sfh)); 1348 1349 if (e.error) 1350 PURGE_ATTRCACHE4(vp); 1351 /* 1352 * For the newly created vp case, make sure the rnode 1353 * isn't bad before using it. 1354 */ 1355 mutex_enter(&(VTOR4(vp))->r_statelock); 1356 if (VTOR4(vp)->r_flags & R4RECOVERR) 1357 rnode_err = EIO; 1358 mutex_exit(&(VTOR4(vp))->r_statelock); 1359 1360 if (rnode_err) { 1361 nfs4_end_open_seqid_sync(oop); 1362 nfs4args_copen_free(open_args); 1363 if (setgid_flag) { 1364 nfs4args_verify_free(&argop[8]); 1365 nfs4args_setattr_free(&argop[9]); 1366 } 1367 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1368 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, 1369 needrecov); 1370 open_owner_rele(oop); 1371 VN_RELE(vp); 1372 if (ncr != NULL) 1373 crfree(ncr); 1374 sfh4_rele(&otw_sfh); 1375 kmem_free(argop, argoplist_size); 1376 return (EIO); 1377 } 1378 } else { 1379 vp = vpi; 1380 } 1381 sfh4_rele(&otw_sfh); 1382 1383 /* 1384 * It seems odd to get a full set of attrs and then not update 1385 * the object's attrcache in the non-create case. Create case uses 1386 * the attrs since makenfs4node checks to see if the attrs need to 1387 * be updated (and then updates them). The non-create case should 1388 * update attrs also. 1389 */ 1390 if (! create_flag && ! fh_differs && !e.error) { 1391 nfs4_attr_cache(vp, garp, t, cr, TRUE, NULL); 1392 } 1393 1394 nfs4_error_zinit(&e); 1395 if (op_res->rflags & OPEN4_RESULT_CONFIRM) { 1396 /* This does not do recovery for vp explicitly. */ 1397 nfs4open_confirm(vp, &seqid, &op_res->stateid, cred_otw, FALSE, 1398 &retry_open, oop, FALSE, &e, &num_bseqid_retry); 1399 1400 if (e.error || e.stat) { 1401 nfs4_end_open_seqid_sync(oop); 1402 nfs4args_copen_free(open_args); 1403 if (setgid_flag) { 1404 nfs4args_verify_free(&argop[8]); 1405 nfs4args_setattr_free(&argop[9]); 1406 } 1407 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1408 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, 1409 needrecov); 1410 open_owner_rele(oop); 1411 if (create_flag || fh_differs) { 1412 /* rele the makenfs4node */ 1413 VN_RELE(vp); 1414 } 1415 if (ncr != NULL) { 1416 crfree(ncr); 1417 ncr = NULL; 1418 } 1419 if (retry_open == TRUE) { 1420 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 1421 "nfs4open_otw: retry the open since OPEN " 1422 "CONFIRM failed with error %d stat %d", 1423 e.error, e.stat)); 1424 if (create_flag && createmode == GUARDED4) { 1425 NFS4_DEBUG(nfs4_client_recov_debug, 1426 (CE_NOTE, "nfs4open_otw: switch " 1427 "createmode from GUARDED4 to " 1428 "UNCHECKED4")); 1429 createmode = UNCHECKED4; 1430 } 1431 goto recov_retry; 1432 } 1433 if (!e.error) { 1434 if (create_flag && (createmode != EXCLUSIVE4) && 1435 e.stat == NFS4ERR_BADOWNER) 1436 nfs4_log_badowner(VTOMI4(dvp), OP_OPEN); 1437 1438 e.error = geterrno4(e.stat); 1439 } 1440 kmem_free(argop, argoplist_size); 1441 return (e.error); 1442 } 1443 } 1444 1445 rp = VTOR4(vp); 1446 1447 mutex_enter(&rp->r_statev4_lock); 1448 if (create_flag) 1449 rp->created_v4 = 1; 1450 mutex_exit(&rp->r_statev4_lock); 1451 1452 mutex_enter(&oop->oo_lock); 1453 /* Doesn't matter if 'oo_just_created' already was set as this */ 1454 oop->oo_just_created = NFS4_PERM_CREATED; 1455 if (oop->oo_cred_otw) 1456 crfree(oop->oo_cred_otw); 1457 oop->oo_cred_otw = cred_otw; 1458 crhold(oop->oo_cred_otw); 1459 mutex_exit(&oop->oo_lock); 1460 1461 /* returns with 'os_sync_lock' held */ 1462 osp = find_or_create_open_stream(oop, rp, &created_osp); 1463 if (!osp) { 1464 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, 1465 "nfs4open_otw: failed to create an open stream")); 1466 NFS4_DEBUG(nfs4_seqid_sync, (CE_NOTE, "nfs4open_otw: " 1467 "signal our end of use of the open seqid")); 1468 1469 nfs4_end_open_seqid_sync(oop); 1470 open_owner_rele(oop); 1471 nfs4args_copen_free(open_args); 1472 if (setgid_flag) { 1473 nfs4args_verify_free(&argop[8]); 1474 nfs4args_setattr_free(&argop[9]); 1475 } 1476 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1477 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, needrecov); 1478 if (create_flag || fh_differs) 1479 VN_RELE(vp); 1480 if (ncr != NULL) 1481 crfree(ncr); 1482 1483 kmem_free(argop, argoplist_size); 1484 return (EINVAL); 1485 1486 } 1487 1488 osp->open_stateid = op_res->stateid; 1489 1490 if (open_flag & FREAD) 1491 osp->os_share_acc_read++; 1492 if (open_flag & FWRITE) 1493 osp->os_share_acc_write++; 1494 osp->os_share_deny_none++; 1495 1496 /* 1497 * Need to reset this bitfield for the possible case where we were 1498 * going to OTW CLOSE the file, got a non-recoverable error, and before 1499 * we could retry the CLOSE, OPENed the file again. 1500 */ 1501 ASSERT(osp->os_open_owner->oo_seqid_inuse); 1502 osp->os_final_close = 0; 1503 osp->os_force_close = 0; 1504 #ifdef DEBUG 1505 if (osp->os_failed_reopen) 1506 NFS4_DEBUG(nfs4_open_stream_debug, (CE_NOTE, "nfs4open_otw:" 1507 " clearing os_failed_reopen for osp %p, cr %p, rp %s", 1508 (void *)osp, (void *)cr, rnode4info(rp))); 1509 #endif 1510 osp->os_failed_reopen = 0; 1511 1512 mutex_exit(&osp->os_sync_lock); 1513 1514 nfs4_end_open_seqid_sync(oop); 1515 1516 if (created_osp && recov_state.rs_sp != NULL) { 1517 mutex_enter(&recov_state.rs_sp->s_lock); 1518 nfs4_inc_state_ref_count_nolock(recov_state.rs_sp, VTOMI4(dvp)); 1519 mutex_exit(&recov_state.rs_sp->s_lock); 1520 } 1521 1522 /* get rid of our reference to find oop */ 1523 open_owner_rele(oop); 1524 1525 open_stream_rele(osp, rp); 1526 1527 /* accept delegation, if any */ 1528 nfs4_delegation_accept(rp, CLAIM_NULL, op_res, garp, cred_otw); 1529 1530 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, needrecov); 1531 1532 if (createmode == EXCLUSIVE4 && 1533 (in_va->va_mask & ~(AT_GID | AT_SIZE))) { 1534 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, "nfs4open_otw:" 1535 " EXCLUSIVE4: sending a SETATTR")); 1536 /* 1537 * If doing an exclusive create, then generate 1538 * a SETATTR to set the initial attributes. 1539 * Try to set the mtime and the atime to the 1540 * server's current time. It is somewhat 1541 * expected that these fields will be used to 1542 * store the exclusive create cookie. If not, 1543 * server implementors will need to know that 1544 * a SETATTR will follow an exclusive create 1545 * and the cookie should be destroyed if 1546 * appropriate. 1547 * 1548 * The AT_GID and AT_SIZE bits are turned off 1549 * so that the SETATTR request will not attempt 1550 * to process these. The gid will be set 1551 * separately if appropriate. The size is turned 1552 * off because it is assumed that a new file will 1553 * be created empty and if the file wasn't empty, 1554 * then the exclusive create will have failed 1555 * because the file must have existed already. 1556 * Therefore, no truncate operation is needed. 1557 */ 1558 in_va->va_mask &= ~(AT_GID | AT_SIZE); 1559 in_va->va_mask |= (AT_MTIME | AT_ATIME); 1560 1561 e.error = nfs4setattr(vp, in_va, 0, cr, NULL); 1562 if (e.error) { 1563 /* 1564 * Couldn't correct the attributes of 1565 * the newly created file and the 1566 * attributes are wrong. Remove the 1567 * file and return an error to the 1568 * application. 1569 */ 1570 /* XXX will this take care of client state ? */ 1571 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, 1572 "nfs4open_otw: EXCLUSIVE4: error %d on SETATTR:" 1573 " remove file", e.error)); 1574 VN_RELE(vp); 1575 (void) nfs4_remove(dvp, file_name, cr, NULL, 0); 1576 /* 1577 * Since we've reled the vnode and removed 1578 * the file we now need to return the error. 1579 * At this point we don't want to update the 1580 * dircaches, call nfs4_waitfor_purge_complete 1581 * or set vpp to vp so we need to skip these 1582 * as well. 1583 */ 1584 goto skip_update_dircaches; 1585 } 1586 } 1587 1588 /* 1589 * If we created or found the correct vnode, due to create_flag or 1590 * fh_differs being set, then update directory cache attribute, readdir 1591 * and dnlc caches. 1592 */ 1593 if (create_flag || fh_differs) { 1594 dirattr_info_t dinfo, *dinfop; 1595 1596 /* 1597 * Make sure getattr succeeded before using results. 1598 * note: op 7 is getattr(dir) for both flavors of 1599 * open(create). 1600 */ 1601 if (create_flag && res.status == NFS4_OK) { 1602 dinfo.di_time_call = t; 1603 dinfo.di_cred = cr; 1604 dinfo.di_garp = 1605 &res.array[6].nfs_resop4_u.opgetattr.ga_res; 1606 dinfop = &dinfo; 1607 } else { 1608 dinfop = NULL; 1609 } 1610 1611 nfs4_update_dircaches(&op_res->cinfo, dvp, vp, file_name, 1612 dinfop); 1613 } 1614 1615 /* 1616 * If the page cache for this file was flushed from actions 1617 * above, it was done asynchronously and if that is true, 1618 * there is a need to wait here for it to complete. This must 1619 * be done outside of start_fop/end_fop. 1620 */ 1621 (void) nfs4_waitfor_purge_complete(vp); 1622 1623 /* 1624 * It is implicit that we are in the open case (create_flag == 0) since 1625 * fh_differs can only be set to a non-zero value in the open case. 1626 */ 1627 if (fh_differs != 0 && vpi != NULL) 1628 VN_RELE(vpi); 1629 1630 /* 1631 * Be sure to set *vpp to the correct value before returning. 1632 */ 1633 *vpp = vp; 1634 1635 skip_update_dircaches: 1636 1637 nfs4args_copen_free(open_args); 1638 if (setgid_flag) { 1639 nfs4args_verify_free(&argop[8]); 1640 nfs4args_setattr_free(&argop[9]); 1641 } 1642 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1643 1644 if (ncr) 1645 crfree(ncr); 1646 kmem_free(argop, argoplist_size); 1647 return (e.error); 1648 } 1649 1650 /* 1651 * Reopen an open instance. cf. nfs4open_otw(). 1652 * 1653 * Errors are returned by the nfs4_error_t parameter. 1654 * - ep->error contains an errno value or zero. 1655 * - if it is zero, ep->stat is set to an NFS status code, if any. 1656 * If the file could not be reopened, but the caller should continue, the 1657 * file is marked dead and no error values are returned. If the caller 1658 * should stop recovering open files and start over, either the ep->error 1659 * value or ep->stat will indicate an error (either something that requires 1660 * recovery or EAGAIN). Note that some recovery (e.g., expired volatile 1661 * filehandles) may be handled silently by this routine. 1662 * - if it is EINTR, ETIMEDOUT, or NFS4_FRC_UNMT_ERR, recovery for lost state 1663 * will be started, so the caller should not do it. 1664 * 1665 * Gotos: 1666 * - kill_file : reopen failed in such a fashion to constitute marking the 1667 * file dead and setting the open stream's 'os_failed_reopen' as 1. This 1668 * is for cases where recovery is not possible. 1669 * - failed_reopen : same as above, except that the file has already been 1670 * marked dead, so no need to do it again. 1671 * - bailout : reopen failed but we are able to recover and retry the reopen - 1672 * either within this function immediately or via the calling function. 1673 */ 1674 1675 void 1676 nfs4_reopen(vnode_t *vp, nfs4_open_stream_t *osp, nfs4_error_t *ep, 1677 open_claim_type4 claim, bool_t frc_use_claim_previous, 1678 bool_t is_recov) 1679 { 1680 COMPOUND4args_clnt args; 1681 COMPOUND4res_clnt res; 1682 nfs_argop4 argop[4]; 1683 nfs_resop4 *resop; 1684 OPEN4res *op_res = NULL; 1685 OPEN4cargs *open_args; 1686 GETFH4res *gf_res; 1687 rnode4_t *rp = VTOR4(vp); 1688 int doqueue = 1; 1689 cred_t *cr = NULL, *cred_otw = NULL; 1690 nfs4_open_owner_t *oop = NULL; 1691 seqid4 seqid; 1692 nfs4_ga_res_t *garp; 1693 char fn[MAXNAMELEN]; 1694 nfs4_recov_state_t recov = {NULL, 0}; 1695 nfs4_lost_rqst_t lost_rqst; 1696 mntinfo4_t *mi = VTOMI4(vp); 1697 bool_t abort; 1698 char *failed_msg = ""; 1699 int fh_different; 1700 hrtime_t t; 1701 nfs4_bseqid_entry_t *bsep = NULL; 1702 1703 ASSERT(nfs4_consistent_type(vp)); 1704 ASSERT(nfs_zone() == mi->mi_zone); 1705 1706 nfs4_error_zinit(ep); 1707 1708 /* this is the cred used to find the open owner */ 1709 cr = state_to_cred(osp); 1710 if (cr == NULL) { 1711 failed_msg = "Couldn't reopen: no cred"; 1712 goto kill_file; 1713 } 1714 /* use this cred for OTW operations */ 1715 cred_otw = nfs4_get_otw_cred(cr, mi, osp->os_open_owner); 1716 1717 top: 1718 nfs4_error_zinit(ep); 1719 1720 if (mi->mi_vfsp->vfs_flag & VFS_UNMOUNTED) { 1721 /* File system has been unmounted, quit */ 1722 ep->error = EIO; 1723 failed_msg = "Couldn't reopen: file system has been unmounted"; 1724 goto kill_file; 1725 } 1726 1727 oop = osp->os_open_owner; 1728 1729 ASSERT(oop != NULL); 1730 if (oop == NULL) { /* be defensive in non-DEBUG */ 1731 failed_msg = "can't reopen: no open owner"; 1732 goto kill_file; 1733 } 1734 open_owner_hold(oop); 1735 1736 ep->error = nfs4_start_open_seqid_sync(oop, mi); 1737 if (ep->error) { 1738 open_owner_rele(oop); 1739 oop = NULL; 1740 goto bailout; 1741 } 1742 1743 /* 1744 * If the rnode has a delegation and the delegation has been 1745 * recovered and the server didn't request a recall and the caller 1746 * didn't specifically ask for CLAIM_PREVIOUS (nfs4frlock during 1747 * recovery) and the rnode hasn't been marked dead, then install 1748 * the delegation stateid in the open stream. Otherwise, proceed 1749 * with a CLAIM_PREVIOUS or CLAIM_NULL OPEN. 1750 */ 1751 mutex_enter(&rp->r_statev4_lock); 1752 if (rp->r_deleg_type != OPEN_DELEGATE_NONE && 1753 !rp->r_deleg_return_pending && 1754 (rp->r_deleg_needs_recovery == OPEN_DELEGATE_NONE) && 1755 !rp->r_deleg_needs_recall && 1756 claim != CLAIM_DELEGATE_CUR && !frc_use_claim_previous && 1757 !(rp->r_flags & R4RECOVERR)) { 1758 mutex_enter(&osp->os_sync_lock); 1759 osp->os_delegation = 1; 1760 osp->open_stateid = rp->r_deleg_stateid; 1761 mutex_exit(&osp->os_sync_lock); 1762 mutex_exit(&rp->r_statev4_lock); 1763 goto bailout; 1764 } 1765 mutex_exit(&rp->r_statev4_lock); 1766 1767 /* 1768 * If the file failed recovery, just quit. This failure need not 1769 * affect other reopens, so don't return an error. 1770 */ 1771 mutex_enter(&rp->r_statelock); 1772 if (rp->r_flags & R4RECOVERR) { 1773 mutex_exit(&rp->r_statelock); 1774 ep->error = 0; 1775 goto failed_reopen; 1776 } 1777 mutex_exit(&rp->r_statelock); 1778 1779 /* 1780 * argop is empty here 1781 * 1782 * PUTFH, OPEN, GETATTR 1783 */ 1784 args.ctag = TAG_REOPEN; 1785 args.array_len = 4; 1786 args.array = argop; 1787 1788 NFS4_DEBUG(nfs4_client_failover_debug, (CE_NOTE, 1789 "nfs4_reopen: file is type %d, id %s", 1790 vp->v_type, rnode4info(VTOR4(vp)))); 1791 1792 argop[0].argop = OP_CPUTFH; 1793 1794 if (claim != CLAIM_PREVIOUS) { 1795 /* 1796 * if this is a file mount then 1797 * use the mntinfo parentfh 1798 */ 1799 argop[0].nfs_argop4_u.opcputfh.sfh = 1800 (vp->v_flag & VROOT) ? mi->mi_srvparentfh : 1801 VTOSV(vp)->sv_dfh; 1802 } else { 1803 /* putfh fh to reopen */ 1804 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh; 1805 } 1806 1807 argop[1].argop = OP_COPEN; 1808 open_args = &argop[1].nfs_argop4_u.opcopen; 1809 open_args->claim = claim; 1810 1811 if (claim == CLAIM_NULL) { 1812 1813 if ((ep->error = vtoname(vp, fn, MAXNAMELEN)) != 0) { 1814 nfs_cmn_err(ep->error, CE_WARN, "nfs4_reopen: vtoname " 1815 "failed for vp 0x%p for CLAIM_NULL with %m", 1816 (void *)vp); 1817 failed_msg = "Couldn't reopen: vtoname failed for " 1818 "CLAIM_NULL"; 1819 /* nothing allocated yet */ 1820 goto kill_file; 1821 } 1822 1823 open_args->open_claim4_u.cfile = fn; 1824 } else if (claim == CLAIM_PREVIOUS) { 1825 1826 /* 1827 * We have two cases to deal with here: 1828 * 1) We're being called to reopen files in order to satisfy 1829 * a lock operation request which requires us to explicitly 1830 * reopen files which were opened under a delegation. If 1831 * we're in recovery, we *must* use CLAIM_PREVIOUS. In 1832 * that case, frc_use_claim_previous is TRUE and we must 1833 * use the rnode's current delegation type (r_deleg_type). 1834 * 2) We're reopening files during some form of recovery. 1835 * In this case, frc_use_claim_previous is FALSE and we 1836 * use the delegation type appropriate for recovery 1837 * (r_deleg_needs_recovery). 1838 */ 1839 mutex_enter(&rp->r_statev4_lock); 1840 open_args->open_claim4_u.delegate_type = 1841 frc_use_claim_previous ? 1842 rp->r_deleg_type : 1843 rp->r_deleg_needs_recovery; 1844 mutex_exit(&rp->r_statev4_lock); 1845 1846 } else if (claim == CLAIM_DELEGATE_CUR) { 1847 1848 if ((ep->error = vtoname(vp, fn, MAXNAMELEN)) != 0) { 1849 nfs_cmn_err(ep->error, CE_WARN, "nfs4_reopen: vtoname " 1850 "failed for vp 0x%p for CLAIM_DELEGATE_CUR " 1851 "with %m", (void *)vp); 1852 failed_msg = "Couldn't reopen: vtoname failed for " 1853 "CLAIM_DELEGATE_CUR"; 1854 /* nothing allocated yet */ 1855 goto kill_file; 1856 } 1857 1858 mutex_enter(&rp->r_statev4_lock); 1859 open_args->open_claim4_u.delegate_cur_info.delegate_stateid = 1860 rp->r_deleg_stateid; 1861 mutex_exit(&rp->r_statev4_lock); 1862 1863 open_args->open_claim4_u.delegate_cur_info.cfile = fn; 1864 } 1865 open_args->opentype = OPEN4_NOCREATE; 1866 open_args->owner.clientid = mi2clientid(mi); 1867 open_args->owner.owner_len = sizeof (oop->oo_name); 1868 open_args->owner.owner_val = 1869 kmem_alloc(open_args->owner.owner_len, KM_SLEEP); 1870 bcopy(&oop->oo_name, open_args->owner.owner_val, 1871 open_args->owner.owner_len); 1872 open_args->share_access = 0; 1873 open_args->share_deny = 0; 1874 1875 mutex_enter(&osp->os_sync_lock); 1876 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, "nfs4_reopen: osp %p rp " 1877 "%p: read acc %"PRIu64" write acc %"PRIu64": open ref count %d: " 1878 "mmap read %"PRIu64" mmap write %"PRIu64" claim %d ", 1879 (void *)osp, (void *)rp, osp->os_share_acc_read, 1880 osp->os_share_acc_write, osp->os_open_ref_count, 1881 osp->os_mmap_read, osp->os_mmap_write, claim)); 1882 1883 if (osp->os_share_acc_read || osp->os_mmap_read) 1884 open_args->share_access |= OPEN4_SHARE_ACCESS_READ; 1885 if (osp->os_share_acc_write || osp->os_mmap_write) 1886 open_args->share_access |= OPEN4_SHARE_ACCESS_WRITE; 1887 if (osp->os_share_deny_read) 1888 open_args->share_deny |= OPEN4_SHARE_DENY_READ; 1889 if (osp->os_share_deny_write) 1890 open_args->share_deny |= OPEN4_SHARE_DENY_WRITE; 1891 mutex_exit(&osp->os_sync_lock); 1892 1893 seqid = nfs4_get_open_seqid(oop) + 1; 1894 open_args->seqid = seqid; 1895 1896 /* Construct the getfh part of the compound */ 1897 argop[2].argop = OP_GETFH; 1898 1899 /* Construct the getattr part of the compound */ 1900 argop[3].argop = OP_GETATTR; 1901 argop[3].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 1902 argop[3].nfs_argop4_u.opgetattr.mi = mi; 1903 1904 t = gethrtime(); 1905 1906 rfs4call(mi, &args, &res, cred_otw, &doqueue, 0, ep); 1907 1908 if (ep->error) { 1909 if (!is_recov && !frc_use_claim_previous && 1910 (ep->error == EINTR || ep->error == ETIMEDOUT || 1911 NFS4_FRC_UNMT_ERR(ep->error, vp->v_vfsp))) { 1912 nfs4open_save_lost_rqst(ep->error, &lost_rqst, oop, 1913 cred_otw, vp, NULL, open_args); 1914 abort = nfs4_start_recovery(ep, 1915 VTOMI4(vp), vp, NULL, NULL, 1916 lost_rqst.lr_op == OP_OPEN ? 1917 &lost_rqst : NULL, OP_OPEN, NULL, NULL, NULL); 1918 nfs4args_copen_free(open_args); 1919 goto bailout; 1920 } 1921 1922 nfs4args_copen_free(open_args); 1923 1924 if (ep->error == EACCES && cred_otw != cr) { 1925 crfree(cred_otw); 1926 cred_otw = cr; 1927 crhold(cred_otw); 1928 nfs4_end_open_seqid_sync(oop); 1929 open_owner_rele(oop); 1930 oop = NULL; 1931 goto top; 1932 } 1933 if (ep->error == ETIMEDOUT) 1934 goto bailout; 1935 failed_msg = "Couldn't reopen: rpc error"; 1936 goto kill_file; 1937 } 1938 1939 if (nfs4_need_to_bump_seqid(&res)) 1940 nfs4_set_open_seqid(seqid, oop, args.ctag); 1941 1942 switch (res.status) { 1943 case NFS4_OK: 1944 if (recov.rs_flags & NFS4_RS_DELAY_MSG) { 1945 mutex_enter(&rp->r_statelock); 1946 rp->r_delay_interval = 0; 1947 mutex_exit(&rp->r_statelock); 1948 } 1949 break; 1950 case NFS4ERR_BAD_SEQID: 1951 bsep = nfs4_create_bseqid_entry(oop, NULL, vp, 0, 1952 args.ctag, open_args->seqid); 1953 1954 abort = nfs4_start_recovery(ep, VTOMI4(vp), vp, NULL, 1955 NULL, lost_rqst.lr_op == OP_OPEN ? &lost_rqst : 1956 NULL, OP_OPEN, bsep, NULL, NULL); 1957 1958 nfs4args_copen_free(open_args); 1959 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1960 nfs4_end_open_seqid_sync(oop); 1961 open_owner_rele(oop); 1962 oop = NULL; 1963 kmem_free(bsep, sizeof (*bsep)); 1964 1965 goto kill_file; 1966 case NFS4ERR_NO_GRACE: 1967 nfs4args_copen_free(open_args); 1968 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1969 nfs4_end_open_seqid_sync(oop); 1970 open_owner_rele(oop); 1971 oop = NULL; 1972 if (claim == CLAIM_PREVIOUS) { 1973 /* 1974 * Retry as a plain open. We don't need to worry about 1975 * checking the changeinfo: it is acceptable for a 1976 * client to re-open a file and continue processing 1977 * (in the absence of locks). 1978 */ 1979 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 1980 "nfs4_reopen: CLAIM_PREVIOUS: NFS4ERR_NO_GRACE; " 1981 "will retry as CLAIM_NULL")); 1982 claim = CLAIM_NULL; 1983 nfs4_mi_kstat_inc_no_grace(mi); 1984 goto top; 1985 } 1986 failed_msg = 1987 "Couldn't reopen: tried reclaim outside grace period. "; 1988 goto kill_file; 1989 case NFS4ERR_GRACE: 1990 nfs4_set_grace_wait(mi); 1991 nfs4args_copen_free(open_args); 1992 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1993 nfs4_end_open_seqid_sync(oop); 1994 open_owner_rele(oop); 1995 oop = NULL; 1996 ep->error = nfs4_wait_for_grace(mi, &recov); 1997 if (ep->error != 0) 1998 goto bailout; 1999 goto top; 2000 case NFS4ERR_DELAY: 2001 nfs4_set_delay_wait(vp); 2002 nfs4args_copen_free(open_args); 2003 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2004 nfs4_end_open_seqid_sync(oop); 2005 open_owner_rele(oop); 2006 oop = NULL; 2007 ep->error = nfs4_wait_for_delay(vp, &recov); 2008 nfs4_mi_kstat_inc_delay(mi); 2009 if (ep->error != 0) 2010 goto bailout; 2011 goto top; 2012 case NFS4ERR_FHEXPIRED: 2013 /* recover filehandle and retry */ 2014 abort = nfs4_start_recovery(ep, 2015 mi, vp, NULL, NULL, NULL, OP_OPEN, NULL, NULL, NULL); 2016 nfs4args_copen_free(open_args); 2017 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2018 nfs4_end_open_seqid_sync(oop); 2019 open_owner_rele(oop); 2020 oop = NULL; 2021 if (abort == FALSE) 2022 goto top; 2023 failed_msg = "Couldn't reopen: recovery aborted"; 2024 goto kill_file; 2025 case NFS4ERR_RESOURCE: 2026 case NFS4ERR_STALE_CLIENTID: 2027 case NFS4ERR_WRONGSEC: 2028 case NFS4ERR_EXPIRED: 2029 /* 2030 * Do not mark the file dead and let the calling 2031 * function initiate recovery. 2032 */ 2033 nfs4args_copen_free(open_args); 2034 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2035 nfs4_end_open_seqid_sync(oop); 2036 open_owner_rele(oop); 2037 oop = NULL; 2038 goto bailout; 2039 case NFS4ERR_ACCESS: 2040 if (cred_otw != cr) { 2041 crfree(cred_otw); 2042 cred_otw = cr; 2043 crhold(cred_otw); 2044 nfs4args_copen_free(open_args); 2045 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2046 nfs4_end_open_seqid_sync(oop); 2047 open_owner_rele(oop); 2048 oop = NULL; 2049 goto top; 2050 } 2051 /* fall through */ 2052 default: 2053 NFS4_DEBUG(nfs4_client_failover_debug, (CE_NOTE, 2054 "nfs4_reopen: r_server 0x%p, mi_curr_serv 0x%p, rnode %s", 2055 (void*)VTOR4(vp)->r_server, (void*)mi->mi_curr_serv, 2056 rnode4info(VTOR4(vp)))); 2057 failed_msg = "Couldn't reopen: NFSv4 error"; 2058 nfs4args_copen_free(open_args); 2059 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2060 goto kill_file; 2061 } 2062 2063 resop = &res.array[1]; /* open res */ 2064 op_res = &resop->nfs_resop4_u.opopen; 2065 2066 garp = &res.array[3].nfs_resop4_u.opgetattr.ga_res; 2067 2068 /* 2069 * Check if the path we reopened really is the same 2070 * file. We could end up in a situation where the file 2071 * was removed and a new file created with the same name. 2072 */ 2073 resop = &res.array[2]; 2074 gf_res = &resop->nfs_resop4_u.opgetfh; 2075 (void) nfs_rw_enter_sig(&mi->mi_fh_lock, RW_READER, 0); 2076 fh_different = (nfs4cmpfh(&rp->r_fh->sfh_fh, &gf_res->object) != 0); 2077 if (fh_different) { 2078 if (mi->mi_fh_expire_type == FH4_PERSISTENT || 2079 mi->mi_fh_expire_type & FH4_NOEXPIRE_WITH_OPEN) { 2080 /* Oops, we don't have the same file */ 2081 if (mi->mi_fh_expire_type == FH4_PERSISTENT) 2082 failed_msg = "Couldn't reopen: Persistent " 2083 "file handle changed"; 2084 else 2085 failed_msg = "Couldn't reopen: Volatile " 2086 "(no expire on open) file handle changed"; 2087 2088 nfs4args_copen_free(open_args); 2089 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2090 nfs_rw_exit(&mi->mi_fh_lock); 2091 goto kill_file; 2092 2093 } else { 2094 /* 2095 * We have volatile file handles that don't compare. 2096 * If the fids are the same then we assume that the 2097 * file handle expired but the rnode still refers to 2098 * the same file object. 2099 * 2100 * First check that we have fids or not. 2101 * If we don't we have a dumb server so we will 2102 * just assume every thing is ok for now. 2103 */ 2104 if (!ep->error && garp->n4g_va.va_mask & AT_NODEID && 2105 rp->r_attr.va_mask & AT_NODEID && 2106 rp->r_attr.va_nodeid != garp->n4g_va.va_nodeid) { 2107 /* 2108 * We have fids, but they don't 2109 * compare. So kill the file. 2110 */ 2111 failed_msg = 2112 "Couldn't reopen: file handle changed" 2113 " due to mismatched fids"; 2114 nfs4args_copen_free(open_args); 2115 (void) xdr_free(xdr_COMPOUND4res_clnt, 2116 (caddr_t)&res); 2117 nfs_rw_exit(&mi->mi_fh_lock); 2118 goto kill_file; 2119 } else { 2120 /* 2121 * We have volatile file handles that refers 2122 * to the same file (at least they have the 2123 * same fid) or we don't have fids so we 2124 * can't tell. :(. We'll be a kind and accepting 2125 * client so we'll update the rnode's file 2126 * handle with the otw handle. 2127 * 2128 * We need to drop mi->mi_fh_lock since 2129 * sh4_update acquires it. Since there is 2130 * only one recovery thread there is no 2131 * race. 2132 */ 2133 nfs_rw_exit(&mi->mi_fh_lock); 2134 sfh4_update(rp->r_fh, &gf_res->object); 2135 } 2136 } 2137 } else { 2138 nfs_rw_exit(&mi->mi_fh_lock); 2139 } 2140 2141 ASSERT(nfs4_consistent_type(vp)); 2142 2143 /* 2144 * If the server wanted an OPEN_CONFIRM but that fails, just start 2145 * over. Presumably if there is a persistent error it will show up 2146 * when we resend the OPEN. 2147 */ 2148 if (op_res->rflags & OPEN4_RESULT_CONFIRM) { 2149 bool_t retry_open = FALSE; 2150 2151 nfs4open_confirm(vp, &seqid, &op_res->stateid, 2152 cred_otw, is_recov, &retry_open, 2153 oop, FALSE, ep, NULL); 2154 if (ep->error || ep->stat) { 2155 nfs4args_copen_free(open_args); 2156 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2157 nfs4_end_open_seqid_sync(oop); 2158 open_owner_rele(oop); 2159 oop = NULL; 2160 goto top; 2161 } 2162 } 2163 2164 mutex_enter(&osp->os_sync_lock); 2165 osp->open_stateid = op_res->stateid; 2166 osp->os_delegation = 0; 2167 /* 2168 * Need to reset this bitfield for the possible case where we were 2169 * going to OTW CLOSE the file, got a non-recoverable error, and before 2170 * we could retry the CLOSE, OPENed the file again. 2171 */ 2172 ASSERT(osp->os_open_owner->oo_seqid_inuse); 2173 osp->os_final_close = 0; 2174 osp->os_force_close = 0; 2175 if (claim == CLAIM_DELEGATE_CUR || claim == CLAIM_PREVIOUS) 2176 osp->os_dc_openacc = open_args->share_access; 2177 mutex_exit(&osp->os_sync_lock); 2178 2179 nfs4_end_open_seqid_sync(oop); 2180 2181 /* accept delegation, if any */ 2182 nfs4_delegation_accept(rp, claim, op_res, garp, cred_otw); 2183 2184 nfs4args_copen_free(open_args); 2185 2186 nfs4_attr_cache(vp, garp, t, cr, TRUE, NULL); 2187 2188 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2189 2190 ASSERT(nfs4_consistent_type(vp)); 2191 2192 open_owner_rele(oop); 2193 crfree(cr); 2194 crfree(cred_otw); 2195 return; 2196 2197 kill_file: 2198 nfs4_fail_recov(vp, failed_msg, ep->error, ep->stat); 2199 failed_reopen: 2200 NFS4_DEBUG(nfs4_open_stream_debug, (CE_NOTE, 2201 "nfs4_reopen: setting os_failed_reopen for osp %p, cr %p, rp %s", 2202 (void *)osp, (void *)cr, rnode4info(rp))); 2203 mutex_enter(&osp->os_sync_lock); 2204 osp->os_failed_reopen = 1; 2205 mutex_exit(&osp->os_sync_lock); 2206 bailout: 2207 if (oop != NULL) { 2208 nfs4_end_open_seqid_sync(oop); 2209 open_owner_rele(oop); 2210 } 2211 if (cr != NULL) 2212 crfree(cr); 2213 if (cred_otw != NULL) 2214 crfree(cred_otw); 2215 } 2216 2217 /* for . and .. OPENs */ 2218 /* ARGSUSED */ 2219 static int 2220 nfs4_open_non_reg_file(vnode_t **vpp, int flag, cred_t *cr) 2221 { 2222 rnode4_t *rp; 2223 nfs4_ga_res_t gar; 2224 2225 ASSERT(nfs_zone() == VTOMI4(*vpp)->mi_zone); 2226 2227 /* 2228 * If close-to-open consistency checking is turned off or 2229 * if there is no cached data, we can avoid 2230 * the over the wire getattr. Otherwise, force a 2231 * call to the server to get fresh attributes and to 2232 * check caches. This is required for close-to-open 2233 * consistency. 2234 */ 2235 rp = VTOR4(*vpp); 2236 if (VTOMI4(*vpp)->mi_flags & MI4_NOCTO || 2237 (rp->r_dir == NULL && !nfs4_has_pages(*vpp))) 2238 return (0); 2239 2240 return (nfs4_getattr_otw(*vpp, &gar, cr, 0)); 2241 } 2242 2243 /* 2244 * CLOSE a file 2245 */ 2246 /* ARGSUSED */ 2247 static int 2248 nfs4_close(vnode_t *vp, int flag, int count, offset_t offset, cred_t *cr, 2249 caller_context_t *ct) 2250 { 2251 rnode4_t *rp; 2252 int error = 0; 2253 int r_error = 0; 2254 int n4error = 0; 2255 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 2256 2257 /* 2258 * Remove client state for this (lockowner, file) pair. 2259 * Issue otw v4 call to have the server do the same. 2260 */ 2261 2262 rp = VTOR4(vp); 2263 2264 /* 2265 * zone_enter(2) prevents processes from changing zones with NFS files 2266 * open; if we happen to get here from the wrong zone we can't do 2267 * anything over the wire. 2268 */ 2269 if (VTOMI4(vp)->mi_zone != nfs_zone()) { 2270 /* 2271 * We could attempt to clean up locks, except we're sure 2272 * that the current process didn't acquire any locks on 2273 * the file: any attempt to lock a file belong to another zone 2274 * will fail, and one can't lock an NFS file and then change 2275 * zones, as that fails too. 2276 * 2277 * Returning an error here is the sane thing to do. A 2278 * subsequent call to VN_RELE() which translates to a 2279 * nfs4_inactive() will clean up state: if the zone of the 2280 * vnode's origin is still alive and kicking, the inactive 2281 * thread will handle the request (from the correct zone), and 2282 * everything (minus the OTW close call) should be OK. If the 2283 * zone is going away nfs4_async_inactive() will throw away 2284 * delegations, open streams and cached pages inline. 2285 */ 2286 return (EIO); 2287 } 2288 2289 /* 2290 * If we are using local locking for this filesystem, then 2291 * release all of the SYSV style record locks. Otherwise, 2292 * we are doing network locking and we need to release all 2293 * of the network locks. All of the locks held by this 2294 * process on this file are released no matter what the 2295 * incoming reference count is. 2296 */ 2297 if (VTOMI4(vp)->mi_flags & MI4_LLOCK) { 2298 cleanlocks(vp, ttoproc(curthread)->p_pid, 0); 2299 cleanshares(vp, ttoproc(curthread)->p_pid); 2300 } else 2301 e.error = nfs4_lockrelease(vp, flag, offset, cr); 2302 2303 if (e.error) { 2304 struct lm_sysid *lmsid; 2305 lmsid = nfs4_find_sysid(VTOMI4(vp)); 2306 if (lmsid == NULL) { 2307 DTRACE_PROBE2(unknown__sysid, int, e.error, 2308 vnode_t *, vp); 2309 } else { 2310 cleanlocks(vp, ttoproc(curthread)->p_pid, 2311 (lm_sysidt(lmsid) | LM_SYSID_CLIENT)); 2312 2313 lm_rel_sysid(lmsid); 2314 } 2315 return (e.error); 2316 } 2317 2318 if (count > 1) 2319 return (0); 2320 2321 /* 2322 * If the file has been `unlinked', then purge the 2323 * DNLC so that this vnode will get reycled quicker 2324 * and the .nfs* file on the server will get removed. 2325 */ 2326 if (rp->r_unldvp != NULL) 2327 dnlc_purge_vp(vp); 2328 2329 /* 2330 * If the file was open for write and there are pages, 2331 * do a synchronous flush and commit of all of the 2332 * dirty and uncommitted pages. 2333 */ 2334 ASSERT(!e.error); 2335 if ((flag & FWRITE) && nfs4_has_pages(vp)) 2336 error = nfs4_putpage_commit(vp, 0, 0, cr); 2337 2338 mutex_enter(&rp->r_statelock); 2339 r_error = rp->r_error; 2340 rp->r_error = 0; 2341 mutex_exit(&rp->r_statelock); 2342 2343 /* 2344 * If this file type is one for which no explicit 'open' was 2345 * done, then bail now (ie. no need for protocol 'close'). If 2346 * there was an error w/the vm subsystem, return _that_ error, 2347 * otherwise, return any errors that may've been reported via 2348 * the rnode. 2349 */ 2350 if (vp->v_type != VREG) 2351 return (error ? error : r_error); 2352 2353 /* 2354 * The sync putpage commit may have failed above, but since 2355 * we're working w/a regular file, we need to do the protocol 2356 * 'close' (nfs4close_one will figure out if an otw close is 2357 * needed or not). Report any errors _after_ doing the protocol 2358 * 'close'. 2359 */ 2360 nfs4close_one(vp, NULL, cr, flag, NULL, &e, CLOSE_NORM, 0, 0, 0); 2361 n4error = e.error ? e.error : geterrno4(e.stat); 2362 2363 /* 2364 * Error reporting prio (Hi -> Lo) 2365 * 2366 * i) nfs4_putpage_commit (error) 2367 * ii) rnode's (r_error) 2368 * iii) nfs4close_one (n4error) 2369 */ 2370 return (error ? error : (r_error ? r_error : n4error)); 2371 } 2372 2373 /* 2374 * Initialize *lost_rqstp. 2375 */ 2376 2377 static void 2378 nfs4close_save_lost_rqst(int error, nfs4_lost_rqst_t *lost_rqstp, 2379 nfs4_open_owner_t *oop, nfs4_open_stream_t *osp, cred_t *cr, 2380 vnode_t *vp) 2381 { 2382 if (error != ETIMEDOUT && error != EINTR && 2383 !NFS4_FRC_UNMT_ERR(error, vp->v_vfsp)) { 2384 lost_rqstp->lr_op = 0; 2385 return; 2386 } 2387 2388 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, 2389 "nfs4close_save_lost_rqst: error %d", error)); 2390 2391 lost_rqstp->lr_op = OP_CLOSE; 2392 /* 2393 * The vp is held and rele'd via the recovery code. 2394 * See nfs4_save_lost_rqst. 2395 */ 2396 lost_rqstp->lr_vp = vp; 2397 lost_rqstp->lr_dvp = NULL; 2398 lost_rqstp->lr_oop = oop; 2399 lost_rqstp->lr_osp = osp; 2400 ASSERT(osp != NULL); 2401 ASSERT(mutex_owned(&osp->os_sync_lock)); 2402 osp->os_pending_close = 1; 2403 lost_rqstp->lr_lop = NULL; 2404 lost_rqstp->lr_cr = cr; 2405 lost_rqstp->lr_flk = NULL; 2406 lost_rqstp->lr_putfirst = FALSE; 2407 } 2408 2409 /* 2410 * Assumes you already have the open seqid sync grabbed as well as the 2411 * 'os_sync_lock'. Note: this will release the open seqid sync and 2412 * 'os_sync_lock' if client recovery starts. Calling functions have to 2413 * be prepared to handle this. 2414 * 2415 * 'recov' is returned as 1 if the CLOSE operation detected client recovery 2416 * was needed and was started, and that the calling function should retry 2417 * this function; otherwise it is returned as 0. 2418 * 2419 * Errors are returned via the nfs4_error_t parameter. 2420 */ 2421 static void 2422 nfs4close_otw(rnode4_t *rp, cred_t *cred_otw, nfs4_open_owner_t *oop, 2423 nfs4_open_stream_t *osp, int *recov, int *did_start_seqid_syncp, 2424 nfs4_close_type_t close_type, nfs4_error_t *ep, int *have_sync_lockp) 2425 { 2426 COMPOUND4args_clnt args; 2427 COMPOUND4res_clnt res; 2428 CLOSE4args *close_args; 2429 nfs_resop4 *resop; 2430 nfs_argop4 argop[3]; 2431 int doqueue = 1; 2432 mntinfo4_t *mi; 2433 seqid4 seqid; 2434 vnode_t *vp; 2435 bool_t needrecov = FALSE; 2436 nfs4_lost_rqst_t lost_rqst; 2437 hrtime_t t; 2438 2439 ASSERT(nfs_zone() == VTOMI4(RTOV4(rp))->mi_zone); 2440 2441 ASSERT(MUTEX_HELD(&osp->os_sync_lock)); 2442 2443 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, "nfs4close_otw")); 2444 2445 /* Only set this to 1 if recovery is started */ 2446 *recov = 0; 2447 2448 /* do the OTW call to close the file */ 2449 2450 if (close_type == CLOSE_RESEND) 2451 args.ctag = TAG_CLOSE_LOST; 2452 else if (close_type == CLOSE_AFTER_RESEND) 2453 args.ctag = TAG_CLOSE_UNDO; 2454 else 2455 args.ctag = TAG_CLOSE; 2456 2457 args.array_len = 3; 2458 args.array = argop; 2459 2460 vp = RTOV4(rp); 2461 2462 mi = VTOMI4(vp); 2463 2464 /* putfh target fh */ 2465 argop[0].argop = OP_CPUTFH; 2466 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh; 2467 2468 argop[1].argop = OP_GETATTR; 2469 argop[1].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 2470 argop[1].nfs_argop4_u.opgetattr.mi = mi; 2471 2472 argop[2].argop = OP_CLOSE; 2473 close_args = &argop[2].nfs_argop4_u.opclose; 2474 2475 seqid = nfs4_get_open_seqid(oop) + 1; 2476 2477 close_args->seqid = seqid; 2478 close_args->open_stateid = osp->open_stateid; 2479 2480 NFS4_DEBUG(nfs4_client_call_debug, (CE_NOTE, 2481 "nfs4close_otw: %s call, rp %s", needrecov ? "recov" : "first", 2482 rnode4info(rp))); 2483 2484 t = gethrtime(); 2485 2486 rfs4call(mi, &args, &res, cred_otw, &doqueue, 0, ep); 2487 2488 if (!ep->error && nfs4_need_to_bump_seqid(&res)) { 2489 nfs4_set_open_seqid(seqid, oop, args.ctag); 2490 } 2491 2492 needrecov = nfs4_needs_recovery(ep, TRUE, mi->mi_vfsp); 2493 if (ep->error && !needrecov) { 2494 /* 2495 * if there was an error and no recovery is to be done 2496 * then then set up the file to flush its cache if 2497 * needed for the next caller. 2498 */ 2499 mutex_enter(&rp->r_statelock); 2500 PURGE_ATTRCACHE4_LOCKED(rp); 2501 rp->r_flags &= ~R4WRITEMODIFIED; 2502 mutex_exit(&rp->r_statelock); 2503 return; 2504 } 2505 2506 if (needrecov) { 2507 bool_t abort; 2508 nfs4_bseqid_entry_t *bsep = NULL; 2509 2510 if (close_type != CLOSE_RESEND) 2511 nfs4close_save_lost_rqst(ep->error, &lost_rqst, oop, 2512 osp, cred_otw, vp); 2513 2514 if (!ep->error && res.status == NFS4ERR_BAD_SEQID) 2515 bsep = nfs4_create_bseqid_entry(oop, NULL, vp, 2516 0, args.ctag, close_args->seqid); 2517 2518 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 2519 "nfs4close_otw: initiating recovery. error %d " 2520 "res.status %d", ep->error, res.status)); 2521 2522 /* 2523 * Drop the 'os_sync_lock' here so we don't hit 2524 * a potential recursive mutex_enter via an 2525 * 'open_stream_hold()'. 2526 */ 2527 mutex_exit(&osp->os_sync_lock); 2528 *have_sync_lockp = 0; 2529 abort = nfs4_start_recovery(ep, VTOMI4(vp), vp, NULL, NULL, 2530 (close_type != CLOSE_RESEND && 2531 lost_rqst.lr_op == OP_CLOSE) ? &lost_rqst : NULL, 2532 OP_CLOSE, bsep, NULL, NULL); 2533 2534 /* drop open seq sync, and let the calling function regrab it */ 2535 nfs4_end_open_seqid_sync(oop); 2536 *did_start_seqid_syncp = 0; 2537 2538 if (bsep) 2539 kmem_free(bsep, sizeof (*bsep)); 2540 /* 2541 * For signals, the caller wants to quit, so don't say to 2542 * retry. For forced unmount, if it's a user thread, it 2543 * wants to quit. If it's a recovery thread, the retry 2544 * will happen higher-up on the call stack. Either way, 2545 * don't say to retry. 2546 */ 2547 if (abort == FALSE && ep->error != EINTR && 2548 !NFS4_FRC_UNMT_ERR(ep->error, mi->mi_vfsp) && 2549 close_type != CLOSE_RESEND && 2550 close_type != CLOSE_AFTER_RESEND) 2551 *recov = 1; 2552 else 2553 *recov = 0; 2554 2555 if (!ep->error) 2556 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2557 return; 2558 } 2559 2560 if (res.status) { 2561 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2562 return; 2563 } 2564 2565 mutex_enter(&rp->r_statev4_lock); 2566 rp->created_v4 = 0; 2567 mutex_exit(&rp->r_statev4_lock); 2568 2569 resop = &res.array[2]; 2570 osp->open_stateid = resop->nfs_resop4_u.opclose.open_stateid; 2571 osp->os_valid = 0; 2572 2573 /* 2574 * This removes the reference obtained at OPEN; ie, when the 2575 * open stream structure was created. 2576 * 2577 * We don't have to worry about calling 'open_stream_rele' 2578 * since we our currently holding a reference to the open 2579 * stream which means the count cannot go to 0 with this 2580 * decrement. 2581 */ 2582 ASSERT(osp->os_ref_count >= 2); 2583 osp->os_ref_count--; 2584 2585 if (ep->error == 0) { 2586 /* 2587 * Avoid a deadlock with the r_serial thread waiting for 2588 * os_sync_lock in nfs4_get_otw_cred_by_osp() which might be 2589 * held by us. We will wait in nfs4_attr_cache() for the 2590 * completion of the r_serial thread. 2591 */ 2592 mutex_exit(&osp->os_sync_lock); 2593 *have_sync_lockp = 0; 2594 2595 nfs4_attr_cache(vp, 2596 &res.array[1].nfs_resop4_u.opgetattr.ga_res, 2597 t, cred_otw, TRUE, NULL); 2598 } 2599 2600 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, "nfs4close_otw:" 2601 " returning %d", ep->error)); 2602 2603 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2604 } 2605 2606 /* ARGSUSED */ 2607 static int 2608 nfs4_read(vnode_t *vp, struct uio *uiop, int ioflag, cred_t *cr, 2609 caller_context_t *ct) 2610 { 2611 rnode4_t *rp; 2612 u_offset_t off; 2613 offset_t diff; 2614 uint_t on; 2615 uint_t n; 2616 caddr_t base; 2617 uint_t flags; 2618 int error; 2619 mntinfo4_t *mi; 2620 2621 rp = VTOR4(vp); 2622 2623 ASSERT(nfs_rw_lock_held(&rp->r_rwlock, RW_READER)); 2624 2625 if (IS_SHADOW(vp, rp)) 2626 vp = RTOV4(rp); 2627 2628 if (vp->v_type != VREG) 2629 return (EISDIR); 2630 2631 mi = VTOMI4(vp); 2632 2633 if (nfs_zone() != mi->mi_zone) 2634 return (EIO); 2635 2636 if (uiop->uio_resid == 0) 2637 return (0); 2638 2639 if (uiop->uio_loffset < 0 || uiop->uio_loffset + uiop->uio_resid < 0) 2640 return (EINVAL); 2641 2642 mutex_enter(&rp->r_statelock); 2643 if (rp->r_flags & R4RECOVERRP) 2644 error = (rp->r_error ? rp->r_error : EIO); 2645 else 2646 error = 0; 2647 mutex_exit(&rp->r_statelock); 2648 if (error) 2649 return (error); 2650 2651 /* 2652 * Bypass VM if caching has been disabled (e.g., locking) or if 2653 * using client-side direct I/O and the file is not mmap'd and 2654 * there are no cached pages. 2655 */ 2656 if ((vp->v_flag & VNOCACHE) || 2657 (((rp->r_flags & R4DIRECTIO) || (mi->mi_flags & MI4_DIRECTIO)) && 2658 rp->r_mapcnt == 0 && rp->r_inmap == 0 && !nfs4_has_pages(vp))) { 2659 size_t resid = 0; 2660 2661 return (nfs4read(vp, NULL, uiop->uio_loffset, 2662 uiop->uio_resid, &resid, cr, FALSE, uiop)); 2663 } 2664 2665 error = 0; 2666 2667 do { 2668 off = uiop->uio_loffset & MAXBMASK; /* mapping offset */ 2669 on = uiop->uio_loffset & MAXBOFFSET; /* Relative offset */ 2670 n = MIN(MAXBSIZE - on, uiop->uio_resid); 2671 2672 if (error = nfs4_validate_caches(vp, cr)) 2673 break; 2674 2675 mutex_enter(&rp->r_statelock); 2676 while (rp->r_flags & R4INCACHEPURGE) { 2677 if (!cv_wait_sig(&rp->r_cv, &rp->r_statelock)) { 2678 mutex_exit(&rp->r_statelock); 2679 return (EINTR); 2680 } 2681 } 2682 diff = rp->r_size - uiop->uio_loffset; 2683 mutex_exit(&rp->r_statelock); 2684 if (diff <= 0) 2685 break; 2686 if (diff < n) 2687 n = (uint_t)diff; 2688 2689 if (vpm_enable) { 2690 /* 2691 * Copy data. 2692 */ 2693 error = vpm_data_copy(vp, off + on, n, uiop, 2694 1, NULL, 0, S_READ); 2695 } else { 2696 base = segmap_getmapflt(segkmap, vp, off + on, n, 1, 2697 S_READ); 2698 2699 error = uiomove(base + on, n, UIO_READ, uiop); 2700 } 2701 2702 if (!error) { 2703 /* 2704 * If read a whole block or read to eof, 2705 * won't need this buffer again soon. 2706 */ 2707 mutex_enter(&rp->r_statelock); 2708 if (n + on == MAXBSIZE || 2709 uiop->uio_loffset == rp->r_size) 2710 flags = SM_DONTNEED; 2711 else 2712 flags = 0; 2713 mutex_exit(&rp->r_statelock); 2714 if (vpm_enable) { 2715 error = vpm_sync_pages(vp, off, n, flags); 2716 } else { 2717 error = segmap_release(segkmap, base, flags); 2718 } 2719 } else { 2720 if (vpm_enable) { 2721 (void) vpm_sync_pages(vp, off, n, 0); 2722 } else { 2723 (void) segmap_release(segkmap, base, 0); 2724 } 2725 } 2726 } while (!error && uiop->uio_resid > 0); 2727 2728 return (error); 2729 } 2730 2731 /* ARGSUSED */ 2732 static int 2733 nfs4_write(vnode_t *vp, struct uio *uiop, int ioflag, cred_t *cr, 2734 caller_context_t *ct) 2735 { 2736 rlim64_t limit = uiop->uio_llimit; 2737 rnode4_t *rp; 2738 u_offset_t off; 2739 caddr_t base; 2740 uint_t flags; 2741 int remainder; 2742 size_t n; 2743 int on; 2744 int error; 2745 int resid; 2746 u_offset_t offset; 2747 mntinfo4_t *mi; 2748 uint_t bsize; 2749 2750 rp = VTOR4(vp); 2751 2752 if (IS_SHADOW(vp, rp)) 2753 vp = RTOV4(rp); 2754 2755 if (vp->v_type != VREG) 2756 return (EISDIR); 2757 2758 mi = VTOMI4(vp); 2759 2760 if (nfs_zone() != mi->mi_zone) 2761 return (EIO); 2762 2763 if (uiop->uio_resid == 0) 2764 return (0); 2765 2766 mutex_enter(&rp->r_statelock); 2767 if (rp->r_flags & R4RECOVERRP) 2768 error = (rp->r_error ? rp->r_error : EIO); 2769 else 2770 error = 0; 2771 mutex_exit(&rp->r_statelock); 2772 if (error) 2773 return (error); 2774 2775 if (ioflag & FAPPEND) { 2776 struct vattr va; 2777 2778 /* 2779 * Must serialize if appending. 2780 */ 2781 if (nfs_rw_lock_held(&rp->r_rwlock, RW_READER)) { 2782 nfs_rw_exit(&rp->r_rwlock); 2783 if (nfs_rw_enter_sig(&rp->r_rwlock, RW_WRITER, 2784 INTR4(vp))) 2785 return (EINTR); 2786 } 2787 2788 va.va_mask = AT_SIZE; 2789 error = nfs4getattr(vp, &va, cr); 2790 if (error) 2791 return (error); 2792 uiop->uio_loffset = va.va_size; 2793 } 2794 2795 offset = uiop->uio_loffset + uiop->uio_resid; 2796 2797 if (uiop->uio_loffset < (offset_t)0 || offset < 0) 2798 return (EINVAL); 2799 2800 if (limit == RLIM64_INFINITY || limit > MAXOFFSET_T) 2801 limit = MAXOFFSET_T; 2802 2803 /* 2804 * Check to make sure that the process will not exceed 2805 * its limit on file size. It is okay to write up to 2806 * the limit, but not beyond. Thus, the write which 2807 * reaches the limit will be short and the next write 2808 * will return an error. 2809 */ 2810 remainder = 0; 2811 if (offset > uiop->uio_llimit) { 2812 remainder = offset - uiop->uio_llimit; 2813 uiop->uio_resid = uiop->uio_llimit - uiop->uio_loffset; 2814 if (uiop->uio_resid <= 0) { 2815 proc_t *p = ttoproc(curthread); 2816 2817 uiop->uio_resid += remainder; 2818 mutex_enter(&p->p_lock); 2819 (void) rctl_action(rctlproc_legacy[RLIMIT_FSIZE], 2820 p->p_rctls, p, RCA_UNSAFE_SIGINFO); 2821 mutex_exit(&p->p_lock); 2822 return (EFBIG); 2823 } 2824 } 2825 2826 /* update the change attribute, if we have a write delegation */ 2827 2828 mutex_enter(&rp->r_statev4_lock); 2829 if (rp->r_deleg_type == OPEN_DELEGATE_WRITE) 2830 rp->r_deleg_change++; 2831 2832 mutex_exit(&rp->r_statev4_lock); 2833 2834 if (nfs_rw_enter_sig(&rp->r_lkserlock, RW_WRITER, INTR4(vp))) 2835 return (EINTR); 2836 2837 /* 2838 * Bypass VM if caching has been disabled (e.g., locking) or if 2839 * using client-side direct I/O and the file is not mmap'd and 2840 * there are no cached pages. 2841 */ 2842 if ((vp->v_flag & VNOCACHE) || 2843 (((rp->r_flags & R4DIRECTIO) || (mi->mi_flags & MI4_DIRECTIO)) && 2844 rp->r_mapcnt == 0 && rp->r_inmap == 0 && !nfs4_has_pages(vp))) { 2845 size_t bufsize; 2846 int count; 2847 u_offset_t org_offset; 2848 stable_how4 stab_comm; 2849 nfs4_fwrite: 2850 if (rp->r_flags & R4STALE) { 2851 resid = uiop->uio_resid; 2852 offset = uiop->uio_loffset; 2853 error = rp->r_error; 2854 /* 2855 * A close may have cleared r_error, if so, 2856 * propagate ESTALE error return properly 2857 */ 2858 if (error == 0) 2859 error = ESTALE; 2860 goto bottom; 2861 } 2862 2863 bufsize = MIN(uiop->uio_resid, mi->mi_stsize); 2864 base = kmem_alloc(bufsize, KM_SLEEP); 2865 do { 2866 if (ioflag & FDSYNC) 2867 stab_comm = DATA_SYNC4; 2868 else 2869 stab_comm = FILE_SYNC4; 2870 resid = uiop->uio_resid; 2871 offset = uiop->uio_loffset; 2872 count = MIN(uiop->uio_resid, bufsize); 2873 org_offset = uiop->uio_loffset; 2874 error = uiomove(base, count, UIO_WRITE, uiop); 2875 if (!error) { 2876 error = nfs4write(vp, base, org_offset, 2877 count, cr, &stab_comm); 2878 if (!error) { 2879 mutex_enter(&rp->r_statelock); 2880 if (rp->r_size < uiop->uio_loffset) 2881 rp->r_size = uiop->uio_loffset; 2882 mutex_exit(&rp->r_statelock); 2883 } 2884 } 2885 } while (!error && uiop->uio_resid > 0); 2886 kmem_free(base, bufsize); 2887 goto bottom; 2888 } 2889 2890 bsize = vp->v_vfsp->vfs_bsize; 2891 2892 do { 2893 off = uiop->uio_loffset & MAXBMASK; /* mapping offset */ 2894 on = uiop->uio_loffset & MAXBOFFSET; /* Relative offset */ 2895 n = MIN(MAXBSIZE - on, uiop->uio_resid); 2896 2897 resid = uiop->uio_resid; 2898 offset = uiop->uio_loffset; 2899 2900 if (rp->r_flags & R4STALE) { 2901 error = rp->r_error; 2902 /* 2903 * A close may have cleared r_error, if so, 2904 * propagate ESTALE error return properly 2905 */ 2906 if (error == 0) 2907 error = ESTALE; 2908 break; 2909 } 2910 2911 /* 2912 * Don't create dirty pages faster than they 2913 * can be cleaned so that the system doesn't 2914 * get imbalanced. If the async queue is 2915 * maxed out, then wait for it to drain before 2916 * creating more dirty pages. Also, wait for 2917 * any threads doing pagewalks in the vop_getattr 2918 * entry points so that they don't block for 2919 * long periods. 2920 */ 2921 mutex_enter(&rp->r_statelock); 2922 while ((mi->mi_max_threads != 0 && 2923 rp->r_awcount > 2 * mi->mi_max_threads) || 2924 rp->r_gcount > 0) { 2925 if (INTR4(vp)) { 2926 klwp_t *lwp = ttolwp(curthread); 2927 2928 if (lwp != NULL) 2929 lwp->lwp_nostop++; 2930 if (!cv_wait_sig(&rp->r_cv, &rp->r_statelock)) { 2931 mutex_exit(&rp->r_statelock); 2932 if (lwp != NULL) 2933 lwp->lwp_nostop--; 2934 error = EINTR; 2935 goto bottom; 2936 } 2937 if (lwp != NULL) 2938 lwp->lwp_nostop--; 2939 } else 2940 cv_wait(&rp->r_cv, &rp->r_statelock); 2941 } 2942 mutex_exit(&rp->r_statelock); 2943 2944 /* 2945 * Touch the page and fault it in if it is not in core 2946 * before segmap_getmapflt or vpm_data_copy can lock it. 2947 * This is to avoid the deadlock if the buffer is mapped 2948 * to the same file through mmap which we want to write. 2949 */ 2950 uio_prefaultpages((long)n, uiop); 2951 2952 if (vpm_enable) { 2953 /* 2954 * It will use kpm mappings, so no need to 2955 * pass an address. 2956 */ 2957 error = writerp4(rp, NULL, n, uiop, 0); 2958 } else { 2959 if (segmap_kpm) { 2960 int pon = uiop->uio_loffset & PAGEOFFSET; 2961 size_t pn = MIN(PAGESIZE - pon, 2962 uiop->uio_resid); 2963 int pagecreate; 2964 2965 mutex_enter(&rp->r_statelock); 2966 pagecreate = (pon == 0) && (pn == PAGESIZE || 2967 uiop->uio_loffset + pn >= rp->r_size); 2968 mutex_exit(&rp->r_statelock); 2969 2970 base = segmap_getmapflt(segkmap, vp, off + on, 2971 pn, !pagecreate, S_WRITE); 2972 2973 error = writerp4(rp, base + pon, n, uiop, 2974 pagecreate); 2975 2976 } else { 2977 base = segmap_getmapflt(segkmap, vp, off + on, 2978 n, 0, S_READ); 2979 error = writerp4(rp, base + on, n, uiop, 0); 2980 } 2981 } 2982 2983 if (!error) { 2984 if (mi->mi_flags & MI4_NOAC) 2985 flags = SM_WRITE; 2986 else if ((uiop->uio_loffset % bsize) == 0 || 2987 IS_SWAPVP(vp)) { 2988 /* 2989 * Have written a whole block. 2990 * Start an asynchronous write 2991 * and mark the buffer to 2992 * indicate that it won't be 2993 * needed again soon. 2994 */ 2995 flags = SM_WRITE | SM_ASYNC | SM_DONTNEED; 2996 } else 2997 flags = 0; 2998 if ((ioflag & (FSYNC|FDSYNC)) || 2999 (rp->r_flags & R4OUTOFSPACE)) { 3000 flags &= ~SM_ASYNC; 3001 flags |= SM_WRITE; 3002 } 3003 if (vpm_enable) { 3004 error = vpm_sync_pages(vp, off, n, flags); 3005 } else { 3006 error = segmap_release(segkmap, base, flags); 3007 } 3008 } else { 3009 if (vpm_enable) { 3010 (void) vpm_sync_pages(vp, off, n, 0); 3011 } else { 3012 (void) segmap_release(segkmap, base, 0); 3013 } 3014 /* 3015 * In the event that we got an access error while 3016 * faulting in a page for a write-only file just 3017 * force a write. 3018 */ 3019 if (error == EACCES) 3020 goto nfs4_fwrite; 3021 } 3022 } while (!error && uiop->uio_resid > 0); 3023 3024 bottom: 3025 if (error) { 3026 uiop->uio_resid = resid + remainder; 3027 uiop->uio_loffset = offset; 3028 } else { 3029 uiop->uio_resid += remainder; 3030 3031 mutex_enter(&rp->r_statev4_lock); 3032 if (rp->r_deleg_type == OPEN_DELEGATE_WRITE) { 3033 gethrestime(&rp->r_attr.va_mtime); 3034 rp->r_attr.va_ctime = rp->r_attr.va_mtime; 3035 } 3036 mutex_exit(&rp->r_statev4_lock); 3037 } 3038 3039 nfs_rw_exit(&rp->r_lkserlock); 3040 3041 return (error); 3042 } 3043 3044 /* 3045 * Flags are composed of {B_ASYNC, B_INVAL, B_FREE, B_DONTNEED} 3046 */ 3047 static int 3048 nfs4_rdwrlbn(vnode_t *vp, page_t *pp, u_offset_t off, size_t len, 3049 int flags, cred_t *cr) 3050 { 3051 struct buf *bp; 3052 int error; 3053 page_t *savepp; 3054 uchar_t fsdata; 3055 stable_how4 stab_comm; 3056 3057 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 3058 bp = pageio_setup(pp, len, vp, flags); 3059 ASSERT(bp != NULL); 3060 3061 /* 3062 * pageio_setup should have set b_addr to 0. This 3063 * is correct since we want to do I/O on a page 3064 * boundary. bp_mapin will use this addr to calculate 3065 * an offset, and then set b_addr to the kernel virtual 3066 * address it allocated for us. 3067 */ 3068 ASSERT(bp->b_un.b_addr == 0); 3069 3070 bp->b_edev = 0; 3071 bp->b_dev = 0; 3072 bp->b_lblkno = lbtodb(off); 3073 bp->b_file = vp; 3074 bp->b_offset = (offset_t)off; 3075 bp_mapin(bp); 3076 3077 if ((flags & (B_WRITE|B_ASYNC)) == (B_WRITE|B_ASYNC) && 3078 freemem > desfree) 3079 stab_comm = UNSTABLE4; 3080 else 3081 stab_comm = FILE_SYNC4; 3082 3083 error = nfs4_bio(bp, &stab_comm, cr, FALSE); 3084 3085 bp_mapout(bp); 3086 pageio_done(bp); 3087 3088 if (stab_comm == UNSTABLE4) 3089 fsdata = C_DELAYCOMMIT; 3090 else 3091 fsdata = C_NOCOMMIT; 3092 3093 savepp = pp; 3094 do { 3095 pp->p_fsdata = fsdata; 3096 } while ((pp = pp->p_next) != savepp); 3097 3098 return (error); 3099 } 3100 3101 /* 3102 */ 3103 static int 3104 nfs4rdwr_check_osid(vnode_t *vp, nfs4_error_t *ep, cred_t *cr) 3105 { 3106 nfs4_open_owner_t *oop; 3107 nfs4_open_stream_t *osp; 3108 rnode4_t *rp = VTOR4(vp); 3109 mntinfo4_t *mi = VTOMI4(vp); 3110 int reopen_needed; 3111 3112 ASSERT(nfs_zone() == mi->mi_zone); 3113 3114 3115 oop = find_open_owner(cr, NFS4_PERM_CREATED, mi); 3116 if (!oop) 3117 return (EIO); 3118 3119 /* returns with 'os_sync_lock' held */ 3120 osp = find_open_stream(oop, rp); 3121 if (!osp) { 3122 open_owner_rele(oop); 3123 return (EIO); 3124 } 3125 3126 if (osp->os_failed_reopen) { 3127 mutex_exit(&osp->os_sync_lock); 3128 open_stream_rele(osp, rp); 3129 open_owner_rele(oop); 3130 return (EIO); 3131 } 3132 3133 /* 3134 * Determine whether a reopen is needed. If this 3135 * is a delegation open stream, then the os_delegation bit 3136 * should be set. 3137 */ 3138 3139 reopen_needed = osp->os_delegation; 3140 3141 mutex_exit(&osp->os_sync_lock); 3142 open_owner_rele(oop); 3143 3144 if (reopen_needed) { 3145 nfs4_error_zinit(ep); 3146 nfs4_reopen(vp, osp, ep, CLAIM_NULL, FALSE, FALSE); 3147 mutex_enter(&osp->os_sync_lock); 3148 if (ep->error || ep->stat || osp->os_failed_reopen) { 3149 mutex_exit(&osp->os_sync_lock); 3150 open_stream_rele(osp, rp); 3151 return (EIO); 3152 } 3153 mutex_exit(&osp->os_sync_lock); 3154 } 3155 open_stream_rele(osp, rp); 3156 3157 return (0); 3158 } 3159 3160 /* 3161 * Write to file. Writes to remote server in largest size 3162 * chunks that the server can handle. Write is synchronous. 