xref: /titanic_44/usr/src/uts/common/fs/nfs/nfs4_vfsops.c (revision 159eb9e1f62c284a23f12ecf781cdf352c9158f8)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License, Version 1.0 only
6  * (the "License").  You may not use this file except in compliance
7  * with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or http://www.opensolaris.org/os/licensing.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 /*
23  * Copyright 2005 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 /*
28  *	Copyright (c) 1983,1984,1985,1986,1987,1988,1989  AT&T.
29  *	All Rights Reserved
30  */
31 
32 #pragma ident	"%Z%%M%	%I%	%E% SMI"
33 
34 #include <sys/param.h>
35 #include <sys/types.h>
36 #include <sys/systm.h>
37 #include <sys/cred.h>
38 #include <sys/vfs.h>
39 #include <sys/vnode.h>
40 #include <sys/pathname.h>
41 #include <sys/sysmacros.h>
42 #include <sys/kmem.h>
43 #include <sys/mkdev.h>
44 #include <sys/mount.h>
45 #include <sys/statvfs.h>
46 #include <sys/errno.h>
47 #include <sys/debug.h>
48 #include <sys/cmn_err.h>
49 #include <sys/utsname.h>
50 #include <sys/bootconf.h>
51 #include <sys/modctl.h>
52 #include <sys/acl.h>
53 #include <sys/flock.h>
54 #include <sys/time.h>
55 #include <sys/disp.h>
56 #include <sys/policy.h>
57 #include <sys/socket.h>
58 #include <sys/netconfig.h>
59 #include <sys/dnlc.h>
60 #include <sys/list.h>
61 
62 #include <rpc/types.h>
63 #include <rpc/auth.h>
64 #include <rpc/rpcsec_gss.h>
65 #include <rpc/clnt.h>
66 
67 #include <nfs/nfs.h>
68 #include <nfs/nfs_clnt.h>
69 #include <nfs/mount.h>
70 #include <nfs/nfs_acl.h>
71 
72 #include <fs/fs_subr.h>
73 
74 #include <nfs/nfs4.h>
75 #include <nfs/rnode4.h>
76 #include <nfs/nfs4_clnt.h>
77 
78 /*
79  * Arguments passed to thread to free data structures from forced unmount.
80  */
81 
82 typedef struct {
83 	vfs_t *fm_vfsp;
84 	cred_t *fm_cr;
85 } freemountargs_t;
86 
87 static void	async_free_mount(vfs_t *, cred_t *);
88 static void	nfs4_free_mount(vfs_t *, cred_t *);
89 static void	nfs4_free_mount_thread(freemountargs_t *);
90 static int nfs4_chkdup_servinfo4(servinfo4_t *, servinfo4_t *);
91 
92 /*
93  * From rpcsec module (common/rpcsec).
94  */
95 extern int sec_clnt_loadinfo(struct sec_data *, struct sec_data **, model_t);
96 extern void sec_clnt_freeinfo(struct sec_data *);
97 
98 /*
99  * The order and contents of this structure must be kept in sync with that of
100  * rfsreqcnt_v4_tmpl in nfs_stats.c
101  */
102 static char *rfsnames_v4[] = {
103 	"null", "compound", "reserved",	"access", "close", "commit", "create",
104 	"delegpurge", "delegreturn", "getattr",	"getfh", "link", "lock",
105 	"lockt", "locku", "lookup", "lookupp", "nverify", "open", "openattr",
106 	"open_confirm",	"open_downgrade", "putfh", "putpubfh", "putrootfh",
107 	"read", "readdir", "readlink", "remove", "rename", "renew",
108 	"restorefh", "savefh", "secinfo", "setattr", "setclientid",
109 	"setclientid_confirm", "verify", "write"
110 };
111 
112 /*
113  * nfs4_max_mount_retry is the number of times the client will redrive
114  * a mount compound before giving up and returning failure.  The intent
115  * is to redrive mount compounds which fail NFS4ERR_STALE so that
116  * if a component of the server path being mounted goes stale, it can
117  * "recover" by redriving the mount compund (LOOKUP ops).  This recovery
118  * code is needed outside of the recovery framework because mount is a
119  * special case.  The client doesn't create vnodes/rnodes for components
120  * of the server path being mounted.  The recovery code recovers real
121  * client objects, not STALE FHs which map to components of the server
122  * path being mounted.
123  *
124  * We could just fail the mount on the first time, but that would
125  * instantly trigger failover (from nfs4_mount), and the client should
126  * try to re-lookup the STALE FH before doing failover.  The easiest
127  * way to "re-lookup" is to simply redrive the mount compound.
128  */
129 static int nfs4_max_mount_retry = 2;
130 
131 /*
132  * nfs4 vfs operations.
133  */
134 static int	nfs4_mount(vfs_t *, vnode_t *, struct mounta *, cred_t *);
135 static int	nfs4_unmount(vfs_t *, int, cred_t *);
136 static int	nfs4_root(vfs_t *, vnode_t **);
137 static int	nfs4_statvfs(vfs_t *, struct statvfs64 *);
138 static int	nfs4_sync(vfs_t *, short, cred_t *);
139 static int	nfs4_vget(vfs_t *, vnode_t **, fid_t *);
140 static int	nfs4_mountroot(vfs_t *, whymountroot_t);
141 static void	nfs4_freevfs(vfs_t *);
142 
143 static int	nfs4rootvp(vnode_t **, vfs_t *, struct servinfo4 *,
144 		    int, cred_t *, zone_t *);
145 
146 vfsops_t	*nfs4_vfsops;
147 
148 int nfs4_vfsinit(void);
149 void nfs4_vfsfini(void);
150 static void nfs4setclientid_init(void);
151 static void nfs4setclientid_fini(void);
152 static void nfs4setclientid_otw(mntinfo4_t *, servinfo4_t *,  cred_t *,
153 		struct nfs4_server *, nfs4_error_t *, int *);
154 static void	destroy_nfs4_server(nfs4_server_t *);
155 static void	remove_mi(nfs4_server_t *, mntinfo4_t *);
156 
157 /*
158  * Initialize the vfs structure
159  */
160 
161 static int nfs4fstyp;
162 
163 
164 /*
165  * Debug variable to check for rdma based
166  * transport startup and cleanup. Controlled
167  * through /etc/system. Off by default.
168  */
169 extern int rdma_debug;
170 
171 int
172 nfs4init(int fstyp, char *name)
173 {
174 	static const fs_operation_def_t nfs4_vfsops_template[] = {
175 		VFSNAME_MOUNT, nfs4_mount,
176 		VFSNAME_UNMOUNT, nfs4_unmount,
177 		VFSNAME_ROOT, nfs4_root,
178 		VFSNAME_STATVFS, nfs4_statvfs,
179 		VFSNAME_SYNC, (fs_generic_func_p) nfs4_sync,
180 		VFSNAME_VGET, nfs4_vget,
181 		VFSNAME_MOUNTROOT, nfs4_mountroot,
182 		VFSNAME_FREEVFS, (fs_generic_func_p)nfs4_freevfs,
183 		NULL, NULL
184 	};
185 	int error;
186 
187 	error = vfs_setfsops(fstyp, nfs4_vfsops_template, &nfs4_vfsops);
188 	if (error != 0) {
189 		zcmn_err(GLOBAL_ZONEID, CE_WARN,
190 		    "nfs4init: bad vfs ops template");
191 		return (error);
192 	}
193 
194 	error = vn_make_ops(name, nfs4_vnodeops_template, &nfs4_vnodeops);
195 	if (error != 0) {
196 		(void) vfs_freevfsops_by_type(fstyp);
197 		zcmn_err(GLOBAL_ZONEID, CE_WARN,
198 		    "nfs4init: bad vnode ops template");
199 		return (error);
200 	}
201 
202 	nfs4fstyp = fstyp;
203 
204 	(void) nfs4_vfsinit();
205 
206 	(void) nfs4_init_dot_entries();
207 
208 	return (0);
209 }
210 
211 void
212 nfs4fini(void)
213 {
214 	(void) nfs4_destroy_dot_entries();
215 	nfs4_vfsfini();
216 }
217 
218 /*
219  * Create a new sec_data structure to store AUTH_DH related data:
220  * netname, syncaddr, knetconfig. There is no AUTH_F_RPCTIMESYNC
221  * flag set for NFS V4 since we are avoiding to contact the rpcbind
222  * daemon and is using the IP time service (IPPORT_TIMESERVER).
223  *
224  * sec_data can be freed by sec_clnt_freeinfo().
225  */
226 struct sec_data *
227 create_authdh_data(char *netname, int nlen, struct netbuf *syncaddr,
228 		struct knetconfig *knconf) {
229 	struct sec_data *secdata;
230 	dh_k4_clntdata_t *data;
231 	char *pf, *p;
232 
233 	if (syncaddr == NULL || syncaddr->buf == NULL || nlen == 0)
234 		return (NULL);
235 
236 	secdata = kmem_alloc(sizeof (*secdata), KM_SLEEP);
237 	secdata->flags = 0;
238 
239 	data = kmem_alloc(sizeof (*data), KM_SLEEP);
240 
241 	data->syncaddr.maxlen = syncaddr->maxlen;
242 	data->syncaddr.len = syncaddr->len;
243 	data->syncaddr.buf = (char *)kmem_alloc(syncaddr->len, KM_SLEEP);
244 	bcopy(syncaddr->buf, data->syncaddr.buf, syncaddr->len);
245 
246 	/*
247 	 * duplicate the knconf information for the
248 	 * new opaque data.
249 	 */
250 	data->knconf = kmem_alloc(sizeof (*knconf), KM_SLEEP);
251 	*data->knconf = *knconf;
252 	pf = kmem_alloc(KNC_STRSIZE, KM_SLEEP);
253 	p = kmem_alloc(KNC_STRSIZE, KM_SLEEP);
254 	bcopy(knconf->knc_protofmly, pf, KNC_STRSIZE);
255 	bcopy(knconf->knc_proto, p, KNC_STRSIZE);
256 	data->knconf->knc_protofmly = pf;
257 	data->knconf->knc_proto = p;
258 
259 	/* move server netname to the sec_data structure */
260 	data->netname = kmem_alloc(nlen, KM_SLEEP);
261 	bcopy(netname, data->netname, nlen);
262 	data->netnamelen = (int)nlen;
263 
264 	secdata->secmod = AUTH_DH;
265 	secdata->rpcflavor = AUTH_DH;
266 	secdata->data = (caddr_t)data;
267 
268 	return (secdata);
269 }
270 
271 static int
272 nfs4_chkdup_servinfo4(servinfo4_t *svp_head, servinfo4_t *svp)
273 {
274 	servinfo4_t *si;
275 
276 	/*
277 	 * Iterate over the servinfo4 list to make sure
278 	 * we do not have a duplicate. Skip any servinfo4
279 	 * that has been marked "NOT IN USE"
280 	 */
281 	for (si = svp_head; si; si = si->sv_next) {
282 		(void) nfs_rw_enter_sig(&si->sv_lock, RW_READER, 0);
283 		if (si->sv_flags & SV4_NOTINUSE) {
284 			nfs_rw_exit(&si->sv_lock);
285 			continue;
286 		}
287 		nfs_rw_exit(&si->sv_lock);
288 		if (si == svp)
289 			continue;
290 		if (si->sv_addr.len == svp->sv_addr.len &&
291 		    strcmp(si->sv_knconf->knc_protofmly,
292 			svp->sv_knconf->knc_protofmly) == 0 &&
293 		    bcmp(si->sv_addr.buf, svp->sv_addr.buf,
294 			si->sv_addr.len) == 0) {
295 			/* it's a duplicate */
296 			return (1);
297 		}
298 	}
299 	/* it's not a duplicate */
300 	return (0);
301 }
302 
303 /*
304  * nfs mount vfsop
305  * Set up mount info record and attach it to vfs struct.
306  */
307 static int
308 nfs4_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr)
309 {
310 	char *data = uap->dataptr;
311 	int error;
312 	vnode_t *rtvp;			/* the server's root */
313 	mntinfo4_t *mi;			/* mount info, pointed at by vfs */
314 	size_t hlen;			/* length of hostname */
315 	size_t nlen;			/* length of netname */
316 	char netname[MAXNETNAMELEN+1];	/* server's netname */
317 	struct netbuf addr;		/* server's address */
318 	struct netbuf syncaddr;		/* AUTH_DES time sync addr */
319 	struct knetconfig *knconf;	/* transport knetconfig structure */
320 	struct knetconfig *rdma_knconf;	/* rdma transport structure */
321 	rnode4_t *rp;
322 	struct servinfo4 *svp;		/* nfs server info */
323 	struct servinfo4 *svp_tail = NULL; /* previous nfs server info */
324 	struct servinfo4 *svp_head;	/* first nfs server info */
325 	struct servinfo4 *svp_2ndlast;	/* 2nd last in server info list */
326 	struct sec_data *secdata;	/* security data */
327 	STRUCT_DECL(nfs_args, args);	/* nfs mount arguments */
328 	STRUCT_DECL(knetconfig, knconf_tmp);
329 	STRUCT_DECL(netbuf, addr_tmp);
330 	int flags, addr_type;
331 	char *p, *pf;
332 	struct pathname pn;
333 	char *userbufptr;
334 	zone_t *zone = curproc->p_zone;
335 	nfs4_error_t n4e;
336 
337 	if (secpolicy_fs_mount(cr, mvp, vfsp) != 0)
338 		return (EPERM);
339 	if (mvp->v_type != VDIR)
340 		return (ENOTDIR);
341 	/*
342 	 * get arguments
343 	 *
344 	 * nfs_args is now versioned and is extensible, so
345 	 * uap->datalen might be different from sizeof (args)
346 	 * in a compatible situation.
347 	 */
348 more:
349 	STRUCT_INIT(args, get_udatamodel());
350 	bzero(STRUCT_BUF(args), SIZEOF_STRUCT(nfs_args, DATAMODEL_NATIVE));
351 	if (copyin(data, STRUCT_BUF(args), MIN(uap->datalen,
352 	    STRUCT_SIZE(args))))
353 		return (EFAULT);
354 
355 	flags = STRUCT_FGET(args, flags);
356 
357 	/*
358 	 * If the request changes the locking type, disallow the remount,
359 	 * because it's questionable whether we can transfer the
360 	 * locking state correctly.
361 	 */
362 	if (uap->flags & MS_REMOUNT) {
363 		if ((mi = VFTOMI4(vfsp)) != NULL) {
364 			uint_t new_mi_llock;
365 			uint_t old_mi_llock;
366 
367 			new_mi_llock = (flags & NFSMNT_LLOCK) ? 1 : 0;
368 			old_mi_llock = (mi->mi_flags & MI4_LLOCK) ? 1 : 0;
369 			if (old_mi_llock != new_mi_llock)
370 				return (EBUSY);
371 		}
372 		return (0);
373 	}
374 
375 	mutex_enter(&mvp->v_lock);
376 	if (!(uap->flags & MS_OVERLAY) &&
377 	    (mvp->v_count != 1 || (mvp->v_flag & VROOT))) {
378 		mutex_exit(&mvp->v_lock);
379 		return (EBUSY);
380 	}
381 	mutex_exit(&mvp->v_lock);
382 
383 	/* make sure things are zeroed for errout: */
384 	rtvp = NULL;
385 	mi = NULL;
386 	addr.buf = NULL;
387 	syncaddr.buf = NULL;
388 	secdata = NULL;
389 
390 	/*
391 	 * A valid knetconfig structure is required.
392 	 */
393 	if (!(flags & NFSMNT_KNCONF))
394 		return (EINVAL);
395 
396 	/*
397 	 * Allocate a servinfo4 struct.
398 	 */
399 	svp = kmem_zalloc(sizeof (*svp), KM_SLEEP);
400 	nfs_rw_init(&svp->sv_lock, NULL, RW_DEFAULT, NULL);
401 	if (svp_tail) {
402 		svp_2ndlast = svp_tail;
403 		svp_tail->sv_next = svp;
404 	} else {
405 		svp_head = svp;
406 		svp_2ndlast = svp;
407 	}
408 
409 	svp_tail = svp;
410 
411 	/*
412 	 * Allocate space for a knetconfig structure and
413 	 * its strings and copy in from user-land.
414 	 */
415 	knconf = kmem_zalloc(sizeof (*knconf), KM_SLEEP);
416 	svp->sv_knconf = knconf;
417 	STRUCT_INIT(knconf_tmp, get_udatamodel());
418 	if (copyin(STRUCT_FGETP(args, knconf), STRUCT_BUF(knconf_tmp),
419 	    STRUCT_SIZE(knconf_tmp))) {
420 		sv4_free(svp_head);
421 		return (EFAULT);
422 	}
423 
424 	knconf->knc_semantics = STRUCT_FGET(knconf_tmp, knc_semantics);
425 	knconf->knc_protofmly = STRUCT_FGETP(knconf_tmp, knc_protofmly);
426 	knconf->knc_proto = STRUCT_FGETP(knconf_tmp, knc_proto);
427 	if (get_udatamodel() != DATAMODEL_LP64) {
428 		knconf->knc_rdev = expldev(STRUCT_FGET(knconf_tmp, knc_rdev));
429 	} else {
430 		knconf->knc_rdev = STRUCT_FGET(knconf_tmp, knc_rdev);
431 	}
432 
433 	pf = kmem_alloc(KNC_STRSIZE, KM_SLEEP);
434 	p = kmem_alloc(KNC_STRSIZE, KM_SLEEP);
435 	error = copyinstr(knconf->knc_protofmly, pf, KNC_STRSIZE, NULL);
436 	if (error) {
437 		kmem_free(pf, KNC_STRSIZE);
438 		kmem_free(p, KNC_STRSIZE);
439 		sv4_free(svp_head);
440 		return (error);
441 	}
442 	error = copyinstr(knconf->knc_proto, p, KNC_STRSIZE, NULL);
443 	if (error) {
444 		kmem_free(pf, KNC_STRSIZE);
445 		kmem_free(p, KNC_STRSIZE);
446 		sv4_free(svp_head);
447 		return (error);
448 	}
449 	if (strcmp(p, NC_UDP) == 0) {
450 		kmem_free(pf, KNC_STRSIZE);
451 		kmem_free(p, KNC_STRSIZE);
452 		sv4_free(svp_head);
453 		return (ENOTSUP);
454 	}
455 	knconf->knc_protofmly = pf;
456 	knconf->knc_proto = p;
457 
458 	/*
459 	 * Get server address
460 	 */
461 	STRUCT_INIT(addr_tmp, get_udatamodel());
462 	if (copyin(STRUCT_FGETP(args, addr), STRUCT_BUF(addr_tmp),
463 	    STRUCT_SIZE(addr_tmp))) {
464 		error = EFAULT;
465 		goto errout;
466 	}
467 
468 	userbufptr = addr.buf = STRUCT_FGETP(addr_tmp, buf);
469 	addr.len = STRUCT_FGET(addr_tmp, len);
470 	addr.buf = kmem_alloc(addr.len, KM_SLEEP);
471 	addr.maxlen = addr.len;
472 	if (copyin(userbufptr, addr.buf, addr.len)) {
473 		kmem_free(addr.buf, addr.len);
474 		error = EFAULT;
475 		goto errout;
476 	}
477 
478 	svp->sv_addr = addr;
479 
480 	/*
481 	 * Get the root fhandle
482 	 */
483 	error = pn_get(STRUCT_FGETP(args, fh), UIO_USERSPACE, &pn);
484 
485 	if (error)
486 		goto errout;
487 
488 	/* Volatile fh: keep server paths, so use actual-size strings */
489 	svp->sv_path = kmem_alloc(pn.pn_pathlen + 1, KM_SLEEP);
490 	bcopy(pn.pn_path, svp->sv_path, pn.pn_pathlen);
491 	svp->sv_path[pn.pn_pathlen] = '\0';
492 	svp->sv_pathlen = pn.pn_pathlen + 1;
493 	pn_free(&pn);
494 
495 	/*
496 	 * Get server's hostname
497 	 */
498 	if (flags & NFSMNT_HOSTNAME) {
499 		error = copyinstr(STRUCT_FGETP(args, hostname),
500 				netname, sizeof (netname), &hlen);
501 		if (error)
502 			goto errout;
503 	} else {
504 		char *p = "unknown-host";
505 		hlen = strlen(p) + 1;
506 		(void) strcpy(netname, p);
507 	}
508 	svp->sv_hostnamelen = hlen;
509 	svp->sv_hostname = kmem_alloc(svp->sv_hostnamelen, KM_SLEEP);
510 	(void) strcpy(svp->sv_hostname, netname);
511 
512 	/*
513 	 * RDMA MOUNT SUPPORT FOR NFS v4.
