1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 #include <sys/systm.h> 29 #include <sys/kmem.h> 30 #include <sys/cmn_err.h> 31 #include <sys/atomic.h> 32 #include <sys/clconf.h> 33 #include <sys/cladm.h> 34 #include <sys/flock.h> 35 #include <nfs/export.h> 36 #include <nfs/nfs.h> 37 #include <nfs/nfs4.h> 38 #include <nfs/nfssys.h> 39 #include <nfs/lm.h> 40 #include <sys/pathname.h> 41 #include <sys/sdt.h> 42 #include <sys/nvpair.h> 43 44 45 extern time_t rfs4_start_time; 46 extern uint_t nfs4_srv_vkey; 47 48 stateid4 special0 = { 49 0, 50 { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 } 51 }; 52 53 stateid4 special1 = { 54 0xffffffff, 55 { 56 (char)0xff, (char)0xff, (char)0xff, (char)0xff, 57 (char)0xff, (char)0xff, (char)0xff, (char)0xff, 58 (char)0xff, (char)0xff, (char)0xff, (char)0xff 59 } 60 }; 61 62 63 #define ISSPECIAL(id) (stateid4_cmp(id, &special0) || \ 64 stateid4_cmp(id, &special1)) 65 66 /* For embedding the cluster nodeid into our clientid */ 67 #define CLUSTER_NODEID_SHIFT 24 68 #define CLUSTER_MAX_NODEID 255 69 70 #ifdef DEBUG 71 int rfs4_debug; 72 #endif 73 74 static uint32_t rfs4_database_debug = 0x00; 75 76 static void rfs4_ss_clid_write(rfs4_client_t *cp, char *leaf); 77 static void rfs4_ss_clid_write_one(rfs4_client_t *cp, char *dir, char *leaf); 78 static void rfs4_dss_clear_oldstate(rfs4_servinst_t *sip); 79 static void rfs4_ss_chkclid_sip(rfs4_client_t *cp, rfs4_servinst_t *sip); 80 81 /* 82 * Couple of simple init/destroy functions for a general waiter 83 */ 84 void 85 rfs4_sw_init(rfs4_state_wait_t *swp) 86 { 87 mutex_init(swp->sw_cv_lock, NULL, MUTEX_DEFAULT, NULL); 88 cv_init(swp->sw_cv, NULL, CV_DEFAULT, NULL); 89 swp->sw_active = FALSE; 90 swp->sw_wait_count = 0; 91 } 92 93 void 94 rfs4_sw_destroy(rfs4_state_wait_t *swp) 95 { 96 mutex_destroy(swp->sw_cv_lock); 97 cv_destroy(swp->sw_cv); 98 } 99 100 void 101 rfs4_sw_enter(rfs4_state_wait_t *swp) 102 { 103 mutex_enter(swp->sw_cv_lock); 104 while (swp->sw_active) { 105 swp->sw_wait_count++; 106 cv_wait(swp->sw_cv, swp->sw_cv_lock); 107 swp->sw_wait_count--; 108 } 109 ASSERT(swp->sw_active == FALSE); 110 swp->sw_active = TRUE; 111 mutex_exit(swp->sw_cv_lock); 112 } 113 114 void 115 rfs4_sw_exit(rfs4_state_wait_t *swp) 116 { 117 mutex_enter(swp->sw_cv_lock); 118 ASSERT(swp->sw_active == TRUE); 119 swp->sw_active = FALSE; 120 if (swp->sw_wait_count != 0) 121 cv_broadcast(swp->sw_cv); 122 mutex_exit(swp->sw_cv_lock); 123 } 124 125 /* 126 * CPR callback id -- not related to v4 callbacks 127 */ 128 static callb_id_t cpr_id = 0; 129 130 static void 131 deep_lock_copy(LOCK4res *dres, LOCK4res *sres) 132 { 133 lock_owner4 *slo = &sres->LOCK4res_u.denied.owner; 134 lock_owner4 *dlo = &dres->LOCK4res_u.denied.owner; 135 136 if (sres->status == NFS4ERR_DENIED) { 137 dlo->owner_val = kmem_alloc(slo->owner_len, KM_SLEEP); 138 bcopy(slo->owner_val, dlo->owner_val, slo->owner_len); 139 } 140 } 141 142 static void 143 deep_lock_free(LOCK4res *res) 144 { 145 lock_owner4 *lo = &res->LOCK4res_u.denied.owner; 146 147 if (res->status == NFS4ERR_DENIED) 148 kmem_free(lo->owner_val, lo->owner_len); 149 } 150 151 static void 152 deep_open_copy(OPEN4res *dres, OPEN4res *sres) 153 { 154 nfsace4 *sacep, *dacep; 155 156 if (sres->status != NFS4_OK) { 157 return; 158 } 159 160 dres->attrset = sres->attrset; 161 162 switch (sres->delegation.delegation_type) { 163 case OPEN_DELEGATE_NONE: 164 return; 165 case OPEN_DELEGATE_READ: 166 sacep = &sres->delegation.open_delegation4_u.read.permissions; 167 dacep = &dres->delegation.open_delegation4_u.read.permissions; 168 break; 169 case OPEN_DELEGATE_WRITE: 170 sacep = &sres->delegation.open_delegation4_u.write.permissions; 171 dacep = &dres->delegation.open_delegation4_u.write.permissions; 172 break; 173 } 174 dacep->who.utf8string_val = 175 kmem_alloc(sacep->who.utf8string_len, KM_SLEEP); 176 bcopy(sacep->who.utf8string_val, dacep->who.utf8string_val, 177 sacep->who.utf8string_len); 178 } 179 180 static void 181 deep_open_free(OPEN4res *res) 182 { 183 nfsace4 *acep; 184 if (res->status != NFS4_OK) 185 return; 186 187 switch (res->delegation.delegation_type) { 188 case OPEN_DELEGATE_NONE: 189 return; 190 case OPEN_DELEGATE_READ: 191 acep = &res->delegation.open_delegation4_u.read.permissions; 192 break; 193 case OPEN_DELEGATE_WRITE: 194 acep = &res->delegation.open_delegation4_u.write.permissions; 195 break; 196 } 197 198 if (acep->who.utf8string_val) { 199 kmem_free(acep->who.utf8string_val, acep->who.utf8string_len); 200 acep->who.utf8string_val = NULL; 201 } 202 } 203 204 void 205 rfs4_free_reply(nfs_resop4 *rp) 206 { 207 switch (rp->resop) { 208 case OP_LOCK: 209 deep_lock_free(&rp->nfs_resop4_u.oplock); 210 break; 211 case OP_OPEN: 212 deep_open_free(&rp->nfs_resop4_u.opopen); 213 default: 214 break; 215 } 216 } 217 218 void 219 rfs4_copy_reply(nfs_resop4 *dst, nfs_resop4 *src) 220 { 221 *dst = *src; 222 223 /* Handle responses that need deep copy */ 224 switch (src->resop) { 225 case OP_LOCK: 226 deep_lock_copy(&dst->nfs_resop4_u.oplock, 227 &src->nfs_resop4_u.oplock); 228 break; 229 case OP_OPEN: 230 deep_open_copy(&dst->nfs_resop4_u.opopen, 231 &src->nfs_resop4_u.opopen); 232 break; 233 default: 234 break; 235 }; 236 } 237 238 /* 239 * This is the implementation of the underlying state engine. The 240 * public interface to this engine is described by 241 * nfs4_state.h. Callers to the engine should hold no state engine 242 * locks when they call in to it. If the protocol needs to lock data 243 * structures it should do so after acquiring all references to them 244 * first and then follow the following lock order: 245 * 246 * client > openowner > state > lo_state > lockowner > file. 247 * 248 * Internally we only allow a thread to hold one hash bucket lock at a 249 * time and the lock is higher in the lock order (must be acquired 250 * first) than the data structure that is on that hash list. 251 * 252 * If a new reference was acquired by the caller, that reference needs 253 * to be released after releasing all acquired locks with the 254 * corresponding rfs4_*_rele routine. 255 */ 256 257 /* 258 * This code is some what prototypical for now. Its purpose currently is to 259 * implement the interfaces sufficiently to finish the higher protocol 260 * elements. This will be replaced by a dynamically resizeable tables 261 * backed by kmem_cache allocator. However synchronization is handled 262 * correctly (I hope) and will not change by much. The mutexes for 263 * the hash buckets that can be used to create new instances of data 264 * structures might be good candidates to evolve into reader writer 265 * locks. If it has to do a creation, it would be holding the 266 * mutex across a kmem_alloc with KM_SLEEP specified. 267 */ 268 269 #ifdef DEBUG 270 #define TABSIZE 17 271 #else 272 #define TABSIZE 2047 273 #endif 274 275 #define ADDRHASH(key) ((unsigned long)(key) >> 3) 276 277 /* Used to serialize create/destroy of rfs4_server_state database */ 278 kmutex_t rfs4_state_lock; 279 static rfs4_database_t *rfs4_server_state = NULL; 280 281 /* Used to serialize lookups of clientids */ 282 static krwlock_t rfs4_findclient_lock; 283 284 /* 285 * For now this "table" is exposed so that the CPR callback 286 * function can tromp through it.. 287 */ 288 rfs4_table_t *rfs4_client_tab; 289 290 static rfs4_index_t *rfs4_clientid_idx; 291 static rfs4_index_t *rfs4_nfsclnt_idx; 292 static rfs4_table_t *rfs4_openowner_tab; 293 static rfs4_index_t *rfs4_openowner_idx; 294 static rfs4_table_t *rfs4_state_tab; 295 static rfs4_index_t *rfs4_state_idx; 296 static rfs4_index_t *rfs4_state_owner_file_idx; 297 static rfs4_index_t *rfs4_state_file_idx; 298 static rfs4_table_t *rfs4_lo_state_tab; 299 static rfs4_index_t *rfs4_lo_state_idx; 300 static rfs4_index_t *rfs4_lo_state_owner_idx; 301 static rfs4_table_t *rfs4_lockowner_tab; 302 static rfs4_index_t *rfs4_lockowner_idx; 303 static rfs4_index_t *rfs4_lockowner_pid_idx; 304 static rfs4_table_t *rfs4_file_tab; 305 static rfs4_index_t *rfs4_file_idx; 306 static rfs4_table_t *rfs4_deleg_state_tab; 307 static rfs4_index_t *rfs4_deleg_idx; 308 static rfs4_index_t *rfs4_deleg_state_idx; 309 310 #define MAXTABSZ 1024*1024 311 312 /* The values below are rfs4_lease_time units */ 313 314 #ifdef DEBUG 315 #define CLIENT_CACHE_TIME 1 316 #define OPENOWNER_CACHE_TIME 1 317 #define STATE_CACHE_TIME 1 318 #define LO_STATE_CACHE_TIME 1 319 #define LOCKOWNER_CACHE_TIME 1 320 #define FILE_CACHE_TIME 3 321 #define DELEG_STATE_CACHE_TIME 1 322 #else 323 #define CLIENT_CACHE_TIME 10 324 #define OPENOWNER_CACHE_TIME 5 325 #define STATE_CACHE_TIME 1 326 #define LO_STATE_CACHE_TIME 1 327 #define LOCKOWNER_CACHE_TIME 3 328 #define FILE_CACHE_TIME 40 329 #define DELEG_STATE_CACHE_TIME 1 330 #endif 331 332 333 static time_t rfs4_client_cache_time = 0; 334 static time_t rfs4_openowner_cache_time = 0; 335 static time_t rfs4_state_cache_time = 0; 336 static time_t rfs4_lo_state_cache_time = 0; 337 static time_t rfs4_lockowner_cache_time = 0; 338 static time_t rfs4_file_cache_time = 0; 339 static time_t rfs4_deleg_state_cache_time = 0; 340 341 static bool_t rfs4_client_create(rfs4_entry_t, void *); 342 static void rfs4_dss_remove_cpleaf(rfs4_client_t *); 343 static void rfs4_dss_remove_leaf(rfs4_servinst_t *, char *, char *); 344 static void rfs4_client_destroy(rfs4_entry_t); 345 static bool_t rfs4_client_expiry(rfs4_entry_t); 346 static uint32_t clientid_hash(void *); 347 static bool_t clientid_compare(rfs4_entry_t, void *); 348 static void *clientid_mkkey(rfs4_entry_t); 349 static uint32_t nfsclnt_hash(void *); 350 static bool_t nfsclnt_compare(rfs4_entry_t, void *); 351 static void *nfsclnt_mkkey(rfs4_entry_t); 352 static bool_t rfs4_openowner_create(rfs4_entry_t, void *); 353 static void rfs4_openowner_destroy(rfs4_entry_t); 354 static bool_t rfs4_openowner_expiry(rfs4_entry_t); 355 static uint32_t openowner_hash(void *); 356 static bool_t openowner_compare(rfs4_entry_t, void *); 357 static void *openowner_mkkey(rfs4_entry_t); 358 static bool_t rfs4_state_create(rfs4_entry_t, void *); 359 static void rfs4_state_destroy(rfs4_entry_t); 360 static bool_t rfs4_state_expiry(rfs4_entry_t); 361 static uint32_t state_hash(void *); 362 static bool_t state_compare(rfs4_entry_t, void *); 363 static void *state_mkkey(rfs4_entry_t); 364 static uint32_t state_owner_file_hash(void *); 365 static bool_t state_owner_file_compare(rfs4_entry_t, void *); 366 static void *state_owner_file_mkkey(rfs4_entry_t); 367 static uint32_t state_file_hash(void *); 368 static bool_t state_file_compare(rfs4_entry_t, void *); 369 static void *state_file_mkkey(rfs4_entry_t); 370 static bool_t rfs4_lo_state_create(rfs4_entry_t, void *); 371 static void rfs4_lo_state_destroy(rfs4_entry_t); 372 static bool_t rfs4_lo_state_expiry(rfs4_entry_t); 373 static uint32_t lo_state_hash(void *); 374 static bool_t lo_state_compare(rfs4_entry_t, void *); 375 static void *lo_state_mkkey(rfs4_entry_t); 376 static uint32_t lo_state_lo_hash(void *); 377 static bool_t lo_state_lo_compare(rfs4_entry_t, void *); 378 static void *lo_state_lo_mkkey(rfs4_entry_t); 379 static bool_t rfs4_lockowner_create(rfs4_entry_t, void *); 380 static void rfs4_lockowner_destroy(rfs4_entry_t); 381 static bool_t rfs4_lockowner_expiry(rfs4_entry_t); 382 static uint32_t lockowner_hash(void *); 383 static bool_t lockowner_compare(rfs4_entry_t, void *); 384 static void *lockowner_mkkey(rfs4_entry_t); 385 static uint32_t pid_hash(void *); 386 static bool_t pid_compare(rfs4_entry_t, void *); 387 static void *pid_mkkey(rfs4_entry_t); 388 static bool_t rfs4_file_create(rfs4_entry_t, void *); 389 static void rfs4_file_destroy(rfs4_entry_t); 390 static uint32_t file_hash(void *); 391 static bool_t file_compare(rfs4_entry_t, void *); 392 static void *file_mkkey(rfs4_entry_t); 393 static bool_t rfs4_deleg_state_create(rfs4_entry_t, void *); 394 static void rfs4_deleg_state_destroy(rfs4_entry_t); 395 static bool_t rfs4_deleg_state_expiry(rfs4_entry_t); 396 static uint32_t deleg_hash(void *); 397 static bool_t deleg_compare(rfs4_entry_t, void *); 398 static void *deleg_mkkey(rfs4_entry_t); 399 static uint32_t deleg_state_hash(void *); 400 static bool_t deleg_state_compare(rfs4_entry_t, void *); 401 static void *deleg_state_mkkey(rfs4_entry_t); 402 403 static void rfs4_state_rele_nounlock(rfs4_state_t *); 404 405 static int rfs4_ss_enabled = 0; 406 407 extern void (*rfs4_client_clrst)(struct nfs4clrst_args *); 408 409 void 410 rfs4_ss_pnfree(rfs4_ss_pn_t *ss_pn) 411 { 412 kmem_free(ss_pn, sizeof (rfs4_ss_pn_t)); 413 } 414 415 static rfs4_ss_pn_t * 416 rfs4_ss_pnalloc(char *dir, char *leaf) 417 { 418 rfs4_ss_pn_t *ss_pn; 419 int dir_len, leaf_len; 420 421 /* 422 * validate we have a resonable path 423 * (account for the '/' and trailing null) 424 */ 425 if ((dir_len = strlen(dir)) > MAXPATHLEN || 426 (leaf_len = strlen(leaf)) > MAXNAMELEN || 427 (dir_len + leaf_len + 2) > MAXPATHLEN) { 428 return (NULL); 429 } 430 431 ss_pn = kmem_alloc(sizeof (rfs4_ss_pn_t), KM_SLEEP); 432 433 (void) snprintf(ss_pn->pn, MAXPATHLEN, "%s/%s", dir, leaf); 434 /* Handy pointer to just the leaf name */ 435 ss_pn->leaf = ss_pn->pn + dir_len + 1; 436 return (ss_pn); 437 } 438 439 440 /* 441 * Move the "leaf" filename from "sdir" directory 442 * to the "ddir" directory. Return the pathname of 443 * the destination unless the rename fails in which 444 * case we need to return the source pathname. 445 */ 446 static rfs4_ss_pn_t * 447 rfs4_ss_movestate(char *sdir, char *ddir, char *leaf) 448 { 449 rfs4_ss_pn_t *src, *dst; 450 451 if ((src = rfs4_ss_pnalloc(sdir, leaf)) == NULL) 452 return (NULL); 453 454 if ((dst = rfs4_ss_pnalloc(ddir, leaf)) == NULL) { 455 rfs4_ss_pnfree(src); 456 return (NULL); 457 } 458 459 /* 460 * If the rename fails we shall return the src 461 * pathname and free the dst. Otherwise we need 462 * to free the src and return the dst pathanme. 463 */ 464 if (vn_rename(src->pn, dst->pn, UIO_SYSSPACE)) { 465 rfs4_ss_pnfree(dst); 466 return (src); 467 } 468 rfs4_ss_pnfree(src); 469 return (dst); 470 } 471 472 473 static rfs4_oldstate_t * 474 rfs4_ss_getstate(vnode_t *dvp, rfs4_ss_pn_t *ss_pn) 475 { 476 struct uio uio; 477 struct iovec iov[3]; 478 479 rfs4_oldstate_t *cl_ss = NULL; 480 vnode_t *vp; 481 vattr_t va; 482 uint_t id_len; 483 int err, kill_file, file_vers; 484 485 if (ss_pn == NULL) 486 return (NULL); 487 488 /* 489 * open the state file. 490 */ 491 if (vn_open(ss_pn->pn, UIO_SYSSPACE, FREAD, 0, &vp, 0, 0) != 0) { 492 return (NULL); 493 } 494 495 if (vp->v_type != VREG) { 496 (void) VOP_CLOSE(vp, FREAD, 1, (offset_t)0, CRED()); 497 VN_RELE(vp); 498 return (NULL); 499 } 500 501 err = VOP_ACCESS(vp, VREAD, 0, CRED()); 502 if (err) { 503 /* 504 * We don't have read access? better get the heck out. 505 */ 506 (void) VOP_CLOSE(vp, FREAD, 1, (offset_t)0, CRED()); 507 VN_RELE(vp); 508 return (NULL); 509 } 510 511 (void) VOP_RWLOCK(vp, V_WRITELOCK_FALSE, NULL); 512 /* 513 * get the file size to do some basic validation 514 */ 515 va.va_mask = AT_SIZE; 516 err = VOP_GETATTR(vp, &va, 0, CRED()); 517 518 kill_file = (va.va_size == 0 || va.va_size < 519 (NFS4_VERIFIER_SIZE + sizeof (uint_t)+1)); 520 521 if (err || kill_file) { 522 VOP_RWUNLOCK(vp, V_WRITELOCK_FALSE, NULL); 523 (void) VOP_CLOSE(vp, FREAD, 1, (offset_t)0, CRED()); 524 VN_RELE(vp); 525 if (kill_file) { 526 (void) VOP_REMOVE(dvp, ss_pn->leaf, CRED()); 527 } 528 return (NULL); 529 } 530 531 cl_ss = kmem_alloc(sizeof (rfs4_oldstate_t), KM_SLEEP); 532 533 /* 534 * build iovecs to read in the file_version, verifier and id_len 535 */ 536 iov[0].iov_base = (caddr_t)&file_vers; 537 iov[0].iov_len = sizeof (int); 538 iov[1].iov_base = (caddr_t)&cl_ss->cl_id4.verifier; 539 iov[1].iov_len = NFS4_VERIFIER_SIZE; 540 iov[2].iov_base = (caddr_t)&id_len; 541 iov[2].iov_len = sizeof (uint_t); 542 543 uio.uio_iov = iov; 544 uio.uio_iovcnt = 3; 545 uio.uio_segflg = UIO_SYSSPACE; 546 uio.uio_loffset = 0; 547 uio.uio_resid = sizeof (int) + NFS4_VERIFIER_SIZE + sizeof (uint_t); 548 549 if (err = VOP_READ(vp, &uio, FREAD, CRED(), NULL)) { 550 VOP_RWUNLOCK(vp, V_WRITELOCK_FALSE, NULL); 551 (void) VOP_CLOSE(vp, FREAD, 1, (offset_t)0, CRED()); 552 VN_RELE(vp); 553 kmem_free(cl_ss, sizeof (rfs4_oldstate_t)); 554 return (NULL); 555 } 556 557 /* 558 * if the file_version doesn't match or if the 559 * id_len is zero or the combination of the verifier, 560 * id_len and id_val is bigger than the file we have 561 * a problem. If so ditch the file. 562 */ 563 kill_file = (file_vers != NFS4_SS_VERSION || id_len == 0 || 564 (id_len + NFS4_VERIFIER_SIZE + sizeof (uint_t)) > va.va_size); 565 566 if (err || kill_file) { 567 VOP_RWUNLOCK(vp, V_WRITELOCK_FALSE, NULL); 568 (void) VOP_CLOSE(vp, FREAD, 1, (offset_t)0, CRED()); 569 VN_RELE(vp); 570 kmem_free(cl_ss, sizeof (rfs4_oldstate_t)); 571 if (kill_file) { 572 (void) VOP_REMOVE(dvp, ss_pn->leaf, CRED()); 573 } 574 return (NULL); 575 } 576 577 /* 578 * now get the client id value 579 */ 580 cl_ss->cl_id4.id_val = kmem_alloc(id_len, KM_SLEEP); 581 iov[0].iov_base = cl_ss->cl_id4.id_val; 582 iov[0].iov_len = id_len; 583 584 uio.uio_iov = iov; 585 uio.uio_iovcnt = 1; 586 uio.uio_segflg = UIO_SYSSPACE; 587 uio.uio_resid = cl_ss->cl_id4.id_len = id_len; 588 589 if (err = VOP_READ(vp, &uio, FREAD, CRED(), NULL)) { 590 VOP_RWUNLOCK(vp, V_WRITELOCK_FALSE, NULL); 591 (void) VOP_CLOSE(vp, FREAD, 1, (offset_t)0, CRED()); 592 VN_RELE(vp); 593 kmem_free(cl_ss->cl_id4.id_val, id_len); 594 kmem_free(cl_ss, sizeof (rfs4_oldstate_t)); 595 return (NULL); 596 } 597 598 VOP_RWUNLOCK(vp, V_WRITELOCK_FALSE, NULL); 599 (void) VOP_CLOSE(vp, FREAD, 1, (offset_t)0, CRED()); 600 VN_RELE(vp); 601 return (cl_ss); 602 } 603 604 #ifdef nextdp 605 #undef nextdp 606 #endif 607 #define nextdp(dp) ((struct dirent64 *)((char *)(dp) + (dp)->d_reclen)) 608 609 /* 610 * Add entries from statedir to supplied oldstate list. 611 * Optionally, move all entries from statedir -> destdir. 