3163 */ 3164 static int 3165 nfs4write(vnode_t *vp, caddr_t base, u_offset_t offset, int count, cred_t *cr, 3166 stable_how4 *stab_comm) 3167 { 3168 mntinfo4_t *mi; 3169 COMPOUND4args_clnt args; 3170 COMPOUND4res_clnt res; 3171 WRITE4args *wargs; 3172 WRITE4res *wres; 3173 nfs_argop4 argop[2]; 3174 nfs_resop4 *resop; 3175 int tsize; 3176 stable_how4 stable; 3177 rnode4_t *rp; 3178 int doqueue = 1; 3179 bool_t needrecov; 3180 nfs4_recov_state_t recov_state; 3181 nfs4_stateid_types_t sid_types; 3182 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 3183 int recov; 3184 3185 rp = VTOR4(vp); 3186 mi = VTOMI4(vp); 3187 3188 ASSERT(nfs_zone() == mi->mi_zone); 3189 3190 stable = *stab_comm; 3191 *stab_comm = FILE_SYNC4; 3192 3193 needrecov = FALSE; 3194 recov_state.rs_flags = 0; 3195 recov_state.rs_num_retry_despite_err = 0; 3196 nfs4_init_stateid_types(&sid_types); 3197 3198 /* Is curthread the recovery thread? */ 3199 mutex_enter(&mi->mi_lock); 3200 recov = (mi->mi_recovthread == curthread); 3201 mutex_exit(&mi->mi_lock); 3202 3203 recov_retry: 3204 args.ctag = TAG_WRITE; 3205 args.array_len = 2; 3206 args.array = argop; 3207 3208 if (!recov) { 3209 e.error = nfs4_start_fop(VTOMI4(vp), vp, NULL, OH_WRITE, 3210 &recov_state, NULL); 3211 if (e.error) 3212 return (e.error); 3213 } 3214 3215 /* 0. putfh target fh */ 3216 argop[0].argop = OP_CPUTFH; 3217 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh; 3218 3219 /* 1. write */ 3220 nfs4args_write(&argop[1], stable, rp, cr, &wargs, &sid_types); 3221 3222 do { 3223 3224 wargs->offset = (offset4)offset; 3225 wargs->data_val = base; 3226 3227 if (mi->mi_io_kstats) { 3228 mutex_enter(&mi->mi_lock); 3229 kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats)); 3230 mutex_exit(&mi->mi_lock); 3231 } 3232 3233 if ((vp->v_flag & VNOCACHE) || 3234 (rp->r_flags & R4DIRECTIO) || 3235 (mi->mi_flags & MI4_DIRECTIO)) 3236 tsize = MIN(mi->mi_stsize, count); 3237 else 3238 tsize = MIN(mi->mi_curwrite, count); 3239 wargs->data_len = (uint_t)tsize; 3240 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e); 3241 3242 if (mi->mi_io_kstats) { 3243 mutex_enter(&mi->mi_lock); 3244 kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats)); 3245 mutex_exit(&mi->mi_lock); 3246 } 3247 3248 if (!recov) { 3249 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp); 3250 if (e.error && !needrecov) { 3251 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_WRITE, 3252 &recov_state, needrecov); 3253 return (e.error); 3254 } 3255 } else { 3256 if (e.error) 3257 return (e.error); 3258 } 3259 3260 /* 3261 * Do handling of OLD_STATEID outside 3262 * of the normal recovery framework. 3263 * 3264 * If write receives a BAD stateid error while using a 3265 * delegation stateid, retry using the open stateid (if it 3266 * exists). If it doesn't have an open stateid, reopen the 3267 * file first, then retry. 3268 */ 3269 if (!e.error && res.status == NFS4ERR_OLD_STATEID && 3270 sid_types.cur_sid_type != SPEC_SID) { 3271 nfs4_save_stateid(&wargs->stateid, &sid_types); 3272 if (!recov) 3273 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_WRITE, 3274 &recov_state, needrecov); 3275 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3276 goto recov_retry; 3277 } else if (e.error == 0 && res.status == NFS4ERR_BAD_STATEID && 3278 sid_types.cur_sid_type == DEL_SID) { 3279 nfs4_save_stateid(&wargs->stateid, &sid_types); 3280 mutex_enter(&rp->r_statev4_lock); 3281 rp->r_deleg_return_pending = TRUE; 3282 mutex_exit(&rp->r_statev4_lock); 3283 if (nfs4rdwr_check_osid(vp, &e, cr)) { 3284 if (!recov) 3285 nfs4_end_fop(mi, vp, NULL, OH_WRITE, 3286 &recov_state, needrecov); 3287 (void) xdr_free(xdr_COMPOUND4res_clnt, 3288 (caddr_t)&res); 3289 return (EIO); 3290 } 3291 if (!recov) 3292 nfs4_end_fop(mi, vp, NULL, OH_WRITE, 3293 &recov_state, needrecov); 3294 /* hold needed for nfs4delegreturn_thread */ 3295 VN_HOLD(vp); 3296 nfs4delegreturn_async(rp, (NFS4_DR_PUSH|NFS4_DR_REOPEN| 3297 NFS4_DR_DISCARD), FALSE); 3298 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3299 goto recov_retry; 3300 } 3301 3302 if (needrecov) { 3303 bool_t abort; 3304 3305 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 3306 "nfs4write: client got error %d, res.status %d" 3307 ", so start recovery", e.error, res.status)); 3308 3309 abort = nfs4_start_recovery(&e, 3310 VTOMI4(vp), vp, NULL, &wargs->stateid, 3311 NULL, OP_WRITE, NULL, NULL, NULL); 3312 if (!e.error) { 3313 e.error = geterrno4(res.status); 3314 (void) xdr_free(xdr_COMPOUND4res_clnt, 3315 (caddr_t)&res); 3316 } 3317 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_WRITE, 3318 &recov_state, needrecov); 3319 if (abort == FALSE) 3320 goto recov_retry; 3321 return (e.error); 3322 } 3323 3324 if (res.status) { 3325 e.error = geterrno4(res.status); 3326 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3327 if (!recov) 3328 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_WRITE, 3329 &recov_state, needrecov); 3330 return (e.error); 3331 } 3332 3333 resop = &res.array[1]; /* write res */ 3334 wres = &resop->nfs_resop4_u.opwrite; 3335 3336 if ((int)wres->count > tsize) { 3337 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3338 3339 zcmn_err(getzoneid(), CE_WARN, 3340 "nfs4write: server wrote %u, requested was %u", 3341 (int)wres->count, tsize); 3342 if (!recov) 3343 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_WRITE, 3344 &recov_state, needrecov); 3345 return (EIO); 3346 } 3347 if (wres->committed == UNSTABLE4) { 3348 *stab_comm = UNSTABLE4; 3349 if (wargs->stable == DATA_SYNC4 || 3350 wargs->stable == FILE_SYNC4) { 3351 (void) xdr_free(xdr_COMPOUND4res_clnt, 3352 (caddr_t)&res); 3353 zcmn_err(getzoneid(), CE_WARN, 3354 "nfs4write: server %s did not commit " 3355 "to stable storage", 3356 rp->r_server->sv_hostname); 3357 if (!recov) 3358 nfs4_end_fop(VTOMI4(vp), vp, NULL, 3359 OH_WRITE, &recov_state, needrecov); 3360 return (EIO); 3361 } 3362 } 3363 3364 tsize = (int)wres->count; 3365 count -= tsize; 3366 base += tsize; 3367 offset += tsize; 3368 if (mi->mi_io_kstats) { 3369 mutex_enter(&mi->mi_lock); 3370 KSTAT_IO_PTR(mi->mi_io_kstats)->writes++; 3371 KSTAT_IO_PTR(mi->mi_io_kstats)->nwritten += 3372 tsize; 3373 mutex_exit(&mi->mi_lock); 3374 } 3375 lwp_stat_update(LWP_STAT_OUBLK, 1); 3376 mutex_enter(&rp->r_statelock); 3377 if (rp->r_flags & R4HAVEVERF) { 3378 if (rp->r_writeverf != wres->writeverf) { 3379 nfs4_set_mod(vp); 3380 rp->r_writeverf = wres->writeverf; 3381 } 3382 } else { 3383 rp->r_writeverf = wres->writeverf; 3384 rp->r_flags |= R4HAVEVERF; 3385 } 3386 PURGE_ATTRCACHE4_LOCKED(rp); 3387 rp->r_flags |= R4WRITEMODIFIED; 3388 gethrestime(&rp->r_attr.va_mtime); 3389 rp->r_attr.va_ctime = rp->r_attr.va_mtime; 3390 mutex_exit(&rp->r_statelock); 3391 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3392 } while (count); 3393 3394 if (!recov) 3395 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_WRITE, &recov_state, 3396 needrecov); 3397 3398 return (e.error); 3399 } 3400 3401 /* 3402 * Read from a file. Reads data in largest chunks our interface can handle. 3403 */ 3404 static int 3405 nfs4read(vnode_t *vp, caddr_t base, offset_t offset, int count, 3406 size_t *residp, cred_t *cr, bool_t async, struct uio *uiop) 3407 { 3408 mntinfo4_t *mi; 3409 COMPOUND4args_clnt args; 3410 COMPOUND4res_clnt res; 3411 READ4args *rargs; 3412 nfs_argop4 argop[2]; 3413 int tsize; 3414 int doqueue; 3415 rnode4_t *rp; 3416 int data_len; 3417 bool_t is_eof; 3418 bool_t needrecov = FALSE; 3419 nfs4_recov_state_t recov_state; 3420 nfs4_stateid_types_t sid_types; 3421 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 3422 3423 rp = VTOR4(vp); 3424 mi = VTOMI4(vp); 3425 doqueue = 1; 3426 3427 ASSERT(nfs_zone() == mi->mi_zone); 3428 3429 args.ctag = async ? TAG_READAHEAD : TAG_READ; 3430 3431 args.array_len = 2; 3432 args.array = argop; 3433 3434 nfs4_init_stateid_types(&sid_types); 3435 3436 recov_state.rs_flags = 0; 3437 recov_state.rs_num_retry_despite_err = 0; 3438 3439 recov_retry: 3440 e.error = nfs4_start_fop(mi, vp, NULL, OH_READ, 3441 &recov_state, NULL); 3442 if (e.error) 3443 return (e.error); 3444 3445 /* putfh target fh */ 3446 argop[0].argop = OP_CPUTFH; 3447 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh; 3448 3449 /* read */ 3450 argop[1].argop = OP_READ; 3451 rargs = &argop[1].nfs_argop4_u.opread; 3452 rargs->stateid = nfs4_get_stateid(cr, rp, curproc->p_pidp->pid_id, mi, 3453 OP_READ, &sid_types, async); 3454 3455 do { 3456 if (mi->mi_io_kstats) { 3457 mutex_enter(&mi->mi_lock); 3458 kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats)); 3459 mutex_exit(&mi->mi_lock); 3460 } 3461 3462 NFS4_DEBUG(nfs4_client_call_debug, (CE_NOTE, 3463 "nfs4read: %s call, rp %s", 3464 needrecov ? "recov" : "first", 3465 rnode4info(rp))); 3466 3467 if ((vp->v_flag & VNOCACHE) || 3468 (rp->r_flags & R4DIRECTIO) || 3469 (mi->mi_flags & MI4_DIRECTIO)) 3470 tsize = MIN(mi->mi_tsize, count); 3471 else 3472 tsize = MIN(mi->mi_curread, count); 3473 3474 rargs->offset = (offset4)offset; 3475 rargs->count = (count4)tsize; 3476 rargs->res_data_val_alt = NULL; 3477 rargs->res_mblk = NULL; 3478 rargs->res_uiop = NULL; 3479 rargs->res_maxsize = 0; 3480 rargs->wlist = NULL; 3481 3482 if (uiop) 3483 rargs->res_uiop = uiop; 3484 else 3485 rargs->res_data_val_alt = base; 3486 rargs->res_maxsize = tsize; 3487 3488 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e); 3489 #ifdef DEBUG 3490 if (nfs4read_error_inject) { 3491 res.status = nfs4read_error_inject; 3492 nfs4read_error_inject = 0; 3493 } 3494 #endif 3495 3496 if (mi->mi_io_kstats) { 3497 mutex_enter(&mi->mi_lock); 3498 kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats)); 3499 mutex_exit(&mi->mi_lock); 3500 } 3501 3502 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp); 3503 if (e.error != 0 && !needrecov) { 3504 nfs4_end_fop(mi, vp, NULL, OH_READ, 3505 &recov_state, needrecov); 3506 return (e.error); 3507 } 3508 3509 /* 3510 * Do proper retry for OLD and BAD stateid errors outside 3511 * of the normal recovery framework. There are two differences 3512 * between async and sync reads. The first is that we allow 3513 * retry on BAD_STATEID for async reads, but not sync reads. 3514 * The second is that we mark the file dead for a failed 3515 * attempt with a special stateid for sync reads, but just 3516 * return EIO for async reads. 3517 * 3518 * If a sync read receives a BAD stateid error while using a 3519 * delegation stateid, retry using the open stateid (if it 3520 * exists). If it doesn't have an open stateid, reopen the 3521 * file first, then retry. 3522 */ 3523 if (e.error == 0 && (res.status == NFS4ERR_OLD_STATEID || 3524 res.status == NFS4ERR_BAD_STATEID) && async) { 3525 nfs4_end_fop(mi, vp, NULL, OH_READ, 3526 &recov_state, needrecov); 3527 if (sid_types.cur_sid_type == SPEC_SID) { 3528 (void) xdr_free(xdr_COMPOUND4res_clnt, 3529 (caddr_t)&res); 3530 return (EIO); 3531 } 3532 nfs4_save_stateid(&rargs->stateid, &sid_types); 3533 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3534 goto recov_retry; 3535 } else if (e.error == 0 && res.status == NFS4ERR_OLD_STATEID && 3536 !async && sid_types.cur_sid_type != SPEC_SID) { 3537 nfs4_save_stateid(&rargs->stateid, &sid_types); 3538 nfs4_end_fop(mi, vp, NULL, OH_READ, 3539 &recov_state, needrecov); 3540 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3541 goto recov_retry; 3542 } else if (e.error == 0 && res.status == NFS4ERR_BAD_STATEID && 3543 sid_types.cur_sid_type == DEL_SID) { 3544 nfs4_save_stateid(&rargs->stateid, &sid_types); 3545 mutex_enter(&rp->r_statev4_lock); 3546 rp->r_deleg_return_pending = TRUE; 3547 mutex_exit(&rp->r_statev4_lock); 3548 if (nfs4rdwr_check_osid(vp, &e, cr)) { 3549 nfs4_end_fop(mi, vp, NULL, OH_READ, 3550 &recov_state, needrecov); 3551 (void) xdr_free(xdr_COMPOUND4res_clnt, 3552 (caddr_t)&res); 3553 return (EIO); 3554 } 3555 nfs4_end_fop(mi, vp, NULL, OH_READ, 3556 &recov_state, needrecov); 3557 /* hold needed for nfs4delegreturn_thread */ 3558 VN_HOLD(vp); 3559 nfs4delegreturn_async(rp, (NFS4_DR_PUSH|NFS4_DR_REOPEN| 3560 NFS4_DR_DISCARD), FALSE); 3561 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3562 goto recov_retry; 3563 } 3564 if (needrecov) { 3565 bool_t abort; 3566 3567 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 3568 "nfs4read: initiating recovery\n")); 3569 abort = nfs4_start_recovery(&e, 3570 mi, vp, NULL, &rargs->stateid, 3571 NULL, OP_READ, NULL, NULL, NULL); 3572 nfs4_end_fop(mi, vp, NULL, OH_READ, 3573 &recov_state, needrecov); 3574 /* 3575 * Do not retry if we got OLD_STATEID using a special 3576 * stateid. This avoids looping with a broken server. 3577 */ 3578 if (e.error == 0 && res.status == NFS4ERR_OLD_STATEID && 3579 sid_types.cur_sid_type == SPEC_SID) 3580 abort = TRUE; 3581 3582 if (abort == FALSE) { 3583 /* 3584 * Need to retry all possible stateids in 3585 * case the recovery error wasn't stateid 3586 * related or the stateids have become 3587 * stale (server reboot). 3588 */ 3589 nfs4_init_stateid_types(&sid_types); 3590 (void) xdr_free(xdr_COMPOUND4res_clnt, 3591 (caddr_t)&res); 3592 goto recov_retry; 3593 } 3594 3595 if (!e.error) { 3596 e.error = geterrno4(res.status); 3597 (void) xdr_free(xdr_COMPOUND4res_clnt, 3598 (caddr_t)&res); 3599 } 3600 return (e.error); 3601 } 3602 3603 if (res.status) { 3604 e.error = geterrno4(res.status); 3605 nfs4_end_fop(mi, vp, NULL, OH_READ, 3606 &recov_state, needrecov); 3607 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3608 return (e.error); 3609 } 3610 3611 data_len = res.array[1].nfs_resop4_u.opread.data_len; 3612 count -= data_len; 3613 if (base) 3614 base += data_len; 3615 offset += data_len; 3616 if (mi->mi_io_kstats) { 3617 mutex_enter(&mi->mi_lock); 3618 KSTAT_IO_PTR(mi->mi_io_kstats)->reads++; 3619 KSTAT_IO_PTR(mi->mi_io_kstats)->nread += data_len; 3620 mutex_exit(&mi->mi_lock); 3621 } 3622 lwp_stat_update(LWP_STAT_INBLK, 1); 3623 is_eof = res.array[1].nfs_resop4_u.opread.eof; 3624 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3625 3626 } while (count && !is_eof); 3627 3628 *residp = count; 3629 3630 nfs4_end_fop(mi, vp, NULL, OH_READ, &recov_state, needrecov); 3631 3632 return (e.error); 3633 } 3634 3635 /* ARGSUSED */ 3636 static int 3637 nfs4_ioctl(vnode_t *vp, int cmd, intptr_t arg, int flag, cred_t *cr, int *rvalp, 3638 caller_context_t *ct) 3639 { 3640 if (nfs_zone() != VTOMI4(vp)->mi_zone) 3641 return (EIO); 3642 switch (cmd) { 3643 case _FIODIRECTIO: 3644 return (nfs4_directio(vp, (int)arg, cr)); 3645 default: 3646 return (ENOTTY); 3647 } 3648 } 3649 3650 /* ARGSUSED */ 3651 int 3652 nfs4_getattr(vnode_t *vp, struct vattr *vap, int flags, cred_t *cr, 3653 caller_context_t *ct) 3654 { 3655 int error; 3656 rnode4_t *rp = VTOR4(vp); 3657 3658 if (nfs_zone() != VTOMI4(vp)->mi_zone) 3659 return (EIO); 3660 /* 3661 * If it has been specified that the return value will 3662 * just be used as a hint, and we are only being asked 3663 * for size, fsid or rdevid, then return the client's 3664 * notion of these values without checking to make sure 3665 * that the attribute cache is up to date. 3666 * The whole point is to avoid an over the wire GETATTR 3667 * call. 3668 */ 3669 if (flags & ATTR_HINT) { 3670 if (!(vap->va_mask & ~(AT_SIZE | AT_FSID | AT_RDEV))) { 3671 mutex_enter(&rp->r_statelock); 3672 if (vap->va_mask & AT_SIZE) 3673 vap->va_size = rp->r_size; 3674 if (vap->va_mask & AT_FSID) 3675 vap->va_fsid = rp->r_attr.va_fsid; 3676 if (vap->va_mask & AT_RDEV) 3677 vap->va_rdev = rp->r_attr.va_rdev; 3678 mutex_exit(&rp->r_statelock); 3679 return (0); 3680 } 3681 } 3682 3683 /* 3684 * Only need to flush pages if asking for the mtime 3685 * and if there any dirty pages or any outstanding 3686 * asynchronous (write) requests for this file. 3687 */ 3688 if (vap->va_mask & AT_MTIME) { 3689 rp = VTOR4(vp); 3690 if (nfs4_has_pages(vp)) { 3691 mutex_enter(&rp->r_statev4_lock); 3692 if (rp->r_deleg_type != OPEN_DELEGATE_WRITE) { 3693 mutex_exit(&rp->r_statev4_lock); 3694 if (rp->r_flags & R4DIRTY || 3695 rp->r_awcount > 0) { 3696 mutex_enter(&rp->r_statelock); 3697 rp->r_gcount++; 3698 mutex_exit(&rp->r_statelock); 3699 error = 3700 nfs4_putpage(vp, (u_offset_t)0, 3701 0, 0, cr, NULL); 3702 mutex_enter(&rp->r_statelock); 3703 if (error && (error == ENOSPC || 3704 error == EDQUOT)) { 3705 if (!rp->r_error) 3706 rp->r_error = error; 3707 } 3708 if (--rp->r_gcount == 0) 3709 cv_broadcast(&rp->r_cv); 3710 mutex_exit(&rp->r_statelock); 3711 } 3712 } else { 3713 mutex_exit(&rp->r_statev4_lock); 3714 } 3715 } 3716 } 3717 return (nfs4getattr(vp, vap, cr)); 3718 } 3719 3720 int 3721 nfs4_compare_modes(mode_t from_server, mode_t on_client) 3722 { 3723 /* 3724 * If these are the only two bits cleared 3725 * on the server then return 0 (OK) else 3726 * return 1 (BAD). 3727 */ 3728 on_client &= ~(S_ISUID|S_ISGID); 3729 if (on_client == from_server) 3730 return (0); 3731 else 3732 return (1); 3733 } 3734 3735 /*ARGSUSED4*/ 3736 static int 3737 nfs4_setattr(vnode_t *vp, struct vattr *vap, int flags, cred_t *cr, 3738 caller_context_t *ct) 3739 { 3740 int error; 3741 3742 if (vap->va_mask & AT_NOSET) 3743 return (EINVAL); 3744 3745 if (nfs_zone() != VTOMI4(vp)->mi_zone) 3746 return (EIO); 3747 3748 /* 3749 * Don't call secpolicy_vnode_setattr, the client cannot 3750 * use its cached attributes to make security decisions 3751 * as the server may be faking mode bits or mapping uid/gid. 3752 * Always just let the server to the checking. 3753 * If we provide the ability to remove basic priviledges 3754 * to setattr (e.g. basic without chmod) then we will 3755 * need to add a check here before calling the server. 3756 */ 3757 error = nfs4setattr(vp, vap, flags, cr, NULL); 3758 3759 if (error == 0 && (vap->va_mask & AT_SIZE) && vap->va_size == 0) 3760 vnevent_truncate(vp, ct); 3761 3762 return (error); 3763 } 3764 3765 /* 3766 * To replace the "guarded" version 3 setattr, we use two types of compound 3767 * setattr requests: 3768 * 1. The "normal" setattr, used when the size of the file isn't being 3769 * changed - { Putfh <fh>; Setattr; Getattr }/ 3770 * 2. If the size is changed, precede Setattr with: Getattr; Verify 3771 * with only ctime as the argument. If the server ctime differs from 3772 * what is cached on the client, the verify will fail, but we would 3773 * already have the ctime from the preceding getattr, so just set it 3774 * and retry. Thus the compound here is - { Putfh <fh>; Getattr; Verify; 3775 * Setattr; Getattr }. 3776 * 3777 * The vsecattr_t * input parameter will be non-NULL if ACLs are being set in 3778 * this setattr and NULL if they are not. 3779 */ 3780 static int 3781 nfs4setattr(vnode_t *vp, struct vattr *vap, int flags, cred_t *cr, 3782 vsecattr_t *vsap) 3783 { 3784 COMPOUND4args_clnt args; 3785 COMPOUND4res_clnt res, *resp = NULL; 3786 nfs4_ga_res_t *garp = NULL; 3787 int numops = 3; /* { Putfh; Setattr; Getattr } */ 3788 nfs_argop4 argop[5]; 3789 int verify_argop = -1; 3790 int setattr_argop = 1; 3791 nfs_resop4 *resop; 3792 vattr_t va; 3793 rnode4_t *rp; 3794 int doqueue = 1; 3795 uint_t mask = vap->va_mask; 3796 mode_t omode; 3797 vsecattr_t *vsp; 3798 timestruc_t ctime; 3799 bool_t needrecov = FALSE; 3800 nfs4_recov_state_t recov_state; 3801 nfs4_stateid_types_t sid_types; 3802 stateid4 stateid; 3803 hrtime_t t; 3804 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 3805 servinfo4_t *svp; 3806 bitmap4 supp_attrs; 3807 3808 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 3809 rp = VTOR4(vp); 3810 nfs4_init_stateid_types(&sid_types); 3811 3812 /* 3813 * Only need to flush pages if there are any pages and 3814 * if the file is marked as dirty in some fashion. The 3815 * file must be flushed so that we can accurately 3816 * determine the size of the file and the cached data 3817 * after the SETATTR returns. A file is considered to 3818 * be dirty if it is either marked with R4DIRTY, has 3819 * outstanding i/o's active, or is mmap'd. In this 3820 * last case, we can't tell whether there are dirty 3821 * pages, so we flush just to be sure. 3822 */ 3823 if (nfs4_has_pages(vp) && 3824 ((rp->r_flags & R4DIRTY) || 3825 rp->r_count > 0 || 3826 rp->r_mapcnt > 0)) { 3827 ASSERT(vp->v_type != VCHR); 3828 e.error = nfs4_putpage(vp, (offset_t)0, 0, 0, cr, NULL); 3829 if (e.error && (e.error == ENOSPC || e.error == EDQUOT)) { 3830 mutex_enter(&rp->r_statelock); 3831 if (!rp->r_error) 3832 rp->r_error = e.error; 3833 mutex_exit(&rp->r_statelock); 3834 } 3835 } 3836 3837 if (mask & AT_SIZE) { 3838 /* 3839 * Verification setattr compound for non-deleg AT_SIZE: 3840 * { Putfh; Getattr; Verify; Setattr; Getattr } 3841 * Set ctime local here (outside the do_again label) 3842 * so that subsequent retries (after failed VERIFY) 3843 * will use ctime from GETATTR results (from failed 3844 * verify compound) as VERIFY arg. 3845 * If file has delegation, then VERIFY(time_metadata) 3846 * is of little added value, so don't bother. 3847 */ 3848 mutex_enter(&rp->r_statev4_lock); 3849 if (rp->r_deleg_type == OPEN_DELEGATE_NONE || 3850 rp->r_deleg_return_pending) { 3851 numops = 5; 3852 ctime = rp->r_attr.va_ctime; 3853 } 3854 mutex_exit(&rp->r_statev4_lock); 3855 } 3856 3857 recov_state.rs_flags = 0; 3858 recov_state.rs_num_retry_despite_err = 0; 3859 3860 args.ctag = TAG_SETATTR; 3861 do_again: 3862 recov_retry: 3863 setattr_argop = numops - 2; 3864 3865 args.array = argop; 3866 args.array_len = numops; 3867 3868 e.error = nfs4_start_op(VTOMI4(vp), vp, NULL, &recov_state); 3869 if (e.error) 3870 return (e.error); 3871 3872 3873 /* putfh target fh */ 3874 argop[0].argop = OP_CPUTFH; 3875 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh; 3876 3877 if (numops == 5) { 3878 /* 3879 * We only care about the ctime, but need to get mtime 3880 * and size for proper cache update. 3881 */ 3882 /* getattr */ 3883 argop[1].argop = OP_GETATTR; 3884 argop[1].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 3885 argop[1].nfs_argop4_u.opgetattr.mi = VTOMI4(vp); 3886 3887 /* verify - set later in loop */ 3888 verify_argop = 2; 3889 } 3890 3891 /* setattr */ 3892 svp = rp->r_server; 3893 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); 3894 supp_attrs = svp->sv_supp_attrs; 3895 nfs_rw_exit(&svp->sv_lock); 3896 3897 nfs4args_setattr(&argop[setattr_argop], vap, vsap, flags, rp, cr, 3898 supp_attrs, &e.error, &sid_types); 3899 stateid = argop[setattr_argop].nfs_argop4_u.opsetattr.stateid; 3900 if (e.error) { 3901 /* req time field(s) overflow - return immediately */ 3902 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, needrecov); 3903 nfs4_fattr4_free(&argop[setattr_argop].nfs_argop4_u. 3904 opsetattr.obj_attributes); 3905 return (e.error); 3906 } 3907 omode = rp->r_attr.va_mode; 3908 3909 /* getattr */ 3910 argop[numops-1].argop = OP_GETATTR; 3911 argop[numops-1].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 3912 /* 3913 * If we are setting the ACL (indicated only by vsap != NULL), request 3914 * the ACL in this getattr. The ACL returned from this getattr will be 3915 * used in updating the ACL cache. 3916 */ 3917 if (vsap != NULL) 3918 argop[numops-1].nfs_argop4_u.opgetattr.attr_request |= 3919 FATTR4_ACL_MASK; 3920 argop[numops-1].nfs_argop4_u.opgetattr.mi = VTOMI4(vp); 3921 3922 /* 3923 * setattr iterates if the object size is set and the cached ctime 3924 * does not match the file ctime. In that case, verify the ctime first. 3925 */ 3926 3927 do { 3928 if (verify_argop != -1) { 3929 /* 3930 * Verify that the ctime match before doing setattr. 3931 */ 3932 va.va_mask = AT_CTIME; 3933 va.va_ctime = ctime; 3934 svp = rp->r_server; 3935 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); 3936 supp_attrs = svp->sv_supp_attrs; 3937 nfs_rw_exit(&svp->sv_lock); 3938 e.error = nfs4args_verify(&argop[verify_argop], &va, 3939 OP_VERIFY, supp_attrs); 3940 if (e.error) { 3941 /* req time field(s) overflow - return */ 3942 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, 3943 needrecov); 3944 break; 3945 } 3946 } 3947 3948 doqueue = 1; 3949 3950 t = gethrtime(); 3951 3952 rfs4call(VTOMI4(vp), &args, &res, cr, &doqueue, 0, &e); 3953 3954 /* 3955 * Purge the access cache and ACL cache if changing either the 3956 * owner of the file, the group owner, or the mode. These may 3957 * change the access permissions of the file, so purge old 3958 * information and start over again. 3959 */ 3960 if (mask & (AT_UID | AT_GID | AT_MODE)) { 3961 (void) nfs4_access_purge_rp(rp); 3962 if (rp->r_secattr != NULL) { 3963 mutex_enter(&rp->r_statelock); 3964 vsp = rp->r_secattr; 3965 rp->r_secattr = NULL; 3966 mutex_exit(&rp->r_statelock); 3967 if (vsp != NULL) 3968 nfs4_acl_free_cache(vsp); 3969 } 3970 } 3971 3972 /* 3973 * If res.array_len == numops, then everything succeeded, 3974 * except for possibly the final getattr. If only the 3975 * last getattr failed, give up, and don't try recovery. 3976 */ 3977 if (res.array_len == numops) { 3978 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, 3979 needrecov); 3980 if (! e.error) 3981 resp = &res; 3982 break; 3983 } 3984 3985 /* 3986 * if either rpc call failed or completely succeeded - done 3987 */ 3988 needrecov = nfs4_needs_recovery(&e, FALSE, vp->v_vfsp); 3989 if (e.error) { 3990 PURGE_ATTRCACHE4(vp); 3991 if (!needrecov) { 3992 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, 3993 needrecov); 3994 break; 3995 } 3996 } 3997 3998 /* 3999 * Do proper retry for OLD_STATEID outside of the normal 4000 * recovery framework. 4001 */ 4002 if (e.error == 0 && res.status == NFS4ERR_OLD_STATEID && 4003 sid_types.cur_sid_type != SPEC_SID && 4004 sid_types.cur_sid_type != NO_SID) { 4005 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, 4006 needrecov); 4007 nfs4_save_stateid(&stateid, &sid_types); 4008 nfs4_fattr4_free(&argop[setattr_argop].nfs_argop4_u. 4009 opsetattr.obj_attributes); 4010 if (verify_argop != -1) { 4011 nfs4args_verify_free(&argop[verify_argop]); 4012 verify_argop = -1; 4013 } 4014 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 4015 goto recov_retry; 4016 } 4017 4018 if (needrecov) { 4019 bool_t abort; 4020 4021 abort = nfs4_start_recovery(&e, 4022 VTOMI4(vp), vp, NULL, NULL, NULL, 4023 OP_SETATTR, NULL, NULL, NULL); 4024 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, 4025 needrecov); 4026 /* 4027 * Do not retry if we failed with OLD_STATEID using 4028 * a special stateid. This is done to avoid looping 4029 * with a broken server. 4030 */ 4031 if (e.error == 0 && res.status == NFS4ERR_OLD_STATEID && 4032 (sid_types.cur_sid_type == SPEC_SID || 4033 sid_types.cur_sid_type == NO_SID)) 4034 abort = TRUE; 4035 if (!e.error) { 4036 if (res.status == NFS4ERR_BADOWNER) 4037 nfs4_log_badowner(VTOMI4(vp), 4038 OP_SETATTR); 4039 4040 e.error = geterrno4(res.status); 4041 (void) xdr_free(xdr_COMPOUND4res_clnt, 4042 (caddr_t)&res); 4043 } 4044 nfs4_fattr4_free(&argop[setattr_argop].nfs_argop4_u. 4045 opsetattr.obj_attributes); 4046 if (verify_argop != -1) { 4047 nfs4args_verify_free(&argop[verify_argop]); 4048 verify_argop = -1; 4049 } 4050 if (abort == FALSE) { 4051 /* 4052 * Need to retry all possible stateids in 4053 * case the recovery error wasn't stateid 4054 * related or the stateids have become 4055 * stale (server reboot). 4056 */ 4057 nfs4_init_stateid_types(&sid_types); 4058 goto recov_retry; 4059 } 4060 return (e.error); 4061 } 4062 4063 /* 4064 * Need to call nfs4_end_op before nfs4getattr to 4065 * avoid potential nfs4_start_op deadlock. See RFE 4066 * 4777612. Calls to nfs4_invalidate_pages() and 4067 * nfs4_purge_stale_fh() might also generate over the 4068 * wire calls which my cause nfs4_start_op() deadlock. 4069 */ 4070 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, needrecov); 4071 4072 /* 4073 * Check to update lease. 4074 */ 4075 resp = &res; 4076 if (res.status == NFS4_OK) { 4077 break; 4078 } 4079 4080 /* 4081 * Check if verify failed to see if try again 4082 */ 4083 if ((verify_argop == -1) || (res.array_len != 3)) { 4084 /* 4085 * can't continue... 4086 */ 4087 if (res.status == NFS4ERR_BADOWNER) 4088 nfs4_log_badowner(VTOMI4(vp), OP_SETATTR); 4089 4090 e.error = geterrno4(res.status); 4091 } else { 4092 /* 4093 * When the verify request fails, the client ctime is 4094 * not in sync with the server. This is the same as 4095 * the version 3 "not synchronized" error, and we 4096 * handle it in a similar manner (XXX do we need to???). 4097 * Use the ctime returned in the first getattr for 4098 * the input to the next verify. 4099 * If we couldn't get the attributes, then we give up 4100 * because we can't complete the operation as required. 4101 */ 4102 garp = &res.array[1].nfs_resop4_u.opgetattr.ga_res; 4103 } 4104 if (e.error) { 4105 PURGE_ATTRCACHE4(vp); 4106 nfs4_purge_stale_fh(e.error, vp, cr); 4107 } else { 4108 /* 4109 * retry with a new verify value 4110 */ 4111 ctime = garp->n4g_va.va_ctime; 4112 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 4113 resp = NULL; 4114 } 4115 if (!e.error) { 4116 nfs4_fattr4_free(&argop[setattr_argop].nfs_argop4_u. 4117 opsetattr.obj_attributes); 4118 if (verify_argop != -1) { 4119 nfs4args_verify_free(&argop[verify_argop]); 4120 verify_argop = -1; 4121 } 4122 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 4123 goto do_again; 4124 } 4125 } while (!e.error); 4126 4127 if (e.error) { 4128 /* 4129 * If we are here, rfs4call has an irrecoverable error - return 4130 */ 4131 nfs4_fattr4_free(&argop[setattr_argop].nfs_argop4_u. 4132 opsetattr.obj_attributes); 4133 if (verify_argop != -1) { 4134 nfs4args_verify_free(&argop[verify_argop]); 4135 verify_argop = -1; 4136 } 4137 if (resp) 4138 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp); 4139 return (e.error); 4140 } 4141 4142 4143 4144 /* 4145 * If changing the size of the file, invalidate 4146 * any local cached data which is no longer part 4147 * of the file. We also possibly invalidate the 4148 * last page in the file. We could use 4149 * pvn_vpzero(), but this would mark the page as 4150 * modified and require it to be written back to 4151 * the server for no particularly good reason. 4152 * This way, if we access it, then we bring it 4153 * back in. A read should be cheaper than a 4154 * write. 4155 */ 4156 if (mask & AT_SIZE) { 4157 nfs4_invalidate_pages(vp, (vap->va_size & PAGEMASK), cr); 4158 } 4159 4160 /* either no error or one of the postop getattr failed */ 4161 4162 /* 4163 * XXX Perform a simplified version of wcc checking. Instead of 4164 * have another getattr to get pre-op, just purge cache if 4165 * any of the ops prior to and including the getattr failed. 4166 * If the getattr succeeded then update the attrcache accordingly. 4167 */ 4168 4169 garp = NULL; 4170 if (res.status == NFS4_OK) { 4171 /* 4172 * Last getattr 4173 */ 4174 resop = &res.array[numops - 1]; 4175 garp = &resop->nfs_resop4_u.opgetattr.ga_res; 4176 } 4177 /* 4178 * In certain cases, nfs4_update_attrcache() will purge the attrcache, 4179 * rather than filling it. See the function itself for details. 4180 */ 4181 e.error = nfs4_update_attrcache(res.status, garp, t, vp, cr); 4182 if (garp != NULL) { 4183 if (garp->n4g_resbmap & FATTR4_ACL_MASK) { 4184 nfs4_acl_fill_cache(rp, &garp->n4g_vsa); 4185 vs_ace4_destroy(&garp->n4g_vsa); 4186 } else { 4187 if (vsap != NULL) { 4188 /* 4189 * The ACL was supposed to be set and to be 4190 * returned in the last getattr of this 4191 * compound, but for some reason the getattr 4192 * result doesn't contain the ACL. In this 4193 * case, purge the ACL cache. 4194 */ 4195 if (rp->r_secattr != NULL) { 4196 mutex_enter(&rp->r_statelock); 4197 vsp = rp->r_secattr; 4198 rp->r_secattr = NULL; 4199 mutex_exit(&rp->r_statelock); 4200 if (vsp != NULL) 4201 nfs4_acl_free_cache(vsp); 4202 } 4203 } 4204 } 4205 } 4206 4207 if (res.status == NFS4_OK && (mask & AT_SIZE)) { 4208 /* 4209 * Set the size, rather than relying on getting it updated 4210 * via a GETATTR. With delegations the client tries to 4211 * suppress GETATTR calls. 4212 */ 4213 mutex_enter(&rp->r_statelock); 4214 rp->r_size = vap->va_size; 4215 mutex_exit(&rp->r_statelock); 4216 } 4217 4218 /* 4219 * Can free up request args and res 4220 */ 4221 nfs4_fattr4_free(&argop[setattr_argop].nfs_argop4_u. 4222 opsetattr.obj_attributes); 4223 if (verify_argop != -1) { 4224 nfs4args_verify_free(&argop[verify_argop]); 4225 verify_argop = -1; 4226 } 4227 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 4228 4229 /* 4230 * Some servers will change the mode to clear the setuid 4231 * and setgid bits when changing the uid or gid. The 4232 * client needs to compensate appropriately. 4233 */ 4234 if (mask & (AT_UID | AT_GID)) { 4235 int terror, do_setattr; 4236 4237 do_setattr = 0; 4238 va.va_mask = AT_MODE; 4239 terror = nfs4getattr(vp, &va, cr); 4240 if (!terror && 4241 (((mask & AT_MODE) && va.va_mode != vap->va_mode) || 4242 (!(mask & AT_MODE) && va.va_mode != omode))) { 4243 va.va_mask = AT_MODE; 4244 if (mask & AT_MODE) { 4245 /* 4246 * We asked the mode to be changed and what 4247 * we just got from the server in getattr is 4248 * not what we wanted it to be, so set it now. 4249 */ 4250 va.va_mode = vap->va_mode; 4251 do_setattr = 1; 4252 } else { 4253 /* 4254 * We did not ask the mode to be changed, 4255 * Check to see that the server just cleared 4256 * I_SUID and I_GUID from it. If not then 4257 * set mode to omode with UID/GID cleared. 4258 */ 4259 if (nfs4_compare_modes(va.va_mode, omode)) { 4260 omode &= ~(S_ISUID|S_ISGID); 4261 va.va_mode = omode; 4262 do_setattr = 1; 4263 } 4264 } 4265 4266 if (do_setattr) 4267 (void) nfs4setattr(vp, &va, 0, cr, NULL); 4268 } 4269 } 4270 4271 return (e.error); 4272 } 4273 4274 /* ARGSUSED */ 4275 static int 4276 nfs4_access(vnode_t *vp, int mode, int flags, cred_t *cr, caller_context_t *ct) 4277 { 4278 COMPOUND4args_clnt args; 4279 COMPOUND4res_clnt res; 4280 int doqueue; 4281 uint32_t acc, resacc, argacc; 4282 rnode4_t *rp; 4283 cred_t *cred, *ncr, *ncrfree = NULL; 4284 nfs4_access_type_t cacc; 4285 int num_ops; 4286 nfs_argop4 argop[3]; 4287 nfs_resop4 *resop; 4288 bool_t needrecov = FALSE, do_getattr; 4289 nfs4_recov_state_t recov_state; 4290 int rpc_error; 4291 hrtime_t t; 4292 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 4293 mntinfo4_t *mi = VTOMI4(vp); 4294 4295 if (nfs_zone() != mi->mi_zone) 4296 return (EIO); 4297 4298 acc = 0; 4299 if (mode & VREAD) 4300 acc |= ACCESS4_READ; 4301 if (mode & VWRITE) { 4302 if ((vp->v_vfsp->vfs_flag & VFS_RDONLY) && !ISVDEV(vp->v_type)) 4303 return (EROFS); 4304 if (vp->v_type == VDIR) 4305 acc |= ACCESS4_DELETE; 4306 acc |= ACCESS4_MODIFY | ACCESS4_EXTEND; 4307 } 4308 if (mode & VEXEC) { 4309 if (vp->v_type == VDIR) 4310 acc |= ACCESS4_LOOKUP; 4311 else 4312 acc |= ACCESS4_EXECUTE; 4313 } 4314 4315 if (VTOR4(vp)->r_acache != NULL) { 4316 e.error = nfs4_validate_caches(vp, cr); 4317 if (e.error) 4318 return (e.error); 4319 } 4320 4321 rp = VTOR4(vp); 4322 if (vp->v_type == VDIR) 4323 argacc = ACCESS4_READ | ACCESS4_DELETE | ACCESS4_MODIFY | 4324 ACCESS4_EXTEND | ACCESS4_LOOKUP; 4325 else 4326 argacc = ACCESS4_READ | ACCESS4_MODIFY | ACCESS4_EXTEND | 4327 ACCESS4_EXECUTE; 4328 recov_state.rs_flags = 0; 4329 recov_state.rs_num_retry_despite_err = 0; 4330 4331 cred = cr; 4332 /* 4333 * ncr and ncrfree both initially 4334 * point to the memory area returned 4335 * by crnetadjust(); 4336 * ncrfree not NULL when exiting means 4337 * that we need to release it 4338 */ 4339 ncr = crnetadjust(cred); 4340 ncrfree = ncr; 4341 4342 tryagain: 4343 cacc = nfs4_access_check(rp, acc, cred); 4344 if (cacc == NFS4_ACCESS_ALLOWED) { 4345 if (ncrfree != NULL) 4346 crfree(ncrfree); 4347 return (0); 4348 } 4349 if (cacc == NFS4_ACCESS_DENIED) { 4350 /* 4351 * If the cred can be adjusted, try again 4352 * with the new cred. 4353 */ 4354 if (ncr != NULL) { 4355 cred = ncr; 4356 ncr = NULL; 4357 goto tryagain; 4358 } 4359 if (ncrfree != NULL) 4360 crfree(ncrfree); 4361 return (EACCES); 4362 } 4363 4364 recov_retry: 4365 /* 4366 * Don't take with r_statev4_lock here. r_deleg_type could 4367 * change as soon as lock is released. Since it is an int, 4368 * there is no atomicity issue. 4369 */ 4370 do_getattr = (rp->r_deleg_type == OPEN_DELEGATE_NONE); 4371 num_ops = do_getattr ? 3 : 2; 4372 4373 args.ctag = TAG_ACCESS; 4374 4375 args.array_len = num_ops; 4376 args.array = argop; 4377 4378 if (e.error = nfs4_start_fop(mi, vp, NULL, OH_ACCESS, 4379 &recov_state, NULL)) { 4380 if (ncrfree != NULL) 4381 crfree(ncrfree); 4382 return (e.error); 4383 } 4384 4385 /* putfh target fh */ 4386 argop[0].argop = OP_CPUTFH; 4387 argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(vp)->r_fh; 4388 4389 /* access */ 4390 argop[1].argop = OP_ACCESS; 4391 argop[1].nfs_argop4_u.opaccess.access = argacc; 4392 4393 /* getattr */ 4394 if (do_getattr) { 4395 argop[2].argop = OP_GETATTR; 4396 argop[2].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 4397 argop[2].nfs_argop4_u.opgetattr.mi = mi; 4398 } 4399 4400 NFS4_DEBUG(nfs4_client_call_debug, (CE_NOTE, 4401 "nfs4_access: %s call, rp %s", needrecov ? "recov" : "first", 4402 rnode4info(VTOR4(vp)))); 4403 4404 doqueue = 1; 4405 t = gethrtime(); 4406 rfs4call(VTOMI4(vp), &args, &res, cred, &doqueue, 0, &e); 4407 rpc_error = e.error; 4408 4409 needrecov = nfs4_needs_recovery(&e, FALSE, vp->v_vfsp); 4410 if (needrecov) { 4411 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 4412 "nfs4_access: initiating recovery\n")); 4413 4414 if (nfs4_start_recovery(&e, VTOMI4(vp), vp, NULL, NULL, 4415 NULL, OP_ACCESS, NULL, NULL, NULL) == FALSE) { 4416 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_ACCESS, 4417 &recov_state, needrecov); 4418 if (!e.error) 4419 (void) xdr_free(xdr_COMPOUND4res_clnt, 4420 (caddr_t)&res); 4421 goto recov_retry; 4422 } 4423 } 4424 nfs4_end_fop(mi, vp, NULL, OH_ACCESS, &recov_state, needrecov); 4425 4426 if (e.error) 4427 goto out; 4428 4429 if (res.status) { 4430 e.error = geterrno4(res.status); 4431 /* 4432 * This might generate over the wire calls throught 4433 * nfs4_invalidate_pages. Hence we need to call nfs4_end_op() 4434 * here to avoid a deadlock. 4435 */ 4436 nfs4_purge_stale_fh(e.error, vp, cr); 4437 goto out; 4438 } 4439 resop = &res.array[1]; /* access res */ 4440 4441 resacc = resop->nfs_resop4_u.opaccess.access; 4442 4443 if (do_getattr) { 4444 resop++; /* getattr res */ 4445 nfs4_attr_cache(vp, &resop->nfs_resop4_u.opgetattr.ga_res, 4446 t, cr, FALSE, NULL); 4447 } 4448 4449 if (!e.error) { 4450 nfs4_access_cache(rp, argacc, resacc, cred); 4451 /* 4452 * we just cached results with cred; if cred is the 4453 * adjusted credentials from crnetadjust, we do not want 4454 * to release them before exiting: hence setting ncrfree 4455 * to NULL 4456 */ 4457 if (cred != cr) 4458 ncrfree = NULL; 4459 /* XXX check the supported bits too? */ 4460 if ((acc & resacc) != acc) { 4461 /* 4462 * The following code implements the semantic 4463 * that a setuid root program has *at least* the 4464 * permissions of the user that is running the 4465 * program. See rfs3call() for more portions 4466 * of the implementation of this functionality. 4467 */ 4468 /* XXX-LP */ 4469 if (ncr != NULL) { 4470 (void) xdr_free(xdr_COMPOUND4res_clnt, 4471 (caddr_t)&res); 4472 cred = ncr; 4473 ncr = NULL; 4474 goto tryagain; 4475 } 4476 e.error = EACCES; 4477 } 4478 } 4479 4480 out: 4481 if (!rpc_error) 4482 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 4483 4484 if (ncrfree != NULL) 4485 crfree(ncrfree); 4486 4487 return (e.error); 4488 } 4489 4490 /* ARGSUSED */ 4491 static int 4492 nfs4_readlink(vnode_t *vp, struct uio *uiop, cred_t *cr, caller_context_t *ct) 4493 { 4494 COMPOUND4args_clnt args; 4495 COMPOUND4res_clnt res; 4496 int doqueue; 4497 rnode4_t *rp; 4498 nfs_argop4 argop[3]; 4499 nfs_resop4 *resop; 4500 READLINK4res *lr_res; 4501 nfs4_ga_res_t *garp; 4502 uint_t len; 4503 char *linkdata; 4504 bool_t needrecov = FALSE; 4505 nfs4_recov_state_t recov_state; 4506 hrtime_t t; 4507 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 4508 4509 if (nfs_zone() != VTOMI4(vp)->mi_zone) 4510 return (EIO); 4511 /* 4512 * Can't readlink anything other than a symbolic link. 4513 */ 4514 if (vp->v_type != VLNK) 4515 return (EINVAL); 4516 4517 rp = VTOR4(vp); 4518 if (nfs4_do_symlink_cache && rp->r_symlink.contents != NULL) { 4519 e.error = nfs4_validate_caches(vp, cr); 4520 if (e.error) 4521 return (e.error); 4522 mutex_enter(&rp->r_statelock); 4523 if (rp->r_symlink.contents != NULL) { 4524 e.error = uiomove(rp->r_symlink.contents, 4525 rp->r_symlink.len, UIO_READ, uiop); 4526 mutex_exit(&rp->r_statelock); 4527 return (e.error); 4528 } 4529 mutex_exit(&rp->r_statelock); 4530 } 4531 recov_state.rs_flags = 0; 4532 recov_state.rs_num_retry_despite_err = 0; 4533 4534 recov_retry: 4535 args.array_len = 3; 4536 args.array = argop; 4537 args.ctag = TAG_READLINK; 4538 4539 e.error = nfs4_start_op(VTOMI4(vp), vp, NULL, &recov_state); 4540 if (e.error) { 4541 return (e.error); 4542 } 4543 4544 /* 0. putfh symlink fh */ 4545 argop[0].argop = OP_CPUTFH; 4546 argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(vp)->r_fh; 4547 4548 /* 1. readlink */ 4549 argop[1].argop = OP_READLINK; 4550 4551 /* 2. getattr */ 4552 argop[2].argop = OP_GETATTR; 4553 argop[2].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 4554 argop[2].nfs_argop4_u.opgetattr.mi = VTOMI4(vp); 4555 4556 doqueue = 1; 4557 4558 NFS4_DEBUG(nfs4_client_call_debug, (CE_NOTE, 4559 "nfs4_readlink: %s call, rp %s", needrecov ? "recov" : "first", 4560 rnode4info(VTOR4(vp)))); 4561 4562 t = gethrtime(); 4563 4564 rfs4call(VTOMI4(vp), &args, &res, cr, &doqueue, 0, &e); 4565 4566 needrecov = nfs4_needs_recovery(&e, FALSE, vp->v_vfsp); 4567 if (needrecov) { 4568 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 4569 "nfs4_readlink: initiating recovery\n")); 4570 4571 if (nfs4_start_recovery(&e, VTOMI4(vp), vp, NULL, NULL, 4572 NULL, OP_READLINK, NULL, NULL, NULL) == FALSE) { 4573 if (!e.error) 4574 (void) xdr_free(xdr_COMPOUND4res_clnt, 4575 (caddr_t)&res); 4576 4577 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, 4578 needrecov); 4579 goto recov_retry; 4580 } 4581 } 4582 4583 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, needrecov); 4584 4585 if (e.error) 4586 return (e.error); 4587 4588 /* 4589 * There is an path in the code below which calls 4590 * nfs4_purge_stale_fh(), which may generate otw calls through 4591 * nfs4_invalidate_pages. Hence we need to call nfs4_end_op() 4592 * here to avoid nfs4_start_op() deadlock. 4593 */ 4594 4595 if (res.status && (res.array_len < args.array_len)) { 4596 /* 4597 * either Putfh or Link failed 4598 */ 4599 e.error = geterrno4(res.status); 4600 nfs4_purge_stale_fh(e.error, vp, cr); 4601 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 4602 return (e.error); 4603 } 4604 4605 resop = &res.array[1]; /* readlink res */ 4606 lr_res = &resop->nfs_resop4_u.opreadlink; 4607 4608 /* 4609 * treat symlink names as data 4610 */ 4611 linkdata = utf8_to_str((utf8string *)&lr_res->link, &len, NULL); 4612 if (linkdata != NULL) { 4613 int uio_len = len - 1; 4614 /* len includes null byte, which we won't uiomove */ 4615 e.error = uiomove(linkdata, uio_len, UIO_READ, uiop); 4616 if (nfs4_do_symlink_cache && rp->r_symlink.contents == NULL) { 4617 mutex_enter(&rp->r_statelock); 4618 if (rp->r_symlink.contents == NULL) { 4619 rp->r_symlink.contents = linkdata; 4620 rp->r_symlink.len = uio_len; 4621 rp->r_symlink.size = len; 4622 mutex_exit(&rp->r_statelock); 4623 } else { 4624 mutex_exit(&rp->r_statelock); 4625 kmem_free(linkdata, len); 4626 } 4627 } else { 4628 kmem_free(linkdata, len); 4629 } 4630 } 4631 if (res.status == NFS4_OK) { 4632 resop++; /* getattr res */ 4633 garp = &resop->nfs_resop4_u.opgetattr.ga_res; 4634 } 4635 e.error = nfs4_update_attrcache(res.status, garp, t, vp, cr); 4636 4637 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 4638 4639 /* 4640 * The over the wire error for attempting to readlink something 4641 * other than a symbolic link is ENXIO. However, we need to 4642 * return EINVAL instead of ENXIO, so we map it here. 4643 */ 4644 return (e.error == ENXIO ? EINVAL : e.error); 4645 } 4646 4647 /* 4648 * Flush local dirty pages to stable storage on the server. 4649 * 4650 * If FNODSYNC is specified, then there is nothing to do because 4651 * metadata changes are not cached on the client before being 4652 * sent to the server. 4653 */ 4654 /* ARGSUSED */ 4655 static int 4656 nfs4_fsync(vnode_t *vp, int syncflag, cred_t *cr, caller_context_t *ct) 4657 { 4658 int error; 4659 4660 if ((syncflag & FNODSYNC) || IS_SWAPVP(vp)) 4661 return (0); 4662 if (nfs_zone() != VTOMI4(vp)->mi_zone) 4663 return (EIO); 4664 error = nfs4_putpage_commit(vp, (offset_t)0, 0, cr); 4665 if (!error) 4666 error = VTOR4(vp)->r_error; 4667 return (error); 4668 } 4669 4670 /* 4671 * Weirdness: if the file was removed or the target of a rename 4672 * operation while it was open, it got renamed instead. Here we 4673 * remove the renamed file. 4674 */ 4675 /* ARGSUSED */ 4676 void 4677 nfs4_inactive(vnode_t *vp, cred_t *cr, caller_context_t *ct) 4678 { 4679 rnode4_t *rp; 4680 4681 ASSERT(vp != DNLC_NO_VNODE); 4682 4683 rp = VTOR4(vp); 4684 4685 if (IS_SHADOW(vp, rp)) { 4686 sv_inactive(vp); 4687 return; 4688 } 4689 4690 /* 4691 * If this is coming from the wrong zone, we let someone in the right 4692 * zone take care of it asynchronously. We can get here due to 4693 * VN_RELE() being called from pageout() or fsflush(). This call may 4694 * potentially turn into an expensive no-op if, for instance, v_count 4695 * gets incremented in the meantime, but it's still correct. 4696 */ 4697 if (nfs_zone() != VTOMI4(vp)->mi_zone) { 4698 nfs4_async_inactive(vp, cr); 4699 return; 4700 } 4701 4702 /* 4703 * Some of the cleanup steps might require over-the-wire 4704 * operations. Since VOP_INACTIVE can get called as a result of 4705 * other over-the-wire operations (e.g., an attribute cache update 4706 * can lead to a DNLC purge), doing those steps now would lead to a 4707 * nested call to the recovery framework, which can deadlock. So 4708 * do any over-the-wire cleanups asynchronously, in a separate 4709 * thread. 4710 */ 4711 4712 mutex_enter(&rp->r_os_lock); 4713 mutex_enter(&rp->r_statelock); 4714 mutex_enter(&rp->r_statev4_lock); 4715 4716 if (vp->v_type == VREG && list_head(&rp->r_open_streams) != NULL) { 4717 mutex_exit(&rp->r_statev4_lock); 4718 mutex_exit(&rp->r_statelock); 4719 mutex_exit(&rp->r_os_lock); 4720 nfs4_async_inactive(vp, cr); 4721 return; 4722 } 4723 4724 if (rp->r_deleg_type == OPEN_DELEGATE_READ || 4725 rp->r_deleg_type == OPEN_DELEGATE_WRITE) { 4726 mutex_exit(&rp->r_statev4_lock); 4727 mutex_exit(&rp->r_statelock); 4728 mutex_exit(&rp->r_os_lock); 4729 nfs4_async_inactive(vp, cr); 4730 return; 4731 } 4732 4733 if (rp->r_unldvp != NULL) { 4734 mutex_exit(&rp->r_statev4_lock); 4735 mutex_exit(&rp->r_statelock); 4736 mutex_exit(&rp->r_os_lock); 4737 nfs4_async_inactive(vp, cr); 4738 return; 4739 } 4740 mutex_exit(&rp->r_statev4_lock); 4741 mutex_exit(&rp->r_statelock); 4742 mutex_exit(&rp->r_os_lock); 4743 4744 rp4_addfree(rp, cr); 4745 } 4746 4747 /* 4748 * nfs4_inactive_otw - nfs4_inactive, plus over-the-wire calls to free up 4749 * various bits of state. The caller must not refer to vp after this call. 4750 */ 4751 4752 void 4753 nfs4_inactive_otw(vnode_t *vp, cred_t *cr) 4754 { 4755 rnode4_t *rp = VTOR4(vp); 4756 nfs4_recov_state_t recov_state; 4757 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 4758 vnode_t *unldvp; 4759 char *unlname; 4760 cred_t *unlcred; 4761 COMPOUND4args_clnt args; 4762 COMPOUND4res_clnt res, *resp; 4763 nfs_argop4 argop[2]; 4764 int doqueue; 4765 #ifdef DEBUG 4766 char *name; 4767 #endif 4768 4769 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 4770 ASSERT(!IS_SHADOW(vp, rp)); 4771 4772 #ifdef DEBUG 4773 name = fn_name(VTOSV(vp)->sv_name); 4774 NFS4_DEBUG(nfs4_client_inactive_debug, (CE_NOTE, "nfs4_inactive_otw: " 4775 "release vnode %s", name)); 4776 kmem_free(name, MAXNAMELEN); 4777 #endif 4778 4779 if (vp->v_type == VREG) { 4780 bool_t recov_failed = FALSE; 4781 4782 e.error = nfs4close_all(vp, cr); 4783 if (e.error) { 4784 /* Check to see if recovery failed */ 4785 mutex_enter(&(VTOMI4(vp)->mi_lock)); 4786 if (VTOMI4(vp)->mi_flags & MI4_RECOV_FAIL) 4787 recov_failed = TRUE; 4788 mutex_exit(&(VTOMI4(vp)->mi_lock)); 4789 if (!recov_failed) { 4790 mutex_enter(&rp->r_statelock); 4791 if (rp->r_flags & R4RECOVERR) 4792 recov_failed = TRUE; 4793 mutex_exit(&rp->r_statelock); 4794 } 4795 if (recov_failed) { 4796 NFS4_DEBUG(nfs4_client_recov_debug, 4797 (CE_NOTE, "nfs4_inactive_otw: " 4798 "close failed (recovery failure)")); 4799 } 4800 } 4801 } 4802 4803 redo: 4804 if (rp->r_unldvp == NULL) { 4805 rp4_addfree(rp, cr); 4806 return; 4807 } 4808 4809 /* 4810 * Save the vnode pointer for the directory where the 4811 * unlinked-open file got renamed, then set it to NULL 4812 * to prevent another thread from getting here before 4813 * we're done with the remove. While we have the 4814 * statelock, make local copies of the pertinent rnode 4815 * fields. If we weren't to do this in an atomic way, the 4816 * the unl* fields could become inconsistent with respect 4817 * to each other due to a race condition between this 4818 * code and nfs_remove(). See bug report 1034328. 4819 */ 4820 mutex_enter(&rp->r_statelock); 4821 if (rp->r_unldvp == NULL) { 4822 mutex_exit(&rp->r_statelock); 4823 rp4_addfree(rp, cr); 4824 return; 4825 } 4826 4827 unldvp = rp->r_unldvp; 4828 rp->r_unldvp = NULL; 4829 unlname = rp->r_unlname; 4830 rp->r_unlname = NULL; 4831 unlcred = rp->r_unlcred; 4832 rp->r_unlcred = NULL; 4833 mutex_exit(&rp->r_statelock); 4834 4835 /* 4836 * If there are any dirty pages left, then flush 4837 * them. This is unfortunate because they just 4838 * may get thrown away during the remove operation, 4839 * but we have to do this for correctness. 4840 */ 4841 if (nfs4_has_pages(vp) && 4842 ((rp->r_flags & R4DIRTY) || rp->r_count > 0)) { 4843 ASSERT(vp->v_type != VCHR); 4844 e.error = nfs4_putpage(vp, (u_offset_t)0, 0, 0, cr, NULL); 4845 if (e.error) { 4846 mutex_enter(&rp->r_statelock); 4847 if (!rp->r_error) 4848 rp->r_error = e.error; 4849 mutex_exit(&rp->r_statelock); 4850 } 4851 } 4852 4853 recov_state.rs_flags = 0; 4854 recov_state.rs_num_retry_despite_err = 0; 4855 recov_retry_remove: 4856 /* 4857 * Do the remove operation on the renamed file 4858 */ 4859 args.ctag = TAG_INACTIVE; 4860 4861 /* 4862 * Remove ops: putfh dir; remove 4863 */ 4864 args.array_len = 2; 4865 args.array = argop; 4866 4867 e.error = nfs4_start_op(VTOMI4(unldvp), unldvp, NULL, &recov_state); 4868 if (e.error) { 4869 kmem_free(unlname, MAXNAMELEN); 4870 crfree(unlcred); 4871 VN_RELE(unldvp); 4872 /* 4873 * Try again; this time around r_unldvp will be NULL, so we'll 4874 * just call rp4_addfree() and return. 4875 */ 4876 goto redo; 4877 } 4878 4879 /* putfh directory */ 4880 argop[0].argop = OP_CPUTFH; 4881 argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(unldvp)->r_fh; 4882 4883 /* remove */ 4884 argop[1].argop = OP_CREMOVE; 4885 argop[1].nfs_argop4_u.opcremove.ctarget = unlname; 4886 4887 doqueue = 1; 4888 resp = &res; 4889 4890 #if 0 /* notyet */ 4891 /* 4892 * Can't do this yet. We may be being called from 4893 * dnlc_purge_XXX while that routine is holding a 4894 * mutex lock to the nc_rele list. The calls to 4895 * nfs3_cache_wcc_data may result in calls to 4896 * dnlc_purge_XXX. This will result in a deadlock. 4897 */ 4898 rfs4call(VTOMI4(unldvp), &args, &res, unlcred, &doqueue, 0, &e); 4899 if (e.error) { 4900 PURGE_ATTRCACHE4(unldvp); 4901 resp = NULL; 4902 } else if (res.status) { 4903 e.error = geterrno4(res.status); 4904 PURGE_ATTRCACHE4(unldvp); 4905 /* 4906 * This code is inactive right now 4907 * but if made active there should 4908 * be a nfs4_end_op() call before 4909 * nfs4_purge_stale_fh to avoid start_op() 4910 * deadlock. See BugId: 4948726 4911 */ 4912 nfs4_purge_stale_fh(error, unldvp, cr); 4913 } else { 4914 nfs_resop4 *resop; 4915 REMOVE4res *rm_res; 4916 4917 resop = &res.array[1]; 4918 rm_res = &resop->nfs_resop4_u.opremove; 4919 /* 4920 * Update directory cache attribute, 4921 * readdir and dnlc caches. 4922 */ 4923 nfs4_update_dircaches(&rm_res->cinfo, unldvp, NULL, NULL, NULL); 4924 } 4925 #else 4926 rfs4call(VTOMI4(unldvp), &args, &res, unlcred, &doqueue, 0, &e); 4927 4928 PURGE_ATTRCACHE4(unldvp); 4929 #endif 4930 4931 if (nfs4_needs_recovery(&e, FALSE, unldvp->v_vfsp)) { 4932 if (nfs4_start_recovery(&e, VTOMI4(unldvp), unldvp, NULL, 4933 NULL, NULL, OP_REMOVE, NULL, NULL, NULL) == FALSE) { 4934 if (!e.error) 4935 (void) xdr_free(xdr_COMPOUND4res_clnt, 4936 (caddr_t)&res); 4937 nfs4_end_op(VTOMI4(unldvp), unldvp, NULL, 4938 &recov_state, TRUE); 4939 goto recov_retry_remove; 4940 } 4941 } 4942 nfs4_end_op(VTOMI4(unldvp), unldvp, NULL, &recov_state, FALSE); 4943 4944 /* 4945 * Release stuff held for the remove 4946 */ 4947 VN_RELE(unldvp); 4948 if (!e.error && resp) 4949 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp); 4950 4951 kmem_free(unlname, MAXNAMELEN); 4952 crfree(unlcred); 4953 goto redo; 4954 } 4955 4956 /* 4957 * Remote file system operations having to do with directory manipulation. 4958 */ 4959 /* ARGSUSED3 */ 4960 int 4961 nfs4_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp, 4962 int flags, vnode_t *rdir, cred_t *cr, caller_context_t *ct, 4963 int *direntflags, pathname_t *realpnp) 4964 { 4965 int error; 4966 vnode_t *vp, *avp = NULL; 4967 rnode4_t *drp; 4968 4969 *vpp = NULL; 4970 if (nfs_zone() != VTOMI4(dvp)->mi_zone) 4971 return (EPERM); 4972 /* 4973 * if LOOKUP_XATTR, must replace dvp (object) with 4974 * object's attrdir before continuing with lookup 4975 */ 4976 if (flags & LOOKUP_XATTR) { 4977 error = nfs4lookup_xattr(dvp, nm, &avp, flags, cr); 4978 if (error) 4979 return (error); 4980 4981 dvp = avp; 4982 4983 /* 4984 * If lookup is for "", just return dvp now. The attrdir 4985 * has already been activated (from nfs4lookup_xattr), and 4986 * the caller will RELE the original dvp -- not 4987 * the attrdir. So, set vpp and return. 4988 * Currently, when the LOOKUP_XATTR flag is 4989 * passed to VOP_LOOKUP, the name is always empty, and 4990 * shortcircuiting here avoids 3 unneeded lock/unlock 4991 * pairs. 4992 * 4993 * If a non-empty name was provided, then it is the 4994 * attribute name, and it will be looked up below. 4995 */ 4996 if (*nm == '\0') { 4997 *vpp = dvp; 4998 return (0); 4999 } 5000 5001 /* 5002 * The vfs layer never sends a name when asking for the 5003 * attrdir, so we should never get here (unless of course 5004 * name is passed at some time in future -- at which time 5005 * we'll blow up here). 5006 */ 5007 ASSERT(0); 5008 } 5009 5010 drp = VTOR4(dvp); 5011 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_READER, INTR4(dvp))) 5012 return (EINTR); 5013 5014 error = nfs4lookup(dvp, nm, vpp, cr, 0); 5015 nfs_rw_exit(&drp->r_rwlock); 5016 5017 /* 5018 * If vnode is a device, create special vnode. 5019 */ 5020 if (!error && ISVDEV((*vpp)->v_type)) { 5021 vp = *vpp; 5022 *vpp = specvp(vp, vp->v_rdev, vp->v_type, cr); 5023 VN_RELE(vp); 5024 } 5025 5026 return (error); 5027 } 5028 5029 /* ARGSUSED */ 5030 static int 5031 nfs4lookup_xattr(vnode_t *dvp, char *nm, vnode_t **vpp, int flags, cred_t *cr) 5032 { 5033 int error; 5034 rnode4_t *drp; 5035 int cflag = ((flags & CREATE_XATTR_DIR) != 0); 5036 mntinfo4_t *mi; 5037 5038 mi = VTOMI4(dvp); 5039 if (!