514 	 * Establish, is it possible to use RDMA, if so overload the
515 	 * knconf with rdma specific knconf and free the orignal knconf.
516 	 */
517 	if ((flags & NFSMNT_TRYRDMA) || (flags & NFSMNT_DORDMA)) {
518 		/*
519 		 * Determine the addr type for RDMA, IPv4 or v6.
520 		 */
521 		if (strcmp(svp->sv_knconf->knc_protofmly, NC_INET) == 0)
522 			addr_type = AF_INET;
523 		else if (strcmp(svp->sv_knconf->knc_protofmly, NC_INET6) == 0)
524 			addr_type = AF_INET6;
525 
526 		if (rdma_reachable(addr_type, &svp->sv_addr,
527 			&rdma_knconf) == 0) {
528 			/*
529 			 * If successful, hijack the orignal knconf and
530 			 * replace with the new one, depending on the flags.
531 			 */
532 			svp->sv_origknconf = svp->sv_knconf;
533 			svp->sv_knconf = rdma_knconf;
534 			knconf = rdma_knconf;
535 		} else {
536 			if (flags & NFSMNT_TRYRDMA) {
537 #ifdef	DEBUG
538 				if (rdma_debug)
539 					zcmn_err(getzoneid(), CE_WARN,
540 					    "no RDMA onboard, revert\n");
541 #endif
542 			}
543 
544 			if (flags & NFSMNT_DORDMA) {
545 				/*
546 				 * If proto=rdma is specified and no RDMA
547 				 * path to this server is avialable then
548 				 * ditch this server.
549 				 * This is not included in the mountable
550 				 * server list or the replica list.
551 				 * Check if more servers are specified;
552 				 * Failover case, otherwise bail out of mount.
553 				 */
554 				if (STRUCT_FGET(args, nfs_args_ext) ==
555 				    NFS_ARGS_EXTB && STRUCT_FGETP(args,
556 					nfs_ext_u.nfs_extB.next) != NULL) {
557 					if (uap->flags & MS_RDONLY &&
558 					    !(flags & NFSMNT_SOFT)) {
559 						data = (char *)
560 						    STRUCT_FGETP(args,
561 						nfs_ext_u.nfs_extB.next);
562 						if (svp_head->sv_next == NULL) {
563 							svp_tail = NULL;
564 							svp_2ndlast = NULL;
565 							sv4_free(svp_head);
566 							goto more;
567 						} else {
568 							svp_tail = svp_2ndlast;
569 							svp_2ndlast->sv_next =
570 							    NULL;
571 							sv4_free(svp);
572 							goto more;
573 						}
574 					}
575 				} else {
576 					/*
577 					 * This is the last server specified
578 					 * in the nfs_args list passed down
579 					 * and its not rdma capable.
580 					 */
581 					if (svp_head->sv_next == NULL) {
582 						/*
583 						 * Is this the only one
584 						 */
585 						error = EINVAL;
586 #ifdef	DEBUG
587 						if (rdma_debug)
588 							zcmn_err(getzoneid(),
589 							    CE_WARN,
590 							    "No RDMA srv");
591 #endif
592 						goto errout;
593 					} else {
594 						/*
595 						 * There is list, since some
596 						 * servers specified before
597 						 * this passed all requirements
598 						 */
599 						svp_tail = svp_2ndlast;
600 						svp_2ndlast->sv_next = NULL;
601 						sv4_free(svp);
602 						goto proceed;
603 					}
604 				}
605 			}
606 		}
607 	}
608 
609 	/*
610 	 * If there are syncaddr and netname data, load them in. This is
611 	 * to support data needed for NFSV4 when AUTH_DH is the negotiated
612 	 * flavor via SECINFO. (instead of using MOUNT protocol in V3).
613 	 */
614 	netname[0] = '\0';
615 	if (flags & NFSMNT_SECURE) {
616 
617 		/* get syncaddr */
618 		STRUCT_INIT(addr_tmp, get_udatamodel());
619 		if (copyin(STRUCT_FGETP(args, syncaddr), STRUCT_BUF(addr_tmp),
620 			STRUCT_SIZE(addr_tmp))) {
621 			error = EINVAL;
622 			goto errout;
623 		}
624 		userbufptr = STRUCT_FGETP(addr_tmp, buf);
625 		syncaddr.len = STRUCT_FGET(addr_tmp, len);
626 		syncaddr.buf = kmem_alloc(syncaddr.len, KM_SLEEP);
627 		syncaddr.maxlen = syncaddr.len;
628 		if (copyin(userbufptr, syncaddr.buf, syncaddr.len)) {
629 			kmem_free(syncaddr.buf, syncaddr.len);
630 			error = EFAULT;
631 			goto errout;
632 		}
633 
634 		/* get server's netname */
635 		if (copyinstr(STRUCT_FGETP(args, netname), netname,
636 				sizeof (netname), &nlen)) {
637 			kmem_free(syncaddr.buf, syncaddr.len);
638 			error = EFAULT;
639 			goto errout;
640 		}
641 		netname[nlen] = '\0';
642 
643 		svp->sv_dhsec = create_authdh_data(netname, nlen, &syncaddr,
644 						knconf);
645 	}
646 
647 	/*
648 	 * Get the extention data which has the security data structure.
649 	 * This includes data for AUTH_SYS as well.
650 	 */
651 	if (flags & NFSMNT_NEWARGS) {
652 		switch (STRUCT_FGET(args, nfs_args_ext)) {
653 		case NFS_ARGS_EXTA:
654 		case NFS_ARGS_EXTB:
655 			/*
656 			 * Indicating the application is using the new
657 			 * sec_data structure to pass in the security
658 			 * data.
659 			 */
660 			if (STRUCT_FGETP(args,
661 			    nfs_ext_u.nfs_extA.secdata) == NULL) {
662 				error = EINVAL;
663 			} else {
664 				error = sec_clnt_loadinfo(
665 				    (struct sec_data *)STRUCT_FGETP(args,
666 					nfs_ext_u.nfs_extA.secdata),
667 				    &secdata, get_udatamodel());
668 			}
669 			break;
670 
671 		default:
672 			error = EINVAL;
673 			break;
674 		}
675 
676 	} else if (flags & NFSMNT_SECURE) {
677 		/*
678 		 * NFSMNT_SECURE is deprecated but we keep it
679 		 * to support the rouge user generated application
680 		 * that may use this undocumented interface to do
681 		 * AUTH_DH security.
682 		 */
683 		secdata = create_authdh_data(netname, nlen, &syncaddr, knconf);
684 
685 	} else {
686 		secdata = kmem_alloc(sizeof (*secdata), KM_SLEEP);
687 		secdata->secmod = secdata->rpcflavor = AUTH_SYS;
688 		secdata->data = NULL;
689 	}
690 
691 	svp->sv_secdata = secdata;
692 
693 	/* syncaddr is no longer needed. */
694 	if (syncaddr.buf != NULL)
695 		kmem_free(syncaddr.buf, syncaddr.len);
696 
697 	/*
698 	 * User does not explictly specify a flavor, and a user
699 	 * defined default flavor is passed down.
700 	 */
701 	if (flags & NFSMNT_SECDEFAULT) {
702 		(void) nfs_rw_enter_sig(&svp->sv_lock, RW_WRITER, 0);
703 		svp->sv_flags |= SV4_TRYSECDEFAULT;
704 		nfs_rw_exit(&svp->sv_lock);
705 	}
706 
707 	/*
708 	 * Failover support:
709 	 *
710 	 * We may have a linked list of nfs_args structures,
711 	 * which means the user is looking for failover.  If
712 	 * the mount is either not "read-only" or "soft",
713 	 * we want to bail out with EINVAL.
714 	 */
715 	if (STRUCT_FGET(args, nfs_args_ext) == NFS_ARGS_EXTB &&
716 	    STRUCT_FGETP(args, nfs_ext_u.nfs_extB.next) != NULL) {
717 		if (uap->flags & MS_RDONLY && !(flags & NFSMNT_SOFT)) {
718 			data = (char *)STRUCT_FGETP(args,
719 			    nfs_ext_u.nfs_extB.next);
720 			goto more;
721 		}
722 		error = EINVAL;
723 		goto errout;
724 	}
725 
726 	/*
727 	 * Determine the zone we're being mounted into.
728 	 */
729 	if (getzoneid() == GLOBAL_ZONEID) {
730 		zone_t *mntzone;
731 
732 		mntzone = zone_find_by_path(refstr_value(vfsp->vfs_mntpt));
733 		ASSERT(mntzone != NULL);
734 		zone_rele(mntzone);
735 		if (mntzone != zone) {
736 			error = EBUSY;
737 			goto errout;
738 		}
739 	}
740 
741 	/*
742 	 * Stop the mount from going any further if the zone is going away.
743 	 */
744 	if (zone_status_get(zone) >= ZONE_IS_SHUTTING_DOWN) {
745 		error = EBUSY;
746 		goto errout;
747 	}
748 
749 	/*
750 	 * Get root vnode.
751 	 */
752 proceed:
753 	error = nfs4rootvp(&rtvp, vfsp, svp_head, flags, cr, zone);
754 
755 	if (error)
756 		goto errout;
757 
758 	mi = VTOMI4(rtvp);
759 
760 	/*
761 	 * Send client id to the server, if necessary
762 	 */
763 	nfs4_error_zinit(&n4e);
764 	nfs4setclientid(mi, cr, FALSE, &n4e);
765 	error = n4e.error;
766 
767 	if (error)
768 		goto errout;
769 
770 	/*
771 	 * Set option fields in the mount info record
772 	 */
773 
774 	if (svp_head->sv_next) {
775 		mutex_enter(&mi->mi_lock);
776 		mi->mi_flags |= MI4_LLOCK;
777 		mutex_exit(&mi->mi_lock);
778 	}
779 
780 	error = nfs4_setopts(rtvp, get_udatamodel(), STRUCT_BUF(args));
781 
782 errout:
783 	if (error) {
784 		if (rtvp != NULL) {
785 			rp = VTOR4(rtvp);
786 			if (rp->r_flags & R4HASHED)
787 				rp4_rmhash(rp);
788 			if (rp->r_flags & R4FILEIDMAP)
789 				rp4_fileid_map_remove(rp);
790 		}
791 		if (mi != NULL) {
792 			nfs4_async_stop(vfsp);
793 			nfs4_async_manager_stop(vfsp);
794 			nfs4_remove_mi_from_server(mi, NULL);
795 			/*
796 			 * In this error path we need to sfh4_rele() before
797 			 * we free the mntinfo4_t as sfh4_rele() has a
798 			 * dependancy on mi_fh_lock.
799 			 */
800 			if (rtvp != NULL)
801 				VN_RELE(rtvp);
802 			if (mi->mi_io_kstats) {
803 				kstat_delete(mi->mi_io_kstats);
804 				mi->mi_io_kstats = NULL;
805 			}
806 			if (mi->mi_ro_kstats) {
807 				kstat_delete(mi->mi_ro_kstats);
808 				mi->mi_ro_kstats = NULL;
809 			}
810 			if (mi->mi_recov_ksp) {
811 				kstat_delete(mi->mi_recov_ksp);
812 				mi->mi_recov_ksp = NULL;
813 			}
814 			nfs_free_mi4(mi);
815 			return (error);
816 		}
817 		sv4_free(svp_head);
818 	}
819 
820 	if (rtvp != NULL)
821 		VN_RELE(rtvp);
822 
823 	return (error);
824 }
825 
826 #ifdef	DEBUG
827 #define	VERS_MSG	"NFS4 server "
828 #else
829 #define	VERS_MSG	"NFS server "
830 #endif
831 
832 #define	READ_MSG	\
833 	VERS_MSG "%s returned 0 for read transfer size"
834 #define	WRITE_MSG	\
835 	VERS_MSG "%s returned 0 for write transfer size"
836 #define	SIZE_MSG	\
837 	VERS_MSG "%s returned 0 for maximum file size"
838 
839 /*
840  * Get the symbolic link text from the server for a given filehandle
841  * of that symlink.
842  *
843  *	(get symlink text) PUTFH READLINK
844  */
845 static int
846 getlinktext_otw(mntinfo4_t *mi, nfs_fh4 *fh, char **linktextp, cred_t *cr,
847 		int flags)
848 {
849 	COMPOUND4args_clnt args;
850 	COMPOUND4res_clnt res;
851 	int doqueue;
852 	nfs_argop4 argop[2];
853 	nfs_resop4 *resop;
854 	READLINK4res *lr_res;
855 	uint_t len;
856 	bool_t needrecov = FALSE;
857 	nfs4_recov_state_t recov_state;
858 	nfs4_sharedfh_t *sfh;
859 	nfs4_error_t e;
860 	int num_retry = nfs4_max_mount_retry;
861 	int recovery = !(flags & NFS4_GETFH_NEEDSOP);
862 
863 	sfh = sfh4_get(fh, mi);
864 	recov_state.rs_flags = 0;
865 	recov_state.rs_num_retry_despite_err = 0;
866 
867 recov_retry:
868 	nfs4_error_zinit(&e);
869 
870 	args.array_len = 2;
871 	args.array = argop;
872 	args.ctag = TAG_GET_SYMLINK;
873 
874 	if (! recovery) {
875 		e.error = nfs4_start_op(mi, NULL, NULL, &recov_state);
876 		if (e.error) {
877 			sfh4_rele(&sfh);
878 			return (e.error);
879 		}
880 	}
881 
882 	/* 0. putfh symlink fh */
883 	argop[0].argop = OP_CPUTFH;
884 	argop[0].nfs_argop4_u.opcputfh.sfh = sfh;
885 
886 	/* 1. readlink */
887 	argop[1].argop = OP_READLINK;
888 
889 	doqueue = 1;
890 
891 	rfs4call(mi, &args, &res, cr, &doqueue, 0, &e);
892 
893 	needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp);
894 
895 	if (needrecov && !recovery && num_retry-- > 0) {
896 
897 		NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE,
898 		    "getlinktext_otw: initiating recovery\n"));
899 
900 		if (nfs4_start_recovery(&e, mi, NULL, NULL, NULL, NULL,
901 		    OP_READLINK, NULL) == FALSE) {
902 			nfs4_end_op(mi, NULL, NULL, &recov_state, needrecov);
903 			if (!e.error)
904 				(void) xdr_free(xdr_COMPOUND4res_clnt,
905 						(caddr_t)&res);
906 			goto recov_retry;
907 		}
908 	}
909 
910 	/*
911 	 * If non-NFS4 pcol error and/or we weren't able to recover.
912 	 */
913 	if (e.error != 0) {
914 		if (! recovery)
915 			nfs4_end_op(mi, NULL, NULL, &recov_state, needrecov);
916 		sfh4_rele(&sfh);
917 		return (e.error);
918 	}
919 
920 	if (res.status) {
921 		e.error = geterrno4(res.status);
922 		(void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
923 		if (! recovery)
924 			nfs4_end_op(mi, NULL, NULL, &recov_state, needrecov);
925 		sfh4_rele(&sfh);
926 		return (e.error);
927 	}
928 
929 	/* res.status == NFS4_OK */
930 	ASSERT(res.status == NFS4_OK);
931 
932 	resop = &res.array[1];	/* readlink res */
933 	lr_res = &resop->nfs_resop4_u.opreadlink;
934 
935 	/* treat symlink name as data */
936 	*linktextp = utf8_to_str(&lr_res->link, &len, NULL);
937 
938 	if (! recovery)
939 		nfs4_end_op(mi, NULL, NULL, &recov_state, needrecov);
940 	sfh4_rele(&sfh);
941 	(void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
942 
943 	return (0);
944 }
945 
946 /*
947  * Skip over consecutive slashes and "/./" in a pathname.
948  */
949 void
950 pathname_skipslashdot(struct pathname *pnp)
951 {
952 	char *c1, *c2;
953 
954 	while (pnp->pn_pathlen > 0 && *pnp->pn_path == '/') {
955 
956 		c1 = pnp->pn_path + 1;
957 		c2 = pnp->pn_path + 2;
958 
959 		if (*c1 == '.' && (*c2 == '/' || *c2 == '\0')) {
960 			pnp->pn_path = pnp->pn_path + 2; /* skip "/." */
961 			pnp->pn_pathlen = pnp->pn_pathlen - 2;
962 		} else {
963 			pnp->pn_path++;
964 			pnp->pn_pathlen--;
965 		}
966 	}
967 }
968 
969 /*
970  * Resolve a symbolic link path. The symlink is in the nth component of
971  * svp->sv_path and has an nfs4 file handle "fh".
972  * Upon return, the sv_path will point to the new path that has the nth
973  * component resolved to its symlink text.
974  */
975 int
976 resolve_sympath(mntinfo4_t *mi, servinfo4_t *svp, int nth, nfs_fh4 *fh,
977 		cred_t *cr, int flags)
978 {
979 	char *oldpath;
980 	char *symlink, *newpath;
981 	struct pathname oldpn, newpn;
982 	char component[MAXNAMELEN];
983 	int i, addlen, error = 0;
984 	int oldpathlen;
985 
986 	/* Get the symbolic link text over the wire. */
987 	error = getlinktext_otw(mi, fh, &symlink, cr, flags);
988 
989 	if (error || symlink == NULL || strlen(symlink) == 0)
990 		return (error);
991 
992 	/*
993 	 * Compose the new pathname.