612 */ 613 void 614 rfs4_ss_oldstate(rfs4_oldstate_t *oldstate, char *statedir, char *destdir) 615 { 616 rfs4_ss_pn_t *ss_pn; 617 rfs4_oldstate_t *cl_ss = NULL; 618 char *dirt = NULL; 619 int err, dir_eof = 0, size = 0; 620 vnode_t *dvp; 621 struct iovec iov; 622 struct uio uio; 623 struct dirent64 *dep; 624 offset_t dirchunk_offset = 0; 625 626 /* 627 * open the state directory 628 */ 629 if (vn_open(statedir, UIO_SYSSPACE, FREAD, 0, &dvp, 0, 0)) 630 return; 631 632 if (dvp->v_type != VDIR || VOP_ACCESS(dvp, VREAD, 0, CRED())) 633 goto out; 634 635 dirt = kmem_alloc(RFS4_SS_DIRSIZE, KM_SLEEP); 636 637 /* 638 * Get and process the directory entries 639 */ 640 while (!dir_eof) { 641 (void) VOP_RWLOCK(dvp, V_WRITELOCK_FALSE, NULL); 642 iov.iov_base = dirt; 643 iov.iov_len = RFS4_SS_DIRSIZE; 644 uio.uio_iov = &iov; 645 uio.uio_iovcnt = 1; 646 uio.uio_segflg = UIO_SYSSPACE; 647 uio.uio_loffset = dirchunk_offset; 648 uio.uio_resid = RFS4_SS_DIRSIZE; 649 650 err = VOP_READDIR(dvp, &uio, CRED(), &dir_eof); 651 VOP_RWUNLOCK(dvp, V_WRITELOCK_FALSE, NULL); 652 if (err) 653 goto out; 654 655 size = RFS4_SS_DIRSIZE - uio.uio_resid; 656 657 /* 658 * Process all the directory entries in this 659 * readdir chunk 660 */ 661 for (dep = (struct dirent64 *)dirt; size > 0; 662 dep = nextdp(dep)) { 663 664 size -= dep->d_reclen; 665 dirchunk_offset = dep->d_off; 666 667 /* 668 * Skip '.' and '..' 669 */ 670 if (NFS_IS_DOTNAME(dep->d_name)) 671 continue; 672 673 ss_pn = rfs4_ss_pnalloc(statedir, dep->d_name); 674 if (ss_pn == NULL) 675 continue; 676 677 if (cl_ss = rfs4_ss_getstate(dvp, ss_pn)) { 678 if (destdir != NULL) { 679 rfs4_ss_pnfree(ss_pn); 680 cl_ss->ss_pn = rfs4_ss_movestate( 681 statedir, destdir, dep->d_name); 682 } else { 683 cl_ss->ss_pn = ss_pn; 684 } 685 insque(cl_ss, oldstate); 686 } else { 687 rfs4_ss_pnfree(ss_pn); 688 } 689 } 690 } 691 692 out: 693 (void) VOP_CLOSE(dvp, FREAD, 1, (offset_t)0, CRED()); 694 VN_RELE(dvp); 695 if (dirt) 696 kmem_free((caddr_t)dirt, RFS4_SS_DIRSIZE); 697 } 698 699 static void 700 rfs4_ss_init(void) 701 { 702 int npaths = 1; 703 char *default_dss_path = NFS4_DSS_VAR_DIR; 704 705 /* read the default stable storage state */ 706 rfs4_dss_readstate(npaths, &default_dss_path); 707 708 rfs4_ss_enabled = 1; 709 } 710 711 static void 712 rfs4_ss_fini(void) 713 { 714 rfs4_servinst_t *sip; 715 716 mutex_enter(&rfs4_servinst_lock); 717 sip = rfs4_cur_servinst; 718 while (sip != NULL) { 719 rfs4_dss_clear_oldstate(sip); 720 sip = sip->next; 721 } 722 mutex_exit(&rfs4_servinst_lock); 723 } 724 725 /* 726 * Remove all oldstate files referenced by this servinst. 727 */ 728 static void 729 rfs4_dss_clear_oldstate(rfs4_servinst_t *sip) 730 { 731 rfs4_oldstate_t *os_head, *osp; 732 733 rw_enter(&sip->oldstate_lock, RW_WRITER); 734 os_head = sip->oldstate; 735 736 if (os_head == NULL) 737 return; 738 739 /* skip dummy entry */ 740 osp = os_head->next; 741 while (osp != os_head) { 742 char *leaf = osp->ss_pn->leaf; 743 rfs4_oldstate_t *os_next; 744 745 rfs4_dss_remove_leaf(sip, NFS4_DSS_OLDSTATE_LEAF, leaf); 746 747 if (osp->cl_id4.id_val) 748 kmem_free(osp->cl_id4.id_val, osp->cl_id4.id_len); 749 if (osp->ss_pn) 750 kmem_free(osp->ss_pn, sizeof (rfs4_ss_pn_t)); 751 752 os_next = osp->next; 753 remque(osp); 754 kmem_free(osp, sizeof (rfs4_oldstate_t)); 755 osp = os_next; 756 } 757 758 /* free dummy entry */ 759 kmem_free(osp, sizeof (rfs4_oldstate_t)); 760 761 sip->oldstate = NULL; 762 763 rw_exit(&sip->oldstate_lock); 764 } 765 766 /* 767 * Form the state and oldstate paths, and read in the stable storage files. 768 */ 769 void 770 rfs4_dss_readstate(int npaths, char **paths) 771 { 772 int i; 773 char *state, *oldstate; 774 775 state = kmem_alloc(MAXPATHLEN, KM_SLEEP); 776 oldstate = kmem_alloc(MAXPATHLEN, KM_SLEEP); 777 778 for (i = 0; i < npaths; i++) { 779 char *path = paths[i]; 780 781 (void) sprintf(state, "%s/%s", path, NFS4_DSS_STATE_LEAF); 782 (void) sprintf(oldstate, "%s/%s", path, NFS4_DSS_OLDSTATE_LEAF); 783 784 /* 785 * Populate the current server instance's oldstate list. 786 * 787 * 1. Read stable storage data from old state directory, 788 * leaving its contents alone. 789 * 790 * 2. Read stable storage data from state directory, 791 * and move the latter's contents to old state 792 * directory. 793 */ 794 rfs4_ss_oldstate(rfs4_cur_servinst->oldstate, oldstate, NULL); 795 rfs4_ss_oldstate(rfs4_cur_servinst->oldstate, state, oldstate); 796 } 797 798 kmem_free(state, MAXPATHLEN); 799 kmem_free(oldstate, MAXPATHLEN); 800 } 801 802 803 /* 804 * Check if we are still in grace and if the client can be 805 * granted permission to perform reclaims. 806 */ 807 void 808 rfs4_ss_chkclid(rfs4_client_t *cp) 809 { 810 rfs4_servinst_t *sip; 811 812 /* 813 * It should be sufficient to check the oldstate data for just 814 * this client's instance. However, since our per-instance 815 * client grouping is solely temporal, HA-NFSv4 RG failover 816 * might result in clients of the same RG being partitioned into 817 * separate instances. 818 * 819 * Until the client grouping is improved, we must check the 820 * oldstate data for all instances with an active grace period. 821 * 822 * This also serves as the mechanism to remove stale oldstate data. 823 * The first time we check an instance after its grace period has 824 * expired, the oldstate data should be cleared. 825 * 826 * Start at the current instance, and walk the list backwards 827 * to the first. 828 */ 829 mutex_enter(&rfs4_servinst_lock); 830 for (sip = rfs4_cur_servinst; sip != NULL; sip = sip->prev) { 831 rfs4_ss_chkclid_sip(cp, sip); 832 833 /* if the above check found this client, we're done */ 834 if (cp->can_reclaim) 835 break; 836 } 837 mutex_exit(&rfs4_servinst_lock); 838 } 839 840 static void 841 rfs4_ss_chkclid_sip(rfs4_client_t *cp, rfs4_servinst_t *sip) 842 { 843 rfs4_oldstate_t *osp, *os_head; 844 845 /* short circuit everything if this server instance has no oldstate */ 846 rw_enter(&sip->oldstate_lock, RW_READER); 847 os_head = sip->oldstate; 848 rw_exit(&sip->oldstate_lock); 849 if (os_head == NULL) 850 return; 851 852 /* 853 * If this server instance is no longer in a grace period then 854 * the client won't be able to reclaim. No further need for this 855 * instance's oldstate data, so it can be cleared. 856 */ 857 if (!rfs4_servinst_in_grace(sip)) 858 return; 859 860 /* this instance is still in grace; search for the clientid */ 861 862 rw_enter(&sip->oldstate_lock, RW_READER); 863 864 os_head = sip->oldstate; 865 /* skip dummy entry */ 866 osp = os_head->next; 867 while (osp != os_head) { 868 if (osp->cl_id4.id_len == cp->nfs_client.id_len) { 869 if (bcmp(osp->cl_id4.id_val, cp->nfs_client.id_val, 870 osp->cl_id4.id_len) == 0) { 871 cp->can_reclaim = 1; 872 break; 873 } 874 } 875 osp = osp->next; 876 } 877 878 rw_exit(&sip->oldstate_lock); 879 } 880 881 /* 882 * Place client information into stable storage: 1/3. 883 * First, generate the leaf filename, from the client's IP address and 884 * the server-generated short-hand clientid. 885 */ 886 void 887 rfs4_ss_clid(rfs4_client_t *cp, struct svc_req *req) 888 { 889 const char *kinet_ntop6(uchar_t *, char *, size_t); 890 char leaf[MAXNAMELEN], buf[INET6_ADDRSTRLEN]; 891 struct sockaddr *ca; 892 uchar_t *b; 893 894 if (rfs4_ss_enabled == 0) { 895 return; 896 } 897 898 buf[0] = 0; 899 900 901 ca = (struct sockaddr *)svc_getrpccaller(req->rq_xprt)->buf; 902 if (ca == NULL) { 903 return; 904 } 905 906 /* 907 * Convert the caller's IP address to a dotted string 908 */ 909 if (ca->sa_family == AF_INET) { 910 911 bcopy(svc_getrpccaller(req->rq_xprt)->buf, &cp->cl_addr, 912 sizeof (struct sockaddr_in)); 913 b = (uchar_t *)&((struct sockaddr_in *)ca)->sin_addr; 914 (void) sprintf(buf, "%03d.%03d.%03d.%03d", b[0] & 0xFF, 915 b[1] & 0xFF, b[2] & 0xFF, b[3] & 0xFF); 916 } else if (ca->sa_family == AF_INET6) { 917 struct sockaddr_in6 *sin6; 918 919 sin6 = (struct sockaddr_in6 *)ca; 920 bcopy(svc_getrpccaller(req->rq_xprt)->buf, &cp->cl_addr, 921 sizeof (struct sockaddr_in6)); 922 (void) kinet_ntop6((uchar_t *)&sin6->sin6_addr, 923 buf, INET6_ADDRSTRLEN); 924 } 925 926 (void) snprintf(leaf, MAXNAMELEN, "%s-%llx", buf, 927 (longlong_t)cp->clientid); 928 rfs4_ss_clid_write(cp, leaf); 929 } 930 931 /* 932 * Place client information into stable storage: 2/3. 933 * DSS: distributed stable storage: the file may need to be written to 934 * multiple directories. 935 */ 936 static void 937 rfs4_ss_clid_write(rfs4_client_t *cp, char *leaf) 938 { 939 rfs4_servinst_t *sip; 940 941 /* 942 * It should be sufficient to write the leaf file to (all) DSS paths 943 * associated with just this client's instance. However, since our 944 * per-instance client grouping is solely temporal, HA-NFSv4 RG 945 * failover might result in us losing DSS data. 946 * 947 * Until the client grouping is improved, we must write the DSS data 948 * to all instances' paths. Start at the current instance, and 949 * walk the list backwards to the first. 