(mi->mi_vfsp->vfs_flag & VFS_XATTR) && 5040 !vfs_has_feature(mi->mi_vfsp, VFSFT_SYSATTR_VIEWS)) 5041 return (EINVAL); 5042 5043 drp = VTOR4(dvp); 5044 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_READER, INTR4(dvp))) 5045 return (EINTR); 5046 5047 mutex_enter(&drp->r_statelock); 5048 /* 5049 * If the server doesn't support xattrs just return EINVAL 5050 */ 5051 if (drp->r_xattr_dir == NFS4_XATTR_DIR_NOTSUPP) { 5052 mutex_exit(&drp->r_statelock); 5053 nfs_rw_exit(&drp->r_rwlock); 5054 return (EINVAL); 5055 } 5056 5057 /* 5058 * If there is a cached xattr directory entry, 5059 * use it as long as the attributes are valid. If the 5060 * attributes are not valid, take the simple approach and 5061 * free the cached value and re-fetch a new value. 5062 * 5063 * We don't negative entry cache for now, if we did we 5064 * would need to check if the file has changed on every 5065 * lookup. But xattrs don't exist very often and failing 5066 * an openattr is not much more expensive than and NVERIFY or GETATTR 5067 * so do an openattr over the wire for now. 5068 */ 5069 if (drp->r_xattr_dir != NULL) { 5070 if (ATTRCACHE4_VALID(dvp)) { 5071 VN_HOLD(drp->r_xattr_dir); 5072 *vpp = drp->r_xattr_dir; 5073 mutex_exit(&drp->r_statelock); 5074 nfs_rw_exit(&drp->r_rwlock); 5075 return (0); 5076 } 5077 VN_RELE(drp->r_xattr_dir); 5078 drp->r_xattr_dir = NULL; 5079 } 5080 mutex_exit(&drp->r_statelock); 5081 5082 error = nfs4openattr(dvp, vpp, cflag, cr); 5083 5084 nfs_rw_exit(&drp->r_rwlock); 5085 5086 return (error); 5087 } 5088 5089 static int 5090 nfs4lookup(vnode_t *dvp, char *nm, vnode_t **vpp, cred_t *cr, int skipdnlc) 5091 { 5092 int error; 5093 rnode4_t *drp; 5094 5095 ASSERT(nfs_zone() == VTOMI4(dvp)->mi_zone); 5096 5097 /* 5098 * If lookup is for "", just return dvp. Don't need 5099 * to send it over the wire, look it up in the dnlc, 5100 * or perform any access checks. 5101 */ 5102 if (*nm == '\0') { 5103 VN_HOLD(dvp); 5104 *vpp = dvp; 5105 return (0); 5106 } 5107 5108 /* 5109 * Can't do lookups in non-directories. 5110 */ 5111 if (dvp->v_type != VDIR) 5112 return (ENOTDIR); 5113 5114 /* 5115 * If lookup is for ".", just return dvp. Don't need 5116 * to send it over the wire or look it up in the dnlc, 5117 * just need to check access. 5118 */ 5119 if (nm[0] == '.' && nm[1] == '\0') { 5120 error = nfs4_access(dvp, VEXEC, 0, cr, NULL); 5121 if (error) 5122 return (error); 5123 VN_HOLD(dvp); 5124 *vpp = dvp; 5125 return (0); 5126 } 5127 5128 drp = VTOR4(dvp); 5129 if (!(drp->r_flags & R4LOOKUP)) { 5130 mutex_enter(&drp->r_statelock); 5131 drp->r_flags |= R4LOOKUP; 5132 mutex_exit(&drp->r_statelock); 5133 } 5134 5135 *vpp = NULL; 5136 /* 5137 * Lookup this name in the DNLC. If there is no entry 5138 * lookup over the wire. 5139 */ 5140 if (!skipdnlc) 5141 *vpp = dnlc_lookup(dvp, nm); 5142 if (*vpp == NULL) { 5143 /* 5144 * We need to go over the wire to lookup the name. 5145 */ 5146 return (nfs4lookupnew_otw(dvp, nm, vpp, cr)); 5147 } 5148 5149 /* 5150 * We hit on the dnlc 5151 */ 5152 if (*vpp != DNLC_NO_VNODE || 5153 (dvp->v_vfsp->vfs_flag & VFS_RDONLY)) { 5154 /* 5155 * But our attrs may not be valid. 5156 */ 5157 if (ATTRCACHE4_VALID(dvp)) { 5158 error = nfs4_waitfor_purge_complete(dvp); 5159 if (error) { 5160 VN_RELE(*vpp); 5161 *vpp = NULL; 5162 return (error); 5163 } 5164 5165 /* 5166 * If after the purge completes, check to make sure 5167 * our attrs are still valid. 5168 */ 5169 if (ATTRCACHE4_VALID(dvp)) { 5170 /* 5171 * If we waited for a purge we may have 5172 * lost our vnode so look it up again. 5173 */ 5174 VN_RELE(*vpp); 5175 *vpp = dnlc_lookup(dvp, nm); 5176 if (*vpp == NULL) 5177 return (nfs4lookupnew_otw(dvp, 5178 nm, vpp, cr)); 5179 5180 /* 5181 * The access cache should almost always hit 5182 */ 5183 error = nfs4_access(dvp, VEXEC, 0, cr, NULL); 5184 5185 if (error) { 5186 VN_RELE(*vpp); 5187 *vpp = NULL; 5188 return (error); 5189 } 5190 if (*vpp == DNLC_NO_VNODE) { 5191 VN_RELE(*vpp); 5192 *vpp = NULL; 5193 return (ENOENT); 5194 } 5195 return (0); 5196 } 5197 } 5198 } 5199 5200 ASSERT(*vpp != NULL); 5201 5202 /* 5203 * We may have gotten here we have one of the following cases: 5204 * 1) vpp != DNLC_NO_VNODE, our attrs have timed out so we 5205 * need to validate them. 5206 * 2) vpp == DNLC_NO_VNODE, a negative entry that we always 5207 * must validate. 5208 * 5209 * Go to the server and check if the directory has changed, if 5210 * it hasn't we are done and can use the dnlc entry. 5211 */ 5212 return (nfs4lookupvalidate_otw(dvp, nm, vpp, cr)); 5213 } 5214 5215 /* 5216 * Go to the server and check if the directory has changed, if 5217 * it hasn't we are done and can use the dnlc entry. If it 5218 * has changed we get a new copy of its attributes and check 5219 * the access for VEXEC, then relookup the filename and 5220 * get its filehandle and attributes. 5221 * 5222 * PUTFH dfh NVERIFY GETATTR ACCESS LOOKUP GETFH GETATTR 5223 * if the NVERIFY failed we must 5224 * purge the caches 5225 * cache new attributes (will set r_time_attr_inval) 5226 * cache new access 5227 * recheck VEXEC access 5228 * add name to dnlc, possibly negative 5229 * if LOOKUP succeeded 5230 * cache new attributes 5231 * else 5232 * set a new r_time_attr_inval for dvp 5233 * check to make sure we have access 5234 * 5235 * The vpp returned is the vnode passed in if the directory is valid, 5236 * a new vnode if successful lookup, or NULL on error. 5237 */ 5238 static int 5239 nfs4lookupvalidate_otw(vnode_t *dvp, char *nm, vnode_t **vpp, cred_t *cr) 5240 { 5241 COMPOUND4args_clnt args; 5242 COMPOUND4res_clnt res; 5243 fattr4 *ver_fattr; 5244 fattr4_change dchange; 5245 int32_t *ptr; 5246 int argoplist_size = 7 * sizeof (nfs_argop4); 5247 nfs_argop4 *argop; 5248 int doqueue; 5249 mntinfo4_t *mi; 5250 nfs4_recov_state_t recov_state; 5251 hrtime_t t; 5252 int isdotdot; 5253 vnode_t *nvp; 5254 nfs_fh4 *fhp; 5255 nfs4_sharedfh_t *sfhp; 5256 nfs4_access_type_t cacc; 5257 rnode4_t *nrp; 5258 rnode4_t *drp = VTOR4(dvp); 5259 nfs4_ga_res_t *garp = NULL; 5260 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 5261 5262 ASSERT(nfs_zone() == VTOMI4(dvp)->mi_zone); 5263 ASSERT(nm != NULL); 5264 ASSERT(nm[0] != '\0'); 5265 ASSERT(dvp->v_type == VDIR); 5266 ASSERT(nm[0] != '.' || nm[1] != '\0'); 5267 ASSERT(*vpp != NULL); 5268 5269 if (nm[0] == '.' && nm[1] == '.' && nm[2] == '\0') { 5270 isdotdot = 1; 5271 args.ctag = TAG_LOOKUP_VPARENT; 5272 } else { 5273 /* 5274 * If dvp were a stub, it should have triggered and caused 5275 * a mount for us to get this far. 5276 */ 5277 ASSERT(!RP_ISSTUB(VTOR4(dvp))); 5278 5279 isdotdot = 0; 5280 args.ctag = TAG_LOOKUP_VALID; 5281 } 5282 5283 mi = VTOMI4(dvp); 5284 recov_state.rs_flags = 0; 5285 recov_state.rs_num_retry_despite_err = 0; 5286 5287 nvp = NULL; 5288 5289 /* Save the original mount point security information */ 5290 (void) save_mnt_secinfo(mi->mi_curr_serv); 5291 5292 recov_retry: 5293 e.error = nfs4_start_fop(mi, dvp, NULL, OH_LOOKUP, 5294 &recov_state, NULL); 5295 if (e.error) { 5296 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp); 5297 VN_RELE(*vpp); 5298 *vpp = NULL; 5299 return (e.error); 5300 } 5301 5302 argop = kmem_alloc(argoplist_size, KM_SLEEP); 5303 5304 /* PUTFH dfh NVERIFY GETATTR ACCESS LOOKUP GETFH GETATTR */ 5305 args.array_len = 7; 5306 args.array = argop; 5307 5308 /* 0. putfh file */ 5309 argop[0].argop = OP_CPUTFH; 5310 argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(dvp)->r_fh; 5311 5312 /* 1. nverify the change info */ 5313 argop[1].argop = OP_NVERIFY; 5314 ver_fattr = &argop[1].nfs_argop4_u.opnverify.obj_attributes; 5315 ver_fattr->attrmask = FATTR4_CHANGE_MASK; 5316 ver_fattr->attrlist4 = (char *)&dchange; 5317 ptr = (int32_t *)&dchange; 5318 IXDR_PUT_HYPER(ptr, VTOR4(dvp)->r_change); 5319 ver_fattr->attrlist4_len = sizeof (fattr4_change); 5320 5321 /* 2. getattr directory */ 5322 argop[2].argop = OP_GETATTR; 5323 argop[2].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 5324 argop[2].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp); 5325 5326 /* 3. access directory */ 5327 argop[3].argop = OP_ACCESS; 5328 argop[3].nfs_argop4_u.opaccess.access = ACCESS4_READ | ACCESS4_DELETE | 5329 ACCESS4_MODIFY | ACCESS4_EXTEND | ACCESS4_LOOKUP; 5330 5331 /* 4. lookup name */ 5332 if (isdotdot) { 5333 argop[4].argop = OP_LOOKUPP; 5334 } else { 5335 argop[4].argop = OP_CLOOKUP; 5336 argop[4].nfs_argop4_u.opclookup.cname = nm; 5337 } 5338 5339 /* 5. resulting file handle */ 5340 argop[5].argop = OP_GETFH; 5341 5342 /* 6. resulting file attributes */ 5343 argop[6].argop = OP_GETATTR; 5344 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 5345 argop[6].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp); 5346 5347 doqueue = 1; 5348 t = gethrtime(); 5349 5350 rfs4call(VTOMI4(dvp), &args, &res, cr, &doqueue, 0, &e); 5351 5352 if (!isdotdot && res.status == NFS4ERR_MOVED) { 5353 e.error = nfs4_setup_referral(dvp, nm, vpp, cr); 5354 if (e.error != 0 && *vpp != NULL) 5355 VN_RELE(*vpp); 5356 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, 5357 &recov_state, FALSE); 5358 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 5359 kmem_free(argop, argoplist_size); 5360 return (e.error); 5361 } 5362 5363 if (nfs4_needs_recovery(&e, FALSE, dvp->v_vfsp)) { 5364 /* 5365 * For WRONGSEC of a non-dotdot case, send secinfo directly 5366 * from this thread, do not go thru the recovery thread since 5367 * we need the nm information. 5368 * 5369 * Not doing dotdot case because there is no specification 5370 * for (PUTFH, SECINFO "..") yet. 5371 */ 5372 if (!isdotdot && res.status == NFS4ERR_WRONGSEC) { 5373 if ((e.error = nfs4_secinfo_vnode_otw(dvp, nm, cr))) 5374 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, 5375 &recov_state, FALSE); 5376 else 5377 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, 5378 &recov_state, TRUE); 5379 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 5380 kmem_free(argop, argoplist_size); 5381 if (!e.error) 5382 goto recov_retry; 5383 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp); 5384 VN_RELE(*vpp); 5385 *vpp = NULL; 5386 return (e.error); 5387 } 5388 5389 if (nfs4_start_recovery(&e, mi, dvp, NULL, NULL, NULL, 5390 OP_LOOKUP, NULL, NULL, NULL) == FALSE) { 5391 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, 5392 &recov_state, TRUE); 5393 5394 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 5395 kmem_free(argop, argoplist_size); 5396 goto recov_retry; 5397 } 5398 } 5399 5400 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, &recov_state, FALSE); 5401 5402 if (e.error || res.array_len == 0) { 5403 /* 5404 * If e.error isn't set, then reply has no ops (or we couldn't 5405 * be here). The only legal way to reply without an op array 5406 * is via NFS4ERR_MINOR_VERS_MISMATCH. An ops array should 5407 * be in the reply for all other status values. 5408 * 5409 * For valid replies without an ops array, return ENOTSUP 5410 * (geterrno4 xlation of VERS_MISMATCH). For illegal replies, 5411 * return EIO -- don't trust status. 5412 */ 5413 if (e.error == 0) 5414 e.error = (res.status == NFS4ERR_MINOR_VERS_MISMATCH) ? 5415 ENOTSUP : EIO; 5416 VN_RELE(*vpp); 5417 *vpp = NULL; 5418 kmem_free(argop, argoplist_size); 5419 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp); 5420 return (e.error); 5421 } 5422 5423 if (res.status != NFS4ERR_SAME) { 5424 e.error = geterrno4(res.status); 5425 5426 /* 5427 * The NVERIFY "failed" so the directory has changed 5428 * First make sure PUTFH succeeded and NVERIFY "failed" 5429 * cleanly. 5430 */ 5431 if ((res.array[0].nfs_resop4_u.opputfh.status != NFS4_OK) || 5432 (res.array[1].nfs_resop4_u.opnverify.status != NFS4_OK)) { 5433 nfs4_purge_stale_fh(e.error, dvp, cr); 5434 VN_RELE(*vpp); 5435 *vpp = NULL; 5436 goto exit; 5437 } 5438 5439 /* 5440 * We know the NVERIFY "failed" so we must: 5441 * purge the caches (access and indirectly dnlc if needed) 5442 */ 5443 nfs4_purge_caches(dvp, NFS4_NOPURGE_DNLC, cr, TRUE); 5444 5445 if (res.array[2].nfs_resop4_u.opgetattr.status != NFS4_OK) { 5446 nfs4_purge_stale_fh(e.error, dvp, cr); 5447 VN_RELE(*vpp); 5448 *vpp = NULL; 5449 goto exit; 5450 } 5451 5452 /* 5453 * Install new cached attributes for the directory 5454 */ 5455 nfs4_attr_cache(dvp, 5456 &res.array[2].nfs_resop4_u.opgetattr.ga_res, 5457 t, cr, FALSE, NULL); 5458 5459 if (res.array[3].nfs_resop4_u.opaccess.status != NFS4_OK) { 5460 nfs4_purge_stale_fh(e.error, dvp, cr); 5461 VN_RELE(*vpp); 5462 *vpp = NULL; 5463 e.error = geterrno4(res.status); 5464 goto exit; 5465 } 5466 5467 /* 5468 * Now we know the directory is valid, 5469 * cache new directory access 5470 */ 5471 nfs4_access_cache(drp, 5472 args.array[3].nfs_argop4_u.opaccess.access, 5473 res.array[3].nfs_resop4_u.opaccess.access, cr); 5474 5475 /* 5476 * recheck VEXEC access 5477 */ 5478 cacc = nfs4_access_check(drp, ACCESS4_LOOKUP, cr); 5479 if (cacc != NFS4_ACCESS_ALLOWED) { 5480 /* 5481 * Directory permissions might have been revoked 5482 */ 5483 if (cacc == NFS4_ACCESS_DENIED) { 5484 e.error = EACCES; 5485 VN_RELE(*vpp); 5486 *vpp = NULL; 5487 goto exit; 5488 } 5489 5490 /* 5491 * Somehow we must not have asked for enough 5492 * so try a singleton ACCESS, should never happen. 5493 */ 5494 e.error = nfs4_access(dvp, VEXEC, 0, cr, NULL); 5495 if (e.error) { 5496 VN_RELE(*vpp); 5497 *vpp = NULL; 5498 goto exit; 5499 } 5500 } 5501 5502 e.error = geterrno4(res.status); 5503 if (res.array[4].nfs_resop4_u.oplookup.status != NFS4_OK) { 5504 /* 5505 * The lookup failed, probably no entry 5506 */ 5507 if (e.error == ENOENT && nfs4_lookup_neg_cache) { 5508 dnlc_update(dvp, nm, DNLC_NO_VNODE); 5509 } else { 5510 /* 5511 * Might be some other error, so remove 5512 * the dnlc entry to make sure we start all 5513 * over again, next time. 5514 */ 5515 dnlc_remove(dvp, nm); 5516 } 5517 VN_RELE(*vpp); 5518 *vpp = NULL; 5519 goto exit; 5520 } 5521 5522 if (res.array[5].nfs_resop4_u.opgetfh.status != NFS4_OK) { 5523 /* 5524 * The file exists but we can't get its fh for 5525 * some unknown reason. Remove it from the dnlc 5526 * and error out to be safe. 5527 */ 5528 dnlc_remove(dvp, nm); 5529 VN_RELE(*vpp); 5530 *vpp = NULL; 5531 goto exit; 5532 } 5533 fhp = &res.array[5].nfs_resop4_u.opgetfh.object; 5534 if (fhp->nfs_fh4_len == 0) { 5535 /* 5536 * The file exists but a bogus fh 5537 * some unknown reason. Remove it from the dnlc 5538 * and error out to be safe. 5539 */ 5540 e.error = ENOENT; 5541 dnlc_remove(dvp, nm); 5542 VN_RELE(*vpp); 5543 *vpp = NULL; 5544 goto exit; 5545 } 5546 sfhp = sfh4_get(fhp, mi); 5547 5548 if (res.array[6].nfs_resop4_u.opgetattr.status == NFS4_OK) 5549 garp = &res.array[6].nfs_resop4_u.opgetattr.ga_res; 5550 5551 /* 5552 * Make the new rnode 5553 */ 5554 if (isdotdot) { 5555 e.error = nfs4_make_dotdot(sfhp, t, dvp, cr, &nvp, 1); 5556 if (e.error) { 5557 sfh4_rele(&sfhp); 5558 VN_RELE(*vpp); 5559 *vpp = NULL; 5560 goto exit; 5561 } 5562 /* 5563 * XXX if nfs4_make_dotdot uses an existing rnode 5564 * XXX it doesn't update the attributes. 5565 * XXX for now just save them again to save an OTW 5566 */ 5567 nfs4_attr_cache(nvp, garp, t, cr, FALSE, NULL); 5568 } else { 5569 nvp = makenfs4node(sfhp, garp, dvp->v_vfsp, t, cr, 5570 dvp, fn_get(VTOSV(dvp)->sv_name, nm, sfhp)); 5571 /* 5572 * If v_type == VNON, then garp was NULL because 5573 * the last op in the compound failed and makenfs4node 5574 * could not find the vnode for sfhp. It created 5575 * a new vnode, so we have nothing to purge here. 5576 */ 5577 if (nvp->v_type == VNON) { 5578 vattr_t vattr; 5579 5580 vattr.va_mask = AT_TYPE; 5581 /* 5582 * N.B. We've already called nfs4_end_fop above. 5583 */ 5584 e.error = nfs4getattr(nvp, &vattr, cr); 5585 if (e.error) { 5586 sfh4_rele(&sfhp); 5587 VN_RELE(*vpp); 5588 *vpp = NULL; 5589 VN_RELE(nvp); 5590 goto exit; 5591 } 5592 nvp->v_type = vattr.va_type; 5593 } 5594 } 5595 sfh4_rele(&sfhp); 5596 5597 nrp = VTOR4(nvp); 5598 mutex_enter(&nrp->r_statev4_lock); 5599 if (!nrp->created_v4) { 5600 mutex_exit(&nrp->r_statev4_lock); 5601 dnlc_update(dvp, nm, nvp); 5602 } else 5603 mutex_exit(&nrp->r_statev4_lock); 5604 5605 VN_RELE(*vpp); 5606 *vpp = nvp; 5607 } else { 5608 hrtime_t now; 5609 hrtime_t delta = 0; 5610 5611 e.error = 0; 5612 5613 /* 5614 * Because the NVERIFY "succeeded" we know that the 5615 * directory attributes are still valid 5616 * so update r_time_attr_inval 5617 */ 5618 now = gethrtime(); 5619 mutex_enter(&drp->r_statelock); 5620 if (!(mi->mi_flags & MI4_NOAC) && !(dvp->v_flag & VNOCACHE)) { 5621 delta = now - drp->r_time_attr_saved; 5622 if (delta < mi->mi_acdirmin) 5623 delta = mi->mi_acdirmin; 5624 else if (delta > mi->mi_acdirmax) 5625 delta = mi->mi_acdirmax; 5626 } 5627 drp->r_time_attr_inval = now + delta; 5628 mutex_exit(&drp->r_statelock); 5629 dnlc_update(dvp, nm, *vpp); 5630 5631 /* 5632 * Even though we have a valid directory attr cache 5633 * and dnlc entry, we may not have access. 5634 * This should almost always hit the cache. 5635 */ 5636 e.error = nfs4_access(dvp, VEXEC, 0, cr, NULL); 5637 if (e.error) { 5638 VN_RELE(*vpp); 5639 *vpp = NULL; 5640 } 5641 5642 if (*vpp == DNLC_NO_VNODE) { 5643 VN_RELE(*vpp); 5644 *vpp = NULL; 5645 e.error = ENOENT; 5646 } 5647 } 5648 5649 exit: 5650 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 5651 kmem_free(argop, argoplist_size); 5652 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp); 5653 return (e.error); 5654 } 5655 5656 /* 5657 * We need to go over the wire to lookup the name, but 5658 * while we are there verify the directory has not 5659 * changed but if it has, get new attributes and check access 5660 * 5661 * PUTFH dfh SAVEFH LOOKUP nm GETFH GETATTR RESTOREFH 5662 * NVERIFY GETATTR ACCESS 5663 * 5664 * With the results: 5665 * if the NVERIFY failed we must purge the caches, add new attributes, 5666 * and cache new access. 5667 * set a new r_time_attr_inval 5668 * add name to dnlc, possibly negative 5669 * if LOOKUP succeeded 5670 * cache new attributes 5671 */ 5672 static int 5673 nfs4lookupnew_otw(vnode_t *dvp, char *nm, vnode_t **vpp, cred_t *cr) 5674 { 5675 COMPOUND4args_clnt args; 5676 COMPOUND4res_clnt res; 5677 fattr4 *ver_fattr; 5678 fattr4_change dchange; 5679 int32_t *ptr; 5680 nfs4_ga_res_t *garp = NULL; 5681 int argoplist_size = 9 * sizeof (nfs_argop4); 5682 nfs_argop4 *argop; 5683 int doqueue; 5684 mntinfo4_t *mi; 5685 nfs4_recov_state_t recov_state; 5686 hrtime_t t; 5687 int isdotdot; 5688 vnode_t *nvp; 5689 nfs_fh4 *fhp; 5690 nfs4_sharedfh_t *sfhp; 5691 nfs4_access_type_t cacc; 5692 rnode4_t *nrp; 5693 rnode4_t *drp = VTOR4(dvp); 5694 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 5695 5696 ASSERT(nfs_zone() == VTOMI4(dvp)->mi_zone); 5697 ASSERT(nm != NULL); 5698 ASSERT(nm[0] != '\0'); 5699 ASSERT(dvp->v_type == VDIR); 5700 ASSERT(nm[0] != '.' || nm[1] != '\0'); 5701 ASSERT(*vpp == NULL); 5702 5703 if (nm[0] == '.' && nm[1] == '.' && nm[2] == '\0') { 5704 isdotdot = 1; 5705 args.ctag = TAG_LOOKUP_PARENT; 5706 } else { 5707 /* 5708 * If dvp were a stub, it should have triggered and caused 5709 * a mount for us to get this far. 5710 */ 5711 ASSERT(!RP_ISSTUB(VTOR4(dvp))); 5712 5713 isdotdot = 0; 5714 args.ctag = TAG_LOOKUP; 5715 } 5716 5717 mi = VTOMI4(dvp); 5718 recov_state.rs_flags = 0; 5719 recov_state.rs_num_retry_despite_err = 0; 5720 5721 nvp = NULL; 5722 5723 /* Save the original mount point security information */ 5724 (void) save_mnt_secinfo(mi->mi_curr_serv); 5725 5726 recov_retry: 5727 e.error = nfs4_start_fop(mi, dvp, NULL, OH_LOOKUP, 5728 &recov_state, NULL); 5729 if (e.error) { 5730 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp); 5731 return (e.error); 5732 } 5733 5734 argop = kmem_alloc(argoplist_size, KM_SLEEP); 5735 5736 /* PUTFH SAVEFH LOOKUP GETFH GETATTR RESTOREFH NVERIFY GETATTR ACCESS */ 5737 args.array_len = 9; 5738 args.array = argop; 5739 5740 /* 0. putfh file */ 5741 argop[0].argop = OP_CPUTFH; 5742 argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(dvp)->r_fh; 5743 5744 /* 1. savefh for the nverify */ 5745 argop[1].argop = OP_SAVEFH; 5746 5747 /* 2. lookup name */ 5748 if (isdotdot) { 5749 argop[2].argop = OP_LOOKUPP; 5750 } else { 5751 argop[2].argop = OP_CLOOKUP; 5752 argop[2].nfs_argop4_u.opclookup.cname = nm; 5753 } 5754 5755 /* 3. resulting file handle */ 5756 argop[3].argop = OP_GETFH; 5757 5758 /* 4. resulting file attributes */ 5759 argop[4].argop = OP_GETATTR; 5760 argop[4].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 5761 argop[4].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp); 5762 5763 /* 5. restorefh back the directory for the nverify */ 5764 argop[5].argop = OP_RESTOREFH; 5765 5766 /* 6. nverify the change info */ 5767 argop[6].argop = OP_NVERIFY; 5768 ver_fattr = &argop[6].nfs_argop4_u.opnverify.obj_attributes; 5769 ver_fattr->attrmask = FATTR4_CHANGE_MASK; 5770 ver_fattr->attrlist4 = (char *)&dchange; 5771 ptr = (int32_t *)&dchange; 5772 IXDR_PUT_HYPER(ptr, VTOR4(dvp)->r_change); 5773 ver_fattr->attrlist4_len = sizeof (fattr4_change); 5774 5775 /* 7. getattr directory */ 5776 argop[7].argop = OP_GETATTR; 5777 argop[7].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 5778 argop[7].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp); 5779 5780 /* 8. access directory */ 5781 argop[8].argop = OP_ACCESS; 5782 argop[8].nfs_argop4_u.opaccess.access = ACCESS4_READ | ACCESS4_DELETE | 5783 ACCESS4_MODIFY | ACCESS4_EXTEND | ACCESS4_LOOKUP; 5784 5785 doqueue = 1; 5786 t = gethrtime(); 5787 5788 rfs4call(VTOMI4(dvp), &args, &res, cr, &doqueue, 0, &e); 5789 5790 if (!isdotdot && res.status == NFS4ERR_MOVED) { 5791 e.error = nfs4_setup_referral(dvp, nm, vpp, cr); 5792 if (e.error != 0 && *vpp != NULL) 5793 VN_RELE(*vpp); 5794 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, 5795 &recov_state, FALSE); 5796 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 5797 kmem_free(argop, argoplist_size); 5798 return (e.error); 5799 } 5800 5801 if (nfs4_needs_recovery(&e, FALSE, dvp->v_vfsp)) { 5802 /* 5803 * For WRONGSEC of a non-dotdot case, send secinfo directly 5804 * from this thread, do not go thru the recovery thread since 5805 * we need the nm information. 5806 * 5807 * Not doing dotdot case because there is no specification 5808 * for (PUTFH, SECINFO "..") yet. 5809 */ 5810 if (!isdotdot && res.status == NFS4ERR_WRONGSEC) { 5811 if ((e.error = nfs4_secinfo_vnode_otw(dvp, nm, cr))) 5812 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, 5813 &recov_state, FALSE); 5814 else 5815 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, 5816 &recov_state, TRUE); 5817 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 5818 kmem_free(argop, argoplist_size); 5819 if (!e.error) 5820 goto recov_retry; 5821 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp); 5822 return (e.error); 5823 } 5824 5825 if (nfs4_start_recovery(&e, mi, dvp, NULL, NULL, NULL, 5826 OP_LOOKUP, NULL, NULL, NULL) == FALSE) { 5827 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, 5828 &recov_state, TRUE); 5829 5830 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 5831 kmem_free(argop, argoplist_size); 5832 goto recov_retry; 5833 } 5834 } 5835 5836 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, &recov_state, FALSE); 5837 5838 if (e.error || res.array_len == 0) { 5839 /* 5840 * If e.error isn't set, then reply has no ops (or we couldn't 5841 * be here). The only legal way to reply without an op array 5842 * is via NFS4ERR_MINOR_VERS_MISMATCH. An ops array should 5843 * be in the reply for all other status values. 5844 * 5845 * For valid replies without an ops array, return ENOTSUP 5846 * (geterrno4 xlation of VERS_MISMATCH). For illegal replies, 5847 * return EIO -- don't trust status. 5848 */ 5849 if (e.error == 0) 5850 e.error = (res.status == NFS4ERR_MINOR_VERS_MISMATCH) ? 5851 ENOTSUP : EIO; 5852 5853 kmem_free(argop, argoplist_size); 5854 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp); 5855 return (e.error); 5856 } 5857 5858 e.error = geterrno4(res.status); 5859 5860 /* 5861 * The PUTFH and SAVEFH may have failed. 5862 */ 5863 if ((res.array[0].nfs_resop4_u.opputfh.status != NFS4_OK) || 5864 (res.array[1].nfs_resop4_u.opsavefh.status != NFS4_OK)) { 5865 nfs4_purge_stale_fh(e.error, dvp, cr); 5866 goto exit; 5867 } 5868 5869 /* 5870 * Check if the file exists, if it does delay entering 5871 * into the dnlc until after we update the directory 5872 * attributes so we don't cause it to get purged immediately. 5873 */ 5874 if (res.array[2].nfs_resop4_u.oplookup.status != NFS4_OK) { 5875 /* 5876 * The lookup failed, probably no entry 5877 */ 5878 if (e.error == ENOENT && nfs4_lookup_neg_cache) 5879 dnlc_update(dvp, nm, DNLC_NO_VNODE); 5880 goto exit; 5881 } 5882 5883 if (res.array[3].nfs_resop4_u.opgetfh.status != NFS4_OK) { 5884 /* 5885 * The file exists but we can't get its fh for 5886 * some unknown reason. Error out to be safe. 5887 */ 5888 goto exit; 5889 } 5890 5891 fhp = &res.array[3].nfs_resop4_u.opgetfh.object; 5892 if (fhp->nfs_fh4_len == 0) { 5893 /* 5894 * The file exists but a bogus fh 5895 * some unknown reason. Error out to be safe. 5896 */ 5897 e.error = EIO; 5898 goto exit; 5899 } 5900 sfhp = sfh4_get(fhp, mi); 5901 5902 if (res.array[4].nfs_resop4_u.opgetattr.status != NFS4_OK) { 5903 sfh4_rele(&sfhp); 5904 goto exit; 5905 } 5906 garp = &res.array[4].nfs_resop4_u.opgetattr.ga_res; 5907 5908 /* 5909 * The RESTOREFH may have failed 5910 */ 5911 if (res.array[5].nfs_resop4_u.oprestorefh.status != NFS4_OK) { 5912 sfh4_rele(&sfhp); 5913 e.error = EIO; 5914 goto exit; 5915 } 5916 5917 if (res.array[6].nfs_resop4_u.opnverify.status != NFS4ERR_SAME) { 5918 /* 5919 * First make sure the NVERIFY failed as we expected, 5920 * if it didn't then be conservative and error out 5921 * as we can't trust the directory. 5922 */ 5923 if (res.array[6].nfs_resop4_u.opnverify.status != NFS4_OK) { 5924 sfh4_rele(&sfhp); 5925 e.error = EIO; 5926 goto exit; 5927 } 5928 5929 /* 5930 * We know the NVERIFY "failed" so the directory has changed, 5931 * so we must: 5932 * purge the caches (access and indirectly dnlc if needed) 5933 */ 5934 nfs4_purge_caches(dvp, NFS4_NOPURGE_DNLC, cr, TRUE); 5935 5936 if (res.array[7].nfs_resop4_u.opgetattr.status != NFS4_OK) { 5937 sfh4_rele(&sfhp); 5938 goto exit; 5939 } 5940 nfs4_attr_cache(dvp, 5941 &res.array[7].nfs_resop4_u.opgetattr.ga_res, 5942 t, cr, FALSE, NULL); 5943 5944 if (res.array[8].nfs_resop4_u.opaccess.status != NFS4_OK) { 5945 nfs4_purge_stale_fh(e.error, dvp, cr); 5946 sfh4_rele(&sfhp); 5947 e.error = geterrno4(res.status); 5948 goto exit; 5949 } 5950 5951 /* 5952 * Now we know the directory is valid, 5953 * cache new directory access 5954 */ 5955 nfs4_access_cache(drp, 5956 args.array[8].nfs_argop4_u.opaccess.access, 5957 res.array[8].nfs_resop4_u.opaccess.access, cr); 5958 5959 /* 5960 * recheck VEXEC access 5961 */ 5962 cacc = nfs4_access_check(drp, ACCESS4_LOOKUP, cr); 5963 if (cacc != NFS4_ACCESS_ALLOWED) { 5964 /* 5965 * Directory permissions might have been revoked 5966 */ 5967 if (cacc == NFS4_ACCESS_DENIED) { 5968 sfh4_rele(&sfhp); 5969 e.error = EACCES; 5970 goto exit; 5971 } 5972 5973 /* 5974 * Somehow we must not have asked for enough 5975 * so try a singleton ACCESS should never happen 5976 */ 5977 e.error = nfs4_access(dvp, VEXEC, 0, cr, NULL); 5978 if (e.error) { 5979 sfh4_rele(&sfhp); 5980 goto exit; 5981 } 5982 } 5983 5984 e.error = geterrno4(res.status); 5985 } else { 5986 hrtime_t now; 5987 hrtime_t delta = 0; 5988 5989 e.error = 0; 5990 5991 /* 5992 * Because the NVERIFY "succeeded" we know that the 5993 * directory attributes are still valid 5994 * so update r_time_attr_inval 5995 */ 5996 now = gethrtime(); 5997 mutex_enter(&drp->r_statelock); 5998 if (!(mi->mi_flags & MI4_NOAC) && !(dvp->v_flag & VNOCACHE)) { 5999 delta = now - drp->r_time_attr_saved; 6000 if (delta < mi->mi_acdirmin) 6001 delta = mi->mi_acdirmin; 6002 else if (delta > mi->mi_acdirmax) 6003 delta = mi->mi_acdirmax; 6004 } 6005 drp->r_time_attr_inval = now + delta; 6006 mutex_exit(&drp->r_statelock); 6007 6008 /* 6009 * Even though we have a valid directory attr cache, 6010 * we may not have access. 6011 * This should almost always hit the cache. 6012 */ 6013 e.error = nfs4_access(dvp, VEXEC, 0, cr, NULL); 6014 if (e.error) { 6015 sfh4_rele(&sfhp); 6016 goto exit; 6017 } 6018 } 6019 6020 /* 6021 * Now we have successfully completed the lookup, if the 6022 * directory has changed we now have the valid attributes. 6023 * We also know we have directory access. 6024 * Create the new rnode and insert it in the dnlc. 6025 */ 6026 if (isdotdot) { 6027 e.error = nfs4_make_dotdot(sfhp, t, dvp, cr, &nvp, 1); 6028 if (e.error) { 6029 sfh4_rele(&sfhp); 6030 goto exit; 6031 } 6032 /* 6033 * XXX if nfs4_make_dotdot uses an existing rnode 6034 * XXX it doesn't update the attributes. 6035 * XXX for now just save them again to save an OTW 6036 */ 6037 nfs4_attr_cache(nvp, garp, t, cr, FALSE, NULL); 6038 } else { 6039 nvp = makenfs4node(sfhp, garp, dvp->v_vfsp, t, cr, 6040 dvp, fn_get(VTOSV(dvp)->sv_name, nm, sfhp)); 6041 } 6042 sfh4_rele(&sfhp); 6043 6044 nrp = VTOR4(nvp); 6045 mutex_enter(&nrp->r_statev4_lock); 6046 if (!nrp->created_v4) { 6047 mutex_exit(&nrp->r_statev4_lock); 6048 dnlc_update(dvp, nm, nvp); 6049 } else 6050 mutex_exit(&nrp->r_statev4_lock); 6051 6052 *vpp = nvp; 6053 6054 exit: 6055 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 6056 kmem_free(argop, argoplist_size); 6057 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp); 6058 return (e.error); 6059 } 6060 6061 #ifdef DEBUG 6062 void 6063 nfs4lookup_dump_compound(char *where, nfs_argop4 *argbase, int argcnt) 6064 { 6065 uint_t i, len; 6066 zoneid_t zoneid = getzoneid(); 6067 char *s; 6068 6069 zcmn_err(zoneid, CE_NOTE, "%s: dumping cmpd", where); 6070 for (i = 0; i < argcnt; i++) { 6071 nfs_argop4 *op = &argbase[i]; 6072 switch (op->argop) { 6073 case OP_CPUTFH: 6074 case OP_PUTFH: 6075 zcmn_err(zoneid, CE_NOTE, "\t op %d, putfh", i); 6076 break; 6077 case OP_PUTROOTFH: 6078 zcmn_err(zoneid, CE_NOTE, "\t op %d, putrootfh", i); 6079 break; 6080 case OP_CLOOKUP: 6081 s = op->nfs_argop4_u.opclookup.cname; 6082 zcmn_err(zoneid, CE_NOTE, "\t op %d, lookup %s", i, s); 6083 break; 6084 case OP_LOOKUP: 6085 s = utf8_to_str(&op->nfs_argop4_u.oplookup.objname, 6086 &len, NULL); 6087 zcmn_err(zoneid, CE_NOTE, "\t op %d, lookup %s", i, s); 6088 kmem_free(s, len); 6089 break; 6090 case OP_LOOKUPP: 6091 zcmn_err(zoneid, CE_NOTE, "\t op %d, lookupp ..", i); 6092 break; 6093 case OP_GETFH: 6094 zcmn_err(zoneid, CE_NOTE, "\t op %d, getfh", i); 6095 break; 6096 case OP_GETATTR: 6097 zcmn_err(zoneid, CE_NOTE, "\t op %d, getattr", i); 6098 break; 6099 case OP_OPENATTR: 6100 zcmn_err(zoneid, CE_NOTE, "\t op %d, openattr", i); 6101 break; 6102 default: 6103 zcmn_err(zoneid, CE_NOTE, "\t op %d, opcode %d", i, 6104 op->argop); 6105 break; 6106 } 6107 } 6108 } 6109 #endif 6110 6111 /* 6112 * nfs4lookup_setup - constructs a multi-lookup compound request. 6113 * 6114 * Given the path "nm1/nm2/.../nmn", the following compound requests 6115 * may be created: 6116 * 6117 * Note: Getfh is not be needed because filehandle attr is mandatory, but it 6118 * is faster, for now. 6119 * 6120 * l4_getattrs indicates the type of compound requested. 6121 * 6122 * LKP4_NO_ATTRIBUTE - no attributes (used by secinfo): 6123 * 6124 * compound { Put*fh; Lookup {nm1}; Lookup {nm2}; ... Lookup {nmn} } 6125 * 6126 * total number of ops is n + 1. 6127 * 6128 * LKP4_LAST_NAMED_ATTR - multi-component path for a named 6129 * attribute: create lookups plus one OPENATTR/GETFH/GETATTR 6130 * before the last component, and only get attributes 6131 * for the last component. Note that the second-to-last 6132 * pathname component is XATTR_RPATH, which does NOT go 6133 * over-the-wire as a lookup. 6134 * 6135 * compound { Put*fh; Lookup {nm1}; Lookup {nm2}; ... Lookup {nmn-2}; 6136 * Openattr; Getfh; Getattr; Lookup {nmn}; Getfh; Getattr } 6137 * 6138 * and total number of ops is n + 5. 6139 * 6140 * LKP4_LAST_ATTRDIR - multi-component path for the hidden named 6141 * attribute directory: create lookups plus an OPENATTR 6142 * replacing the last lookup. Note that the last pathname 6143 * component is XATTR_RPATH, which does NOT go over-the-wire 6144 * as a lookup. 6145 * 6146 * compound { Put*fh; Lookup {nm1}; Lookup {nm2}; ... Getfh; Getattr; 6147 * Openattr; Getfh; Getattr } 6148 * 6149 * and total number of ops is n + 5. 6150 * 6151 * LKP4_ALL_ATTRIBUTES - create lookups and get attributes for intermediate 6152 * nodes too. 6153 * 6154 * compound { Put*fh; Lookup {nm1}; Getfh; Getattr; 6155 * Lookup {nm2}; ... Lookup {nmn}; Getfh; Getattr } 6156 * 6157 * and total number of ops is 3*n + 1. 6158 * 6159 * All cases: returns the index in the arg array of the final LOOKUP op, or 6160 * -1 if no LOOKUPs were used. 6161 */ 6162 int 6163 nfs4lookup_setup(char *nm, lookup4_param_t *lookupargp, int needgetfh) 6164 { 6165 enum lkp4_attr_setup l4_getattrs = lookupargp->l4_getattrs; 6166 nfs_argop4 *argbase, *argop; 6167 int arglen, argcnt; 6168 int n = 1; /* number of components */ 6169 int nga = 1; /* number of Getattr's in request */ 6170 char c = '\0', *s, *p; 6171 int lookup_idx = -1; 6172 int argoplist_size; 6173 6174 /* set lookuparg response result to 0 */ 6175 lookupargp->resp->status = NFS4_OK; 6176 6177 /* skip leading "/" or "." e.g. ".//./" if there is */ 6178 for (; ; nm++) { 6179 if (*nm != '/' && *nm != '.') 6180 break; 6181 6182 /* ".." is counted as 1 component */ 6183 if (*nm == '.' && *(nm + 1) != '/') 6184 break; 6185 } 6186 6187 /* 6188 * Find n = number of components - nm must be null terminated 6189 * Skip "." components. 6190 */ 6191 if (*nm != '\0') 6192 for (n = 1, s = nm; *s != '\0'; s++) { 6193 if ((*s == '/') && (*(s + 1) != '/') && 6194 (*(s + 1) != '\0') && 6195 !(*(s + 1) == '.' && (*(s + 2) == '/' || 6196 *(s + 2) == '\0'))) 6197 n++; 6198 } 6199 else 6200 n = 0; 6201 6202 /* 6203 * nga is number of components that need Getfh+Getattr 6204 */ 6205 switch (l4_getattrs) { 6206 case LKP4_NO_ATTRIBUTES: 6207 nga = 0; 6208 break; 6209 case LKP4_ALL_ATTRIBUTES: 6210 nga = n; 6211 /* 6212 * Always have at least 1 getfh, getattr pair 6213 */ 6214 if (nga == 0) 6215 nga++; 6216 break; 6217 case LKP4_LAST_ATTRDIR: 6218 case LKP4_LAST_NAMED_ATTR: 6219 nga = n+1; 6220 break; 6221 } 6222 6223 /* 6224 * If change to use the filehandle attr instead of getfh 6225 * the following line can be deleted. 6226 */ 6227 nga *= 2; 6228 6229 /* 6230 * calculate number of ops in request as 6231 * header + trailer + lookups + getattrs 6232 */ 6233 arglen = lookupargp->header_len + lookupargp->trailer_len + n + nga; 6234 6235 argoplist_size = arglen * sizeof (nfs_argop4); 6236 argop = argbase = kmem_alloc(argoplist_size, KM_SLEEP); 6237 lookupargp->argsp->array = argop; 6238 6239 argcnt = lookupargp->header_len; 6240 argop += argcnt; 6241 6242 /* 6243 * loop and create a lookup op and possibly getattr/getfh for 6244 * each component. Skip "." components. 6245 */ 6246 for (s = nm; *s != '\0'; s = p) { 6247 /* 6248 * Set up a pathname struct for each component if needed 6249 */ 6250 while (*s == '/') 6251 s++; 6252 if (*s == '\0') 6253 break; 6254 6255 for (p = s; (*p != '/') && (*p != '\0'); p++) 6256 ; 6257 c = *p; 6258 *p = '\0'; 6259 6260 if (s[0] == '.' && s[1] == '\0') { 6261 *p = c; 6262 continue; 6263 } 6264 if (l4_getattrs == LKP4_LAST_ATTRDIR && 6265 strcmp(s, XATTR_RPATH) == 0) { 6266 /* getfh XXX may not be needed in future */ 6267 argop->argop = OP_GETFH; 6268 argop++; 6269 argcnt++; 6270 6271 /* getattr */ 6272 argop->argop = OP_GETATTR; 6273 argop->nfs_argop4_u.opgetattr.attr_request = 6274 lookupargp->ga_bits; 6275 argop->nfs_argop4_u.opgetattr.mi = 6276 lookupargp->mi; 6277 argop++; 6278 argcnt++; 6279 6280 /* openattr */ 6281 argop->argop = OP_OPENATTR; 6282 } else if (l4_getattrs == LKP4_LAST_NAMED_ATTR && 6283 strcmp(s, XATTR_RPATH) == 0) { 6284 /* openattr */ 6285 argop->argop = OP_OPENATTR; 6286 argop++; 6287 argcnt++; 6288 6289 /* getfh XXX may not be needed in future */ 6290 argop->argop = OP_GETFH; 6291 argop++; 6292 argcnt++; 6293 6294 /* getattr */ 6295 argop->argop = OP_GETATTR; 6296 argop->nfs_argop4_u.opgetattr.attr_request = 6297 lookupargp->ga_bits; 6298 argop->nfs_argop4_u.opgetattr.mi = 6299 lookupargp->mi; 6300 argop++; 6301 argcnt++; 6302 *p = c; 6303 continue; 6304 } else if (s[0] == '.' && s[1] == '.' && s[2] == '\0') { 6305 /* lookupp */ 6306 argop->argop = OP_LOOKUPP; 6307 } else { 6308 /* lookup */ 6309 argop->argop = OP_LOOKUP; 6310 (void) str_to_utf8(s, 6311 &argop->nfs_argop4_u.oplookup.objname); 6312 } 6313 lookup_idx = argcnt; 6314 argop++; 6315 argcnt++; 6316 6317 *p = c; 6318 6319 if (l4_getattrs == LKP4_ALL_ATTRIBUTES) { 6320 /* getfh XXX may not be needed in future */ 6321 argop->argop = OP_GETFH; 6322 argop++; 6323 argcnt++; 6324 6325 /* getattr */ 6326 argop->argop = OP_GETATTR; 6327 argop->nfs_argop4_u.opgetattr.attr_request = 6328 lookupargp->ga_bits; 6329 argop->nfs_argop4_u.opgetattr.mi = 6330 lookupargp->mi; 6331 argop++; 6332 argcnt++; 6333 } 6334 } 6335 6336 if ((l4_getattrs != LKP4_NO_ATTRIBUTES) && 6337 ((l4_getattrs != LKP4_ALL_ATTRIBUTES) || (lookup_idx < 0))) { 6338 if (needgetfh) { 6339 /* stick in a post-lookup getfh */ 6340 argop->argop = OP_GETFH; 6341 argcnt++; 6342 argop++; 6343 } 6344 /* post-lookup getattr */ 6345 argop->argop = OP_GETATTR; 6346 argop->nfs_argop4_u.opgetattr.attr_request = 6347 lookupargp->ga_bits; 6348 argop->nfs_argop4_u.opgetattr.mi = lookupargp->mi; 6349 argcnt++; 6350 } 6351 argcnt += lookupargp->trailer_len; /* actual op count */ 6352 lookupargp->argsp->array_len = argcnt; 6353 lookupargp->arglen = arglen; 6354 6355 #ifdef DEBUG 6356 if (nfs4_client_lookup_debug) 6357 nfs4lookup_dump_compound("nfs4lookup_setup", argbase, argcnt); 6358 #endif 6359 6360 return (lookup_idx); 6361 } 6362 6363 static int 6364 nfs4openattr(vnode_t *dvp, vnode_t **avp, int cflag, cred_t *cr) 6365 { 6366 COMPOUND4args_clnt args; 6367 COMPOUND4res_clnt res; 6368 GETFH4res *gf_res = NULL; 6369 nfs_argop4 argop[4]; 6370 nfs_resop4 *resop = NULL; 6371 nfs4_sharedfh_t *sfhp; 6372 hrtime_t t; 6373 nfs4_error_t e; 6374 6375 rnode4_t *drp; 6376 int doqueue = 1; 6377 vnode_t *vp; 6378 int needrecov = 0; 6379 nfs4_recov_state_t recov_state; 6380 6381 ASSERT(nfs_zone() == VTOMI4(dvp)->mi_zone); 6382 6383 *avp = NULL; 6384 recov_state.rs_flags = 0; 6385 recov_state.rs_num_retry_despite_err = 0; 6386 6387 recov_retry: 6388 /* COMPOUND: putfh, openattr, getfh, getattr */ 6389 args.array_len = 4; 6390 args.array = argop; 6391 args.ctag = TAG_OPENATTR; 6392 6393 e.error = nfs4_start_op(VTOMI4(dvp), dvp, NULL, &recov_state); 6394 if (e.error) 6395 return (e.error); 6396 6397 drp = VTOR4(dvp); 6398 6399 /* putfh */ 6400 argop[0].argop = OP_CPUTFH; 6401 argop[0].nfs_argop4_u.opcputfh.sfh = drp->r_fh; 6402 6403 /* openattr */ 6404 argop[1].argop = OP_OPENATTR; 6405 argop[1].nfs_argop4_u.opopenattr.createdir = (cflag ? TRUE : FALSE); 6406 6407 /* getfh */ 6408 argop[2].argop = OP_GETFH; 6409 6410 /* getattr */ 6411 argop[3].argop = OP_GETATTR; 6412 argop[3].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 6413 argop[3].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp); 6414 6415 NFS4_DEBUG(nfs4_client_call_debug, (CE_NOTE, 6416 "nfs4openattr: %s call, drp %s", needrecov ? "recov" : "first", 6417 rnode4info(drp))); 6418 6419 t = gethrtime(); 6420 6421 rfs4call(VTOMI4(dvp), &args, &res, cr, &doqueue, 0, &e); 6422 6423 needrecov = nfs4_needs_recovery(&e, FALSE, dvp->v_vfsp); 6424 if (needrecov) { 6425 bool_t abort; 6426 6427 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 6428 "nfs4openattr: initiating recovery\n")); 6429 6430 abort = nfs4_start_recovery(&e, 6431 VTOMI4(dvp), dvp, NULL, NULL, NULL, 6432 OP_OPENATTR, NULL, NULL, NULL); 6433 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, needrecov); 6434 if (!e.error) { 6435 e.error = geterrno4(res.status); 6436 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 6437 } 6438 if (abort == FALSE) 6439 goto recov_retry; 6440 return (e.error); 6441 } 6442 6443 if (e.error) { 6444 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, needrecov); 6445 return (e.error); 6446 } 6447 6448 if (res.status) { 6449 /* 6450 * If OTW errro is NOTSUPP, then it should be 6451 * translated to EINVAL. All Solaris file system 6452 * implementations return EINVAL to the syscall layer 6453 * when the attrdir cannot be created due to an 6454 * implementation restriction or noxattr mount option. 6455 */ 6456 if (res.status == NFS4ERR_NOTSUPP) { 6457 mutex_enter(&drp->r_statelock); 6458 if (drp->r_xattr_dir) 6459 VN_RELE(drp->r_xattr_dir); 6460 VN_HOLD(NFS4_XATTR_DIR_NOTSUPP); 6461 drp->r_xattr_dir = NFS4_XATTR_DIR_NOTSUPP; 6462 mutex_exit(&drp->r_statelock); 6463 6464 e.error = EINVAL; 6465 } else { 6466 e.error = geterrno4(res.status); 6467 } 6468 6469 if (e.error) { 6470 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 6471 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, 6472 needrecov); 6473 return (e.error); 6474 } 6475 } 6476 6477 resop = &res.array[0]; /* putfh res */ 6478 ASSERT(resop->nfs_resop4_u.opgetfh.status == NFS4_OK); 6479 6480 resop = &res.array[1]; /* openattr res */ 6481 ASSERT(resop->nfs_resop4_u.opopenattr.status == NFS4_OK); 6482 6483 resop = &res.array[2]; /* getfh res */ 6484 gf_res = &resop->nfs_resop4_u.opgetfh; 6485 if (gf_res->object.nfs_fh4_len == 0) { 6486 *avp = NULL; 6487 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 6488 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, needrecov); 6489 return (ENOENT); 6490 } 6491 6492 sfhp = sfh4_get(&gf_res->object, VTOMI4(dvp)); 6493 vp = makenfs4node(sfhp, &res.array[3].nfs_resop4_u.opgetattr.ga_res, 6494 dvp->v_vfsp, t, cr, dvp, 6495 fn_get(VTOSV(dvp)->sv_name, XATTR_RPATH, sfhp)); 6496 sfh4_rele(&sfhp); 6497 6498 if (e.error) 6499 PURGE_ATTRCACHE4(vp); 6500 6501 mutex_enter(&vp->v_lock); 6502 vp->v_flag |= V_XATTRDIR; 6503 mutex_exit(&vp->v_lock); 6504 6505 *avp = vp; 6506 6507 mutex_enter(&drp->r_statelock); 6508 if (drp->r_xattr_dir) 6509 VN_RELE(drp->r_xattr_dir); 6510 VN_HOLD(vp); 6511 drp->r_xattr_dir = vp; 6512 6513 /* 6514 * Invalidate pathconf4 cache because r_xattr_dir is no longer 6515 * NULL. xattrs could be created at any time, and we have no 6516 * way to update pc4_xattr_exists in the base object if/when 6517 * it happens. 6518 */ 6519 drp->r_pathconf.pc4_xattr_valid = 0; 6520 6521 mutex_exit(&drp->r_statelock); 6522 6523 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, needrecov); 6524 6525 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 6526 6527 return (0); 6528 } 6529 6530 /* ARGSUSED */ 6531 static int 6532 nfs4_create(vnode_t *dvp, char *nm, struct vattr *va, enum vcexcl exclusive, 6533 int mode, vnode_t **vpp, cred_t *cr, int flags, caller_context_t *ct, 6534 vsecattr_t *vsecp) 6535 { 6536 int error; 6537 vnode_t *vp = NULL; 6538 rnode4_t *rp; 6539 struct vattr vattr; 6540 rnode4_t *drp; 6541 vnode_t *tempvp; 6542 enum createmode4 createmode; 6543 bool_t must_trunc = FALSE; 6544 int truncating = 0; 6545 6546 if (nfs_zone() != VTOMI4(dvp)->mi_zone) 6547 return (EPERM); 6548 if (exclusive == EXCL && (dvp->v_flag & V_XATTRDIR)) { 6549 return (EINVAL); 6550 } 6551 6552 /* . and .. have special meaning in the protocol, reject them. */ 6553 6554 if (nm[0] == '.' && (nm[1] == '\0' || (nm[1] == '.' && nm[2] == '\0'))) 6555 return (EISDIR); 6556 6557 drp = VTOR4(dvp); 6558 6559 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR4(dvp))) 6560 return (EINTR); 6561 6562 top: 6563 /* 6564 * We make a copy of the attributes because the caller does not 6565 * expect us to change what va points to. 6566 */ 6567 vattr = *va; 6568 6569 /* 6570 * If the pathname is "", then dvp is the root vnode of 6571 * a remote file mounted over a local directory. 6572 * All that needs to be done is access 6573 * checking and truncation. Note that we avoid doing 6574 * open w/ create because the parent directory might 6575 * be in pseudo-fs and the open would fail. 6576 */ 6577 if (*nm == '\0') { 6578 error = 0; 6579 VN_HOLD(dvp); 6580 vp = dvp; 6581 must_trunc = TRUE; 6582 } else { 6583 /* 6584 * We need to go over the wire, just to be sure whether the 6585 * file exists or not. Using the DNLC can be dangerous in 6586 * this case when making a decision regarding existence. 6587 */ 6588 error = nfs4lookup(dvp, nm, &vp, cr, 1); 6589 } 6590 6591 if (exclusive) 6592 createmode = EXCLUSIVE4; 6593 else 6594 createmode = GUARDED4; 6595 6596 /* 6597 * error would be set if the file does not exist on the 6598 * server, so lets go create it. 6599 */ 6600 if (error) { 6601 goto create_otw; 6602 } 6603 6604 /* 6605 * File does exist on the server 6606 */ 6607 if (exclusive == EXCL) 6608 error = EEXIST; 6609 else if (vp->v_type == VDIR && (mode & VWRITE)) 6610 error = EISDIR; 6611 else { 6612 /* 6613 * If vnode is a device, create special vnode. 6614 */ 6615 if (ISVDEV(vp->v_type)) { 6616 tempvp = vp; 6617 vp = specvp(vp, vp->v_rdev, vp->v_type, cr); 6618 VN_RELE(tempvp); 6619 } 6620 if (!(error = VOP_ACCESS(vp, mode, 0, cr, ct))) { 6621 if ((vattr.va_mask & AT_SIZE) && 6622 vp->v_type == VREG) { 6623 rp = VTOR4(vp); 6624 /* 6625 * Check here for large file handled 6626 * by LF-unaware process (as 6627 * ufs_create() does) 6628 */ 6629 if (!(flags & FOFFMAX)) { 6630 mutex_enter(&rp->r_statelock); 6631 if (rp->r_size > MAXOFF32_T) 6632 error = EOVERFLOW; 6633 mutex_exit(&rp->r_statelock); 6634 } 6635 6636 /* if error is set then we need to return */ 6637 if (error) { 6638 nfs_rw_exit(&drp->r_rwlock); 6639 VN_RELE(vp); 6640 return (error); 6641 } 6642 6643 if (must_trunc) { 6644 vattr.va_mask = AT_SIZE; 6645 error = nfs4setattr(vp, &vattr, 0, cr, 6646 NULL); 6647 } else { 6648 /* 6649 * we know we have a regular file that already 6650 * exists and we may end up truncating the file 6651 * as a result of the open_otw, so flush out 6652 * any dirty pages for this file first. 6653 */ 6654 if (nfs4_has_pages(vp) && 6655 ((rp->r_flags & R4DIRTY) || 6656 rp->r_count > 0 || 6657 rp->r_mapcnt > 0)) { 6658 error = nfs4_putpage(vp, 6659 (offset_t)0, 0, 0, cr, ct); 6660 if (error && (error == ENOSPC || 6661 error == EDQUOT)) { 6662 mutex_enter( 6663 &rp->r_statelock); 6664 if (!rp->r_error) 6665 rp->r_error = 6666 error; 6667 mutex_exit( 6668 &rp->r_statelock); 6669 } 6670 } 6671 vattr.va_mask = (AT_SIZE | 6672 AT_TYPE | AT_MODE); 6673 vattr.va_type = VREG; 6674 createmode = UNCHECKED4; 6675 truncating = 1; 6676 goto create_otw; 6677 } 6678 } 6679 } 6680 } 6681 nfs_rw_exit(&drp->r_rwlock); 6682 if (error) { 6683 VN_RELE(vp); 6684 } else { 6685 vnode_t *tvp; 6686 rnode4_t *trp; 6687 tvp = vp; 6688 if (vp->v_type == VREG) { 6689 trp = VTOR4(vp); 6690 if (IS_SHADOW(vp, trp)) 6691 tvp = RTOV4(trp); 6692 } 6693 6694 if (must_trunc) { 6695 /* 6696 * existing file got truncated, notify. 6697 */ 6698 vnevent_create(tvp, ct); 6699 } 6700 6701 *vpp = vp; 6702 } 6703 return (error); 6704 6705 create_otw: 6706 dnlc_remove(dvp, nm); 6707 6708 ASSERT(vattr.va_mask & AT_TYPE); 6709 6710 /* 6711 * If not a regular file let nfs4mknod() handle it. 6712 */ 6713 if (vattr.va_type != VREG) { 6714 error = nfs4mknod(dvp, nm, &vattr, exclusive, mode, vpp, cr); 6715 nfs_rw_exit(&drp->r_rwlock); 6716 return (error); 6717 } 6718 6719 /* 6720 * It _is_ a regular file. 6721 */ 6722 ASSERT(vattr.va_mask & AT_MODE); 6723 if (MANDMODE(vattr.va_mode)) { 6724 nfs_rw_exit(&drp->r_rwlock); 6725 return (EACCES); 6726 } 6727 6728 /* 6729 * If this happens to be a mknod of a regular file, then flags will 6730 * have neither FREAD or FWRITE. However, we must set at least one 6731 * for the call to nfs4open_otw. If it's open(O_CREAT) driving 6732 * nfs4_create, then either FREAD, FWRITE, or FRDWR has already been 6733 * set (based on openmode specified by app). 6734 */ 6735 if ((flags & (FREAD|FWRITE)) == 0) 6736 flags |= (FREAD|FWRITE); 6737 6738 error = nfs4open_otw(dvp, nm, &vattr, vpp, cr, 1, flags, createmode, 0); 6739 6740 if (vp != NULL) { 6741 /* if create was successful, throw away the file's pages */ 6742 if (!error && (vattr.va_mask & AT_SIZE)) 6743 nfs4_invalidate_pages(vp, (vattr.va_size & PAGEMASK), 6744 cr); 6745 /* release the lookup hold */ 6746 VN_RELE(vp); 6747 vp = NULL; 6748 } 6749 6750 /* 6751 * validate that we opened a regular file. This handles a misbehaving 6752 * server that returns an incorrect FH. 6753 */ 6754 if ((error == 0) && *vpp && (*vpp)->v_type != VREG) { 6755 error = EISDIR; 6756 VN_RELE(*vpp); 6757 } 6758 6759 /* 6760 * If this is not an exclusive create, then the CREATE 6761 * request will be made with the GUARDED mode set. This 6762 * means that the server will return EEXIST if the file 6763 * exists. The file could exist because of a retransmitted 6764 * request. In this case, we recover by starting over and 6765 * checking to see whether the file exists. This second 6766 * time through it should and a CREATE request will not be 6767 * sent. 6768 * 6769 * This handles the problem of a dangling CREATE request 6770 * which contains attributes which indicate that the file 6771 * should be truncated. This retransmitted request could 6772 * possibly truncate valid data in the file if not caught 6773 * by the duplicate request mechanism on the server or if 6774 * not caught by other means. The scenario is: 6775 * 6776 * Client transmits CREATE request with size = 0 6777 * Client times out, retransmits request. 6778 * Response to the first request arrives from the server 6779 * and the client proceeds on. 6780 * Client writes data to the file. 6781 * The server now processes retransmitted CREATE request 6782 * and truncates file. 6783 * 6784 * The use of the GUARDED CREATE request prevents this from 6785 * happening because the retransmitted CREATE would fail 6786 * with EEXIST and would not truncate the file. 6787 */ 6788 if (error == EEXIST && exclusive == NONEXCL) { 6789 #ifdef DEBUG 6790 nfs4_create_misses++; 6791 #endif 6792 goto top; 6793 } 6794 nfs_rw_exit(&drp->r_rwlock); 6795 if (truncating && !error && *vpp) { 6796 vnode_t *tvp; 6797 rnode4_t *trp; 6798 /* 6799 * existing file got truncated, notify. 6800 */ 6801 tvp = *vpp; 6802 trp = VTOR4(tvp); 6803 if (IS_SHADOW(tvp, trp)) 6804 tvp = RTOV4(trp); 6805 vnevent_create(tvp, ct); 6806 } 6807 return (error); 6808 } 6809 6810 /* 6811 * Create compound (for mkdir, mknod, symlink): 6812 * { Putfh <dfh>; Create; Getfh; Getattr } 6813 * It's okay if setattr failed to set gid - this is not considered 6814 * an error, but purge attrs in that case. 6815 */ 6816 static int 6817 call_nfs4_create_req(vnode_t *dvp, char *nm, void *data, struct vattr *va, 6818 vnode_t **vpp, cred_t *cr, nfs_ftype4 type) 6819 { 6820 int need_end_op = FALSE; 6821 COMPOUND4args_clnt args; 6822 COMPOUND4res_clnt res, *resp = NULL; 6823 nfs_argop4 *argop; 6824 nfs_resop4 *resop; 6825 int doqueue; 6826 mntinfo4_t *mi; 6827 rnode4_t *drp = VTOR4(dvp); 6828 change_info4 *cinfo; 6829 GETFH4res *gf_res; 6830 struct vattr vattr; 6831 vnode_t *vp; 6832 fattr4 *crattr; 6833 bool_t needrecov = FALSE; 6834 nfs4_recov_state_t recov_state; 6835 nfs4_sharedfh_t *sfhp = NULL; 6836 hrtime_t t; 6837 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 6838 int numops, argoplist_size, setgid_flag, idx_create, idx_fattr; 6839 dirattr_info_t dinfo, *dinfop; 6840 servinfo4_t *svp; 6841 bitmap4 supp_attrs; 6842 6843 ASSERT(type == NF4DIR || type == NF4LNK || type == NF4BLK || 6844 type == NF4CHR || type == NF4SOCK || type == NF4FIFO); 6845 6846 mi = VTOMI4(dvp); 6847 6848 /* 6849 * Make sure we properly deal with setting the right gid 6850 * on a new directory to reflect the parent's setgid bit 6851 */ 6852 setgid_flag = 0; 6853 if (type == NF4DIR) { 6854 struct vattr dva; 6855 6856 va->va_mode &= ~VSGID; 6857 dva.va_mask = AT_MODE | AT_GID; 6858 if (VOP_GETATTR(dvp, &dva, 0, cr, NULL) == 0) { 6859 6860 /* 6861 * If the parent's directory has the setgid bit set 6862 * _and_ the client was able to get a valid mapping 6863 * for the parent dir's owner_group, we want to 6864 * append NVERIFY(owner_group == dva.va_gid) and 6865 * SETTATTR to the CREATE compound. 6866 */ 6867 if (mi->mi_flags & MI4_GRPID || dva.va_mode & VSGID) { 6868 setgid_flag = 1; 6869 va->va_mode |= VSGID; 6870 if (dva.va_gid != GID_NOBODY) { 6871 va->va_mask |= AT_GID; 6872 va->va_gid = dva.va_gid; 6873 } 6874 } 6875 } 6876 } 6877 6878 /* 6879 * Create ops: 6880 * 0:putfh(dir) 1:savefh(dir) 2:create 3:getfh(new) 4:getattr(new) 6881 * 5:restorefh(dir) 6:getattr(dir) 6882 * 6883 * if (setgid) 6884 * 0:putfh(dir) 1:create 2:getfh(new) 3:getattr(new) 6885 * 4:savefh(new) 5:putfh(dir) 6:getattr(dir) 7:restorefh(new) 6886 * 8:nverify 9:setattr 6887 */ 6888 if (setgid_flag) { 6889 numops = 10; 6890 idx_create = 1; 6891 idx_fattr = 3; 6892 } else { 6893 numops = 7; 6894 idx_create = 2; 6895 idx_fattr = 4; 6896 } 6897 6898 ASSERT(nfs_zone() == mi->mi_zone); 6899 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR4(dvp))) { 6900 return (EINTR); 6901 } 6902 recov_state.rs_flags = 0; 6903 recov_state.rs_num_retry_despite_err = 0; 6904 6905 argoplist_size = numops * sizeof (nfs_argop4); 6906 argop = kmem_alloc(argoplist_size, KM_SLEEP); 6907 6908 recov_retry: 6909 if (type == NF4LNK) 6910 args.ctag = TAG_SYMLINK; 6911 else if (type == NF4DIR) 6912 args.ctag = TAG_MKDIR; 6913 else 6914 args.ctag = TAG_MKNOD; 6915 6916 args.array_len = numops; 6917 args.array = argop; 6918 6919 if (e.error = nfs4_start_op(mi, dvp, NULL, &recov_state)) { 6920 nfs_rw_exit(&drp->r_rwlock); 6921 kmem_free(argop, argoplist_size); 6922 return (e.error); 6923 } 6924 need_end_op = TRUE; 6925 6926 6927 /* 0: putfh directory */ 6928 argop[0].argop = OP_CPUTFH; 6929 argop[0].nfs_argop4_u.opcputfh.sfh = drp->r_fh; 6930 6931 /* 1/2: Create object */ 6932 argop[idx_create].argop = OP_CCREATE; 6933 argop[idx_create].nfs_argop4_u.opccreate.cname = nm; 6934 argop[idx_create].nfs_argop4_u.opccreate.type = type; 6935 if (type == NF4LNK) { 6936 /* 6937 * symlink, treat name as data 6938 */ 6939 ASSERT(data != NULL); 6940 argop[idx_create].nfs_argop4_u.opccreate.ftype4_u.clinkdata = 6941 (char *)data; 6942 } 6943 if (type == NF4BLK || type == NF4CHR) { 6944 ASSERT(data != NULL); 6945 argop[idx_create].nfs_argop4_u.opccreate.ftype4_u.devdata = 6946 *((specdata4 *)data); 6947 } 6948 6949 crattr = &argop[idx_create].nfs_argop4_u.opccreate.createattrs; 6950 6951 svp = drp->r_server; 6952 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); 6953 supp_attrs = svp->sv_supp_attrs; 6954 nfs_rw_exit(&svp->sv_lock); 6955 6956 if (vattr_to_fattr4(va, NULL, crattr, 0, OP_CREATE, supp_attrs)) { 6957 nfs_rw_exit(&drp->r_rwlock); 6958 nfs4_end_op(mi, dvp, NULL, &recov_state, needrecov); 6959 e.error = EINVAL; 6960 kmem_free(argop, argoplist_size); 6961 return (e.error); 6962 } 6963 6964 /* 2/3: getfh fh of created object */ 6965 ASSERT(idx_create + 1 == idx_fattr - 1); 6966 argop[idx_create + 1].argop = OP_GETFH; 6967 6968 /* 3/4: getattr of new object */ 6969 argop[idx_fattr].argop = OP_GETATTR; 6970 argop[idx_fattr].