994 	 * Note:
995 	 *    - only the nth component is resolved for the pathname.
996 	 *    - pathname.pn_pathlen does not count the ending null byte.
997 	 */
998 	(void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0);
999 	oldpath = svp->sv_path;
1000 	oldpathlen = svp->sv_pathlen;
1001 	if (error = pn_get(oldpath, UIO_SYSSPACE, &oldpn)) {
1002 		nfs_rw_exit(&svp->sv_lock);
1003 		kmem_free(symlink, strlen(symlink) + 1);
1004 		return (error);
1005 	}
1006 	nfs_rw_exit(&svp->sv_lock);
1007 	pn_alloc(&newpn);
1008 
1009 	/*
1010 	 * Skip over previous components from the oldpath so that the
1011 	 * oldpn.pn_path will point to the symlink component. Skip
1012 	 * leading slashes and "/./" (no OP_LOOKUP on ".") so that
1013 	 * pn_getcompnent can get the component.
1014 	 */
1015 	for (i = 1; i < nth; i++) {
1016 		pathname_skipslashdot(&oldpn);
1017 		error = pn_getcomponent(&oldpn, component);
1018 		if (error)
1019 			goto out;
1020 	}
1021 
1022 	/*
1023 	 * Copy the old path upto the component right before the symlink
1024 	 * if the symlink is not an absolute path.
1025 	 */
1026 	if (symlink[0] != '/') {
1027 		addlen = oldpn.pn_path - oldpn.pn_buf;
1028 		bcopy(oldpn.pn_buf, newpn.pn_path, addlen);
1029 		newpn.pn_pathlen += addlen;
1030 		newpn.pn_path += addlen;
1031 		newpn.pn_buf[newpn.pn_pathlen] = '/';
1032 		newpn.pn_pathlen++;
1033 		newpn.pn_path++;
1034 	}
1035 
1036 	/* copy the resolved symbolic link text */
1037 	addlen = strlen(symlink);
1038 	if (newpn.pn_pathlen + addlen >= newpn.pn_bufsize) {
1039 		error = ENAMETOOLONG;
1040 		goto out;
1041 	}
1042 	bcopy(symlink, newpn.pn_path, addlen);
1043 	newpn.pn_pathlen += addlen;
1044 	newpn.pn_path += addlen;
1045 
1046 	/*
1047 	 * Check if there is any remaining path after the symlink component.
1048 	 * First, skip the symlink component.
1049 	 */
1050 	pathname_skipslashdot(&oldpn);
1051 	if (error = pn_getcomponent(&oldpn, component))
1052 		goto out;
1053 
1054 	addlen = pn_pathleft(&oldpn); /* includes counting the slash */
1055 
1056 	/*
1057 	 * Copy the remaining path to the new pathname if there is any.
1058 	 */
1059 	if (addlen > 0) {
1060 		if (newpn.pn_pathlen + addlen >= newpn.pn_bufsize) {
1061 			error = ENAMETOOLONG;
1062 			goto out;
1063 		}
1064 		bcopy(oldpn.pn_path, newpn.pn_path, addlen);
1065 		newpn.pn_pathlen += addlen;
1066 	}
1067 	newpn.pn_buf[newpn.pn_pathlen] = '\0';
1068 
1069 	/* get the newpath and store it in the servinfo4_t */
1070 	newpath = kmem_alloc(newpn.pn_pathlen + 1, KM_SLEEP);
1071 	bcopy(newpn.pn_buf, newpath, newpn.pn_pathlen);
1072 	newpath[newpn.pn_pathlen] = '\0';
1073 
1074 	(void) nfs_rw_enter_sig(&svp->sv_lock, RW_WRITER, 0);
1075 	svp->sv_path = newpath;
1076 	svp->sv_pathlen = strlen(newpath) + 1;
1077 	nfs_rw_exit(&svp->sv_lock);
1078 
1079 	kmem_free(oldpath, oldpathlen);
1080 out:
1081 	kmem_free(symlink, strlen(symlink) + 1);
1082 	pn_free(&newpn);
1083 	pn_free(&oldpn);
1084 
1085 	return (error);
1086 }
1087 
1088 /*
1089  * Get the root filehandle for the given filesystem and server, and update
1090  * svp.
1091  *
1092  * If NFS4_GETFH_NEEDSOP is set, then use nfs4_start_fop and nfs4_end_fop
1093  * to coordinate with recovery.  Otherwise, the caller is assumed to be
1094  * the recovery thread or have already done a start_fop.
1095  *
1096  * Errors are returned by the nfs4_error_t parameter.
1097  */
1098 
1099 static void
1100 nfs4getfh_otw(struct mntinfo4 *mi, servinfo4_t *svp, vtype_t *vtp,
1101 		int flags, cred_t *cr, nfs4_error_t *ep)
1102 {
1103 	COMPOUND4args_clnt args;
1104 	COMPOUND4res_clnt res;
1105 	int doqueue = 1;
1106 	nfs_argop4 *argop;
1107 	nfs_resop4 *resop;
1108 	nfs4_ga_res_t *garp;
1109 	int num_argops;
1110 	lookup4_param_t lookuparg;
1111 	nfs_fh4 *tmpfhp;
1112 	nfs_fh4 *resfhp;
1113 	bool_t needrecov = FALSE;
1114 	nfs4_recov_state_t recov_state;
1115 	int llndx;
1116 	int nthcomp;
1117 	int recovery = !(flags & NFS4_GETFH_NEEDSOP);
1118 
1119 	(void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0);
1120 	ASSERT(svp->sv_path != NULL);
1121 	if (svp->sv_path[0] == '\0') {
1122 		nfs_rw_exit(&svp->sv_lock);
1123 		nfs4_error_init(ep, EINVAL);
1124 		return;
1125 	}
1126 	nfs_rw_exit(&svp->sv_lock);
1127 
1128 	recov_state.rs_flags = 0;
1129 	recov_state.rs_num_retry_despite_err = 0;
1130 recov_retry:
1131 	nfs4_error_zinit(ep);
1132 
1133 	if (!recovery) {
1134 		ep->error = nfs4_start_fop(mi, NULL, NULL, OH_MOUNT,
1135 				&recov_state, NULL);
1136 
1137 		/*
1138 		 * If recovery has been started and this request as
1139 		 * initiated by a mount, then we must wait for recovery
1140 		 * to finish before proceeding, otherwise, the error
1141 		 * cleanup would remove data structures needed by the
1142 		 * recovery thread.
1143 		 */
1144 		if (ep->error) {
1145 			mutex_enter(&mi->mi_lock);
1146 			if (mi->mi_flags & MI4_MOUNTING) {
1147 				mi->mi_flags |= MI4_RECOV_FAIL;
1148 				mi->mi_error = EIO;
1149 
1150 				NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE,
1151 				    "nfs4getfh_otw: waiting 4 recovery\n"));
1152 
1153 				while (mi->mi_flags & MI4_RECOV_ACTIV)
1154 					cv_wait(&mi->mi_failover_cv,
1155 					    &mi->mi_lock);
1156 			}
1157 			mutex_exit(&mi->mi_lock);
1158 			return;
1159 		}
1160 
1161 		/*
1162 		 * If the client does not specify a specific flavor to use
1163 		 * and has not gotten a secinfo list from the server yet,
1164 		 * retrieve the secinfo list from the server and use a
1165 		 * flavor from the list to mount.
1166 		 *
1167 		 * If fail to get the secinfo list from the server, then
1168 		 * try the default flavor.
1169 		 */
1170 		if ((svp->sv_flags & SV4_TRYSECDEFAULT) &&
1171 		    svp->sv_secinfo == NULL) {
1172 			(void) nfs4_secinfo_path(mi, cr, FALSE);
1173 		}
1174 	}
1175 
1176 	if (recovery)
1177 		args.ctag = TAG_REMAP_MOUNT;
1178 	else
1179 		args.ctag = TAG_MOUNT;
1180 
1181 	lookuparg.l4_getattrs = LKP4_ALL_ATTRIBUTES;
1182 	lookuparg.argsp = &args;
1183 	lookuparg.resp = &res;
1184 	lookuparg.header_len = 2;	/* Putrootfh, getfh */
1185 	lookuparg.trailer_len = 0;
1186 	lookuparg.ga_bits = FATTR4_FSINFO_MASK;
1187 	lookuparg.mi = mi;
1188 
1189 	(void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0);
1190 	ASSERT(svp->sv_path != NULL);
1191 	llndx = nfs4lookup_setup(svp->sv_path, &lookuparg, 0);
1192 	nfs_rw_exit(&svp->sv_lock);
1193 
1194 	argop = args.array;
1195 	num_argops = args.array_len;
1196 
1197 	/* choose public or root filehandle */
1198 	if (flags & NFS4_GETFH_PUBLIC)
1199 		argop[0].argop = OP_PUTPUBFH;
1200 	else
1201 		argop[0].argop = OP_PUTROOTFH;
1202 
1203 	/* get fh */
1204 	argop[1].argop = OP_GETFH;
1205 
1206 	NFS4_DEBUG(nfs4_client_call_debug, (CE_NOTE,
1207 	    "nfs4getfh_otw: %s call, mi 0x%p",
1208 	    needrecov ? "recov" : "first", (void *)mi));
1209 
1210 	rfs4call(mi, &args, &res, cr, &doqueue, RFSCALL_SOFT, ep);
1211 
1212 	needrecov = nfs4_needs_recovery(ep, FALSE, mi->mi_vfsp);
1213 
1214 	if (needrecov) {
1215 		bool_t abort;
1216 
1217 		if (recovery) {
1218 			nfs4args_lookup_free(argop, num_argops);
1219 			kmem_free(argop,
1220 					lookuparg.arglen * sizeof (nfs_argop4));
1221 			if (!ep->error)
1222 				(void) xdr_free(xdr_COMPOUND4res_clnt,
1223 								(caddr_t)&res);
1224 			return;
1225 		}
1226 
1227 		NFS4_DEBUG(nfs4_client_recov_debug,
1228 		    (CE_NOTE, "nfs4getfh_otw: initiating recovery\n"));
1229 
1230 		abort = nfs4_start_recovery(ep, mi, NULL,
1231 			    NULL, NULL, NULL, OP_GETFH, NULL);
1232 		if (!ep->error) {
1233 			ep->error = geterrno4(res.status);
1234 			(void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
1235 		}
1236 		nfs4args_lookup_free(argop, num_argops);
1237 		kmem_free(argop, lookuparg.arglen * sizeof (nfs_argop4));
1238 		nfs4_end_fop(mi, NULL, NULL, OH_MOUNT, &recov_state, needrecov);
1239 		/* have another go? */
1240 		if (abort == FALSE)
1241 			goto recov_retry;
1242 		return;
1243 	}
1244 
1245 	/*
1246 	 * No recovery, but check if error is set.
1247 	 */
1248 	if (ep->error)  {
1249 		nfs4args_lookup_free(argop, num_argops);
1250 		kmem_free(argop, lookuparg.arglen * sizeof (nfs_argop4));
1251 		if (!recovery)
1252 			nfs4_end_fop(mi, NULL, NULL, OH_MOUNT, &recov_state,
1253 				needrecov);
1254 		return;
1255 	}
1256 
1257 is_link_err:
1258 
1259 	/* for non-recovery errors */
1260 	if (res.status && res.status != NFS4ERR_SYMLINK) {
1261 		if (!recovery) {
1262 			nfs4_end_fop(mi, NULL, NULL, OH_MOUNT, &recov_state,
1263 				needrecov);
1264 		}
1265 		nfs4args_lookup_free(argop, num_argops);
1266 		kmem_free(argop, lookuparg.arglen * sizeof (nfs_argop4));
1267 		(void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
1268 		return;
1269 	}
1270 
1271 	/*
1272 	 * If any intermediate component in the path is a symbolic link,
1273 	 * resolve the symlink, then try mount again using the new path.
1274 	 */
1275 	if (res.status == NFS4ERR_SYMLINK) {
1276 		int where;
1277 
1278 		/*
1279 		 * This must be from OP_LOOKUP failure. The (cfh) for this
1280 		 * OP_LOOKUP is a symlink node. Found out where the
1281 		 * OP_GETFH is for the (cfh) that is a symlink node.
1282 		 *
1283 		 * Example:
1284 		 * (mount) PUTROOTFH, GETFH, LOOKUP comp1, GETFH, GETATTR,
1285 		 * LOOKUP comp2, GETFH, GETATTR, LOOKUP comp3, GETFH, GETATTR
1286 		 *
1287 		 * LOOKUP comp3 fails with SYMLINK because comp2 is a symlink.
1288 		 * In this case, where = 7, nthcomp = 2.
1289 		 */
1290 		where = res.array_len - 2;
1291 		ASSERT(where > 0);
1292 
1293 		resop = &res.array[where - 1];
1294 		ASSERT(resop->resop == OP_GETFH);
1295 		tmpfhp = &resop->nfs_resop4_u.opgetfh.object;
1296 		nthcomp = res.array_len/3 - 1;
1297 
1298 		/*
1299 		 * Need to call nfs4_end_op before resolve_sympath to avoid
1300 		 * potential nfs4_start_op deadlock.
1301 		 */
1302 		if (!recovery)
1303 			nfs4_end_fop(mi, NULL, NULL, OH_MOUNT, &recov_state,
1304 				needrecov);
1305 
1306 		ep->error = resolve_sympath(mi, svp, nthcomp, tmpfhp, cr,
1307 					    flags);
1308 
1309 		nfs4args_lookup_free(argop, num_argops);
1310 		kmem_free(argop, lookuparg.arglen * sizeof (nfs_argop4));
1311 		(void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
1312 
1313 		if (ep->error)
1314 			return;
1315 
1316 		goto recov_retry;
1317 	}
1318 
1319 	/* getfh */
1320 	resop = &res.array[res.array_len - 2];
1321 	ASSERT(resop->resop == OP_GETFH);
1322 	resfhp = &resop->nfs_resop4_u.opgetfh.object;
1323 
1324 	/* getattr fsinfo res */
1325 	resop++;
1326 	garp = &resop->nfs_resop4_u.opgetattr.ga_res;
1327 
1328 	*vtp = garp->n4g_va.va_type;
1329 
1330 	mi->mi_fh_expire_type = garp->n4g_ext_res->n4g_fet;
1331 
1332 	mutex_enter(&mi->mi_lock);
1333 	if (garp->n4g_ext_res->n4g_pc4.pc4_link_support)
1334 		mi->mi_flags |= MI4_LINK;
1335 	if (garp->n4g_ext_res->n4g_pc4.pc4_symlink_support)
1336 		mi->mi_flags |= MI4_SYMLINK;
1337 	if (garp->n4g_ext_res->n4g_suppattrs & FATTR4_ACL_MASK)
1338 		mi->mi_flags |= MI4_ACL;
1339 	mutex_exit(&mi->mi_lock);
1340 
1341 	if (garp->n4g_ext_res->n4g_maxread == 0)
1342 		mi->mi_tsize =
1343 			MIN(MAXBSIZE, mi->mi_tsize);
1344 	else
1345 		mi->mi_tsize =
1346 			MIN(garp->n4g_ext_res->n4g_maxread,
1347 			    mi->mi_tsize);
1348 
1349 	if (garp->n4g_ext_res->n4g_maxwrite == 0)
1350 		mi->mi_stsize =
1351 			MIN(MAXBSIZE, mi->mi_stsize);
1352 	else
1353 		mi->mi_stsize =
1354 			MIN(garp->n4g_ext_res->n4g_maxwrite,
1355 			    mi->mi_stsize);
1356 
1357 	if (garp->n4g_ext_res->n4g_maxfilesize != 0)
1358 		mi->mi_maxfilesize =
1359 			MIN(garp->n4g_ext_res->n4g_maxfilesize,
1360 			    mi->mi_maxfilesize);
1361 
1362 	/*
1363 	 * If the final component is a a symbolic link, resolve the symlink,
1364 	 * then try mount again using the new path.
1365 	 *
1366 	 * Assume no symbolic link for root filesysm "/".
1367 	 */
1368 	if (*vtp == VLNK) {
1369 		/*
1370 		 * nthcomp is the total result length minus
1371 		 * the 1st 2 OPs (PUTROOTFH, GETFH),
1372 		 * then divided by 3 (LOOKUP,GETFH,GETATTR)
1373 		 *
1374 		 * e.g. PUTROOTFH GETFH LOOKUP 1st-comp GETFH GETATTR
1375 		 *	LOOKUP 2nd-comp GETFH GETATTR
1376 		 *
1377 		 *	(8 - 2)/3 = 2
1378 		 */
1379 		nthcomp = (res.array_len - 2)/3;
1380 
1381 		/*
1382 		 * Need to call nfs4_end_op before resolve_sympath to avoid
1383 		 * potential nfs4_start_op deadlock. See RFE 4777612.
1384 		 */
1385 		if (!recovery)
1386 			nfs4_end_fop(mi, NULL, NULL, OH_MOUNT, &recov_state,
1387 				needrecov);
1388 
1389 		ep->error = resolve_sympath(mi, svp, nthcomp, resfhp, cr,
1390 					flags);
1391 
1392 		nfs4args_lookup_free(argop, num_argops);
1393 		kmem_free(argop, lookuparg.arglen * sizeof (nfs_argop4));
1394 		(void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
1395 
1396 		if (ep->error)
1397 			return;
1398 
1399 		goto recov_retry;
1400 	}
1401 
1402 	/*
1403 	 * We need to figure out where in the compound the getfh
1404 	 * for the parent directory is. If the object to be mounted is
1405 	 * the root, then there is no lookup at all:
1406 	 * PUTROOTFH, GETFH.
1407 	 * If the object to be mounted is in the root, then the compound is:
1408 	 * PUTROOTFH, GETFH, LOOKUP, GETFH, GETATTR.
1409 	 * In either of these cases, the index of the GETFH is 1.
1410 	 * If it is not at the root, then it's something like:
1411 	 * PUTROOTFH, GETFH, LOOKUP, GETFH, GETATTR,
1412 	 * LOOKUP, GETFH, GETATTR
1413 	 * In this case, the index is llndx (last lookup index) - 2.