950 */ 951 mutex_enter(&rfs4_servinst_lock); 952 for (sip = rfs4_cur_servinst; sip != NULL; sip = sip->prev) { 953 int i, npaths = sip->dss_npaths; 954 955 /* write the leaf file to all DSS paths */ 956 for (i = 0; i < npaths; i++) { 957 rfs4_dss_path_t *dss_path = sip->dss_paths[i]; 958 959 /* HA-NFSv4 path might have been failed-away from us */ 960 if (dss_path == NULL) 961 continue; 962 963 rfs4_ss_clid_write_one(cp, dss_path->path, leaf); 964 } 965 } 966 mutex_exit(&rfs4_servinst_lock); 967 } 968 969 /* 970 * Place client information into stable storage: 3/3. 971 * Write the stable storage data to the requested file. 972 */ 973 static void 974 rfs4_ss_clid_write_one(rfs4_client_t *cp, char *dss_path, char *leaf) 975 { 976 int ioflag; 977 int file_vers = NFS4_SS_VERSION; 978 size_t dirlen; 979 struct uio uio; 980 struct iovec iov[4]; 981 char *dir; 982 rfs4_ss_pn_t *ss_pn; 983 vnode_t *vp; 984 nfs_client_id4 *cl_id4 = &(cp->nfs_client); 985 986 /* allow 2 extra bytes for '/' & NUL */ 987 dirlen = strlen(dss_path) + strlen(NFS4_DSS_STATE_LEAF) + 2; 988 dir = kmem_alloc(dirlen, KM_SLEEP); 989 (void) sprintf(dir, "%s/%s", dss_path, NFS4_DSS_STATE_LEAF); 990 991 ss_pn = rfs4_ss_pnalloc(dir, leaf); 992 /* rfs4_ss_pnalloc takes its own copy */ 993 kmem_free(dir, dirlen); 994 if (ss_pn == NULL) 995 return; 996 997 if (vn_open(ss_pn->pn, UIO_SYSSPACE, FCREAT|FWRITE, 0600, &vp, 998 CRCREAT, 0)) { 999 rfs4_ss_pnfree(ss_pn); 1000 return; 1001 } 1002 1003 /* 1004 * We need to record leaf - i.e. the filename - so that we know 1005 * what to remove, in the future. However, the dir part of cp->ss_pn 1006 * should never be referenced directly, since it's potentially only 1007 * one of several paths with this leaf in it. 1008 */ 1009 if (cp->ss_pn != NULL) { 1010 if (strcmp(cp->ss_pn->leaf, leaf) == 0) { 1011 /* we've already recorded *this* leaf */ 1012 rfs4_ss_pnfree(ss_pn); 1013 } else { 1014 /* replace with this leaf */ 1015 rfs4_ss_pnfree(cp->ss_pn); 1016 cp->ss_pn = ss_pn; 1017 } 1018 } else { 1019 cp->ss_pn = ss_pn; 1020 } 1021 1022 /* 1023 * Build a scatter list that points to the nfs_client_id4 1024 */ 1025 iov[0].iov_base = (caddr_t)&file_vers; 1026 iov[0].iov_len = sizeof (int); 1027 iov[1].iov_base = (caddr_t)&(cl_id4->verifier); 1028 iov[1].iov_len = NFS4_VERIFIER_SIZE; 1029 iov[2].iov_base = (caddr_t)&(cl_id4->id_len); 1030 iov[2].iov_len = sizeof (uint_t); 1031 iov[3].iov_base = (caddr_t)cl_id4->id_val; 1032 iov[3].iov_len = cl_id4->id_len; 1033 1034 uio.uio_iov = iov; 1035 uio.uio_iovcnt = 4; 1036 uio.uio_loffset = 0; 1037 uio.uio_segflg = UIO_SYSSPACE; 1038 uio.uio_llimit = (rlim64_t)MAXOFFSET_T; 1039 uio.uio_resid = cl_id4->id_len + sizeof (int) + 1040 NFS4_VERIFIER_SIZE + sizeof (uint_t); 1041 1042 ioflag = uio.uio_fmode = (FWRITE|FSYNC); 1043 uio.uio_extflg = UIO_COPY_DEFAULT; 1044 1045 (void) VOP_RWLOCK(vp, V_WRITELOCK_TRUE, NULL); 1046 /* write the full client id to the file. */ 1047 (void) VOP_WRITE(vp, &uio, ioflag, CRED(), NULL); 1048 VOP_RWUNLOCK(vp, V_WRITELOCK_TRUE, NULL); 1049 1050 (void) VOP_CLOSE(vp, FWRITE, 1, (offset_t)0, CRED()); 1051 VN_RELE(vp); 1052 } 1053 1054 /* 1055 * DSS: distributed stable storage. 1056 * Unpack the list of paths passed by nfsd. 1057 * Use nvlist_alloc(9F) to manage the data. 1058 * The caller is responsible for allocating and freeing the buffer. 1059 */ 1060 int 1061 rfs4_dss_setpaths(char *buf, size_t buflen) 1062 { 1063 int error; 1064 1065 /* 1066 * If this is a "warm start", i.e. we previously had DSS paths, 1067 * preserve the old paths. 1068 */ 1069 if (rfs4_dss_paths != NULL) { 1070 /* 1071 * Before we lose the ptr, destroy the nvlist and pathnames 1072 * array from the warm start before this one. 1073 */ 1074 if (rfs4_dss_oldpaths) 1075 nvlist_free(rfs4_dss_oldpaths); 1076 rfs4_dss_oldpaths = rfs4_dss_paths; 1077 } 1078 1079 /* unpack the buffer into a searchable nvlist */ 1080 error = nvlist_unpack(buf, buflen, &rfs4_dss_paths, KM_SLEEP); 1081 if (error) 1082 return (error); 1083 1084 /* 1085 * Search the nvlist for the pathnames nvpair (which is the only nvpair 1086 * in the list, and record its location. 1087 */ 1088 error = nvlist_lookup_string_array(rfs4_dss_paths, NFS4_DSS_NVPAIR_NAME, 1089 &rfs4_dss_newpaths, &rfs4_dss_numnewpaths); 1090 return (error); 1091 } 1092 1093 /* 1094 * Ultimately the nfssys() call NFS4_CLR_STATE endsup here 1095 * to find and mark the client for forced expire. 1096 */ 1097 static void 1098 rfs4_client_scrub(rfs4_entry_t ent, void *arg) 1099 { 1100 rfs4_client_t *cp = (rfs4_client_t *)ent; 1101 struct nfs4clrst_args *clr = arg; 1102 struct sockaddr_in6 *ent_sin6; 1103 struct in6_addr clr_in6; 1104 struct sockaddr_in *ent_sin; 1105 struct in_addr clr_in; 1106 1107 if (clr->addr_type != cp->cl_addr.ss_family) { 1108 return; 1109 } 1110 1111 switch (clr->addr_type) { 1112 1113 case AF_INET6: 1114 /* copyin the address from user space */ 1115 if (copyin(clr->ap, &clr_in6, sizeof (clr_in6))) { 1116 break; 1117 } 1118 1119 ent_sin6 = (struct sockaddr_in6 *)&cp->cl_addr; 1120 1121 /* 1122 * now compare, and if equivalent mark entry 1123 * for forced expiration 1124 */ 1125 if (IN6_ARE_ADDR_EQUAL(&ent_sin6->sin6_addr, &clr_in6)) { 1126 cp->forced_expire = 1; 1127 } 1128 break; 1129 1130 case AF_INET: 1131 /* copyin the address from user space */ 1132 if (copyin(clr->ap, &clr_in, sizeof (clr_in))) { 1133 break; 1134 } 1135 1136 ent_sin = (struct sockaddr_in *)&cp->cl_addr; 1137 1138 /* 1139 * now compare, and if equivalent mark entry 1140 * for forced expiration 1141 */ 1142 if (ent_sin->sin_addr.s_addr == clr_in.s_addr) { 1143 cp->forced_expire = 1; 1144 } 1145 break; 1146 1147 default: 1148 /* force this assert to fail */ 1149 ASSERT(clr->addr_type != clr->addr_type); 1150 } 1151 } 1152 1153 /* 1154 * This is called from nfssys() in order to clear server state 1155 * for the specified client IP Address. 1156 */ 1157 void 1158 rfs4_clear_client_state(struct nfs4clrst_args *clr) 1159 { 1160 (void) rfs4_dbe_walk(rfs4_client_tab, rfs4_client_scrub, clr); 1161 } 1162 1163 /* 1164 * Used to initialize the NFSv4 server's state or database. All of 1165 * the tables are created and timers are set. Only called when NFSv4 1166 * service is provided. 1167 */ 1168 void 1169 rfs4_state_init() 1170 { 1171 int start_grace; 1172 extern boolean_t rfs4_cpr_callb(void *, int); 1173 char *dss_path = NFS4_DSS_VAR_DIR; 1174 1175 mutex_enter(&rfs4_state_lock); 1176 1177 /* 1178 * If the server state database has already been initialized, 1179 * skip it 1180 */ 1181 if (rfs4_server_state != NULL) { 1182 mutex_exit(&rfs4_state_lock); 1183 return; 1184 } 1185 1186 rw_init(&rfs4_findclient_lock, NULL, RW_DEFAULT, NULL); 1187 1188 /* 1189 * Set the boot time. If the server 1190 * has been restarted quickly and has had the opportunity to 1191 * service clients, then the start_time needs to be bumped 1192 * regardless. A small window but it exists... 1193 */ 1194 if (rfs4_start_time != gethrestime_sec()) 1195 rfs4_start_time = gethrestime_sec(); 1196 else 1197 rfs4_start_time++; 1198 1199 /* DSS: distributed stable storage: initialise served paths list */ 1200 rfs4_dss_pathlist = NULL; 1201 1202 /* 1203 * Create the first server instance, or a new one if the server has 1204 * been restarted; see above comments on rfs4_start_time. Don't 1205 * start its grace period; that will be done later, to maximise the 1206 * clients' recovery window. 1207 */ 1208 start_grace = 0; 1209 rfs4_servinst_create(start_grace, 1, &dss_path); 1210 1211 /* reset the "first NFSv4 request" status */ 1212 rfs4_seen_first_compound = 0; 1213 1214 /* 1215 * Add a CPR callback so that we can update client 1216 * access times to extend the lease after a suspend 1217 * and resume (using the same class as rpcmod/connmgr) 1218 */ 1219 cpr_id = callb_add(rfs4_cpr_callb, 0, CB_CL_CPR_RPC, "rfs4"); 1220 1221 /* set the various cache timers for table creation */ 1222 if (rfs4_client_cache_time == 0) 1223 rfs4_client_cache_time = CLIENT_CACHE_TIME; 1224 if (rfs4_openowner_cache_time == 0) 1225 rfs4_openowner_cache_time = OPENOWNER_CACHE_TIME; 1226 if (rfs4_state_cache_time == 0) 1227 rfs4_state_cache_time = STATE_CACHE_TIME; 1228 if (rfs4_lo_state_cache_time == 0) 1229 rfs4_lo_state_cache_time = LO_STATE_CACHE_TIME; 1230 if (rfs4_lockowner_cache_time == 0) 1231 rfs4_lockowner_cache_time = LOCKOWNER_CACHE_TIME; 1232 if (rfs4_file_cache_time == 0) 1233 rfs4_file_cache_time = FILE_CACHE_TIME; 1234 if (rfs4_deleg_state_cache_time == 0) 1235 rfs4_deleg_state_cache_time = DELEG_STATE_CACHE_TIME; 1236 1237 /* Create the overall database to hold all server state */ 1238 rfs4_server_state = rfs4_database_create(rfs4_database_debug); 1239 1240 /* Now create the individual tables */ 1241 rfs4_client_cache_time *= rfs4_lease_time; 1242 rfs4_client_tab = rfs4_table_create(rfs4_server_state, 1243 "Client", 