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 6971 argop[idx_fattr].nfs_argop4_u.opgetattr.mi = mi; 6972 6973 if (setgid_flag) { 6974 vattr_t _v; 6975 6976 argop[4].argop = OP_SAVEFH; 6977 6978 argop[5].argop = OP_CPUTFH; 6979 argop[5].nfs_argop4_u.opcputfh.sfh = drp->r_fh; 6980 6981 argop[6].argop = OP_GETATTR; 6982 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 6983 argop[6].nfs_argop4_u.opgetattr.mi = mi; 6984 6985 argop[7].argop = OP_RESTOREFH; 6986 6987 /* 6988 * nverify 6989 * 6990 * XXX - Revisit the last argument to nfs4_end_op() 6991 * once 5020486 is fixed. 6992 */ 6993 _v.va_mask = AT_GID; 6994 _v.va_gid = va->va_gid; 6995 if (e.error = nfs4args_verify(&argop[8], &_v, OP_NVERIFY, 6996 supp_attrs)) { 6997 nfs4_end_op(mi, dvp, *vpp, &recov_state, TRUE); 6998 nfs_rw_exit(&drp->r_rwlock); 6999 nfs4_fattr4_free(crattr); 7000 kmem_free(argop, argoplist_size); 7001 return (e.error); 7002 } 7003 7004 /* 7005 * setattr 7006 * 7007 * We _know_ we're not messing with AT_SIZE or AT_XTIME, 7008 * so no need for stateid or flags. Also we specify NULL 7009 * rp since we're only interested in setting owner_group 7010 * attributes. 7011 */ 7012 nfs4args_setattr(&argop[9], &_v, NULL, 0, NULL, cr, supp_attrs, 7013 &e.error, 0); 7014 7015 if (e.error) { 7016 nfs4_end_op(mi, dvp, *vpp, &recov_state, TRUE); 7017 nfs_rw_exit(&drp->r_rwlock); 7018 nfs4_fattr4_free(crattr); 7019 nfs4args_verify_free(&argop[8]); 7020 kmem_free(argop, argoplist_size); 7021 return (e.error); 7022 } 7023 } else { 7024 argop[1].argop = OP_SAVEFH; 7025 7026 argop[5].argop = OP_RESTOREFH; 7027 7028 argop[6].argop = OP_GETATTR; 7029 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 7030 argop[6].nfs_argop4_u.opgetattr.mi = mi; 7031 } 7032 7033 dnlc_remove(dvp, nm); 7034 7035 doqueue = 1; 7036 t = gethrtime(); 7037 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e); 7038 7039 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp); 7040 if (e.error) { 7041 PURGE_ATTRCACHE4(dvp); 7042 if (!needrecov) 7043 goto out; 7044 } 7045 7046 if (needrecov) { 7047 if (nfs4_start_recovery(&e, mi, dvp, NULL, NULL, NULL, 7048 OP_CREATE, NULL, NULL, NULL) == FALSE) { 7049 nfs4_end_op(mi, dvp, NULL, &recov_state, 7050 needrecov); 7051 need_end_op = FALSE; 7052 nfs4_fattr4_free(crattr); 7053 if (setgid_flag) { 7054 nfs4args_verify_free(&argop[8]); 7055 nfs4args_setattr_free(&argop[9]); 7056 } 7057 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 7058 goto recov_retry; 7059 } 7060 } 7061 7062 resp = &res; 7063 7064 if (res.status != NFS4_OK && res.array_len <= idx_fattr + 1) { 7065 7066 if (res.status == NFS4ERR_BADOWNER) 7067 nfs4_log_badowner(mi, OP_CREATE); 7068 7069 e.error = geterrno4(res.status); 7070 7071 /* 7072 * This check is left over from when create was implemented 7073 * using a setattr op (instead of createattrs). If the 7074 * putfh/create/getfh failed, the error was returned. If 7075 * setattr/getattr failed, we keep going. 7076 * 7077 * It might be better to get rid of the GETFH also, and just 7078 * do PUTFH/CREATE/GETATTR since the FH attr is mandatory. 7079 * Then if any of the operations failed, we could return the 7080 * error now, and remove much of the error code below. 7081 */ 7082 if (res.array_len <= idx_fattr) { 7083 /* 7084 * Either Putfh, Create or Getfh failed. 7085 */ 7086 PURGE_ATTRCACHE4(dvp); 7087 /* 7088 * nfs4_purge_stale_fh() may generate otw calls through 7089 * nfs4_invalidate_pages. Hence the need to call 7090 * nfs4_end_op() here to avoid nfs4_start_op() deadlock. 7091 */ 7092 nfs4_end_op(mi, dvp, NULL, &recov_state, 7093 needrecov); 7094 need_end_op = FALSE; 7095 nfs4_purge_stale_fh(e.error, dvp, cr); 7096 goto out; 7097 } 7098 } 7099 7100 resop = &res.array[idx_create]; /* create res */ 7101 cinfo = &resop->nfs_resop4_u.opcreate.cinfo; 7102 7103 resop = &res.array[idx_create + 1]; /* getfh res */ 7104 gf_res = &resop->nfs_resop4_u.opgetfh; 7105 7106 sfhp = sfh4_get(&gf_res->object, mi); 7107 if (e.error) { 7108 *vpp = vp = makenfs4node(sfhp, NULL, dvp->v_vfsp, t, cr, dvp, 7109 fn_get(VTOSV(dvp)->sv_name, nm, sfhp)); 7110 if (vp->v_type == VNON) { 7111 vattr.va_mask = AT_TYPE; 7112 /* 7113 * Need to call nfs4_end_op before nfs4getattr to avoid 7114 * potential nfs4_start_op deadlock. See RFE 4777612. 7115 */ 7116 nfs4_end_op(mi, dvp, NULL, &recov_state, 7117 needrecov); 7118 need_end_op = FALSE; 7119 e.error = nfs4getattr(vp, &vattr, cr); 7120 if (e.error) { 7121 VN_RELE(vp); 7122 *vpp = NULL; 7123 goto out; 7124 } 7125 vp->v_type = vattr.va_type; 7126 } 7127 e.error = 0; 7128 } else { 7129 *vpp = vp = makenfs4node(sfhp, 7130 &res.array[idx_fattr].nfs_resop4_u.opgetattr.ga_res, 7131 dvp->v_vfsp, t, cr, 7132 dvp, fn_get(VTOSV(dvp)->sv_name, nm, sfhp)); 7133 } 7134 7135 /* 7136 * If compound succeeded, then update dir attrs 7137 */ 7138 if (res.status == NFS4_OK) { 7139 dinfo.di_garp = &res.array[6].nfs_resop4_u.opgetattr.ga_res; 7140 dinfo.di_cred = cr; 7141 dinfo.di_time_call = t; 7142 dinfop = &dinfo; 7143 } else 7144 dinfop = NULL; 7145 7146 /* Update directory cache attribute, readdir and dnlc caches */ 7147 nfs4_update_dircaches(cinfo, dvp, vp, nm, dinfop); 7148 7149 out: 7150 if (sfhp != NULL) 7151 sfh4_rele(&sfhp); 7152 nfs_rw_exit(&drp->r_rwlock); 7153 nfs4_fattr4_free(crattr); 7154 if (setgid_flag) { 7155 nfs4args_verify_free(&argop[8]); 7156 nfs4args_setattr_free(&argop[9]); 7157 } 7158 if (resp) 7159 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp); 7160 if (need_end_op) 7161 nfs4_end_op(mi, dvp, NULL, &recov_state, needrecov); 7162 7163 kmem_free(argop, argoplist_size); 7164 return (e.error); 7165 } 7166 7167 /* ARGSUSED */ 7168 static int 7169 nfs4mknod(vnode_t *dvp, char *nm, struct vattr *va, enum vcexcl exclusive, 7170 int mode, vnode_t **vpp, cred_t *cr) 7171 { 7172 int error; 7173 vnode_t *vp; 7174 nfs_ftype4 type; 7175 specdata4 spec, *specp = NULL; 7176 7177 ASSERT(nfs_zone() == VTOMI4(dvp)->mi_zone); 7178 7179 switch (va->va_type) { 7180 case VCHR: 7181 case VBLK: 7182 type = (va->va_type == VCHR) ? NF4CHR : NF4BLK; 7183 spec.specdata1 = getmajor(va->va_rdev); 7184 spec.specdata2 = getminor(va->va_rdev); 7185 specp = &spec; 7186 break; 7187 7188 case VFIFO: 7189 type = NF4FIFO; 7190 break; 7191 case VSOCK: 7192 type = NF4SOCK; 7193 break; 7194 7195 default: 7196 return (EINVAL); 7197 } 7198 7199 error = call_nfs4_create_req(dvp, nm, specp, va, &vp, cr, type); 7200 if (error) { 7201 return (error); 7202 } 7203 7204 /* 7205 * This might not be needed any more; special case to deal 7206 * with problematic v2/v3 servers. Since create was unable 7207 * to set group correctly, not sure what hope setattr has. 7208 */ 7209 if (va->va_gid != VTOR4(vp)->r_attr.va_gid) { 7210 va->va_mask = AT_GID; 7211 (void) nfs4setattr(vp, va, 0, cr, NULL); 7212 } 7213 7214 /* 7215 * If vnode is a device create special vnode 7216 */ 7217 if (ISVDEV(vp->v_type)) { 7218 *vpp = specvp(vp, vp->v_rdev, vp->v_type, cr); 7219 VN_RELE(vp); 7220 } else { 7221 *vpp = vp; 7222 } 7223 return (error); 7224 } 7225 7226 /* 7227 * Remove requires that the current fh be the target directory. 7228 * After the operation, the current fh is unchanged. 7229 * The compound op structure is: 7230 * PUTFH(targetdir), REMOVE 7231 * 7232 * Weirdness: if the vnode to be removed is open 7233 * we rename it instead of removing it and nfs_inactive 7234 * will remove the new name. 7235 */ 7236 /* ARGSUSED */ 7237 static int 7238 nfs4_remove(vnode_t *dvp, char *nm, cred_t *cr, caller_context_t *ct, int flags) 7239 { 7240 COMPOUND4args_clnt args; 7241 COMPOUND4res_clnt res, *resp = NULL; 7242 REMOVE4res *rm_res; 7243 nfs_argop4 argop[3]; 7244 nfs_resop4 *resop; 7245 vnode_t *vp; 7246 char *tmpname; 7247 int doqueue; 7248 mntinfo4_t *mi; 7249 rnode4_t *rp; 7250 rnode4_t *drp; 7251 int needrecov = 0; 7252 nfs4_recov_state_t recov_state; 7253 int isopen; 7254 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 7255 dirattr_info_t dinfo; 7256 7257 if (nfs_zone() != VTOMI4(dvp)->mi_zone) 7258 return (EPERM); 7259 drp = VTOR4(dvp); 7260 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR4(dvp))) 7261 return (EINTR); 7262 7263 e.error = nfs4lookup(dvp, nm, &vp, cr, 0); 7264 if (e.error) { 7265 nfs_rw_exit(&drp->r_rwlock); 7266 return (e.error); 7267 } 7268 7269 if (vp->v_type == VDIR) { 7270 VN_RELE(vp); 7271 nfs_rw_exit(&drp->r_rwlock); 7272 return (EISDIR); 7273 } 7274 7275 /* 7276 * First just remove the entry from the name cache, as it 7277 * is most likely the only entry for this vp. 7278 */ 7279 dnlc_remove(dvp, nm); 7280 7281 rp = VTOR4(vp); 7282 7283 /* 7284 * For regular file types, check to see if the file is open by looking 7285 * at the open streams. 7286 * For all other types, check the reference count on the vnode. Since 7287 * they are not opened OTW they never have an open stream. 7288 * 7289 * If the file is open, rename it to .nfsXXXX. 7290 */ 7291 if (vp->v_type != VREG) { 7292 /* 7293 * If the file has a v_count > 1 then there may be more than one 7294 * entry in the name cache due multiple links or an open file, 7295 * but we don't have the real reference count so flush all 7296 * possible entries. 7297 */ 7298 if (vp->v_count > 1) 7299 dnlc_purge_vp(vp); 7300 7301 /* 7302 * Now we have the real reference count. 7303 */ 7304 isopen = vp->v_count > 1; 7305 } else { 7306 mutex_enter(&rp->r_os_lock); 7307 isopen = list_head(&rp->r_open_streams) != NULL; 7308 mutex_exit(&rp->r_os_lock); 7309 } 7310 7311 mutex_enter(&rp->r_statelock); 7312 if (isopen && 7313 (rp->r_unldvp == NULL || strcmp(nm, rp->r_unlname) == 0)) { 7314 mutex_exit(&rp->r_statelock); 7315 tmpname = newname(); 7316 e.error = nfs4rename(dvp, nm, dvp, tmpname, cr, ct); 7317 if (e.error) 7318 kmem_free(tmpname, MAXNAMELEN); 7319 else { 7320 mutex_enter(&rp->r_statelock); 7321 if (rp->r_unldvp == NULL) { 7322 VN_HOLD(dvp); 7323 rp->r_unldvp = dvp; 7324 if (rp->r_unlcred != NULL) 7325 crfree(rp->r_unlcred); 7326 crhold(cr); 7327 rp->r_unlcred = cr; 7328 rp->r_unlname = tmpname; 7329 } else { 7330 kmem_free(rp->r_unlname, MAXNAMELEN); 7331 rp->r_unlname = tmpname; 7332 } 7333 mutex_exit(&rp->r_statelock); 7334 } 7335 VN_RELE(vp); 7336 nfs_rw_exit(&drp->r_rwlock); 7337 return (e.error); 7338 } 7339 /* 7340 * Actually remove the file/dir 7341 */ 7342 mutex_exit(&rp->r_statelock); 7343 7344 /* 7345 * We need to flush any dirty pages which happen to 7346 * be hanging around before removing the file. 7347 * This shouldn't happen very often since in NFSv4 7348 * we should be close to open consistent. 7349 */ 7350 if (nfs4_has_pages(vp) && 7351 ((rp->r_flags & R4DIRTY) || rp->r_count > 0)) { 7352 e.error = nfs4_putpage(vp, (u_offset_t)0, 0, 0, cr, ct); 7353 if (e.error && (e.error == ENOSPC || e.error == EDQUOT)) { 7354 mutex_enter(&rp->r_statelock); 7355 if (!rp->r_error) 7356 rp->r_error = e.error; 7357 mutex_exit(&rp->r_statelock); 7358 } 7359 } 7360 7361 mi = VTOMI4(dvp); 7362 7363 (void) nfs4delegreturn(rp, NFS4_DR_REOPEN); 7364 recov_state.rs_flags = 0; 7365 recov_state.rs_num_retry_despite_err = 0; 7366 7367 recov_retry: 7368 /* 7369 * Remove ops: putfh dir; remove 7370 */ 7371 args.ctag = TAG_REMOVE; 7372 args.array_len = 3; 7373 args.array = argop; 7374 7375 e.error = nfs4_start_op(VTOMI4(dvp), dvp, NULL, &recov_state); 7376 if (e.error) { 7377 nfs_rw_exit(&drp->r_rwlock); 7378 VN_RELE(vp); 7379 return (e.error); 7380 } 7381 7382 /* putfh directory */ 7383 argop[0].argop = OP_CPUTFH; 7384 argop[0].nfs_argop4_u.opcputfh.sfh = drp->r_fh; 7385 7386 /* remove */ 7387 argop[1].argop = OP_CREMOVE; 7388 argop[1].nfs_argop4_u.opcremove.ctarget = nm; 7389 7390 /* getattr dir */ 7391 argop[2].argop = OP_GETATTR; 7392 argop[2].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 7393 argop[2].nfs_argop4_u.opgetattr.mi = mi; 7394 7395 doqueue = 1; 7396 dinfo.di_time_call = gethrtime(); 7397 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e); 7398 7399 PURGE_ATTRCACHE4(vp); 7400 7401 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp); 7402 if (e.error) 7403 PURGE_ATTRCACHE4(dvp); 7404 7405 if (needrecov) { 7406 if (nfs4_start_recovery(&e, VTOMI4(dvp), dvp, 7407 NULL, NULL, NULL, OP_REMOVE, NULL, NULL, NULL) == FALSE) { 7408 if (!e.error) 7409 (void) xdr_free(xdr_COMPOUND4res_clnt, 7410 (caddr_t)&res); 7411 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, 7412 needrecov); 7413 goto recov_retry; 7414 } 7415 } 7416 7417 /* 7418 * Matching nfs4_end_op() for start_op() above. 7419 * There is a path in the code below which calls 7420 * nfs4_purge_stale_fh(), which may generate otw calls through 7421 * nfs4_invalidate_pages. Hence we need to call nfs4_end_op() 7422 * here to avoid nfs4_start_op() deadlock. 7423 */ 7424 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, needrecov); 7425 7426 if (!e.error) { 7427 resp = &res; 7428 7429 if (res.status) { 7430 e.error = geterrno4(res.status); 7431 PURGE_ATTRCACHE4(dvp); 7432 nfs4_purge_stale_fh(e.error, dvp, cr); 7433 } else { 7434 resop = &res.array[1]; /* remove res */ 7435 rm_res = &resop->nfs_resop4_u.opremove; 7436 7437 dinfo.di_garp = 7438 &res.array[2].nfs_resop4_u.opgetattr.ga_res; 7439 dinfo.di_cred = cr; 7440 7441 /* Update directory attr, readdir and dnlc caches */ 7442 nfs4_update_dircaches(&rm_res->cinfo, dvp, NULL, NULL, 7443 &dinfo); 7444 } 7445 } 7446 nfs_rw_exit(&drp->r_rwlock); 7447 if (resp) 7448 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp); 7449 7450 if (e.error == 0) { 7451 vnode_t *tvp; 7452 rnode4_t *trp; 7453 trp = VTOR4(vp); 7454 tvp = vp; 7455 if (IS_SHADOW(vp, trp)) 7456 tvp = RTOV4(trp); 7457 vnevent_remove(tvp, dvp, nm, ct); 7458 } 7459 VN_RELE(vp); 7460 return (e.error); 7461 } 7462 7463 /* 7464 * Link requires that the current fh be the target directory and the 7465 * saved fh be the source fh. After the operation, the current fh is unchanged. 7466 * Thus the compound op structure is: 7467 * PUTFH(file), SAVEFH, PUTFH(targetdir), LINK, RESTOREFH, 7468 * GETATTR(file) 7469 */ 7470 /* ARGSUSED */ 7471 static int 7472 nfs4_link(vnode_t *tdvp, vnode_t *svp, char *tnm, cred_t *cr, 7473 caller_context_t *ct, int flags) 7474 { 7475 COMPOUND4args_clnt args; 7476 COMPOUND4res_clnt res, *resp = NULL; 7477 LINK4res *ln_res; 7478 int argoplist_size = 7 * sizeof (nfs_argop4); 7479 nfs_argop4 *argop; 7480 nfs_resop4 *resop; 7481 vnode_t *realvp, *nvp; 7482 int doqueue; 7483 mntinfo4_t *mi; 7484 rnode4_t *tdrp; 7485 bool_t needrecov = FALSE; 7486 nfs4_recov_state_t recov_state; 7487 hrtime_t t; 7488 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 7489 dirattr_info_t dinfo; 7490 7491 ASSERT(*tnm != '\0'); 7492 ASSERT(tdvp->v_type == VDIR); 7493 ASSERT(nfs4_consistent_type(tdvp)); 7494 ASSERT(nfs4_consistent_type(svp)); 7495 7496 if (nfs_zone() != VTOMI4(tdvp)->mi_zone) 7497 return (EPERM); 7498 if (VOP_REALVP(svp, &realvp, ct) == 0) { 7499 svp = realvp; 7500 ASSERT(nfs4_consistent_type(svp)); 7501 } 7502 7503 tdrp = VTOR4(tdvp); 7504 mi = VTOMI4(svp); 7505 7506 if (!(mi->mi_flags & MI4_LINK)) { 7507 return (EOPNOTSUPP); 7508 } 7509 recov_state.rs_flags = 0; 7510 recov_state.rs_num_retry_despite_err = 0; 7511 7512 if (nfs_rw_enter_sig(&tdrp->r_rwlock, RW_WRITER, INTR4(tdvp))) 7513 return (EINTR); 7514 7515 recov_retry: 7516 argop = kmem_alloc(argoplist_size, KM_SLEEP); 7517 7518 args.ctag = TAG_LINK; 7519 7520 /* 7521 * Link ops: putfh fl; savefh; putfh tdir; link; getattr(dir); 7522 * restorefh; getattr(fl) 7523 */ 7524 args.array_len = 7; 7525 args.array = argop; 7526 7527 e.error = nfs4_start_op(VTOMI4(svp), svp, tdvp, &recov_state); 7528 if (e.error) { 7529 kmem_free(argop, argoplist_size); 7530 nfs_rw_exit(&tdrp->r_rwlock); 7531 return (e.error); 7532 } 7533 7534 /* 0. putfh file */ 7535 argop[0].argop = OP_CPUTFH; 7536 argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(svp)->r_fh; 7537 7538 /* 1. save current fh to free up the space for the dir */ 7539 argop[1].argop = OP_SAVEFH; 7540 7541 /* 2. putfh targetdir */ 7542 argop[2].argop = OP_CPUTFH; 7543 argop[2].nfs_argop4_u.opcputfh.sfh = tdrp->r_fh; 7544 7545 /* 3. link: current_fh is targetdir, saved_fh is source */ 7546 argop[3].argop = OP_CLINK; 7547 argop[3].nfs_argop4_u.opclink.cnewname = tnm; 7548 7549 /* 4. Get attributes of dir */ 7550 argop[4].argop = OP_GETATTR; 7551 argop[4].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 7552 argop[4].nfs_argop4_u.opgetattr.mi = mi; 7553 7554 /* 5. If link was successful, restore current vp to file */ 7555 argop[5].argop = OP_RESTOREFH; 7556 7557 /* 6. Get attributes of linked object */ 7558 argop[6].argop = OP_GETATTR; 7559 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 7560 argop[6].nfs_argop4_u.opgetattr.mi = mi; 7561 7562 dnlc_remove(tdvp, tnm); 7563 7564 doqueue = 1; 7565 t = gethrtime(); 7566 7567 rfs4call(VTOMI4(svp), &args, &res, cr, &doqueue, 0, &e); 7568 7569 needrecov = nfs4_needs_recovery(&e, FALSE, svp->v_vfsp); 7570 if (e.error != 0 && !needrecov) { 7571 PURGE_ATTRCACHE4(tdvp); 7572 PURGE_ATTRCACHE4(svp); 7573 nfs4_end_op(VTOMI4(svp), svp, tdvp, &recov_state, needrecov); 7574 goto out; 7575 } 7576 7577 if (needrecov) { 7578 bool_t abort; 7579 7580 abort = nfs4_start_recovery(&e, VTOMI4(svp), svp, tdvp, 7581 NULL, NULL, OP_LINK, NULL, NULL, NULL); 7582 if (abort == FALSE) { 7583 nfs4_end_op(VTOMI4(svp), svp, tdvp, &recov_state, 7584 needrecov); 7585 kmem_free(argop, argoplist_size); 7586 if (!e.error) 7587 (void) xdr_free(xdr_COMPOUND4res_clnt, 7588 (caddr_t)&res); 7589 goto recov_retry; 7590 } else { 7591 if (e.error != 0) { 7592 PURGE_ATTRCACHE4(tdvp); 7593 PURGE_ATTRCACHE4(svp); 7594 nfs4_end_op(VTOMI4(svp), svp, tdvp, 7595 &recov_state, needrecov); 7596 goto out; 7597 } 7598 /* fall through for res.status case */ 7599 } 7600 } 7601 7602 nfs4_end_op(VTOMI4(svp), svp, tdvp, &recov_state, needrecov); 7603 7604 resp = &res; 7605 if (res.status) { 7606 /* If link succeeded, then don't return error */ 7607 e.error = geterrno4(res.status); 7608 if (res.array_len <= 4) { 7609 /* 7610 * Either Putfh, Savefh, Putfh dir, or Link failed 7611 */ 7612 PURGE_ATTRCACHE4(svp); 7613 PURGE_ATTRCACHE4(tdvp); 7614 if (e.error == EOPNOTSUPP) { 7615 mutex_enter(&mi->mi_lock); 7616 mi->mi_flags &= ~MI4_LINK; 7617 mutex_exit(&mi->mi_lock); 7618 } 7619 /* Remap EISDIR to EPERM for non-root user for SVVS */ 7620 /* XXX-LP */ 7621 if (e.error == EISDIR && crgetuid(cr) != 0) 7622 e.error = EPERM; 7623 goto out; 7624 } 7625 } 7626 7627 /* either no error or one of the postop getattr failed */ 7628 7629 /* 7630 * XXX - if LINK succeeded, but no attrs were returned for link 7631 * file, purge its cache. 7632 * 7633 * XXX Perform a simplified version of wcc checking. Instead of 7634 * have another getattr to get pre-op, just purge cache if 7635 * any of the ops prior to and including the getattr failed. 7636 * If the getattr succeeded then update the attrcache accordingly. 7637 */ 7638 7639 /* 7640 * update cache with link file postattrs. 7641 * Note: at this point resop points to link res. 7642 */ 7643 resop = &res.array[3]; /* link res */ 7644 ln_res = &resop->nfs_resop4_u.oplink; 7645 if (res.status == NFS4_OK) 7646 e.error = nfs4_update_attrcache(res.status, 7647 &res.array[6].nfs_resop4_u.opgetattr.ga_res, 7648 t, svp, cr); 7649 7650 /* 7651 * Call makenfs4node to create the new shadow vp for tnm. 7652 * We pass NULL attrs because we just cached attrs for 7653 * the src object. All we're trying to accomplish is to 7654 * to create the new shadow vnode. 7655 */ 7656 nvp = makenfs4node(VTOR4(svp)->r_fh, NULL, tdvp->v_vfsp, t, cr, 7657 tdvp, fn_get(VTOSV(tdvp)->sv_name, tnm, VTOR4(svp)->r_fh)); 7658 7659 /* Update target cache attribute, readdir and dnlc caches */ 7660 dinfo.di_garp = &res.array[4].nfs_resop4_u.opgetattr.ga_res; 7661 dinfo.di_time_call = t; 7662 dinfo.di_cred = cr; 7663 7664 nfs4_update_dircaches(&ln_res->cinfo, tdvp, nvp, tnm, &dinfo); 7665 ASSERT(nfs4_consistent_type(tdvp)); 7666 ASSERT(nfs4_consistent_type(svp)); 7667 ASSERT(nfs4_consistent_type(nvp)); 7668 VN_RELE(nvp); 7669 7670 if (!e.error) { 7671 vnode_t *tvp; 7672 rnode4_t *trp; 7673 /* 7674 * Notify the source file of this link operation. 7675 */ 7676 trp = VTOR4(svp); 7677 tvp = svp; 7678 if (IS_SHADOW(svp, trp)) 7679 tvp = RTOV4(trp); 7680 vnevent_link(tvp, ct); 7681 } 7682 out: 7683 kmem_free(argop, argoplist_size); 7684 if (resp) 7685 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp); 7686 7687 nfs_rw_exit(&tdrp->r_rwlock); 7688 7689 return (e.error); 7690 } 7691 7692 /* ARGSUSED */ 7693 static int 7694 nfs4_rename(vnode_t *odvp, char *onm, vnode_t *ndvp, char *nnm, cred_t *cr, 7695 caller_context_t *ct, int flags) 7696 { 7697 vnode_t *realvp; 7698 7699 if (nfs_zone() != VTOMI4(odvp)->mi_zone) 7700 return (EPERM); 7701 if (VOP_REALVP(ndvp, &realvp, ct) == 0) 7702 ndvp = realvp; 7703 7704 return (nfs4rename(odvp, onm, ndvp, nnm, cr, ct)); 7705 } 7706 7707 /* 7708 * nfs4rename does the real work of renaming in NFS Version 4. 7709 * 7710 * A file handle is considered volatile for renaming purposes if either 7711 * of the volatile bits are turned on. However, the compound may differ 7712 * based on the likelihood of the filehandle to change during rename. 7713 */ 7714 static int 7715 nfs4rename(vnode_t *odvp, char *onm, vnode_t *ndvp, char *nnm, cred_t *cr, 7716 caller_context_t *ct) 7717 { 7718 int error; 7719 mntinfo4_t *mi; 7720 vnode_t *nvp = NULL; 7721 vnode_t *ovp = NULL; 7722 char *tmpname = NULL; 7723 rnode4_t *rp; 7724 rnode4_t *odrp; 7725 rnode4_t *ndrp; 7726 int did_link = 0; 7727 int do_link = 1; 7728 nfsstat4 stat = NFS4_OK; 7729 7730 ASSERT(nfs_zone() == VTOMI4(odvp)->mi_zone); 7731 ASSERT(nfs4_consistent_type(odvp)); 7732 ASSERT(nfs4_consistent_type(ndvp)); 7733 7734 if (onm[0] == '.' && (onm[1] == '\0' || 7735 (onm[1] == '.' && onm[2] == '\0'))) 7736 return (EINVAL); 7737 7738 if (nnm[0] == '.' && (nnm[1] == '\0' || 7739 (nnm[1] == '.' && nnm[2] == '\0'))) 7740 return (EINVAL); 7741 7742 odrp = VTOR4(odvp); 7743 ndrp = VTOR4(ndvp); 7744 if ((intptr_t)odrp < (intptr_t)ndrp) { 7745 if (nfs_rw_enter_sig(&odrp->r_rwlock, RW_WRITER, INTR4(odvp))) 7746 return (EINTR); 7747 if (nfs_rw_enter_sig(&ndrp->r_rwlock, RW_WRITER, INTR4(ndvp))) { 7748 nfs_rw_exit(&odrp->r_rwlock); 7749 return (EINTR); 7750 } 7751 } else { 7752 if (nfs_rw_enter_sig(&ndrp->r_rwlock, RW_WRITER, INTR4(ndvp))) 7753 return (EINTR); 7754 if (nfs_rw_enter_sig(&odrp->r_rwlock, RW_WRITER, INTR4(odvp))) { 7755 nfs_rw_exit(&ndrp->r_rwlock); 7756 return (EINTR); 7757 } 7758 } 7759 7760 /* 7761 * Lookup the target file. If it exists, it needs to be 7762 * checked to see whether it is a mount point and whether 7763 * it is active (open). 7764 */ 7765 error = nfs4lookup(ndvp, nnm, &nvp, cr, 0); 7766 if (!error) { 7767 int isactive; 7768 7769 ASSERT(nfs4_consistent_type(nvp)); 7770 /* 7771 * If this file has been mounted on, then just 7772 * return busy because renaming to it would remove 7773 * the mounted file system from the name space. 7774 */ 7775 if (vn_ismntpt(nvp)) { 7776 VN_RELE(nvp); 7777 nfs_rw_exit(&odrp->r_rwlock); 7778 nfs_rw_exit(&ndrp->r_rwlock); 7779 return (EBUSY); 7780 } 7781 7782 /* 7783 * First just remove the entry from the name cache, as it 7784 * is most likely the only entry for this vp. 7785 */ 7786 dnlc_remove(ndvp, nnm); 7787 7788 rp = VTOR4(nvp); 7789 7790 if (nvp->v_type != VREG) { 7791 /* 7792 * Purge the name cache of all references to this vnode 7793 * so that we can check the reference count to infer 7794 * whether it is active or not. 7795 */ 7796 if (nvp->v_count > 1) 7797 dnlc_purge_vp(nvp); 7798 7799 isactive = nvp->v_count > 1; 7800 } else { 7801 mutex_enter(&rp->r_os_lock); 7802 isactive = list_head(&rp->r_open_streams) != NULL; 7803 mutex_exit(&rp->r_os_lock); 7804 } 7805 7806 /* 7807 * If the vnode is active and is not a directory, 7808 * arrange to rename it to a 7809 * temporary file so that it will continue to be 7810 * accessible. This implements the "unlink-open-file" 7811 * semantics for the target of a rename operation. 7812 * Before doing this though, make sure that the 7813 * source and target files are not already the same. 7814 */ 7815 if (isactive && nvp->v_type != VDIR) { 7816 /* 7817 * Lookup the source name. 7818 */ 7819 error = nfs4lookup(odvp, onm, &ovp, cr, 0); 7820 7821 /* 7822 * The source name *should* already exist. 7823 */ 7824 if (error) { 7825 VN_RELE(nvp); 7826 nfs_rw_exit(&odrp->r_rwlock); 7827 nfs_rw_exit(&ndrp->r_rwlock); 7828 return (error); 7829 } 7830 7831 ASSERT(nfs4_consistent_type(ovp)); 7832 7833 /* 7834 * Compare the two vnodes. If they are the same, 7835 * just release all held vnodes and return success. 7836 */ 7837 if (VN_CMP(ovp, nvp)) { 7838 VN_RELE(ovp); 7839 VN_RELE(nvp); 7840 nfs_rw_exit(&odrp->r_rwlock); 7841 nfs_rw_exit(&ndrp->r_rwlock); 7842 return (0); 7843 } 7844 7845 /* 7846 * Can't mix and match directories and non- 7847 * directories in rename operations. We already 7848 * know that the target is not a directory. If 7849 * the source is a directory, return an error. 7850 */ 7851 if (ovp->v_type == VDIR) { 7852 VN_RELE(ovp); 7853 VN_RELE(nvp); 7854 nfs_rw_exit(&odrp->r_rwlock); 7855 nfs_rw_exit(&ndrp->r_rwlock); 7856 return (ENOTDIR); 7857 } 7858 link_call: 7859 /* 7860 * The target file exists, is not the same as 7861 * the source file, and is active. We first 7862 * try to Link it to a temporary filename to 7863 * avoid having the server removing the file 7864 * completely (which could cause data loss to 7865 * the user's POV in the event the Rename fails 7866 * -- see bug 1165874). 7867 */ 7868 /* 7869 * The do_link and did_link booleans are 7870 * introduced in the event we get NFS4ERR_FILE_OPEN 7871 * returned for the Rename. Some servers can 7872 * not Rename over an Open file, so they return 7873 * this error. The client needs to Remove the 7874 * newly created Link and do two Renames, just 7875 * as if the server didn't support LINK. 7876 */ 7877 tmpname = newname(); 7878 error = 0; 7879 7880 if (do_link) { 7881 error = nfs4_link(ndvp, nvp, tmpname, cr, 7882 NULL, 0); 7883 } 7884 if (error == EOPNOTSUPP || !do_link) { 7885 error = nfs4_rename(ndvp, nnm, ndvp, tmpname, 7886 cr, NULL, 0); 7887 did_link = 0; 7888 } else { 7889 did_link = 1; 7890 } 7891 if (error) { 7892 kmem_free(tmpname, MAXNAMELEN); 7893 VN_RELE(ovp); 7894 VN_RELE(nvp); 7895 nfs_rw_exit(&odrp->r_rwlock); 7896 nfs_rw_exit(&ndrp->r_rwlock); 7897 return (error); 7898 } 7899 7900 mutex_enter(&rp->r_statelock); 7901 if (rp->r_unldvp == NULL) { 7902 VN_HOLD(ndvp); 7903 rp->r_unldvp = ndvp; 7904 if (rp->r_unlcred != NULL) 7905 crfree(rp->r_unlcred); 7906 crhold(cr); 7907 rp->r_unlcred = cr; 7908 rp->r_unlname = tmpname; 7909 } else { 7910 if (rp->r_unlname) 7911 kmem_free(rp->r_unlname, MAXNAMELEN); 7912 rp->r_unlname = tmpname; 7913 } 7914 mutex_exit(&rp->r_statelock); 7915 } 7916 7917 (void) nfs4delegreturn(VTOR4(nvp), NFS4_DR_PUSH|NFS4_DR_REOPEN); 7918 7919 ASSERT(nfs4_consistent_type(nvp)); 7920 } 7921 7922 if (ovp == NULL) { 7923 /* 7924 * When renaming directories to be a subdirectory of a 7925 * different parent, the dnlc entry for ".." will no 7926 * longer be valid, so it must be removed. 7927 * 7928 * We do a lookup here to determine whether we are renaming 7929 * a directory and we need to check if we are renaming 7930 * an unlinked file. This might have already been done 7931 * in previous code, so we check ovp == NULL to avoid 7932 * doing it twice. 7933 */ 7934 error = nfs4lookup(odvp, onm, &ovp, cr, 0); 7935 /* 7936 * The source name *should* already exist. 7937 */ 7938 if (error) { 7939 nfs_rw_exit(&odrp->r_rwlock); 7940 nfs_rw_exit(&ndrp->r_rwlock); 7941 if (nvp) { 7942 VN_RELE(nvp); 7943 } 7944 return (error); 7945 } 7946 ASSERT(ovp != NULL); 7947 ASSERT(nfs4_consistent_type(ovp)); 7948 } 7949 7950 /* 7951 * Is the object being renamed a dir, and if so, is 7952 * it being renamed to a child of itself? The underlying 7953 * fs should ultimately return EINVAL for this case; 7954 * however, buggy beta non-Solaris NFSv4 servers at 7955 * interop testing events have allowed this behavior, 7956 * and it caused our client to panic due to a recursive 7957 * mutex_enter in fn_move. 7958 * 7959 * The tedious locking in fn_move could be changed to 7960 * deal with this case, and the client could avoid the 7961 * panic; however, the client would just confuse itself 7962 * later and misbehave. A better way to handle the broken 7963 * server is to detect this condition and return EINVAL 7964 * without ever sending the the bogus rename to the server. 7965 * We know the rename is invalid -- just fail it now. 7966 */ 7967 if (ovp->v_type == VDIR && VN_CMP(ndvp, ovp)) { 7968 VN_RELE(ovp); 7969 nfs_rw_exit(&odrp->r_rwlock); 7970 nfs_rw_exit(&ndrp->r_rwlock); 7971 if (nvp) { 7972 VN_RELE(nvp); 7973 } 7974 return (EINVAL); 7975 } 7976 7977 (void) nfs4delegreturn(VTOR4(ovp), NFS4_DR_PUSH|NFS4_DR_REOPEN); 7978 7979 /* 7980 * If FH4_VOL_RENAME or FH4_VOLATILE_ANY bits are set, it is 7981 * possible for the filehandle to change due to the rename. 7982 * If neither of these bits is set, but FH4_VOL_MIGRATION is set, 7983 * the fh will not change because of the rename, but we still need 7984 * to update its rnode entry with the new name for 7985 * an eventual fh change due to migration. The FH4_NOEXPIRE_ON_OPEN 7986 * has no effect on these for now, but for future improvements, 7987 * we might want to use it too to simplify handling of files 7988 * that are open with that flag on. (XXX) 7989 */ 7990 mi = VTOMI4(odvp); 7991 if (NFS4_VOLATILE_FH(mi)) 7992 error = nfs4rename_volatile_fh(odvp, onm, ovp, ndvp, nnm, cr, 7993 &stat); 7994 else 7995 error = nfs4rename_persistent_fh(odvp, onm, ovp, ndvp, nnm, cr, 7996 &stat); 7997 7998 ASSERT(nfs4_consistent_type(odvp)); 7999 ASSERT(nfs4_consistent_type(ndvp)); 8000 ASSERT(nfs4_consistent_type(ovp)); 8001 8002 if (stat == NFS4ERR_FILE_OPEN && did_link) { 8003 do_link = 0; 8004 /* 8005 * Before the 'link_call' code, we did a nfs4_lookup 8006 * that puts a VN_HOLD on nvp. After the nfs4_link 8007 * call we call VN_RELE to match that hold. We need 8008 * to place an additional VN_HOLD here since we will 8009 * be hitting that VN_RELE again. 8010 */ 8011 VN_HOLD(nvp); 8012 8013 (void) nfs4_remove(ndvp, tmpname, cr, NULL, 0); 8014 8015 /* Undo the unlinked file naming stuff we just did */ 8016 mutex_enter(&rp->r_statelock); 8017 if (rp->r_unldvp) { 8018 VN_RELE(ndvp); 8019 rp->r_unldvp = NULL; 8020 if (rp->r_unlcred != NULL) 8021 crfree(rp->r_unlcred); 8022 rp->r_unlcred = NULL; 8023 /* rp->r_unlanme points to tmpname */ 8024 if (rp->r_unlname) 8025 kmem_free(rp->r_unlname, MAXNAMELEN); 8026 rp->r_unlname = NULL; 8027 } 8028 mutex_exit(&rp->r_statelock); 8029 8030 if (nvp) { 8031 VN_RELE(nvp); 8032 } 8033 goto link_call; 8034 } 8035 8036 if (error) { 8037 VN_RELE(ovp); 8038 nfs_rw_exit(&odrp->r_rwlock); 8039 nfs_rw_exit(&ndrp->r_rwlock); 8040 if (nvp) { 8041 VN_RELE(nvp); 8042 } 8043 return (error); 8044 } 8045 8046 /* 8047 * when renaming directories to be a subdirectory of a 8048 * different parent, the dnlc entry for ".." will no 8049 * longer be valid, so it must be removed 8050 */ 8051 rp = VTOR4(ovp); 8052 if (ndvp != odvp) { 8053 if (ovp->v_type == VDIR) { 8054 dnlc_remove(ovp, ".."); 8055 if (rp->r_dir != NULL) 8056 nfs4_purge_rddir_cache(ovp); 8057 } 8058 } 8059 8060 /* 8061 * If we are renaming the unlinked file, update the 8062 * r_unldvp and r_unlname as needed. 8063 */ 8064 mutex_enter(&rp->r_statelock); 8065 if (rp->r_unldvp != NULL) { 8066 if (strcmp(rp->r_unlname, onm) == 0) { 8067 (void) strncpy(rp->r_unlname, nnm, MAXNAMELEN); 8068 rp->r_unlname[MAXNAMELEN - 1] = '\0'; 8069 if (ndvp != rp->r_unldvp) { 8070 VN_RELE(rp->r_unldvp); 8071 rp->r_unldvp = ndvp; 8072 VN_HOLD(ndvp); 8073 } 8074 } 8075 } 8076 mutex_exit(&rp->r_statelock); 8077 8078 /* 8079 * Notify the rename vnevents to source vnode, and to the target 8080 * vnode if it already existed. 8081 */ 8082 if (error == 0) { 8083 vnode_t *tvp; 8084 rnode4_t *trp; 8085 /* 8086 * Notify the vnode. Each links is represented by 8087 * a different vnode, in nfsv4. 8088 */ 8089 if (nvp) { 8090 trp = VTOR4(nvp); 8091 tvp = nvp; 8092 if (IS_SHADOW(nvp, trp)) 8093 tvp = RTOV4(trp); 8094 vnevent_rename_dest(tvp, ndvp, nnm, ct); 8095 } 8096 8097 /* 8098 * if the source and destination directory are not the 8099 * same notify the destination directory. 8100 */ 8101 if (VTOR4(odvp) != VTOR4(ndvp)) { 8102 trp = VTOR4(ndvp); 8103 tvp = ndvp; 8104 if (IS_SHADOW(ndvp, trp)) 8105 tvp = RTOV4(trp); 8106 vnevent_rename_dest_dir(tvp, ct); 8107 } 8108 8109 trp = VTOR4(ovp); 8110 tvp = ovp; 8111 if (IS_SHADOW(ovp, trp)) 8112 tvp = RTOV4(trp); 8113 vnevent_rename_src(tvp, odvp, onm, ct); 8114 } 8115 8116 if (nvp) { 8117 VN_RELE(nvp); 8118 } 8119 VN_RELE(ovp); 8120 8121 nfs_rw_exit(&odrp->r_rwlock); 8122 nfs_rw_exit(&ndrp->r_rwlock); 8123 8124 return (error); 8125 } 8126 8127 /* 8128 * When the parent directory has changed, sv_dfh must be updated 8129 */ 8130 static void 8131 update_parentdir_sfh(vnode_t *vp, vnode_t *ndvp) 8132 { 8133 svnode_t *sv = VTOSV(vp); 8134 nfs4_sharedfh_t *old_dfh = sv->sv_dfh; 8135 nfs4_sharedfh_t *new_dfh = VTOR4(ndvp)->r_fh; 8136 8137 sfh4_hold(new_dfh); 8138 sv->sv_dfh = new_dfh; 8139 sfh4_rele(&old_dfh); 8140 } 8141 8142 /* 8143 * nfs4rename_persistent does the otw portion of renaming in NFS Version 4, 8144 * when it is known that the filehandle is persistent through rename. 8145 * 8146 * Rename requires that the current fh be the target directory and the 8147 * saved fh be the source directory. After the operation, the current fh 8148 * is unchanged. 8149 * The compound op structure for persistent fh rename is: 8150 * PUTFH(sourcdir), SAVEFH, PUTFH(targetdir), RENAME 8151 * Rather than bother with the directory postop args, we'll simply 8152 * update that a change occurred in the cache, so no post-op getattrs. 8153 */ 8154 static int 8155 nfs4rename_persistent_fh(vnode_t *odvp, char *onm, vnode_t *renvp, 8156 vnode_t *ndvp, char *nnm, cred_t *cr, nfsstat4 *statp) 8157 { 8158 COMPOUND4args_clnt args; 8159 COMPOUND4res_clnt res, *resp = NULL; 8160 nfs_argop4 *argop; 8161 nfs_resop4 *resop; 8162 int doqueue, argoplist_size; 8163 mntinfo4_t *mi; 8164 rnode4_t *odrp = VTOR4(odvp); 8165 rnode4_t *ndrp = VTOR4(ndvp); 8166 RENAME4res *rn_res; 8167 bool_t needrecov; 8168 nfs4_recov_state_t recov_state; 8169 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 8170 dirattr_info_t dinfo, *dinfop; 8171 8172 ASSERT(nfs_zone() == VTOMI4(odvp)->mi_zone); 8173 8174 recov_state.rs_flags = 0; 8175 recov_state.rs_num_retry_despite_err = 0; 8176 8177 /* 8178 * Rename ops: putfh sdir; savefh; putfh tdir; rename; getattr tdir 8179 * 8180 * If source/target are different dirs, then append putfh(src); getattr 8181 */ 8182 args.array_len = (odvp == ndvp) ? 5 : 7; 8183 argoplist_size = args.array_len * sizeof (nfs_argop4); 8184 args.array = argop = kmem_alloc(argoplist_size, KM_SLEEP); 8185 8186 recov_retry: 8187 *statp = NFS4_OK; 8188 8189 /* No need to Lookup the file, persistent fh */ 8190 args.ctag = TAG_RENAME; 8191 8192 mi = VTOMI4(odvp); 8193 e.error = nfs4_start_op(mi, odvp, ndvp, &recov_state); 8194 if (e.error) { 8195 kmem_free(argop, argoplist_size); 8196 return (e.error); 8197 } 8198 8199 /* 0: putfh source directory */ 8200 argop[0].argop = OP_CPUTFH; 8201 argop[0].nfs_argop4_u.opcputfh.sfh = odrp->r_fh; 8202 8203 /* 1: Save source fh to free up current for target */ 8204 argop[1].argop = OP_SAVEFH; 8205 8206 /* 2: putfh targetdir */ 8207 argop[2].argop = OP_CPUTFH; 8208 argop[2].nfs_argop4_u.opcputfh.sfh = ndrp->r_fh; 8209 8210 /* 3: current_fh is targetdir, saved_fh is sourcedir */ 8211 argop[3].argop = OP_CRENAME; 8212 argop[3].nfs_argop4_u.opcrename.coldname = onm; 8213 argop[3].nfs_argop4_u.opcrename.cnewname = nnm; 8214 8215 /* 4: getattr (targetdir) */ 8216 argop[4].argop = OP_GETATTR; 8217 argop[4].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 8218 argop[4].nfs_argop4_u.opgetattr.mi = mi; 8219 8220 if (ndvp != odvp) { 8221 8222 /* 5: putfh (sourcedir) */ 8223 argop[5].argop = OP_CPUTFH; 8224 argop[5].nfs_argop4_u.opcputfh.sfh = ndrp->r_fh; 8225 8226 /* 6: getattr (sourcedir) */ 8227 argop[6].argop = OP_GETATTR; 8228 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 8229 argop[6].nfs_argop4_u.opgetattr.mi = mi; 8230 } 8231 8232 dnlc_remove(odvp, onm); 8233 dnlc_remove(ndvp, nnm); 8234 8235 doqueue = 1; 8236 dinfo.di_time_call = gethrtime(); 8237 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e); 8238 8239 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp); 8240 if (e.error) { 8241 PURGE_ATTRCACHE4(odvp); 8242 PURGE_ATTRCACHE4(ndvp); 8243 } else { 8244 *statp = res.status; 8245 } 8246 8247 if (needrecov) { 8248 if (nfs4_start_recovery(&e, mi, odvp, ndvp, NULL, NULL, 8249 OP_RENAME, NULL, NULL, NULL) == FALSE) { 8250 nfs4_end_op(mi, odvp, ndvp, &recov_state, needrecov); 8251 if (!e.error) 8252 (void) xdr_free(xdr_COMPOUND4res_clnt, 8253 (caddr_t)&res); 8254 goto recov_retry; 8255 } 8256 } 8257 8258 if (!e.error) { 8259 resp = &res; 8260 /* 8261 * as long as OP_RENAME 8262 */ 8263 if (res.status != NFS4_OK && res.array_len <= 4) { 8264 e.error = geterrno4(res.status); 8265 PURGE_ATTRCACHE4(odvp); 8266 PURGE_ATTRCACHE4(ndvp); 8267 /* 8268 * System V defines rename to return EEXIST, not 8269 * ENOTEMPTY if the target directory is not empty. 8270 * Over the wire, the error is NFSERR_ENOTEMPTY 8271 * which geterrno4 maps to ENOTEMPTY. 8272 */ 8273 if (e.error == ENOTEMPTY) 8274 e.error = EEXIST; 8275 } else { 8276 8277 resop = &res.array[3]; /* rename res */ 8278 rn_res = &resop->nfs_resop4_u.oprename; 8279 8280 if (res.status == NFS4_OK) { 8281 /* 8282 * Update target attribute, readdir and dnlc 8283 * caches. 8284 */ 8285 dinfo.di_garp = 8286 &res.array[4].nfs_resop4_u.opgetattr.ga_res; 8287 dinfo.di_cred = cr; 8288 dinfop = &dinfo; 8289 } else 8290 dinfop = NULL; 8291 8292 nfs4_update_dircaches(&rn_res->target_cinfo, 8293 ndvp, NULL, NULL, dinfop); 8294 8295 /* 8296 * Update source attribute, readdir and dnlc caches 8297 * 8298 */ 8299 if (ndvp != odvp) { 8300 update_parentdir_sfh(renvp, ndvp); 8301 8302 if (dinfop) 8303 dinfo.di_garp = 8304 &(res.array[6].nfs_resop4_u. 8305 opgetattr.ga_res); 8306 8307 nfs4_update_dircaches(&rn_res->source_cinfo, 8308 odvp, NULL, NULL, dinfop); 8309 } 8310 8311 fn_move(VTOSV(renvp)->sv_name, VTOSV(ndvp)->sv_name, 8312 nnm); 8313 } 8314 } 8315 8316 if (resp) 8317 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp); 8318 nfs4_end_op(mi, odvp, ndvp, &recov_state, needrecov); 8319 kmem_free(argop, argoplist_size); 8320 8321 return (e.error); 8322 } 8323 8324 /* 8325 * nfs4rename_volatile_fh does the otw part of renaming in NFS Version 4, when 8326 * it is possible for the filehandle to change due to the rename. 8327 * 8328 * The compound req in this case includes a post-rename lookup and getattr 8329 * to ensure that we have the correct fh and attributes for the object. 8330 * 8331 * Rename requires that the current fh be the target directory and the 8332 * saved fh be the source directory. After the operation, the current fh 8333 * is unchanged. 8334 * 8335 * We need the new filehandle (hence a LOOKUP and GETFH) so that we can 8336 * update the filehandle for the renamed object. We also get the old 8337 * filehandle for historical reasons; this should be taken out sometime. 8338 * This results in a rather cumbersome compound... 8339 * 8340 * PUTFH(sourcdir), SAVEFH, LOOKUP(src), GETFH(old), 8341 * PUTFH(targetdir), RENAME, LOOKUP(trgt), GETFH(new), GETATTR 8342 * 8343 */ 8344 static int 8345 nfs4rename_volatile_fh(vnode_t *odvp, char *onm, vnode_t *ovp, 8346 vnode_t *ndvp, char *nnm, cred_t *cr, nfsstat4 *statp) 8347 { 8348 COMPOUND4args_clnt args; 8349 COMPOUND4res_clnt res, *resp = NULL; 8350 int argoplist_size; 8351 nfs_argop4 *argop; 8352 nfs_resop4 *resop; 8353 int doqueue; 8354 mntinfo4_t *mi; 8355 rnode4_t *odrp = VTOR4(odvp); /* old directory */ 8356 rnode4_t *ndrp = VTOR4(ndvp); /* new directory */ 8357 rnode4_t *orp = VTOR4(ovp); /* object being renamed */ 8358 RENAME4res *rn_res; 8359 GETFH4res *ngf_res; 8360 bool_t needrecov; 8361 nfs4_recov_state_t recov_state; 8362 hrtime_t t; 8363 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 8364 dirattr_info_t dinfo, *dinfop = &dinfo; 8365 8366 ASSERT(nfs_zone() == VTOMI4(odvp)->mi_zone); 8367 8368 recov_state.rs_flags = 0; 8369 recov_state.rs_num_retry_despite_err = 0; 8370 8371 recov_retry: 8372 *statp = NFS4_OK; 8373 8374 /* 8375 * There is a window between the RPC and updating the path and 8376 * filehandle stored in the rnode. Lock out the FHEXPIRED recovery 8377 * code, so that it doesn't try to use the old path during that 8378 * window. 8379 */ 8380 mutex_enter(&orp->r_statelock); 8381 while (orp->r_flags & R4RECEXPFH) { 8382 klwp_t *lwp = ttolwp(curthread); 8383 8384 if (lwp != NULL) 8385 lwp->lwp_nostop++; 8386 if (cv_wait_sig(&orp->r_cv, &orp->r_statelock) == 0) { 8387 mutex_exit(&orp->r_statelock); 8388 if (lwp != NULL) 8389 lwp->lwp_nostop--; 8390 return (EINTR); 8391 } 8392 if (lwp != NULL) 8393 lwp->lwp_nostop--; 8394 } 8395 orp->r_flags |= R4RECEXPFH; 8396 mutex_exit(&orp->r_statelock); 8397 8398 mi = VTOMI4(odvp); 8399 8400 args.ctag = TAG_RENAME_VFH; 8401 args.array_len = (odvp == ndvp) ? 10 : 12; 8402 argoplist_size = args.array_len * sizeof (nfs_argop4); 8403 argop = kmem_alloc(argoplist_size, KM_SLEEP); 8404 8405 /* 8406 * Rename ops: 8407 * PUTFH(sourcdir), SAVEFH, LOOKUP(src), GETFH(old), 8408 * PUTFH(targetdir), RENAME, GETATTR(targetdir) 8409 * LOOKUP(trgt), GETFH(new), GETATTR, 8410 * 8411 * if (odvp != ndvp) 8412 * add putfh(sourcedir), getattr(sourcedir) } 8413 */ 8414 args.array = argop; 8415 8416 e.error = nfs4_start_fop(mi, odvp, ndvp, OH_VFH_RENAME, 8417 &recov_state, NULL); 8418 if (e.error) { 8419 kmem_free(argop, argoplist_size); 8420 mutex_enter(&orp->r_statelock); 8421 orp->r_flags &= ~R4RECEXPFH; 8422 cv_broadcast(&orp->r_cv); 8423 mutex_exit(&orp->r_statelock); 8424 return (e.error); 8425 } 8426 8427 /* 0: putfh source directory */ 8428 argop[0].argop = OP_CPUTFH; 8429 argop[0].nfs_argop4_u.opcputfh.sfh = odrp->r_fh; 8430 8431 /* 1: Save source fh to free up current for target */ 8432 argop[1].argop = OP_SAVEFH; 8433 8434 /* 2: Lookup pre-rename fh of renamed object */ 8435 argop[2].argop = OP_CLOOKUP; 8436 argop[2].nfs_argop4_u.opclookup.cname = onm; 8437 8438 /* 3: getfh fh of renamed object (before rename) */ 8439 argop[3].argop = OP_GETFH; 8440 8441 /* 4: putfh targetdir */ 8442 argop[4].argop = OP_CPUTFH; 8443 argop[4].nfs_argop4_u.opcputfh.sfh = ndrp->r_fh; 8444 8445 /* 5: current_fh is targetdir, saved_fh is sourcedir */ 8446 argop[5].argop = OP_CRENAME; 8447 argop[5].nfs_argop4_u.opcrename.coldname = onm; 8448 argop[5].nfs_argop4_u.opcrename.cnewname = nnm; 8449 8450 /* 6: getattr of target dir (post op attrs) */ 8451 argop[6].argop = OP_GETATTR; 8452 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 8453 argop[6].nfs_argop4_u.opgetattr.mi = mi; 8454 8455 /* 7: Lookup post-rename fh of renamed object */ 8456 argop[7].argop = OP_CLOOKUP; 8457 argop[7].nfs_argop4_u.opclookup.cname = nnm; 8458 8459 /* 8: getfh fh of renamed object (after rename) */ 8460 argop[8].argop = OP_GETFH; 8461 8462 /* 9: getattr of renamed object */ 8463 argop[9].argop = OP_GETATTR; 8464 argop[9].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 8465 argop[9].nfs_argop4_u.opgetattr.mi = mi; 8466 8467 /* 8468 * If source/target dirs are different, then get new post-op 8469 * attrs for source dir also. 8470 */ 8471 if (ndvp != odvp) { 8472 /* 10: putfh (sourcedir) */ 8473 argop[10].argop = OP_CPUTFH; 8474 argop[10].nfs_argop4_u.opcputfh.sfh = ndrp->r_fh; 8475 8476 /* 11: getattr (sourcedir) */ 8477 argop[11].argop = OP_GETATTR; 8478 argop[11].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 8479 argop[11].nfs_argop4_u.opgetattr.mi = mi; 8480 } 8481 8482 dnlc_remove(odvp, onm); 8483 dnlc_remove(ndvp, nnm); 8484 8485 doqueue = 1; 8486 t = gethrtime(); 8487 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e); 8488 8489 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp); 8490 if (e.error) { 8491 PURGE_ATTRCACHE4(odvp); 8492 PURGE_ATTRCACHE4(ndvp); 8493 if (!needrecov) { 8494 nfs4_end_fop(mi, odvp, ndvp, OH_VFH_RENAME, 8495 &recov_state, needrecov); 8496 goto out; 8497 } 8498 } else { 8499 *statp = res.status; 8500 } 8501 8502 if (needrecov) { 8503 bool_t abort; 8504 8505 abort = nfs4_start_recovery(&e, mi, odvp, ndvp, NULL, NULL, 8506 OP_RENAME, NULL, NULL, NULL); 8507 if (abort == FALSE) { 8508 nfs4_end_fop(mi, odvp, ndvp, OH_VFH_RENAME, 8509 &recov_state, needrecov); 8510 kmem_free(argop, argoplist_size); 8511 if (!e.error) 8512 (void) xdr_free(xdr_COMPOUND4res_clnt, 8513 (caddr_t)&res); 8514 mutex_enter(&orp->r_statelock); 8515 orp->r_flags &= ~R4RECEXPFH; 8516 cv_broadcast(&orp->r_cv); 8517 mutex_exit(&orp->r_statelock); 8518 goto recov_retry; 8519 } else { 8520 if (e.error != 0) { 8521 nfs4_end_fop(mi, odvp, ndvp, OH_VFH_RENAME, 8522 &recov_state, needrecov); 8523 goto out; 8524 } 8525 /* fall through for res.status case */ 8526 } 8527 } 8528 8529 resp = &res; 8530 /* 8531 * If OP_RENAME (or any prev op) failed, then return an error. 8532 * OP_RENAME is index 5, so if array len <= 6 we return an error. 8533 */ 8534 if ((res.status != NFS4_OK) && (res.array_len <= 6)) { 8535 /* 8536 * Error in an op other than last Getattr 8537 */ 8538 e.error = geterrno4(res.status); 8539 PURGE_ATTRCACHE4(odvp); 8540 PURGE_ATTRCACHE4(ndvp); 8541 /* 8542 * System V defines rename to return EEXIST, not 8543 * ENOTEMPTY if the target directory is not empty. 8544 * Over the wire, the error is NFSERR_ENOTEMPTY 8545 * which geterrno4 maps to ENOTEMPTY. 8546 */ 8547 if (e.error == ENOTEMPTY) 8548 e.error = EEXIST; 8549 nfs4_end_fop(mi, odvp, ndvp, OH_VFH_RENAME, &recov_state, 8550 needrecov); 8551 goto out; 8552 } 8553 8554 /* rename results */ 8555 rn_res = &res.array[5].nfs_resop4_u.oprename; 8556 8557 if (res.status == NFS4_OK) { 8558 /* Update target attribute, readdir and dnlc caches */ 8559 dinfo.di_garp = 8560 &res.array[6].nfs_resop4_u.opgetattr.ga_res; 8561 dinfo.di_cred = cr; 8562 dinfo.di_time_call = t; 8563 } else 8564 dinfop = NULL; 8565 8566 /* Update source cache attribute, readdir and dnlc caches */ 8567 nfs4_update_dircaches(&rn_res->target_cinfo, ndvp, NULL, NULL, dinfop); 8568 8569 /* Update source cache attribute, readdir and dnlc caches */ 8570 if (ndvp != odvp) { 8571 update_parentdir_sfh(ovp, ndvp); 8572 8573 /* 8574 * If dinfop is non-NULL, then compound succeded, so 8575 * set di_garp to attrs for source dir. dinfop is only 8576 * set to NULL when compound fails. 8577 */ 8578 if (dinfop) 8579 dinfo.di_garp = 8580 &res.array[11].nfs_resop4_u.opgetattr.ga_res; 8581 nfs4_update_dircaches(&rn_res->source_cinfo, odvp, NULL, NULL, 8582 dinfop); 8583 } 8584 8585 /* 8586 * Update the rnode with the new component name and args, 8587 * and if the file handle changed, also update it with the new fh. 8588 * This is only necessary if the target object has an rnode 8589 * entry and there is no need to create one for it. 8590 */ 8591 resop = &res.array[8]; /* getfh new res */ 8592 ngf_res = &resop->nfs_resop4_u.opgetfh; 8593 8594 /* 8595 * Update the path and filehandle for the renamed object. 8596 */ 8597 nfs4rename_update(ovp, ndvp, &ngf_res->object, nnm); 8598 8599 nfs4_end_fop(mi, odvp, ndvp, OH_VFH_RENAME, &recov_state, needrecov); 8600 8601 if (res.status == NFS4_OK) { 8602 resop++; /* getattr res */ 8603 e.error = nfs4_update_attrcache(res.status, 8604 &resop->nfs_resop4_u.opgetattr.ga_res, 8605 t, ovp, cr); 8606 } 8607 8608 out: 8609 kmem_free(argop, argoplist_size); 8610 if (resp) 8611 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp); 8612 mutex_enter(&orp->r_statelock); 8613 orp->r_flags &= ~R4RECEXPFH; 8614 cv_broadcast(&orp->r_cv); 8615 mutex_exit(&orp->r_statelock); 8616 8617 return (e.error); 8618 } 8619 8620 /* ARGSUSED */ 8621 static int 8622 nfs4_mkdir(vnode_t *dvp, char *nm, struct vattr *va, vnode_t **vpp, cred_t *cr, 8623 caller_context_t *ct, int flags, vsecattr_t *vsecp) 8624 { 8625 int error; 8626 vnode_t *vp; 8627 8628 if (nfs_zone() != VTOMI4(dvp)->mi_zone) 8629 return (EPERM); 8630 /* 8631 * As ".." has special meaning and rather than send a mkdir 8632 * over the wire to just let the server freak out, we just 8633 * short circuit it here and return EEXIST 8634 */ 8635 if (nm[0] == '.' && nm[1] == '.' && nm[2] == '\0') 8636 return (EEXIST); 8637 8638 /* 8639 * Decision to get the right gid and setgid bit of the 8640 * new directory is now made in call_nfs4_create_req. 8641 */ 8642 va->va_mask |= AT_MODE; 8643 error = call_nfs4_create_req(dvp, nm, NULL, va, &vp, cr, NF4DIR); 8644 if (error) 8645 return (error); 8646 8647 *vpp = vp; 8648 return (0); 8649 } 8650 8651 8652 /* 8653 * rmdir is using the same remove v4 op as does remove. 8654 * Remove requires that the current fh be the target directory. 8655 * After the operation, the current fh is unchanged. 8656 * The compound op structure is: 8657 * PUTFH(targetdir), REMOVE 8658 */ 8659 /*ARGSUSED4*/ 8660 static int 8661 nfs4_rmdir(vnode_t *dvp, char *nm, vnode_t *cdir, cred_t *cr, 8662 caller_context_t *ct, int flags) 8663 { 8664 int need_end_op = FALSE; 8665 COMPOUND4args_clnt args; 8666 COMPOUND4res_clnt res, *resp = NULL; 8667 REMOVE4res *rm_res; 8668 nfs_argop4 argop[3]; 8669 nfs_resop4 *resop; 8670 vnode_t *vp; 8671 int doqueue; 8672 mntinfo4_t *mi; 8673 rnode4_t *drp; 8674 bool_t needrecov = FALSE; 8675 nfs4_recov_state_t recov_state; 8676 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 8677 dirattr_info_t dinfo, *dinfop; 8678 8679 if (nfs_zone() != VTOMI4(dvp)->mi_zone) 8680 return (EPERM); 8681 /* 8682 * As ".." has special meaning and rather than send a rmdir 8683 * over the wire to just let the server freak out, we just 8684 * short circuit it here and return EEXIST 8685 */ 8686 if (nm[0] == '.' && nm[1] == '.' && nm[2] == '\0') 8687 return (EEXIST); 8688 8689 drp = VTOR4(dvp); 8690 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR4(dvp))) 8691 return (EINTR); 8692 8693 /* 8694 * Attempt to prevent a rmdir(".") from succeeding. 8695 */ 8696 e.error = nfs4lookup(dvp, nm, &vp, cr, 0); 8697 if (e.error) { 8698 nfs_rw_exit(&drp->r_rwlock); 8699 return (e.error); 8700 } 8701 if (vp == cdir) { 8702 VN_RELE(vp); 8703 nfs_rw_exit(&drp->r_rwlock); 8704 return (EINVAL); 8705 } 8706 8707 /* 8708 * Since nfsv4 remove op works on both files and directories, 8709 * check that the removed object is indeed a directory. 8710 */ 8711 if (vp->v_type != VDIR) { 8712 VN_RELE(vp); 8713 nfs_rw_exit(&drp->r_rwlock); 8714 return (ENOTDIR); 8715 } 8716 8717 /* 8718 * First just remove the entry from the name cache, as it 8719 * is most likely an entry for this vp. 8720 */ 8721 dnlc_remove(dvp, nm); 8722 8723 /* 8724 * If there vnode reference count is greater than one, then 8725 * there may be additional references in the DNLC which will 8726 * need to be purged. First, trying removing the entry for 8727 * the parent directory and see if that removes the additional 8728 * reference(s). If that doesn't do it, then use dnlc_purge_vp 8729 * to completely remove any references to the directory which 8730 * might still exist in the DNLC. 8731 */ 8732 if (vp->v_count > 1) { 8733 dnlc_remove(vp, ".."); 8734 if (vp->v_count > 1) 8735 dnlc_purge_vp(vp); 8736 } 8737 8738 mi = VTOMI4(dvp); 8739 recov_state.rs_flags = 0; 8740 recov_state.rs_num_retry_despite_err = 0; 8741 8742 recov_retry: 8743 args.ctag = TAG_RMDIR; 8744 8745 /* 8746 * Rmdir ops: putfh dir; remove 8747 */ 8748 args.array_len = 3; 8749 args.array = argop; 8750 8751 e.error = nfs4_start_op(VTOMI4(dvp), dvp, NULL, &recov_state); 8752 if (e.error) { 8753 nfs_rw_exit(&drp->r_rwlock); 8754 return (e.error); 8755 } 8756 need_end_op = TRUE; 8757 8758 /* putfh directory */ 8759 argop[0].argop = OP_CPUTFH; 8760 argop[0].nfs_argop4_u.opcputfh.sfh = drp->r_fh; 8761 8762 /* remove */ 8763 argop[1].argop = OP_CREMOVE; 8764 argop[1].nfs_argop4_u.opcremove.ctarget = nm; 8765 8766 /* getattr (postop attrs for dir that contained removed dir) */ 8767 argop[2].argop = OP_GETATTR; 8768 argop[2].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 8769 argop[2].nfs_argop4_u.opgetattr.mi = mi; 8770 8771 dinfo.di_time_call = gethrtime(); 8772 doqueue = 1; 8773 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e); 8774 8775 PURGE_ATTRCACHE4(vp); 8776 8777 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp); 8778 if (e.error) { 8779 PURGE_ATTRCACHE4(dvp); 8780 } 8781 8782 if (needrecov) { 8783 if (nfs4_start_recovery(&e, VTOMI4(dvp), dvp, NULL, NULL, 8784 NULL, OP_REMOVE, NULL, NULL, NULL) == FALSE) { 8785 if (!e.error) 8786 (void) xdr_free(xdr_COMPOUND4res_clnt, 8787 (caddr_t)&res); 8788 8789 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, 8790 needrecov); 8791 need_end_op = FALSE; 8792 goto recov_retry; 8793 } 8794 } 8795 8796 if (!e.error) { 8797 resp = &res; 8798 8799 /* 8800 * Only return error if first 2 ops (OP_REMOVE or earlier) 8801 * failed. 8802 */ 8803 if (res.status != NFS4_OK && res.array_len <= 2) { 8804 e.error = geterrno4(res.status); 8805 PURGE_ATTRCACHE4(dvp); 8806 nfs4_end_op(VTOMI4(dvp), dvp, NULL, 8807 &recov_state, needrecov); 8808 need_end_op = FALSE; 8809 nfs4_purge_stale_fh(e.error, dvp, cr); 8810 /* 8811 * System V defines rmdir to return EEXIST, not 8812 * ENOTEMPTY if the directory is not empty. Over 8813 * the wire, the error is NFSERR_ENOTEMPTY which 8814 * geterrno4 maps to ENOTEMPTY. 8815 */ 8816 if (e.error == ENOTEMPTY) 8817 e.error = EEXIST; 8818 } else { 8819 resop = &res.array[1]; /* remove res */ 8820 rm_res = &resop->nfs_resop4_u.opremove; 8821 8822 if (res.status == NFS4_OK) { 8823 resop = &res.array[2]; /* dir attrs */ 8824 dinfo.di_garp = 8825 &resop->nfs_resop4_u.opgetattr.ga_res; 8826 dinfo.di_cred = cr; 8827 dinfop = &dinfo; 8828 } else 8829 dinfop = NULL; 8830 8831 /* Update dir attribute, readdir and dnlc caches */ 8832 nfs4_update_dircaches(&rm_res->cinfo, dvp, NULL, NULL, 8833 dinfop); 8834 8835 /* destroy rddir cache for dir that was removed */ 8836 if (VTOR4(vp)->r_dir != NULL) 8837 nfs4_purge_rddir_cache(vp); 8838 } 8839 } 8840 8841 if (need_end_op) 8842 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, needrecov); 8843 8844 nfs_rw_exit(&drp->r_rwlock); 8845 8846 if (resp) 8847 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp); 8848 8849 if (e.error == 0) { 8850 vnode_t *tvp; 8851 rnode4_t *trp; 8852 trp = VTOR4(vp); 8853 tvp = vp; 8854 if (IS_SHADOW(vp, trp)) 8855 tvp = RTOV4(trp); 8856 vnevent_rmdir(tvp, dvp, nm, ct); 8857 } 8858 8859 VN_RELE(vp); 8860 8861 return (e.error); 8862 } 8863 8864 /* ARGSUSED */ 8865 static int 8866 nfs4_symlink(vnode_t *dvp, char *lnm, struct vattr *tva, char *tnm, cred_t *cr, 8867 caller_context_t *ct, int flags) 8868 { 8869 int error; 8870 vnode_t *vp; 8871 rnode4_t *rp; 8872 char *contents; 8873 mntinfo4_t *mi = VTOMI4(dvp); 8874 8875 if (nfs_zone() != mi->mi_zone) 8876 return (EPERM); 8877 if (!