1414 	 */
1415 	if (llndx == -1 || llndx == 2)
1416 		resop = &res.array[1];
1417 	else {
1418 		ASSERT(llndx > 2);
1419 		resop = &res.array[llndx-2];
1420 	}
1421 
1422 	ASSERT(resop->resop == OP_GETFH);
1423 	tmpfhp = &resop->nfs_resop4_u.opgetfh.object;
1424 
1425 	/* save the filehandles for the replica */
1426 	(void) nfs_rw_enter_sig(&svp->sv_lock, RW_WRITER, 0);
1427 	ASSERT(tmpfhp->nfs_fh4_len <= NFS4_FHSIZE);
1428 	svp->sv_pfhandle.fh_len = tmpfhp->nfs_fh4_len;
1429 	bcopy(tmpfhp->nfs_fh4_val, svp->sv_pfhandle.fh_buf,
1430 	    tmpfhp->nfs_fh4_len);
1431 	ASSERT(resfhp->nfs_fh4_len <= NFS4_FHSIZE);
1432 	svp->sv_fhandle.fh_len = resfhp->nfs_fh4_len;
1433 	bcopy(resfhp->nfs_fh4_val, svp->sv_fhandle.fh_buf, resfhp->nfs_fh4_len);
1434 
1435 	/* initialize fsid and supp_attrs for server fs */
1436 	svp->sv_fsid = garp->n4g_fsid;
1437 	svp->sv_supp_attrs =
1438 		garp->n4g_ext_res->n4g_suppattrs | FATTR4_MANDATTR_MASK;
1439 
1440 	nfs_rw_exit(&svp->sv_lock);
1441 
1442 	nfs4args_lookup_free(argop, num_argops);
1443 	kmem_free(argop, lookuparg.arglen * sizeof (nfs_argop4));
1444 	(void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
1445 	if (!recovery)
1446 		nfs4_end_fop(mi, NULL, NULL, OH_MOUNT, &recov_state, needrecov);
1447 }
1448 
1449 static ushort_t nfs4_max_threads = 8;	/* max number of active async threads */
1450 static uint_t nfs4_bsize = 32 * 1024;	/* client `block' size */
1451 static uint_t nfs4_async_clusters = 1;	/* # of reqs from each async queue */
1452 static uint_t nfs4_cots_timeo = NFS_COTS_TIMEO;
1453 
1454 /*
1455  * Remap the root filehandle for the given filesystem.
1456  *
1457  * results returned via the nfs4_error_t parameter.
1458  */
1459 void
1460 nfs4_remap_root(mntinfo4_t *mi, nfs4_error_t *ep, int flags)
1461 {
1462 	struct servinfo4 *svp;
1463 	vtype_t vtype;
1464 	nfs_fh4 rootfh;
1465 	int getfh_flags;
1466 	char *orig_sv_path;
1467 	int orig_sv_pathlen, num_retry;
1468 
1469 	mutex_enter(&mi->mi_lock);
1470 	svp = mi->mi_curr_serv;
1471 	getfh_flags =
1472 		(flags & NFS4_REMAP_NEEDSOP) ? NFS4_GETFH_NEEDSOP : 0;
1473 	getfh_flags |=
1474 		(mi->mi_flags & MI4_PUBLIC) ? NFS4_GETFH_PUBLIC : 0;
1475 	mutex_exit(&mi->mi_lock);
1476 
1477 	/*
1478 	 * Just in case server path being mounted contains
1479 	 * symlinks and fails w/STALE, save the initial sv_path
1480 	 * so we can redrive the initial mount compound with the
1481 	 * initial sv_path -- not a symlink-expanded version.
1482 	 *
1483 	 * This could only happen if a symlink was expanded
1484 	 * and the expanded mount compound failed stale.  Because
1485 	 * it could be the case that the symlink was removed at
1486 	 * the server (and replaced with another symlink/dir,
1487 	 * we need to use the initial sv_path when attempting
1488 	 * to re-lookup everything and recover.
1489 	 */
1490 	(void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0);
1491 	orig_sv_pathlen = svp->sv_pathlen;
1492 	orig_sv_path = kmem_alloc(orig_sv_pathlen, KM_SLEEP);
1493 	bcopy(svp->sv_path, orig_sv_path, orig_sv_pathlen);
1494 	nfs_rw_exit(&svp->sv_lock);
1495 
1496 	num_retry = nfs4_max_mount_retry;
1497 
1498 	do {
1499 		/*
1500 		 * Get the root fh from the server.  Retry nfs4_max_mount_retry
1501 		 * (2) times if it fails with STALE since the recovery
1502 		 * infrastructure doesn't do STALE recovery for components
1503 		 * of the server path to the object being mounted.
1504 		 */
1505 		nfs4getfh_otw(mi, svp, &vtype, getfh_flags, CRED(), ep);
1506 
1507 		if (ep->error == 0 && ep->stat == NFS4_OK)
1508 			break;
1509 
1510 		/*
1511 		 * For some reason, the mount compound failed.  Before
1512 		 * retrying, we need to restore the original sv_path
1513 		 * because it might have contained symlinks that were
1514 		 * expanded by nfsgetfh_otw before the failure occurred.
1515 		 * replace current sv_path with orig sv_path -- just in case
1516 		 * it changed due to embedded symlinks.
1517 		 */
1518 		(void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0);
1519 		if (orig_sv_pathlen != svp->sv_pathlen) {
1520 			kmem_free(svp->sv_path, svp->sv_pathlen);
1521 			svp->sv_path = kmem_alloc(orig_sv_pathlen, KM_SLEEP);
1522 			svp->sv_pathlen = orig_sv_pathlen;
1523 
1524 		}
1525 		bcopy(orig_sv_path, svp->sv_path, orig_sv_pathlen);
1526 		nfs_rw_exit(&svp->sv_lock);
1527 
1528 	} while (num_retry-- > 0);
1529 
1530 	kmem_free(orig_sv_path, orig_sv_pathlen);
1531 
1532 	if (ep->error != 0 || ep->stat != 0) {
1533 		return;
1534 	}
1535 
1536 	if (vtype != VNON && vtype != mi->mi_type) {
1537 		/* shouldn't happen */
1538 		zcmn_err(mi->mi_zone->zone_id, CE_WARN,
1539 			"nfs4_remap_root: server root vnode type (%d) doesn't "
1540 			"match mount info (%d)", vtype, mi->mi_type);
1541 	}
1542 
1543 	(void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0);
1544 	rootfh.nfs_fh4_val = svp->sv_fhandle.fh_buf;
1545 	rootfh.nfs_fh4_len = svp->sv_fhandle.fh_len;
1546 	nfs_rw_exit(&svp->sv_lock);
1547 	sfh4_update(mi->mi_rootfh, &rootfh);
1548 
1549 #ifdef DEBUG
1550 	/*
1551 	 * There shouldn't have been any other recovery activity on the
1552 	 * filesystem.
1553 	 */
1554 	mutex_enter(&mi->mi_lock);
1555 	ASSERT(mi->mi_curr_serv == svp);
1556 	mutex_exit(&mi->mi_lock);
1557 #endif
1558 }
1559 
1560 static int
1561 nfs4rootvp(vnode_t **rtvpp, vfs_t *vfsp, struct servinfo4 *svp_head,
1562 	int flags, cred_t *cr, zone_t *zone)
1563 {
1564 	vnode_t *rtvp = NULL;
1565 	mntinfo4_t *mi;
1566 	dev_t nfs_dev;
1567 	int error = 0;
1568 	rnode4_t *rp;
1569 	int i;
1570 	struct vattr va;
1571 	vtype_t vtype = VNON;
1572 	vtype_t tmp_vtype = VNON;
1573 	struct servinfo4 *firstsvp = NULL, *svp = svp_head;
1574 	nfs4_oo_hash_bucket_t *bucketp;
1575 	nfs_fh4 fh;
1576 	char *droptext = "";
1577 	struct nfs_stats *nfsstatsp;
1578 	nfs4_fname_t *mfname;
1579 	nfs4_error_t e;
1580 	char *orig_sv_path;
1581 	int orig_sv_pathlen, num_retry;
1582 	cred_t *lcr = NULL, *tcr = cr;
1583 
1584 	nfsstatsp = zone_getspecific(nfsstat_zone_key, curproc->p_zone);
1585 	ASSERT(nfsstatsp != NULL);
1586 
1587 	ASSERT(curproc->p_zone == zone);
1588 	ASSERT(crgetref(cr));
1589 
1590 	/*
1591 	 * Create a mount record and link it to the vfs struct.
1592 	 */
1593 	mi = kmem_zalloc(sizeof (*mi), KM_SLEEP);
1594 	mutex_init(&mi->mi_lock, NULL, MUTEX_DEFAULT, NULL);
1595 	nfs_rw_init(&mi->mi_recovlock, NULL, RW_DEFAULT, NULL);
1596 	nfs_rw_init(&mi->mi_rename_lock, NULL, RW_DEFAULT, NULL);
1597 	nfs_rw_init(&mi->mi_fh_lock, NULL, RW_DEFAULT, NULL);
1598 
1599 	if (!(flags & NFSMNT_SOFT))
1600 		mi->mi_flags |= MI4_HARD;
1601 	if ((flags & NFSMNT_NOPRINT))
1602 		mi->mi_flags |= MI4_NOPRINT;
1603 	if (flags & NFSMNT_INT)
1604 		mi->mi_flags |= MI4_INT;
1605 	if (flags & NFSMNT_PUBLIC)
1606 		mi->mi_flags |= MI4_PUBLIC;
1607 	mi->mi_retrans = NFS_RETRIES;
1608 	if (svp->sv_knconf->knc_semantics == NC_TPI_COTS_ORD ||
1609 	    svp->sv_knconf->knc_semantics == NC_TPI_COTS)
1610 		mi->mi_timeo = nfs4_cots_timeo;
1611 	else
1612 		mi->mi_timeo = NFS_TIMEO;
1613 	mi->mi_prog = NFS_PROGRAM;
1614 	mi->mi_vers = NFS_V4;
1615 	mi->mi_rfsnames = rfsnames_v4;
1616 	mi->mi_reqs = nfsstatsp->nfs_stats_v4.rfsreqcnt_ptr;
1617 	cv_init(&mi->mi_failover_cv, NULL, CV_DEFAULT, NULL);
1618 	mi->mi_servers = svp;
1619 	mi->mi_curr_serv = svp;
1620 	mi->mi_acregmin = SEC2HR(ACREGMIN);
1621 	mi->mi_acregmax = SEC2HR(ACREGMAX);
1622 	mi->mi_acdirmin = SEC2HR(ACDIRMIN);
1623 	mi->mi_acdirmax = SEC2HR(ACDIRMAX);
1624 	mi->mi_fh_expire_type = FH4_PERSISTENT;
1625 	mi->mi_clientid_next = NULL;
1626 	mi->mi_clientid_prev = NULL;
1627 	mi->mi_grace_wait = 0;
1628 	mi->mi_error = 0;
1629 	mi->mi_srvsettime = 0;
1630 
1631 	mi->mi_tsize = nfs4_tsize(svp->sv_knconf);
1632 	mi->mi_stsize = mi->mi_tsize;
1633 
1634 	if (flags & NFSMNT_DIRECTIO)
1635 		mi->mi_flags |= MI4_DIRECTIO;
1636 
1637 	mi->mi_flags |= MI4_MOUNTING;
1638 
1639 	/*
1640 	 * Make a vfs struct for nfs.  We do this here instead of below
1641 	 * because rtvp needs a vfs before we can do a getattr on it.
1642 	 *
1643 	 * Assign a unique device id to the mount
1644 	 */
1645 	mutex_enter(&nfs_minor_lock);
1646 	do {
1647 		nfs_minor = (nfs_minor + 1) & MAXMIN32;
1648 		nfs_dev = makedevice(nfs_major, nfs_minor);
1649 	} while (vfs_devismounted(nfs_dev));
1650 	mutex_exit(&nfs_minor_lock);
1651 
1652 	vfsp->vfs_dev = nfs_dev;
1653 	vfs_make_fsid(&vfsp->vfs_fsid, nfs_dev, nfs4fstyp);
1654 	vfsp->vfs_data = (caddr_t)mi;
1655 	vfsp->vfs_fstype = nfsfstyp;
1656 	vfsp->vfs_bsize = nfs4_bsize;
1657 
1658 	/*
1659 	 * Initialize fields used to support async putpage operations.
1660 	 */
1661 	for (i = 0; i < NFS4_ASYNC_TYPES; i++)
1662 		mi->mi_async_clusters[i] = nfs4_async_clusters;
1663 	mi->mi_async_init_clusters = nfs4_async_clusters;
1664 	mi->mi_async_curr = &mi->mi_async_reqs[0];
1665 	mi->mi_max_threads = nfs4_max_threads;
1666 	mutex_init(&mi->mi_async_lock, NULL, MUTEX_DEFAULT, NULL);
1667 	cv_init(&mi->mi_async_reqs_cv, NULL, CV_DEFAULT, NULL);
1668 	cv_init(&mi->mi_async_work_cv, NULL, CV_DEFAULT, NULL);
1669 	cv_init(&mi->mi_async_cv, NULL, CV_DEFAULT, NULL);
1670 	cv_init(&mi->mi_inact_req_cv, NULL, CV_DEFAULT, NULL);
1671 
1672 	mi->mi_vfsp = vfsp;
1673 	zone_hold(mi->mi_zone = zone);
1674 	nfs4_mi_zonelist_add(mi);
1675 
1676 	/*
1677 	 * Initialize the <open owner/cred> hash table.
1678 	 */
1679 	for (i = 0; i < NFS4_NUM_OO_BUCKETS; i++) {
1680 		bucketp = &(mi->mi_oo_list[i]);
1681 		mutex_init(&bucketp->b_lock, NULL, MUTEX_DEFAULT, NULL);
1682 		list_create(&bucketp->b_oo_hash_list,
1683 		    sizeof (nfs4_open_owner_t),
1684 		    offsetof(nfs4_open_owner_t, oo_hash_node));
1685 	}
1686 
1687 	/*
1688 	 * Initialize the freed open owner list.
1689 	 */
1690 	mi->mi_foo_num = 0;
1691 	mi->mi_foo_max = NFS4_NUM_FREED_OPEN_OWNERS;
1692 	list_create(&mi->mi_foo_list, sizeof (nfs4_open_owner_t),
1693 	    offsetof(nfs4_open_owner_t, oo_foo_node));
1694 
1695 	list_create(&mi->mi_lost_state, sizeof (nfs4_lost_rqst_t),
1696 	    offsetof(nfs4_lost_rqst_t, lr_node));
1697 
1698 	list_create(&mi->mi_bseqid_list, sizeof (nfs4_bseqid_entry_t),
1699 	    offsetof(nfs4_bseqid_entry_t, bs_node));
1700 
1701 	/*
1702 	 * Initialize the msg buffer.
1703 	 */
1704 	list_create(&mi->mi_msg_list, sizeof (nfs4_debug_msg_t),
1705 	    offsetof(nfs4_debug_msg_t, msg_node));
1706 	mi->mi_msg_count = 0;
1707 	mutex_init(&mi->mi_msg_list_lock, NULL, MUTEX_DEFAULT, NULL);
1708 
1709 	/*
1710 	 * Initialize kstats
1711 	 */
1712 	nfs4_mnt_kstat_init(vfsp);
1713 
1714 	/*
1715 	 * Initialize the shared filehandle pool, and get the fname for
1716 	 * the filesystem root.
1717 	 */
1718 	sfh4_createtab(&mi->mi_filehandles);
1719 	mi->mi_fname = fn_get(NULL, ".");
1720 
1721 	/*
1722 	 * Initialize the fileid map.
1723 	 */
1724 	mutex_init(&mi->mi_fileid_lock, NULL, MUTEX_DEFAULT, NULL);
1725 	rp4_fileid_map_init(&mi->mi_fileid_map);
1726 
1727 	/*
1728 	 * Save server path we're attempting to mount.
1729 	 */
1730 	(void) nfs_rw_enter_sig(&svp->sv_lock, RW_WRITER, 0);
1731 	orig_sv_pathlen = svp_head->sv_pathlen;
1732 	orig_sv_path = kmem_alloc(svp_head->sv_pathlen, KM_SLEEP);
1733 	bcopy(svp_head->sv_path, orig_sv_path, svp_head->sv_pathlen);
1734 	nfs_rw_exit(&svp->sv_lock);
1735 
1736 	/*
1737 	 * Make the GETFH call to get root fh for each replica.
1738 	 */
1739 	if (svp_head->sv_next)
1740 		droptext = ", dropping replica";
1741 
1742 	/*
1743 	 * If the uid is set then set the creds for secure mounts
1744 	 * by proxy processes such as automountd.
1745 	 */
1746 	(void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0);
1747 	if (svp->sv_secdata->uid != 0) {
1748 		lcr = crdup(cr);
1749 		(void) crsetugid(lcr, svp->sv_secdata->uid, crgetgid(cr));
1750 		tcr = lcr;
1751 	}
1752 	nfs_rw_exit(&svp->sv_lock);
1753 	for (svp = svp_head; svp; svp = svp->sv_next) {
1754 		if (nfs4_chkdup_servinfo4(svp_head, svp)) {
1755 			nfs_cmn_err(error, CE_WARN,
1756 				VERS_MSG "Host %s is a duplicate%s",
1757 				svp->sv_hostname, droptext);
1758 			(void) nfs_rw_enter_sig(&svp->sv_lock, RW_WRITER, 0);
1759 			svp->sv_flags |= SV4_NOTINUSE;
1760 			nfs_rw_exit(&svp->sv_lock);
1761 			continue;
1762 		}
1763 		mi->mi_curr_serv = svp;
1764 
1765 		/*
1766 		 * Just in case server path being mounted contains
1767 		 * symlinks and fails w/STALE, save the initial sv_path
1768 		 * so we can redrive the initial mount compound with the
1769 		 * initial sv_path -- not a symlink-expanded version.
1770 		 *
1771 		 * This could only happen if a symlink was expanded
1772 		 * and the expanded mount compound failed stale.  Because
1773 		 * it could be the case that the symlink was removed at
1774 		 * the server (and replaced with another symlink/dir,
1775 		 * we need to use the initial sv_path when attempting
1776 		 * to re-lookup everything and recover.
1777 		 *
1778 		 * Other mount errors should evenutally be handled here also
1779 		 * (NFS4ERR_DELAY, NFS4ERR_RESOURCE).  For now, all mount
1780 		 * failures will result in mount being redriven a few times.
1781 		 */
1782 		num_retry = nfs4_max_mount_retry;
1783 		do {
1784 			nfs4getfh_otw(mi, svp, &tmp_vtype,
1785 			    ((flags & NFSMNT_PUBLIC) ? NFS4_GETFH_PUBLIC : 0) |
1786 			    NFS4_GETFH_NEEDSOP, tcr, &e);
1787 
1788 			if (e.error == 0 && e.stat == NFS4_OK)
1789 				break;
1790 
1791 			/*
1792 			 * replace current sv_path with orig sv_path -- just in
1793 			 * case it changed due to embedded symlinks.