1244 rfs4_client_cache_time, 1245 2, 1246 rfs4_client_create, 1247 rfs4_client_destroy, 1248 rfs4_client_expiry, 1249 sizeof (rfs4_client_t), 1250 TABSIZE, 1251 MAXTABSZ/8, 100); 1252 rfs4_nfsclnt_idx = rfs4_index_create(rfs4_client_tab, 1253 "nfs_client_id4", nfsclnt_hash, 1254 nfsclnt_compare, nfsclnt_mkkey, 1255 TRUE); 1256 rfs4_clientid_idx = rfs4_index_create(rfs4_client_tab, 1257 "client_id", clientid_hash, 1258 clientid_compare, clientid_mkkey, 1259 FALSE); 1260 1261 rfs4_openowner_cache_time *= rfs4_lease_time; 1262 rfs4_openowner_tab = rfs4_table_create(rfs4_server_state, 1263 "OpenOwner", 1264 rfs4_openowner_cache_time, 1265 1, 1266 rfs4_openowner_create, 1267 rfs4_openowner_destroy, 1268 rfs4_openowner_expiry, 1269 sizeof (rfs4_openowner_t), 1270 TABSIZE, 1271 MAXTABSZ, 100); 1272 rfs4_openowner_idx = rfs4_index_create(rfs4_openowner_tab, 1273 "open_owner4", openowner_hash, 1274 openowner_compare, 1275 openowner_mkkey, TRUE); 1276 1277 rfs4_state_cache_time *= rfs4_lease_time; 1278 rfs4_state_tab = rfs4_table_create(rfs4_server_state, 1279 "OpenStateID", 1280 rfs4_state_cache_time, 1281 3, 1282 rfs4_state_create, 1283 rfs4_state_destroy, 1284 rfs4_state_expiry, 1285 sizeof (rfs4_state_t), 1286 TABSIZE, 1287 MAXTABSZ, 100); 1288 1289 rfs4_state_owner_file_idx = rfs4_index_create(rfs4_state_tab, 1290 "Openowner-File", 1291 state_owner_file_hash, 1292 state_owner_file_compare, 1293 state_owner_file_mkkey, TRUE); 1294 1295 rfs4_state_idx = rfs4_index_create(rfs4_state_tab, 1296 "State-id", state_hash, 1297 state_compare, state_mkkey, FALSE); 1298 1299 rfs4_state_file_idx = rfs4_index_create(rfs4_state_tab, 1300 "File", state_file_hash, 1301 state_file_compare, state_file_mkkey, 1302 FALSE); 1303 1304 rfs4_lo_state_cache_time *= rfs4_lease_time; 1305 rfs4_lo_state_tab = rfs4_table_create(rfs4_server_state, 1306 "LockStateID", 1307 rfs4_lo_state_cache_time, 1308 2, 1309 rfs4_lo_state_create, 1310 rfs4_lo_state_destroy, 1311 rfs4_lo_state_expiry, 1312 sizeof (rfs4_lo_state_t), 1313 TABSIZE, 1314 MAXTABSZ, 100); 1315 1316 rfs4_lo_state_owner_idx = rfs4_index_create(rfs4_lo_state_tab, 1317 "lockownerxstate", 1318 lo_state_lo_hash, 1319 lo_state_lo_compare, 1320 lo_state_lo_mkkey, TRUE); 1321 1322 rfs4_lo_state_idx = rfs4_index_create(rfs4_lo_state_tab, 1323 "State-id", 1324 lo_state_hash, lo_state_compare, 1325 lo_state_mkkey, FALSE); 1326 1327 rfs4_lockowner_cache_time *= rfs4_lease_time; 1328 1329 rfs4_lockowner_tab = rfs4_table_create(rfs4_server_state, 1330 "Lockowner", 1331 rfs4_lockowner_cache_time, 1332 2, 1333 rfs4_lockowner_create, 1334 rfs4_lockowner_destroy, 1335 rfs4_lockowner_expiry, 1336 sizeof (rfs4_lockowner_t), 1337 TABSIZE, 1338 MAXTABSZ, 100); 1339 1340 rfs4_lockowner_idx = rfs4_index_create(rfs4_lockowner_tab, 1341 "lock_owner4", lockowner_hash, 1342 lockowner_compare, 1343 lockowner_mkkey, TRUE); 1344 1345 rfs4_lockowner_pid_idx = rfs4_index_create(rfs4_lockowner_tab, 1346 "pid", pid_hash, 1347 pid_compare, pid_mkkey, 1348 FALSE); 1349 1350 rfs4_file_cache_time *= rfs4_lease_time; 1351 rfs4_file_tab = rfs4_table_create(rfs4_server_state, 1352 "File", 1353 rfs4_file_cache_time, 1354 1, 1355 rfs4_file_create, 1356 rfs4_file_destroy, 1357 NULL, 1358 sizeof (rfs4_file_t), 1359 TABSIZE, 1360 MAXTABSZ, -1); 1361 1362 rfs4_file_idx = rfs4_index_create(rfs4_file_tab, 1363 "Filehandle", file_hash, 1364 file_compare, file_mkkey, TRUE); 1365 1366 rfs4_deleg_state_cache_time *= rfs4_lease_time; 1367 rfs4_deleg_state_tab = rfs4_table_create(rfs4_server_state, 1368 "DelegStateID", 1369 rfs4_deleg_state_cache_time, 1370 2, 1371 rfs4_deleg_state_create, 1372 rfs4_deleg_state_destroy, 1373 rfs4_deleg_state_expiry, 1374 sizeof (rfs4_deleg_state_t), 1375 TABSIZE, 1376 MAXTABSZ, 100); 1377 rfs4_deleg_idx = rfs4_index_create(rfs4_deleg_state_tab, 1378 "DelegByFileClient", 1379 deleg_hash, 1380 deleg_compare, 1381 deleg_mkkey, TRUE); 1382 1383 rfs4_deleg_state_idx = rfs4_index_create(rfs4_deleg_state_tab, 1384 "DelegState", 1385 deleg_state_hash, 1386 deleg_state_compare, 1387 deleg_state_mkkey, FALSE); 1388 1389 /* 1390 * Init the stable storage. 1391 */ 1392 rfs4_ss_init(); 1393 1394 rfs4_client_clrst = rfs4_clear_client_state; 1395 1396 mutex_exit(&rfs4_state_lock); 1397 } 1398 1399 1400 /* 1401 * Used at server shutdown to cleanup all of the NFSv4 server's structures 1402 * and other state. 1403 */ 1404 void 1405 rfs4_state_fini() 1406 { 1407 rfs4_database_t *dbp; 1408 1409 mutex_enter(&rfs4_state_lock); 1410 1411 if (rfs4_server_state == NULL) { 1412 mutex_exit(&rfs4_state_lock); 1413 return; 1414 } 1415 1416 rfs4_client_clrst = NULL; 1417 1418 rfs4_set_deleg_policy(SRV_NEVER_DELEGATE); 1419 dbp = rfs4_server_state; 1420 rfs4_server_state = NULL; 1421 1422 /* 1423 * Cleanup the CPR callback. 1424 */ 1425 if (cpr_id) 1426 (void) callb_delete(cpr_id); 1427 1428 rw_destroy(&rfs4_findclient_lock); 1429 1430 /* First stop all of the reaper threads in the database */ 1431 rfs4_database_shutdown(dbp); 1432 /* clean up any dangling stable storage structures */ 1433 rfs4_ss_fini(); 1434 /* Now actually destroy/release the database and its tables */ 1435 rfs4_database_destroy(dbp); 1436 1437 /* Reset the cache timers for next time */ 1438 rfs4_client_cache_time = 0; 1439 rfs4_openowner_cache_time = 0; 1440 rfs4_state_cache_time = 0; 1441 rfs4_lo_state_cache_time = 0; 1442 rfs4_lockowner_cache_time = 0; 1443 rfs4_file_cache_time = 0; 1444 rfs4_deleg_state_cache_time = 0; 1445 1446 mutex_exit(&rfs4_state_lock); 1447 1448 /* destroy server instances and current instance ptr */ 1449 rfs4_servinst_destroy_all(); 1450 1451 /* reset the "first NFSv4 request" status */ 1452 rfs4_seen_first_compound = 0; 1453 1454 /* DSS: distributed stable storage */ 1455 if (rfs4_dss_oldpaths) 1456 nvlist_free(rfs4_dss_oldpaths); 1457 if (rfs4_dss_paths) 1458 nvlist_free(rfs4_dss_paths); 1459 rfs4_dss_paths = rfs4_dss_oldpaths = NULL; 1460 } 1461 1462 typedef union { 1463 struct { 1464 uint32_t start_time; 1465 uint32_t c_id; 1466 } impl_id; 1467 clientid4 id4; 1468 } cid; 1469 1470 static int foreign_stateid(stateid_t *id); 1471 static int foreign_clientid(cid *cidp); 1472 static void embed_nodeid(cid *cidp); 1473 1474 typedef union { 1475 struct { 1476 uint32_t c_id; 1477 uint32_t gen_num; 1478 } cv_impl; 1479 verifier4 confirm_verf; 1480 } scid_confirm_verf; 1481 1482 static uint32_t 1483 clientid_hash(void *key) 1484 { 1485 cid *idp = key; 1486 1487 return (idp->impl_id.c_id); 1488 } 1489 1490 static bool_t 1491 clientid_compare(rfs4_entry_t entry, void *key) 1492 { 1493 rfs4_client_t *client = (rfs4_client_t *)entry; 1494 clientid4 *idp = key; 1495 1496 return (*idp == client->clientid); 1497 } 1498 1499 static void * 1500 clientid_mkkey(rfs4_entry_t entry) 1501 { 1502 rfs4_client_t *client = (rfs4_client_t *)entry; 1503 1504 return (&client->clientid); 1505 } 1506 1507 static uint32_t 1508 nfsclnt_hash(void *key) 1509 { 1510 nfs_client_id4 *client = key; 1511 int i; 1512 uint32_t hash = 0; 1513 1514 for (i = 0; i < client->id_len; i++) { 1515 hash <<= 1; 1516 hash += (uint_t)client->id_val[i]; 1517 } 1518 return (hash); 1519 } 1520 1521 1522 static bool_t 1523 nfsclnt_compare(rfs4_entry_t entry, void *key) 1524 { 1525 rfs4_client_t *client = (rfs4_client_t *)entry; 1526 nfs_client_id4 *nfs_client = key; 1527 1528 if (client->nfs_client.id_len != nfs_client->id_len) 1529 return (FALSE); 1530 1531 return (bcmp(client->nfs_client.id_val, nfs_client->id_val, 1532 nfs_client->id_len) == 0); 1533 } 1534 1535 static void * 1536 nfsclnt_mkkey(rfs4_entry_t entry) 1537 { 1538 rfs4_client_t *client = (rfs4_client_t *)entry; 1539 1540 return (&client->nfs_client); 1541 } 1542 1543 static bool_t 1544 rfs4_client_expiry(rfs4_entry_t u_entry) 1545 { 1546 rfs4_client_t *cp = (rfs4_client_t *)u_entry; 1547 bool_t cp_expired; 1548 1549 if (rfs4_dbe_is_invalid(cp->dbe)) 1550 return (TRUE); 1551 /* 1552 * If the sysadmin has used clear_locks for this 1553 * entry then forced_expire will be set and we 1554 * want this entry to be reaped. Or the entry 1555 * has exceeded its lease period. 1556 */ 1557 cp_expired = (cp->forced_expire || 1558 (gethrestime_sec() - cp->last_access 1559 > rfs4_lease_time)); 1560 1561 if (!cp->ss_remove && cp_expired) 1562 cp->ss_remove = 1; 1563 return (cp_expired); 1564 } 1565 1566 /* 1567 * Remove the leaf file from all distributed stable storage paths. 