(mi->mi_flags & MI4_SYMLINK)) 8878 return (EOPNOTSUPP); 8879 8880 error = call_nfs4_create_req(dvp, lnm, tnm, tva, &vp, cr, NF4LNK); 8881 if (error) 8882 return (error); 8883 8884 ASSERT(nfs4_consistent_type(vp)); 8885 rp = VTOR4(vp); 8886 if (nfs4_do_symlink_cache && rp->r_symlink.contents == NULL) { 8887 8888 contents = kmem_alloc(MAXPATHLEN, KM_SLEEP); 8889 8890 if (contents != NULL) { 8891 mutex_enter(&rp->r_statelock); 8892 if (rp->r_symlink.contents == NULL) { 8893 rp->r_symlink.len = strlen(tnm); 8894 bcopy(tnm, contents, rp->r_symlink.len); 8895 rp->r_symlink.contents = contents; 8896 rp->r_symlink.size = MAXPATHLEN; 8897 mutex_exit(&rp->r_statelock); 8898 } else { 8899 mutex_exit(&rp->r_statelock); 8900 kmem_free((void *)contents, MAXPATHLEN); 8901 } 8902 } 8903 } 8904 VN_RELE(vp); 8905 8906 return (error); 8907 } 8908 8909 8910 /* 8911 * Read directory entries. 8912 * There are some weird things to look out for here. The uio_loffset 8913 * field is either 0 or it is the offset returned from a previous 8914 * readdir. It is an opaque value used by the server to find the 8915 * correct directory block to read. The count field is the number 8916 * of blocks to read on the server. This is advisory only, the server 8917 * may return only one block's worth of entries. Entries may be compressed 8918 * on the server. 8919 */ 8920 /* ARGSUSED */ 8921 static int 8922 nfs4_readdir(vnode_t *vp, struct uio *uiop, cred_t *cr, int *eofp, 8923 caller_context_t *ct, int flags) 8924 { 8925 int error; 8926 uint_t count; 8927 rnode4_t *rp; 8928 rddir4_cache *rdc; 8929 rddir4_cache *rrdc; 8930 8931 if (nfs_zone() != VTOMI4(vp)->mi_zone) 8932 return (EIO); 8933 rp = VTOR4(vp); 8934 8935 ASSERT(nfs_rw_lock_held(&rp->r_rwlock, RW_READER)); 8936 8937 /* 8938 * Make sure that the directory cache is valid. 8939 */ 8940 if (rp->r_dir != NULL) { 8941 if (nfs_disable_rddir_cache != 0) { 8942 /* 8943 * Setting nfs_disable_rddir_cache in /etc/system 8944 * allows interoperability with servers that do not 8945 * properly update the attributes of directories. 8946 * Any cached information gets purged before an 8947 * access is made to it. 8948 */ 8949 nfs4_purge_rddir_cache(vp); 8950 } 8951 8952 error = nfs4_validate_caches(vp, cr); 8953 if (error) 8954 return (error); 8955 } 8956 8957 count = MIN(uiop->uio_iov->iov_len, MAXBSIZE); 8958 8959 /* 8960 * Short circuit last readdir which always returns 0 bytes. 8961 * This can be done after the directory has been read through 8962 * completely at least once. This will set r_direof which 8963 * can be used to find the value of the last cookie. 8964 */ 8965 mutex_enter(&rp->r_statelock); 8966 if (rp->r_direof != NULL && 8967 uiop->uio_loffset == rp->r_direof->nfs4_ncookie) { 8968 mutex_exit(&rp->r_statelock); 8969 #ifdef DEBUG 8970 nfs4_readdir_cache_shorts++; 8971 #endif 8972 if (eofp) 8973 *eofp = 1; 8974 return (0); 8975 } 8976 8977 /* 8978 * Look for a cache entry. Cache entries are identified 8979 * by the NFS cookie value and the byte count requested. 8980 */ 8981 rdc = rddir4_cache_lookup(rp, uiop->uio_loffset, count); 8982 8983 /* 8984 * If rdc is NULL then the lookup resulted in an unrecoverable error. 8985 */ 8986 if (rdc == NULL) { 8987 mutex_exit(&rp->r_statelock); 8988 return (EINTR); 8989 } 8990 8991 /* 8992 * Check to see if we need to fill this entry in. 8993 */ 8994 if (rdc->flags & RDDIRREQ) { 8995 rdc->flags &= ~RDDIRREQ; 8996 rdc->flags |= RDDIR; 8997 mutex_exit(&rp->r_statelock); 8998 8999 /* 9000 * Do the readdir. 9001 */ 9002 nfs4readdir(vp, rdc, cr); 9003 9004 /* 9005 * Reacquire the lock, so that we can continue 9006 */ 9007 mutex_enter(&rp->r_statelock); 9008 /* 9009 * The entry is now complete 9010 */ 9011 rdc->flags &= ~RDDIR; 9012 } 9013 9014 ASSERT(!(rdc->flags & RDDIR)); 9015 9016 /* 9017 * If an error occurred while attempting 9018 * to fill the cache entry, mark the entry invalid and 9019 * just return the error. 9020 */ 9021 if (rdc->error) { 9022 error = rdc->error; 9023 rdc->flags |= RDDIRREQ; 9024 rddir4_cache_rele(rp, rdc); 9025 mutex_exit(&rp->r_statelock); 9026 return (error); 9027 } 9028 9029 /* 9030 * The cache entry is complete and good, 9031 * copyout the dirent structs to the calling 9032 * thread. 9033 */ 9034 error = uiomove(rdc->entries, rdc->actlen, UIO_READ, uiop); 9035 9036 /* 9037 * If no error occurred during the copyout, 9038 * update the offset in the uio struct to 9039 * contain the value of the next NFS 4 cookie 9040 * and set the eof value appropriately. 9041 */ 9042 if (!error) { 9043 uiop->uio_loffset = rdc->nfs4_ncookie; 9044 if (eofp) 9045 *eofp = rdc->eof; 9046 } 9047 9048 /* 9049 * Decide whether to do readahead. Don't if we 9050 * have already read to the end of directory. 9051 */ 9052 if (rdc->eof) { 9053 /* 9054 * Make the entry the direof only if it is cached 9055 */ 9056 if (rdc->flags & RDDIRCACHED) 9057 rp->r_direof = rdc; 9058 rddir4_cache_rele(rp, rdc); 9059 mutex_exit(&rp->r_statelock); 9060 return (error); 9061 } 9062 9063 /* Determine if a readdir readahead should be done */ 9064 if (!(rp->r_flags & R4LOOKUP)) { 9065 rddir4_cache_rele(rp, rdc); 9066 mutex_exit(&rp->r_statelock); 9067 return (error); 9068 } 9069 9070 /* 9071 * Now look for a readahead entry. 9072 * 9073 * Check to see whether we found an entry for the readahead. 9074 * If so, we don't need to do anything further, so free the new 9075 * entry if one was allocated. Otherwise, allocate a new entry, add 9076 * it to the cache, and then initiate an asynchronous readdir 9077 * operation to fill it. 9078 */ 9079 rrdc = rddir4_cache_lookup(rp, rdc->nfs4_ncookie, count); 9080 9081 /* 9082 * A readdir cache entry could not be obtained for the readahead. In 9083 * this case we skip the readahead and return. 9084 */ 9085 if (rrdc == NULL) { 9086 rddir4_cache_rele(rp, rdc); 9087 mutex_exit(&rp->r_statelock); 9088 return (error); 9089 } 9090 9091 /* 9092 * Check to see if we need to fill this entry in. 9093 */ 9094 if (rrdc->flags & RDDIRREQ) { 9095 rrdc->flags &= ~RDDIRREQ; 9096 rrdc->flags |= RDDIR; 9097 rddir4_cache_rele(rp, rdc); 9098 mutex_exit(&rp->r_statelock); 9099 #ifdef DEBUG 9100 nfs4_readdir_readahead++; 9101 #endif 9102 /* 9103 * Do the readdir. 9104 */ 9105 nfs4_async_readdir(vp, rrdc, cr, do_nfs4readdir); 9106 return (error); 9107 } 9108 9109 rddir4_cache_rele(rp, rrdc); 9110 rddir4_cache_rele(rp, rdc); 9111 mutex_exit(&rp->r_statelock); 9112 return (error); 9113 } 9114 9115 static int 9116 do_nfs4readdir(vnode_t *vp, rddir4_cache *rdc, cred_t *cr) 9117 { 9118 int error; 9119 rnode4_t *rp; 9120 9121 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 9122 9123 rp = VTOR4(vp); 9124 9125 /* 9126 * Obtain the readdir results for the caller. 9127 */ 9128 nfs4readdir(vp, rdc, cr); 9129 9130 mutex_enter(&rp->r_statelock); 9131 /* 9132 * The entry is now complete 9133 */ 9134 rdc->flags &= ~RDDIR; 9135 9136 error = rdc->error; 9137 if (error) 9138 rdc->flags |= RDDIRREQ; 9139 rddir4_cache_rele(rp, rdc); 9140 mutex_exit(&rp->r_statelock); 9141 9142 return (error); 9143 } 9144 9145 /* 9146 * Read directory entries. 9147 * There are some weird things to look out for here. The uio_loffset 9148 * field is either 0 or it is the offset returned from a previous 9149 * readdir. It is an opaque value used by the server to find the 9150 * correct directory block to read. The count field is the number 9151 * of blocks to read on the server. This is advisory only, the server 9152 * may return only one block's worth of entries. Entries may be compressed 9153 * on the server. 9154 * 9155 * Generates the following compound request: 9156 * 1. If readdir offset is zero and no dnlc entry for parent exists, 9157 * must include a Lookupp as well. In this case, send: 9158 * { Putfh <fh>; Readdir; Lookupp; Getfh; Getattr } 9159 * 2. Otherwise just do: { Putfh <fh>; Readdir } 9160 * 9161 * Get complete attributes and filehandles for entries if this is the 9162 * first read of the directory. Otherwise, just get fileid's. 9163 */ 9164 static void 9165 nfs4readdir(vnode_t *vp, rddir4_cache *rdc, cred_t *cr) 9166 { 9167 COMPOUND4args_clnt args; 9168 COMPOUND4res_clnt res; 9169 READDIR4args *rargs; 9170 READDIR4res_clnt *rd_res; 9171 bitmap4 rd_bitsval; 9172 nfs_argop4 argop[5]; 9173 nfs_resop4 *resop; 9174 rnode4_t *rp = VTOR4(vp); 9175 mntinfo4_t *mi = VTOMI4(vp); 9176 int doqueue; 9177 u_longlong_t nodeid, pnodeid; /* id's of dir and its parents */ 9178 vnode_t *dvp; 9179 nfs_cookie4 cookie = (nfs_cookie4)rdc->nfs4_cookie; 9180 int num_ops, res_opcnt; 9181 bool_t needrecov = FALSE; 9182 nfs4_recov_state_t recov_state; 9183 hrtime_t t; 9184 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 9185 9186 ASSERT(nfs_zone() == mi->mi_zone); 9187 ASSERT(rdc->flags & RDDIR); 9188 ASSERT(rdc->entries == NULL); 9189 9190 /* 9191 * If rp were a stub, it should have triggered and caused 9192 * a mount for us to get this far. 9193 */ 9194 ASSERT(!RP_ISSTUB(rp)); 9195 9196 num_ops = 2; 9197 if (cookie == (nfs_cookie4)0 || cookie == (nfs_cookie4)1) { 9198 /* 9199 * Since nfsv4 readdir may not return entries for "." and "..", 9200 * the client must recreate them: 9201 * To find the correct nodeid, do the following: 9202 * For current node, get nodeid from dnlc. 9203 * - if current node is rootvp, set pnodeid to nodeid. 9204 * - else if parent is in the dnlc, get its nodeid from there. 9205 * - else add LOOKUPP+GETATTR to compound. 9206 */ 9207 nodeid = rp->r_attr.va_nodeid; 9208 if (vp->v_flag & VROOT) { 9209 pnodeid = nodeid; /* root of mount point */ 9210 } else { 9211 dvp = dnlc_lookup(vp, ".."); 9212 if (dvp != NULL && dvp != DNLC_NO_VNODE) { 9213 /* parent in dnlc cache - no need for otw */ 9214 pnodeid = VTOR4(dvp)->r_attr.va_nodeid; 9215 } else { 9216 /* 9217 * parent not in dnlc cache, 9218 * do lookupp to get its id 9219 */ 9220 num_ops = 5; 9221 pnodeid = 0; /* set later by getattr parent */ 9222 } 9223 if (dvp) 9224 VN_RELE(dvp); 9225 } 9226 } 9227 recov_state.rs_flags = 0; 9228 recov_state.rs_num_retry_despite_err = 0; 9229 9230 /* Save the original mount point security flavor */ 9231 (void) save_mnt_secinfo(mi->mi_curr_serv); 9232 9233 recov_retry: 9234 args.ctag = TAG_READDIR; 9235 9236 args.array = argop; 9237 args.array_len = num_ops; 9238 9239 if (e.error = nfs4_start_fop(VTOMI4(vp), vp, NULL, OH_READDIR, 9240 &recov_state, NULL)) { 9241 /* 9242 * If readdir a node that is a stub for a crossed mount point, 9243 * keep the original secinfo flavor for the current file 9244 * system, not the crossed one. 9245 */ 9246 (void) check_mnt_secinfo(mi->mi_curr_serv, vp); 9247 rdc->error = e.error; 9248 return; 9249 } 9250 9251 /* 9252 * Determine which attrs to request for dirents. This code 9253 * must be protected by nfs4_start/end_fop because of r_server 9254 * (which will change during failover recovery). 9255 * 9256 */ 9257 if (rp->r_flags & (R4LOOKUP | R4READDIRWATTR)) { 9258 /* 9259 * Get all vattr attrs plus filehandle and rdattr_error 9260 */ 9261 rd_bitsval = NFS4_VATTR_MASK | 9262 FATTR4_RDATTR_ERROR_MASK | 9263 FATTR4_FILEHANDLE_MASK; 9264 9265 if (rp->r_flags & R4READDIRWATTR) { 9266 mutex_enter(&rp->r_statelock); 9267 rp->r_flags &= ~R4READDIRWATTR; 9268 mutex_exit(&rp->r_statelock); 9269 } 9270 } else { 9271 servinfo4_t *svp = rp->r_server; 9272 9273 /* 9274 * Already read directory. Use readdir with 9275 * no attrs (except for mounted_on_fileid) for updates. 9276 */ 9277 rd_bitsval = FATTR4_RDATTR_ERROR_MASK; 9278 9279 /* 9280 * request mounted on fileid if supported, else request 9281 * fileid. maybe we should verify that fileid is supported 9282 * and request something else if not. 9283 */ 9284 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); 9285 if (svp->sv_supp_attrs & FATTR4_MOUNTED_ON_FILEID_MASK) 9286 rd_bitsval |= FATTR4_MOUNTED_ON_FILEID_MASK; 9287 nfs_rw_exit(&svp->sv_lock); 9288 } 9289 9290 /* putfh directory fh */ 9291 argop[0].argop = OP_CPUTFH; 9292 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh; 9293 9294 argop[1].argop = OP_READDIR; 9295 rargs = &argop[1].nfs_argop4_u.opreaddir; 9296 /* 9297 * 1 and 2 are reserved for client "." and ".." entry offset. 9298 * cookie 0 should be used over-the-wire to start reading at 9299 * the beginning of the directory excluding "." and "..". 9300 */ 9301 if (rdc->nfs4_cookie == 0 || 9302 rdc->nfs4_cookie == 1 || 9303 rdc->nfs4_cookie == 2) { 9304 rargs->cookie = (nfs_cookie4)0; 9305 rargs->cookieverf = 0; 9306 } else { 9307 rargs->cookie = (nfs_cookie4)rdc->nfs4_cookie; 9308 mutex_enter(&rp->r_statelock); 9309 rargs->cookieverf = rp->r_cookieverf4; 9310 mutex_exit(&rp->r_statelock); 9311 } 9312 rargs->dircount = MIN(rdc->buflen, mi->mi_tsize); 9313 rargs->maxcount = mi->mi_tsize; 9314 rargs->attr_request = rd_bitsval; 9315 rargs->rdc = rdc; 9316 rargs->dvp = vp; 9317 rargs->mi = mi; 9318 rargs->cr = cr; 9319 9320 9321 /* 9322 * If count < than the minimum required, we return no entries 9323 * and fail with EINVAL 9324 */ 9325 if (rargs->dircount < (DIRENT64_RECLEN(1) + DIRENT64_RECLEN(2))) { 9326 rdc->error = EINVAL; 9327 goto out; 9328 } 9329 9330 if (args.array_len == 5) { 9331 /* 9332 * Add lookupp and getattr for parent nodeid. 9333 */ 9334 argop[2].argop = OP_LOOKUPP; 9335 9336 argop[3].argop = OP_GETFH; 9337 9338 /* getattr parent */ 9339 argop[4].argop = OP_GETATTR; 9340 argop[4].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 9341 argop[4].nfs_argop4_u.opgetattr.mi = mi; 9342 } 9343 9344 doqueue = 1; 9345 9346 if (mi->mi_io_kstats) { 9347 mutex_enter(&mi->mi_lock); 9348 kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats)); 9349 mutex_exit(&mi->mi_lock); 9350 } 9351 9352 /* capture the time of this call */ 9353 rargs->t = t = gethrtime(); 9354 9355 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e); 9356 9357 if (mi->mi_io_kstats) { 9358 mutex_enter(&mi->mi_lock); 9359 kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats)); 9360 mutex_exit(&mi->mi_lock); 9361 } 9362 9363 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp); 9364 9365 /* 9366 * If RPC error occurred and it isn't an error that 9367 * triggers recovery, then go ahead and fail now. 9368 */ 9369 if (e.error != 0 && !needrecov) { 9370 rdc->error = e.error; 9371 goto out; 9372 } 9373 9374 if (needrecov) { 9375 bool_t abort; 9376 9377 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 9378 "nfs4readdir: initiating recovery.\n")); 9379 9380 abort = nfs4_start_recovery(&e, VTOMI4(vp), vp, NULL, NULL, 9381 NULL, OP_READDIR, NULL, NULL, NULL); 9382 if (abort == FALSE) { 9383 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_READDIR, 9384 &recov_state, needrecov); 9385 if (!e.error) 9386 (void) xdr_free(xdr_COMPOUND4res_clnt, 9387 (caddr_t)&res); 9388 if (rdc->entries != NULL) { 9389 kmem_free(rdc->entries, rdc->entlen); 9390 rdc->entries = NULL; 9391 } 9392 goto recov_retry; 9393 } 9394 9395 if (e.error != 0) { 9396 rdc->error = e.error; 9397 goto out; 9398 } 9399 9400 /* fall through for res.status case */ 9401 } 9402 9403 res_opcnt = res.array_len; 9404 9405 /* 9406 * If compound failed first 2 ops (PUTFH+READDIR), then return 9407 * failure here. Subsequent ops are for filling out dot-dot 9408 * dirent, and if they fail, we still want to give the caller 9409 * the dirents returned by (the successful) READDIR op, so we need 9410 * to silently ignore failure for subsequent ops (LOOKUPP+GETATTR). 9411 * 9412 * One example where PUTFH+READDIR ops would succeed but 9413 * LOOKUPP+GETATTR would fail would be a dir that has r perm 9414 * but lacks x. In this case, a POSIX server's VOP_READDIR 9415 * would succeed; however, VOP_LOOKUP(..) would fail since no 9416 * x perm. We need to come up with a non-vendor-specific way 9417 * for a POSIX server to return d_ino from dotdot's dirent if 9418 * client only requests mounted_on_fileid, and just say the 9419 * LOOKUPP succeeded and fill out the GETATTR. However, if 9420 * client requested any mandatory attrs, server would be required 9421 * to fail the GETATTR op because it can't call VOP_LOOKUP+VOP_GETATTR 9422 * for dotdot. 9423 */ 9424 9425 if (res.status) { 9426 if (res_opcnt <= 2) { 9427 e.error = geterrno4(res.status); 9428 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_READDIR, 9429 &recov_state, needrecov); 9430 nfs4_purge_stale_fh(e.error, vp, cr); 9431 rdc->error = e.error; 9432 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 9433 if (rdc->entries != NULL) { 9434 kmem_free(rdc->entries, rdc->entlen); 9435 rdc->entries = NULL; 9436 } 9437 /* 9438 * If readdir a node that is a stub for a 9439 * crossed mount point, keep the original 9440 * secinfo flavor for the current file system, 9441 * not the crossed one. 9442 */ 9443 (void) check_mnt_secinfo(mi->mi_curr_serv, vp); 9444 return; 9445 } 9446 } 9447 9448 resop = &res.array[1]; /* readdir res */ 9449 rd_res = &resop->nfs_resop4_u.opreaddirclnt; 9450 9451 mutex_enter(&rp->r_statelock); 9452 rp->r_cookieverf4 = rd_res->cookieverf; 9453 mutex_exit(&rp->r_statelock); 9454 9455 /* 9456 * For "." and ".." entries 9457 * e.g. 9458 * seek(cookie=0) -> "." entry with d_off = 1 9459 * seek(cookie=1) -> ".." entry with d_off = 2 9460 */ 9461 if (cookie == (nfs_cookie4) 0) { 9462 if (rd_res->dotp) 9463 rd_res->dotp->d_ino = nodeid; 9464 if (rd_res->dotdotp) 9465 rd_res->dotdotp->d_ino = pnodeid; 9466 } 9467 if (cookie == (nfs_cookie4) 1) { 9468 if (rd_res->dotdotp) 9469 rd_res->dotdotp->d_ino = pnodeid; 9470 } 9471 9472 9473 /* LOOKUPP+GETATTR attemped */ 9474 if (args.array_len == 5 && rd_res->dotdotp) { 9475 if (res.status == NFS4_OK && res_opcnt == 5) { 9476 nfs_fh4 *fhp; 9477 nfs4_sharedfh_t *sfhp; 9478 vnode_t *pvp; 9479 nfs4_ga_res_t *garp; 9480 9481 resop++; /* lookupp */ 9482 resop++; /* getfh */ 9483 fhp = &resop->nfs_resop4_u.opgetfh.object; 9484 9485 resop++; /* getattr of parent */ 9486 9487 /* 9488 * First, take care of finishing the 9489 * readdir results. 9490 */ 9491 garp = &resop->nfs_resop4_u.opgetattr.ga_res; 9492 /* 9493 * The d_ino of .. must be the inode number 9494 * of the mounted filesystem. 9495 */ 9496 if (garp->n4g_va.va_mask & AT_NODEID) 9497 rd_res->dotdotp->d_ino = 9498 garp->n4g_va.va_nodeid; 9499 9500 9501 /* 9502 * Next, create the ".." dnlc entry 9503 */ 9504 sfhp = sfh4_get(fhp, mi); 9505 if (!nfs4_make_dotdot(sfhp, t, vp, cr, &pvp, 0)) { 9506 dnlc_update(vp, "..", pvp); 9507 VN_RELE(pvp); 9508 } 9509 sfh4_rele(&sfhp); 9510 } 9511 } 9512 9513 if (mi->mi_io_kstats) { 9514 mutex_enter(&mi->mi_lock); 9515 KSTAT_IO_PTR(mi->mi_io_kstats)->reads++; 9516 KSTAT_IO_PTR(mi->mi_io_kstats)->nread += rdc->actlen; 9517 mutex_exit(&mi->mi_lock); 9518 } 9519 9520 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 9521 9522 out: 9523 /* 9524 * If readdir a node that is a stub for a crossed mount point, 9525 * keep the original secinfo flavor for the current file system, 9526 * not the crossed one. 9527 */ 9528 (void) check_mnt_secinfo(mi->mi_curr_serv, vp); 9529 9530 nfs4_end_fop(mi, vp, NULL, OH_READDIR, &recov_state, needrecov); 9531 } 9532 9533 9534 static int 9535 nfs4_bio(struct buf *bp, stable_how4 *stab_comm, cred_t *cr, bool_t readahead) 9536 { 9537 rnode4_t *rp = VTOR4(bp->b_vp); 9538 int count; 9539 int error; 9540 cred_t *cred_otw = NULL; 9541 offset_t offset; 9542 nfs4_open_stream_t *osp = NULL; 9543 bool_t first_time = TRUE; /* first time getting otw cred */ 9544 bool_t last_time = FALSE; /* last time getting otw cred */ 9545 9546 ASSERT(nfs_zone() == VTOMI4(bp->b_vp)->mi_zone); 9547 9548 DTRACE_IO1(start, struct buf *, bp); 9549 offset = ldbtob(bp->b_lblkno); 9550 9551 if (bp->b_flags & B_READ) { 9552 read_again: 9553 /* 9554 * Releases the osp, if it is provided. 9555 * Puts a hold on the cred_otw and the new osp (if found). 9556 */ 9557 cred_otw = nfs4_get_otw_cred_by_osp(rp, cr, &osp, 9558 &first_time, &last_time); 9559 error = bp->b_error = nfs4read(bp->b_vp, bp->b_un.b_addr, 9560 offset, bp->b_bcount, &bp->b_resid, cred_otw, 9561 readahead, NULL); 9562 crfree(cred_otw); 9563 if (!error) { 9564 if (bp->b_resid) { 9565 /* 9566 * Didn't get it all because we hit EOF, 9567 * zero all the memory beyond the EOF. 9568 */ 9569 /* bzero(rdaddr + */ 9570 bzero(bp->b_un.b_addr + 9571 bp->b_bcount - bp->b_resid, bp->b_resid); 9572 } 9573 mutex_enter(&rp->r_statelock); 9574 if (bp->b_resid == bp->b_bcount && 9575 offset >= rp->r_size) { 9576 /* 9577 * We didn't read anything at all as we are 9578 * past EOF. Return an error indicator back 9579 * but don't destroy the pages (yet). 9580 */ 9581 error = NFS_EOF; 9582 } 9583 mutex_exit(&rp->r_statelock); 9584 } else if (error == EACCES && last_time == FALSE) { 9585 goto read_again; 9586 } 9587 } else { 9588 if (!(rp->r_flags & R4STALE)) { 9589 write_again: 9590 /* 9591 * Releases the osp, if it is provided. 9592 * Puts a hold on the cred_otw and the new 9593 * osp (if found). 9594 */ 9595 cred_otw = nfs4_get_otw_cred_by_osp(rp, cr, &osp, 9596 &first_time, &last_time); 9597 mutex_enter(&rp->r_statelock); 9598 count = MIN(bp->b_bcount, rp->r_size - offset); 9599 mutex_exit(&rp->r_statelock); 9600 if (count < 0) 9601 cmn_err(CE_PANIC, "nfs4_bio: write count < 0"); 9602 #ifdef DEBUG 9603 if (count == 0) { 9604 zoneid_t zoneid = getzoneid(); 9605 9606 zcmn_err(zoneid, CE_WARN, 9607 "nfs4_bio: zero length write at %lld", 9608 offset); 9609 zcmn_err(zoneid, CE_CONT, "flags=0x%x, " 9610 "b_bcount=%ld, file size=%lld", 9611 rp->r_flags, (long)bp->b_bcount, 9612 rp->r_size); 9613 sfh4_printfhandle(VTOR4(bp->b_vp)->r_fh); 9614 if (nfs4_bio_do_stop) 9615 debug_enter("nfs4_bio"); 9616 } 9617 #endif 9618 error = nfs4write(bp->b_vp, bp->b_un.b_addr, offset, 9619 count, cred_otw, stab_comm); 9620 if (error == EACCES && last_time == FALSE) { 9621 crfree(cred_otw); 9622 goto write_again; 9623 } 9624 bp->b_error = error; 9625 if (error && error != EINTR && 9626 !(bp->b_vp->v_vfsp->vfs_flag & VFS_UNMOUNTED)) { 9627 /* 9628 * Don't print EDQUOT errors on the console. 9629 * Don't print asynchronous EACCES errors. 9630 * Don't print EFBIG errors. 9631 * Print all other write errors. 9632 */ 9633 if (error != EDQUOT && error != EFBIG && 9634 (error != EACCES || 9635 !(bp->b_flags & B_ASYNC))) 9636 nfs4_write_error(bp->b_vp, 9637 error, cred_otw); 9638 /* 9639 * Update r_error and r_flags as appropriate. 9640 * If the error was ESTALE, then mark the 9641 * rnode as not being writeable and save 9642 * the error status. Otherwise, save any 9643 * errors which occur from asynchronous 9644 * page invalidations. Any errors occurring 9645 * from other operations should be saved 9646 * by the caller. 9647 */ 9648 mutex_enter(&rp->r_statelock); 9649 if (error == ESTALE) { 9650 rp->r_flags |= R4STALE; 9651 if (!rp->r_error) 9652 rp->r_error = error; 9653 } else if (!rp->r_error && 9654 (bp->b_flags & 9655 (B_INVAL|B_FORCE|B_ASYNC)) == 9656 (B_INVAL|B_FORCE|B_ASYNC)) { 9657 rp->r_error = error; 9658 } 9659 mutex_exit(&rp->r_statelock); 9660 } 9661 crfree(cred_otw); 9662 } else { 9663 error = rp->r_error; 9664 /* 9665 * A close may have cleared r_error, if so, 9666 * propagate ESTALE error return properly 9667 */ 9668 if (error == 0) 9669 error = ESTALE; 9670 } 9671 } 9672 9673 if (error != 0 && error != NFS_EOF) 9674 bp->b_flags |= B_ERROR; 9675 9676 if (osp) 9677 open_stream_rele(osp, rp); 9678 9679 DTRACE_IO1(done, struct buf *, bp); 9680 9681 return (error); 9682 } 9683 9684 /* ARGSUSED */ 9685 int 9686 nfs4_fid(vnode_t *vp, fid_t *fidp, caller_context_t *ct) 9687 { 9688 return (EREMOTE); 9689 } 9690 9691 /* ARGSUSED2 */ 9692 int 9693 nfs4_rwlock(vnode_t *vp, int write_lock, caller_context_t *ctp) 9694 { 9695 rnode4_t *rp = VTOR4(vp); 9696 9697 if (!write_lock) { 9698 (void) nfs_rw_enter_sig(&rp->r_rwlock, RW_READER, FALSE); 9699 return (V_WRITELOCK_FALSE); 9700 } 9701 9702 if ((rp->r_flags & R4DIRECTIO) || 9703 (VTOMI4(vp)->mi_flags & MI4_DIRECTIO)) { 9704 (void) nfs_rw_enter_sig(&rp->r_rwlock, RW_READER, FALSE); 9705 if (rp->r_mapcnt == 0 && !nfs4_has_pages(vp)) 9706 return (V_WRITELOCK_FALSE); 9707 nfs_rw_exit(&rp->r_rwlock); 9708 } 9709 9710 (void) nfs_rw_enter_sig(&rp->r_rwlock, RW_WRITER, FALSE); 9711 return (V_WRITELOCK_TRUE); 9712 } 9713 9714 /* ARGSUSED */ 9715 void 9716 nfs4_rwunlock(vnode_t *vp, int write_lock, caller_context_t *ctp) 9717 { 9718 rnode4_t *rp = VTOR4(vp); 9719 9720 nfs_rw_exit(&rp->r_rwlock); 9721 } 9722 9723 /* ARGSUSED */ 9724 static int 9725 nfs4_seek(vnode_t *vp, offset_t ooff, offset_t *noffp, caller_context_t *ct) 9726 { 9727 if (nfs_zone() != VTOMI4(vp)->mi_zone) 9728 return (EIO); 9729 9730 /* 9731 * Because we stuff the readdir cookie into the offset field 9732 * someone may attempt to do an lseek with the cookie which 9733 * we want to succeed. 9734 */ 9735 if (vp->v_type == VDIR) 9736 return (0); 9737 if (*noffp < 0) 9738 return (EINVAL); 9739 return (0); 9740 } 9741 9742 9743 /* 9744 * Return all the pages from [off..off+len) in file 9745 */ 9746 /* ARGSUSED */ 9747 static int 9748 nfs4_getpage(vnode_t *vp, offset_t off, size_t len, uint_t *protp, 9749 page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr, 9750 enum seg_rw rw, cred_t *cr, caller_context_t *ct) 9751 { 9752 rnode4_t *rp; 9753 int error; 9754 mntinfo4_t *mi; 9755 9756 if (nfs_zone() != VTOMI4(vp)->mi_zone) 9757 return (EIO); 9758 rp = VTOR4(vp); 9759 if (IS_SHADOW(vp, rp)) 9760 vp = RTOV4(rp); 9761 9762 if (vp->v_flag & VNOMAP) 9763 return (ENOSYS); 9764 9765 if (protp != NULL) 9766 *protp = PROT_ALL; 9767 9768 /* 9769 * Now validate that the caches are up to date. 9770 */ 9771 if (error = nfs4_validate_caches(vp, cr)) 9772 return (error); 9773 9774 mi = VTOMI4(vp); 9775 retry: 9776 mutex_enter(&rp->r_statelock); 9777 9778 /* 9779 * Don't create dirty pages faster than they 9780 * can be cleaned so that the system doesn't 9781 * get imbalanced. If the async queue is 9782 * maxed out, then wait for it to drain before 9783 * creating more dirty pages. Also, wait for 9784 * any threads doing pagewalks in the vop_getattr 9785 * entry points so that they don't block for 9786 * long periods. 9787 */ 9788 if (rw == S_CREATE) { 9789 while ((mi->mi_max_threads != 0 && 9790 rp->r_awcount > 2 * mi->mi_max_threads) || 9791 rp->r_gcount > 0) 9792 cv_wait(&rp->r_cv, &rp->r_statelock); 9793 } 9794 9795 /* 9796 * If we are getting called as a side effect of an nfs_write() 9797 * operation the local file size might not be extended yet. 9798 * In this case we want to be able to return pages of zeroes. 9799 */ 9800 if (off + len > rp->r_size + PAGEOFFSET && seg != segkmap) { 9801 NFS4_DEBUG(nfs4_pageio_debug, 9802 (CE_NOTE, "getpage beyond EOF: off=%lld, " 9803 "len=%llu, size=%llu, attrsize =%llu", off, 9804 (u_longlong_t)len, rp->r_size, rp->r_attr.va_size)); 9805 mutex_exit(&rp->r_statelock); 9806 return (EFAULT); /* beyond EOF */ 9807 } 9808 9809 mutex_exit(&rp->r_statelock); 9810 9811 error = pvn_getpages(nfs4_getapage, vp, off, len, protp, 9812 pl, plsz, seg, addr, rw, cr); 9813 NFS4_DEBUG(nfs4_pageio_debug && error, 9814 (CE_NOTE, "getpages error %d; off=%lld, len=%lld", 9815 error, off, (u_longlong_t)len)); 9816 9817 switch (error) { 9818 case NFS_EOF: 9819 nfs4_purge_caches(vp, NFS4_NOPURGE_DNLC, cr, FALSE); 9820 goto retry; 9821 case ESTALE: 9822 nfs4_purge_stale_fh(error, vp, cr); 9823 } 9824 9825 return (error); 9826 } 9827 9828 /* 9829 * Called from pvn_getpages to get a particular page. 9830 */ 9831 /* ARGSUSED */ 9832 static int 9833 nfs4_getapage(vnode_t *vp, u_offset_t off, size_t len, uint_t *protp, 9834 page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr, 9835 enum seg_rw rw, cred_t *cr) 9836 { 9837 rnode4_t *rp; 9838 uint_t bsize; 9839 struct buf *bp; 9840 page_t *pp; 9841 u_offset_t lbn; 9842 u_offset_t io_off; 9843 u_offset_t blkoff; 9844 u_offset_t rablkoff; 9845 size_t io_len; 9846 uint_t blksize; 9847 int error; 9848 int readahead; 9849 int readahead_issued = 0; 9850 int ra_window; /* readahead window */ 9851 page_t *pagefound; 9852 page_t *savepp; 9853 9854 if (nfs_zone() != VTOMI4(vp)->mi_zone) 9855 return (EIO); 9856 9857 rp = VTOR4(vp); 9858 ASSERT(!IS_SHADOW(vp, rp)); 9859 bsize = MAX(vp->v_vfsp->vfs_bsize, PAGESIZE); 9860 9861 reread: 9862 bp = NULL; 9863 pp = NULL; 9864 pagefound = NULL; 9865 9866 if (pl != NULL) 9867 pl[0] = NULL; 9868 9869 error = 0; 9870 lbn = off / bsize; 9871 blkoff = lbn * bsize; 9872 9873 /* 9874 * Queueing up the readahead before doing the synchronous read 9875 * results in a significant increase in read throughput because 9876 * of the increased parallelism between the async threads and 9877 * the process context. 9878 */ 9879 if ((off & ((vp->v_vfsp->vfs_bsize) - 1)) == 0 && 9880 rw != S_CREATE && 9881 !(vp->v_flag & VNOCACHE)) { 9882 mutex_enter(&rp->r_statelock); 9883 9884 /* 9885 * Calculate the number of readaheads to do. 9886 * a) No readaheads at offset = 0. 9887 * b) Do maximum(nfs4_nra) readaheads when the readahead 9888 * window is closed. 9889 * c) Do readaheads between 1 to (nfs4_nra - 1) depending 9890 * upon how far the readahead window is open or close. 9891 * d) No readaheads if rp->r_nextr is not within the scope 9892 * of the readahead window (random i/o). 9893 */ 9894 9895 if (off == 0) 9896 readahead = 0; 9897 else if (blkoff == rp->r_nextr) 9898 readahead = nfs4_nra; 9899 else if (rp->r_nextr > blkoff && 9900 ((ra_window = (rp->r_nextr - blkoff) / bsize) 9901 <= (nfs4_nra - 1))) 9902 readahead = nfs4_nra - ra_window; 9903 else 9904 readahead = 0; 9905 9906 rablkoff = rp->r_nextr; 9907 while (readahead > 0 && rablkoff + bsize < rp->r_size) { 9908 mutex_exit(&rp->r_statelock); 9909 if (nfs4_async_readahead(vp, rablkoff + bsize, 9910 addr + (rablkoff + bsize - off), 9911 seg, cr, nfs4_readahead) < 0) { 9912 mutex_enter(&rp->r_statelock); 9913 break; 9914 } 9915 readahead--; 9916 rablkoff += bsize; 9917 /* 9918 * Indicate that we did a readahead so 9919 * readahead offset is not updated 9920 * by the synchronous read below. 9921 */ 9922 readahead_issued = 1; 9923 mutex_enter(&rp->r_statelock); 9924 /* 9925 * set readahead offset to 9926 * offset of last async readahead 9927 * request. 9928 */ 9929 rp->r_nextr = rablkoff; 9930 } 9931 mutex_exit(&rp->r_statelock); 9932 } 9933 9934 again: 9935 if ((pagefound = page_exists(vp, off)) == NULL) { 9936 if (pl == NULL) { 9937 (void) nfs4_async_readahead(vp, blkoff, addr, seg, cr, 9938 nfs4_readahead); 9939 } else if (rw == S_CREATE) { 9940 /* 9941 * Block for this page is not allocated, or the offset 9942 * is beyond the current allocation size, or we're 9943 * allocating a swap slot and the page was not found, 9944 * so allocate it and return a zero page. 9945 */ 9946 if ((pp = page_create_va(vp, off, 9947 PAGESIZE, PG_WAIT, seg, addr)) == NULL) 9948 cmn_err(CE_PANIC, "nfs4_getapage: page_create"); 9949 io_len = PAGESIZE; 9950 mutex_enter(&rp->r_statelock); 9951 rp->r_nextr = off + PAGESIZE; 9952 mutex_exit(&rp->r_statelock); 9953 } else { 9954 /* 9955 * Need to go to server to get a block 9956 */ 9957 mutex_enter(&rp->r_statelock); 9958 if (blkoff < rp->r_size && 9959 blkoff + bsize > rp->r_size) { 9960 /* 9961 * If less than a block left in 9962 * file read less than a block. 9963 */ 9964 if (rp->r_size <= off) { 9965 /* 9966 * Trying to access beyond EOF, 9967 * set up to get at least one page. 9968 */ 9969 blksize = off + PAGESIZE - blkoff; 9970 } else 9971 blksize = rp->r_size - blkoff; 9972 } else if ((off == 0) || 9973 (off != rp->r_nextr && !readahead_issued)) { 9974 blksize = PAGESIZE; 9975 blkoff = off; /* block = page here */ 9976 } else 9977 blksize = bsize; 9978 mutex_exit(&rp->r_statelock); 9979 9980 pp = pvn_read_kluster(vp, off, seg, addr, &io_off, 9981 &io_len, blkoff, blksize, 0); 9982 9983 /* 9984 * Some other thread has entered the page, 9985 * so just use it. 9986 */ 9987 if (pp == NULL) 9988 goto again; 9989 9990 /* 9991 * Now round the request size up to page boundaries. 9992 * This ensures that the entire page will be 9993 * initialized to zeroes if EOF is encountered. 9994 */ 9995 io_len = ptob(btopr(io_len)); 9996 9997 bp = pageio_setup(pp, io_len, vp, B_READ); 9998 ASSERT(bp != NULL); 9999 10000 /* 10001 * pageio_setup should have set b_addr to 0. This 10002 * is correct since we want to do I/O on a page 10003 * boundary. bp_mapin will use this addr to calculate 10004 * an offset, and then set b_addr to the kernel virtual 10005 * address it allocated for us. 10006 */ 10007 ASSERT(bp->b_un.b_addr == 0); 10008 10009 bp->b_edev = 0; 10010 bp->b_dev = 0; 10011 bp->b_lblkno = lbtodb(io_off); 10012 bp->b_file = vp; 10013 bp->b_offset = (offset_t)off; 10014 bp_mapin(bp); 10015 10016 /* 10017 * If doing a write beyond what we believe is EOF, 10018 * don't bother trying to read the pages from the 10019 * server, we'll just zero the pages here. We 10020 * don't check that the rw flag is S_WRITE here 10021 * because some implementations may attempt a 10022 * read access to the buffer before copying data. 10023 */ 10024 mutex_enter(&rp->r_statelock); 10025 if (io_off >= rp->r_size && seg == segkmap) { 10026 mutex_exit(&rp->r_statelock); 10027 bzero(bp->b_un.b_addr, io_len); 10028 } else { 10029 mutex_exit(&rp->r_statelock); 10030 error = nfs4_bio(bp, NULL, cr, FALSE); 10031 } 10032 10033 /* 10034 * Unmap the buffer before freeing it. 10035 */ 10036 bp_mapout(bp); 10037 pageio_done(bp); 10038 10039 savepp = pp; 10040 do { 10041 pp->p_fsdata = C_NOCOMMIT; 10042 } while ((pp = pp->p_next) != savepp); 10043 10044 if (error == NFS_EOF) { 10045 /* 10046 * If doing a write system call just return 10047 * zeroed pages, else user tried to get pages 10048 * beyond EOF, return error. We don't check 10049 * that the rw flag is S_WRITE here because 10050 * some implementations may attempt a read 10051 * access to the buffer before copying data. 10052 */ 10053 if (seg == segkmap) 10054 error = 0; 10055 else 10056 error = EFAULT; 10057 } 10058 10059 if (!readahead_issued && !error) { 10060 mutex_enter(&rp->r_statelock); 10061 rp->r_nextr = io_off + io_len; 10062 mutex_exit(&rp->r_statelock); 10063 } 10064 } 10065 } 10066 10067 out: 10068 if (pl == NULL) 10069 return (error); 10070 10071 if (error) { 10072 if (pp != NULL) 10073 pvn_read_done(pp, B_ERROR); 10074 return (error); 10075 } 10076 10077 if (pagefound) { 10078 se_t se = (rw == S_CREATE ? SE_EXCL : SE_SHARED); 10079 10080 /* 10081 * Page exists in the cache, acquire the appropriate lock. 10082 * If this fails, start all over again. 10083 */ 10084 if ((pp = page_lookup(vp, off, se)) == NULL) { 10085 #ifdef DEBUG 10086 nfs4_lostpage++; 10087 #endif 10088 goto reread; 10089 } 10090 pl[0] = pp; 10091 pl[1] = NULL; 10092 return (0); 10093 } 10094 10095 if (pp != NULL) 10096 pvn_plist_init(pp, pl, plsz, off, io_len, rw); 10097 10098 return (error); 10099 } 10100 10101 static void 10102 nfs4_readahead(vnode_t *vp, u_offset_t blkoff, caddr_t addr, struct seg *seg, 10103 cred_t *cr) 10104 { 10105 int error; 10106 page_t *pp; 10107 u_offset_t io_off; 10108 size_t io_len; 10109 struct buf *bp; 10110 uint_t bsize, blksize; 10111 rnode4_t *rp = VTOR4(vp); 10112 page_t *savepp; 10113 10114 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 10115 10116 bsize = MAX(vp->v_vfsp->vfs_bsize, PAGESIZE); 10117 10118 mutex_enter(&rp->r_statelock); 10119 if (blkoff < rp->r_size && blkoff + bsize > rp->r_size) { 10120 /* 10121 * If less than a block left in file read less 10122 * than a block. 10123 */ 10124 blksize = rp->r_size - blkoff; 10125 } else 10126 blksize = bsize; 10127 mutex_exit(&rp->r_statelock); 10128 10129 pp = pvn_read_kluster(vp, blkoff, segkmap, addr, 10130 &io_off, &io_len, blkoff, blksize, 1); 10131 /* 10132 * The isra flag passed to the kluster function is 1, we may have 10133 * gotten a return value of NULL for a variety of reasons (# of free 10134 * pages < minfree, someone entered the page on the vnode etc). In all 10135 * cases, we want to punt on the readahead. 10136 */ 10137 if (pp == NULL) 10138 return; 10139 10140 /* 10141 * Now round the request size up to page boundaries. 10142 * This ensures that the entire page will be 10143 * initialized to zeroes if EOF is encountered. 10144 */ 10145 io_len = ptob(btopr(io_len)); 10146 10147 bp = pageio_setup(pp, io_len, vp, B_READ); 10148 ASSERT(bp != NULL); 10149 10150 /* 10151 * pageio_setup should have set b_addr to 0. This is correct since 10152 * we want to do I/O on a page boundary. bp_mapin() will use this addr 10153 * to calculate an offset, and then set b_addr to the kernel virtual 10154 * address it allocated for us. 10155 */ 10156 ASSERT(bp->b_un.b_addr == 0); 10157 10158 bp->b_edev = 0; 10159 bp->b_dev = 0; 10160 bp->b_lblkno = lbtodb(io_off); 10161 bp->b_file = vp; 10162 bp->b_offset = (offset_t)blkoff; 10163 bp_mapin(bp); 10164 10165 /* 10166 * If doing a write beyond what we believe is EOF, don't bother trying 10167 * to read the pages from the server, we'll just zero the pages here. 10168 * We don't check that the rw flag is S_WRITE here because some 10169 * implementations may attempt a read access to the buffer before 10170 * copying data. 10171 */ 10172 mutex_enter(&rp->r_statelock); 10173 if (io_off >= rp->r_size && seg == segkmap) { 10174 mutex_exit(&rp->r_statelock); 10175 bzero(bp->b_un.b_addr, io_len); 10176 error = 0; 10177 } else { 10178 mutex_exit(&rp->r_statelock); 10179 error = nfs4_bio(bp, NULL, cr, TRUE); 10180 if (error == NFS_EOF) 10181 error = 0; 10182 } 10183 10184 /* 10185 * Unmap the buffer before freeing it. 10186 */ 10187 bp_mapout(bp); 10188 pageio_done(bp); 10189 10190 savepp = pp; 10191 do { 10192 pp->p_fsdata = C_NOCOMMIT; 10193 } while ((pp = pp->p_next) != savepp); 10194 10195 pvn_read_done(pp, error ? B_READ | B_ERROR : B_READ); 10196 10197 /* 10198 * In case of error set readahead offset 10199 * to the lowest offset. 10200 * pvn_read_done() calls VN_DISPOSE to destroy the pages 10201 */ 10202 if (error && rp->r_nextr > io_off) { 10203 mutex_enter(&rp->r_statelock); 10204 if (rp->r_nextr > io_off) 10205 rp->r_nextr = io_off; 10206 mutex_exit(&rp->r_statelock); 10207 } 10208 } 10209 10210 /* 10211 * Flags are composed of {B_INVAL, B_FREE, B_DONTNEED, B_FORCE} 10212 * If len == 0, do from off to EOF. 10213 * 10214 * The normal cases should be len == 0 && off == 0 (entire vp list) or 10215 * len == MAXBSIZE (from segmap_release actions), and len == PAGESIZE 10216 * (from pageout). 10217 */ 10218 /* ARGSUSED */ 10219 static int 10220 nfs4_putpage(vnode_t *vp, offset_t off, size_t len, int flags, cred_t *cr, 10221 caller_context_t *ct) 10222 { 10223 int error; 10224 rnode4_t *rp; 10225 10226 ASSERT(cr != NULL); 10227 10228 if (!(flags & B_ASYNC) && nfs_zone() != VTOMI4(vp)->mi_zone) 10229 return (EIO); 10230 10231 rp = VTOR4(vp); 10232 if (IS_SHADOW(vp, rp)) 10233 vp = RTOV4(rp); 10234 10235 /* 10236 * XXX - Why should this check be made here? 10237 */ 10238 if (vp->v_flag & VNOMAP) 10239 return (ENOSYS); 10240 10241 if (len == 0 && !(flags & B_INVAL) && 10242 (vp->v_vfsp->vfs_flag & VFS_RDONLY)) 10243 return (0); 10244 10245 mutex_enter(&rp->r_statelock); 10246 rp->r_count++; 10247 mutex_exit(&rp->r_statelock); 10248 error = nfs4_putpages(vp, off, len, flags, cr); 10249 mutex_enter(&rp->r_statelock); 10250 rp->r_count--; 10251 cv_broadcast(&rp->r_cv); 10252 mutex_exit(&rp->r_statelock); 10253 10254 return (error); 10255 } 10256 10257 /* 10258 * Write out a single page, possibly klustering adjacent dirty pages. 10259 */ 10260 int 10261 nfs4_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp, size_t *lenp, 10262 int flags, cred_t *cr) 10263 { 10264 u_offset_t io_off; 10265 u_offset_t lbn_off; 10266 u_offset_t lbn; 10267 size_t io_len; 10268 uint_t bsize; 10269 int error; 10270 rnode4_t *rp; 10271 10272 ASSERT(!(vp->v_vfsp->vfs_flag & VFS_RDONLY)); 10273 ASSERT(pp != NULL); 10274 ASSERT(cr != NULL); 10275 ASSERT((flags & B_ASYNC) || nfs_zone() == VTOMI4(vp)->mi_zone); 10276 10277 rp = VTOR4(vp); 10278 ASSERT(rp->r_count > 0); 10279 ASSERT(!IS_SHADOW(vp, rp)); 10280 10281 bsize = MAX(vp->v_vfsp->vfs_bsize, PAGESIZE); 10282 lbn = pp->p_offset / bsize; 10283 lbn_off = lbn * bsize; 10284 10285 /* 10286 * Find a kluster that fits in one block, or in 10287 * one page if pages are bigger than blocks. If 10288 * there is less file space allocated than a whole 10289 * page, we'll shorten the i/o request below. 10290 */ 10291 pp = pvn_write_kluster(vp, pp, &io_off, &io_len, lbn_off, 10292 roundup(bsize, PAGESIZE), flags); 10293 10294 /* 10295 * pvn_write_kluster shouldn't have returned a page with offset 10296 * behind the original page we were given. Verify that. 10297 */ 10298 ASSERT((pp->p_offset / bsize) >= lbn); 10299 10300 /* 10301 * Now pp will have the list of kept dirty pages marked for 10302 * write back. It will also handle invalidation and freeing 10303 * of pages that are not dirty. Check for page length rounding 10304 * problems. 10305 */ 10306 if (io_off + io_len > lbn_off + bsize) { 10307 ASSERT((io_off + io_len) - (lbn_off + bsize) < PAGESIZE); 10308 io_len = lbn_off + bsize - io_off; 10309 } 10310 /* 10311 * The R4MODINPROGRESS flag makes sure that nfs4_bio() sees a 10312 * consistent value of r_size. R4MODINPROGRESS is set in writerp4(). 10313 * When R4MODINPROGRESS is set it indicates that a uiomove() is in 10314 * progress and the r_size has not been made consistent with the 10315 * new size of the file. When the uiomove() completes the r_size is 10316 * updated and the R4MODINPROGRESS flag is cleared. 10317 * 10318 * The R4MODINPROGRESS flag makes sure that nfs4_bio() sees a 10319 * consistent value of r_size. Without this handshaking, it is 10320 * possible that nfs4_bio() picks up the old value of r_size 10321 * before the uiomove() in writerp4() completes. This will result 10322 * in the write through nfs4_bio() being dropped. 10323 * 10324 * More precisely, there is a window between the time the uiomove() 10325 * completes and the time the r_size is updated. If a VOP_PUTPAGE() 10326 * operation intervenes in this window, the page will be picked up, 10327 * because it is dirty (it will be unlocked, unless it was 10328 * pagecreate'd). When the page is picked up as dirty, the dirty 10329 * bit is reset (pvn_getdirty()). In nfs4write(), r_size is 10330 * checked. This will still be the old size. Therefore the page will 10331 * not be written out. When segmap_release() calls VOP_PUTPAGE(), 10332 * the page will be found to be clean and the write will be dropped. 10333 */ 10334 if (rp->r_flags & R4MODINPROGRESS) { 10335 mutex_enter(&rp->r_statelock); 10336 if ((rp->r_flags & R4MODINPROGRESS) && 10337 rp->r_modaddr + MAXBSIZE > io_off && 10338 rp->r_modaddr < io_off + io_len) { 10339 page_t *plist; 10340 /* 10341 * A write is in progress for this region of the file. 10342 * If we did not detect R4MODINPROGRESS here then this 10343 * path through nfs_putapage() would eventually go to 10344 * nfs4_bio() and may not write out all of the data 10345 * in the pages. We end up losing data. So we decide 10346 * to set the modified bit on each page in the page 10347 * list and mark the rnode with R4DIRTY. This write 10348 * will be restarted at some later time. 10349 */ 10350 plist = pp; 10351 while (plist != NULL) { 10352 pp = plist; 10353 page_sub(&plist, pp); 10354 hat_setmod(pp); 10355 page_io_unlock(pp); 10356 page_unlock(pp); 10357 } 10358 rp->r_flags |= R4DIRTY; 10359 mutex_exit(&rp->r_statelock); 10360 if (offp) 10361 *offp = io_off; 10362 if (lenp) 10363 *lenp = io_len; 10364 return (0); 10365 } 10366 mutex_exit(&rp->r_statelock); 10367 } 10368 10369 if (flags & B_ASYNC) { 10370 error = nfs4_async_putapage(vp, pp, io_off, io_len, flags, cr, 10371 nfs4_sync_putapage); 10372 } else 10373 error = nfs4_sync_putapage(vp, pp, io_off, io_len, flags, cr); 10374 10375 if (offp) 10376 *offp = io_off; 10377 if (lenp) 10378 *lenp = io_len; 10379 return (error); 10380 } 10381 10382 static int 10383 nfs4_sync_putapage(vnode_t *vp, page_t *pp, u_offset_t io_off, size_t io_len, 10384 int flags, cred_t *cr) 10385 { 10386 int error; 10387 rnode4_t *rp; 10388 10389 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 10390 10391 flags |= B_WRITE; 10392 10393 error = nfs4_rdwrlbn(vp, pp, io_off, io_len, flags, cr); 10394 10395 rp = VTOR4(vp); 10396 10397 if ((error == ENOSPC || error == EDQUOT || error == EFBIG || 10398 error == EACCES) && 10399 (flags & (B_INVAL|B_FORCE)) != (B_INVAL|B_FORCE)) { 10400 if (!(rp->r_flags & R4OUTOFSPACE)) { 10401 mutex_enter(&rp->r_statelock); 10402 rp->r_flags |= R4OUTOFSPACE; 10403 mutex_exit(&rp->r_statelock); 10404 } 10405 flags |= B_ERROR; 10406 pvn_write_done(pp, flags); 10407 /* 10408 * If this was not an async thread, then try again to 10409 * write out the pages, but this time, also destroy 10410 * them whether or not the write is successful. This 10411 * will prevent memory from filling up with these 10412 * pages and destroying them is the only alternative 10413 * if they can't be written out. 10414 * 10415 * Don't do this if this is an async thread because 10416 * when the pages are unlocked in pvn_write_done, 10417 * some other thread could have come along, locked 10418 * them, and queued for an async thread. It would be 10419 * possible for all of the async threads to be tied 10420 * up waiting to lock the pages again and they would 10421 * all already be locked and waiting for an async 10422 * thread to handle them. Deadlock. 10423 */ 10424 if (!(flags & B_ASYNC)) { 10425 error = nfs4_putpage(vp, io_off, io_len, 10426 B_INVAL | B_FORCE, cr, NULL); 10427 } 10428 } else { 10429 if (error) 10430 flags |= B_ERROR; 10431 else if (rp->r_flags & R4OUTOFSPACE) { 10432 mutex_enter(&rp->r_statelock); 10433 rp->r_flags &= ~R4OUTOFSPACE; 10434 mutex_exit(&rp->r_statelock); 10435 } 10436 pvn_write_done(pp, flags); 10437 if (freemem < desfree) 10438 (void) nfs4_commit_vp(vp, (u_offset_t)0, 0, cr, 10439 NFS4_WRITE_NOWAIT); 10440 } 10441 10442 return (error); 10443 } 10444 10445 #ifdef DEBUG 10446 int nfs4_force_open_before_mmap = 0; 10447 #endif 10448 10449 /* ARGSUSED */ 10450 static int 10451 nfs4_map(vnode_t *vp, offset_t off, struct as *as, caddr_t *addrp, 10452 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr, 10453 caller_context_t *ct) 10454 { 10455 struct segvn_crargs vn_a; 10456 int error = 0; 10457 rnode4_t *rp = VTOR4(vp); 10458 mntinfo4_t *mi = VTOMI4(vp); 10459 10460 if (nfs_zone() != VTOMI4(vp)->mi_zone) 10461 return (EIO); 10462 10463 if (vp->v_flag & VNOMAP) 10464 return (ENOSYS); 10465 10466 if (off < 0 || (off + len) < 0) 10467 return (ENXIO); 10468 10469 if (vp->v_type != VREG) 10470 return (ENODEV); 10471 10472 /* 10473 * If the file is delegated to the client don't do anything. 10474 * If the file is not delegated, then validate the data cache. 10475 */ 10476 mutex_enter(&rp->r_statev4_lock); 10477 if (rp->r_deleg_type == OPEN_DELEGATE_NONE) { 10478 mutex_exit(&rp->r_statev4_lock); 10479 error = nfs4_validate_caches(vp, cr); 10480 if (error) 10481 return (error); 10482 } else { 10483 mutex_exit(&rp->r_statev4_lock); 10484 } 10485 10486 /* 10487 * Check to see if the vnode is currently marked as not cachable. 10488 * This means portions of the file are locked (through VOP_FRLOCK). 10489 * In this case the map request must be refused. We use 10490 * rp->r_lkserlock to avoid a race with concurrent lock requests. 10491 * 10492 * Atomically increment r_inmap after acquiring r_rwlock. The 10493 * idea here is to acquire r_rwlock to block read/write and 10494 * not to protect r_inmap. r_inmap will inform nfs4_read/write() 10495 * that we are in nfs4_map(). Now, r_rwlock is acquired in order 10496 * and we can prevent the deadlock that would have occurred 10497 * when nfs4_addmap() would have acquired it out of order. 10498 * 10499 * Since we are not protecting r_inmap by any lock, we do not 10500 * hold any lock when we decrement it. We atomically decrement 10501 * r_inmap after we release r_lkserlock. 10502 */ 10503 10504 if (nfs_rw_enter_sig(&rp->r_rwlock, RW_WRITER, INTR4(vp))) 10505 return (EINTR); 10506 atomic_inc_uint(&rp->r_inmap); 10507 nfs_rw_exit(&rp->r_rwlock); 10508 10509 if (nfs_rw_enter_sig(&rp->r_lkserlock, RW_READER, INTR4(vp))) { 10510 atomic_dec_uint(&rp->r_inmap); 10511 return (EINTR); 10512 } 10513 10514 10515 if (vp->v_flag & VNOCACHE) { 10516 error = EAGAIN; 10517 goto done; 10518 } 10519 10520 /* 10521 * Don't allow concurrent locks and mapping if mandatory locking is 10522 * enabled. 10523 */ 10524 if (flk_has_remote_locks(vp)) { 10525 struct vattr va; 10526 va.va_mask = AT_MODE; 10527 error = nfs4getattr(vp, &va, cr); 10528 if (error != 0) 10529 goto done; 10530 if (MANDLOCK(vp, va.va_mode)) { 10531 error = EAGAIN; 10532 goto done; 10533 } 10534 } 10535 10536 /* 10537 * It is possible that the rnode has a lost lock request that we 10538 * are still trying to recover, and that the request conflicts with 10539 * this map request. 10540 * 10541 * An alternative approach would be for nfs4_safemap() to consider 10542 * queued lock requests when deciding whether to set or clear 10543 * VNOCACHE. This would require the frlock code path to call 10544 * nfs4_safemap() after enqueing a lost request. 10545 */ 10546 if (nfs4_map_lost_lock_conflict(vp)) { 10547 error = EAGAIN; 10548 goto done; 10549 } 10550 10551 as_rangelock(as); 10552 error = choose_addr(as, addrp, len, off, ADDR_VACALIGN, flags); 10553 if (error != 0) { 10554 as_rangeunlock(as); 10555 goto done; 10556 } 10557 10558 if (vp->v_type == VREG) { 10559 /* 10560 * We need to retrieve the open stream 10561 */ 10562 nfs4_open_stream_t *osp = NULL; 10563 nfs4_open_owner_t *oop = NULL; 10564 10565 oop = find_open_owner(cr, NFS4_PERM_CREATED, mi); 10566 if (oop != NULL) { 10567 /* returns with 'os_sync_lock' held */ 10568 osp = find_open_stream(oop, rp); 10569 open_owner_rele(oop); 10570 } 10571 if (osp == NULL) { 10572 #ifdef DEBUG 10573 if (nfs4_force_open_before_mmap) { 10574 error = EIO; 10575 goto done; 10576 } 10577 #endif 10578 /* returns with 'os_sync_lock' held */ 10579 error = open_and_get_osp(vp, cr, &osp); 10580 if (osp == NULL) { 10581 NFS4_DEBUG(nfs4_mmap_debug, (CE_NOTE, 10582 "nfs4_map: we tried to OPEN the file " 10583 "but again no osp, so fail with EIO")); 10584 goto done; 10585 } 10586 } 10587 10588 if (osp->os_failed_reopen) { 10589 mutex_exit(&osp->os_sync_lock); 10590 open_stream_rele(osp, rp); 10591 NFS4_DEBUG(nfs4_open_stream_debug, (CE_NOTE, 10592 "nfs4_map: os_failed_reopen set on " 10593 "osp %p, cr %p, rp %s", (void *)osp, 10594 (void *)cr, rnode4info(rp))); 10595 error = EIO; 10596 goto done; 10597 } 10598 mutex_exit(&osp->os_sync_lock); 10599 open_stream_rele(osp, rp); 10600 } 10601 10602 vn_a.vp = vp; 10603 vn_a.offset = off; 10604 vn_a.type = (flags & MAP_TYPE); 10605 vn_a.prot = (uchar_t)prot; 10606 vn_a.maxprot = (uchar_t)maxprot; 10607 vn_a.flags = (flags & ~MAP_TYPE); 10608 vn_a.cred = cr; 10609 vn_a.amp = NULL; 10610 vn_a.szc = 0; 10611 vn_a.lgrp_mem_policy_flags = 0; 10612 10613 error = as_map(as, *addrp, len, segvn_create, &vn_a); 10614 as_rangeunlock(as); 10615 10616 done: 10617 nfs_rw_exit(&rp->r_lkserlock); 10618 atomic_dec_uint(&rp->r_inmap); 10619 return (error); 10620 } 10621 10622 /* 10623 * We're most likely dealing with a kernel module that likes to READ 10624 * and mmap without OPENing the file (ie: lookup/read/mmap), so lets 10625 * officially OPEN the file to create the necessary client state 10626 * for bookkeeping of os_mmap_read/write counts. 10627 * 10628 * Since VOP_MAP only passes in a pointer to the vnode rather than 10629 * a double pointer, we can't handle the case where nfs4open_otw() 10630 * returns a different vnode than the one passed into VOP_MAP (since 10631 * VOP_DELMAP will not see the vnode nfs4open_otw used). In this case, 10632 * we return NULL and let nfs4_map() fail. Note: the only case where 10633 * this should happen is if the file got removed and replaced with the 10634 * same name on the server (in addition to the fact that we're trying 10635 * to VOP_MAP withouth VOP_OPENing the file in the first place). 10636 */ 10637 static int 10638 open_and_get_osp(vnode_t *map_vp, cred_t *cr, nfs4_open_stream_t **ospp) 10639 { 10640 rnode4_t *rp, *drp; 10641 vnode_t *dvp, *open_vp; 10642 char file_name[MAXNAMELEN]; 10643 int just_created; 10644 nfs4_open_stream_t *osp; 10645 nfs4_open_owner_t *oop; 10646 int error; 10647 10648 *ospp = NULL; 10649 open_vp = map_vp; 10650 10651 rp = VTOR4(open_vp); 10652 if ((error = vtodv(open_vp, &dvp, cr, TRUE)) != 0) 10653 return (error); 10654 drp = VTOR4(dvp); 10655 10656 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_READER, INTR4(dvp))) { 10657 VN_RELE(dvp); 10658 return (EINTR); 10659 } 10660 10661 if ((error = vtoname(open_vp, file_name, MAXNAMELEN)) != 0) { 10662 nfs_rw_exit(&drp->r_rwlock); 10663 VN_RELE(dvp); 10664 return (error); 10665 } 10666 10667 mutex_enter(&rp->r_statev4_lock); 10668 if (rp->created_v4) { 10669 rp->created_v4 = 0; 10670 mutex_exit(&rp->r_statev4_lock); 10671 10672 dnlc_update(dvp, file_name, open_vp); 10673 /* This is needed so we don't bump the open ref count */ 10674 just_created = 1; 10675 } else { 10676 mutex_exit(&rp->r_statev4_lock); 10677 just_created = 0; 10678 } 10679 10680 VN_HOLD(map_vp); 10681 10682 error = nfs4open_otw(dvp, file_name, NULL, &open_vp, cr, 0, FREAD, 0, 10683 just_created); 10684 if (error) { 10685 nfs_rw_exit(&drp->r_rwlock); 10686 VN_RELE(dvp); 10687 VN_RELE(map_vp); 10688 return (error); 10689 } 10690 10691 nfs_rw_exit(&drp->r_rwlock); 10692 VN_RELE(dvp); 10693 10694 /* 10695 * If nfs4open_otw() returned a different vnode then "undo" 10696 * the open and return failure to the caller. 10697 */ 10698 if (!VN_CMP(open_vp, map_vp)) { 10699 nfs4_error_t e; 10700 10701 NFS4_DEBUG(nfs4_mmap_debug, (CE_NOTE, "open_and_get_osp: " 10702 "open returned a different vnode")); 10703 /* 10704 * If there's an error, ignore it, 10705 * and let VOP_INACTIVE handle it. 10706 */ 10707 (void) nfs4close_one(open_vp, NULL, cr, FREAD, NULL, &e, 10708 CLOSE_NORM, 0, 0, 0); 10709 VN_RELE(map_vp); 10710 return (EIO); 10711 } 10712 10713 VN_RELE(map_vp); 10714 10715 oop = find_open_owner(cr, NFS4_PERM_CREATED, VTOMI4(open_vp)); 10716 if (!oop) { 10717 nfs4_error_t e; 10718 10719 NFS4_DEBUG(nfs4_mmap_debug, (CE_NOTE, "open_and_get_osp: " 10720 "no open owner")); 10721 /* 10722 * If there's an error, ignore it, 10723 * and let VOP_INACTIVE handle it. 10724 */ 10725 (void) nfs4close_one(open_vp, NULL, cr, FREAD, NULL, &e, 10726 CLOSE_NORM, 0, 0, 0); 10727 return (EIO); 10728 } 10729 osp = find_open_stream(oop, rp); 10730 open_owner_rele(oop); 10731 *ospp = osp; 10732 return (0); 10733 } 10734 10735 /* 10736 * Please be aware that when this function is called, the address space write 10737 * a_lock is held. Do not put over the wire calls in this function. 