1794 			 */
1795 			(void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0);
1796 			if (orig_sv_pathlen != svp->sv_pathlen) {
1797 				kmem_free(svp->sv_path, svp->sv_pathlen);
1798 				svp->sv_path = kmem_alloc(orig_sv_pathlen,
1799 							KM_SLEEP);
1800 				svp->sv_pathlen = orig_sv_pathlen;
1801 			}
1802 			bcopy(orig_sv_path, svp->sv_path, orig_sv_pathlen);
1803 			nfs_rw_exit(&svp->sv_lock);
1804 
1805 		} while (num_retry-- > 0);
1806 
1807 		error = e.error ? e.error : geterrno4(e.stat);
1808 		if (error) {
1809 			nfs_cmn_err(error, CE_WARN,
1810 				VERS_MSG "initial call to %s failed%s: %m",
1811 				svp->sv_hostname, droptext);
1812 			(void) nfs_rw_enter_sig(&svp->sv_lock, RW_WRITER, 0);
1813 			svp->sv_flags |= SV4_NOTINUSE;
1814 			nfs_rw_exit(&svp->sv_lock);
1815 			mi->mi_flags &= ~MI4_RECOV_FAIL;
1816 			mi->mi_error = 0;
1817 			continue;
1818 		}
1819 
1820 		if (tmp_vtype == VBAD) {
1821 			zcmn_err(mi->mi_zone->zone_id, CE_WARN,
1822 				VERS_MSG "%s returned a bad file type for "
1823 				"root%s", svp->sv_hostname, droptext);
1824 			(void) nfs_rw_enter_sig(&svp->sv_lock, RW_WRITER, 0);
1825 			svp->sv_flags |= SV4_NOTINUSE;
1826 			nfs_rw_exit(&svp->sv_lock);
1827 			continue;
1828 		}
1829 
1830 		if (vtype == VNON) {
1831 			vtype = tmp_vtype;
1832 		} else if (vtype != tmp_vtype) {
1833 			zcmn_err(mi->mi_zone->zone_id, CE_WARN,
1834 				VERS_MSG "%s returned a different file type "
1835 				"for root%s", svp->sv_hostname, droptext);
1836 			(void) nfs_rw_enter_sig(&svp->sv_lock, RW_WRITER, 0);
1837 			svp->sv_flags |= SV4_NOTINUSE;
1838 			nfs_rw_exit(&svp->sv_lock);
1839 			continue;
1840 		}
1841 		if (firstsvp == NULL)
1842 			firstsvp = svp;
1843 	}
1844 
1845 	kmem_free(orig_sv_path, orig_sv_pathlen);
1846 
1847 	if (firstsvp == NULL) {
1848 		if (error == 0)
1849 			error = ENOENT;
1850 		goto bad;
1851 	}
1852 
1853 	mi->mi_curr_serv = svp = firstsvp;
1854 	(void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0);
1855 	ASSERT((mi->mi_curr_serv->sv_flags & SV4_NOTINUSE) == 0);
1856 	fh.nfs_fh4_len = svp->sv_fhandle.fh_len;
1857 	fh.nfs_fh4_val = svp->sv_fhandle.fh_buf;
1858 	mi->mi_rootfh = sfh4_get(&fh, mi);
1859 	fh.nfs_fh4_len = svp->sv_pfhandle.fh_len;
1860 	fh.nfs_fh4_val = svp->sv_pfhandle.fh_buf;
1861 	mi->mi_srvparentfh = sfh4_get(&fh, mi);
1862 	nfs_rw_exit(&svp->sv_lock);
1863 
1864 	/*
1865 	 * Make the root vnode without attributes.
1866 	 */
1867 	mfname = mi->mi_fname;
1868 	fn_hold(mfname);
1869 	rtvp = makenfs4node_by_fh(mi->mi_rootfh, NULL,
1870 	    &mfname, NULL, mi, cr, gethrtime());
1871 	rtvp->v_type = vtype;
1872 
1873 	mi->mi_curread = mi->mi_tsize;
1874 	mi->mi_curwrite = mi->mi_stsize;
1875 
1876 	/*
1877 	 * Start the manager thread responsible for handling async worker
1878 	 * threads.
1879 	 */
1880 	VFS_HOLD(vfsp);	/* add reference for thread */
1881 	mi->mi_manager_thread = zthread_create(NULL, 0, nfs4_async_manager,
1882 					vfsp, 0, minclsyspri);
1883 	ASSERT(mi->mi_manager_thread != NULL);
1884 	/*
1885 	 * Create the thread that handles over-the-wire calls for
1886 	 * VOP_INACTIVE.
1887 	 * This needs to happen after the manager thread is created.
1888 	 */
1889 	mi->mi_inactive_thread = zthread_create(NULL, 0, nfs4_inactive_thread,
1890 					mi, 0, minclsyspri);
1891 	ASSERT(mi->mi_inactive_thread != NULL);
1892 
1893 	/* If we didn't get a type, get one now */
1894 	if (rtvp->v_type == VNON) {
1895 		va.va_mask = AT_TYPE;
1896 		error = nfs4getattr(rtvp, &va, tcr);
1897 		if (error)
1898 			goto bad;
1899 		rtvp->v_type = va.va_type;
1900 	}
1901 
1902 	mi->mi_type = rtvp->v_type;
1903 
1904 	mutex_enter(&mi->mi_lock);
1905 	mi->mi_flags &= ~MI4_MOUNTING;
1906 	mutex_exit(&mi->mi_lock);
1907 
1908 	*rtvpp = rtvp;
1909 	if (lcr != NULL)
1910 		crfree(lcr);
1911 
1912 	return (0);
1913 bad:
1914 	/*
1915 	 * An error occurred somewhere, need to clean up...
1916 	 *
1917 	 * XXX Should not svp be cleaned too?
1918 	 */
1919 	if (lcr != NULL)
1920 		crfree(lcr);
1921 	if (rtvp != NULL) {
1922 		/*
1923 		 * We need to release our reference to the root vnode and
1924 		 * destroy the mntinfo4 struct that we just created.
1925 		 */
1926 		rp = VTOR4(rtvp);
1927 		if (rp->r_flags & R4HASHED)
1928 			rp4_rmhash(rp);
1929 		if (rp->r_flags & R4FILEIDMAP)
1930 			rp4_fileid_map_remove(rp);
1931 		VN_RELE(rtvp);
1932 	}
1933 	nfs4_async_stop(vfsp);
1934 	nfs4_async_manager_stop(vfsp);
1935 	if (mi->mi_io_kstats) {
1936 		kstat_delete(mi->mi_io_kstats);
1937 		mi->mi_io_kstats = NULL;
1938 	}
1939 	if (mi->mi_ro_kstats) {
1940 		kstat_delete(mi->mi_ro_kstats);
1941 		mi->mi_ro_kstats = NULL;
1942 	}
1943 	if (mi->mi_recov_ksp) {
1944 		kstat_delete(mi->mi_recov_ksp);
1945 		mi->mi_recov_ksp = NULL;
1946 	}
1947 	nfs_free_mi4(mi);
1948 	*rtvpp = NULL;
1949 	return (error);
1950 }
1951 
1952 /*
1953  * vfs operations
1954  */
1955 static int
1956 nfs4_unmount(vfs_t *vfsp, int flag, cred_t *cr)
1957 {
1958 	mntinfo4_t *mi;
1959 	ushort_t omax;
1960 
1961 	if (secpolicy_fs_unmount(cr, vfsp) != 0)
1962 		return (EPERM);
1963 
1964 	mi = VFTOMI4(vfsp);
1965 
1966 	if (flag & MS_FORCE) {
1967 		vfsp->vfs_flag |= VFS_UNMOUNTED;
1968 		if (curproc->p_zone != mi->mi_zone) {
1969 			/*
1970 			 * If the request is coming from the wrong zone,
1971 			 * we don't want to create any new threads, and
1972 			 * performance is not a concern.  Do everything
1973 			 * inline.
1974 			 */
1975 			NFS4_DEBUG(nfs4_client_zone_debug, (CE_NOTE,
1976 			    "nfs4_unmount x-zone forced unmount of vfs %p\n",
1977 			    (void *)vfsp));
1978 			nfs4_free_mount(vfsp, cr);
1979 		} else {
1980 			/*
1981 			 * Free data structures asynchronously, to avoid
1982 			 * blocking the current thread (for performance
1983 			 * reasons only).
1984 			 */
1985 			async_free_mount(vfsp, cr);
1986 		}
1987 		return (0);
1988 	}
1989 	/*
1990 	 * Wait until all asynchronous putpage operations on
1991 	 * this file system are complete before flushing rnodes
1992 	 * from the cache.
1993 	 */
1994 	omax = mi->mi_max_threads;
1995 	if (nfs4_async_stop_sig(vfsp)) {
1996 		return (EINTR);
1997 	}
1998 	r4flush(vfsp, cr);
1999 	/*
2000 	 * If there are any active vnodes on this file system,
2001 	 * then the file system is busy and can't be umounted.
2002 	 */
2003 	if (check_rtable4(vfsp)) {
2004 		mutex_enter(&mi->mi_async_lock);
2005 		mi->mi_max_threads = omax;
2006 		mutex_exit(&mi->mi_async_lock);
2007 		return (EBUSY);
2008 	}
2009 	/*
2010 	 * The unmount can't fail from now on, and there are no active
2011 	 * files that could require over-the-wire calls to the server,
2012 	 * so stop the async manager and the inactive thread.
2013 	 */
2014 	nfs4_async_manager_stop(vfsp);
2015 	/*
2016 	 * Destroy all rnodes belonging to this file system from the
2017 	 * rnode hash queues and purge any resources allocated to
2018 	 * them.
2019 	 */
2020 	destroy_fileid_map(vfsp);
2021 	destroy_rtable4(vfsp, cr);
2022 	vfsp->vfs_flag |= VFS_UNMOUNTED;
2023 	nfs4_remove_mi_from_server(mi, NULL);
2024 	if (mi->mi_io_kstats) {
2025 		kstat_delete(mi->mi_io_kstats);
2026 		mi->mi_io_kstats = NULL;
2027 	}
2028 	if (mi->mi_ro_kstats) {
2029 		kstat_delete(mi->mi_ro_kstats);
2030 		mi->mi_ro_kstats = NULL;
2031 	}
2032 	if (mi->mi_recov_ksp) {
2033 		kstat_delete(mi->mi_recov_ksp);
2034 		mi->mi_recov_ksp = NULL;
2035 	}
2036 	return (0);
2037 }
2038 
2039 /*
2040  * find root of nfs
2041  */
2042 static int
2043 nfs4_root(vfs_t *vfsp, vnode_t **vpp)
2044 {
2045 	mntinfo4_t *mi;
2046 	vnode_t *vp;
2047 	nfs4_fname_t *mfname;
2048 	servinfo4_t *svp;
2049 
2050 	mi = VFTOMI4(vfsp);
2051 
2052 	if (curproc->p_zone != mi->mi_zone)
2053 		return (EPERM);
2054 
2055 	svp = mi->mi_curr_serv;
2056 	if (svp) {
2057 		(void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0);
2058 		if (svp->sv_flags & SV4_ROOT_STALE) {
2059 			nfs_rw_exit(&svp->sv_lock);
2060 
2061 			(void) nfs_rw_enter_sig(&svp->sv_lock, RW_WRITER, 0);
2062 			if (svp->sv_flags & SV4_ROOT_STALE) {
2063 				svp->sv_flags &= ~SV4_ROOT_STALE;
2064 				nfs_rw_exit(&svp->sv_lock);
2065 				return (ENOENT);
2066 			}
2067 			nfs_rw_exit(&svp->sv_lock);
2068 		} else
2069 			nfs_rw_exit(&svp->sv_lock);
2070 	}
2071 
2072 	mfname = mi->mi_fname;
2073 	fn_hold(mfname);
2074 	vp = makenfs4node_by_fh(mi->mi_rootfh, NULL, &mfname, NULL,
2075 	    VFTOMI4(vfsp), CRED(), gethrtime());
2076 
2077 	if (VTOR4(vp)->r_flags & R4STALE) {
2078 		VN_RELE(vp);
2079 		return (ENOENT);
2080 	}
2081 
2082 	ASSERT(vp->v_type == VNON || vp->v_type == mi->mi_type);
2083 
2084 	vp->v_type = mi->mi_type;
2085 
2086 	*vpp = vp;
2087 
2088 	return (0);
2089 }
2090 
2091 static int
2092 nfs4_statfs_otw(vnode_t *vp, struct statvfs64 *sbp, cred_t *cr)
2093 {
2094 	int error;
2095 	nfs4_ga_res_t gar;
2096 	nfs4_ga_ext_res_t ger;
2097 
2098 	gar.n4g_ext_res = &ger;
2099 
2100 	if (error = nfs4_attr_otw(vp, TAG_FSINFO, &gar,
2101 	    NFS4_STATFS_ATTR_MASK, cr))
2102 		return (error);
2103 
2104 	*sbp = gar.n4g_ext_res->n4g_sb;
2105 
2106 	return (0);
2107 }
2108 
2109 /*
2110  * Get file system statistics.
2111  */
2112 static int
2113 nfs4_statvfs(vfs_t *vfsp, struct statvfs64 *sbp)
2114 {
2115 	int error;
2116 	vnode_t *vp;
2117 	cred_t *cr;
2118 
2119 	error = nfs4_root(vfsp, &vp);
2120 	if (error)
2121 		return (error);
2122 
2123 	cr = CRED();
2124 
2125 	error = nfs4_statfs_otw(vp, sbp, cr);
2126 	if (!error) {
2127 		(void) strncpy(sbp->f_basetype,
2128 			vfssw[vfsp->vfs_fstype].vsw_name, FSTYPSZ);
2129 		sbp->f_flag = vf_to_stf(vfsp->vfs_flag);
2130 	} else {
2131 		nfs4_purge_stale_fh(error, vp, cr);
2132 	}
2133 
2134 	VN_RELE(vp);
2135 
2136 	return (error);
2137 }
2138 
2139 static kmutex_t nfs4_syncbusy;
2140 
2141 /*
2142  * Flush dirty nfs files for file system vfsp.
2143  * If vfsp == NULL, all nfs files are flushed.
2144  *
2145  * SYNC_CLOSE in flag is passed to us to
2146  * indicate that we are shutting down and or
2147  * rebooting.
2148  */
2149 static int
2150 nfs4_sync(vfs_t *vfsp, short flag, cred_t *cr)
2151 {
2152 	/*
2153 	 * Cross-zone calls are OK here, since this translates to a
2154 	 * VOP_PUTPAGE(B_ASYNC), which gets picked up by the right zone.
2155 	 */
2156 	if (!(flag & SYNC_ATTR) && mutex_tryenter(&nfs4_syncbusy) != 0) {
2157 		r4flush(vfsp, cr);
2158 		mutex_exit(&nfs4_syncbusy);
2159 	}
2160 
2161 	/*
2162 	 * if SYNC_CLOSE is set then we know that
2163 	 * the system is rebooting, mark the mntinfo
2164 	 * for later examination.
2165 	 */
2166 	if (vfsp && (flag & SYNC_CLOSE)) {
2167 		mntinfo4_t *mi;
2168 
2169 		mi = VFTOMI4(vfsp);
2170 		if (!(mi->mi_flags & MI4_SHUTDOWN)) {
2171 			mutex_enter(&mi->mi_lock);
2172 			mi->mi_flags |= MI4_SHUTDOWN;
2173 			mutex_exit(&mi->mi_lock);
2174 		}
2175 	}
2176 	return (0);
2177 }
2178 
2179 /*
2180  * vget is difficult, if not impossible, to support in v4 because we don't
2181  * know the parent directory or name, which makes it impossible to create a
2182  * useful shadow vnode.  And we need the shadow vnode for things like
2183  * OPEN.
2184  */
2185 
2186 /* ARGSUSED */
2187 /*
2188  * XXX Check nfs4_vget_pseudo() for dependency.
2189  */
2190 static int
2191 nfs4_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp)
2192 {
2193 	return (EREMOTE);
2194 }
2195 
2196 /*
2197  * nfs4_mountroot get called in the case where we are diskless booting.  All
2198  * we need from here is the ability to get the server info and from there we
2199  * can simply call nfs4_rootvp.
2200  */
2201 /* ARGSUSED */
2202 static int
2203 nfs4_mountroot(vfs_t *vfsp, whymountroot_t why)
2204 {
2205 	vnode_t *rtvp;
2206 	char root_hostname[SYS_NMLN+1];
2207 	struct servinfo4 *svp;
2208 	int error;
2209 	int vfsflags;
2210 	size_t size;
2211 	char *root_path;
2212 	struct pathname pn;
2213 	char *name;
2214 	cred_t *cr;
2215 	mntinfo4_t *mi;
2216 	struct nfs_args args;		/* nfs mount arguments */
2217 	static char token[10];
2218 	nfs4_error_t n4e;
2219 
2220 	bzero(&args, sizeof (args));
2221 
2222 	/* do this BEFORE getfile which causes xid stamps to be initialized */
2223 	clkset(-1L);		/* hack for now - until we get time svc? */
2224 
2225 	if (why == ROOT_REMOUNT) {
2226 		/*
2227 		 * Shouldn't happen.
2228 		 */
2229 		panic("nfs4_mountroot: why == ROOT_REMOUNT");
2230 	}
2231 
2232 	if (why == ROOT_UNMOUNT) {
2233 		/*
2234 		 * Nothing to do for NFS.