1568 */ 1569 static void 1570 rfs4_dss_remove_cpleaf(rfs4_client_t *cp) 1571 { 1572 char *leaf = cp->ss_pn->leaf; 1573 1574 rfs4_dss_remove_leaf(cp->server_instance, NFS4_DSS_STATE_LEAF, leaf); 1575 } 1576 1577 static void 1578 rfs4_dss_remove_leaf(rfs4_servinst_t *sip, char *dir_leaf, char *leaf) 1579 { 1580 int i, npaths = sip->dss_npaths; 1581 1582 for (i = 0; i < npaths; i++) { 1583 rfs4_dss_path_t *dss_path = sip->dss_paths[i]; 1584 char *path, *dir; 1585 size_t pathlen; 1586 1587 /* the HA-NFSv4 path might have been failed-over away from us */ 1588 if (dss_path == NULL) 1589 continue; 1590 1591 dir = dss_path->path; 1592 1593 /* allow 3 extra bytes for two '/' & a NUL */ 1594 pathlen = strlen(dir) + strlen(dir_leaf) + strlen(leaf) + 3; 1595 path = kmem_alloc(pathlen, KM_SLEEP); 1596 (void) sprintf(path, "%s/%s/%s", dir, dir_leaf, leaf); 1597 1598 (void) vn_remove(path, UIO_SYSSPACE, RMFILE); 1599 1600 kmem_free(path, pathlen); 1601 } 1602 } 1603 1604 static void 1605 rfs4_client_destroy(rfs4_entry_t u_entry) 1606 { 1607 rfs4_client_t *cp = (rfs4_client_t *)u_entry; 1608 1609 mutex_destroy(cp->cbinfo.cb_lock); 1610 cv_destroy(cp->cbinfo.cb_cv); 1611 cv_destroy(cp->cbinfo.cb_cv_nullcaller); 1612 1613 /* free callback info */ 1614 rfs4_cbinfo_free(&cp->cbinfo); 1615 1616 if (cp->cp_confirmed) 1617 rfs4_client_rele(cp->cp_confirmed); 1618 1619 if (cp->ss_pn) { 1620 /* check if the stable storage files need to be removed */ 1621 if (cp->ss_remove) 1622 rfs4_dss_remove_cpleaf(cp); 1623 rfs4_ss_pnfree(cp->ss_pn); 1624 } 1625 1626 /* Free the client supplied client id */ 1627 kmem_free(cp->nfs_client.id_val, cp->nfs_client.id_len); 1628 1629 if (cp->sysidt != LM_NOSYSID) 1630 lm_free_sysidt(cp->sysidt); 1631 } 1632 1633 static bool_t 1634 rfs4_client_create(rfs4_entry_t u_entry, void *arg) 1635 { 1636 rfs4_client_t *cp = (rfs4_client_t *)u_entry; 1637 nfs_client_id4 *client = (nfs_client_id4 *)arg; 1638 cid *cidp; 1639 scid_confirm_verf *scvp; 1640 1641 /* Get a clientid to give to the client */ 1642 cidp = (cid *)&cp->clientid; 1643 cidp->impl_id.start_time = rfs4_start_time; 1644 cidp->impl_id.c_id = (uint32_t)rfs4_dbe_getid(cp->dbe); 1645 1646 /* If we are booted as a cluster node, embed our nodeid */ 1647 if (cluster_bootflags & CLUSTER_BOOTED) 1648 embed_nodeid(cidp); 1649 1650 /* Allocate and copy client's client id value */ 1651 cp->nfs_client.id_val = kmem_alloc(client->id_len, KM_SLEEP); 1652 cp->nfs_client.id_len = client->id_len; 1653 bcopy(client->id_val, cp->nfs_client.id_val, client->id_len); 1654 cp->nfs_client.verifier = client->verifier; 1655 1656 /* Init the value for the SETCLIENTID_CONFIRM verifier */ 1657 scvp = (scid_confirm_verf *)&cp->confirm_verf; 1658 scvp->cv_impl.c_id = cidp->impl_id.c_id; 1659 scvp->cv_impl.gen_num = 0; 1660 1661 /* An F_UNLKSYS has been done for this client */ 1662 cp->unlksys_completed = FALSE; 1663 1664 /* We need the client to ack us */ 1665 cp->need_confirm = TRUE; 1666 cp->cp_confirmed = NULL; 1667 1668 /* TRUE all the time until the callback path actually fails */ 1669 cp->cbinfo.cb_notified_of_cb_path_down = TRUE; 1670 1671 /* Initialize the access time to now */ 1672 cp->last_access = gethrestime_sec(); 1673 1674 cp->cr_set = NULL; 1675 /* Initialize list for insque/remque */ 1676 cp->openownerlist.next = cp->openownerlist.prev = &cp->openownerlist; 1677 cp->openownerlist.oop = NULL; /* This is not an openowner */ 1678 1679 cp->sysidt = LM_NOSYSID; 1680 1681 cp->clientdeleglist.next = cp->clientdeleglist.prev = 1682 &cp->clientdeleglist; 1683 cp->clientdeleglist.dsp = NULL; 1684 1685 /* set up the callback control structure */ 1686 cp->cbinfo.cb_state = CB_UNINIT; 1687 mutex_init(cp->cbinfo.cb_lock, NULL, MUTEX_DEFAULT, NULL); 1688 cv_init(cp->cbinfo.cb_cv, NULL, CV_DEFAULT, NULL); 1689 cv_init(cp->cbinfo.cb_cv_nullcaller, NULL, CV_DEFAULT, NULL); 1690 1691 /* 1692 * Associate the client_t with the current server instance. 1693 * The hold is solely to satisfy the calling requirement of 1694 * rfs4_servinst_assign(). In this case it's not strictly necessary. 1695 */ 1696 rfs4_dbe_hold(cp->dbe); 1697 rfs4_servinst_assign(cp, rfs4_cur_servinst); 1698 rfs4_dbe_rele(cp->dbe); 1699 1700 return (TRUE); 1701 } 1702 1703 /* 1704 * Caller wants to generate/update the setclientid_confirm verifier 1705 * associated with a client. This is done during the SETCLIENTID 1706 * processing. 1707 */ 1708 void 1709 rfs4_client_scv_next(rfs4_client_t *cp) 1710 { 1711 scid_confirm_verf *scvp; 1712 1713 /* Init the value for the SETCLIENTID_CONFIRM verifier */ 1714 scvp = (scid_confirm_verf *)&cp->confirm_verf; 1715 scvp->cv_impl.gen_num++; 1716 } 1717 1718 void 1719 rfs4_client_rele(rfs4_client_t *cp) 1720 { 1721 rfs4_dbe_rele(cp->dbe); 1722 } 1723 1724 rfs4_client_t * 1725 rfs4_findclient(nfs_client_id4 *client, bool_t *create, rfs4_client_t *oldcp) 1726 { 1727 rfs4_client_t *cp; 1728 1729 1730 if (oldcp) { 1731 rw_enter(&rfs4_findclient_lock, RW_WRITER); 1732 rfs4_dbe_hide(oldcp->dbe); 1733 } else { 1734 rw_enter(&rfs4_findclient_lock, RW_READER); 1735 } 1736 1737 cp = (rfs4_client_t *)rfs4_dbsearch(rfs4_nfsclnt_idx, client, 1738 create, (void *)client, RFS4_DBS_VALID); 1739 1740 if (oldcp) 1741 rfs4_dbe_unhide(oldcp->dbe); 1742 1743 rw_exit(&rfs4_findclient_lock); 1744 1745 return (cp); 1746 } 1747 1748 rfs4_client_t * 1749 rfs4_findclient_by_id(clientid4 clientid, bool_t find_unconfirmed) 1750 { 1751 rfs4_client_t *cp; 1752 bool_t create = FALSE; 1753 cid *cidp = (cid *)&clientid; 1754 1755 /* If we're a cluster and the nodeid isn't right, short-circuit */ 1756 if (cluster_bootflags & CLUSTER_BOOTED && foreign_clientid(cidp)) 1757 return (NULL); 1758 1759 rw_enter(&rfs4_findclient_lock, RW_READER); 1760 1761 cp = (rfs4_client_t *)rfs4_dbsearch(rfs4_clientid_idx, &clientid, 1762 &create, NULL, RFS4_DBS_VALID); 1763 1764 rw_exit(&rfs4_findclient_lock); 1765 1766 if (cp && cp->need_confirm && find_unconfirmed == FALSE) { 1767 rfs4_client_rele(cp); 1768 return (NULL); 1769 } else { 1770 return (cp); 1771 } 1772 } 1773 1774 bool_t 1775 rfs4_lease_expired(rfs4_client_t *cp) 1776 { 1777 bool_t rc; 1778 1779 rfs4_dbe_lock(cp->dbe); 1780 1781 /* 1782 * If the admin has executed clear_locks for this 1783 * client id, force expire will be set, so no need 1784 * to calculate anything because it's "outa here". 1785 */ 1786 if (cp->forced_expire) { 1787 rc = TRUE; 1788 } else { 1789 rc = (gethrestime_sec() - cp->last_access > rfs4_lease_time); 1790 } 1791 1792 /* 1793 * If the lease has expired we will also want 1794 * to remove any stable storage state data. So 1795 * mark the client id accordingly. 1796 */ 1797 if (!cp->ss_remove) 1798 cp->ss_remove = (rc == TRUE); 1799 1800 rfs4_dbe_unlock(cp->dbe); 1801 1802 return (rc); 1803 } 1804 1805 void 1806 rfs4_update_lease(rfs4_client_t *cp) 1807 { 1808 rfs4_dbe_lock(cp->dbe); 1809 if (!cp->forced_expire) 1810 cp->last_access = gethrestime_sec(); 1811 rfs4_dbe_unlock(cp->dbe); 1812 } 1813 1814 1815 static bool_t 1816 EQOPENOWNER(open_owner4 *a, open_owner4 *b) 1817 { 1818 bool_t rc; 1819 1820 if (a->clientid != b->clientid) 1821 return (FALSE); 1822 1823 if (a->owner_len != b->owner_len) 1824 return (FALSE); 1825 1826 rc = (bcmp(a->owner_val, b->owner_val, a->owner_len) == 0); 1827 1828 return (rc); 1829 } 1830 1831 static uint_t 1832 openowner_hash(void *key) 1833 { 1834 int i; 1835 open_owner4 *openowner = key; 1836 uint_t hash = 0; 1837 1838 for (i = 0; i < openowner->owner_len; i++) { 1839 hash <<= 4; 1840 hash += (uint_t)openowner->owner_val[i]; 1841 } 1842 hash += (uint_t)openowner->clientid; 1843 hash |= (openowner->clientid >> 32); 1844 1845 return (hash); 1846 } 1847 1848 static bool_t 1849 openowner_compare(rfs4_entry_t u_entry, void *key) 1850 { 1851 rfs4_openowner_t *op = (rfs4_openowner_t *)u_entry; 1852 open_owner4 *arg = key; 1853 1854 return (EQOPENOWNER(&op->owner, arg)); 1855 } 1856 1857 void * 1858 openowner_mkkey(rfs4_entry_t u_entry) 1859 { 1860 rfs4_openowner_t *op = (rfs4_openowner_t *)u_entry; 1861 1862 return (&op->owner); 1863 } 1864 1865 static bool_t 1866 rfs4_openowner_expiry(rfs4_entry_t u_entry) 1867 { 1868 rfs4_openowner_t *op = (rfs4_openowner_t *)u_entry; 1869 1870 if (rfs4_dbe_is_invalid(op->dbe)) 1871 return (TRUE); 1872 return ((gethrestime_sec() - op->client->last_access 1873 > rfs4_lease_time)); 1874 } 1875 1876 static void 1877 rfs4_openowner_destroy(rfs4_entry_t u_entry) 1878 { 1879 rfs4_openowner_t *op = (rfs4_openowner_t *)u_entry; 1880 1881 rfs4_sw_destroy(&op->oo_sw); 1882 1883 /* Remove open owner from client's lists of open owners */ 1884 rfs4_dbe_lock(op->client->dbe); 1885 1886 remque(&op->openownerlist); 1887 op->openownerlist.next = op->openownerlist.prev = &op->openownerlist; 1888 1889 rfs4_dbe_unlock(op->client->dbe); 1890 1891 /* One less reference to the client */ 1892 rfs4_client_rele(op->client); 1893 op->client = NULL; 1894 1895 /* Free the last reply for this lock owner */ 1896 rfs4_free_reply(op->reply); 1897 1898 if (op->reply_fh.nfs_fh4_val) { 1899 kmem_free(op->reply_fh.nfs_fh4_val, op->reply_fh.nfs_fh4_len); 1900 op->reply_fh.nfs_fh4_val = NULL; 1901 op->reply_fh.nfs_fh4_len = 0; 1902 } 1903 1904 /* Free the lock owner id */ 1905 kmem_free(op->owner.owner_val, op->owner.owner_len); 1906 } 1907 1908 void 1909 rfs4_openowner_rele(rfs4_openowner_t *op) 1910 { 1911 rfs4_dbe_rele(op->dbe); 1912 } 1913 1914 static bool_t 1915 rfs4_openowner_create(rfs4_entry_t u_entry, void *arg) 1916 { 1917 rfs4_openowner_t *op = (rfs4_openowner_t *)u_entry; 1918 rfs4_openowner_t *argp = (rfs4_openowner_t *)arg; 1919 open_owner4 *openowner = &argp->owner; 1920 seqid4 seqid = argp->open_seqid; 1921 rfs4_client_t *cp; 1922 bool_t create = FALSE; 1923 1924 rw_enter(&rfs4_findclient_lock, RW_READER); 1925 1926 cp = (rfs4_client_t *)rfs4_dbsearch(rfs4_clientid_idx, 1927 &openowner->clientid, 1928 &create, NULL, RFS4_DBS_VALID); 1929 1930 rw_exit(&rfs4_findclient_lock); 1931 1932 if (cp == NULL) 1933 return (FALSE); 1934 1935 op->reply_fh.nfs_fh4_len = 0; 1936 op->reply_fh.nfs_fh4_val = NULL; 1937 1938 op->owner.clientid = openowner->clientid; 1939 op->owner.owner_val = 1940 kmem_alloc(openowner->owner_len, KM_SLEEP); 1941 1942 bcopy(openowner->owner_val, 1943 op->owner.owner_val, openowner->owner_len); 1944 1945 op->owner.owner_len = openowner->owner_len; 1946 1947 op->need_confirm = TRUE; 1948 1949 rfs4_sw_init(&op->oo_sw); 1950 1951 op->open_seqid = seqid; 1952 bzero(op->reply, sizeof (nfs_resop4)); 1953 op->client = cp; 1954 op->cr_set = NULL; 1955 /* Init lists for remque/insque */ 1956 op->ownerstateids.next = op->ownerstateids.prev = &op->ownerstateids; 1957 op->ownerstateids.sp = NULL; /* NULL since this is the state list */ 1958 op->openownerlist.next = op->openownerlist.prev = &op->openownerlist; 1959 op->openownerlist.oop = op; /* ourselves */ 1960 1961 /* Insert openowner into client's open owner list */ 1962 rfs4_dbe_lock(cp->dbe); 1963 1964 insque(&op->openownerlist, cp->openownerlist.prev); 1965 1966 rfs4_dbe_unlock(cp->dbe); 1967 1968 return (TRUE); 1969 } 1970 1971 rfs4_openowner_t * 1972 rfs4_findopenowner(open_owner4 *openowner, bool_t *create, seqid4 seqid) 1973 { 1974 rfs4_openowner_t *op; 1975 rfs4_openowner_t arg; 1976 1977 arg.owner = *openowner; 1978 arg.open_seqid = seqid; 1979 op = (rfs4_openowner_t *)rfs4_dbsearch(rfs4_openowner_idx, openowner, 1980 create, &arg, RFS4_DBS_VALID); 1981 1982 return (op); 1983 } 1984 1985 void 1986 rfs4_update_open_sequence(rfs4_openowner_t *op) 1987 { 1988 1989 rfs4_dbe_lock(op->dbe); 1990 1991 op->open_seqid++; 1992 1993 rfs4_dbe_unlock(op->dbe); 1994 } 1995 1996 void 1997 rfs4_update_open_resp(rfs4_openowner_t *op, nfs_resop4 *resp, nfs_fh4 *fh) 1998 { 1999 2000 rfs4_dbe_lock(op->dbe); 2001 2002 rfs4_free_reply(op->reply); 2003 2004 rfs4_copy_reply(op->reply, resp); 2005 2006 /* Save the filehandle if provided and free if not used */ 2007 if (resp->nfs_resop4_u.opopen.status == NFS4_OK && 2008 fh && fh->nfs_fh4_len) { 2009 if (op->reply_fh.nfs_fh4_val == NULL) 2010 op->reply_fh.nfs_fh4_val = 2011 kmem_alloc(fh->nfs_fh4_len, KM_SLEEP); 2012 nfs_fh4_copy(fh, &op->reply_fh); 2013 } else { 2014 if (op->reply_fh.nfs_fh4_val) { 2015 kmem_free(op->reply_fh.nfs_fh4_val, 2016 op->reply_fh.nfs_fh4_len); 2017 op->reply_fh.nfs_fh4_val = NULL; 2018 op->reply_fh.nfs_fh4_len = 0; 2019 } 2020 } 2021 2022 rfs4_dbe_unlock(op->dbe); 2023 } 2024 2025 static bool_t 2026 lockowner_compare(rfs4_entry_t u_entry, void *key) 2027 { 2028 rfs4_lockowner_t *lo = (rfs4_lockowner_t *)u_entry; 2029 lock_owner4 *b = (lock_owner4 *)key; 2030 2031 if (lo->owner.clientid != b->clientid) 2032 return (FALSE); 2033 2034 if (lo->owner.owner_len != b->owner_len) 2035 return (FALSE); 2036 2037 return (bcmp(lo->owner.owner_val, b->owner_val, 2038 lo->owner.owner_len) == 0); 2039 } 2040 2041 void * 2042 lockowner_mkkey(rfs4_entry_t u_entry) 2043 { 2044 rfs4_lockowner_t *lo = (rfs4_lockowner_t *)u_entry; 2045 2046 return (&lo->owner); 2047 } 2048 2049 static uint32_t 2050 lockowner_hash(void *key) 2051 { 2052 int i; 2053 lock_owner4 *lockowner = key; 2054 uint_t hash = 0; 2055 2056 for (i = 0; i < lockowner->owner_len; i++) { 2057 hash <<= 4; 2058 hash += (uint_t)lockowner->owner_val[i]; 2059 } 2060 hash += (uint_t)lockowner->clientid; 2061 hash |= (lockowner->clientid >> 32); 2062 2063 return (hash); 2064 } 2065 2066 static uint32_t 2067 pid_hash(void *key) 2068 { 2069 return ((uint32_t)(uintptr_t)key); 2070 } 2071 2072 static void * 2073 pid_mkkey(rfs4_entry_t u_entry) 2074 { 2075 rfs4_lockowner_t *lo = (rfs4_lockowner_t *)u_entry; 2076 2077 return ((void *)(uintptr_t)lo->pid); 2078 } 2079 2080 static bool_t 2081 pid_compare(rfs4_entry_t u_entry, void *key) 2082 { 2083 rfs4_lockowner_t *lo = (rfs4_lockowner_t *)u_entry; 2084 2085 return (lo->pid == (pid_t)(uintptr_t)key); 2086 } 2087 2088 static void 2089 rfs4_lockowner_destroy(rfs4_entry_t u_entry) 2090 { 2091 rfs4_lockowner_t *lo = (rfs4_lockowner_t *)u_entry; 2092 2093 /* Free the lock owner id */ 2094 kmem_free(lo->owner.owner_val, lo->owner.owner_len); 2095 rfs4_client_rele(lo->client); 2096 } 2097 2098 void 2099 rfs4_lockowner_rele(rfs4_lockowner_t *lo) 2100 { 2101 rfs4_dbe_rele(lo->dbe); 2102 } 2103 2104 /* ARGSUSED */ 2105 static bool_t 2106 rfs4_lockowner_expiry(rfs4_entry_t u_entry) 2107 { 2108 /* 2109 * Since expiry is called with no other references on 2110 * this struct, go ahead and have it removed. 2111 */ 2112 return (TRUE); 2113 } 2114 2115 static bool_t 2116 rfs4_lockowner_create(rfs4_entry_t u_entry, void *arg) 2117 { 2118 rfs4_lockowner_t *lo = (rfs4_lockowner_t *)u_entry; 2119 lock_owner4 *lockowner = (lock_owner4 *)arg; 2120 rfs4_client_t *cp; 2121 bool_t create = FALSE; 2122 2123 rw_enter(&rfs4_findclient_lock, RW_READER); 2124 2125 cp = (rfs4_client_t *)rfs4_dbsearch(rfs4_clientid_idx, 2126 &lockowner->clientid, 2127 &create, NULL, RFS4_DBS_VALID); 2128 2129 rw_exit(&rfs4_findclient_lock); 2130 2131 if (cp == NULL) 2132 return (FALSE); 2133 2134 /* Reference client */ 2135 lo->client = cp; 2136 lo->owner.clientid = lockowner->clientid; 2137 lo->owner.owner_val = kmem_alloc(lockowner->owner_len, KM_SLEEP); 2138 bcopy(lockowner->owner_val, lo->owner.owner_val, lockowner->owner_len); 2139 lo->owner.owner_len = lockowner->owner_len; 2140 lo->pid = rfs4_dbe_getid(lo->dbe); 2141 2142 return (TRUE); 2143 } 2144 2145 rfs4_lockowner_t * 2146 rfs4_findlockowner(lock_owner4 *lockowner, bool_t *create) 2147 { 2148 rfs4_lockowner_t *lo; 2149 2150 lo = (rfs4_lockowner_t *)rfs4_dbsearch(rfs4_lockowner_idx, lockowner, 2151 create, lockowner, RFS4_DBS_VALID); 2152 2153 return (lo); 2154 } 2155 2156 rfs4_lockowner_t * 2157 rfs4_findlockowner_by_pid(pid_t pid) 2158 { 2159 rfs4_lockowner_t *lo; 2160 bool_t create = FALSE; 2161 2162 lo = (rfs4_lockowner_t *)rfs4_dbsearch(rfs4_lockowner_pid_idx, 2163 (void *)(uintptr_t)pid, &create, NULL, RFS4_DBS_VALID); 2164 2165 return (lo); 2166 } 2167 2168 2169 static uint32_t 2170 file_hash(void *key) 2171 { 2172 return (ADDRHASH(key)); 2173 } 2174 2175 static void * 2176 file_mkkey(rfs4_entry_t u_entry) 2177 { 2178 rfs4_file_t *fp = (rfs4_file_t *)u_entry; 2179 2180 return (fp->vp); 2181 } 2182 2183 static bool_t 2184 file_compare(rfs4_entry_t u_entry, void *key) 2185 { 2186 rfs4_file_t *fp = (rfs4_file_t *)u_entry; 2187 2188 return (fp->vp == (vnode_t *)key); 2189 } 2190 2191 static void 2192 rfs4_file_destroy(rfs4_entry_t u_entry) 2193 { 2194 rfs4_file_t *fp = (rfs4_file_t *)u_entry; 2195 2196 ASSERT(fp->delegationlist.next == &fp->delegationlist); 2197 if (fp->filehandle.nfs_fh4_val) 2198 kmem_free(fp->filehandle.nfs_fh4_val, 2199 fp->filehandle.nfs_fh4_len); 2200 cv_destroy(fp->dinfo->recall_cv); 2201 if (fp->vp) { 2202 vnode_t *vp = fp->vp; 2203 2204 mutex_enter(&vp->v_lock); 2205 (void) vsd_set(vp, nfs4_srv_vkey, NULL); 2206 mutex_exit(&vp->v_lock); 2207 VN_RELE(vp); 2208 fp->vp = NULL; 2209 } 2210 rw_destroy(&fp->file_rwlock); 2211 } 2212 2213 /* 2214 * Used to unlock the underlying dbe struct only 2215 */ 2216 void 2217 rfs4_file_rele(rfs4_file_t *fp) 2218 { 2219 rfs4_dbe_rele(fp->dbe); 2220 } 2221 2222 /* 2223 * Used to unlock the file rw lock and the file's dbe entry 2224 * Only used to pair with rfs4_findfile_withlock() 2225 */ 2226 void 2227 rfs4_file_rele_withunlock(rfs4_file_t *fp) 2228 { 2229 rw_exit(&fp->file_rwlock); 2230 rfs4_dbe_rele(fp->dbe); 2231 } 2232 2233 typedef struct { 2234 vnode_t *vp; 2235 nfs_fh4 *fh; 2236 } rfs4_fcreate_arg; 2237 2238 static bool_t 2239 rfs4_file_create(rfs4_entry_t u_entry, void *arg) 2240 { 2241 rfs4_file_t *fp = (rfs4_file_t *)u_entry; 2242 rfs4_fcreate_arg *ap = (rfs4_fcreate_arg *)arg; 2243 vnode_t *vp = ap->vp; 2244 nfs_fh4 *fh = ap->fh; 2245 2246 VN_HOLD(vp); 2247 2248 fp->filehandle.nfs_fh4_len = 0; 2249 fp->filehandle.nfs_fh4_val = NULL; 2250 ASSERT(fh && fh->nfs_fh4_len); 2251 if (fh && fh->nfs_fh4_len) { 2252 fp->filehandle.nfs_fh4_val = 2253 kmem_alloc(fh->nfs_fh4_len, KM_SLEEP); 2254 nfs_fh4_copy(fh, &fp->filehandle); 2255 } 2256 fp->vp = vp; 2257 2258 /* Init list for remque/insque */ 2259 fp->delegationlist.next = fp->delegationlist.prev = 2260 &fp->delegationlist; 2261 fp->delegationlist.dsp = NULL; /* NULL since this is state list */ 2262 2263 fp->share_deny = fp->share_access = fp->access_read = 0; 2264 fp->access_write = fp->deny_read = fp->deny_write = 0; 2265 2266 mutex_init(fp->dinfo->recall_lock, NULL, MUTEX_DEFAULT, NULL); 2267 