10738 */ 10739 /* ARGSUSED */ 10740 static int 10741 nfs4_addmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr, 10742 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr, 10743 caller_context_t *ct) 10744 { 10745 rnode4_t *rp; 10746 int error = 0; 10747 mntinfo4_t *mi; 10748 10749 mi = VTOMI4(vp); 10750 rp = VTOR4(vp); 10751 10752 if (nfs_zone() != mi->mi_zone) 10753 return (EIO); 10754 if (vp->v_flag & VNOMAP) 10755 return (ENOSYS); 10756 10757 /* 10758 * Don't need to update the open stream first, since this 10759 * mmap can't add any additional share access that isn't 10760 * already contained in the open stream (for the case where we 10761 * open/mmap/only update rp->r_mapcnt/server reboots/reopen doesn't 10762 * take into account os_mmap_read[write] counts). 10763 */ 10764 atomic_add_long((ulong_t *)&rp->r_mapcnt, btopr(len)); 10765 10766 if (vp->v_type == VREG) { 10767 /* 10768 * We need to retrieve the open stream and update the counts. 10769 * If there is no open stream here, something is wrong. 10770 */ 10771 nfs4_open_stream_t *osp = NULL; 10772 nfs4_open_owner_t *oop = NULL; 10773 10774 oop = find_open_owner(cr, NFS4_PERM_CREATED, mi); 10775 if (oop != NULL) { 10776 /* returns with 'os_sync_lock' held */ 10777 osp = find_open_stream(oop, rp); 10778 open_owner_rele(oop); 10779 } 10780 if (osp == NULL) { 10781 NFS4_DEBUG(nfs4_mmap_debug, (CE_NOTE, 10782 "nfs4_addmap: we should have an osp" 10783 "but we don't, so fail with EIO")); 10784 error = EIO; 10785 goto out; 10786 } 10787 10788 NFS4_DEBUG(nfs4_mmap_debug, (CE_NOTE, "nfs4_addmap: osp %p," 10789 " pages %ld, prot 0x%x", (void *)osp, btopr(len), prot)); 10790 10791 /* 10792 * Update the map count in the open stream. 10793 * This is necessary in the case where we 10794 * open/mmap/close/, then the server reboots, and we 10795 * attempt to reopen. If the mmap doesn't add share 10796 * access then we send an invalid reopen with 10797 * access = NONE. 10798 * 10799 * We need to specifically check each PROT_* so a mmap 10800 * call of (PROT_WRITE | PROT_EXEC) will ensure us both 10801 * read and write access. A simple comparison of prot 10802 * to ~PROT_WRITE to determine read access is insufficient 10803 * since prot can be |= with PROT_USER, etc. 10804 */ 10805 10806 /* 10807 * Unless we're MAP_SHARED, no sense in adding os_mmap_write 10808 */ 10809 if ((flags & MAP_SHARED) && (maxprot & PROT_WRITE)) 10810 osp->os_mmap_write += btopr(len); 10811 if (maxprot & PROT_READ) 10812 osp->os_mmap_read += btopr(len); 10813 if (maxprot & PROT_EXEC) 10814 osp->os_mmap_read += btopr(len); 10815 /* 10816 * Ensure that os_mmap_read gets incremented, even if 10817 * maxprot were to look like PROT_NONE. 10818 */ 10819 if (!(maxprot & PROT_READ) && !(maxprot & PROT_WRITE) && 10820 !(maxprot & PROT_EXEC)) 10821 osp->os_mmap_read += btopr(len); 10822 osp->os_mapcnt += btopr(len); 10823 mutex_exit(&osp->os_sync_lock); 10824 open_stream_rele(osp, rp); 10825 } 10826 10827 out: 10828 /* 10829 * If we got an error, then undo our 10830 * incrementing of 'r_mapcnt'. 10831 */ 10832 10833 if (error) { 10834 atomic_add_long((ulong_t *)&rp->r_mapcnt, -btopr(len)); 10835 ASSERT(rp->r_mapcnt >= 0); 10836 } 10837 return (error); 10838 } 10839 10840 /* ARGSUSED */ 10841 static int 10842 nfs4_cmp(vnode_t *vp1, vnode_t *vp2, caller_context_t *ct) 10843 { 10844 10845 return (VTOR4(vp1) == VTOR4(vp2)); 10846 } 10847 10848 /* 10849 * Data structure for nfs4_lkserlock_callback() function. 10850 */ 10851 struct nfs4_lkserlock_callback_data { 10852 vnode_t *vp; 10853 int rc; 10854 }; 10855 10856 /* 10857 * Callback function for reclock(). 10858 */ 10859 static callb_cpr_t * 10860 nfs4_lkserlock_callback(flk_cb_when_t when, void *infop) 10861 { 10862 struct nfs4_lkserlock_callback_data *dp = 10863 (struct nfs4_lkserlock_callback_data *)infop; 10864 rnode4_t *rp = VTOR4(dp->vp); 10865 10866 if (when == FLK_BEFORE_SLEEP) 10867 nfs_rw_exit(&rp->r_lkserlock); 10868 else 10869 dp->rc = nfs_rw_enter_sig(&rp->r_lkserlock, RW_WRITER, 10870 INTR4(dp->vp)); 10871 10872 return (NULL); 10873 } 10874 10875 /* ARGSUSED */ 10876 static int 10877 nfs4_frlock(vnode_t *vp, int cmd, struct flock64 *bfp, int flag, 10878 offset_t offset, struct flk_callback *flk_cbp, cred_t *cr, 10879 caller_context_t *ct) 10880 { 10881 int rc = 0; 10882 rnode4_t *rp; 10883 int intr = INTR4(vp); 10884 nfs4_error_t e; 10885 int frcmd; 10886 struct lm_sysid *ls = NULL; 10887 10888 if (nfs_zone() != VTOMI4(vp)->mi_zone) 10889 return (EIO); 10890 10891 /* check for valid cmd parameter and set frcmd appropriately */ 10892 switch (cmd) { 10893 case F_GETLK: 10894 frcmd = 0; 10895 break; 10896 case F_SETLK: 10897 frcmd = SETFLCK; 10898 break; 10899 case F_SETLKW: 10900 frcmd = SETFLCK | SLPFLCK; 10901 break; 10902 default: 10903 return (EINVAL); 10904 } 10905 10906 /* 10907 * If lock is relative to EOF, we need the newest length of the file. 10908 * Therefore invalidate the ATTR_CACHE. 10909 */ 10910 if (bfp->l_whence == 2) /* SEEK_END */ 10911 PURGE_ATTRCACHE4(vp); 10912 10913 /* 10914 * If the filesystem is mounted using local locking, pass the 10915 * request off to the local locking code. 10916 */ 10917 if (VTOMI4(vp)->mi_flags & MI4_LLOCK || vp->v_type != VREG) { 10918 if (cmd == F_SETLK || cmd == F_SETLKW) { 10919 /* 10920 * For complete safety, we should be holding 10921 * r_lkserlock. However, we can't call 10922 * nfs4_safelock and then fs_frlock while 10923 * holding r_lkserlock, so just invoke 10924 * nfs4_safelock and expect that this will 10925 * catch enough of the cases. 10926 */ 10927 if (!nfs4_safelock(vp, bfp, cr)) 10928 return (EAGAIN); 10929 } 10930 return (fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr, ct)); 10931 } 10932 10933 /* 10934 * Convert the offset. We need to do this to make sure our view of the 10935 * locking range is always the same through the rest of this function. 10936 * This is especially needed for bfp->l_whence == SEEK_END, because the 10937 * length of the file could change anytime and thus the locking range 10938 * would be a moving target for us. 10939 * 10940 * For the bfp->l_whence == SEEK_CUR case this is just a convenient 10941 * conversion to make the life easier for nfs4frlock(). 10942 */ 10943 rc = convoff(vp, bfp, 0, offset); 10944 if (rc != 0) 10945 return (rc); 10946 10947 if (bfp->l_type == F_UNLCK) { 10948 u_offset_t start, end; 10949 10950 /* 10951 * Shortcut for trivial case. 10952 */ 10953 if (cmd == F_GETLK) 10954 return (rc); 10955 10956 /* 10957 * For every lock or unlock request we need to do two steps: 10958 * (un)register the local lock, and (un)register the lock at 10959 * the NFSv4 server. It is essential to make sure the lock 10960 * status registered at the server and registered locally is 10961 * same and never goes out of sync. This means that if one 10962 * step fails, the other one needs to be either skipped, or 10963 * reverted. 10964 * 10965 * For lock requests the situation is easy since a lock 10966 * registration can be reverted without any risk of data 10967 * corruption. 10968 * 10969 * The unlock requests cannot be reverted because once a lock 10970 * is unregistered the race window is open and some other 10971 * process could grab a conflicting lock. This means that once 10972 * the first step (the first lock unregistration) succeeded, 10973 * the second step cannot fail. The second step for the unlock 10974 * request is the local lock unregistration by the reclock() 10975 * call. 10976 * 10977 * The only way how the reclock() call for an unlock request 10978 * could fail is the invalid unlock range so we check it here, 10979 * before the lock is unregistered at NFSv4 server. This 10980 * duplicates the check done in the reclock() function. 10981 */ 10982 rc = flk_convert_lock_data(vp, bfp, &start, &end, offset); 10983 if (rc != 0) 10984 return (rc); 10985 rc = flk_check_lock_data(start, end, MAXEND); 10986 if (rc != 0) 10987 return (rc); 10988 10989 intr = 0; 10990 } 10991 10992 /* 10993 * For F_SETLK and F_SETLKW we need to set sysid. 10994 */ 10995 if (cmd == F_SETLK || cmd == F_SETLKW) { 10996 rc = nfs4frlock_get_sysid(&ls, vp, bfp); 10997 if (rc != 0) 10998 return (rc); 10999 11000 /* 11001 * Client locks are registerred locally by oring the sysid with 11002 * LM_SYSID_CLIENT. The server registers locks locally using 11003 * just the sysid. We need to distinguish between the two to 11004 * avoid collision in a case one machine is used as both client 11005 * and server. 11006 */ 11007 bfp->l_sysid |= LM_SYSID_CLIENT; 11008 } 11009 11010 bfp->l_pid = curproc->p_pid; 11011 11012 rp = VTOR4(vp); 11013 11014 /* 11015 * Check whether the given lock request can proceed, given the 11016 * current file mappings. 11017 */ 11018 if (nfs_rw_enter_sig(&rp->r_lkserlock, RW_WRITER, intr)) { 11019 if (ls != NULL) 11020 lm_rel_sysid(ls); 11021 return (EINTR); 11022 } 11023 if (cmd == F_SETLK || cmd == F_SETLKW) { 11024 if (!nfs4_safelock(vp, bfp, cr)) { 11025 rc = EAGAIN; 11026 goto done; 11027 } 11028 } 11029 11030 /* 11031 * For query we will try to find a conflicting local lock first by 11032 * calling reclock(). 11033 * 11034 * In a case this is a lock request we need to register it locally 11035 * first before we consult the NFSv4 server. 11036 */ 11037 if (cmd == F_GETLK || bfp->l_type != F_UNLCK) { 11038 /* 11039 * If we might sleep in reclock() we need to register a 11040 * callback to release the r_lkserlock during the sleep. 11041 */ 11042 if ((frcmd & SLPFLCK) == 0) { 11043 rc = reclock(vp, bfp, frcmd, flag, 0, flk_cbp); 11044 } else { 11045 flk_callback_t callback; 11046 struct nfs4_lkserlock_callback_data callback_data = 11047 {vp, 0}; 11048 11049 flk_add_callback(&callback, nfs4_lkserlock_callback, 11050 &callback_data, flk_cbp); 11051 rc = reclock(vp, bfp, frcmd, flag, 0, &callback); 11052 flk_del_callback(&callback); 11053 11054 if (callback_data.rc != 0) { 11055 /* 11056 * The nfs_rw_enter_sig() call in 11057 * nfs4_lkserlock_callback() failed. 11058 */ 11059 11060 if (rc == 0) { 11061 /* 11062 * The reclock() call above succeeded 11063 * so we need to revert it. 11064 */ 11065 bfp->l_type = F_UNLCK; 11066 rc = reclock(vp, bfp, frcmd, flag, 0, 11067 flk_cbp); 11068 /* The unlock cannot fail */ 11069 ASSERT(rc == 0); 11070 11071 /* 11072 * We are here because we failed to 11073 * acquire r_lkserlock in 11074 * nfs4_lkserlock_callback() due to a 11075 * signal. Return the appropriate 11076 * error. 11077 */ 11078 rc = EINTR; 11079 } 11080 11081 ASSERT(ls != NULL); 11082 lm_rel_sysid(ls); 11083 11084 return (rc); 11085 } 11086 11087 /* 11088 * We possibly released r_lkserlock in reclock() so 11089 * make sure it is still safe to lock the file. 11090 */ 11091 if (!nfs4_safelock(vp, bfp, cr)) { 11092 rc = EAGAIN; 11093 goto revert; 11094 } 11095 11096 } 11097 11098 /* 11099 * If the reclock() call failed we are done and we will return 11100 * an error to the caller. Similarly, if we found a 11101 * conflicting lock registered locally we are done too. We do 11102 * not need to consult the server. 11103 */ 11104 if ((rc != 0) || (cmd == F_GETLK && bfp->l_type != F_UNLCK)) 11105 goto done; 11106 } 11107 11108 /* 11109 * Flush the cache after waiting for async I/O to finish. For new 11110 * locks, this is so that the process gets the latest bits from the 11111 * server. For unlocks, this is so that other clients see the 11112 * latest bits once the file has been unlocked. If currently dirty 11113 * pages can't be flushed, then don't allow a lock to be set. But 11114 * allow unlocks to succeed, to avoid having orphan locks on the 11115 * server. 11116 */ 11117 if (cmd != F_GETLK) { 11118 mutex_enter(&rp->r_statelock); 11119 while (rp->r_count > 0) { 11120 if (intr) { 11121 klwp_t *lwp = ttolwp(curthread); 11122 11123 if (lwp != NULL) 11124 lwp->lwp_nostop++; 11125 if (cv_wait_sig(&rp->r_cv, 11126 &rp->r_statelock) == 0) { 11127 if (lwp != NULL) 11128 lwp->lwp_nostop--; 11129 rc = EINTR; 11130 break; 11131 } 11132 if (lwp != NULL) 11133 lwp->lwp_nostop--; 11134 } else 11135 cv_wait(&rp->r_cv, &rp->r_statelock); 11136 } 11137 mutex_exit(&rp->r_statelock); 11138 if (rc != 0) { 11139 ASSERT(bfp->l_type != F_UNLCK); 11140 11141 goto revert; 11142 } 11143 11144 rc = nfs4_putpage(vp, (offset_t)0, 0, B_INVAL, cr, ct); 11145 if (rc != 0) { 11146 if (rc == ENOSPC || rc == EDQUOT) { 11147 mutex_enter(&rp->r_statelock); 11148 if (!rp->r_error) 11149 rp->r_error = rc; 11150 mutex_exit(&rp->r_statelock); 11151 } 11152 11153 /* 11154 * If this was a lock request, make sure it is 11155 * reverted. 11156 */ 11157 if (bfp->l_type != F_UNLCK) { 11158 rc = ENOLCK; 11159 goto revert; 11160 } 11161 } 11162 } 11163 11164 /* 11165 * Call the lock manager to do the real work of contacting 11166 * the server and obtaining the lock. 11167 */ 11168 nfs4frlock(NFS4_LCK_CTYPE_NORM, vp, cmd, bfp, cr, &e, NULL, NULL); 11169 rc = e.error; 11170 11171 if (rc == 0) 11172 nfs4_lockcompletion(vp, cmd); 11173 11174 revert: 11175 /* 11176 * If this is either successful unlock request or a lock request that 11177 * failed we should unregister/revert the local lock now. 11178 */ 11179 if ((rc == 0 && cmd != F_GETLK && bfp->l_type == F_UNLCK) || 11180 (rc != 0 && cmd != F_GETLK && bfp->l_type != F_UNLCK)) { 11181 int r; 11182 11183 bfp->l_type = F_UNLCK; 11184 r = reclock(vp, bfp, frcmd, flag, 0, flk_cbp); 11185 /* The unlock cannot fail */ 11186 ASSERT(r == 0); 11187 } 11188 11189 done: 11190 nfs_rw_exit(&rp->r_lkserlock); 11191 if (ls != NULL) 11192 lm_rel_sysid(ls); 11193 11194 return (rc); 11195 } 11196 11197 /* 11198 * Free storage space associated with the specified vnode. The portion 11199 * to be freed is specified by bfp->l_start and bfp->l_len (already 11200 * normalized to a "whence" of 0). 11201 * 11202 * This is an experimental facility whose continued existence is not 11203 * guaranteed. Currently, we only support the special case 11204 * of l_len == 0, meaning free to end of file. 11205 */ 11206 /* ARGSUSED */ 11207 static int 11208 nfs4_space(vnode_t *vp, int cmd, struct flock64 *bfp, int flag, 11209 offset_t offset, cred_t *cr, caller_context_t *ct) 11210 { 11211 int error; 11212 11213 if (nfs_zone() != VTOMI4(vp)->mi_zone) 11214 return (EIO); 11215 ASSERT(vp->v_type == VREG); 11216 if (cmd != F_FREESP) 11217 return (EINVAL); 11218 11219 error = convoff(vp, bfp, 0, offset); 11220 if (!error) { 11221 ASSERT(bfp->l_start >= 0); 11222 if (bfp->l_len == 0) { 11223 struct vattr va; 11224 11225 va.va_mask = AT_SIZE; 11226 va.va_size = bfp->l_start; 11227 error = nfs4setattr(vp, &va, 0, cr, NULL); 11228 11229 if (error == 0 && bfp->l_start == 0) 11230 vnevent_truncate(vp, ct); 11231 } else 11232 error = EINVAL; 11233 } 11234 11235 return (error); 11236 } 11237 11238 /* ARGSUSED */ 11239 int 11240 nfs4_realvp(vnode_t *vp, vnode_t **vpp, caller_context_t *ct) 11241 { 11242 rnode4_t *rp; 11243 rp = VTOR4(vp); 11244 11245 if (vp->v_type == VREG && IS_SHADOW(vp, rp)) { 11246 vp = RTOV4(rp); 11247 } 11248 *vpp = vp; 11249 return (0); 11250 } 11251 11252 /* 11253 * Setup and add an address space callback to do the work of the delmap call. 11254 * The callback will (and must be) deleted in the actual callback function. 11255 * 11256 * This is done in order to take care of the problem that we have with holding 11257 * the address space's a_lock for a long period of time (e.g. if the NFS server 11258 * is down). Callbacks will be executed in the address space code while the 11259 * a_lock is not held. Holding the address space's a_lock causes things such 11260 * as ps and fork to hang because they are trying to acquire this lock as well. 11261 */ 11262 /* ARGSUSED */ 11263 static int 11264 nfs4_delmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr, 11265 size_t len, uint_t prot, uint_t maxprot, uint_t flags, cred_t *cr, 11266 caller_context_t *ct) 11267 { 11268 int caller_found; 11269 int error; 11270 rnode4_t *rp; 11271 nfs4_delmap_args_t *dmapp; 11272 nfs4_delmapcall_t *delmap_call; 11273 11274 if (vp->v_flag & VNOMAP) 11275 return (ENOSYS); 11276 11277 /* 11278 * A process may not change zones if it has NFS pages mmap'ed 11279 * in, so we can't legitimately get here from the wrong zone. 11280 */ 11281 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 11282 11283 rp = VTOR4(vp); 11284 11285 /* 11286 * The way that the address space of this process deletes its mapping 11287 * of this file is via the following call chains: 11288 * - as_free()->SEGOP_UNMAP()/segvn_unmap()->VOP_DELMAP()/nfs4_delmap() 11289 * - as_unmap()->SEGOP_UNMAP()/segvn_unmap()->VOP_DELMAP()/nfs4_delmap() 11290 * 11291 * With the use of address space callbacks we are allowed to drop the 11292 * address space lock, a_lock, while executing the NFS operations that 11293 * need to go over the wire. Returning EAGAIN to the caller of this 11294 * function is what drives the execution of the callback that we add 11295 * below. The callback will be executed by the address space code 11296 * after dropping the a_lock. When the callback is finished, since 11297 * we dropped the a_lock, it must be re-acquired and segvn_unmap() 11298 * is called again on the same segment to finish the rest of the work 11299 * that needs to happen during unmapping. 11300 * 11301 * This action of calling back into the segment driver causes 11302 * nfs4_delmap() to get called again, but since the callback was 11303 * already executed at this point, it already did the work and there 11304 * is nothing left for us to do. 11305 * 11306 * To Summarize: 11307 * - The first time nfs4_delmap is called by the current thread is when 11308 * we add the caller associated with this delmap to the delmap caller 11309 * list, add the callback, and return EAGAIN. 11310 * - The second time in this call chain when nfs4_delmap is called we 11311 * will find this caller in the delmap caller list and realize there 11312 * is no more work to do thus removing this caller from the list and 11313 * returning the error that was set in the callback execution. 11314 */ 11315 caller_found = nfs4_find_and_delete_delmapcall(rp, &error); 11316 if (caller_found) { 11317 /* 11318 * 'error' is from the actual delmap operations. To avoid 11319 * hangs, we need to handle the return of EAGAIN differently 11320 * since this is what drives the callback execution. 11321 * In this case, we don't want to return EAGAIN and do the 11322 * callback execution because there are none to execute. 11323 */ 11324 if (error == EAGAIN) 11325 return (0); 11326 else 11327 return (error); 11328 } 11329 11330 /* current caller was not in the list */ 11331 delmap_call = nfs4_init_delmapcall(); 11332 11333 mutex_enter(&rp->r_statelock); 11334 list_insert_tail(&rp->r_indelmap, delmap_call); 11335 mutex_exit(&rp->r_statelock); 11336 11337 dmapp = kmem_alloc(sizeof (nfs4_delmap_args_t), KM_SLEEP); 11338 11339 dmapp->vp = vp; 11340 dmapp->off = off; 11341 dmapp->addr = addr; 11342 dmapp->len = len; 11343 dmapp->prot = prot; 11344 dmapp->maxprot = maxprot; 11345 dmapp->flags = flags; 11346 dmapp->cr = cr; 11347 dmapp->caller = delmap_call; 11348 11349 error = as_add_callback(as, nfs4_delmap_callback, dmapp, 11350 AS_UNMAP_EVENT, addr, len, KM_SLEEP); 11351 11352 return (error ? error : EAGAIN); 11353 } 11354 11355 static nfs4_delmapcall_t * 11356 nfs4_init_delmapcall() 11357 { 11358 nfs4_delmapcall_t *delmap_call; 11359 11360 delmap_call = kmem_alloc(sizeof (nfs4_delmapcall_t), KM_SLEEP); 11361 delmap_call->call_id = curthread; 11362 delmap_call->error = 0; 11363 11364 return (delmap_call); 11365 } 11366 11367 static void 11368 nfs4_free_delmapcall(nfs4_delmapcall_t *delmap_call) 11369 { 11370 kmem_free(delmap_call, sizeof (nfs4_delmapcall_t)); 11371 } 11372 11373 /* 11374 * Searches for the current delmap caller (based on curthread) in the list of 11375 * callers. If it is found, we remove it and free the delmap caller. 11376 * Returns: 11377 * 0 if the caller wasn't found 11378 * 1 if the caller was found, removed and freed. *errp will be set 11379 * to what the result of the delmap was. 11380 */ 11381 static int 11382 nfs4_find_and_delete_delmapcall(rnode4_t *rp, int *errp) 11383 { 11384 nfs4_delmapcall_t *delmap_call; 11385 11386 /* 11387 * If the list doesn't exist yet, we create it and return 11388 * that the caller wasn't found. No list = no callers. 11389 */ 11390 mutex_enter(&rp->r_statelock); 11391 if (!(rp->r_flags & R4DELMAPLIST)) { 11392 /* The list does not exist */ 11393 list_create(&rp->r_indelmap, sizeof (nfs4_delmapcall_t), 11394 offsetof(nfs4_delmapcall_t, call_node)); 11395 rp->r_flags |= R4DELMAPLIST; 11396 mutex_exit(&rp->r_statelock); 11397 return (0); 11398 } else { 11399 /* The list exists so search it */ 11400 for (delmap_call = list_head(&rp->r_indelmap); 11401 delmap_call != NULL; 11402 delmap_call = list_next(&rp->r_indelmap, delmap_call)) { 11403 if (delmap_call->call_id == curthread) { 11404 /* current caller is in the list */ 11405 *errp = delmap_call->error; 11406 list_remove(&rp->r_indelmap, delmap_call); 11407 mutex_exit(&rp->r_statelock); 11408 nfs4_free_delmapcall(delmap_call); 11409 return (1); 11410 } 11411 } 11412 } 11413 mutex_exit(&rp->r_statelock); 11414 return (0); 11415 } 11416 11417 /* 11418 * Remove some pages from an mmap'd vnode. Just update the 11419 * count of pages. If doing close-to-open, then flush and 11420 * commit all of the pages associated with this file. 11421 * Otherwise, start an asynchronous page flush to write out 11422 * any dirty pages. This will also associate a credential 11423 * with the rnode which can be used to write the pages. 11424 */ 11425 /* ARGSUSED */ 11426 static void 11427 nfs4_delmap_callback(struct as *as, void *arg, uint_t event) 11428 { 11429 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 11430 rnode4_t *rp; 11431 mntinfo4_t *mi; 11432 nfs4_delmap_args_t *dmapp = (nfs4_delmap_args_t *)arg; 11433 11434 rp = VTOR4(dmapp->vp); 11435 mi = VTOMI4(dmapp->vp); 11436 11437 atomic_add_long((ulong_t *)&rp->r_mapcnt, -btopr(dmapp->len)); 11438 ASSERT(rp->r_mapcnt >= 0); 11439 11440 /* 11441 * Initiate a page flush and potential commit if there are 11442 * pages, the file system was not mounted readonly, the segment 11443 * was mapped shared, and the pages themselves were writeable. 11444 */ 11445 if (nfs4_has_pages(dmapp->vp) && 11446 !(dmapp->vp->v_vfsp->vfs_flag & VFS_RDONLY) && 11447 dmapp->flags == MAP_SHARED && (dmapp->maxprot & PROT_WRITE)) { 11448 mutex_enter(&rp->r_statelock); 11449 rp->r_flags |= R4DIRTY; 11450 mutex_exit(&rp->r_statelock); 11451 e.error = nfs4_putpage_commit(dmapp->vp, dmapp->off, 11452 dmapp->len, dmapp->cr); 11453 if (!e.error) { 11454 mutex_enter(&rp->r_statelock); 11455 e.error = rp->r_error; 11456 rp->r_error = 0; 11457 mutex_exit(&rp->r_statelock); 11458 } 11459 } else 11460 e.error = 0; 11461 11462 if ((rp->r_flags & R4DIRECTIO) || (mi->mi_flags & MI4_DIRECTIO)) 11463 (void) nfs4_putpage(dmapp->vp, dmapp->off, dmapp->len, 11464 B_INVAL, dmapp->cr, NULL); 11465 11466 if (e.error) { 11467 e.stat = puterrno4(e.error); 11468 nfs4_queue_fact(RF_DELMAP_CB_ERR, mi, e.stat, 0, 11469 OP_COMMIT, FALSE, NULL, 0, dmapp->vp); 11470 dmapp->caller->error = e.error; 11471 } 11472 11473 /* Check to see if we need to close the file */ 11474 11475 if (dmapp->vp->v_type == VREG) { 11476 nfs4close_one(dmapp->vp, NULL, dmapp->cr, 0, NULL, &e, 11477 CLOSE_DELMAP, dmapp->len, dmapp->maxprot, dmapp->flags); 11478 11479 if (e.error != 0 || e.stat != NFS4_OK) { 11480 /* 11481 * Since it is possible that e.error == 0 and 11482 * e.stat != NFS4_OK (and vice versa), 11483 * we do the proper checking in order to get both 11484 * e.error and e.stat reporting the correct info. 11485 */ 11486 if (e.stat == NFS4_OK) 11487 e.stat = puterrno4(e.error); 11488 if (e.error == 0) 11489 e.error = geterrno4(e.stat); 11490 11491 nfs4_queue_fact(RF_DELMAP_CB_ERR, mi, e.stat, 0, 11492 OP_CLOSE, FALSE, NULL, 0, dmapp->vp); 11493 dmapp->caller->error = e.error; 11494 } 11495 } 11496 11497 (void) as_delete_callback(as, arg); 11498 kmem_free(dmapp, sizeof (nfs4_delmap_args_t)); 11499 } 11500 11501 11502 static uint_t 11503 fattr4_maxfilesize_to_bits(uint64_t ll) 11504 { 11505 uint_t l = 1; 11506 11507 if (ll == 0) { 11508 return (0); 11509 } 11510 11511 if (ll & 0xffffffff00000000) { 11512 l += 32; ll >>= 32; 11513 } 11514 if (ll & 0xffff0000) { 11515 l += 16; ll >>= 16; 11516 } 11517 if (ll & 0xff00) { 11518 l += 8; ll >>= 8; 11519 } 11520 if (ll & 0xf0) { 11521 l += 4; ll >>= 4; 11522 } 11523 if (ll & 0xc) { 11524 l += 2; ll >>= 2; 11525 } 11526 if (ll & 0x2) { 11527 l += 1; 11528 } 11529 return (l); 11530 } 11531 11532 static int 11533 nfs4_have_xattrs(vnode_t *vp, ulong_t *valp, cred_t *cr) 11534 { 11535 vnode_t *avp = NULL; 11536 int error; 11537 11538 if ((error = nfs4lookup_xattr(vp, "", &avp, 11539 LOOKUP_XATTR, cr)) == 0) 11540 error = do_xattr_exists_check(avp, valp, cr); 11541 if (avp) 11542 VN_RELE(avp); 11543 11544 return (error); 11545 } 11546 11547 /* ARGSUSED */ 11548 int 11549 nfs4_pathconf(vnode_t *vp, int cmd, ulong_t *valp, cred_t *cr, 11550 caller_context_t *ct) 11551 { 11552 int error; 11553 hrtime_t t; 11554 rnode4_t *rp; 11555 nfs4_ga_res_t gar; 11556 nfs4_ga_ext_res_t ger; 11557 11558 gar.n4g_ext_res = &ger; 11559 11560 if (nfs_zone() != VTOMI4(vp)->mi_zone) 11561 return (EIO); 11562 if (cmd == _PC_PATH_MAX || cmd == _PC_SYMLINK_MAX) { 11563 *valp = MAXPATHLEN; 11564 return (0); 11565 } 11566 if (cmd == _PC_ACL_ENABLED) { 11567 *valp = _ACL_ACE_ENABLED; 11568 return (0); 11569 } 11570 11571 rp = VTOR4(vp); 11572 if (cmd == _PC_XATTR_EXISTS) { 11573 /* 11574 * The existence of the xattr directory is not sufficient 11575 * for determining whether generic user attributes exists. 11576 * The attribute directory could only be a transient directory 11577 * used for Solaris sysattr support. Do a small readdir 11578 * to verify if the only entries are sysattrs or not. 11579 * 11580 * pc4_xattr_valid can be only be trusted when r_xattr_dir 11581 * is NULL. Once the xadir vp exists, we can create xattrs, 11582 * and we don't have any way to update the "base" object's 11583 * pc4_xattr_exists from the xattr or xadir. Maybe FEM 11584 * could help out. 11585 */ 11586 if (ATTRCACHE4_VALID(vp) && rp->r_pathconf.pc4_xattr_valid && 11587 rp->r_xattr_dir == NULL) { 11588 return (nfs4_have_xattrs(vp, valp, cr)); 11589 } 11590 } else { /* OLD CODE */ 11591 if (ATTRCACHE4_VALID(vp)) { 11592 mutex_enter(&rp->r_statelock); 11593 if (rp->r_pathconf.pc4_cache_valid) { 11594 error = 0; 11595 switch (cmd) { 11596 case _PC_FILESIZEBITS: 11597 *valp = 11598 rp->r_pathconf.pc4_filesizebits; 11599 break; 11600 case _PC_LINK_MAX: 11601 *valp = 11602 rp->r_pathconf.pc4_link_max; 11603 break; 11604 case _PC_NAME_MAX: 11605 *valp = 11606 rp->r_pathconf.pc4_name_max; 11607 break; 11608 case _PC_CHOWN_RESTRICTED: 11609 *valp = 11610 rp->r_pathconf.pc4_chown_restricted; 11611 break; 11612 case _PC_NO_TRUNC: 11613 *valp = 11614 rp->r_pathconf.pc4_no_trunc; 11615 break; 11616 default: 11617 error = EINVAL; 11618 break; 11619 } 11620 mutex_exit(&rp->r_statelock); 11621 #ifdef DEBUG 11622 nfs4_pathconf_cache_hits++; 11623 #endif 11624 return (error); 11625 } 11626 mutex_exit(&rp->r_statelock); 11627 } 11628 } 11629 #ifdef DEBUG 11630 nfs4_pathconf_cache_misses++; 11631 #endif 11632 11633 t = gethrtime(); 11634 11635 error = nfs4_attr_otw(vp, TAG_PATHCONF, &gar, NFS4_PATHCONF_MASK, cr); 11636 11637 if (error) { 11638 mutex_enter(&rp->r_statelock); 11639 rp->r_pathconf.pc4_cache_valid = FALSE; 11640 rp->r_pathconf.pc4_xattr_valid = FALSE; 11641 mutex_exit(&rp->r_statelock); 11642 return (error); 11643 } 11644 11645 /* interpret the max filesize */ 11646 gar.n4g_ext_res->n4g_pc4.pc4_filesizebits = 11647 fattr4_maxfilesize_to_bits(gar.n4g_ext_res->n4g_maxfilesize); 11648 11649 /* Store the attributes we just received */ 11650 nfs4_attr_cache(vp, &gar, t, cr, TRUE, NULL); 11651 11652 switch (cmd) { 11653 case _PC_FILESIZEBITS: 11654 *valp = gar.n4g_ext_res->n4g_pc4.pc4_filesizebits; 11655 break; 11656 case _PC_LINK_MAX: 11657 *valp = gar.n4g_ext_res->n4g_pc4.pc4_link_max; 11658 break; 11659 case _PC_NAME_MAX: 11660 *valp = gar.n4g_ext_res->n4g_pc4.pc4_name_max; 11661 break; 11662 case _PC_CHOWN_RESTRICTED: 11663 *valp = gar.n4g_ext_res->n4g_pc4.pc4_chown_restricted; 11664 break; 11665 case _PC_NO_TRUNC: 11666 *valp = gar.n4g_ext_res->n4g_pc4.pc4_no_trunc; 11667 break; 11668 case _PC_XATTR_EXISTS: 11669 if (gar.n4g_ext_res->n4g_pc4.pc4_xattr_exists) { 11670 if (error = nfs4_have_xattrs(vp, valp, cr)) 11671 return (error); 11672 } 11673 break; 11674 default: 11675 return (EINVAL); 11676 } 11677 11678 return (0); 11679 } 11680 11681 /* 11682 * Called by async thread to do synchronous pageio. Do the i/o, wait 11683 * for it to complete, and cleanup the page list when done. 11684 */ 11685 static int 11686 nfs4_sync_pageio(vnode_t *vp, page_t *pp, u_offset_t io_off, size_t io_len, 11687 int flags, cred_t *cr) 11688 { 11689 int error; 11690 11691 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 11692 11693 error = nfs4_rdwrlbn(vp, pp, io_off, io_len, flags, cr); 11694 if (flags & B_READ) 11695 pvn_read_done(pp, (error ? B_ERROR : 0) | flags); 11696 else 11697 pvn_write_done(pp, (error ? B_ERROR : 0) | flags); 11698 return (error); 11699 } 11700 11701 /* ARGSUSED */ 11702 static int 11703 nfs4_pageio(vnode_t *vp, page_t *pp, u_offset_t io_off, size_t io_len, 11704 int flags, cred_t *cr, caller_context_t *ct) 11705 { 11706 int error; 11707 rnode4_t *rp; 11708 11709 if (!(flags & B_ASYNC) && nfs_zone() != VTOMI4(vp)->mi_zone) 11710 return (EIO); 11711 11712 if (pp == NULL) 11713 return (EINVAL); 11714 11715 rp = VTOR4(vp); 11716 mutex_enter(&rp->r_statelock); 11717 rp->r_count++; 11718 mutex_exit(&rp->r_statelock); 11719 11720 if (flags & B_ASYNC) { 11721 error = nfs4_async_pageio(vp, pp, io_off, io_len, flags, cr, 11722 nfs4_sync_pageio); 11723 } else 11724 error = nfs4_rdwrlbn(vp, pp, io_off, io_len, flags, cr); 11725 mutex_enter(&rp->r_statelock); 11726 rp->r_count--; 11727 cv_broadcast(&rp->r_cv); 11728 mutex_exit(&rp->r_statelock); 11729 return (error); 11730 } 11731 11732 /* ARGSUSED */ 11733 static void 11734 nfs4_dispose(vnode_t *vp, page_t *pp, int fl, int dn, cred_t *cr, 11735 caller_context_t *ct) 11736 { 11737 int error; 11738 rnode4_t *rp; 11739 page_t *plist; 11740 page_t *pptr; 11741 offset3 offset; 11742 count3 len; 11743 k_sigset_t smask; 11744 11745 /* 11746 * We should get called with fl equal to either B_FREE or 11747 * B_INVAL. Any other value is illegal. 11748 * 11749 * The page that we are either supposed to free or destroy 11750 * should be exclusive locked and its io lock should not 11751 * be held. 11752 */ 11753 ASSERT(fl == B_FREE || fl == B_INVAL); 11754 ASSERT((PAGE_EXCL(pp) && !page_iolock_assert(pp)) || panicstr); 11755 11756 rp = VTOR4(vp); 11757 11758 /* 11759 * If the page doesn't need to be committed or we shouldn't 11760 * even bother attempting to commit it, then just make sure 11761 * that the p_fsdata byte is clear and then either free or 11762 * destroy the page as appropriate. 11763 */ 11764 if (pp->p_fsdata == C_NOCOMMIT || (rp->r_flags & R4STALE)) { 11765 pp->p_fsdata = C_NOCOMMIT; 11766 if (fl == B_FREE) 11767 page_free(pp, dn); 11768 else 11769 page_destroy(pp, dn); 11770 return; 11771 } 11772 11773 /* 11774 * If there is a page invalidation operation going on, then 11775 * if this is one of the pages being destroyed, then just 11776 * clear the p_fsdata byte and then either free or destroy 11777 * the page as appropriate. 11778 */ 11779 mutex_enter(&rp->r_statelock); 11780 if ((rp->r_flags & R4TRUNCATE) && pp->p_offset >= rp->r_truncaddr) { 11781 mutex_exit(&rp->r_statelock); 11782 pp->p_fsdata = C_NOCOMMIT; 11783 if (fl == B_FREE) 11784 page_free(pp, dn); 11785 else 11786 page_destroy(pp, dn); 11787 return; 11788 } 11789 11790 /* 11791 * If we are freeing this page and someone else is already 11792 * waiting to do a commit, then just unlock the page and 11793 * return. That other thread will take care of commiting 11794 * this page. The page can be freed sometime after the 11795 * commit has finished. Otherwise, if the page is marked 11796 * as delay commit, then we may be getting called from 11797 * pvn_write_done, one page at a time. This could result 11798 * in one commit per page, so we end up doing lots of small 11799 * commits instead of fewer larger commits. This is bad, 11800 * we want do as few commits as possible. 11801 */ 11802 if (fl == B_FREE) { 11803 if (rp->r_flags & R4COMMITWAIT) { 11804 page_unlock(pp); 11805 mutex_exit(&rp->r_statelock); 11806 return; 11807 } 11808 if (pp->p_fsdata == C_DELAYCOMMIT) { 11809 pp->p_fsdata = C_COMMIT; 11810 page_unlock(pp); 11811 mutex_exit(&rp->r_statelock); 11812 return; 11813 } 11814 } 11815 11816 /* 11817 * Check to see if there is a signal which would prevent an 11818 * attempt to commit the pages from being successful. If so, 11819 * then don't bother with all of the work to gather pages and 11820 * generate the unsuccessful RPC. Just return from here and 11821 * let the page be committed at some later time. 11822 */ 11823 sigintr(&smask, VTOMI4(vp)->mi_flags & MI4_INT); 11824 if (ttolwp(curthread) != NULL && ISSIG(curthread, JUSTLOOKING)) { 11825 sigunintr(&smask); 11826 page_unlock(pp); 11827 mutex_exit(&rp->r_statelock); 11828 return; 11829 } 11830 sigunintr(&smask); 11831 11832 /* 11833 * We are starting to need to commit pages, so let's try 11834 * to commit as many as possible at once to reduce the 11835 * overhead. 11836 * 11837 * Set the `commit inprogress' state bit. We must 11838 * first wait until any current one finishes. Then 11839 * we initialize the c_pages list with this page. 11840 */ 11841 while (rp->r_flags & R4COMMIT) { 11842 rp->r_flags |= R4COMMITWAIT; 11843 cv_wait(&rp->r_commit.c_cv, &rp->r_statelock); 11844 rp->r_flags &= ~R4COMMITWAIT; 11845 } 11846 rp->r_flags |= R4COMMIT; 11847 mutex_exit(&rp->r_statelock); 11848 ASSERT(rp->r_commit.c_pages == NULL); 11849 rp->r_commit.c_pages = pp; 11850 rp->r_commit.c_commbase = (offset3)pp->p_offset; 11851 rp->r_commit.c_commlen = PAGESIZE; 11852 11853 /* 11854 * Gather together all other pages which can be committed. 11855 * They will all be chained off r_commit.c_pages. 11856 */ 11857 nfs4_get_commit(vp); 11858 11859 /* 11860 * Clear the `commit inprogress' status and disconnect 11861 * the list of pages to be committed from the rnode. 11862 * At this same time, we also save the starting offset 11863 * and length of data to be committed on the server. 11864 */ 11865 plist = rp->r_commit.c_pages; 11866 rp->r_commit.c_pages = NULL; 11867 offset = rp->r_commit.c_commbase; 11868 len = rp->r_commit.c_commlen; 11869 mutex_enter(&rp->r_statelock); 11870 rp->r_flags &= ~R4COMMIT; 11871 cv_broadcast(&rp->r_commit.c_cv); 11872 mutex_exit(&rp->r_statelock); 11873 11874 if (curproc == proc_pageout || curproc == proc_fsflush || 11875 nfs_zone() != VTOMI4(vp)->mi_zone) { 11876 nfs4_async_commit(vp, plist, offset, len, 11877 cr, do_nfs4_async_commit); 11878 return; 11879 } 11880 11881 /* 11882 * Actually generate the COMMIT op over the wire operation. 11883 */ 11884 error = nfs4_commit(vp, (offset4)offset, (count4)len, cr); 11885 11886 /* 11887 * If we got an error during the commit, just unlock all 11888 * of the pages. The pages will get retransmitted to the 11889 * server during a putpage operation. 11890 */ 11891 if (error) { 11892 while (plist != NULL) { 11893 pptr = plist; 11894 page_sub(&plist, pptr); 11895 page_unlock(pptr); 11896 } 11897 return; 11898 } 11899 11900 /* 11901 * We've tried as hard as we can to commit the data to stable 11902 * storage on the server. We just unlock the rest of the pages 11903 * and clear the commit required state. They will be put 11904 * onto the tail of the cachelist if they are nolonger 11905 * mapped. 11906 */ 11907 while (plist != pp) { 11908 pptr = plist; 11909 page_sub(&plist, pptr); 11910 pptr->p_fsdata = C_NOCOMMIT; 11911 page_unlock(pptr); 11912 } 11913 11914 /* 11915 * It is possible that nfs4_commit didn't return error but 11916 * some other thread has modified the page we are going 11917 * to free/destroy. 11918 * In this case we need to rewrite the page. Do an explicit check 11919 * before attempting to free/destroy the page. If modified, needs to 11920 * be rewritten so unlock the page and return. 11921 */ 11922 if (hat_ismod(pp)) { 11923 pp->p_fsdata = C_NOCOMMIT; 11924 page_unlock(pp); 11925 return; 11926 } 11927 11928 /* 11929 * Now, as appropriate, either free or destroy the page 11930 * that we were called with. 11931 */ 11932 pp->p_fsdata = C_NOCOMMIT; 11933 if (fl == B_FREE) 11934 page_free(pp, dn); 11935 else 11936 page_destroy(pp, dn); 11937 } 11938 11939 /* 11940 * Commit requires that the current fh be the file written to. 11941 * The compound op structure is: 11942 * PUTFH(file), COMMIT 11943 */ 11944 static int 11945 nfs4_commit(vnode_t *vp, offset4 offset, count4 count, cred_t *cr) 11946 { 11947 COMPOUND4args_clnt args; 11948 COMPOUND4res_clnt res; 11949 COMMIT4res *cm_res; 11950 nfs_argop4 argop[2]; 11951 nfs_resop4 *resop; 11952 int doqueue; 11953 mntinfo4_t *mi; 11954 rnode4_t *rp; 11955 cred_t *cred_otw = NULL; 11956 bool_t needrecov = FALSE; 11957 nfs4_recov_state_t recov_state; 11958 nfs4_open_stream_t *osp = NULL; 11959 bool_t first_time = TRUE; /* first time getting OTW cred */ 11960 bool_t last_time = FALSE; /* last time getting OTW cred */ 11961 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 11962 11963 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 11964 11965 rp = VTOR4(vp); 11966 11967 mi = VTOMI4(vp); 11968 recov_state.rs_flags = 0; 11969 recov_state.rs_num_retry_despite_err = 0; 11970 get_commit_cred: 11971 /* 11972 * Releases the osp, if a valid open stream is provided. 11973 * Puts a hold on the cred_otw and the new osp (if found). 11974 */ 11975 cred_otw = nfs4_get_otw_cred_by_osp(rp, cr, &osp, 11976 &first_time, &last_time); 11977 args.ctag = TAG_COMMIT; 11978 recov_retry: 11979 /* 11980 * Commit ops: putfh file; commit 11981 */ 11982 args.array_len = 2; 11983 args.array = argop; 11984 11985 e.error = nfs4_start_fop(VTOMI4(vp), vp, NULL, OH_COMMIT, 11986 &recov_state, NULL); 11987 if (e.error) { 11988 crfree(cred_otw); 11989 if (osp != NULL) 11990 open_stream_rele(osp, rp); 11991 return (e.error); 11992 } 11993 11994 /* putfh directory */ 11995 argop[0].argop = OP_CPUTFH; 11996 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh; 11997 11998 /* commit */ 11999 argop[1].argop = OP_COMMIT; 12000 argop[1].nfs_argop4_u.opcommit.offset = offset; 12001 argop[1].nfs_argop4_u.opcommit.count = count; 12002 12003 doqueue = 1; 12004 rfs4call(mi, &args, &res, cred_otw, &doqueue, 0, &e); 12005 12006 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp); 12007 if (!needrecov && e.error) { 12008 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_COMMIT, &recov_state, 12009 needrecov); 12010 crfree(cred_otw); 12011 if (e.error == EACCES && last_time == FALSE) 12012 goto get_commit_cred; 12013 if (osp != NULL) 12014 open_stream_rele(osp, rp); 12015 return (e.error); 12016 } 12017 12018 if (needrecov) { 12019 if (nfs4_start_recovery(&e, VTOMI4(vp), vp, NULL, NULL, 12020 NULL, OP_COMMIT, NULL, NULL, NULL) == FALSE) { 12021 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_COMMIT, 12022 &recov_state, needrecov); 12023 if (!e.error) 12024 (void) xdr_free(xdr_COMPOUND4res_clnt, 12025 (caddr_t)&res); 12026 goto recov_retry; 12027 } 12028 if (e.error) { 12029 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_COMMIT, 12030 &recov_state, needrecov); 12031 crfree(cred_otw); 12032 if (osp != NULL) 12033 open_stream_rele(osp, rp); 12034 return (e.error); 12035 } 12036 /* fall through for res.status case */ 12037 } 12038 12039 if (res.status) { 12040 e.error = geterrno4(res.status); 12041 if (e.error == EACCES && last_time == FALSE) { 12042 crfree(cred_otw); 12043 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_COMMIT, 12044 &recov_state, needrecov); 12045 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 12046 goto get_commit_cred; 12047 } 12048 /* 12049 * Can't do a nfs4_purge_stale_fh here because this 12050 * can cause a deadlock. nfs4_commit can 12051 * be called from nfs4_dispose which can be called 12052 * indirectly via pvn_vplist_dirty. nfs4_purge_stale_fh 12053 * can call back to pvn_vplist_dirty. 12054 */ 12055 if (e.error == ESTALE) { 12056 mutex_enter(&rp->r_statelock); 12057 rp->r_flags |= R4STALE; 12058 if (!rp->r_error) 12059 rp->r_error = e.error; 12060 mutex_exit(&rp->r_statelock); 12061 PURGE_ATTRCACHE4(vp); 12062 } else { 12063 mutex_enter(&rp->r_statelock); 12064 if (!rp->r_error) 12065 rp->r_error = e.error; 12066 mutex_exit(&rp->r_statelock); 12067 } 12068 } else { 12069 ASSERT(rp->r_flags & R4HAVEVERF); 12070 resop = &res.array[1]; /* commit res */ 12071 cm_res = &resop->nfs_resop4_u.opcommit; 12072 mutex_enter(&rp->r_statelock); 12073 if (cm_res->writeverf == rp->r_writeverf) { 12074 mutex_exit(&rp->r_statelock); 12075 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 12076 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_COMMIT, 12077 &recov_state, needrecov); 12078 crfree(cred_otw); 12079 if (osp != NULL) 12080 open_stream_rele(osp, rp); 12081 return (0); 12082 } 12083 nfs4_set_mod(vp); 12084 rp->r_writeverf = cm_res->writeverf; 12085 mutex_exit(&rp->r_statelock); 12086 e.error = NFS_VERF_MISMATCH; 12087 } 12088 12089 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 12090 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_COMMIT, &recov_state, needrecov); 12091 crfree(cred_otw); 12092 if (osp != NULL) 12093 open_stream_rele(osp, rp); 12094 12095 return (e.error); 12096 } 12097 12098 static void 12099 nfs4_set_mod(vnode_t *vp) 12100 { 12101 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 12102 12103 /* make sure we're looking at the master vnode, not a shadow */ 12104 pvn_vplist_setdirty(RTOV4(VTOR4(vp)), nfs_setmod_check); 12105 } 12106 12107 /* 12108 * This function is used to gather a page list of the pages which 12109 * can be committed on the server. 12110 * 12111 * The calling thread must have set R4COMMIT. This bit is used to 12112 * serialize access to the commit structure in the rnode. As long 12113 * as the thread has set R4COMMIT, then it can manipulate the commit 12114 * structure without requiring any other locks. 12115 * 12116 * When this function is called from nfs4_dispose() the page passed 12117 * into nfs4_dispose() will be SE_EXCL locked, and so this function 12118 * will skip it. This is not a problem since we initially add the 12119 * page to the r_commit page list. 12120 * 12121 */ 12122 static void 12123 nfs4_get_commit(vnode_t *vp) 12124 { 12125 rnode4_t *rp; 12126 page_t *pp; 12127 kmutex_t *vphm; 12128 12129 rp = VTOR4(vp); 12130 12131 ASSERT(rp->r_flags & R4COMMIT); 12132 12133 /* make sure we're looking at the master vnode, not a shadow */ 12134 12135 if (IS_SHADOW(vp, rp)) 12136 vp = RTOV4(rp); 12137 12138 vphm = page_vnode_mutex(vp); 12139 mutex_enter(vphm); 12140 12141 /* 12142 * If there are no pages associated with this vnode, then 12143 * just return. 12144 */ 12145 if ((pp = vp->v_pages) == NULL) { 12146 mutex_exit(vphm); 12147 return; 12148 } 12149 12150 /* 12151 * Step through all of the pages associated with this vnode 12152 * looking for pages which need to be committed. 12153 */ 12154 do { 12155 /* Skip marker pages. */ 12156 if (pp->p_hash == PVN_VPLIST_HASH_TAG) 12157 continue; 12158 12159 /* 12160 * First short-cut everything (without the page_lock) 12161 * and see if this page does not need to be committed 12162 * or is modified if so then we'll just skip it. 12163 */ 12164 if (pp->p_fsdata == C_NOCOMMIT || hat_ismod(pp)) 12165 continue; 12166 12167 /* 12168 * Attempt to lock the page. If we can't, then 12169 * someone else is messing with it or we have been 12170 * called from nfs4_dispose and this is the page that 12171 * nfs4_dispose was called with.. anyway just skip it. 12172 */ 12173 if (!page_trylock(pp, SE_EXCL)) 12174 continue; 12175 12176 /* 12177 * Lets check again now that we have the page lock. 12178 */ 12179 if (pp->p_fsdata == C_NOCOMMIT || hat_ismod(pp)) { 12180 page_unlock(pp); 12181 continue; 12182 } 12183 12184 /* this had better not be a free page */ 12185 ASSERT(PP_ISFREE(pp) == 0); 12186 12187 /* 12188 * The page needs to be committed and we locked it. 12189 * Update the base and length parameters and add it 12190 * to r_pages. 12191 */ 12192 if (rp->r_commit.c_pages == NULL) { 12193 rp->r_commit.c_commbase = (offset3)pp->p_offset; 12194 rp->r_commit.c_commlen = PAGESIZE; 12195 } else if (pp->p_offset < rp->r_commit.c_commbase) { 12196 rp->r_commit.c_commlen = rp->r_commit.c_commbase - 12197 (offset3)pp->p_offset + rp->r_commit.c_commlen; 12198 rp->r_commit.c_commbase = (offset3)pp->p_offset; 12199 } else if ((rp->r_commit.c_commbase + rp->r_commit.c_commlen) 12200 <= pp->p_offset) { 12201 rp->r_commit.c_commlen = (offset3)pp->p_offset - 12202 rp->r_commit.c_commbase + PAGESIZE; 12203 } 12204 page_add(&rp->r_commit.c_pages, pp); 12205 } while ((pp = pp->p_vpnext) != vp->v_pages); 12206 12207 mutex_exit(vphm); 12208 } 12209 12210 /* 12211 * This routine is used to gather together a page list of the pages 12212 * which are to be committed on the server. This routine must not 12213 * be called if the calling thread holds any locked pages. 12214 * 12215 * The calling thread must have set R4COMMIT. This bit is used to 12216 * serialize access to the commit structure in the rnode. As long 12217 * as the thread has set R4COMMIT, then it can manipulate the commit 12218 * structure without requiring any other locks. 12219 */ 12220 static void 12221 nfs4_get_commit_range(vnode_t *vp, u_offset_t soff, size_t len) 12222 { 12223 12224 rnode4_t *rp; 12225 page_t *pp; 12226 u_offset_t end; 12227 u_offset_t off; 12228 ASSERT(len != 0); 12229 rp = VTOR4(vp); 12230 ASSERT(rp->r_flags & R4COMMIT); 12231 12232 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 12233 12234 /* make sure we're looking at the master vnode, not a shadow */ 12235 12236 if (IS_SHADOW(vp, rp)) 12237 vp = RTOV4(rp); 12238 12239 /* 12240 * If there are no pages associated with this vnode, then 12241 * just return. 12242 */ 12243 if ((pp = vp->v_pages) == NULL) 12244 return; 12245 /* 12246 * Calculate the ending offset. 12247 */ 12248 end = soff + len; 12249 for (off = soff; off < end; off += PAGESIZE) { 12250 /* 12251 * Lookup each page by vp, offset. 12252 */ 12253 if ((pp = page_lookup_nowait(vp, off, SE_EXCL)) == NULL) 12254 continue; 12255 /* 12256 * If this page does not need to be committed or is 12257 * modified, then just skip it. 12258 */ 12259 if (pp->p_fsdata == C_NOCOMMIT || hat_ismod(pp)) { 12260 page_unlock(pp); 12261 continue; 12262 } 12263 12264 ASSERT(PP_ISFREE(pp) == 0); 12265 /* 12266 * The page needs to be committed and we locked it. 12267 * Update the base and length parameters and add it 12268 * to r_pages. 12269 */ 12270 if (rp->r_commit.c_pages == NULL) { 12271 rp->r_commit.c_commbase = (offset3)pp->p_offset; 12272 rp->r_commit.c_commlen = PAGESIZE; 12273 } else { 12274 rp->r_commit.c_commlen = (offset3)pp->p_offset - 12275 rp->r_commit.c_commbase + PAGESIZE; 12276 } 12277 page_add(&rp->r_commit.c_pages, pp); 12278 } 12279 } 12280 12281 /* 12282 * Called from nfs4_close(), nfs4_fsync() and nfs4_delmap(). 12283 * Flushes and commits data to the server. 12284 */ 12285 static int 12286 nfs4_putpage_commit(vnode_t *vp, offset_t poff, size_t plen, cred_t *cr) 12287 { 12288 int error; 12289 verifier4 write_verf; 12290 rnode4_t *rp = VTOR4(vp); 12291 12292 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 12293 12294 /* 12295 * Flush the data portion of the file and then commit any 12296 * portions which need to be committed. This may need to 12297 * be done twice if the server has changed state since 12298 * data was last written. The data will need to be 12299 * rewritten to the server and then a new commit done. 12300 * 12301 * In fact, this may need to be done several times if the 12302 * server is having problems and crashing while we are 12303 * attempting to do this. 12304 */ 12305 12306 top: 12307 /* 12308 * Do a flush based on the poff and plen arguments. This 12309 * will synchronously write out any modified pages in the 12310 * range specified by (poff, plen). This starts all of the 12311 * i/o operations which will be waited for in the next 12312 * call to nfs4_putpage 12313 */ 12314 12315 mutex_enter(&rp->r_statelock); 12316 write_verf = rp->r_writeverf; 12317 mutex_exit(&rp->r_statelock); 12318 12319 error = nfs4_putpage(vp, poff, plen, B_ASYNC, cr, NULL); 12320 if (error == EAGAIN) 12321 error = 0; 12322 12323 /* 12324 * Do a flush based on the poff and plen arguments. This 12325 * will synchronously write out any modified pages in the 12326 * range specified by (poff, plen) and wait until all of 12327 * the asynchronous i/o's in that range are done as well. 12328 */ 12329 if (!error) 12330 error = nfs4_putpage(vp, poff, plen, 0, cr, NULL); 12331 12332 if (error) 12333 return (error); 12334 12335 mutex_enter(&rp->r_statelock); 12336 if (rp->r_writeverf != write_verf) { 12337 mutex_exit(&rp->r_statelock); 12338 goto top; 12339 } 12340 mutex_exit(&rp->r_statelock); 12341 12342 /* 12343 * Now commit any pages which might need to be committed. 12344 * If the error, NFS_VERF_MISMATCH, is returned, then 12345 * start over with the flush operation. 12346 */ 12347 error = nfs4_commit_vp(vp, poff, plen, cr, NFS4_WRITE_WAIT); 12348 12349 if (error == NFS_VERF_MISMATCH) 12350 goto top; 12351 12352 return (error); 12353 } 12354 12355 /* 12356 * nfs4_commit_vp() will wait for other pending commits and 12357 * will either commit the whole file or a range, plen dictates 12358 * if we commit whole file. a value of zero indicates the whole 12359 * file. Called from nfs4_putpage_commit() or nfs4_sync_putapage() 12360 */ 12361 static int 12362 nfs4_commit_vp(vnode_t *vp, u_offset_t poff, size_t plen, 12363 cred_t *cr, int wait_on_writes) 12364 { 12365 rnode4_t *rp; 12366 page_t *plist; 12367 offset3 offset; 12368 count3 len; 12369 12370 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 12371 12372 rp = VTOR4(vp); 12373 12374 /* 12375 * before we gather commitable pages make 12376 * sure there are no outstanding async writes 12377 */ 12378 if (rp->r_count && wait_on_writes == NFS4_WRITE_WAIT) { 12379 mutex_enter(&rp->r_statelock); 12380 while (rp->r_count > 0) { 12381 cv_wait(&rp->r_cv, &rp->r_statelock); 12382 } 12383 mutex_exit(&rp->r_statelock); 12384 } 12385 12386 /* 12387 * Set the `commit inprogress' state bit. We must 12388 * first wait until any current one finishes. 12389 */ 12390 mutex_enter(&rp->r_statelock); 12391 while (rp->r_flags & R4COMMIT) { 12392 rp->r_flags |= R4COMMITWAIT; 12393 cv_wait(&rp->r_commit.c_cv, &rp->r_statelock); 12394 rp->r_flags &= ~R4COMMITWAIT; 12395 } 12396 rp->r_flags |= R4COMMIT; 12397 mutex_exit(&rp->r_statelock); 12398 12399 /* 12400 * Gather all of the pages which need to be 12401 * committed. 12402 */ 12403 if (plen == 0) 12404 nfs4_get_commit(vp); 12405 else 12406 nfs4_get_commit_range(vp, poff, plen); 12407 12408 /* 12409 * Clear the `commit inprogress' bit and disconnect the 12410 * page list which was gathered by nfs4_get_commit. 12411 */ 12412 plist = rp->r_commit.c_pages; 12413 rp->r_commit.c_pages = NULL; 12414 offset = rp->r_commit.c_commbase; 12415 len = rp->r_commit.c_commlen; 12416 mutex_enter(&rp->r_statelock); 12417 rp->r_flags &= ~R4COMMIT; 12418 cv_broadcast(&rp->r_commit.c_cv); 12419 mutex_exit(&rp->r_statelock); 12420 12421 /* 12422 * If any pages need to be committed, commit them and 12423 * then unlock them so that they can be freed some 12424 * time later. 12425 */ 12426 if (plist == NULL) 12427 return (0); 12428 12429 /* 12430 * No error occurred during the flush portion 12431 * of this operation, so now attempt to commit 12432 * the data to stable storage on the server. 12433 * 12434 * This will unlock all of the pages on the list. 12435 */ 12436 return (nfs4_sync_commit(vp, plist, offset, len, cr)); 12437 } 12438 12439 static int 12440 nfs4_sync_commit(vnode_t *vp, page_t *plist, offset3 offset, count3 count, 12441 cred_t *cr) 12442 { 12443 int error; 12444 page_t *pp; 12445 12446 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 12447 12448 error = nfs4_commit(vp, (offset4)offset, (count3)count, cr); 12449 12450 /* 12451 * If we got an error, then just unlock all of the pages 12452 * on the list. 12453 */ 12454 if (error) { 12455 while (plist != NULL) { 12456 pp = plist; 12457 page_sub(&plist, pp); 12458 page_unlock(pp); 12459 } 12460 return (error); 12461 } 12462 /* 12463 * We've tried as hard as we can to commit the data to stable 12464 * storage on the server. We just unlock the pages and clear 12465 * the commit required state. They will get freed later. 12466 */ 12467 while (plist != NULL) { 12468 pp = plist; 12469 page_sub(&plist, pp); 12470 pp->p_fsdata = C_NOCOMMIT; 12471 page_unlock(pp); 12472 } 12473 12474 return (error); 12475 } 12476 12477 static void 12478 do_nfs4_async_commit(vnode_t *vp, page_t *plist, offset3 offset, count3 count, 12479 cred_t *cr) 12480 { 12481 12482 (void) nfs4_sync_commit(vp, plist, offset, count, cr); 12483 } 12484 12485 /*ARGSUSED*/ 12486 static int 12487 nfs4_setsecattr(vnode_t *vp, vsecattr_t *vsecattr, int flag, cred_t *cr, 12488 caller_context_t *ct) 12489 { 12490 int error = 0; 12491 mntinfo4_t *mi; 12492 vattr_t va; 12493 vsecattr_t nfsace4_vsap; 12494 12495 mi = VTOMI4(vp); 12496 if (nfs_zone() != mi->mi_zone) 12497 return (EIO); 12498 if (mi->mi_flags & MI4_ACL) { 12499 /* if we have a delegation, return it */ 12500 if (VTOR4(vp)->r_deleg_type != OPEN_DELEGATE_NONE) 12501 (void) nfs4delegreturn(VTOR4(vp), 12502 NFS4_DR_REOPEN|NFS4_DR_PUSH); 12503 12504 error = nfs4_is_acl_mask_valid(vsecattr->vsa_mask, 12505 NFS4_ACL_SET); 12506 if (error) /* EINVAL */ 12507 return (error); 12508 12509 if (vsecattr->vsa_mask & (VSA_ACL | VSA_DFACL)) { 12510 /* 12511 * These are aclent_t type entries. 12512 */ 12513 error = vs_aent_to_ace4(vsecattr, &nfsace4_vsap, 12514 vp->v_type == VDIR, FALSE); 12515 if (error) 12516 return (error); 12517 } else { 12518 /* 12519 * These are ace_t type entries. 12520 */ 12521 error = vs_acet_to_ace4(vsecattr, &nfsace4_vsap, 12522 FALSE); 12523 if (error) 12524 return (error); 12525 } 12526 bzero(&va, sizeof (va)); 12527 error = nfs4setattr(vp, &va, flag, cr, &nfsace4_vsap); 12528 vs_ace4_destroy(&nfsace4_vsap); 12529 return (error); 12530 } 12531 return (ENOSYS); 12532 } 12533 12534 /* ARGSUSED */ 12535 int 12536 nfs4_getsecattr(vnode_t *vp, vsecattr_t *vsecattr, int flag, cred_t *cr, 12537 caller_context_t *ct) 12538 { 12539 int error; 12540 mntinfo4_t *mi; 12541 nfs4_ga_res_t gar; 12542 rnode4_t *rp = VTOR4(vp); 12543 12544 mi = VTOMI4(vp); 12545 if (nfs_zone() != mi->mi_zone) 12546 return (EIO); 12547 12548 bzero(&gar, sizeof (gar)); 12549 gar.n4g_vsa.vsa_mask = vsecattr->vsa_mask; 12550 12551 /* 12552 * vsecattr->vsa_mask holds the original acl request mask. 12553 * This is needed when determining what to return. 