2235 		 */
2236 		return (0);
2237 	}
2238 
2239 	/*
2240 	 * why == ROOT_INIT
2241 	 */
2242 
2243 	name = token;
2244 	*name = 0;
2245 	(void) getfsname("root", name, sizeof (token));
2246 
2247 	pn_alloc(&pn);
2248 	root_path = pn.pn_path;
2249 
2250 	svp = kmem_zalloc(sizeof (*svp), KM_SLEEP);
2251 	nfs_rw_init(&svp->sv_lock, NULL, RW_DEFAULT, NULL);
2252 	svp->sv_knconf = kmem_zalloc(sizeof (*svp->sv_knconf), KM_SLEEP);
2253 	svp->sv_knconf->knc_protofmly = kmem_alloc(KNC_STRSIZE, KM_SLEEP);
2254 	svp->sv_knconf->knc_proto = kmem_alloc(KNC_STRSIZE, KM_SLEEP);
2255 
2256 	/*
2257 	 * Get server address
2258 	 * Get the root path
2259 	 * Get server's transport
2260 	 * Get server's hostname
2261 	 * Get options
2262 	 */
2263 	args.addr = &svp->sv_addr;
2264 	(void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0);
2265 	args.fh = (char *)&svp->sv_fhandle;
2266 	args.knconf = svp->sv_knconf;
2267 	args.hostname = root_hostname;
2268 	vfsflags = 0;
2269 	if (error = mount_root(*name ? name : "root", root_path, NFS_V4,
2270 	    &args, &vfsflags)) {
2271 		if (error == EPROTONOSUPPORT)
2272 			nfs_cmn_err(error, CE_WARN, "nfs4_mountroot: "
2273 			    "mount_root failed: server doesn't support NFS V4");
2274 		else
2275 			nfs_cmn_err(error, CE_WARN,
2276 			    "nfs4_mountroot: mount_root failed: %m");
2277 		nfs_rw_exit(&svp->sv_lock);
2278 		sv4_free(svp);
2279 		pn_free(&pn);
2280 		return (error);
2281 	}
2282 	nfs_rw_exit(&svp->sv_lock);
2283 	svp->sv_hostnamelen = (int)(strlen(root_hostname) + 1);
2284 	svp->sv_hostname = kmem_alloc(svp->sv_hostnamelen, KM_SLEEP);
2285 	(void) strcpy(svp->sv_hostname, root_hostname);
2286 
2287 	svp->sv_pathlen = (int)(strlen(root_path) + 1);
2288 	svp->sv_path = kmem_alloc(svp->sv_pathlen, KM_SLEEP);
2289 	(void) strcpy(svp->sv_path, root_path);
2290 
2291 	/*
2292 	 * Force root partition to always be mounted with AUTH_UNIX for now
2293 	 */
2294 	svp->sv_secdata = kmem_alloc(sizeof (*svp->sv_secdata), KM_SLEEP);
2295 	svp->sv_secdata->secmod = AUTH_UNIX;
2296 	svp->sv_secdata->rpcflavor = AUTH_UNIX;
2297 	svp->sv_secdata->data = NULL;
2298 
2299 	cr = crgetcred();
2300 	rtvp = NULL;
2301 
2302 	error = nfs4rootvp(&rtvp, vfsp, svp, args.flags, cr, global_zone);
2303 
2304 	if (error) {
2305 		crfree(cr);
2306 		pn_free(&pn);
2307 		goto errout;
2308 	}
2309 
2310 	mi = VTOMI4(rtvp);
2311 
2312 	/*
2313 	 * Send client id to the server, if necessary
2314 	 */
2315 	nfs4_error_zinit(&n4e);
2316 	nfs4setclientid(mi, cr, FALSE, &n4e);
2317 	error = n4e.error;
2318 
2319 	crfree(cr);
2320 
2321 	if (error) {
2322 		pn_free(&pn);
2323 		goto errout;
2324 	}
2325 
2326 	error = nfs4_setopts(rtvp, DATAMODEL_NATIVE, &args);
2327 	if (error) {
2328 		nfs_cmn_err(error, CE_WARN,
2329 		    "nfs4_mountroot: invalid root mount options");
2330 		pn_free(&pn);
2331 		goto errout;
2332 	}
2333 
2334 	(void) vfs_lock_wait(vfsp);
2335 	vfs_add(NULL, vfsp, vfsflags);
2336 	vfs_unlock(vfsp);
2337 
2338 	size = strlen(svp->sv_hostname);
2339 	(void) strcpy(rootfs.bo_name, svp->sv_hostname);
2340 	rootfs.bo_name[size] = ':';
2341 	(void) strcpy(&rootfs.bo_name[size + 1], root_path);
2342 
2343 	pn_free(&pn);
2344 
2345 errout:
2346 	if (error) {
2347 		sv4_free(svp);
2348 		nfs4_async_stop(vfsp);
2349 		nfs4_async_manager_stop(vfsp);
2350 	}
2351 
2352 	if (rtvp != NULL)
2353 		VN_RELE(rtvp);
2354 
2355 	return (error);
2356 }
2357 
2358 /*
2359  * Initialization routine for VFS routines.  Should only be called once
2360  */
2361 int
2362 nfs4_vfsinit(void)
2363 {
2364 	mutex_init(&nfs4_syncbusy, NULL, MUTEX_DEFAULT, NULL);
2365 	nfs4setclientid_init();
2366 	return (0);
2367 }
2368 
2369 void
2370 nfs4_vfsfini(void)
2371 {
2372 	nfs4setclientid_fini();
2373 	mutex_destroy(&nfs4_syncbusy);
2374 }
2375 
2376 void
2377 nfs4_freevfs(vfs_t *vfsp)
2378 {
2379 	mntinfo4_t *mi;
2380 	servinfo4_t *svp;
2381 
2382 	/* free up the resources */
2383 	mi = VFTOMI4(vfsp);
2384 	svp = mi->mi_servers;
2385 	mi->mi_servers = mi->mi_curr_serv = NULL;
2386 	sv4_free(svp);
2387 	NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE, "nfs4_freevfs: "
2388 		"free mi %p", (void *)mi));
2389 
2390 	/*
2391 	 * By this time we should have already deleted the
2392 	 * mi kstats in the unmount code. If they are still around
2393 	 * somethings wrong
2394 	 */
2395 	ASSERT(mi->mi_io_kstats == NULL);
2396 
2397 	nfs_free_mi4(mi);
2398 }
2399 
2400 /*
2401  * Client side SETCLIENTID and SETCLIENTID_CONFIRM
2402  */
2403 struct nfs4_server nfs4_server_lst =
2404 	{ &nfs4_server_lst, &nfs4_server_lst };
2405 
2406 kmutex_t nfs4_server_lst_lock;
2407 
2408 static void
2409 nfs4setclientid_init(void)
2410 {
2411 	mutex_init(&nfs4_server_lst_lock, NULL, MUTEX_DEFAULT, NULL);
2412 }
2413 
2414 static void
2415 nfs4setclientid_fini(void)
2416 {
2417 	mutex_destroy(&nfs4_server_lst_lock);
2418 }
2419 
2420 int nfs4_retry_sclid_delay = NFS4_RETRY_SCLID_DELAY;
2421 int nfs4_num_sclid_retries = NFS4_NUM_SCLID_RETRIES;
2422 
2423 /*
2424  * Set the clientid for the server for "mi".  No-op if the clientid is
2425  * already set.
2426  *
2427  * The recovery boolean should be set to TRUE if this function was called
2428  * by the recovery code, and FALSE otherwise.  This is used to determine
2429  * if we need to call nfs4_start/end_op as well as grab the mi_recovlock
2430  * for adding a mntinfo4_t to a nfs4_server_t.
2431  *
2432  * Error is returned via 'n4ep'.  If there was a 'n4ep->stat' error, then
2433  * 'n4ep->error' is set to geterrno4(n4ep->stat).
2434  */
2435 void
2436 nfs4setclientid(mntinfo4_t *mi, cred_t *cr, bool_t recovery, nfs4_error_t *n4ep)
2437 {
2438 	struct nfs4_server *np;
2439 	struct servinfo4 *svp = mi->mi_curr_serv;
2440 	nfs4_recov_state_t recov_state;
2441 	int num_retries = 0;
2442 	bool_t retry = FALSE;
2443 	cred_t *lcr = NULL;
2444 	int retry_inuse = 1; /* only retry once on NFS4ERR_CLID_INUSE */
2445 	time_t lease_time = 0;
2446 
2447 	recov_state.rs_flags = 0;
2448 	recov_state.rs_num_retry_despite_err = 0;
2449 	ASSERT(n4ep != NULL);
2450 
2451 recov_retry:
2452 	nfs4_error_zinit(n4ep);
2453 	if (!recovery)
2454 		(void) nfs_rw_enter_sig(&mi->mi_recovlock, RW_READER, 0);
2455 
2456 	/* This locks np if it is found */
2457 	np = servinfo4_to_nfs4_server(svp);
2458 	ASSERT(np == NULL || MUTEX_HELD(&np->s_lock));
2459 
2460 	/*
2461 	 * If we find the server already in the list, then just
2462 	 * return, we've already done SETCLIENTID to that server
2463 	 */
2464 
2465 	if (np && (np->s_flags & N4S_CLIENTID_SET)) {
2466 		/*
2467 		 * XXX - more is needed here.  SETCLIENTID may not
2468 		 * be completed.  A VFS lock may prevent multiple
2469 		 * mounts and provide needed serialization.
2470 		 */
2471 		/* add mi to np's mntinfo4_list */
2472 		nfs4_add_mi_to_server(np, mi);
2473 		if (!recovery)
2474 			nfs_rw_exit(&mi->mi_recovlock);
2475 		mutex_exit(&np->s_lock);
2476 		nfs4_server_rele(np);
2477 		return;
2478 	}
2479 
2480 	/*
2481 	 * Drop the mi_recovlock since nfs4_start_op will
2482 	 * acquire it again for us.
2483 	 */
2484 	if (!recovery)
2485 		nfs_rw_exit(&mi->mi_recovlock);
2486 
2487 	if (!np)
2488 		np = new_nfs4_server(svp, cr);
2489 	else
2490 		mutex_exit(&np->s_lock);
2491 
2492 	if (!recovery) {
2493 		n4ep->error = nfs4_start_op(mi, NULL, NULL, &recov_state);
2494 		if (n4ep->error) {
2495 			nfs4_server_rele(np);
2496 			return;
2497 		}
2498 	}
2499 
2500 	/*
2501 	 * Will potentially add np to global list, which transfers
2502 	 * ownership of the reference to the list.
2503 	 */
2504 	mutex_enter(&nfs4_server_lst_lock);
2505 	mutex_enter(&np->s_lock);
2506 
2507 	/*
2508 	 * Reset the N4S_CB_PINGED flag. This is used to
2509 	 * indicate if we have received a CB_NULL from the
2510 	 * server. Also we reset the waiter flag.
2511 	 */
2512 	np->s_flags &= ~(N4S_CB_PINGED | N4S_CB_WAITER);
2513 
2514 	if (np->s_flags & N4S_CLIENTID_SET) {
2515 		/* XXX copied/pasted from above */
2516 		/*
2517 		 * XXX - more is needed here.  SETCLIENTID may not
2518 		 * be completed.  A VFS lock may prevent multiple
2519 		 * mounts and provide needed serialization.
2520 		 */
2521 		/* add mi to np's mntinfo4_list */
2522 		nfs4_add_mi_to_server(np, mi);
2523 		mutex_exit(&np->s_lock);
2524 		mutex_exit(&nfs4_server_lst_lock);
2525 		nfs4_server_rele(np);
2526 		if (!recovery)
2527 			nfs4_end_op(mi, NULL, NULL, &recov_state, recovery);
2528 		return;
2529 	}
2530 
2531 	nfs4setclientid_otw(mi, svp, cr, np, n4ep, &retry_inuse);
2532 
2533 	if (n4ep->error == EACCES) {
2534 		/*
2535 		 * If the uid is set then set the creds for secure mounts
2536 		 * by proxy processes such as automountd.
2537 		 */
2538 		(void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0);
2539 		if (svp->sv_secdata->uid != 0) {
2540 			lcr = crdup(cr);
2541 			(void) crsetugid(lcr, svp->sv_secdata->uid,
2542 			    crgetgid(cr));
2543 			crfree(np->s_cred);
2544 			np->s_cred = lcr;
2545 		}
2546 		nfs_rw_exit(&svp->sv_lock);
2547 
2548 		if (lcr != NULL)
2549 			nfs4setclientid_otw(mi, svp, lcr, np, n4ep,
2550 				&retry_inuse);
2551 	}
2552 	lease_time = np->s_lease_time;
2553 	mutex_exit(&np->s_lock);
2554 	mutex_exit(&nfs4_server_lst_lock);
2555 
2556 	if (n4ep->error != 0 || n4ep->stat != NFS4_OK) {
2557 		/*
2558 		 * Start recovery if failover is a possibility.  If
2559 		 * invoked by the recovery thread itself, then just
2560 		 * return and let it handle the failover first.  NB:
2561 		 * recovery is not allowed if the mount is in progress
2562 		 * since the infrastructure is not sufficiently setup
2563 		 * to allow it.  Just return the error (after suitable
2564 		 * retries).
2565 		 */
2566 		if (FAILOVER_MOUNT4(mi) && nfs4_try_failover(n4ep)) {
2567 			(void) nfs4_start_recovery(n4ep, mi, NULL,
2568 				    NULL, NULL, NULL, OP_SETCLIENTID, NULL);
2569 			/*
2570 			 * Don't retry here, just return and let
2571 			 * recovery take over.
2572 			 */
2573 			if (recovery)
2574 				retry = FALSE;
2575 		} else if (nfs4_rpc_retry_error(n4ep->error) ||
2576 			    n4ep->stat == NFS4ERR_RESOURCE ||
2577 			    n4ep->stat == NFS4ERR_STALE_CLIENTID) {
2578 
2579 				retry = TRUE;
2580 				/*
2581 				 * Always retry if in recovery or once had
2582 				 * contact with the server (but now it's
2583 				 * overloaded).
2584 				 */
2585 				if (recovery == TRUE ||
2586 				    n4ep->error == ETIMEDOUT ||
2587 				    n4ep->error == ECONNRESET)
2588 					num_retries = 0;
2589 		} else if (retry_inuse && n4ep->error == 0 &&
2590 			    n4ep->stat == NFS4ERR_CLID_INUSE) {
2591 				retry = TRUE;
2592 				num_retries = 0;
2593 		}
2594 	}
2595 
2596 	if (!recovery)
2597 		nfs4_end_op(mi, NULL, NULL, &recov_state, recovery);
2598 	nfs4_server_rele(np);
2599 
2600 	if (retry && num_retries++ < nfs4_num_sclid_retries) {
2601 		if (retry_inuse) {
2602 			delay(SEC_TO_TICK(lease_time + nfs4_retry_sclid_delay));
2603 			retry_inuse = 0;
2604 		} else
2605 			delay(SEC_TO_TICK(nfs4_retry_sclid_delay));
2606 		goto recov_retry;
2607 	}
2608 
2609 	if (n4ep->error == 0)
2610 		n4ep->error = geterrno4(n4ep->stat);
2611 }
2612 
2613 int nfs4setclientid_otw_debug = 0;
2614 
2615 /*
2616  * This assumes np is locked down.
2617  * This function handles the recovery of STALE_CLIENTID for SETCLIENTID_CONFRIM,
2618  * but nothing else; the calling function must be designed to handle those
2619  * other errors.
2620  */
2621 static void
2622 nfs4setclientid_otw(mntinfo4_t *mi, struct servinfo4 *svp,  cred_t *cr,
2623 	struct nfs4_server *np, nfs4_error_t *ep, int *retry_inusep)
2624 {
2625 	COMPOUND4args_clnt args;
2626 	COMPOUND4res_clnt res;
2627 	nfs_argop4 argop[3];
2628 	SETCLIENTID4args *s_args;
2629 	SETCLIENTID4resok *s_resok;
2630 	int doqueue = 1;
2631 	nfs4_ga_res_t *garp = NULL;
2632 	timespec_t prop_time, after_time;
2633 	verifier4 verf;
2634 	clientid4 tmp_clientid;
2635 
2636 	ASSERT(MUTEX_HELD(&np->s_lock));
2637 
2638 	args.ctag = TAG_SETCLIENTID;
2639 
2640 	args.array = argop;
2641 	args.array_len = 3;
2642 
2643 	/* PUTROOTFH */
2644 	argop[0].argop = OP_PUTROOTFH;
2645 
2646 	/* GETATTR */
2647 	argop[1].argop = OP_GETATTR;
2648 	argop[1].nfs_argop4_u.opgetattr.attr_request = FATTR4_LEASE_TIME_MASK;
2649 	argop[1].nfs_argop4_u.opgetattr.mi = mi;
2650 
2651 	/* SETCLIENTID */
2652 	argop[2].argop = OP_SETCLIENTID;
2653 
2654 	s_args = &argop[2].nfs_argop4_u.opsetclientid;
2655 
2656 	s_args->client.verifier = np->clidtosend.verifier;
2657 	s_args->client.id_len = np->clidtosend.id_len;
2658 	ASSERT(s_args->client.id_len <= NFS4_OPAQUE_LIMIT);
2659 	s_args->client.id_val = np->clidtosend.id_val;
2660 
2661 	/*
2662 	 * Callback needs to happen on non-RDMA transport
2663 	 * Check if we have saved the original knetconfig
2664 	 * if so, use that instead.
2665 	 */
2666 	if (svp->sv_origknconf != NULL)
2667 		nfs4_cb_args(np, svp->sv_origknconf, s_args);
2668 	else
2669 		nfs4_cb_args(np, svp->sv_knconf, s_args);
2670 
2671 	rfs4call(mi, &args, &res, cr, &doqueue, RFSCALL_SOFT, ep);
2672 
2673 	if (ep->error)
2674 		return;
2675 
2676 	/* getattr lease_time res */
2677 	if (res.array_len >= 2) {
2678 		garp = &res.array[1].nfs_resop4_u.opgetattr.ga_res;
2679 
2680 #ifndef _LP64
2681 		/*
2682 		 * The 32 bit client cannot handle a lease time greater than
2683 		 * (INT32_MAX/1000000).  This is due to the use of the
2684 		 * lease_time in calls to drv_usectohz() in
2685 		 * nfs4_renew_lease_thread().  The problem is that
2686 		 * drv_usectohz() takes a time_t (which is just a long = 4
2687 		 * bytes) as its parameter.  The lease_time is multiplied by
2688 		 * 1000000 to convert seconds to usecs for the parameter.  If
2689 		 * a number bigger than (INT32_MAX/1000000) is used then we
2690 		 * overflow on the 32bit client.
2691 		 */
2692 		if (garp->n4g_ext_res->n4g_leasetime > (INT32_MAX/1000000)) {
2693 			garp->n4g_ext_res->n4g_leasetime = INT32_MAX/1000000;
2694 		}
2695 #endif
2696 
2697 		np->s_lease_time = garp->n4g_ext_res->n4g_leasetime;
2698 
2699 		/*
2700 		 * Keep track of the lease period for the mi's
2701 		 * mi_msg_list.  We need an appropiate time
2702 		 * bound to associate past facts with a current
2703 		 * event.  The lease period is perfect for this.
2704 		 */
2705 		mutex_enter(&mi->mi_msg_list_lock);
2706 		mi->mi_lease_period = np->s_lease_time;
2707 		mutex_exit(&mi->mi_msg_list_lock);
2708 	}
2709 
2710 
2711 	if (res.status == NFS4ERR_CLID_INUSE) {
2712 		clientaddr4 *clid_inuse;
2713 
2714 		if (!(*retry_inusep)) {
2715 			clid_inuse = &res.array->nfs_resop4_u.
2716 				opsetclientid.SETCLIENTID4res_u.client_using;
2717 
2718 			zcmn_err(mi->mi_zone->zone_id, CE_NOTE,
2719 			    "NFS4 mount (SETCLIENTID failed)."
2720 			    "  nfs4_client_id.id is in"
2721 			    "use already by: r_netid<%s> r_addr<%s>",
2722 			    clid_inuse->r_netid, clid_inuse->r_addr);
2723 		}
2724 
2725 		/*
2726 		 * XXX - The client should be more robust in its
2727 		 * handling of clientid in use errors (regen another
2728 		 * clientid and try again?)
2729 		 */
2730 		(void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
2731 		return;
2732 	}
2733 
2734 	if (res.status) {
2735 		(void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
2736 		return;
2737 	}
2738 
2739 	s_resok = &res.array[2].nfs_resop4_u.
2740 		opsetclientid.SETCLIENTID4res_u.resok4;
2741 
2742 	tmp_clientid = s_resok->clientid;
2743 
2744 	verf = s_resok->setclientid_confirm;
2745 
2746 #ifdef	DEBUG
2747 	if (nfs4setclientid_otw_debug) {
2748 		union {
2749 			clientid4	clientid;
2750 			int		foo[2];
2751 		} cid;
2752 
2753 		cid.clientid = s_resok->clientid;
2754 
2755 		zcmn_err(mi->mi_zone->zone_id, CE_NOTE,
2756 		"nfs4setclientid_otw: OK, clientid = %x,%x, "
2757 		"verifier = %" PRIx64 "\n", cid.foo[0], cid.foo[1], verf);
2758 	}
2759 #endif
2760 
2761 	(void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
2762 
2763 	/* Confirm the client id and get the lease_time attribute */
2764 
2765 	args.ctag = TAG_SETCLIENTID_CF;
2766 
2767 	args.array = argop;
2768 	args.array_len = 1;
2769 
2770 	argop[0].argop = OP_SETCLIENTID_CONFIRM;
2771 
2772 	argop[0].nfs_argop4_u.opsetclientid_confirm.clientid = tmp_clientid;
2773 	argop[0].nfs_argop4_u.opsetclientid_confirm.setclientid_confirm = verf;
2774 
2775 	/* used to figure out RTT for np */
2776 	gethrestime(&prop_time);
2777 
2778 	NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE, "nfs4setlientid_otw: "
2779 		"start time: %ld sec %ld nsec", prop_time.tv_sec,
2780 		prop_time.tv_nsec));
2781 
2782 	rfs4call(mi, &args, &res, cr, &doqueue, 0, ep);
2783 
2784 	gethrestime(&after_time);
2785 	np->propagation_delay.tv_sec =
2786 		MAX(1, after_time.tv_sec - prop_time.tv_sec);
2787 
2788 	NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE, "nfs4setlcientid_otw: "
2789 		"finish time: %ld sec ", after_time.tv_sec));
2790 
2791 	NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE, "nfs4setclientid_otw: "
2792 		"propagation delay set to %ld sec",
2793 		np->propagation_delay.tv_sec));
2794 
2795 	if (ep->error)
2796 		return;
2797 
2798 	if (res.status == NFS4ERR_CLID_INUSE) {
2799 		clientaddr4 *clid_inuse;
2800 
2801 		if (!(*retry_inusep)) {
2802 			clid_inuse = &res.array->nfs_resop4_u.
2803 				opsetclientid.SETCLIENTID4res_u.client_using;
2804 
2805 			zcmn_err(mi->mi_zone->zone_id, CE_NOTE,
2806 			    "SETCLIENTID_CONFIRM failed.  "
2807 			    "nfs4_client_id.id is in use already by: "
2808 			    "r_netid<%s> r_addr<%s>",
2809 			    clid_inuse->r_netid, clid_inuse->r_addr);
2810 		}
2811 
2812 		(void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
2813 		return;
2814 	}
2815 
2816 	if (res.status) {
2817 		(void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
2818 		return;
2819 	}
2820 
2821 	if (!(np->s_flags & N4S_INSERTED)) {
2822 		ASSERT(MUTEX_HELD(&nfs4_server_lst_lock));
2823 		insque(np, &nfs4_server_lst);
2824 		ASSERT(MUTEX_HELD(&np->s_lock));
2825 		np->s_flags |= N4S_INSERTED;
2826 		np->s_refcnt++;		/* list gets a reference */
2827 	}
2828 
2829 	np->clientid = tmp_clientid;
2830 	np->s_flags |= N4S_CLIENTID_SET;
2831 
2832 	/* Add mi to np's mntinfo4 list */
2833 	nfs4_add_mi_to_server(np, mi);
2834 
2835 	if (np->lease_valid == NFS4_LEASE_NOT_STARTED) {
2836 		/*
2837 		 * Start lease management thread.
2838 		 * Keep trying until we succeed.
2839 		 */
2840 
2841 		np->s_refcnt++;		/* pass reference to thread */
2842 		(void) zthread_create(NULL, 0, nfs4_renew_lease_thread, np, 0,
2843 				    minclsyspri);
2844 	}
2845 
2846 	(void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
2847 }
2848 
2849 /*
2850  * Add mi to sp's mntinfo4_list if it isn't already in the list.  Makes
2851  * mi's clientid the same as sp's.
2852  * Assumes sp is locked down.
2853  */
2854 void
2855 nfs4_add_mi_to_server(nfs4_server_t *sp, mntinfo4_t *mi)
2856 {
2857 	mntinfo4_t *tmi;
2858 	int in_list = 0;
2859 
2860 	ASSERT(nfs_rw_lock_held(&mi->mi_recovlock, RW_READER) ||
2861 	    nfs_rw_lock_held(&mi->mi_recovlock, RW_WRITER));
2862 	ASSERT(sp != &nfs4_server_lst);
2863 	ASSERT(MUTEX_HELD(&sp->s_lock));
2864 
2865 	NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE,
2866 		"nfs4_add_mi_to_server: add mi %p to sp %p",
2867 		    (void*)mi, (void*)sp));
2868 
2869 	for (tmi = sp->mntinfo4_list;
2870 	    tmi != NULL;
2871 	    tmi = tmi->mi_clientid_next) {
2872 		if (tmi == mi) {
2873 			NFS4_DEBUG(nfs4_client_lease_debug,
2874 				(CE_NOTE,
2875 				"nfs4_add_mi_to_server: mi in list"));
2876 			in_list = 1;
2877 		}
2878 	}
2879 
2880 	/*
2881 	 * First put a hold on the mntinfo4's vfsp so that references via
2882 	 * mntinfo4_list will be valid.
2883 	 */
2884 	if (!in_list)
2885 		VFS_HOLD(mi->mi_vfsp);
2886 
2887 	NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE, "nfs4_add_mi_to_server: "
2888 		"hold vfs %p for mi: %p", (void*)mi->mi_vfsp, (void*)mi));
2889 
2890 	if (!in_list) {
2891 		if (sp->mntinfo4_list)
2892 			sp->mntinfo4_list->mi_clientid_prev = mi;
2893 		mi->mi_clientid_next = sp->mntinfo4_list;
2894 		sp->mntinfo4_list = mi;
2895 		mi->mi_srvsettime = gethrestime_sec();
2896 	}
2897 
2898 	/* set mi's clientid to that of sp's for later matching */
2899 	mi->mi_clientid = sp->clientid;
2900 
2901 	/*
2902 	 * Update the clientid for any other mi's belonging to sp.  This
2903 	 * must be done here while we hold sp->s_lock, so that
2904 	 * find_nfs4_server() continues to work.
2905 	 */
2906 
2907 	for (tmi = sp->mntinfo4_list;
2908 	    tmi != NULL;
2909 	    tmi = tmi->mi_clientid_next) {
2910 		if (tmi != mi) {
2911 			tmi->mi_clientid = sp->clientid;
2912 		}
2913 	}
2914 }
2915 
2916 /*
2917  * Remove the mi from sp's mntinfo4_list and release its reference.
2918  * Exception: if mi still has open files, flag it for later removal (when
2919  * all the files are closed).
2920  *
2921  * If this is the last mntinfo4 in sp's list then tell the lease renewal
2922  * thread to exit.
2923  */
2924 static void
2925 nfs4_remove_mi_from_server_nolock(mntinfo4_t *mi, nfs4_server_t *sp)
2926 {
2927 	NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE,
2928 		"nfs4_remove_mi_from_server_nolock: remove mi %p from sp %p",
2929 		(void*)mi, (void*)sp));
2930 
2931 	ASSERT(sp != NULL);
2932 	ASSERT(MUTEX_HELD(&sp->s_lock));
2933 	ASSERT(mi->mi_open_files >= 0);
2934 
2935 	/*
2936 	 * First make sure this mntinfo4 can be taken off of the list,
2937 	 * ie: it doesn't have any open files remaining.
2938 	 */
2939 	if (mi->mi_open_files > 0) {
2940 		NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE,
2941 			"nfs4_remove_mi_from_server_nolock: don't "
2942 			"remove mi since it still has files open"));
2943 
2944 		mutex_enter(&mi->mi_lock);
2945 		mi->mi_flags |= MI4_REMOVE_ON_LAST_CLOSE;
2946 		mutex_exit(&mi->mi_lock);
2947 		return;
2948 	}
2949 
2950 	remove_mi(sp, mi);
2951 
2952 	if (sp->mntinfo4_list == NULL) {
2953 		/* last fs unmounted, kill the thread */
2954 		NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE,
2955 			"remove_mi_from_nfs4_server_nolock: kill the thread"));
2956 		nfs4_mark_srv_dead(sp);
2957 	}
2958 }
2959 
2960 /*
2961  * Remove mi from sp's mntinfo4_list and release the vfs reference.
2962  */
2963 static void
2964 remove_mi(nfs4_server_t *sp, mntinfo4_t *mi)
2965 {
2966 	ASSERT(MUTEX_HELD(&sp->s_lock));
2967 
2968 	/*
2969 	 * We release a reference, and the caller must still have a
2970 	 * reference.
2971 	 */
2972 	ASSERT(mi->mi_vfsp->vfs_count >= 2);
2973 
2974 	if (mi->mi_clientid_prev) {
2975 		mi->mi_clientid_prev->mi_clientid_next = mi->mi_clientid_next;
2976 	} else {
2977 		/* This is the first mi in sp's mntinfo4_list */
2978 		/*
2979 		 * Make sure the first mntinfo4 in the list is the actual
2980 		 * mntinfo4 passed in.
2981 		 */
2982 		ASSERT(sp->mntinfo4_list == mi);
2983 
2984 		sp->mntinfo4_list = mi->mi_clientid_next;
2985 	}
2986 	if (mi->mi_clientid_next)
2987 		mi->mi_clientid_next->mi_clientid_prev = mi->mi_clientid_prev;
2988 
2989 	/* Now mark the mntinfo4's links as being removed */
2990 	mi->mi_clientid_prev = mi->mi_clientid_next = NULL;
2991 
2992 	VFS_RELE(mi->mi_vfsp);
2993 }
2994 
2995 /*
2996  * Free all the entries in sp's mntinfo4_list.
2997  */
2998 static void
2999 remove_all_mi(nfs4_server_t *sp)
3000 {
3001 	mntinfo4_t *mi;
3002 
3003 	ASSERT(MUTEX_HELD(&sp->s_lock));
3004 
3005 	while (sp->mntinfo4_list != NULL) {
3006 		mi = sp->mntinfo4_list;
3007 		/*
3008 		 * Grab a reference in case there is only one left (which
3009 		 * remove_mi() frees).
3010 		 */
3011 		VFS_HOLD(mi->mi_vfsp);
3012 		remove_mi(sp, mi);
3013 		VFS_RELE(mi->mi_vfsp);
3014 	}
3015 }
3016 
3017 /*
3018  * Remove the mi from sp's mntinfo4_list as above, and rele the vfs.
3019  *
3020  * This version can be called with a null nfs4_server_t arg,
3021  * and will either find the right one and handle locking, or
3022  * do nothing because the mi wasn't added to an sp's mntinfo4_list.
3023  */
3024 void
3025 nfs4_remove_mi_from_server(mntinfo4_t *mi, nfs4_server_t *esp)
3026 {
3027 	nfs4_server_t	*sp;
3028 
3029 	if (esp == NULL) {
3030 		(void) nfs_rw_enter_sig(&mi->mi_recovlock, RW_READER, 0);
3031 		sp = find_nfs4_server_all(mi, 1);
3032 	} else
3033 		sp = esp;
3034 
3035 	if (sp != NULL)
3036 		nfs4_remove_mi_from_server_nolock(mi, sp);
3037 
3038 	/*
3039 	 * If we had a valid esp as input, the calling function will be
3040 	 * responsible for unlocking the esp nfs4_server.
3041 	 */
3042 	if (esp == NULL) {
3043 		if (sp != NULL)
3044 			mutex_exit(&sp->s_lock);
3045 		nfs_rw_exit(&mi->mi_recovlock);
3046 		if (sp != NULL)
3047 			nfs4_server_rele(sp);
3048 	}
3049 }
3050 
3051 /*
3052  * Return TRUE if the given server has any non-unmounted filesystems.
3053  */
3054 
3055 bool_t
3056 nfs4_fs_active(nfs4_server_t *sp)
3057 {
3058 	mntinfo4_t *mi;
3059 
3060 	ASSERT(MUTEX_HELD(&sp->s_lock));
3061 
3062 	for (mi = sp->mntinfo4_list; mi != NULL; mi = mi->mi_clientid_next) {
3063 		if (!(mi->mi_vfsp->vfs_flag & VFS_UNMOUNTED))
3064 			return (TRUE);
3065 	}
3066 
3067 	return (FALSE);
3068 }
3069 
3070 /*
3071  * Mark sp as finished and notify any waiters.
3072  */
3073 
3074 void
3075 nfs4_mark_srv_dead(nfs4_server_t *sp)
3076 {
3077 	ASSERT(MUTEX_HELD(&sp->s_lock));
3078 
3079 	sp->s_thread_exit = NFS4_THREAD_EXIT;
3080 	cv_broadcast(&sp->cv_thread_exit);
3081 }
3082 
3083 /*
3084  * Create a new nfs4_server_t structure.
3085  * Returns new node unlocked and not in list, but with a reference count of
3086  * 1.
3087  */
3088 struct nfs4_server *
3089 new_nfs4_server(struct servinfo4 *svp, cred_t *cr)
3090 {
3091 	struct nfs4_server *np;
3092 	timespec_t tt;
3093 	union {
3094 		struct {
3095 			uint32_t sec;
3096 			uint32_t subsec;
3097 		} un_curtime;
3098 		verifier4	un_verifier;
3099 	} nfs4clientid_verifier;
3100 	char id_val[] = "Solaris: %s, NFSv4 kernel client";
3101 	int len;
3102 
3103 	np = kmem_zalloc(sizeof (struct nfs4_server), KM_SLEEP);
3104 	np->saddr.len = svp->sv_addr.len;
3105 	np->saddr.maxlen = svp->sv_addr.maxlen;
3106 	np->saddr.buf = kmem_alloc(svp->sv_addr.maxlen, KM_SLEEP);
3107 	bcopy(svp->sv_addr.buf, np->saddr.buf, svp->sv_addr.len);
3108 	np->s_refcnt = 1;
3109 
3110 	/*
3111 	 * Build the nfs_client_id4 for this server mount.  Ensure
3112 	 * the verifier is useful and that the identification is
3113 	 * somehow based on the server's address for the case of
3114 	 * multi-homed servers.
3115 	 */
3116 	nfs4clientid_verifier.un_verifier = 0;
3117 	gethrestime(&tt);
3118 	nfs4clientid_verifier.un_curtime.sec = (uint32_t)tt.tv_sec;
3119 	nfs4clientid_verifier.un_curtime.subsec = (uint32_t)tt.tv_nsec;
3120 	np->clidtosend.verifier = nfs4clientid_verifier.un_verifier;
3121 
3122 	/*
3123 	 * calculate the length of the opaque identifier.  Subtract 2
3124 	 * for the "%s" and add the traditional +1 for null
3125 	 * termination.
3126 	 */
3127 	len = strlen(id_val) - 2 + strlen(uts_nodename()) + 1;
3128 	np->clidtosend.id_len = len + np->saddr.maxlen;
3129 
3130 	np->clidtosend.id_val = kmem_alloc(np->clidtosend.id_len, KM_SLEEP);
3131 	(void) sprintf(np->clidtosend.id_val, id_val, uts_nodename());
3132 	bcopy(np->saddr.buf, &np->clidtosend.id_val[len], np->saddr.len);
3133 
3134 	np->s_flags = 0;
3135 	np->mntinfo4_list = NULL;
3136 	/* save cred for issuing rfs4calls inside the renew thread */
3137 	crhold(cr);
3138 	np->s_cred = cr;
3139 	cv_init(&np->cv_thread_exit, NULL, CV_DEFAULT, NULL);
3140 	mutex_init(&np->s_lock, NULL, MUTEX_DEFAULT, NULL);
3141 	nfs_rw_init(&np->s_recovlock, NULL, RW_DEFAULT, NULL);
3142 	list_create(&np->s_deleg_list, sizeof (rnode4_t),
3143 	    offsetof(rnode4_t, r_deleg_link));
3144 	np->s_thread_exit = 0;
3145 	np->state_ref_count = 0;
3146 	np->lease_valid = NFS4_LEASE_NOT_STARTED;
3147 	cv_init(&np->s_cv_otw_count, NULL, CV_DEFAULT, NULL);
3148 	np->s_otw_call_count = 0;
3149 	cv_init(&np->wait_cb_null, NULL, CV_DEFAULT, NULL);
3150 	np->zoneid = getzoneid();
3151 	np->zone_globals = nfs4_get_callback_globals();
3152 	ASSERT(np->zone_globals != NULL);
3153 	return (np);
3154 }
3155 
3156 /*
3157  * Create a new nfs4_server_t structure and add it to the list.
3158  * Returns new node locked; reference must eventually be freed.
3159  */
3160 static struct nfs4_server *
3161 add_new_nfs4_server(struct servinfo4 *svp, cred_t *cr)
3162 {
3163 	nfs4_server_t *sp;
3164 
3165 	ASSERT(MUTEX_HELD(&nfs4_server_lst_lock));
3166 	sp = new_nfs4_server(svp, cr);
3167 	mutex_enter(&sp->s_lock);
3168 	insque(sp, &nfs4_server_lst);
3169 	sp->s_refcnt++;			/* list gets a reference */
3170 	sp->clientid = 0;
3171 	sp->s_flags |= N4S_INSERTED;
3172 	return (sp);
3173 }
3174 
3175 int nfs4_server_t_debug = 0;
3176 
3177 #ifdef lint
3178 extern void
3179 dumpnfs4slist(char *, mntinfo4_t *, clientid4, servinfo4_t *);
3180 #endif
3181 
3182 #ifndef lint
3183 #ifdef DEBUG
3184 void
3185 dumpnfs4slist(char *txt, mntinfo4_t *mi, clientid4 clientid, servinfo4_t *srv_p)
3186 {
3187 	int hash16(void *p, int len);
3188 	nfs4_server_t *np;
3189 
3190 	NFS4_DEBUG(nfs4_server_t_debug, (CE_NOTE,
3191 	    "dumping nfs4_server_t list in %s", txt));
3192 	NFS4_DEBUG(nfs4_server_t_debug, (CE_CONT,
3193 	    "mi 0x%p, want clientid %llx, addr %d/%04X",
3194 	    mi, (longlong_t)clientid, srv_p->sv_addr.len,
3195 	    hash16((void *)srv_p->sv_addr.buf, srv_p->sv_addr.len)));
3196 	for (np = nfs4_server_lst.forw; np != &nfs4_server_lst;
3197 	    np = np->forw) {
3198 		NFS4_DEBUG(nfs4_server_t_debug, (CE_CONT,
3199 		    "node 0x%p,    clientid %llx, addr %d/%04X, cnt %d",
3200 		    np, (longlong_t)np->clientid, np->saddr.len,
3201 		    hash16((void *)np->saddr.buf, np->saddr.len),
3202 		    np->state_ref_count));
3203 		if (np->saddr.len == srv_p->sv_addr.len &&
3204 		    bcmp(np->saddr.buf, srv_p->sv_addr.buf,
3205 		    np->saddr.len) == 0)
3206 			NFS4_DEBUG(nfs4_server_t_debug, (CE_CONT,
3207 			    " - address matches"));
3208 		if (np->clientid == clientid || np->clientid == 0)
3209 			NFS4_DEBUG(nfs4_server_t_debug, (CE_CONT,
3210 			    " - clientid matches"));
3211 		if (np->s_thread_exit != NFS4_THREAD_EXIT)
3212 			NFS4_DEBUG(nfs4_server_t_debug, (CE_CONT,
3213 			    " - thread not exiting"));
3214 	}
3215 	delay(hz);
3216 }
3217 #endif
3218 #endif
3219 
3220 
3221 /*
3222  * Move a mntinfo4_t from one server list to another.