12554 * (See: nfs4_create_getsecattr_return()) 12555 */ 12556 error = nfs4_is_acl_mask_valid(vsecattr->vsa_mask, NFS4_ACL_GET); 12557 if (error) /* EINVAL */ 12558 return (error); 12559 12560 /* 12561 * If this is a referral stub, don't try to go OTW for an ACL 12562 */ 12563 if (RP_ISSTUB_REFERRAL(VTOR4(vp))) 12564 return (fs_fab_acl(vp, vsecattr, flag, cr, ct)); 12565 12566 if (mi->mi_flags & MI4_ACL) { 12567 /* 12568 * Check if the data is cached and the cache is valid. If it 12569 * is we don't go over the wire. 12570 */ 12571 if (rp->r_secattr != NULL && ATTRCACHE4_VALID(vp)) { 12572 mutex_enter(&rp->r_statelock); 12573 if (rp->r_secattr != NULL) { 12574 error = nfs4_create_getsecattr_return( 12575 rp->r_secattr, vsecattr, rp->r_attr.va_uid, 12576 rp->r_attr.va_gid, 12577 vp->v_type == VDIR); 12578 if (!error) { /* error == 0 - Success! */ 12579 mutex_exit(&rp->r_statelock); 12580 return (error); 12581 } 12582 } 12583 mutex_exit(&rp->r_statelock); 12584 } 12585 12586 /* 12587 * The getattr otw call will always get both the acl, in 12588 * the form of a list of nfsace4's, and the number of acl 12589 * entries; independent of the value of gar.n4g_va.va_mask. 12590 */ 12591 error = nfs4_getattr_otw(vp, &gar, cr, 1); 12592 if (error) { 12593 vs_ace4_destroy(&gar.n4g_vsa); 12594 if (error == ENOTSUP || error == EOPNOTSUPP) 12595 error = fs_fab_acl(vp, vsecattr, flag, cr, ct); 12596 return (error); 12597 } 12598 12599 if (!(gar.n4g_resbmap & FATTR4_ACL_MASK)) { 12600 /* 12601 * No error was returned, but according to the response 12602 * bitmap, neither was an acl. 12603 */ 12604 vs_ace4_destroy(&gar.n4g_vsa); 12605 error = fs_fab_acl(vp, vsecattr, flag, cr, ct); 12606 return (error); 12607 } 12608 12609 /* 12610 * Update the cache with the ACL. 12611 */ 12612 nfs4_acl_fill_cache(rp, &gar.n4g_vsa); 12613 12614 error = nfs4_create_getsecattr_return(&gar.n4g_vsa, 12615 vsecattr, gar.n4g_va.va_uid, gar.n4g_va.va_gid, 12616 vp->v_type == VDIR); 12617 vs_ace4_destroy(&gar.n4g_vsa); 12618 if ((error) && (vsecattr->vsa_mask & 12619 (VSA_ACL | VSA_ACLCNT | VSA_DFACL | VSA_DFACLCNT)) && 12620 (error != EACCES)) { 12621 error = fs_fab_acl(vp, vsecattr, flag, cr, ct); 12622 } 12623 return (error); 12624 } 12625 error = fs_fab_acl(vp, vsecattr, flag, cr, ct); 12626 return (error); 12627 } 12628 12629 /* 12630 * The function returns: 12631 * - 0 (zero) if the passed in "acl_mask" is a valid request. 12632 * - EINVAL if the passed in "acl_mask" is an invalid request. 12633 * 12634 * In the case of getting an acl (op == NFS4_ACL_GET) the mask is invalid if: 12635 * - We have a mixture of ACE and ACL requests (e.g. VSA_ACL | VSA_ACE) 12636 * 12637 * In the case of setting an acl (op == NFS4_ACL_SET) the mask is invalid if: 12638 * - We have a mixture of ACE and ACL requests (e.g. VSA_ACL | VSA_ACE) 12639 * - We have a count field set without the corresponding acl field set. (e.g. - 12640 * VSA_ACECNT is set, but VSA_ACE is not) 12641 */ 12642 static int 12643 nfs4_is_acl_mask_valid(uint_t acl_mask, nfs4_acl_op_t op) 12644 { 12645 /* Shortcut the masks that are always valid. */ 12646 if (acl_mask == (VSA_ACE | VSA_ACECNT)) 12647 return (0); 12648 if (acl_mask == (VSA_ACL | VSA_ACLCNT | VSA_DFACL | VSA_DFACLCNT)) 12649 return (0); 12650 12651 if (acl_mask & (VSA_ACE | VSA_ACECNT)) { 12652 /* 12653 * We can't have any VSA_ACL type stuff in the mask now. 12654 */ 12655 if (acl_mask & (VSA_ACL | VSA_ACLCNT | VSA_DFACL | 12656 VSA_DFACLCNT)) 12657 return (EINVAL); 12658 12659 if (op == NFS4_ACL_SET) { 12660 if ((acl_mask & VSA_ACECNT) && !(acl_mask & VSA_ACE)) 12661 return (EINVAL); 12662 } 12663 } 12664 12665 if (acl_mask & (VSA_ACL | VSA_ACLCNT | VSA_DFACL | VSA_DFACLCNT)) { 12666 /* 12667 * We can't have any VSA_ACE type stuff in the mask now. 12668 */ 12669 if (acl_mask & (VSA_ACE | VSA_ACECNT)) 12670 return (EINVAL); 12671 12672 if (op == NFS4_ACL_SET) { 12673 if ((acl_mask & VSA_ACLCNT) && !(acl_mask & VSA_ACL)) 12674 return (EINVAL); 12675 12676 if ((acl_mask & VSA_DFACLCNT) && 12677 !(acl_mask & VSA_DFACL)) 12678 return (EINVAL); 12679 } 12680 } 12681 return (0); 12682 } 12683 12684 /* 12685 * The theory behind creating the correct getsecattr return is simply this: 12686 * "Don't return anything that the caller is not expecting to have to free." 12687 */ 12688 static int 12689 nfs4_create_getsecattr_return(vsecattr_t *filled_vsap, vsecattr_t *vsap, 12690 uid_t uid, gid_t gid, int isdir) 12691 { 12692 int error = 0; 12693 /* Save the mask since the translators modify it. */ 12694 uint_t orig_mask = vsap->vsa_mask; 12695 12696 if (orig_mask & (VSA_ACE | VSA_ACECNT)) { 12697 error = vs_ace4_to_acet(filled_vsap, vsap, uid, gid, FALSE); 12698 12699 if (error) 12700 return (error); 12701 12702 /* 12703 * If the caller only asked for the ace count (VSA_ACECNT) 12704 * don't give them the full acl (VSA_ACE), free it. 12705 */ 12706 if (!orig_mask & VSA_ACE) { 12707 if (vsap->vsa_aclentp != NULL) { 12708 kmem_free(vsap->vsa_aclentp, 12709 vsap->vsa_aclcnt * sizeof (ace_t)); 12710 vsap->vsa_aclentp = NULL; 12711 } 12712 } 12713 vsap->vsa_mask = orig_mask; 12714 12715 } else if (orig_mask & (VSA_ACL | VSA_ACLCNT | VSA_DFACL | 12716 VSA_DFACLCNT)) { 12717 error = vs_ace4_to_aent(filled_vsap, vsap, uid, gid, 12718 isdir, FALSE); 12719 12720 if (error) 12721 return (error); 12722 12723 /* 12724 * If the caller only asked for the acl count (VSA_ACLCNT) 12725 * and/or the default acl count (VSA_DFACLCNT) don't give them 12726 * the acl (VSA_ACL) or default acl (VSA_DFACL), free it. 12727 */ 12728 if (!orig_mask & VSA_ACL) { 12729 if (vsap->vsa_aclentp != NULL) { 12730 kmem_free(vsap->vsa_aclentp, 12731 vsap->vsa_aclcnt * sizeof (aclent_t)); 12732 vsap->vsa_aclentp = NULL; 12733 } 12734 } 12735 12736 if (!orig_mask & VSA_DFACL) { 12737 if (vsap->vsa_dfaclentp != NULL) { 12738 kmem_free(vsap->vsa_dfaclentp, 12739 vsap->vsa_dfaclcnt * sizeof (aclent_t)); 12740 vsap->vsa_dfaclentp = NULL; 12741 } 12742 } 12743 vsap->vsa_mask = orig_mask; 12744 } 12745 return (0); 12746 } 12747 12748 /* ARGSUSED */ 12749 int 12750 nfs4_shrlock(vnode_t *vp, int cmd, struct shrlock *shr, int flag, cred_t *cr, 12751 caller_context_t *ct) 12752 { 12753 int error; 12754 12755 if (nfs_zone() != VTOMI4(vp)->mi_zone) 12756 return (EIO); 12757 /* 12758 * check for valid cmd parameter 12759 */ 12760 if (cmd != F_SHARE && cmd != F_UNSHARE && cmd != F_HASREMOTELOCKS) 12761 return (EINVAL); 12762 12763 /* 12764 * Check access permissions 12765 */ 12766 if ((cmd & F_SHARE) && 12767 (((shr->s_access & F_RDACC) && (flag & FREAD) == 0) || 12768 (shr->s_access == F_WRACC && (flag & FWRITE) == 0))) 12769 return (EBADF); 12770 12771 /* 12772 * If the filesystem is mounted using local locking, pass the 12773 * request off to the local share code. 12774 */ 12775 if (VTOMI4(vp)->mi_flags & MI4_LLOCK) 12776 return (fs_shrlock(vp, cmd, shr, flag, cr, ct)); 12777 12778 switch (cmd) { 12779 case F_SHARE: 12780 case F_UNSHARE: 12781 /* 12782 * This will be properly implemented later, 12783 * see RFE: 4823948 . 12784 */ 12785 error = EAGAIN; 12786 break; 12787 12788 case F_HASREMOTELOCKS: 12789 /* 12790 * NFS client can't store remote locks itself 12791 */ 12792 shr->s_access = 0; 12793 error = 0; 12794 break; 12795 12796 default: 12797 error = EINVAL; 12798 break; 12799 } 12800 12801 return (error); 12802 } 12803 12804 /* 12805 * Common code called by directory ops to update the attrcache 12806 */ 12807 static int 12808 nfs4_update_attrcache(nfsstat4 status, nfs4_ga_res_t *garp, 12809 hrtime_t t, vnode_t *vp, cred_t *cr) 12810 { 12811 int error = 0; 12812 12813 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 12814 12815 if (status != NFS4_OK) { 12816 /* getattr not done or failed */ 12817 PURGE_ATTRCACHE4(vp); 12818 return (error); 12819 } 12820 12821 if (garp) { 12822 nfs4_attr_cache(vp, garp, t, cr, FALSE, NULL); 12823 } else { 12824 PURGE_ATTRCACHE4(vp); 12825 } 12826 return (error); 12827 } 12828 12829 /* 12830 * Update directory caches for directory modification ops (link, rename, etc.) 12831 * When dinfo is NULL, manage dircaches in the old way. 12832 */ 12833 static void 12834 nfs4_update_dircaches(change_info4 *cinfo, vnode_t *dvp, vnode_t *vp, char *nm, 12835 dirattr_info_t *dinfo) 12836 { 12837 rnode4_t *drp = VTOR4(dvp); 12838 12839 ASSERT(nfs_zone() == VTOMI4(dvp)->mi_zone); 12840 12841 /* Purge rddir cache for dir since it changed */ 12842 if (drp->r_dir != NULL) 12843 nfs4_purge_rddir_cache(dvp); 12844 12845 /* 12846 * If caller provided dinfo, then use it to manage dir caches. 12847 */ 12848 if (dinfo != NULL) { 12849 if (vp != NULL) { 12850 mutex_enter(&VTOR4(vp)->r_statev4_lock); 12851 if (!VTOR4(vp)->created_v4) { 12852 mutex_exit(&VTOR4(vp)->r_statev4_lock); 12853 dnlc_update(dvp, nm, vp); 12854 } else { 12855 /* 12856 * XXX don't update if the created_v4 flag is 12857 * set 12858 */ 12859 mutex_exit(&VTOR4(vp)->r_statev4_lock); 12860 NFS4_DEBUG(nfs4_client_state_debug, 12861 (CE_NOTE, "nfs4_update_dircaches: " 12862 "don't update dnlc: created_v4 flag")); 12863 } 12864 } 12865 12866 nfs4_attr_cache(dvp, dinfo->di_garp, dinfo->di_time_call, 12867 dinfo->di_cred, FALSE, cinfo); 12868 12869 return; 12870 } 12871 12872 /* 12873 * Caller didn't provide dinfo, then check change_info4 to update DNLC. 12874 * Since caller modified dir but didn't receive post-dirmod-op dir 12875 * attrs, the dir's attrs must be purged. 12876 * 12877 * XXX this check and dnlc update/purge should really be atomic, 12878 * XXX but can't use rnode statelock because it'll deadlock in 12879 * XXX dnlc_purge_vp, however, the risk is minimal even if a race 12880 * XXX does occur. 12881 * 12882 * XXX We also may want to check that atomic is true in the 12883 * XXX change_info struct. If it is not, the change_info may 12884 * XXX reflect changes by more than one clients which means that 12885 * XXX our cache may not be valid. 12886 */ 12887 PURGE_ATTRCACHE4(dvp); 12888 if (drp->r_change == cinfo->before) { 12889 /* no changes took place in the directory prior to our link */ 12890 if (vp != NULL) { 12891 mutex_enter(&VTOR4(vp)->r_statev4_lock); 12892 if (!VTOR4(vp)->created_v4) { 12893 mutex_exit(&VTOR4(vp)->r_statev4_lock); 12894 dnlc_update(dvp, nm, vp); 12895 } else { 12896 /* 12897 * XXX dont' update if the created_v4 flag 12898 * is set 12899 */ 12900 mutex_exit(&VTOR4(vp)->r_statev4_lock); 12901 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, 12902 "nfs4_update_dircaches: don't" 12903 " update dnlc: created_v4 flag")); 12904 } 12905 } 12906 } else { 12907 /* Another client modified directory - purge its dnlc cache */ 12908 dnlc_purge_vp(dvp); 12909 } 12910 } 12911 12912 /* 12913 * The OPEN_CONFIRM operation confirms the sequence number used in OPENing a 12914 * file. 12915 * 12916 * The 'reopening_file' boolean should be set to TRUE if we are reopening this 12917 * file (ie: client recovery) and otherwise set to FALSE. 12918 * 12919 * 'nfs4_start/end_op' should have been called by the proper (ie: not recovery 12920 * initiated) calling functions. 12921 * 12922 * 'resend' is set to TRUE if this is a OPEN_CONFIRM issued as a result 12923 * of resending a 'lost' open request. 12924 * 12925 * 'num_bseqid_retryp' makes sure we don't loop forever on a broken 12926 * server that hands out BAD_SEQID on open confirm. 12927 * 12928 * Errors are returned via the nfs4_error_t parameter. 12929 */ 12930 void 12931 nfs4open_confirm(vnode_t *vp, seqid4 *seqid, stateid4 *stateid, cred_t *cr, 12932 bool_t reopening_file, bool_t *retry_open, nfs4_open_owner_t *oop, 12933 bool_t resend, nfs4_error_t *ep, int *num_bseqid_retryp) 12934 { 12935 COMPOUND4args_clnt args; 12936 COMPOUND4res_clnt res; 12937 nfs_argop4 argop[2]; 12938 nfs_resop4 *resop; 12939 int doqueue = 1; 12940 mntinfo4_t *mi; 12941 OPEN_CONFIRM4args *open_confirm_args; 12942 int needrecov; 12943 12944 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 12945 #if DEBUG 12946 mutex_enter(&oop->oo_lock); 12947 ASSERT(oop->oo_seqid_inuse); 12948 mutex_exit(&oop->oo_lock); 12949 #endif 12950 12951 recov_retry_confirm: 12952 nfs4_error_zinit(ep); 12953 *retry_open = FALSE; 12954 12955 if (resend) 12956 args.ctag = TAG_OPEN_CONFIRM_LOST; 12957 else 12958 args.ctag = TAG_OPEN_CONFIRM; 12959 12960 args.array_len = 2; 12961 args.array = argop; 12962 12963 /* putfh target fh */ 12964 argop[0].argop = OP_CPUTFH; 12965 argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(vp)->r_fh; 12966 12967 argop[1].argop = OP_OPEN_CONFIRM; 12968 open_confirm_args = &argop[1].nfs_argop4_u.opopen_confirm; 12969 12970 (*seqid) += 1; 12971 open_confirm_args->seqid = *seqid; 12972 open_confirm_args->open_stateid = *stateid; 12973 12974 mi = VTOMI4(vp); 12975 12976 rfs4call(mi, &args, &res, cr, &doqueue, 0, ep); 12977 12978 if (!ep->error && nfs4_need_to_bump_seqid(&res)) { 12979 nfs4_set_open_seqid((*seqid), oop, args.ctag); 12980 } 12981 12982 needrecov = nfs4_needs_recovery(ep, FALSE, mi->mi_vfsp); 12983 if (!needrecov && ep->error) 12984 return; 12985 12986 if (needrecov) { 12987 bool_t abort = FALSE; 12988 12989 if (reopening_file == FALSE) { 12990 nfs4_bseqid_entry_t *bsep = NULL; 12991 12992 if (!ep->error && res.status == NFS4ERR_BAD_SEQID) 12993 bsep = nfs4_create_bseqid_entry(oop, NULL, 12994 vp, 0, args.ctag, 12995 open_confirm_args->seqid); 12996 12997 abort = nfs4_start_recovery(ep, VTOMI4(vp), vp, NULL, 12998 NULL, NULL, OP_OPEN_CONFIRM, bsep, NULL, NULL); 12999 if (bsep) { 13000 kmem_free(bsep, sizeof (*bsep)); 13001 if (num_bseqid_retryp && 13002 --(*num_bseqid_retryp) == 0) 13003 abort = TRUE; 13004 } 13005 } 13006 if ((ep->error == ETIMEDOUT || 13007 res.status == NFS4ERR_RESOURCE) && 13008 abort == FALSE && resend == FALSE) { 13009 if (!ep->error) 13010 (void) xdr_free(xdr_COMPOUND4res_clnt, 13011 (caddr_t)&res); 13012 13013 delay(SEC_TO_TICK(confirm_retry_sec)); 13014 goto recov_retry_confirm; 13015 } 13016 /* State may have changed so retry the entire OPEN op */ 13017 if (abort == FALSE) 13018 *retry_open = TRUE; 13019 else 13020 *retry_open = FALSE; 13021 if (!ep->error) 13022 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 13023 return; 13024 } 13025 13026 if (res.status) { 13027 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 13028 return; 13029 } 13030 13031 resop = &res.array[1]; /* open confirm res */ 13032 bcopy(&resop->nfs_resop4_u.opopen_confirm.open_stateid, 13033 stateid, sizeof (*stateid)); 13034 13035 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 13036 } 13037 13038 /* 13039 * Return the credentials associated with a client state object. The 13040 * caller is responsible for freeing the credentials. 13041 */ 13042 13043 static cred_t * 13044 state_to_cred(nfs4_open_stream_t *osp) 13045 { 13046 cred_t *cr; 13047 13048 /* 13049 * It's ok to not lock the open stream and open owner to get 13050 * the oo_cred since this is only written once (upon creation) 13051 * and will not change. 13052 */ 13053 cr = osp->os_open_owner->oo_cred; 13054 crhold(cr); 13055 13056 return (cr); 13057 } 13058 13059 /* 13060 * nfs4_find_sysid 13061 * 13062 * Find the sysid for the knetconfig associated with the given mi. 13063 */ 13064 static struct lm_sysid * 13065 nfs4_find_sysid(mntinfo4_t *mi) 13066 { 13067 ASSERT(nfs_zone() == mi->mi_zone); 13068 13069 /* 13070 * Switch from RDMA knconf to original mount knconf 13071 */ 13072 return (lm_get_sysid(ORIG_KNCONF(mi), &mi->mi_curr_serv->sv_addr, 13073 mi->mi_curr_serv->sv_hostname, NULL)); 13074 } 13075 13076 #ifdef DEBUG 13077 /* 13078 * Return a string version of the call type for easy reading. 13079 */ 13080 static char * 13081 nfs4frlock_get_call_type(nfs4_lock_call_type_t ctype) 13082 { 13083 switch (ctype) { 13084 case NFS4_LCK_CTYPE_NORM: 13085 return ("NORMAL"); 13086 case NFS4_LCK_CTYPE_RECLAIM: 13087 return ("RECLAIM"); 13088 case NFS4_LCK_CTYPE_RESEND: 13089 return ("RESEND"); 13090 case NFS4_LCK_CTYPE_REINSTATE: 13091 return ("REINSTATE"); 13092 default: 13093 cmn_err(CE_PANIC, "nfs4frlock_get_call_type: got illegal " 13094 "type %d", ctype); 13095 return (""); 13096 } 13097 } 13098 #endif 13099 13100 /* 13101 * Map the frlock cmd and lock type to the NFSv4 over-the-wire lock type 13102 * Unlock requests don't have an over-the-wire locktype, so we just return 13103 * something non-threatening. 13104 */ 13105 13106 static nfs_lock_type4 13107 flk_to_locktype(int cmd, int l_type) 13108 { 13109 ASSERT(l_type == F_RDLCK || l_type == F_WRLCK || l_type == F_UNLCK); 13110 13111 switch (l_type) { 13112 case F_UNLCK: 13113 return (READ_LT); 13114 case F_RDLCK: 13115 if (cmd == F_SETLK) 13116 return (READ_LT); 13117 else 13118 return (READW_LT); 13119 case F_WRLCK: 13120 if (cmd == F_SETLK) 13121 return (WRITE_LT); 13122 else 13123 return (WRITEW_LT); 13124 } 13125 panic("flk_to_locktype"); 13126 /*NOTREACHED*/ 13127 } 13128 13129 /* 13130 * Set the flock64's lm_sysid for nfs4frlock. 13131 */ 13132 static int 13133 nfs4frlock_get_sysid(struct lm_sysid **lspp, vnode_t *vp, flock64_t *flk) 13134 { 13135 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 13136 13137 /* Find the lm_sysid */ 13138 *lspp = nfs4_find_sysid(VTOMI4(vp)); 13139 13140 if (*lspp == NULL) { 13141 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 13142 "nfs4frlock_get_sysid: no sysid, return ENOLCK")); 13143 return (ENOLCK); 13144 } 13145 13146 flk->l_sysid = lm_sysidt(*lspp); 13147 13148 return (0); 13149 } 13150 13151 /* 13152 * Do the remaining preliminary setup for nfs4frlock. 13153 */ 13154 static void 13155 nfs4frlock_pre_setup(clock_t *tick_delayp, nfs4_recov_state_t *recov_statep, 13156 vnode_t *vp, cred_t *search_cr, cred_t **cred_otw) 13157 { 13158 /* 13159 * set tick_delay to the base delay time. 13160 * (nfs4_base_wait_time is in msecs) 13161 */ 13162 13163 *tick_delayp = drv_usectohz(nfs4_base_wait_time * 1000); 13164 13165 recov_statep->rs_flags = 0; 13166 recov_statep->rs_num_retry_despite_err = 0; 13167 *cred_otw = nfs4_get_otw_cred(search_cr, VTOMI4(vp), NULL); 13168 } 13169 13170 /* 13171 * Initialize and allocate the data structures necessary for 13172 * the nfs4frlock call. 13173 * Allocates argsp's op array, frees up the saved_rqstpp if there is one. 13174 */ 13175 static void 13176 nfs4frlock_call_init(COMPOUND4args_clnt *argsp, COMPOUND4args_clnt **argspp, 13177 nfs_argop4 **argopp, nfs4_op_hint_t *op_hintp, flock64_t *flk, int cmd, 13178 bool_t *retry, bool_t *did_start_fop, COMPOUND4res_clnt **respp, 13179 bool_t *skip_get_err, nfs4_lost_rqst_t *lost_rqstp) 13180 { 13181 int argoplist_size; 13182 int num_ops = 2; 13183 13184 *retry = FALSE; 13185 *did_start_fop = FALSE; 13186 *skip_get_err = FALSE; 13187 lost_rqstp->lr_op = 0; 13188 argoplist_size = num_ops * sizeof (nfs_argop4); 13189 /* fill array with zero */ 13190 *argopp = kmem_zalloc(argoplist_size, KM_SLEEP); 13191 13192 *argspp = argsp; 13193 *respp = NULL; 13194 13195 argsp->array_len = num_ops; 13196 argsp->array = *argopp; 13197 13198 /* initialize in case of error; will get real value down below */ 13199 argsp->ctag = TAG_NONE; 13200 13201 if ((cmd == F_SETLK || cmd == F_SETLKW) && flk->l_type == F_UNLCK) 13202 *op_hintp = OH_LOCKU; 13203 else 13204 *op_hintp = OH_OTHER; 13205 } 13206 13207 /* 13208 * Call the nfs4_start_fop() for nfs4frlock, if necessary. Assign 13209 * the proper nfs4_server_t for this instance of nfs4frlock. 13210 * Returns 0 (success) or an errno value. 13211 */ 13212 static int 13213 nfs4frlock_start_call(nfs4_lock_call_type_t ctype, vnode_t *vp, 13214 nfs4_op_hint_t op_hint, nfs4_recov_state_t *recov_statep, 13215 bool_t *did_start_fop, bool_t *startrecovp) 13216 { 13217 int error = 0; 13218 rnode4_t *rp; 13219 13220 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 13221 13222 if (ctype == NFS4_LCK_CTYPE_NORM) { 13223 error = nfs4_start_fop(VTOMI4(vp), vp, NULL, op_hint, 13224 recov_statep, startrecovp); 13225 if (error) 13226 return (error); 13227 *did_start_fop = TRUE; 13228 } else { 13229 *did_start_fop = FALSE; 13230 *startrecovp = FALSE; 13231 } 13232 13233 if (!error) { 13234 rp = VTOR4(vp); 13235 13236 /* If the file failed recovery, just quit. */ 13237 mutex_enter(&rp->r_statelock); 13238 if (rp->r_flags & R4RECOVERR) { 13239 error = EIO; 13240 } 13241 mutex_exit(&rp->r_statelock); 13242 } 13243 13244 return (error); 13245 } 13246 13247 /* 13248 * Setup the LOCK4/LOCKU4 arguments for resending a lost lock request. A 13249 * resend nfs4frlock call is initiated by the recovery framework. 13250 * Acquires the lop and oop seqid synchronization. 13251 */ 13252 static void 13253 nfs4frlock_setup_resend_lock_args(nfs4_lost_rqst_t *resend_rqstp, 13254 COMPOUND4args_clnt *argsp, nfs_argop4 *argop, nfs4_lock_owner_t **lopp, 13255 nfs4_open_owner_t **oopp, nfs4_open_stream_t **ospp, 13256 LOCK4args **lock_argsp, LOCKU4args **locku_argsp) 13257 { 13258 mntinfo4_t *mi = VTOMI4(resend_rqstp->lr_vp); 13259 int error; 13260 13261 NFS4_DEBUG((nfs4_lost_rqst_debug || nfs4_client_lock_debug), 13262 (CE_NOTE, 13263 "nfs4frlock_setup_resend_lock_args: have lost lock to resend")); 13264 ASSERT(resend_rqstp != NULL); 13265 ASSERT(resend_rqstp->lr_op == OP_LOCK || 13266 resend_rqstp->lr_op == OP_LOCKU); 13267 13268 *oopp = resend_rqstp->lr_oop; 13269 if (resend_rqstp->lr_oop) { 13270 open_owner_hold(resend_rqstp->lr_oop); 13271 error = nfs4_start_open_seqid_sync(resend_rqstp->lr_oop, mi); 13272 ASSERT(error == 0); /* recov thread always succeeds */ 13273 } 13274 13275 /* Must resend this lost lock/locku request. */ 13276 ASSERT(resend_rqstp->lr_lop != NULL); 13277 *lopp = resend_rqstp->lr_lop; 13278 lock_owner_hold(resend_rqstp->lr_lop); 13279 error = nfs4_start_lock_seqid_sync(resend_rqstp->lr_lop, mi); 13280 ASSERT(error == 0); /* recov thread always succeeds */ 13281 13282 *ospp = resend_rqstp->lr_osp; 13283 if (*ospp) 13284 open_stream_hold(resend_rqstp->lr_osp); 13285 13286 if (resend_rqstp->lr_op == OP_LOCK) { 13287 LOCK4args *lock_args; 13288 13289 argop->argop = OP_LOCK; 13290 *lock_argsp = lock_args = &argop->nfs_argop4_u.oplock; 13291 lock_args->locktype = resend_rqstp->lr_locktype; 13292 lock_args->reclaim = 13293 (resend_rqstp->lr_ctype == NFS4_LCK_CTYPE_RECLAIM); 13294 lock_args->offset = resend_rqstp->lr_flk->l_start; 13295 lock_args->length = resend_rqstp->lr_flk->l_len; 13296 if (lock_args->length == 0) 13297 lock_args->length = ~lock_args->length; 13298 nfs4_setup_lock_args(*lopp, *oopp, *ospp, 13299 mi2clientid(mi), &lock_args->locker); 13300 13301 switch (resend_rqstp->lr_ctype) { 13302 case NFS4_LCK_CTYPE_RESEND: 13303 argsp->ctag = TAG_LOCK_RESEND; 13304 break; 13305 case NFS4_LCK_CTYPE_REINSTATE: 13306 argsp->ctag = TAG_LOCK_REINSTATE; 13307 break; 13308 case NFS4_LCK_CTYPE_RECLAIM: 13309 argsp->ctag = TAG_LOCK_RECLAIM; 13310 break; 13311 default: 13312 argsp->ctag = TAG_LOCK_UNKNOWN; 13313 break; 13314 } 13315 } else { 13316 LOCKU4args *locku_args; 13317 nfs4_lock_owner_t *lop = resend_rqstp->lr_lop; 13318 13319 argop->argop = OP_LOCKU; 13320 *locku_argsp = locku_args = &argop->nfs_argop4_u.oplocku; 13321 locku_args->locktype = READ_LT; 13322 locku_args->seqid = lop->lock_seqid + 1; 13323 mutex_enter(&lop->lo_lock); 13324 locku_args->lock_stateid = lop->lock_stateid; 13325 mutex_exit(&lop->lo_lock); 13326 locku_args->offset = resend_rqstp->lr_flk->l_start; 13327 locku_args->length = resend_rqstp->lr_flk->l_len; 13328 if (locku_args->length == 0) 13329 locku_args->length = ~locku_args->length; 13330 13331 switch (resend_rqstp->lr_ctype) { 13332 case NFS4_LCK_CTYPE_RESEND: 13333 argsp->ctag = TAG_LOCKU_RESEND; 13334 break; 13335 case NFS4_LCK_CTYPE_REINSTATE: 13336 argsp->ctag = TAG_LOCKU_REINSTATE; 13337 break; 13338 default: 13339 argsp->ctag = TAG_LOCK_UNKNOWN; 13340 break; 13341 } 13342 } 13343 } 13344 13345 /* 13346 * Setup the LOCKT4 arguments. 13347 */ 13348 static void 13349 nfs4frlock_setup_lockt_args(nfs_argop4 *argop, LOCKT4args **lockt_argsp, 13350 COMPOUND4args_clnt *argsp, flock64_t *flk, rnode4_t *rp) 13351 { 13352 LOCKT4args *lockt_args; 13353 13354 ASSERT(nfs_zone() == VTOMI4(RTOV4(rp))->mi_zone); 13355 argop->argop = OP_LOCKT; 13356 argsp->ctag = TAG_LOCKT; 13357 lockt_args = &argop->nfs_argop4_u.oplockt; 13358 13359 /* 13360 * The locktype will be READ_LT unless it's 13361 * a write lock. We do this because the Solaris 13362 * system call allows the combination of 13363 * F_UNLCK and F_GETLK* and so in that case the 13364 * unlock is mapped to a read. 13365 */ 13366 if (flk->l_type == F_WRLCK) 13367 lockt_args->locktype = WRITE_LT; 13368 else 13369 lockt_args->locktype = READ_LT; 13370 13371 lockt_args->owner.clientid = mi2clientid(VTOMI4(RTOV4(rp))); 13372 /* set the lock owner4 args */ 13373 nfs4_setlockowner_args(&lockt_args->owner, rp, flk->l_pid); 13374 lockt_args->offset = flk->l_start; 13375 lockt_args->length = flk->l_len; 13376 if (flk->l_len == 0) 13377 lockt_args->length = ~lockt_args->length; 13378 13379 *lockt_argsp = lockt_args; 13380 } 13381 13382 /* 13383 * If the client is holding a delegation, and the open stream to be used 13384 * with this lock request is a delegation open stream, then re-open the stream. 13385 * Sets the nfs4_error_t to all zeros unless the open stream has already 13386 * failed a reopen or we couldn't find the open stream. NFS4ERR_DELAY 13387 * means the caller should retry (like a recovery retry). 13388 */ 13389 static void 13390 nfs4frlock_check_deleg(vnode_t *vp, nfs4_error_t *ep, cred_t *cr, int lt) 13391 { 13392 open_delegation_type4 dt; 13393 bool_t reopen_needed, force; 13394 nfs4_open_stream_t *osp; 13395 open_claim_type4 oclaim; 13396 rnode4_t *rp = VTOR4(vp); 13397 mntinfo4_t *mi = VTOMI4(vp); 13398 13399 ASSERT(nfs_zone() == mi->mi_zone); 13400 13401 nfs4_error_zinit(ep); 13402 13403 mutex_enter(&rp->r_statev4_lock); 13404 dt = rp->r_deleg_type; 13405 mutex_exit(&rp->r_statev4_lock); 13406 13407 if (dt != OPEN_DELEGATE_NONE) { 13408 nfs4_open_owner_t *oop; 13409 13410 oop = find_open_owner(cr, NFS4_PERM_CREATED, mi); 13411 if (!oop) { 13412 ep->stat = NFS4ERR_IO; 13413 return; 13414 } 13415 /* returns with 'os_sync_lock' held */ 13416 osp = find_open_stream(oop, rp); 13417 if (!osp) { 13418 open_owner_rele(oop); 13419 ep->stat = NFS4ERR_IO; 13420 return; 13421 } 13422 13423 if (osp->os_failed_reopen) { 13424 NFS4_DEBUG((nfs4_open_stream_debug || 13425 nfs4_client_lock_debug), (CE_NOTE, 13426 "nfs4frlock_check_deleg: os_failed_reopen set " 13427 "for osp %p, cr %p, rp %s", (void *)osp, 13428 (void *)cr, rnode4info(rp))); 13429 mutex_exit(&osp->os_sync_lock); 13430 open_stream_rele(osp, rp); 13431 open_owner_rele(oop); 13432 ep->stat = NFS4ERR_IO; 13433 return; 13434 } 13435 13436 /* 13437 * Determine whether a reopen is needed. If this 13438 * is a delegation open stream, then send the open 13439 * to the server to give visibility to the open owner. 13440 * Even if it isn't a delegation open stream, we need 13441 * to check if the previous open CLAIM_DELEGATE_CUR 13442 * was sufficient. 13443 */ 13444 13445 reopen_needed = osp->os_delegation || 13446 ((lt == F_RDLCK && 13447 !(osp->os_dc_openacc & OPEN4_SHARE_ACCESS_READ)) || 13448 (lt == F_WRLCK && 13449 !(osp->os_dc_openacc & OPEN4_SHARE_ACCESS_WRITE))); 13450 13451 mutex_exit(&osp->os_sync_lock); 13452 open_owner_rele(oop); 13453 13454 if (reopen_needed) { 13455 /* 13456 * Always use CLAIM_PREVIOUS after server reboot. 13457 * The server will reject CLAIM_DELEGATE_CUR if 13458 * it is used during the grace period. 13459 */ 13460 mutex_enter(&mi->mi_lock); 13461 if (mi->mi_recovflags & MI4R_SRV_REBOOT) { 13462 oclaim = CLAIM_PREVIOUS; 13463 force = TRUE; 13464 } else { 13465 oclaim = CLAIM_DELEGATE_CUR; 13466 force = FALSE; 13467 } 13468 mutex_exit(&mi->mi_lock); 13469 13470 nfs4_reopen(vp, osp, ep, oclaim, force, FALSE); 13471 if (ep->error == EAGAIN) { 13472 nfs4_error_zinit(ep); 13473 ep->stat = NFS4ERR_DELAY; 13474 } 13475 } 13476 open_stream_rele(osp, rp); 13477 osp = NULL; 13478 } 13479 } 13480 13481 /* 13482 * Setup the LOCKU4 arguments. 13483 * Returns errors via the nfs4_error_t. 13484 * NFS4_OK no problems. *go_otwp is TRUE if call should go 13485 * over-the-wire. The caller must release the 13486 * reference on *lopp. 13487 * NFS4ERR_DELAY caller should retry (like recovery retry) 13488 * (other) unrecoverable error. 13489 */ 13490 static void 13491 nfs4frlock_setup_locku_args(nfs4_lock_call_type_t ctype, nfs_argop4 *argop, 13492 LOCKU4args **locku_argsp, flock64_t *flk, 13493 nfs4_lock_owner_t **lopp, nfs4_error_t *ep, COMPOUND4args_clnt *argsp, 13494 vnode_t *vp, cred_t *cr, bool_t *skip_get_err, bool_t *go_otwp) 13495 { 13496 nfs4_lock_owner_t *lop = NULL; 13497 LOCKU4args *locku_args; 13498 pid_t pid = flk->l_pid; 13499 bool_t is_spec = FALSE; 13500 rnode4_t *rp = VTOR4(vp); 13501 13502 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 13503 ASSERT(ctype == NFS4_LCK_CTYPE_NORM); 13504 13505 nfs4frlock_check_deleg(vp, ep, cr, F_UNLCK); 13506 if (ep->error || ep->stat) 13507 return; 13508 13509 argop->argop = OP_LOCKU; 13510 if (ctype == NFS4_LCK_CTYPE_REINSTATE) 13511 argsp->ctag = TAG_LOCKU_REINSTATE; 13512 else 13513 argsp->ctag = TAG_LOCKU; 13514 locku_args = &argop->nfs_argop4_u.oplocku; 13515 *locku_argsp = locku_args; 13516 13517 /* 13518 * XXX what should locku_args->locktype be? 13519 * setting to ALWAYS be READ_LT so at least 13520 * it is a valid locktype. 13521 */ 13522 13523 locku_args->locktype = READ_LT; 13524 13525 /* 13526 * Get the lock owner stateid. If no lock owner 13527 * exists, return success. 13528 */ 13529 lop = find_lock_owner(rp, pid, LOWN_ANY); 13530 *lopp = lop; 13531 if (lop && CLNT_ISSPECIAL(&lop->lock_stateid)) 13532 is_spec = TRUE; 13533 if (!lop || is_spec) { 13534 /* 13535 * No lock owner so no locks to unlock. 13536 * Return success. 13537 * 13538 * If the lockowner is using a special stateid, 13539 * then the original lock request (that created 13540 * this lockowner) was never successful, so we 13541 * have no lock to undo OTW. 13542 */ 13543 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 13544 "nfs4frlock_setup_locku_args: LOCKU: no lock owner " 13545 "(%ld) so return success", (long)pid)); 13546 13547 /* 13548 * Release our hold and NULL out so final_cleanup 13549 * doesn't try to end a lock seqid sync we 13550 * never started. 13551 */ 13552 if (is_spec) { 13553 lock_owner_rele(lop); 13554 *lopp = NULL; 13555 } 13556 *skip_get_err = TRUE; 13557 *go_otwp = FALSE; 13558 return; 13559 } 13560 13561 ep->error = nfs4_start_lock_seqid_sync(lop, VTOMI4(vp)); 13562 if (ep->error == EAGAIN) { 13563 lock_owner_rele(lop); 13564 *lopp = NULL; 13565 return; 13566 } 13567 13568 mutex_enter(&lop->lo_lock); 13569 locku_args->lock_stateid = lop->lock_stateid; 13570 mutex_exit(&lop->lo_lock); 13571 locku_args->seqid = lop->lock_seqid + 1; 13572 13573 /* leave the ref count on lop, rele after RPC call */ 13574 13575 locku_args->offset = flk->l_start; 13576 locku_args->length = flk->l_len; 13577 if (flk->l_len == 0) 13578 locku_args->length = ~locku_args->length; 13579 13580 *go_otwp = TRUE; 13581 } 13582 13583 /* 13584 * Setup the LOCK4 arguments. 13585 * 13586 * Returns errors via the nfs4_error_t. 13587 * NFS4_OK no problems 13588 * NFS4ERR_DELAY caller should retry (like recovery retry) 13589 * (other) unrecoverable error 13590 */ 13591 static void 13592 nfs4frlock_setup_lock_args(nfs4_lock_call_type_t ctype, LOCK4args **lock_argsp, 13593 nfs4_open_owner_t **oopp, nfs4_open_stream_t **ospp, 13594 nfs4_lock_owner_t **lopp, nfs_argop4 *argop, COMPOUND4args_clnt *argsp, 13595 flock64_t *flk, int cmd, vnode_t *vp, cred_t *cr, nfs4_error_t *ep) 13596 { 13597 LOCK4args *lock_args; 13598 nfs4_open_owner_t *oop = NULL; 13599 nfs4_open_stream_t *osp = NULL; 13600 nfs4_lock_owner_t *lop = NULL; 13601 pid_t pid = flk->l_pid; 13602 rnode4_t *rp = VTOR4(vp); 13603 13604 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 13605 13606 nfs4frlock_check_deleg(vp, ep, cr, flk->l_type); 13607 if (ep->error || ep->stat != NFS4_OK) 13608 return; 13609 13610 argop->argop = OP_LOCK; 13611 if (ctype == NFS4_LCK_CTYPE_NORM) 13612 argsp->ctag = TAG_LOCK; 13613 else if (ctype == NFS4_LCK_CTYPE_RECLAIM) 13614 argsp->ctag = TAG_RELOCK; 13615 else 13616 argsp->ctag = TAG_LOCK_REINSTATE; 13617 lock_args = &argop->nfs_argop4_u.oplock; 13618 lock_args->locktype = flk_to_locktype(cmd, flk->l_type); 13619 lock_args->reclaim = ctype == NFS4_LCK_CTYPE_RECLAIM ? 1 : 0; 13620 /* 13621 * Get the lock owner. If no lock owner exists, 13622 * create a 'temporary' one and grab the open seqid 13623 * synchronization (which puts a hold on the open 13624 * owner and open stream). 13625 * This also grabs the lock seqid synchronization. 13626 */ 13627 ep->stat = 13628 nfs4_find_or_create_lock_owner(pid, rp, cr, &oop, &osp, &lop); 13629 13630 if (ep->stat != NFS4_OK) 13631 goto out; 13632 13633 nfs4_setup_lock_args(lop, oop, osp, mi2clientid(VTOMI4(vp)), 13634 &lock_args->locker); 13635 13636 lock_args->offset = flk->l_start; 13637 lock_args->length = flk->l_len; 13638 if (flk->l_len == 0) 13639 lock_args->length = ~lock_args->length; 13640 *lock_argsp = lock_args; 13641 out: 13642 *oopp = oop; 13643 *ospp = osp; 13644 *lopp = lop; 13645 } 13646 13647 /* 13648 * After we get the reply from the server, record the proper information 13649 * for possible resend lock requests. 13650 * 13651 * Allocates memory for the saved_rqstp if we have a lost lock to save. 13652 */ 13653 static void 13654 nfs4frlock_save_lost_rqst(nfs4_lock_call_type_t ctype, int error, 13655 nfs_lock_type4 locktype, nfs4_open_owner_t *oop, 13656 nfs4_open_stream_t *osp, nfs4_lock_owner_t *lop, flock64_t *flk, 13657 nfs4_lost_rqst_t *lost_rqstp, cred_t *cr, vnode_t *vp) 13658 { 13659 bool_t unlock = (flk->l_type == F_UNLCK); 13660 13661 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 13662 ASSERT(ctype == NFS4_LCK_CTYPE_NORM || 13663 ctype == NFS4_LCK_CTYPE_REINSTATE); 13664 13665 if (error != 0 && !unlock) { 13666 NFS4_DEBUG((nfs4_lost_rqst_debug || 13667 nfs4_client_lock_debug), (CE_NOTE, 13668 "nfs4frlock_save_lost_rqst: set lo_pending_rqsts to 1 " 13669 " for lop %p", (void *)lop)); 13670 ASSERT(lop != NULL); 13671 mutex_enter(&lop->lo_lock); 13672 lop->lo_pending_rqsts = 1; 13673 mutex_exit(&lop->lo_lock); 13674 } 13675 13676 lost_rqstp->lr_putfirst = FALSE; 13677 lost_rqstp->lr_op = 0; 13678 13679 /* 13680 * For lock/locku requests, we treat EINTR as ETIMEDOUT for 13681 * recovery purposes so that the lock request that was sent 13682 * can be saved and re-issued later. Ditto for EIO from a forced 13683 * unmount. This is done to have the client's local locking state 13684 * match the v4 server's state; that is, the request was 13685 * potentially received and accepted by the server but the client 13686 * thinks it was not. 13687 */ 13688 if (error == ETIMEDOUT || error == EINTR || 13689 NFS4_FRC_UNMT_ERR(error, vp->v_vfsp)) { 13690 NFS4_DEBUG((nfs4_lost_rqst_debug || 13691 nfs4_client_lock_debug), (CE_NOTE, 13692 "nfs4frlock_save_lost_rqst: got a lost %s lock for " 13693 "lop %p oop %p osp %p", unlock ? "LOCKU" : "LOCK", 13694 (void *)lop, (void *)oop, (void *)osp)); 13695 if (unlock) 13696 lost_rqstp->lr_op = OP_LOCKU; 13697 else { 13698 lost_rqstp->lr_op = OP_LOCK; 13699 lost_rqstp->lr_locktype = locktype; 13700 } 13701 /* 13702 * Objects are held and rele'd via the recovery code. 13703 * See nfs4_save_lost_rqst. 13704 */ 13705 lost_rqstp->lr_vp = vp; 13706 lost_rqstp->lr_dvp = NULL; 13707 lost_rqstp->lr_oop = oop; 13708 lost_rqstp->lr_osp = osp; 13709 lost_rqstp->lr_lop = lop; 13710 lost_rqstp->lr_cr = cr; 13711 switch (ctype) { 13712 case NFS4_LCK_CTYPE_NORM: 13713 lost_rqstp->lr_ctype = NFS4_LCK_CTYPE_RESEND; 13714 break; 13715 case NFS4_LCK_CTYPE_REINSTATE: 13716 lost_rqstp->lr_putfirst = TRUE; 13717 lost_rqstp->lr_ctype = ctype; 13718 break; 13719 default: 13720 break; 13721 } 13722 lost_rqstp->lr_flk = flk; 13723 } 13724 } 13725 13726 /* 13727 * Update lop's seqid. Also update the seqid stored in a resend request, 13728 * if any. (Some recovery errors increment the seqid, and we may have to 13729 * send the resend request again.) 13730 */ 13731 13732 static void 13733 nfs4frlock_bump_seqid(LOCK4args *lock_args, LOCKU4args *locku_args, 13734 nfs4_open_owner_t *oop, nfs4_lock_owner_t *lop, nfs4_tag_type_t tag_type) 13735 { 13736 if (lock_args) { 13737 if (lock_args->locker.new_lock_owner == TRUE) 13738 nfs4_get_and_set_next_open_seqid(oop, tag_type); 13739 else { 13740 ASSERT(lop->lo_flags & NFS4_LOCK_SEQID_INUSE); 13741 nfs4_set_lock_seqid(lop->lock_seqid + 1, lop); 13742 } 13743 } else if (locku_args) { 13744 ASSERT(lop->lo_flags & NFS4_LOCK_SEQID_INUSE); 13745 nfs4_set_lock_seqid(lop->lock_seqid +1, lop); 13746 } 13747 } 13748 13749 /* 13750 * Calls nfs4_end_fop, drops the seqid syncs, and frees up the 13751 * COMPOUND4 args/res for calls that need to retry. 13752 * Switches the *cred_otwp to base_cr. 13753 */ 13754 static void 13755 nfs4frlock_check_access(vnode_t *vp, nfs4_op_hint_t op_hint, 13756 nfs4_recov_state_t *recov_statep, int needrecov, bool_t *did_start_fop, 13757 COMPOUND4args_clnt **argspp, COMPOUND4res_clnt **respp, int error, 13758 nfs4_lock_owner_t **lopp, nfs4_open_owner_t **oopp, 13759 nfs4_open_stream_t **ospp, cred_t *base_cr, cred_t **cred_otwp) 13760 { 13761 nfs4_open_owner_t *oop = *oopp; 13762 nfs4_open_stream_t *osp = *ospp; 13763 nfs4_lock_owner_t *lop = *lopp; 13764 nfs_argop4 *argop = (*argspp)->array; 13765 13766 if (*did_start_fop) { 13767 nfs4_end_fop(VTOMI4(vp), vp, NULL, op_hint, recov_statep, 13768 needrecov); 13769 *did_start_fop = FALSE; 13770 } 13771 ASSERT((*argspp)->array_len == 2); 13772 if (argop[1].argop == OP_LOCK) 13773 nfs4args_lock_free(&argop[1]); 13774 else if (argop[1].argop == OP_LOCKT) 13775 nfs4args_lockt_free(&argop[1]); 13776 kmem_free(argop, 2 * sizeof (nfs_argop4)); 13777 if (!error) 13778 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)*respp); 13779 *argspp = NULL; 13780 *respp = NULL; 13781 13782 if (lop) { 13783 nfs4_end_lock_seqid_sync(lop); 13784 lock_owner_rele(lop); 13785 *lopp = NULL; 13786 } 13787 13788 /* need to free up the reference on osp for lock args */ 13789 if (osp != NULL) { 13790 open_stream_rele(osp, VTOR4(vp)); 13791 *ospp = NULL; 13792 } 13793 13794 /* need to free up the reference on oop for lock args */ 13795 if (oop != NULL) { 13796 nfs4_end_open_seqid_sync(oop); 13797 open_owner_rele(oop); 13798 *oopp = NULL; 13799 } 13800 13801 crfree(*cred_otwp); 13802 *cred_otwp = base_cr; 13803 crhold(*cred_otwp); 13804 } 13805 13806 /* 13807 * Function to process the client's recovery for nfs4frlock. 13808 * Returns TRUE if we should retry the lock request; FALSE otherwise. 13809 * 13810 * Calls nfs4_end_fop, drops the seqid syncs, and frees up the 13811 * COMPOUND4 args/res for calls that need to retry. 13812 * 13813 * Note: the rp's r_lkserlock is *not* dropped during this path. 13814 */ 13815 static bool_t 13816 nfs4frlock_recovery(int needrecov, nfs4_error_t *ep, 13817 COMPOUND4args_clnt **argspp, COMPOUND4res_clnt **respp, 13818 LOCK4args *lock_args, LOCKU4args *locku_args, 13819 nfs4_open_owner_t **oopp, nfs4_open_stream_t **ospp, 13820 nfs4_lock_owner_t **lopp, rnode4_t *rp, vnode_t *vp, 13821 nfs4_recov_state_t *recov_statep, nfs4_op_hint_t op_hint, 13822 bool_t *did_start_fop, nfs4_lost_rqst_t *lost_rqstp, flock64_t *flk) 13823 { 13824 nfs4_open_owner_t *oop = *oopp; 13825 nfs4_open_stream_t *osp = *ospp; 13826 nfs4_lock_owner_t *lop = *lopp; 13827 13828 bool_t abort, retry; 13829 13830 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 13831 ASSERT((*argspp) != NULL); 13832 ASSERT((*respp) != NULL); 13833 if (lock_args || locku_args) 13834 ASSERT(lop != NULL); 13835 13836 NFS4_DEBUG((nfs4_client_lock_debug || nfs4_client_recov_debug), 13837 (CE_NOTE, "nfs4frlock_recovery: initiating recovery\n")); 13838 13839 retry = TRUE; 13840 abort = FALSE; 13841 if (needrecov) { 13842 nfs4_bseqid_entry_t *bsep = NULL; 13843 nfs_opnum4 op; 13844 13845 op = lock_args ? OP_LOCK : locku_args ? OP_LOCKU : OP_LOCKT; 13846 13847 if (!ep->error && ep->stat == NFS4ERR_BAD_SEQID) { 13848 seqid4 seqid; 13849 13850 if (lock_args) { 13851 if (lock_args->locker.new_lock_owner == TRUE) 13852 seqid = lock_args->locker.locker4_u. 13853 open_owner.open_seqid; 13854 else 13855 seqid = lock_args->locker.locker4_u. 13856 lock_owner.lock_seqid; 13857 } else if (locku_args) { 13858 seqid = locku_args->seqid; 13859 } else { 13860 seqid = 0; 13861 } 13862 13863 bsep = nfs4_create_bseqid_entry(oop, lop, vp, 13864 flk->l_pid, (*argspp)->ctag, seqid); 13865 } 13866 13867 abort = nfs4_start_recovery(ep, VTOMI4(vp), vp, NULL, NULL, 13868 (lost_rqstp && (lost_rqstp->lr_op == OP_LOCK || 13869 lost_rqstp->lr_op == OP_LOCKU)) ? lost_rqstp : 13870 NULL, op, bsep, NULL, NULL); 13871 13872 if (bsep) 13873 kmem_free(bsep, sizeof (*bsep)); 13874 } 13875 13876 /* 13877 * Return that we do not want to retry the request for 3 cases: 13878 * 1. If we received EINTR or are bailing out because of a forced 13879 * unmount, we came into this code path just for the sake of 13880 * initiating recovery, we now need to return the error. 13881 * 2. If we have aborted recovery. 13882 * 3. We received NFS4ERR_BAD_SEQID. 13883 */ 13884 if (ep->error == EINTR || NFS4_FRC_UNMT_ERR(ep->error, vp->v_vfsp) || 13885 abort == TRUE || (ep->error == 0 && ep->stat == NFS4ERR_BAD_SEQID)) 13886 retry = FALSE; 13887 13888 if (*did_start_fop == TRUE) { 13889 nfs4_end_fop(VTOMI4(vp), vp, NULL, op_hint, recov_statep, 13890 needrecov); 13891 *did_start_fop = FALSE; 13892 } 13893 13894 if (retry == TRUE) { 13895 nfs_argop4 *argop; 13896 13897 argop = (*argspp)->array; 13898 ASSERT((*argspp)->array_len == 2); 13899 13900 if (argop[1].argop == OP_LOCK) 13901 nfs4args_lock_free(&argop[1]); 13902 else if (argop[1].argop == OP_LOCKT) 13903 nfs4args_lockt_free(&argop[1]); 13904 kmem_free(argop, 2 * sizeof (nfs_argop4)); 13905 if (!ep->error) 13906 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)*respp); 13907 *respp = NULL; 13908 *argspp = NULL; 13909 } 13910 13911 if (lop != NULL) { 13912 nfs4_end_lock_seqid_sync(lop); 13913 lock_owner_rele(lop); 13914 } 13915 13916 *lopp = NULL; 13917 13918 /* need to free up the reference on osp for lock args */ 13919 if (osp != NULL) { 13920 open_stream_rele(osp, rp); 13921 *ospp = NULL; 13922 } 13923 13924 /* need to free up the reference on oop for lock args */ 13925 if (oop != NULL) { 13926 nfs4_end_open_seqid_sync(oop); 13927 open_owner_rele(oop); 13928 *oopp = NULL; 13929 } 13930 13931 return (retry); 13932 } 13933 13934 /* 13935 * Handle the DENIED reply from the server for nfs4frlock. 13936 * Returns TRUE if we should retry the request; FALSE otherwise. 13937 * 13938 * Calls nfs4_end_fop, drops the seqid syncs, and frees up the 13939 * COMPOUND4 args/res for calls that need to retry. Can also 13940 * drop and regrab the r_lkserlock. 13941 */ 13942 static bool_t 13943 nfs4frlock_results_denied(nfs4_lock_call_type_t ctype, LOCK4args *lock_args, 13944 LOCKT4args *lockt_args, nfs4_open_owner_t **oopp, 13945 nfs4_open_stream_t **ospp, nfs4_lock_owner_t **lopp, int cmd, 13946 vnode_t *vp, flock64_t *flk, nfs4_op_hint_t op_hint, 13947 nfs4_recov_state_t *recov_statep, int needrecov, 13948 COMPOUND4args_clnt **argspp, COMPOUND4res_clnt **respp, 13949 clock_t *tick_delayp, int *errorp, 13950 nfs_resop4 *resop, cred_t *cr, bool_t *did_start_fop, 13951 bool_t *skip_get_err) 13952 { 13953 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 13954 13955 if (lock_args) { 13956 nfs4_open_owner_t *oop = *oopp; 13957 nfs4_open_stream_t *osp = *ospp; 13958 nfs4_lock_owner_t *lop = *lopp; 13959 int intr; 13960 13961 /* 13962 * Blocking lock needs to sleep and retry from the request. 13963 * 13964 * Do not block and wait for 'resend' or 'reinstate' 13965 * lock requests, just return the error. 13966 * 13967 * Note: reclaim requests have cmd == F_SETLK, not F_SETLKW. 13968 */ 13969 if (cmd == F_SETLKW) { 13970 rnode4_t *rp = VTOR4(vp); 13971 nfs_argop4 *argop = (*argspp)->array; 13972 13973 ASSERT(ctype == NFS4_LCK_CTYPE_NORM); 13974 13975 nfs4_end_fop(VTOMI4(vp), vp, NULL, op_hint, 13976 recov_statep, needrecov); 13977 *did_start_fop = FALSE; 13978 ASSERT((*argspp)->array_len == 2); 13979 if (argop[1].argop == OP_LOCK) 13980 nfs4args_lock_free(&argop[1]); 13981 else if (argop[1].argop == OP_LOCKT) 13982 nfs4args_lockt_free(&argop[1]); 13983 kmem_free(argop, 2 * sizeof (nfs_argop4)); 13984 if (*respp) 13985 (void) xdr_free(xdr_COMPOUND4res_clnt, 13986 (caddr_t)*respp); 13987 *argspp = NULL; 13988 *respp = NULL; 13989 nfs4_end_lock_seqid_sync(lop); 13990 lock_owner_rele(lop); 13991 *lopp = NULL; 13992 if (osp != NULL) { 13993 open_stream_rele(osp, rp); 13994 *ospp = NULL; 13995 } 13996 if (oop != NULL) { 13997 nfs4_end_open_seqid_sync(oop); 13998 open_owner_rele(oop); 13999 *oopp = NULL; 14000 } 14001 14002 nfs_rw_exit(&rp->r_lkserlock); 14003 14004 intr = nfs4_block_and_wait(tick_delayp); 14005 14006 (void) nfs_rw_enter_sig(&rp->r_lkserlock, RW_WRITER, 14007 FALSE); 14008 14009 if (intr) { 14010 *errorp = EINTR; 14011 return (FALSE); 14012 } 14013 14014 /* 14015 * Make sure we are still safe to lock with 14016 * regards to mmapping. 14017 */ 14018 if (!nfs4_safelock(vp, flk, cr)) { 14019 *errorp = EAGAIN; 14020 return (FALSE); 14021 } 14022 14023 return (TRUE); 14024 } 14025 if (ctype == NFS4_LCK_CTYPE_NORM) 14026 *errorp = EAGAIN; 14027 *skip_get_err = TRUE; 14028 flk->l_whence = 0; 14029 return (FALSE); 14030 } else if (lockt_args) { 14031 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 14032 "nfs4frlock_results_denied: OP_LOCKT DENIED")); 14033 14034 denied_to_flk(&resop->nfs_resop4_u.oplockt.denied, 14035 flk, lockt_args); 14036 14037 /* according to NLM code */ 14038 *errorp = 0; 14039 *skip_get_err = TRUE; 14040 return (FALSE); 14041 } 14042 return (FALSE); 14043 } 14044 14045 /* 14046 * Handles all NFS4 errors besides NFS4_OK and NFS4ERR_DENIED for nfs4frlock. 14047 */ 14048 static void 14049 nfs4frlock_results_default(COMPOUND4res_clnt *resp, int *errorp) 14050 { 14051 switch (resp->status) { 14052 case NFS4ERR_ACCESS: 14053 case NFS4ERR_ADMIN_REVOKED: 14054 case NFS4ERR_BADHANDLE: 14055 case NFS4ERR_BAD_RANGE: 14056 case NFS4ERR_BAD_SEQID: 14057 case NFS4ERR_BAD_STATEID: 14058 case NFS4ERR_BADXDR: 14059 case NFS4ERR_DEADLOCK: 14060 case NFS4ERR_DELAY: 14061 case NFS4ERR_EXPIRED: 14062 case NFS4ERR_FHEXPIRED: 14063 case NFS4ERR_GRACE: 14064 case NFS4ERR_INVAL: 14065 case NFS4ERR_ISDIR: 14066 case NFS4ERR_LEASE_MOVED: 14067 case NFS4ERR_LOCK_NOTSUPP: 14068 case NFS4ERR_LOCK_RANGE: 14069 case NFS4ERR_MOVED: 14070 case NFS4ERR_NOFILEHANDLE: 14071 case NFS4ERR_NO_GRACE: 14072 case NFS4ERR_OLD_STATEID: 14073 case NFS4ERR_OPENMODE: 14074 case NFS4ERR_RECLAIM_BAD: 14075 case NFS4ERR_RECLAIM_CONFLICT: 14076 case NFS4ERR_RESOURCE: 14077 case NFS4ERR_SERVERFAULT: 14078 case NFS4ERR_STALE: 14079 case NFS4ERR_STALE_CLIENTID: 14080 case NFS4ERR_STALE_STATEID: 14081 return; 14082 default: 14083 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 14084 "nfs4frlock_results_default: got unrecognizable " 14085 "res.status %d", resp->status)); 14086 *errorp = NFS4ERR_INVAL; 14087 } 14088 } 14089 14090 /* 14091 * The lock request was successful, so update the client's state. 14092 */ 14093 static void 14094 nfs4frlock_update_state(LOCK4args *lock_args, LOCKU4args *locku_args, 14095 LOCKT4args *lockt_args, nfs_resop4 *resop, nfs4_lock_owner_t *lop, 14096 vnode_t *vp, flock64_t *flk, cred_t *cr, 14097 nfs4_lost_rqst_t *resend_rqstp) 14098 { 14099 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 14100 14101 if (lock_args) { 14102 LOCK4res *lock_res; 14103 14104 lock_res = &resop->nfs_resop4_u.oplock; 14105 /* update the stateid with server's response */ 14106 14107 if (lock_args->locker.new_lock_owner == TRUE) { 14108 mutex_enter(&lop->lo_lock); 14109 lop->lo_just_created = NFS4_PERM_CREATED; 14110 mutex_exit(&lop->lo_lock); 14111 } 14112 14113 nfs4_set_lock_stateid(lop, lock_res->LOCK4res_u.lock_stateid); 14114 14115 /* 14116 * If the lock was the result of a resending a lost 14117 * request, we've synched up the stateid and seqid 14118 * with the server, but now the server might be out of sync 14119 * with what the application thinks it has for locks. 14120 * Clean that up here. It's unclear whether we should do 14121 * this even if the filesystem has been forcibly unmounted. 14122 * For most servers, it's probably wasted effort, but 14123 * RFC3530 lets servers require that unlocks exactly match 14124 * the locks that are held. 14125 */ 14126 if (resend_rqstp != NULL && 14127 resend_rqstp->lr_ctype != NFS4_LCK_CTYPE_REINSTATE) { 14128 nfs4_reinstitute_local_lock_state(vp, flk, cr, lop); 14129 } else { 14130 flk->l_whence = 0; 14131 } 14132 } else if (locku_args) { 14133 LOCKU4res *locku_res; 14134 14135 locku_res = &resop->nfs_resop4_u.oplocku; 14136 14137 /* Update the stateid with the server's response */ 14138 nfs4_set_lock_stateid(lop, locku_res->lock_stateid); 14139 } else if (lockt_args) { 14140 /* Switch the lock type to express success, see fcntl */ 14141 flk->l_type = F_UNLCK; 14142 flk->l_whence = 0; 14143 } 14144 } 14145 14146 /* 14147 * Do final cleanup before exiting nfs4frlock. 14148 * Calls nfs4_end_fop, drops the seqid syncs, and frees up the 14149 * COMPOUND4 args/res for calls that haven't already. 14150 */ 14151 static void 14152 nfs4frlock_final_cleanup(nfs4_lock_call_type_t ctype, COMPOUND4args_clnt *argsp, 14153 COMPOUND4res_clnt *resp, vnode_t *vp, nfs4_op_hint_t op_hint, 14154 nfs4_recov_state_t *recov_statep, int needrecov, nfs4_open_owner_t *oop, 14155 nfs4_open_stream_t *osp, nfs4_lock_owner_t *lop, 14156 int *errorp, LOCK4args *lock_args, LOCKU4args *locku_args, 14157 bool_t did_start_fop, bool_t skip_get_err, 14158 cred_t *cred_otw, cred_t *cred) 14159 { 14160 mntinfo4_t *mi = VTOMI4(vp); 14161 rnode4_t *rp = VTOR4(vp); 14162 int error = *errorp; 14163 nfs_argop4 *argop; 14164 int do_flush_pages = 0; 14165 14166 ASSERT(nfs_zone() == mi->mi_zone); 14167 /* 14168 * The client recovery code wants the raw status information, 14169 * so don't map the NFS status code to an errno value for 14170 * non-normal call types. 14171 */ 14172 if (ctype == NFS4_LCK_CTYPE_NORM) { 14173 if (*errorp == 0 && resp != NULL && skip_get_err == FALSE) 14174 *errorp = geterrno4(resp->status); 14175 if (did_start_fop == TRUE) 14176 nfs4_end_fop(mi, vp, NULL, op_hint, recov_statep, 14177 needrecov); 14178 14179 /* 14180 * We've established a new lock on the server, so invalidate 14181 * the pages associated with the vnode to get the most up to 14182 * date pages from the server after acquiring the lock. We 14183 * want to be sure that the read operation gets the newest data. 14184 * 14185 * We flush the pages below after calling nfs4_end_fop above. 14186 * 14187 * The flush of the page cache must be done after 14188 * nfs4_end_open_seqid_sync() to avoid a 4-way hang. 14189 */ 14190 if (!error && resp && resp->status == NFS4_OK) 14191 do_flush_pages = 1; 14192 } 14193 if (argsp) { 14194 ASSERT(argsp->array_len == 2); 14195 argop = argsp->array; 14196 if (argop[1].argop == OP_LOCK) 14197 nfs4args_lock_free(&argop[1]); 14198 else if (argop[1].argop == OP_LOCKT) 14199 nfs4args_lockt_free(&argop[1]); 14200 kmem_free(argop, 2 * sizeof (nfs_argop4)); 14201 if (resp) 14202 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp); 14203 } 14204 14205 /* free the reference on the lock owner */ 14206 if (lop != NULL) { 14207 nfs4_end_lock_seqid_sync(lop); 14208 lock_owner_rele(lop); 14209 } 14210 14211 /* need to free up the reference on osp for lock args */ 14212 if (osp != NULL) 14213 open_stream_rele(osp, rp); 14214 14215 /* need to free up the reference on oop for lock args */ 14216 if (oop != NULL) { 14217 nfs4_end_open_seqid_sync(oop); 14218 open_owner_rele(oop); 14219 } 14220 14221 if (do_flush_pages) 14222 nfs4_flush_pages(vp, cred); 14223 14224 /* 14225 * Record debug information in the event we get EINVAL. 14226 */ 14227 mutex_enter(&mi->mi_lock); 14228 if (*errorp == EINVAL && (lock_args || locku_args) && 14229 (!(mi->mi_flags & MI4_POSIX_LOCK))) { 14230 if (!(mi->mi_flags & MI4_LOCK_DEBUG)) { 14231 zcmn_err(getzoneid(), CE_NOTE, 14232 "%s operation failed with " 14233 "EINVAL probably since the server, %s," 14234 " doesn't support POSIX style locking", 14235 lock_args ? "LOCK" : "LOCKU", 14236 mi->mi_curr_serv->sv_hostname); 14237 mi->mi_flags |= MI4_LOCK_DEBUG; 14238 } 14239 } 14240 mutex_exit(&mi->mi_lock); 14241 14242 if (cred_otw) 14243 crfree(cred_otw); 14244 } 14245 14246 /* 14247 * This calls the server. 14248 * 14249 * Blocking lock requests will continually retry to acquire the lock 14250 * forever. 14251 * 14252 * The ctype is defined as follows: 14253 * NFS4_LCK_CTYPE_NORM: normal lock request. 14254 * 14255 * NFS4_LCK_CTYPE_RECLAIM: bypass the usual calls for synchronizing with client 14256 * recovery. 14257 * 14258 * NFS4_LCK_CTYPE_RESEND: same as NFS4_LCK_CTYPE_RECLAIM, with the addition 14259 * that we will use the information passed in via resend_rqstp to setup the 14260 * lock/locku request. This resend is the exact same request as the 'lost 14261 * lock', and is initiated by the recovery framework. A successful resend 14262 * request can initiate one or more reinstate requests. 14263 * 14264 * NFS4_LCK_CTYPE_REINSTATE: same as NFS4_LCK_CTYPE_RESEND, except that it 14265 * does not trigger additional reinstate requests. This lock call type is 14266 * set for setting the v4 server's locking state back to match what the 14267 * client's local locking state is in the event of a received 'lost lock'. 14268 * 14269 * Errors are returned via the nfs4_error_t parameter. 14270 */ 14271 void 14272 nfs4frlock(nfs4_lock_call_type_t ctype, vnode_t *vp, int cmd, flock64_t *flk, 14273 cred_t *cr, nfs4_error_t *ep, nfs4_lost_rqst_t *resend_rqstp, 14274 int *did_reclaimp) 14275 { 14276 COMPOUND4args_clnt args, *argsp = NULL; 14277 COMPOUND4res_clnt res, *resp = NULL; 14278 nfs_argop4 *argop; 14279 nfs_resop4 *resop; 14280 rnode4_t *rp; 14281 int doqueue = 1; 14282 clock_t tick_delay; /* delay in clock ticks */ 14283 LOCK4args *lock_args = NULL; 14284 LOCKU4args *locku_args = NULL; 14285 LOCKT4args *lockt_args = NULL; 14286 nfs4_open_owner_t *oop = NULL; 14287 nfs4_open_stream_t *osp = NULL; 14288 nfs4_lock_owner_t *lop = NULL; 14289 bool_t needrecov = FALSE; 14290 nfs4_recov_state_t recov_state; 14291 nfs4_op_hint_t op_hint; 14292 nfs4_lost_rqst_t lost_rqst; 14293 bool_t retry = FALSE; 14294 bool_t did_start_fop = FALSE; 14295 bool_t skip_get_err = FALSE; 14296 cred_t *cred_otw = NULL; 14297 bool_t recovonly; /* just queue request */ 14298 int frc_no_reclaim = 0; 14299 #ifdef DEBUG 14300 char *name; 14301 #endif 14302 14303 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 14304 14305 #ifdef DEBUG 14306 name = fn_name(VTOSV(vp)->sv_name); 14307 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, "nfs4frlock: " 14308 "%s: cmd %d, type %d, start %"PRIx64", " 14309 "length %"PRIu64", pid %d, sysid %d, call type %s, " 14310 "resend request %s", name, cmd, flk->l_type, flk->l_start, 14311 flk->l_len, flk->l_pid, flk->l_sysid, 14312 nfs4frlock_get_call_type(ctype), 14313 resend_rqstp ? "TRUE" : "FALSE")); 14314 kmem_free(name, MAXNAMELEN); 14315 #endif 14316 14317 nfs4_error_zinit(ep); 14318 14319 nfs4frlock_pre_setup(&tick_delay, &recov_state, vp, cr, &cred_otw); 14320 14321 rp = VTOR4(vp); 14322 14323 recov_retry: 14324 nfs4frlock_call_init(&args, &argsp, &argop, &op_hint, flk, cmd, 14325 &retry, &did_start_fop, &resp, &skip_get_err, &lost_rqst); 14326 14327 ep->error = nfs4frlock_start_call(ctype, vp, op_hint, &recov_state, 14328 &did_start_fop, &recovonly); 14329 14330 if (ep->error) 14331 goto out; 14332 14333 if (recovonly) { 14334 /* 14335 * Leave the request for the recovery system to deal with. 14336 */ 14337 ASSERT(ctype == NFS4_LCK_CTYPE_NORM); 14338 ASSERT(cmd != F_GETLK); 14339 ASSERT(flk->l_type == F_UNLCK); 14340 14341 nfs4_error_init(ep, EINTR); 14342 needrecov = TRUE; 14343 lop = find_lock_owner(rp, flk->l_pid, LOWN_ANY); 14344 if (lop != NULL) { 14345 nfs4frlock_save_lost_rqst(ctype, ep->error, READ_LT, 14346 NULL, NULL, lop, flk, &lost_rqst, cr, vp); 14347 (void) nfs4_start_recovery(ep, 14348 VTOMI4(vp), vp, NULL, NULL, 14349 (lost_rqst.lr_op == OP_LOCK || 14350 lost_rqst.lr_op == OP_LOCKU) ? 14351 &lost_rqst : NULL, OP_LOCKU, NULL, NULL, NULL); 14352 lock_owner_rele(lop); 14353 lop = NULL; 14354 } 14355 goto out; 14356 } 14357 14358 /* putfh directory fh */ 14359 argop[0].argop = OP_CPUTFH; 14360 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh; 14361 14362 /* 14363 * Set up the over-the-wire arguments and get references to the 14364 * open owner, etc. 14365 */ 14366 14367 if (ctype == NFS4_LCK_CTYPE_RESEND || 14368 ctype == NFS4_LCK_CTYPE_REINSTATE) { 14369 nfs4frlock_setup_resend_lock_args(resend_rqstp, argsp, 14370 &argop[1], &lop, &oop, &osp, &lock_args, &locku_args); 14371 } else { 14372 bool_t go_otw = TRUE; 14373 14374 ASSERT(resend_rqstp == NULL); 14375 14376 switch (cmd) { 14377 case F_GETLK: 14378 case F_O_GETLK: 14379 ASSERT(ctype == NFS4_LCK_CTYPE_NORM); 14380 nfs4frlock_setup_lockt_args(&argop[1], &lockt_args, 14381 argsp, flk, rp); 14382 break; 14383 case F_SETLKW: 14384 case F_SETLK: 14385 if (flk->l_type == F_UNLCK) 14386 nfs4frlock_setup_locku_args(ctype, 14387 &argop[1], &locku_args, flk, 14388 &lop, ep, argsp, vp, cr, 14389 &skip_get_err, &go_otw); 14390 else 14391 nfs4frlock_setup_lock_args(ctype, 14392 &lock_args, &oop, &osp, &lop, &argop[1], 14393 argsp, flk, cmd, vp, cr, ep); 14394 14395 if (ep->error) 14396 goto out; 14397 14398 switch (ep->stat) { 14399 case NFS4_OK: 14400 break; 14401 case NFS4ERR_DELAY: 14402 /* recov thread never gets this error */ 14403 ASSERT(resend_rqstp == NULL); 14404 ASSERT(did_start_fop); 14405 14406 nfs4_end_fop(VTOMI4(vp), vp, NULL, op_hint, 14407 &recov_state, TRUE); 14408 did_start_fop = FALSE; 14409 if (argop[1].argop == OP_LOCK) 14410 nfs4args_lock_free(&argop[1]); 14411 else if (argop[1].argop == OP_LOCKT) 14412 nfs4args_lockt_free(&argop[1]); 14413 kmem_free(argop, 2 * sizeof (nfs_argop4)); 14414 argsp = NULL; 14415 goto recov_retry; 14416 default: 14417 ep->error = EIO; 14418 goto out; 14419 } 14420 break; 14421 default: 14422 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 14423 "nfs4_frlock: invalid cmd %d", cmd)); 14424 ep->error = EINVAL; 14425 goto out; 14426 } 14427 14428 if (!go_otw) 14429 goto out; 14430 } 14431 14432 /* 14433 * Send the server the lock request. Continually loop with a delay 14434 * if get error NFS4ERR_DENIED (for blocking locks) or NFS4ERR_GRACE. 14435 */ 14436 resp = &res; 14437 14438 NFS4_DEBUG((nfs4_client_call_debug || nfs4_client_lock_debug), 14439 (CE_NOTE, 14440 "nfs4frlock: %s call, rp %s", needrecov ? "recov" : "first", 14441 rnode4info(rp))); 14442 14443 if (lock_args && frc_no_reclaim) { 14444 ASSERT(ctype == NFS4_LCK_CTYPE_RECLAIM); 14445 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 14446 "nfs4frlock: frc_no_reclaim: clearing reclaim")); 14447 lock_args->reclaim = FALSE; 14448 if (did_reclaimp) 14449 *did_reclaimp = 0; 14450 } 14451 14452 /* 14453 * Do the OTW call. 14454 */ 14455 rfs4call(VTOMI4(vp), argsp, resp, cred_otw, &doqueue, 0, ep); 14456 14457 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 14458 "nfs4frlock: error %d, status %d", ep->error, resp->status)); 14459 14460 needrecov = nfs4_needs_recovery(ep, TRUE, vp->v_vfsp); 14461 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 14462 "nfs4frlock: needrecov %d", needrecov)); 14463 14464 if (ep->error == 0 && nfs4_need_to_bump_seqid(resp)) 14465 nfs4frlock_bump_seqid(lock_args, locku_args, oop, lop, 14466 args.ctag); 14467 14468 /* 14469 * Check if one of these mutually exclusive error cases has 14470 * happened: 14471 * need to swap credentials due to access error 14472 * recovery is needed 14473 * different error (only known case is missing Kerberos ticket) 14474 */ 14475 14476 if ((ep->error == EACCES || 14477 (ep->error == 0 && resp->status == NFS4ERR_ACCESS)) && 14478 cred_otw != cr) { 14479 nfs4frlock_check_access(vp, op_hint, &recov_state, needrecov, 14480 &did_start_fop, &argsp, &resp, ep->error, &lop, &oop, &osp, 14481 cr, &cred_otw); 14482 goto recov_retry; 14483 } 14484 14485 if (needrecov) { 14486 /* 14487 * LOCKT requests don't need to recover from lost 14488 * requests since they don't create/modify state. 14489 */ 14490 if ((ep->error == EINTR || 14491 NFS4_FRC_UNMT_ERR(ep->error, vp->v_vfsp)) && 14492 lockt_args) 14493 goto out; 14494 /* 14495 * Do not attempt recovery for requests initiated by 14496 * the recovery framework. Let the framework redrive them. 14497 */ 14498 if (ctype != NFS4_LCK_CTYPE_NORM) 14499 goto out; 14500 else { 14501 ASSERT(resend_rqstp == NULL); 14502 } 14503 14504 nfs4frlock_save_lost_rqst(ctype, ep->error, 14505 flk_to_locktype(cmd, flk->l_type), 14506 oop, osp, lop, flk, &lost_rqst, cred_otw, vp); 14507 14508 retry = nfs4frlock_recovery(needrecov, ep, &argsp, 14509 &resp, lock_args, locku_args, &oop, &osp, &lop, 14510 rp, vp, &recov_state, op_hint, &did_start_fop, 14511 cmd != F_GETLK ? &lost_rqst : NULL, flk); 14512 14513 if (retry) { 14514 ASSERT(oop == NULL); 14515 ASSERT(osp == NULL); 14516 ASSERT(lop == NULL); 14517 goto recov_retry; 14518 } 14519 goto out; 14520 } 14521 14522 /* 14523 * Bail out if have reached this point with ep->error set. Can 14524 * happen if (ep->error == EACCES && !needrecov && cred_otw == cr). 14525 * This happens if Kerberos ticket has expired or has been 14526 * destroyed. 14527 */ 14528 if (ep->error != 0) 14529 goto out; 14530 14531 /* 14532 * Process the reply. 14533 */ 14534 switch (resp->status) { 14535 case NFS4_OK: 14536 resop = &resp->array[1]; 14537 /* 14538 * Have a successful lock operation, now update state. 14539 */ 14540 nfs4frlock_update_state(lock_args, locku_args, lockt_args, 14541 resop, lop, vp, flk, cr, resend_rqstp); 14542 break; 14543 14544 case NFS4ERR_DENIED: 14545 resop = &resp->array[1]; 14546 retry = nfs4frlock_results_denied(ctype, lock_args, lockt_args, 14547 &oop, &osp, &lop, cmd, vp, flk, op_hint, 14548 &recov_state, needrecov, &argsp, &resp, 14549 &tick_delay, &ep->error, resop, cr, 14550 &did_start_fop, &skip_get_err); 14551 14552 if (retry) { 14553 ASSERT(oop == NULL); 14554 ASSERT(osp == NULL); 14555 ASSERT(lop == NULL); 14556 goto recov_retry; 14557 } 14558 break; 14559 /* 14560 * If the server won't let us reclaim, fall-back to trying to lock 14561 * the file from scratch. Code elsewhere will check the changeinfo 14562 * to ensure the file hasn't been changed. 14563 */ 14564 case NFS4ERR_NO_GRACE: 14565 if (lock_args && lock_args->reclaim == TRUE) { 14566 ASSERT(ctype == NFS4_LCK_CTYPE_RECLAIM); 14567 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 14568 "nfs4frlock: reclaim: NFS4ERR_NO_GRACE")); 14569 frc_no_reclaim = 1; 14570 /* clean up before retrying */ 14571 needrecov = 0; 14572 (void) nfs4frlock_recovery(needrecov, ep, &argsp, &resp, 14573 lock_args, locku_args, &oop, &osp, &lop, rp, vp, 14574 &recov_state, op_hint, &did_start_fop, NULL, flk); 14575 goto recov_retry; 14576 } 14577 /* FALLTHROUGH */ 14578 14579 default: 14580 nfs4frlock_results_default(resp, &ep->error); 14581 break; 14582 } 14583 out: 14584 /* 14585 * Process and cleanup from error. Make interrupted unlock 14586 * requests look successful, since they will be handled by the 14587 * client recovery code. 14588 */ 14589 nfs4frlock_final_cleanup(ctype, argsp, resp, vp, op_hint, &recov_state, 14590 needrecov, oop, osp, lop, &ep->error, 14591 lock_args, locku_args, did_start_fop, 14592 skip_get_err, cred_otw, cr); 14593 14594 if (ep->error == EINTR && flk->l_type == F_UNLCK && 14595 (cmd == F_SETLK || cmd == F_SETLKW)) 14596 ep->error = 0; 14597 } 14598 14599 /* 14600 * nfs4_safelock: 14601 * 14602 * Return non-zero if the given lock request can be handled without 14603 * violating the constraints on concurrent mapping and locking. 14604 */ 14605 14606 static int 14607 nfs4_safelock(vnode_t *vp, const struct flock64 *bfp, cred_t *cr) 14608 { 14609 rnode4_t *rp = VTOR4(vp); 14610 struct vattr va; 14611 int error; 14612 14613 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 14614 ASSERT(rp->r_mapcnt >= 0); 14615 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, "nfs4_safelock %s: " 14616 "(%"PRIx64", %"PRIx64"); mapcnt = %ld", bfp->l_type == F_WRLCK ? 14617 "write" : bfp->l_type == F_RDLCK ? "read" : "unlock", 14618 bfp->l_start, bfp->l_len, rp->r_mapcnt)); 14619 14620 if (rp->r_mapcnt == 0) 14621 return (1); /* always safe if not mapped */ 14622 14623 /* 14624 * If the file is already mapped and there are locks, then they 14625 * should be all safe locks. So adding or removing a lock is safe 14626 * as long as the new request is safe (i.e., whole-file, meaning 14627 * length and starting offset are both zero). 14628 */ 14629 14630 if (bfp->l_start != 0 || bfp->l_len != 0) { 14631 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, "nfs4_safelock: " 14632 "cannot lock a memory mapped file unless locking the " 14633 "entire file: start %"PRIx64", len %"PRIx64, 14634 bfp->l_start, bfp->l_len)); 14635 return (0); 14636 } 14637 14638 /* mandatory locking and mapping don't mix */ 14639 va.va_mask = AT_MODE; 14640 error = VOP_GETATTR(vp, &va, 0, cr, NULL); 14641 if (error != 0) { 14642 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, "nfs4_safelock: " 14643 "getattr error %d", error)); 14644 return (0); /* treat errors conservatively */ 14645 } 14646 if (MANDLOCK(vp, va.va_mode)) { 14647 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, "nfs4_safelock: " 14648 "cannot mandatory lock and mmap a file")); 14649 return (0); 14650 } 14651 14652 return (1); 14653 } 14654 14655 /* 14656 * nfs4_lockrelease: 14657 * 14658 * Release any locks on the given vnode that are held by the current 14659 * process. Also removes the lock owner (if one exists) from the rnode's 14660 * list. 14661 */ 14662 static int 14663 nfs4_lockrelease(vnode_t *vp, int flag, offset_t offset, cred_t *cr) 14664 { 14665 flock64_t ld; 14666 int ret, error; 14667 rnode4_t *rp; 14668 nfs4_lock_owner_t *lop; 14669 nfs4_recov_state_t recov_state; 14670 mntinfo4_t *mi; 14671 bool_t possible_orphan = FALSE; 14672 bool_t recovonly; 14673 14674 ASSERT((uintptr_t)vp > KERNELBASE); 14675 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 14676 14677 rp = VTOR4(vp); 14678 mi = VTOMI4(vp); 14679 14680 /* 14681 * If we have not locked anything then we can 14682 * just return since we have no work to do. 14683 */ 14684 if (rp->r_lo_head.lo_next_rnode == &rp->r_lo_head) { 14685 return (0); 14686 } 14687 14688 /* 14689 * We need to comprehend that another thread may 14690 * kick off recovery and the lock_owner we have stashed 14691 * in lop might be invalid so we should NOT cache it 14692 * locally! 14693 */ 14694 recov_state.rs_flags = 0; 14695 recov_state.rs_num_retry_despite_err = 0; 14696 error = nfs4_start_fop(mi, vp, NULL, OH_LOCKU, &recov_state, 14697 &recovonly); 14698 if (error) { 14699 mutex_enter(&rp->r_statelock); 14700 rp->r_flags |= R4LODANGLERS; 14701 mutex_exit(&rp->r_statelock); 14702 return (error); 14703 } 14704 14705 lop = find_lock_owner(rp, curproc->p_pid, LOWN_ANY); 14706 14707 /* 14708 * Check if the lock owner might have a lock (request was sent but 14709 * no response was received). Also check if there are any remote 14710 * locks on the file. (In theory we shouldn't have to make this 14711 * second check if there's no lock owner, but for now we'll be 14712 * conservative and do it anyway.) If either condition is true, 14713 * send an unlock for the entire file to the server. 14714 * 14715 * Note that no explicit synchronization is needed here. At worst, 14716 * flk_has_remote_locks() will return a false positive, in which case 14717 * the unlock call wastes time but doesn't harm correctness. 14718 */ 14719 14720 if (lop) { 14721 mutex_enter(&lop->lo_lock); 14722 possible_orphan = lop->lo_pending_rqsts; 14723 mutex_exit(&lop->lo_lock); 14724 lock_owner_rele(lop); 14725 } 14726 14727 nfs4_end_fop(mi, vp, NULL, OH_LOCKU, &recov_state, 0); 14728 14729 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 14730 "nfs4_lockrelease: possible orphan %d, remote locks %d, for " 14731 "lop %p.", possible_orphan, flk_has_remote_locks(vp), 14732 (void *)lop)); 14733 14734 if (possible_orphan || flk_has_remote_locks(vp)) { 14735 ld.l_type = F_UNLCK; /* set to unlock entire file */ 14736 ld.l_whence = 0; /* unlock from start of file */ 14737 ld.l_start = 0; 14738 ld.l_len = 0; /* do entire file */ 14739 14740 ret = VOP_FRLOCK(vp, F_SETLK, &ld, flag, offset, NULL, 14741 cr, NULL); 14742 14743 if (ret != 0) { 14744 /* 14745 * If VOP_FRLOCK fails, make sure we unregister 14746 * local locks before we continue. 14747 */ 14748 struct lm_sysid *lmsid = nfs4_find_sysid(VTOMI4(vp)); 14749 14750 if (lmsid != NULL) { 14751 cleanlocks(vp, curproc->p_pid, 14752 lm_sysidt(lmsid) | LM_SYSID_CLIENT); 14753 lm_rel_sysid(lmsid); 14754 } 14755 14756 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 14757 "nfs4_lockrelease: lock release error on vp" 14758 " %p: error %d.\n", (void *)vp, ret)); 14759 } 14760 } 14761 14762 recov_state.rs_flags = 0; 14763 recov_state.rs_num_retry_despite_err = 0; 14764 error = nfs4_start_fop(mi, vp, NULL, OH_LOCKU, &recov_state, 14765 &recovonly); 14766 if (error) { 14767 mutex_enter(&rp->r_statelock); 14768 rp->r_flags |= R4LODANGLERS; 14769 mutex_exit(&rp->r_statelock); 14770 return (error); 14771 } 14772 14773 /* 14774 * So, here we're going to need to retrieve the lock-owner 14775 * again (in case recovery has done a switch-a-roo) and 14776 * remove it because we can. 14777 */ 14778 lop = find_lock_owner(rp, curproc->p_pid, LOWN_ANY); 14779 14780 if (lop) { 14781 nfs4_rnode_remove_lock_owner(rp, lop); 14782 lock_owner_rele(lop); 14783 } 14784 14785 nfs4_end_fop(mi, vp, NULL, OH_LOCKU, &recov_state, 0); 14786 return (0); 14787 } 14788 14789 /* 14790 * Wait for 'tick_delay' clock ticks. 14791 * Implement exponential backoff until hit the lease_time of this nfs4_server. 14792 * 14793 * The client should retry to acquire the lock faster than the lease period. 14794 * We use roughly half of the lease time to use a similar calculation as it is 14795 * used in nfs4_renew_lease_thread(). 14796 * 14797 * XXX For future improvements, should implement a waiting queue scheme. 14798 */ 14799 static int 14800 nfs4_block_and_wait(clock_t *tick_delay) 14801 { 14802 /* wait tick_delay clock ticks or siginteruptus */ 14803 if (delay_sig(*tick_delay)) { 14804 return (EINTR); 14805 } 14806 14807 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, "nfs4_block_and_wait: " 14808 "reissue the lock request: blocked for %ld clock ticks: %ld " 14809 "milliseconds", *tick_delay, drv_hztousec(*tick_delay) / 1000)); 14810 14811 *tick_delay = MIN(drv_usectohz(nfs4_max_base_wait_time * 1000), 14812 *tick_delay * 1.5); 14813 return (0); 14814 } 14815 14816 void 14817 nfs4_vnops_init(void) 14818 { 14819 } 14820 14821 void 14822 nfs4_vnops_fini(void) 14823 { 14824 } 14825 14826 /* 14827 * Return a reference to the directory (parent) vnode for a given vnode, 14828 * using the saved pathname information and the directory file handle. The 14829 * caller is responsible for disposing of the reference. 14830 * Returns zero or an errno value. 14831 * 14832 * Caller should set need_start_op to FALSE if it is the recovery 14833 * thread, or if a start_fop has already been done. Otherwise, TRUE. 14834 */ 14835 int 14836 vtodv(vnode_t *vp, vnode_t **dvpp, cred_t *cr, bool_t need_start_op) 14837 { 14838 svnode_t *svnp; 14839 vnode_t *dvp = NULL; 14840 servinfo4_t *svp; 14841 nfs4_fname_t *mfname; 14842 int error; 14843 14844 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 14845 14846 if (vp->v_flag & VROOT) { 14847 nfs4_sharedfh_t *sfh; 14848 nfs_fh4 fh; 14849 mntinfo4_t *mi; 14850 14851 ASSERT(vp->v_type == VREG); 14852 14853 mi = VTOMI4(vp); 14854 svp = mi->mi_curr_serv; 14855 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); 14856 fh.nfs_fh4_len = svp->sv_pfhandle.fh_len; 14857 fh.nfs_fh4_val = svp->sv_pfhandle.fh_buf; 14858 sfh = sfh4_get(&fh, VTOMI4(vp)); 14859 nfs_rw_exit(&svp->sv_lock); 14860 mfname = mi->mi_fname; 14861 fn_hold(mfname); 14862 dvp = makenfs4node_by_fh(sfh, NULL, &mfname, NULL, mi, cr, 0); 14863 sfh4_rele(&sfh); 14864 14865 if (dvp->v_type == VNON) 14866 dvp->v_type = VDIR; 14867 *dvpp = dvp; 14868 return (0); 14869 } 14870 14871 svnp = VTOSV(vp); 14872 14873 if (svnp == NULL) { 14874 NFS4_DEBUG(nfs4_client_shadow_debug, (CE_NOTE, "vtodv: " 14875 "shadow node is NULL")); 14876 return (EINVAL); 14877 } 14878 14879 if (svnp->sv_name == NULL || svnp->sv_dfh == NULL) { 14880 NFS4_DEBUG(nfs4_client_shadow_debug, (CE_NOTE, "vtodv: " 14881 "shadow node name or dfh val == NULL")); 14882 return (EINVAL); 14883 } 14884 14885 error = nfs4_make_dotdot(svnp->sv_dfh, 0, vp, cr, &dvp, 14886 (int)need_start_op); 14887 if (error != 0) { 14888 NFS4_DEBUG(nfs4_client_shadow_debug, (CE_NOTE, "vtodv: " 14889 "nfs4_make_dotdot returned %d", error)); 14890 return (error); 14891 } 14892 if (!dvp) { 14893 NFS4_DEBUG(nfs4_client_shadow_debug, (CE_NOTE, "vtodv: " 14894 "nfs4_make_dotdot returned a NULL dvp")); 14895 return (EIO); 14896 } 14897 if (dvp->v_type == VNON) 14898 dvp->v_type = VDIR; 14899 ASSERT(dvp->v_type == VDIR); 14900 if (VTOR4(vp)->r_flags & R4ISXATTR) { 14901 mutex_enter(&dvp->v_lock); 14902 dvp->v_flag |= V_XATTRDIR; 14903 mutex_exit(&dvp->v_lock); 14904 } 14905 *dvpp = dvp; 14906 return (0); 14907 } 14908 14909 /* 14910 * Copy the (final) component name of vp to fnamep. maxlen is the maximum 14911 * length that fnamep can accept, including the trailing null. 14912 * Returns 0 if okay, returns an errno value if there was a problem. 14913 */ 14914 14915 int 14916 vtoname(vnode_t *vp, char *fnamep, ssize_t maxlen) 14917 { 14918 char *fn; 14919 int err = 0; 14920 servinfo4_t *svp; 14921 svnode_t *shvp; 14922 14923 /* 14924 * If the file being opened has VROOT set, then this is 14925 * a "file" mount. sv_name will not be interesting, so 14926 * go back to the servinfo4 to get the original mount 14927 * path and strip off all but the final edge. Otherwise 14928 * just return the name from the shadow vnode. 14929 */ 14930 14931 if (vp->v_flag & VROOT) { 14932 14933 svp = VTOMI4(vp)->mi_curr_serv; 14934 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); 14935 14936 fn = strrchr(svp->sv_path, '/'); 14937 if (fn == NULL) 14938 err = EINVAL; 14939 else 14940 fn++; 14941 } else { 14942 shvp = VTOSV(vp); 14943 fn = fn_name(shvp->sv_name); 14944 } 14945 14946 if (err == 0) 14947 if (strlen(fn) < maxlen) 14948 (void) strcpy(fnamep, fn); 14949 else 14950 err = ENAMETOOLONG; 14951 14952 if (vp->v_flag & VROOT) 14953 nfs_rw_exit(&svp->sv_lock); 14954 else 14955 kmem_free(fn, MAXNAMELEN); 14956 14957 return (err); 14958 } 14959 14960 /* 14961 * Bookkeeping for a close that doesn't need to go over the wire. 14962 * *have_lockp is set to 0 if 'os_sync_lock' is released; otherwise 14963 * it is left at 1. 14964 */ 14965 void 14966 nfs4close_notw(vnode_t *vp, nfs4_open_stream_t *osp, int *have_lockp) 14967 { 14968 rnode4_t *rp; 14969 mntinfo4_t *mi; 14970 14971 mi = VTOMI4(vp); 14972 rp = VTOR4(vp); 14973 14974 NFS4_DEBUG(nfs4close_notw_debug, (CE_NOTE, "nfs4close_notw: " 14975 "rp=%p osp=%p", (void *)rp, (void *)osp)); 14976 ASSERT(nfs_zone() == mi->mi_zone); 14977 ASSERT(mutex_owned(&osp->os_sync_lock)); 14978 ASSERT(*have_lockp); 14979 14980 if (!osp->os_valid || 14981 osp->os_open_ref_count > 0 || osp->os_mapcnt > 0) { 14982 return; 14983 } 14984 14985 /* 14986 * This removes the reference obtained at OPEN; ie, 14987 * when the open stream structure was created. 14988 * 14989 * We don't have to worry about calling 'open_stream_rele' 14990 * since we our currently holding a reference to this 14991 * open stream which means the count can not go to 0 with 14992 * this decrement. 14993 */ 14994 ASSERT(osp->os_ref_count >= 2); 14995 osp->os_ref_count--; 14996 osp->os_valid = 0; 14997 mutex_exit(&osp->os_sync_lock); 14998 *have_lockp = 0; 14999 15000 nfs4_dec_state_ref_count(mi); 15001 } 15002 15003 /* 15004 * Close all remaining open streams on the rnode. These open streams 15005 * could be here because: 15006 * - The close attempted at either close or delmap failed 15007 * - Some kernel entity did VOP_OPEN but never did VOP_CLOSE 15008 * - Someone did mknod on a regular file but never opened it 15009 */ 15010 int 15011 nfs4close_all(vnode_t *vp, cred_t *cr) 15012 { 15013 nfs4_open_stream_t *osp; 15014 int error; 15015 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 15016 rnode4_t *rp; 15017 15018 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 15019 15020 error = 0; 15021 rp = VTOR4(vp); 15022 15023 /* 15024 * At this point, all we know is that the last time 15025 * someone called vn_rele, the count was 1. Since then, 15026 * the vnode could have been re-activated. We want to 15027 * loop through the open streams and close each one, but 15028 * we have to be careful since once we release the rnode 15029 * hash bucket lock, someone else is free to come in and 15030 * re-activate the rnode and add new open streams. The 15031 * strategy is take the rnode hash bucket lock, verify that 15032 * the count is still 1, grab the open stream off the 15033 * head of the list and mark it invalid, then release the 15034 * rnode hash bucket lock and proceed with that open stream. 15035 * This is ok because nfs4close_one() will acquire the proper 15036 * open/create to close/destroy synchronization for open 15037 * streams, and will ensure that if someone has reopened 15038 * the open stream after we've dropped the hash bucket lock 15039 * then we'll just simply return without destroying the 15040 * open stream. 15041 * Repeat until the list is empty. 15042 */ 15043 15044 for (;;) { 15045 15046 /* make sure vnode hasn't been reactivated */ 15047 rw_enter(&rp->r_hashq->r_lock, RW_READER); 15048 mutex_enter(&vp->v_lock); 15049 if (vp->v_count > 1) { 15050 mutex_exit(&vp->v_lock); 15051 rw_exit(&rp->r_hashq->r_lock); 15052 break; 15053 } 15054 /* 15055 * Grabbing r_os_lock before releasing v_lock prevents 15056 * a window where the rnode/open stream could get 15057 * reactivated (and os_force_close set to 0) before we 15058 * had a chance to set os_force_close to 1. 15059 */ 15060 mutex_enter(&rp->r_os_lock); 15061 mutex_exit(&vp->v_lock); 15062 15063 osp = list_head(&rp->r_open_streams); 15064 if (!osp) { 15065 /* nothing left to CLOSE OTW, so return */ 15066 mutex_exit(&rp->r_os_lock); 15067 rw_exit(&rp->r_hashq->r_lock); 15068 break; 15069 } 15070 15071 mutex_enter(&rp->r_statev4_lock); 15072 /* the file can't still be mem mapped */ 15073 ASSERT(rp->r_mapcnt == 0); 15074 if (rp->created_v4) 15075 rp->created_v4 = 0; 15076 mutex_exit(&rp->r_statev4_lock); 15077 15078 /* 15079 * Grab a ref on this open stream; nfs4close_one 15080 * will mark it as invalid 15081 */ 15082 mutex_enter(&osp->os_sync_lock); 15083 osp->os_ref_count++; 15084 osp->os_force_close = 1; 15085 mutex_exit(&osp->os_sync_lock); 15086 mutex_exit(&rp->r_os_lock); 15087 rw_exit(&rp->r_hashq->r_lock); 15088 15089 nfs4close_one(vp, osp, cr, 0, NULL, &e, CLOSE_FORCE, 0, 0, 0); 15090 15091 /* Update error if it isn't already non-zero */ 15092 if (error == 0) { 15093 if (e.error) 15094 error = e.error; 15095 else if (e.stat) 15096 error = geterrno4(e.stat); 15097 } 15098 15099 #ifdef DEBUG 15100 nfs4close_all_cnt++; 15101 #endif 15102 /* Release the ref on osp acquired above. */ 15103 open_stream_rele(osp, rp); 15104 15105 /* Proceed to the next open stream, if any */ 15106 } 15107 return (error); 15108 } 15109 15110 /* 15111 * nfs4close_one - close one open stream for a file if needed. 15112 * 15113 * "close_type" indicates which close path this is: 15114 * CLOSE_NORM: close initiated via VOP_CLOSE. 15115 * CLOSE_DELMAP: close initiated via VOP_DELMAP. 15116 * CLOSE_FORCE: close initiated via VOP_INACTIVE. This path forces 15117 * the close and release of client state for this open stream 15118 * (unless someone else has the open stream open). 15119 * CLOSE_RESEND: indicates the request is a replay of an earlier request 15120 * (e.g., due to abort because of a signal). 15121 * CLOSE_AFTER_RESEND: close initiated to "undo" a successful resent OPEN. 15122 * 15123 * CLOSE_RESEND and CLOSE_AFTER_RESEND will not attempt to retry after client 15124 * recovery. Instead, the caller is expected to deal with retries. 15125 * 15126 * The caller can either pass in the osp ('provided_osp') or not. 15127 * 15128 * 'access_bits' represents the access we are closing/downgrading. 15129 * 15130 * 'len', 'prot', and 'mmap_flags' are used for CLOSE_DELMAP. 'len' is the 15131 * number of bytes we are unmapping, 'maxprot' is the mmap protection, and 15132 * 'mmap_flags' tells us the type of sharing (MAP_PRIVATE or MAP_SHARED). 15133 * 15134 * Errors are returned via the nfs4_error_t. 15135 */ 15136 void 15137 nfs4close_one(vnode_t *vp, nfs4_open_stream_t *provided_osp, cred_t *cr, 15138 int access_bits, nfs4_lost_rqst_t *lrp, nfs4_error_t *ep, 15139 nfs4_close_type_t close_type, size_t len, uint_t maxprot, 15140 uint_t mmap_flags) 15141 { 15142 nfs4_open_owner_t *oop; 15143 nfs4_open_stream_t *osp = NULL; 15144 int retry = 0; 15145 int num_retries = NFS4_NUM_RECOV_RETRIES; 15146 rnode4_t *rp; 15147 mntinfo4_t *mi; 15148 nfs4_recov_state_t recov_state; 15149 cred_t *cred_otw = NULL; 15150 bool_t recovonly = FALSE; 15151 int isrecov; 15152 int force_close; 15153 int close_failed = 0; 15154 int did_dec_count = 0; 15155 int did_start_op = 0; 15156 int did_force_recovlock = 0; 15157 int did_start_seqid_sync = 0; 15158 int have_sync_lock = 0; 15159 15160 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 15161 15162 NFS4_DEBUG(nfs4close_one_debug, (CE_NOTE, "closing vp %p osp %p, " 15163 "lrp %p, close type %d len %ld prot %x mmap flags %x bits %x", 15164 (void *)vp, (void *)provided_osp, (void *)lrp, close_type, 15165 len, maxprot, mmap_flags, access_bits)); 15166 15167 nfs4_error_zinit(ep); 15168 rp = VTOR4(vp); 15169 mi = VTOMI4(vp); 15170 isrecov = (close_type == CLOSE_RESEND || 15171 close_type == CLOSE_AFTER_RESEND); 15172 15173 /* 15174 * First get the open owner. 15175 */ 15176 if (!provided_osp) { 15177 oop = find_open_owner(cr, NFS4_PERM_CREATED, mi); 15178 } else { 15179 oop = provided_osp->os_open_owner; 15180 ASSERT(oop != NULL); 15181 open_owner_hold(oop); 15182 } 15183 15184 if (!oop) { 15185 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 15186 "nfs4close_one: no oop, rp %p, mi %p, cr %p, osp %p, " 15187 "close type %d", (void *)rp, (void *)mi, (void *)cr, 15188 (void *)provided_osp, close_type)); 15189 ep->error = EIO; 15190 goto out; 15191 } 15192 15193 cred_otw = nfs4_get_otw_cred(cr, mi, oop); 15194 recov_retry: 15195 osp = NULL; 15196 close_failed = 0; 15197 force_close = (close_type == CLOSE_FORCE); 15198 retry = 0; 15199 did_start_op = 0; 15200 did_force_recovlock = 0; 15201 did_start_seqid_sync = 0; 15202 have_sync_lock = 0; 15203 recovonly = FALSE; 15204 recov_state.rs_flags = 0; 15205 recov_state.rs_num_retry_despite_err = 0; 15206 15207 /* 15208 * Second synchronize with recovery. 15209 */ 15210 if (!isrecov) { 15211 ep->error = nfs4_start_fop(mi, vp, NULL, OH_CLOSE, 15212 &recov_state, &recovonly); 15213 if (!ep->error) { 15214 did_start_op = 1; 15215 } else { 15216 close_failed = 1; 15217 /* 15218 * If we couldn't get start_fop, but have to 15219 * cleanup state, then at least acquire the 15220 * mi_recovlock so we can synchronize with 15221 * recovery. 15222 */ 15223 if (close_type == CLOSE_FORCE) { 15224 (void) nfs_rw_enter_sig(&mi->mi_recovlock, 15225 RW_READER, FALSE); 15226 did_force_recovlock = 1; 15227 } else 15228 goto out; 15229 } 15230 } 15231 15232 /* 15233 * We cannot attempt to get the open seqid sync if nfs4_start_fop 15234 * set 'recovonly' to TRUE since most likely this is due to 15235 * reovery being active (MI4_RECOV_ACTIV). If recovery is active, 15236 * nfs4_start_open_seqid_sync() will fail with EAGAIN asking us 15237 * to retry, causing us to loop until recovery finishes. Plus we 15238 * don't need protection over the open seqid since we're not going 15239 * OTW, hence don't need to use the seqid. 15240 */ 15241 if (recovonly == FALSE) { 15242 /* need to grab the open owner sync before 'os_sync_lock' */ 15243 ep->error = nfs4_start_open_seqid_sync(oop, mi); 15244 if (ep->error == EAGAIN) { 15245 ASSERT(!isrecov); 15246 if (did_start_op) 15247 nfs4_end_fop(mi, vp, NULL, OH_CLOSE, 15248 &recov_state, TRUE); 15249 if (did_force_recovlock) 15250 nfs_rw_exit(&mi->mi_recovlock); 15251 goto recov_retry; 15252 } 15253 did_start_seqid_sync = 1; 15254 } 15255 15256 /* 15257 * Third get an open stream and acquire 'os_sync_lock' to 15258 * sychronize the opening/creating of an open stream with the 15259 * closing/destroying of an open stream. 15260 */ 15261 if (!provided_osp) { 15262 /* returns with 'os_sync_lock' held */ 15263 osp = find_open_stream(oop, rp); 15264 if (!osp) { 15265 ep->error = EIO; 15266 goto out; 15267 } 15268 } else { 15269 osp = provided_osp; 15270 open_stream_hold(osp); 15271 mutex_enter(&osp->os_sync_lock); 15272 } 15273 have_sync_lock = 1; 15274 15275 ASSERT(oop == osp->os_open_owner); 15276 15277 /* 15278 * Fourth, do any special pre-OTW CLOSE processing 15279 * based on the specific close type. 15280 */ 15281 if ((close_type == CLOSE_NORM || close_type == CLOSE_AFTER_RESEND) && 15282 !did_dec_count) { 15283 ASSERT(osp->os_open_ref_count > 0); 15284 osp->os_open_ref_count--; 15285 did_dec_count = 1; 15286 if (osp->os_open_ref_count == 0) 15287 osp->os_final_close = 1; 15288 } 15289 15290 if (close_type == CLOSE_FORCE) { 15291 /* see if somebody reopened the open stream. */ 15292 if (!osp->os_force_close) { 15293 NFS4_DEBUG(nfs4close_one_debug, (CE_NOTE, 15294 "nfs4close_one: skip CLOSE_FORCE as osp %p " 15295 "was reopened, vp %p", (void *)osp, (void *)vp)); 15296 ep->error = 0; 15297 ep->stat = NFS4_OK; 15298 goto out; 15299 } 15300 15301 if (!osp->os_final_close && !did_dec_count) { 15302 osp->os_open_ref_count--; 15303 did_dec_count = 1; 15304 } 15305 15306 /* 15307 * We can't depend on os_open_ref_count being 0 due to the 15308 * way executables are opened (VN_RELE to match a VOP_OPEN). 15309 */ 15310 #ifdef NOTYET 15311 ASSERT(osp->os_open_ref_count == 0); 15312 #endif 15313 if (osp->os_open_ref_count != 0) { 15314 NFS4_DEBUG(nfs4close_one_debug, (CE_NOTE, 15315 "nfs4close_one: should panic here on an " 15316 "ASSERT(osp->os_open_ref_count == 0). Ignoring " 15317 "since this is probably the exec problem.")); 15318 15319 osp->os_open_ref_count = 0; 15320 } 15321 15322 /* 15323 * There is the possibility that nfs4close_one() 15324 * for close_type == CLOSE_DELMAP couldn't find the 15325 * open stream, thus couldn't decrement its os_mapcnt; 15326 * therefore we can't use this ASSERT yet. 15327 */ 15328 #ifdef NOTYET 15329 ASSERT(osp->os_mapcnt == 0); 15330 #endif 15331 osp->os_mapcnt = 0; 15332 } 15333 15334 if (close_type == CLOSE_DELMAP && !did_dec_count) { 15335 ASSERT(osp->os_mapcnt >= btopr(len)); 15336 15337 if ((mmap_flags & MAP_SHARED) && (maxprot & PROT_WRITE)) 15338 osp->os_mmap_write -= btopr(len); 15339 if (maxprot & PROT_READ) 15340 osp->os_mmap_read -= btopr(len); 15341 if (maxprot & PROT_EXEC) 15342 osp->os_mmap_read -= btopr(len); 15343 /* mirror the PROT_NONE check in nfs4_addmap() */ 15344 if (!(maxprot & PROT_READ) && !(maxprot & PROT_WRITE) && 15345 !(maxprot & PROT_EXEC)) 15346 osp->os_mmap_read -= btopr(len); 15347 osp->os_mapcnt -= btopr(len); 15348 did_dec_count = 1; 15349 } 15350 15351 if (recovonly) { 15352 nfs4_lost_rqst_t lost_rqst; 15353 15354 /* request should not already be in recovery queue */ 15355 ASSERT(lrp == NULL); 15356 nfs4_error_init(ep, EINTR); 15357 nfs4close_save_lost_rqst(ep->error, &lost_rqst, oop, 15358 osp, cred_otw, vp); 15359 mutex_exit(&osp->os_sync_lock); 15360 have_sync_lock = 0; 15361 (void) nfs4_start_recovery(ep, mi, vp, NULL, NULL, 15362 lost_rqst.lr_op == OP_CLOSE ? 15363 &lost_rqst : NULL, OP_CLOSE, NULL, NULL, NULL); 15364 close_failed = 1; 15365 force_close = 0; 15366 goto close_cleanup; 15367 } 15368 15369 /* 15370 * If a previous OTW call got NFS4ERR_BAD_SEQID, then 15371 * we stopped operating on the open owner's <old oo_name, old seqid> 15372 * space, which means we stopped operating on the open stream 15373 * too. So don't go OTW (as the seqid is likely bad, and the 15374 * stateid could be stale, potentially triggering a false 15375 * setclientid), and just clean up the client's internal state. 15376 */ 15377 if (osp->os_orig_oo_name != oop->oo_name) { 15378 NFS4_DEBUG(nfs4close_one_debug || nfs4_client_recov_debug, 15379 (CE_NOTE, "nfs4close_one: skip OTW close for osp %p " 15380 "oop %p due to bad seqid (orig oo_name %" PRIx64 " current " 15381 "oo_name %" PRIx64")", 15382 (void *)osp, (void *)oop, osp->os_orig_oo_name, 15383 oop->oo_name)); 15384 close_failed = 1; 15385 } 15386 15387 /* If the file failed recovery, just quit. */ 15388 mutex_enter(&rp->r_statelock); 15389 if (rp->r_flags & R4RECOVERR) { 15390 close_failed = 1; 15391 } 15392 mutex_exit(&rp->r_statelock); 15393 15394 /* 15395 * If the force close path failed to obtain start_fop 15396 * then skip the OTW close and just remove the state. 15397 */ 15398 if (close_failed) 15399 goto close_cleanup; 15400 15401 /* 15402 * Fifth, check to see if there are still mapped pages or other 15403 * opens using this open stream. If there are then we can't 15404 * close yet but we can see if an OPEN_DOWNGRADE is necessary. 15405 */ 15406 if (osp->os_open_ref_count > 0 || osp->os_mapcnt > 0) { 15407 nfs4_lost_rqst_t new_lost_rqst; 15408 bool_t needrecov = FALSE; 15409 cred_t *odg_cred_otw = NULL; 15410 seqid4 open_dg_seqid = 0; 15411 15412 if (osp->os_delegation) { 15413 /* 15414 * If this open stream was never OPENed OTW then we 15415 * surely can't DOWNGRADE it (especially since the 15416 * osp->open_stateid is really a delegation stateid 15417 * when os_delegation is 1). 15418 */ 15419 if (access_bits & FREAD) 15420 osp->os_share_acc_read--; 15421 if (access_bits & FWRITE) 15422 osp->os_share_acc_write--; 15423 osp->os_share_deny_none--; 15424 nfs4_error_zinit(ep); 15425 goto out; 15426 } 15427 nfs4_open_downgrade(access_bits, 0, oop, osp, vp, cr, 15428 lrp, ep, &odg_cred_otw, &open_dg_seqid); 15429 needrecov = nfs4_needs_recovery(ep, TRUE, mi->mi_vfsp); 15430 if (needrecov && !isrecov) { 15431 bool_t abort; 15432 nfs4_bseqid_entry_t *bsep = NULL; 15433 15434 if (!ep->error && ep->stat == NFS4ERR_BAD_SEQID) 15435 bsep = nfs4_create_bseqid_entry(oop, NULL, 15436 vp, 0, 15437 lrp ? TAG_OPEN_DG_LOST : TAG_OPEN_DG, 15438 open_dg_seqid); 15439 15440 nfs4open_dg_save_lost_rqst(ep->error, &new_lost_rqst, 15441 oop, osp, odg_cred_otw, vp, access_bits, 0); 15442 mutex_exit(&osp->os_sync_lock); 15443 have_sync_lock = 0; 15444 abort = nfs4_start_recovery(ep, mi, vp, NULL, NULL, 15445 new_lost_rqst.lr_op == OP_OPEN_DOWNGRADE ? 15446 &new_lost_rqst : NULL, OP_OPEN_DOWNGRADE, 15447 bsep, NULL, NULL); 15448 if (odg_cred_otw) 15449 crfree(odg_cred_otw); 15450 if (bsep) 15451 kmem_free(bsep, sizeof (*bsep)); 15452 15453 if (abort == TRUE) 15454 goto out; 15455 15456 if (did_start_seqid_sync) { 15457 nfs4_end_open_seqid_sync(oop); 15458 did_start_seqid_sync = 0; 15459 } 15460 open_stream_rele(osp, rp); 15461 15462 if (did_start_op) 15463 nfs4_end_fop(mi, vp, NULL, OH_CLOSE, 15464 &recov_state, FALSE); 15465 if (did_force_recovlock) 15466 nfs_rw_exit(&mi->mi_recovlock); 15467 15468 goto recov_retry; 15469 } else { 15470 if (odg_cred_otw) 15471 crfree(odg_cred_otw); 15472 } 15473 goto out; 15474 } 15475 15476 /* 15477 * If this open stream was created as the results of an open 15478 * while holding a delegation, then just release it; no need 15479 * to do an OTW close. Otherwise do a "normal" OTW close. 15480 */ 15481 if (osp->os_delegation) { 15482 nfs4close_notw(vp, osp, &have_sync_lock); 15483 nfs4_error_zinit(ep); 15484 goto out; 15485 } 15486 15487 /* 15488 * If this stream is not valid, we're done. 15489 */ 15490 if (!osp->os_valid) { 15491 nfs4_error_zinit(ep); 15492 goto out; 15493 } 15494 15495 /* 15496 * Last open or mmap ref has vanished, need to do an OTW close. 15497 * First check to see if a close is still necessary. 15498 */ 15499 if (osp->os_failed_reopen) { 15500 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 15501 "don't close OTW osp %p since reopen failed.", 15502 (void *)osp)); 15503 /* 15504 * Reopen of the open stream failed, hence the 15505 * stateid of the open stream is invalid/stale, and 15506 * sending this OTW would incorrectly cause another 15507 * round of recovery. In this case, we need to set 15508 * the 'os_valid' bit to 0 so another thread doesn't 15509 * come in and re-open this open stream before 15510 * this "closing" thread cleans up state (decrementing 15511 * the nfs4_server_t's state_ref_count and decrementing 15512 * the os_ref_count). 15513 */ 15514 osp->os_valid = 0; 15515 /* 15516 * This removes the reference obtained at OPEN; ie, 15517 * when the open stream structure was created. 15518 * 15519 * We don't have to worry about calling 'open_stream_rele' 15520 * since we our currently holding a reference to this 15521 * open stream which means the count can not go to 0 with 15522 * this decrement. 15523 */ 15524 ASSERT(osp->os_ref_count >= 2); 15525 osp->os_ref_count--; 15526 nfs4_error_zinit(ep); 15527 close_failed = 0; 15528 goto close_cleanup; 15529 } 15530 15531 ASSERT(osp->os_ref_count > 1); 15532 15533 /* 15534 * Sixth, try the CLOSE OTW. 15535 */ 15536 nfs4close_otw(rp, cred_otw, oop, osp, &retry, &did_start_seqid_sync, 15537 close_type, ep, &have_sync_lock); 15538 15539 if (ep->error == EINTR || NFS4_FRC_UNMT_ERR(ep->error, vp->v_vfsp)) { 15540 /* 15541 * Let the recovery thread be responsible for 15542 * removing the state for CLOSE. 15543 */ 15544 close_failed = 1; 15545 force_close = 0; 15546 retry = 0; 15547 } 15548 15549 /* See if we need to retry with a different cred */ 15550 if ((ep->error == EACCES || 15551 (ep->error == 0 && ep->stat == NFS4ERR_ACCESS)) && 15552 cred_otw != cr) { 15553 crfree(cred_otw); 15554 cred_otw = cr; 15555 crhold(cred_otw); 15556 retry = 1; 15557 } 15558 15559 if (ep->error || ep->stat) 15560 close_failed = 1; 15561 15562 if (retry && !isrecov && num_retries-- > 0) { 15563 if (have_sync_lock) { 15564 mutex_exit(&osp->os_sync_lock); 15565 have_sync_lock = 0; 15566 } 15567 if (did_start_seqid_sync) { 15568 nfs4_end_open_seqid_sync(oop); 15569 did_start_seqid_sync = 0; 15570 } 15571 open_stream_rele(osp, rp); 15572 15573 if (did_start_op) 15574 nfs4_end_fop(mi, vp, NULL, OH_CLOSE, 15575 &recov_state, FALSE); 15576 if (did_force_recovlock) 15577 nfs_rw_exit(&mi->mi_recovlock); 15578 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 15579 "nfs4close_one: need to retry the close " 15580 "operation")); 15581 goto recov_retry; 15582 } 15583 close_cleanup: 15584 /* 15585 * Seventh and lastly, process our results. 15586 */ 15587 if (close_failed && force_close) { 15588 /* 15589 * It's ok to drop and regrab the 'os_sync_lock' since 15590 * nfs4close_notw() will recheck to make sure the 15591 * "close"/removal of state should happen. 15592 */ 15593 if (!have_sync_lock) { 15594 mutex_enter(&osp->os_sync_lock); 15595 have_sync_lock = 1; 15596 } 15597 /* 15598 * This is last call, remove the ref on the open 15599 * stream created by open and clean everything up. 15600 */ 15601 osp->os_pending_close = 0; 15602 nfs4close_notw(vp, osp, &have_sync_lock); 15603 nfs4_error_zinit(ep); 15604 } 15605 15606 if (!close_failed) { 15607 if (have_sync_lock) { 15608 osp->os_pending_close = 0; 15609 mutex_exit(&osp->os_sync_lock); 15610 have_sync_lock = 0; 15611 } else { 15612 mutex_enter(&osp->os_sync_lock); 15613 osp->os_pending_close = 0; 15614 mutex_exit(&osp->os_sync_lock); 15615 } 15616 if (did_start_op && recov_state.rs_sp != NULL) { 15617 mutex_enter(&recov_state.rs_sp->s_lock); 15618 nfs4_dec_state_ref_count_nolock(recov_state.rs_sp, mi); 15619 mutex_exit(&recov_state.rs_sp->s_lock); 15620 } else { 15621 nfs4_dec_state_ref_count(mi); 15622 } 15623 nfs4_error_zinit(ep); 15624 } 15625 15626 out: 15627 if (have_sync_lock) 15628 mutex_exit(&osp->os_sync_lock); 15629 if (did_start_op) 15630 nfs4_end_fop(mi, vp, NULL, OH_CLOSE, &recov_state, 15631 recovonly ? TRUE : FALSE); 15632 if (did_force_recovlock) 15633 nfs_rw_exit(&mi->mi_recovlock); 15634 if (cred_otw) 15635 crfree(cred_otw); 15636 if (osp) 15637 open_stream_rele(osp, rp); 15638 if (oop) { 15639 if (did_start_seqid_sync) 15640 nfs4_end_open_seqid_sync(oop); 15641 open_owner_rele(oop); 15642 } 15643 } 15644 15645 /* 15646 * Convert information returned by the server in the LOCK4denied 15647 * structure to the form required by fcntl. 15648 */ 15649 static void 15650 denied_to_flk(LOCK4denied *lockt_denied, flock64_t *flk, LOCKT4args *lockt_args) 15651 { 15652 nfs4_lo_name_t *lo; 15653 15654 #ifdef DEBUG 15655 if (denied_to_flk_debug) { 15656 lockt_denied_debug = lockt_denied; 15657 debug_enter("lockt_denied"); 15658 } 15659 #endif 15660 15661 flk->l_type = lockt_denied->locktype == READ_LT ? F_RDLCK : F_WRLCK; 15662 flk->l_whence = 0; /* aka SEEK_SET */ 15663 flk->l_start = lockt_denied->offset; 15664 flk->l_len = lockt_denied->length; 15665 15666 /* 15667 * If the blocking clientid matches our client id, then we can 15668 * interpret the lockowner (since we built it). If not, then 15669 * fabricate a sysid and pid. Note that the l_sysid field 15670 * in *flk already has the local sysid. 15671 */ 15672 15673 if (lockt_denied->owner.clientid == lockt_args->owner.clientid) { 15674 15675 if (lockt_denied->owner.owner_len == sizeof (*lo)) { 15676 lo = (nfs4_lo_name_t *) 15677 lockt_denied->owner.owner_val; 15678 15679 flk->l_pid = lo->ln_pid; 15680 } else { 15681 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 15682 "denied_to_flk: bad lock owner length\n")); 15683 15684 flk->l_pid = lo_to_pid(&lockt_denied->owner); 15685 } 15686 } else { 15687 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 15688 "denied_to_flk: foreign clientid\n")); 15689 15690 /* 15691 * Construct a new sysid which should be different from 15692 * sysids of other systems. 15693 */ 15694 15695 flk->l_sysid++; 15696 flk->l_pid = lo_to_pid(&lockt_denied->owner); 15697 } 15698 } 15699 15700 static pid_t 15701 lo_to_pid(lock_owner4 *lop) 15702 { 15703 pid_t pid = 0; 15704 uchar_t *cp; 15705 int i; 15706 15707 cp = (uchar_t *)&lop->clientid; 15708 15709 for (i = 0; i < sizeof (lop->clientid); i++) 15710 pid += (pid_t)*cp++; 15711 15712 cp = (uchar_t *)lop->owner_val; 15713 15714 for (i = 0; i < lop->owner_len; i++) 15715 pid += (pid_t)*cp++; 15716 15717 return (pid); 15718 } 15719 15720 /* 15721 * Given a lock pointer, returns the length of that lock. 15722 * "end" is the last locked offset the "l_len" covers from 15723 * the start of the lock. 15724 */ 15725 static off64_t 15726 lock_to_end(flock64_t *lock) 15727 { 15728 off64_t lock_end; 15729 15730 if (lock->l_len == 0) 15731 lock_end = (off64_t)MAXEND; 15732 else 15733 lock_end = lock->l_start + lock->l_len - 1; 15734 15735 return (lock_end); 15736 } 15737 15738 /* 15739 * Given the end of a lock, it will return you the length "l_len" for that lock. 15740 */ 15741 static off64_t 15742 end_to_len(off64_t start, off64_t end) 15743 { 15744 off64_t lock_len; 15745 15746 ASSERT(end >= start); 15747 if (end == MAXEND) 15748 lock_len = 0; 15749 else 15750 lock_len = end - start + 1; 15751 15752 return (lock_len); 15753 } 15754 15755 /* 15756 * On given end for a lock it determines if it is the last locked offset 15757 * or not, if so keeps it as is, else adds one to return the length for 15758 * valid start. 15759 */ 15760 static off64_t 15761 start_check(off64_t x) 15762 { 15763 if (x == MAXEND) 15764 return (x); 15765 else 15766 return (x + 1); 15767 } 15768 15769 /* 15770 * See if these two locks overlap, and if so return 1; 15771 * otherwise, return 0. 15772 */ 15773 static int 15774 locks_intersect(flock64_t *llfp, flock64_t *curfp) 15775 { 15776 off64_t llfp_end, curfp_end; 15777 15778 llfp_end = lock_to_end(llfp); 15779 curfp_end = lock_to_end(curfp); 15780 15781 if (((llfp_end >= curfp->l_start) && 15782 (llfp->l_start <= curfp->l_start)) || 15783 ((curfp->l_start <= llfp->l_start) && (curfp_end >= llfp->l_start))) 15784 return (1); 15785 return (0); 15786 } 15787 15788 /* 15789 * Determine what the intersecting lock region is, and add that to the 15790 * 'nl_llpp' locklist in increasing order (by l_start). 15791 */ 15792 static void 15793 nfs4_add_lock_range(flock64_t *lost_flp, flock64_t *local_flp, 15794 locklist_t **nl_llpp, vnode_t *vp) 15795 { 15796 locklist_t *intersect_llp, *tmp_fllp, *cur_fllp; 15797 off64_t lost_flp_end, local_flp_end, len, start; 15798 15799 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, "nfs4_add_lock_range:")); 15800 15801 if (!locks_intersect(lost_flp, local_flp)) 15802 return; 15803 15804 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, "nfs4_add_lock_range: " 15805 "locks intersect")); 15806 15807 lost_flp_end = lock_to_end(lost_flp); 15808 local_flp_end = lock_to_end(local_flp); 15809 15810 /* Find the starting point of the intersecting region */ 15811 if (local_flp->l_start > lost_flp->l_start) 15812 start = local_flp->l_start; 15813 else 15814 start = lost_flp->l_start; 15815 15816 /* Find the lenght of the intersecting region */ 15817 if (lost_flp_end < local_flp_end) 15818 len = end_to_len(start, lost_flp_end); 15819 else 15820 len = end_to_len(start, local_flp_end); 15821 15822 /* 15823 * Prepare the flock structure for the intersection found and insert 15824 * it into the new list in increasing l_start order. This list contains 15825 * intersections of locks registered by the client with the local host 15826 * and the lost lock. 15827 * The lock type of this lock is the same as that of the local_flp. 15828 */ 15829 intersect_llp = (locklist_t *)kmem_alloc(sizeof (locklist_t), KM_SLEEP); 15830 intersect_llp->ll_flock.l_start = start; 15831 intersect_llp->ll_flock.l_len = len; 15832 intersect_llp->ll_flock.l_type = local_flp->l_type; 15833 intersect_llp->ll_flock.l_pid = local_flp->l_pid; 15834 intersect_llp->ll_flock.l_sysid = local_flp->l_sysid; 15835 intersect_llp->ll_flock.l_whence = 0; /* aka SEEK_SET */ 15836 intersect_llp->ll_vp = vp; 15837 15838 tmp_fllp = *nl_llpp; 15839 cur_fllp = NULL; 15840 while (tmp_fllp != NULL && tmp_fllp->ll_flock.l_start < 15841 intersect_llp->ll_flock.l_start) { 15842 cur_fllp = tmp_fllp; 15843 tmp_fllp = tmp_fllp->ll_next; 15844 } 15845 if (cur_fllp == NULL) { 15846 /* first on the list */ 15847 intersect_llp->ll_next = *nl_llpp; 15848 *nl_llpp = intersect_llp; 15849 } else { 15850 intersect_llp->ll_next = cur_fllp->ll_next; 15851 cur_fllp->ll_next = intersect_llp; 15852 } 15853 15854 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, "nfs4_add_lock_range: " 15855 "created lock region: start %"PRIx64" end %"PRIx64" : %s\n", 15856 intersect_llp->ll_flock.l_start, 15857 intersect_llp->ll_flock.l_start + intersect_llp->ll_flock.l_len, 15858 intersect_llp->ll_flock.l_type == F_RDLCK ? "READ" : "WRITE")); 15859 } 15860 15861 /* 15862 * Our local locking current state is potentially different than 15863 * what the NFSv4 server thinks we have due to a lost lock that was 15864 * resent and then received. We need to reset our "NFSv4" locking 15865 * state to match the current local locking state for this pid since 15866 * that is what the user/application sees as what the world is. 15867 * 15868 * We cannot afford to drop the open/lock seqid sync since then we can 15869 * get confused about what the current local locking state "is" versus 15870 * "was". 15871 * 15872 * If we are unable to fix up the locks, we send SIGLOST to the affected 15873 * process. This is not done if the filesystem has been forcibly 15874 * unmounted, in case the process has already exited and a new process 15875 * exists with the same pid. 15876 */ 15877 static void 15878 nfs4_reinstitute_local_lock_state(vnode_t *vp, flock64_t *lost_flp, cred_t *cr, 15879 nfs4_lock_owner_t *lop) 15880 { 15881 locklist_t *locks, *llp, *ri_llp, *tmp_llp; 15882 mntinfo4_t *mi = VTOMI4(vp); 15883 const int cmd = F_SETLK; 15884 off64_t cur_start, llp_ll_flock_end, lost_flp_end; 15885 flock64_t ul_fl; 15886 15887 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, 15888 "nfs4_reinstitute_local_lock_state")); 15889 15890 /* 15891 * Find active locks for this vp from the local locking code. 15892 * Scan through this list and find out the locks that intersect with 15893 * the lost lock. Once we find the lock that intersects, add the 15894 * intersection area as a new lock to a new list "ri_llp". The lock 15895 * type of the intersection region lock added to ri_llp is the same 15896 * as that found in the active lock list, "list". The intersecting 15897 * region locks are added to ri_llp in increasing l_start order. 15898 */ 15899 ASSERT(nfs_zone() == mi->mi_zone); 15900 15901 locks = flk_active_locks_for_vp(vp); 15902 ri_llp = NULL; 15903 15904 for (llp = locks; llp != NULL; llp = llp->ll_next) { 15905 ASSERT(llp->ll_vp == vp); 15906 /* 15907 * Pick locks that belong to this pid/lockowner 15908 */ 15909 if (llp->ll_flock.l_pid != lost_flp->l_pid) 15910 continue; 15911 15912 nfs4_add_lock_range(lost_flp, &llp->ll_flock, &ri_llp, vp); 15913 } 15914 15915 /* 15916 * Now we have the list of intersections with the lost lock. These are 15917 * the locks that were/are active before the server replied to the 15918 * last/lost lock. Issue these locks to the server here. Playing these 15919 * locks to the server will re-establish aur current local locking state 15920 * with the v4 server. 15921 * If we get an error, send SIGLOST to the application for that lock. 15922 */ 15923 15924 for (llp = ri_llp; llp != NULL; llp = llp->ll_next) { 15925 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, 15926 "nfs4_reinstitute_local_lock_state: need to issue " 15927 "flock: [%"PRIx64" - %"PRIx64"] : %s", 15928 llp->ll_flock.l_start, 15929 llp->ll_flock.l_start + llp->ll_flock.l_len, 15930 llp->ll_flock.l_type == F_RDLCK ? "READ" : 15931 llp->ll_flock.l_type == F_WRLCK ? "WRITE" : "INVALID")); 15932 /* 15933 * No need to relock what we already have 15934 */ 15935 if (llp->ll_flock.l_type == lost_flp->l_type) 15936 continue; 15937 15938 push_reinstate(vp, cmd, &llp->ll_flock, cr, lop); 15939 } 15940 15941 /* 15942 * Now keeping the start of the lost lock as our reference parse the 15943 * newly created ri_llp locklist to find the ranges that we have locked 15944 * with the v4 server but not in the current local locking. We need 15945 * to unlock these ranges. 15946 * These ranges can also be reffered to as those ranges, where the lost 15947 * lock does not overlap with the locks in the ri_llp but are locked 15948 * since the server replied to the lost lock. 15949 */ 15950 cur_start = lost_flp->l_start; 15951 lost_flp_end = lock_to_end(lost_flp); 15952 15953 ul_fl.l_type = F_UNLCK; 15954 ul_fl.l_whence = 0; /* aka SEEK_SET */ 15955 ul_fl.l_sysid = lost_flp->l_sysid; 15956 ul_fl.l_pid = lost_flp->l_pid; 15957 15958 for (llp = ri_llp; llp != NULL; llp = llp->ll_next) { 15959 llp_ll_flock_end = lock_to_end(&llp->ll_flock); 15960 15961 if (llp->ll_flock.l_start <= cur_start) { 15962 cur_start = start_check(llp_ll_flock_end); 15963 continue; 15964 } 15965 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, 15966 "nfs4_reinstitute_local_lock_state: " 15967 "UNLOCK [%"PRIx64" - %"PRIx64"]", 15968 cur_start, llp->ll_flock.l_start)); 15969 15970 ul_fl.l_start = cur_start; 15971 ul_fl.l_len = end_to_len(cur_start, 15972 (llp->ll_flock.l_start - 1)); 15973 15974 push_reinstate(vp, cmd, &ul_fl, cr, lop); 15975 cur_start = start_check(llp_ll_flock_end); 15976 } 15977 15978 /* 15979 * In the case where the lost lock ends after all intersecting locks, 15980 * unlock the last part of the lost lock range. 15981 */ 15982 if (cur_start != start_check(lost_flp_end)) { 15983 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, 15984 "nfs4_reinstitute_local_lock_state: UNLOCK end of the " 15985 "lost lock region [%"PRIx64" - %"PRIx64"]", 15986 cur_start, lost_flp->l_start + lost_flp->l_len)); 15987 15988 ul_fl.l_start = cur_start; 15989 /* 15990 * Is it an to-EOF lock? if so unlock till the end 15991 */ 15992 if (lost_flp->l_len == 0) 15993 ul_fl.l_len = 0; 15994 else 15995 ul_fl.l_len = start_check(lost_flp_end) - cur_start; 15996 15997 push_reinstate(vp, cmd, &ul_fl, cr, lop); 15998 } 15999 16000 if (locks != NULL) 16001 flk_free_locklist(locks); 16002 16003 /* Free up our newly created locklist */ 16004 for (llp = ri_llp; llp != NULL; ) { 16005 tmp_llp = llp->ll_next; 16006 kmem_free(llp, sizeof (locklist_t)); 16007 llp = tmp_llp; 16008 } 16009 16010 /* 16011 * Now return back to the original calling nfs4frlock() 16012 * and let us naturally drop our seqid syncs. 16013 */ 16014 } 16015 16016 /* 16017 * Create a lost state record for the given lock reinstantiation request 16018 * and push it onto the lost state queue. 16019 */ 16020 static void 16021 push_reinstate(vnode_t *vp, int cmd, flock64_t *flk, cred_t *cr, 16022 nfs4_lock_owner_t *lop) 16023 { 16024 nfs4_lost_rqst_t req; 16025 nfs_lock_type4 locktype; 16026 nfs4_error_t e = { EINTR, NFS4_OK, RPC_SUCCESS }; 16027 16028 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 16029 16030 locktype = flk_to_locktype(cmd, flk->l_type); 16031 nfs4frlock_save_lost_rqst(NFS4_LCK_CTYPE_REINSTATE, EINTR, locktype, 16032 NULL, NULL, lop, flk, &req, cr, vp); 16033 (void) nfs4_start_recovery(&e, VTOMI4(vp), vp, NULL, NULL, 16034 (req.lr_op == OP_LOCK || req.lr_op == OP_LOCKU) ? 16035 &req : NULL, flk->l_type == F_UNLCK ? OP_LOCKU : OP_LOCK, 16036 NULL, NULL, NULL); 16037 } 16038