3223  * Locking of the two nfs4_server_t nodes will be done in list order.
3224  *
3225  * Returns NULL if the current nfs4_server_t for the filesystem could not
3226  * be found (e.g., due to forced unmount).  Otherwise returns a reference
3227  * to the new nfs4_server_t, which must eventually be freed.
3228  */
3229 nfs4_server_t *
3230 nfs4_move_mi(mntinfo4_t *mi, servinfo4_t *old, servinfo4_t *new)
3231 {
3232 	nfs4_server_t *p, *op = NULL, *np = NULL;
3233 	int num_open;
3234 	zoneid_t zoneid = getzoneid();
3235 
3236 	ASSERT(curproc->p_zone == mi->mi_zone);
3237 
3238 	mutex_enter(&nfs4_server_lst_lock);
3239 #ifdef DEBUG
3240 	if (nfs4_server_t_debug)
3241 		dumpnfs4slist("nfs4_move_mi", mi, (clientid4)0, new);
3242 #endif
3243 	for (p = nfs4_server_lst.forw; p != &nfs4_server_lst; p = p->forw) {
3244 		if (p->zoneid != zoneid)
3245 			continue;
3246 		if (p->saddr.len == old->sv_addr.len &&
3247 		    bcmp(p->saddr.buf, old->sv_addr.buf, p->saddr.len) == 0 &&
3248 		    p->s_thread_exit != NFS4_THREAD_EXIT) {
3249 			op = p;
3250 			mutex_enter(&op->s_lock);
3251 			op->s_refcnt++;
3252 		}
3253 		if (p->saddr.len == new->sv_addr.len &&
3254 		    bcmp(p->saddr.buf, new->sv_addr.buf, p->saddr.len) == 0 &&
3255 		    p->s_thread_exit != NFS4_THREAD_EXIT) {
3256 			np = p;
3257 			mutex_enter(&np->s_lock);
3258 		}
3259 		if (op != NULL && np != NULL)
3260 			break;
3261 	}
3262 	if (op == NULL) {
3263 		/*
3264 		 * Filesystem has been forcibly unmounted.  Bail out.
3265 		 */
3266 		if (np != NULL)
3267 			mutex_exit(&np->s_lock);
3268 		mutex_exit(&nfs4_server_lst_lock);
3269 		return (NULL);
3270 	}
3271 	if (np != NULL) {
3272 		np->s_refcnt++;
3273 	} else {
3274 #ifdef DEBUG
3275 		NFS4_DEBUG(nfs4_client_failover_debug, (CE_NOTE,
3276 		    "nfs4_move_mi: no target nfs4_server, will create."));
3277 #endif
3278 		np = add_new_nfs4_server(new, kcred);
3279 	}
3280 	mutex_exit(&nfs4_server_lst_lock);
3281 
3282 	NFS4_DEBUG(nfs4_client_failover_debug, (CE_NOTE,
3283 	    "nfs4_move_mi: for mi 0x%p, "
3284 	    "old servinfo4 0x%p, new servinfo4 0x%p, "
3285 	    "old nfs4_server 0x%p, new nfs4_server 0x%p, ",
3286 	    (void*)mi, (void*)old, (void*)new,
3287 	    (void*)op, (void*)np));
3288 	ASSERT(op != NULL && np != NULL);
3289 
3290 	/* discard any delegations */
3291 	nfs4_deleg_discard(mi, op);
3292 
3293 	num_open = mi->mi_open_files;
3294 	mi->mi_open_files = 0;
3295 	op->state_ref_count -= num_open;
3296 	ASSERT(op->state_ref_count >= 0);
3297 	np->state_ref_count += num_open;
3298 	nfs4_remove_mi_from_server_nolock(mi, op);
3299 	mi->mi_open_files = num_open;
3300 	NFS4_DEBUG(nfs4_client_failover_debug, (CE_NOTE,
3301 	    "nfs4_move_mi: mi_open_files %d, op->cnt %d, np->cnt %d",
3302 	    mi->mi_open_files, op->state_ref_count, np->state_ref_count));
3303 
3304 	nfs4_add_mi_to_server(np, mi);
3305 
3306 	mutex_exit(&op->s_lock);
3307 	nfs4_server_rele(op);
3308 	mutex_exit(&np->s_lock);
3309 
3310 	return (np);
3311 }
3312 
3313 /*
3314  * Search the nfs4_server list to find a match on this servinfo4
3315  * based on its address.
3316  *
3317  * Returns NULL if no match is found.  Otherwise returns a reference (which
3318  * must eventually be freed) to a locked nfs4_server.
3319  */
3320 nfs4_server_t *
3321 servinfo4_to_nfs4_server(servinfo4_t *srv_p)
3322 {
3323 	nfs4_server_t *np;
3324 	zoneid_t zoneid = getzoneid();
3325 
3326 	mutex_enter(&nfs4_server_lst_lock);
3327 	for (np = nfs4_server_lst.forw; np != &nfs4_server_lst; np = np->forw) {
3328 		if (np->zoneid == zoneid &&
3329 		    np->saddr.len == srv_p->sv_addr.len &&
3330 		    bcmp(np->saddr.buf, srv_p->sv_addr.buf,
3331 			    np->saddr.len) == 0 &&
3332 		    np->s_thread_exit != NFS4_THREAD_EXIT) {
3333 			mutex_enter(&np->s_lock);
3334 			np->s_refcnt++;
3335 			mutex_exit(&nfs4_server_lst_lock);
3336 			return (np);
3337 		}
3338 	}
3339 	mutex_exit(&nfs4_server_lst_lock);
3340 	return (NULL);
3341 }
3342 
3343 /*
3344  * Search the nfs4_server_lst to find a match based on clientid and
3345  * addr.
3346  * Locks the nfs4_server down if it is found and returns a reference that
3347  * must eventually be freed.
3348  *
3349  * Returns NULL it no match is found.  This means one of two things: either
3350  * mi is in the process of being mounted, or mi has been unmounted.
3351  *
3352  * The caller should be holding mi->mi_recovlock, and it should continue to
3353  * hold the lock until done with the returned nfs4_server_t.  Once
3354  * mi->mi_recovlock is released, there is no guarantee that the returned
3355  * mi->nfs4_server_t will continue to correspond to mi.
3356  */
3357 nfs4_server_t *
3358 find_nfs4_server(mntinfo4_t *mi)
3359 {
3360 	return (find_nfs4_server_all(mi, 0));
3361 }
3362 
3363 /*
3364  * Same as above, but takes an "all" parameter which can be
3365  * set to 1 if the caller wishes to find nfs4_server_t's which
3366  * have been marked for termination by the exit of the renew
3367  * thread.  This should only be used by operations which are
3368  * cleaning up and will not cause an OTW op.
3369  */
3370 nfs4_server_t *
3371 find_nfs4_server_all(mntinfo4_t *mi, int all)
3372 {
3373 	nfs4_server_t *np;
3374 	servinfo4_t *svp;
3375 	zoneid_t zoneid = mi->mi_zone->zone_id;
3376 
3377 	ASSERT(nfs_rw_lock_held(&mi->mi_recovlock, RW_READER) ||
3378 	    nfs_rw_lock_held(&mi->mi_recovlock, RW_WRITER));
3379 	/*
3380 	 * This can be called from nfs4_unmount() which can be called from the
3381 	 * global zone, hence it's legal for the global zone to muck with
3382 	 * another zone's server list, as long as it doesn't try to contact
3383 	 * them.
3384 	 */
3385 	ASSERT(zoneid == getzoneid() || getzoneid() == GLOBAL_ZONEID);
3386 
3387 	/*
3388 	 * The nfs4_server_lst_lock global lock is held when we get a new
3389 	 * clientid (via SETCLIENTID OTW).  Holding this global lock and
3390 	 * mi_recovlock (READER is fine) ensures that the nfs4_server
3391 	 * and this mntinfo4 can't get out of sync, so the following search is
3392 	 * always valid.
3393 	 */
3394 	mutex_enter(&nfs4_server_lst_lock);
3395 #ifdef DEBUG
3396 	if (nfs4_server_t_debug) {
3397 		/* mi->mi_clientid is unprotected, ok for debug output */
3398 		dumpnfs4slist("find_nfs4_server", mi, mi->mi_clientid,
3399 			mi->mi_curr_serv);
3400 	}
3401 #endif
3402 	for (np = nfs4_server_lst.forw; np != &nfs4_server_lst; np = np->forw) {
3403 		mutex_enter(&np->s_lock);
3404 		svp = mi->mi_curr_serv;
3405 
3406 		if (np->zoneid == zoneid &&
3407 		    np->clientid == mi->mi_clientid &&
3408 		    np->saddr.len == svp->sv_addr.len &&
3409 		    bcmp(np->saddr.buf, svp->sv_addr.buf, np->saddr.len) == 0 &&
3410 		    (np->s_thread_exit != NFS4_THREAD_EXIT || all != 0)) {
3411 			mutex_exit(&nfs4_server_lst_lock);
3412 			np->s_refcnt++;
3413 			return (np);
3414 		}
3415 		mutex_exit(&np->s_lock);
3416 	}
3417 	mutex_exit(&nfs4_server_lst_lock);
3418 
3419 	return (NULL);
3420 }
3421 
3422 /*
3423  * Release the reference to sp and destroy it if that's the last one.
3424  */
3425 
3426 void
3427 nfs4_server_rele(nfs4_server_t *sp)
3428 {
3429 	mutex_enter(&sp->s_lock);
3430 	ASSERT(sp->s_refcnt > 0);
3431 	sp->s_refcnt--;
3432 	if (sp->s_refcnt > 0) {
3433 		mutex_exit(&sp->s_lock);
3434 		return;
3435 	}
3436 	if (!(sp->s_flags & N4S_INSERTED)) {
3437 		destroy_nfs4_server(sp);
3438 		return;
3439 	}
3440 	mutex_exit(&sp->s_lock);
3441 	mutex_enter(&nfs4_server_lst_lock);
3442 	mutex_enter(&sp->s_lock);
3443 	if (sp->s_refcnt > 0) {
3444 		mutex_exit(&sp->s_lock);
3445 		mutex_exit(&nfs4_server_lst_lock);
3446 		return;
3447 	}
3448 	if (sp->s_flags & N4S_INSERTED) {
3449 		remque(sp);
3450 		sp->forw = sp->back = NULL;
3451 		sp->s_flags &= ~N4S_INSERTED;
3452 	}
3453 	mutex_exit(&nfs4_server_lst_lock);
3454 	destroy_nfs4_server(sp);
3455 }
3456 
3457 static void
3458 destroy_nfs4_server(nfs4_server_t *sp)
3459 {
3460 	ASSERT(MUTEX_HELD(&sp->s_lock));
3461 	ASSERT(!(sp->s_flags & N4S_INSERTED));
3462 	ASSERT(sp->s_refcnt == 0);
3463 	ASSERT(sp->s_otw_call_count == 0);
3464 
3465 	remove_all_mi(sp);
3466 
3467 	crfree(sp->s_cred);
3468 	kmem_free(sp->saddr.buf, sp->saddr.maxlen);
3469 	kmem_free(sp->clidtosend.id_val, sp->clidtosend.id_len);
3470 	mutex_exit(&sp->s_lock);
3471 
3472 	/* destroy the nfs4_server */
3473 	nfs4callback_destroy(sp);
3474 	list_destroy(&sp->s_deleg_list);
3475 	mutex_destroy(&sp->s_lock);
3476 	cv_destroy(&sp->cv_thread_exit);
3477 	cv_destroy(&sp->s_cv_otw_count);
3478 	cv_destroy(&sp->wait_cb_null);
3479 	nfs_rw_destroy(&sp->s_recovlock);
3480 	kmem_free(sp, sizeof (*sp));
3481 }
3482 
3483 /*
3484  * Lock sp, but only if it's still active (in the list and hasn't been
3485  * flagged as exiting) or 'all' is non-zero.
3486  * Returns TRUE if sp got locked and adds a reference to sp.
3487  */
3488 bool_t
3489 nfs4_server_vlock(nfs4_server_t *sp, int all)
3490 {
3491 	nfs4_server_t *np;
3492 
3493 	mutex_enter(&nfs4_server_lst_lock);
3494 	for (np = nfs4_server_lst.forw; np != &nfs4_server_lst; np = np->forw) {
3495 		if (sp == np && (np->s_thread_exit != NFS4_THREAD_EXIT ||
3496 		    all != 0)) {
3497 			mutex_enter(&np->s_lock);
3498 			np->s_refcnt++;
3499 			mutex_exit(&nfs4_server_lst_lock);
3500 			return (TRUE);
3501 		}
3502 	}
3503 	mutex_exit(&nfs4_server_lst_lock);
3504 	return (FALSE);
3505 }
3506 
3507 /*
3508  * Fork off a thread to free the data structures for a mount.
3509  */
3510 
3511 static void
3512 async_free_mount(vfs_t *vfsp, cred_t *cr)
3513 {
3514 	freemountargs_t *args;
3515 
3516 	args = kmem_alloc(sizeof (freemountargs_t), KM_SLEEP);
3517 	args->fm_vfsp = vfsp;
3518 	VFS_HOLD(vfsp);
3519 	args->fm_cr = cr;
3520 	crhold(cr);
3521 
3522 	(void) zthread_create(NULL, 0, nfs4_free_mount_thread, args, 0,
3523 	    minclsyspri);
3524 }
3525 
3526 static void
3527 nfs4_free_mount_thread(freemountargs_t *args)
3528 {
3529 	nfs4_free_mount(args->fm_vfsp, args->fm_cr);
3530 	VFS_RELE(args->fm_vfsp);
3531 	crfree(args->fm_cr);
3532 	kmem_free(args, sizeof (freemountargs_t));
3533 	zthread_exit();
3534 	/* NOTREACHED */
3535 }
3536 
3537 /*
3538  * Thread to free the data structures for a given filesystem.
3539  */
3540 static void
3541 nfs4_free_mount(vfs_t *vfsp, cred_t *cr)
3542 {
3543 	mntinfo4_t	*mi = VFTOMI4(vfsp);
3544 	nfs4_server_t	*sp;
3545 	callb_cpr_t	cpr_info;
3546 	kmutex_t	cpr_lock;
3547 	boolean_t	async_thread;
3548 
3549 	/*
3550 	 * We need to participate in the CPR framework if this is a kernel
3551 	 * thread.
3552 	 */
3553 	async_thread = (curproc == curproc->p_zone->zone_zsched);
3554 	if (async_thread) {
3555 		mutex_init(&cpr_lock, NULL, MUTEX_DEFAULT, NULL);
3556 		CALLB_CPR_INIT(&cpr_info, &cpr_lock, callb_generic_cpr,
3557 		    "nfsv4AsyncUnmount");
3558 	}
3559 
3560 	/*
3561 	 * We need to wait for all outstanding OTW calls
3562 	 * and recovery to finish before we remove the mi
3563 	 * from the nfs4_server_t, as current pending
3564 	 * calls might still need this linkage (in order
3565 	 * to find a nfs4_server_t from a mntinfo4_t).
3566 	 */
3567 	(void) nfs_rw_enter_sig(&mi->mi_recovlock, RW_READER, FALSE);
3568 	sp = find_nfs4_server(mi);
3569 	nfs_rw_exit(&mi->mi_recovlock);
3570 
3571 	if (sp) {
3572 		while (sp->s_otw_call_count != 0) {
3573 			if (async_thread) {
3574 				mutex_enter(&cpr_lock);
3575 				CALLB_CPR_SAFE_BEGIN(&cpr_info);
3576 				mutex_exit(&cpr_lock);
3577 			}
3578 			cv_wait(&sp->s_cv_otw_count, &sp->s_lock);
3579 			if (async_thread) {
3580 				mutex_enter(&cpr_lock);
3581 				CALLB_CPR_SAFE_END(&cpr_info, &cpr_lock);
3582 				mutex_exit(&cpr_lock);
3583 			}
3584 		}
3585 		mutex_exit(&sp->s_lock);
3586 		nfs4_server_rele(sp);
3587 		sp = NULL;
3588 	}
3589 
3590 
3591 	mutex_enter(&mi->mi_lock);
3592 	while (mi->mi_in_recovery != 0) {
3593 		if (async_thread) {
3594 			mutex_enter(&cpr_lock);
3595 			CALLB_CPR_SAFE_BEGIN(&cpr_info);
3596 			mutex_exit(&cpr_lock);
3597 		}
3598 		cv_wait(&mi->mi_cv_in_recov, &mi->mi_lock);
3599 		if (async_thread) {
3600 			mutex_enter(&cpr_lock);
3601 			CALLB_CPR_SAFE_END(&cpr_info, &cpr_lock);
3602 			mutex_exit(&cpr_lock);
3603 		}
3604 	}
3605 	mutex_exit(&mi->mi_lock);
3606 
3607 	/*
3608 	 * The original purge of the dnlc via 'dounmount'
3609 	 * doesn't guarantee that another dnlc entry was not
3610 	 * added while we waitied for all outstanding OTW
3611 	 * and recovery calls to finish.  So re-purge the
3612 	 * dnlc now.
3613 	 */
3614 	(void) dnlc_purge_vfsp(vfsp, 0);
3615 
3616 	/*
3617 	 * We need to explicitly stop the manager thread; the asyc worker
3618 	 * threads can timeout and exit on their own.
3619 	 */
3620 	nfs4_async_manager_stop(vfsp);
3621 
3622 	destroy_fileid_map(vfsp);
3623 	destroy_rtable4(vfsp, cr);
3624 
3625 	nfs4_remove_mi_from_server(mi, NULL);
3626 
3627 	if (mi->mi_io_kstats) {
3628 		kstat_delete(mi->mi_io_kstats);
3629 		mi->mi_io_kstats = NULL;
3630 	}
3631 	if (mi->mi_ro_kstats) {
3632 		kstat_delete(mi->mi_ro_kstats);
3633 		mi->mi_ro_kstats = NULL;
3634 	}
3635 	if (mi->mi_recov_ksp) {
3636 		kstat_delete(mi->mi_recov_ksp);
3637 		mi->mi_recov_ksp = NULL;
3638 	}
3639 
3640 	if (async_thread) {
3641 		mutex_enter(&cpr_lock);
3642 		CALLB_CPR_EXIT(&cpr_info);	/* drops cpr_lock */
3643 		mutex_destroy(&cpr_lock);
3644 	}
3645 }
3646