cv_init(fp->dinfo->recall_cv, NULL, CV_DEFAULT, NULL); 2268 2269 fp->dinfo->dtype = OPEN_DELEGATE_NONE; 2270 2271 rw_init(&fp->file_rwlock, NULL, RW_DEFAULT, NULL); 2272 2273 mutex_enter(&vp->v_lock); 2274 if (vsd_set(vp, nfs4_srv_vkey, (void *)fp)) { 2275 ASSERT(FALSE); 2276 cmn_err(CE_WARN, "rfs4_file_create: vsd_set failed."); 2277 } 2278 mutex_exit(&vp->v_lock); 2279 2280 return (TRUE); 2281 } 2282 2283 rfs4_file_t * 2284 rfs4_findfile(vnode_t *vp, nfs_fh4 *fh, bool_t *create) 2285 { 2286 rfs4_file_t *fp; 2287 rfs4_fcreate_arg arg; 2288 2289 arg.vp = vp; 2290 arg.fh = fh; 2291 2292 if (*create == TRUE) 2293 fp = (rfs4_file_t *)rfs4_dbsearch(rfs4_file_idx, vp, create, 2294 &arg, RFS4_DBS_VALID); 2295 else { 2296 mutex_enter(&vp->v_lock); 2297 fp = (rfs4_file_t *)vsd_get(vp, nfs4_srv_vkey); 2298 mutex_exit(&vp->v_lock); 2299 if (fp) { 2300 rfs4_dbe_lock(fp->dbe); 2301 if (rfs4_dbe_is_invalid(fp->dbe)) { 2302 rfs4_dbe_unlock(fp->dbe); 2303 fp = NULL; 2304 } else { 2305 rfs4_dbe_hold(fp->dbe); 2306 rfs4_dbe_unlock(fp->dbe); 2307 } 2308 } 2309 } 2310 return (fp); 2311 } 2312 2313 /* 2314 * Find a file in the db and once it is located, take the rw lock. 2315 * Need to check the vnode pointer and if it does not exist (it was 2316 * removed between the db location and check) redo the find. This 2317 * assumes that a file struct that has a NULL vnode pointer is marked 2318 * at 'invalid' and will not be found in the db the second time 2319 * around. 2320 */ 2321 rfs4_file_t * 2322 rfs4_findfile_withlock(vnode_t *vp, nfs_fh4 *fh, bool_t *create) 2323 { 2324 rfs4_file_t *fp; 2325 rfs4_fcreate_arg arg; 2326 bool_t screate = *create; 2327 2328 if (screate == FALSE) { 2329 mutex_enter(&vp->v_lock); 2330 fp = (rfs4_file_t *)vsd_get(vp, nfs4_srv_vkey); 2331 mutex_exit(&vp->v_lock); 2332 if (fp) { 2333 rfs4_dbe_lock(fp->dbe); 2334 if (rfs4_dbe_is_invalid(fp->dbe)) { 2335 rfs4_dbe_unlock(fp->dbe); 2336 fp = NULL; 2337 } else { 2338 rfs4_dbe_hold(fp->dbe); 2339 rfs4_dbe_unlock(fp->dbe); 2340 rw_enter(&fp->file_rwlock, RW_WRITER); 2341 } 2342 } 2343 } else { 2344 retry: 2345 arg.vp = vp; 2346 arg.fh = fh; 2347 2348 fp = (rfs4_file_t *)rfs4_dbsearch(rfs4_file_idx, vp, create, 2349 &arg, RFS4_DBS_VALID); 2350 if (fp != NULL) { 2351 rw_enter(&fp->file_rwlock, RW_WRITER); 2352 if (fp->vp == NULL) { 2353 rw_exit(&fp->file_rwlock); 2354 rfs4_file_rele(fp); 2355 *create = screate; 2356 goto retry; 2357 } 2358 } 2359 } 2360 2361 return (fp); 2362 } 2363 2364 static uint32_t 2365 lo_state_hash(void *key) 2366 { 2367 stateid_t *id = key; 2368 2369 return (id->bits.ident+id->bits.pid); 2370 } 2371 2372 static bool_t 2373 lo_state_compare(rfs4_entry_t u_entry, void *key) 2374 { 2375 rfs4_lo_state_t *lop = (rfs4_lo_state_t *)u_entry; 2376 stateid_t *id = key; 2377 bool_t rc; 2378 2379 rc = (lop->lockid.bits.boottime == id->bits.boottime && 2380 lop->lockid.bits.type == id->bits.type && 2381 lop->lockid.bits.ident == id->bits.ident && 2382 lop->lockid.bits.pid == id->bits.pid); 2383 2384 return (rc); 2385 } 2386 2387 static void * 2388 lo_state_mkkey(rfs4_entry_t u_entry) 2389 { 2390 rfs4_lo_state_t *lsp = (rfs4_lo_state_t *)u_entry; 2391 2392 return (&lsp->lockid); 2393 } 2394 2395 static bool_t 2396 rfs4_lo_state_expiry(rfs4_entry_t u_entry) 2397 { 2398 rfs4_lo_state_t *lsp = (rfs4_lo_state_t *)u_entry; 2399 2400 if (rfs4_dbe_is_invalid(lsp->dbe)) 2401 return (TRUE); 2402 if (lsp->state->closed) 2403 return (TRUE); 2404 return ((gethrestime_sec() - lsp->state->owner->client->last_access 2405 > rfs4_lease_time)); 2406 } 2407 2408 static void 2409 rfs4_lo_state_destroy(rfs4_entry_t u_entry) 2410 { 2411 rfs4_lo_state_t *lsp = (rfs4_lo_state_t *)u_entry; 2412 2413 rfs4_sw_destroy(&lsp->ls_sw); 2414 2415 /* Make sure to release the file locks */ 2416 if (lsp->locks_cleaned == FALSE) { 2417 lsp->locks_cleaned = TRUE; 2418 if (lsp->locker->client->sysidt != LM_NOSYSID) { 2419 /* Is the PxFS kernel module loaded? */ 2420 if (lm_remove_file_locks != NULL) { 2421 int new_sysid; 2422 2423 /* Encode the cluster nodeid in new sysid */ 2424 new_sysid = lsp->locker->client->sysidt; 2425 lm_set_nlmid_flk(&new_sysid); 2426 2427 /* 2428 * This PxFS routine removes file locks for a 2429 * client over all nodes of a cluster. 2430 */ 2431 DTRACE_PROBE1(nfss_i_clust_rm_lck, 2432 int, new_sysid); 2433 (*lm_remove_file_locks)(new_sysid); 2434 } else { 2435 (void) cleanlocks(lsp->state->finfo->vp, 2436 lsp->locker->pid, 2437 lsp->locker->client->sysidt); 2438 } 2439 } 2440 } 2441 2442 rfs4_dbe_lock(lsp->state->dbe); 2443 2444 remque(&lsp->lockownerlist); 2445 lsp->lockownerlist.next = lsp->lockownerlist.prev = 2446 &lsp->lockownerlist; 2447 2448 rfs4_dbe_unlock(lsp->state->dbe); 2449 2450 /* Free the last reply for this state */ 2451 rfs4_free_reply(lsp->reply); 2452 2453 rfs4_lockowner_rele(lsp->locker); 2454 lsp->locker = NULL; 2455 2456 rfs4_state_rele_nounlock(lsp->state); 2457 lsp->state = NULL; 2458 } 2459 2460 static bool_t 2461 rfs4_lo_state_create(rfs4_entry_t u_entry, void *arg) 2462 { 2463 rfs4_lo_state_t *lsp = (rfs4_lo_state_t *)u_entry; 2464 rfs4_lo_state_t *argp = (rfs4_lo_state_t *)arg; 2465 rfs4_lockowner_t *lo = argp->locker; 2466 rfs4_state_t *sp = argp->state; 2467 2468 lsp->state = sp; 2469 2470 lsp->lockid = sp->stateid; 2471 lsp->lockid.bits.type = LOCKID; 2472 lsp->lockid.bits.chgseq = 0; 2473 lsp->lockid.bits.pid = lo->pid; 2474 2475 lsp->locks_cleaned = FALSE; 2476 lsp->lock_completed = FALSE; 2477 2478 rfs4_sw_init(&lsp->ls_sw); 2479 2480 /* Attached the supplied lock owner */ 2481 rfs4_dbe_hold(lo->dbe); 2482 lsp->locker = lo; 2483 2484 lsp->lockownerlist.next = lsp->lockownerlist.prev = 2485 &lsp->lockownerlist; 2486 lsp->lockownerlist.lsp = lsp; 2487 2488 rfs4_dbe_lock(sp->dbe); 2489 2490 insque(&lsp->lockownerlist, sp->lockownerlist.prev); 2491 2492 rfs4_dbe_hold(sp->dbe); 2493 2494 rfs4_dbe_unlock(sp->dbe); 2495 2496 return (TRUE); 2497 } 2498 2499 void 2500 rfs4_lo_state_rele(rfs4_lo_state_t *lsp, bool_t unlock_fp) 2501 { 2502 if (unlock_fp == TRUE) 2503 rw_exit(&lsp->state->finfo->file_rwlock); 2504 rfs4_dbe_rele(lsp->dbe); 2505 } 2506 2507 static rfs4_lo_state_t * 2508 rfs4_findlo_state(stateid_t *id, bool_t lock_fp) 2509 { 2510 rfs4_lo_state_t *lsp; 2511 bool_t create = FALSE; 2512 2513 lsp = (rfs4_lo_state_t *)rfs4_dbsearch(rfs4_lo_state_idx, id, 2514 &create, NULL, RFS4_DBS_VALID); 2515 if (lock_fp == TRUE && lsp != NULL) 2516 rw_enter(&lsp->state->finfo->file_rwlock, RW_READER); 2517 2518 return (lsp); 2519 } 2520 2521 2522 static uint32_t 2523 lo_state_lo_hash(void *key) 2524 { 2525 rfs4_lo_state_t *lop = key; 2526 2527 return (ADDRHASH(lop->locker) ^ ADDRHASH(lop->state)); 2528 } 2529 2530 static bool_t 2531 lo_state_lo_compare(rfs4_entry_t u_entry, void *key) 2532 { 2533 rfs4_lo_state_t *lop = (rfs4_lo_state_t *)u_entry; 2534 rfs4_lo_state_t *keyp = key; 2535 2536 return (keyp->locker == lop->locker && keyp->state == lop->state); 2537 } 2538 2539 static void * 2540 lo_state_lo_mkkey(rfs4_entry_t u_entry) 2541 { 2542 return (u_entry); 2543 } 2544 2545 rfs4_lo_state_t * 2546 rfs4_findlo_state_by_owner(rfs4_lockowner_t *lo, 2547 rfs4_state_t *sp, bool_t *create) 2548 { 2549 rfs4_lo_state_t *lsp; 2550 rfs4_lo_state_t arg; 2551 2552 arg.locker = lo; 2553 arg.state = sp; 2554 2555 lsp = (rfs4_lo_state_t *)rfs4_dbsearch(rfs4_lo_state_owner_idx, &arg, 2556 create, &arg, RFS4_DBS_VALID); 2557 2558 return (lsp); 2559 } 2560 2561 static stateid_t 2562 get_stateid(id_t eid) 2563 { 2564 stateid_t id; 2565 2566 id.bits.boottime = rfs4_start_time; 2567 id.bits.ident = eid; 2568 id.bits.chgseq = 0; 2569 id.bits.type = 0; 2570 id.bits.pid = 0; 2571 2572 /* 2573 * If we are booted as a cluster node, embed our nodeid. 2574 * We've already done sanity checks in rfs4_client_create() so no 2575 * need to repeat them here. 2576 */ 2577 id.bits.clnodeid = (cluster_bootflags & CLUSTER_BOOTED) ? 2578 clconf_get_nodeid() : 0; 2579 2580 return (id); 2581 } 2582 2583 /* 2584 * For use only when booted as a cluster node. 2585 * Returns TRUE if the embedded nodeid indicates that this stateid was 2586 * generated on another node. 2587 */ 2588 static int 2589 foreign_stateid(stateid_t *id) 2590 { 2591 ASSERT(cluster_bootflags & CLUSTER_BOOTED); 2592 return (id->bits.clnodeid != (uint32_t)clconf_get_nodeid()); 2593 } 2594 2595 /* 2596 * For use only when booted as a cluster node. 2597 * Returns TRUE if the embedded nodeid indicates that this clientid was 2598 * generated on another node. 2599 */ 2600 static int 2601 foreign_clientid(cid *cidp) 2602 { 2603 ASSERT(cluster_bootflags & CLUSTER_BOOTED); 2604 return (cidp->impl_id.c_id >> CLUSTER_NODEID_SHIFT != 2605 (uint32_t)clconf_get_nodeid()); 2606 } 2607 2608 /* 2609 * For use only when booted as a cluster node. 2610 * Embed our cluster nodeid into the clientid. 2611 */ 2612 static void 2613 embed_nodeid(cid *cidp) 2614 { 2615 int clnodeid; 2616 /* 2617 * Currently, our state tables are small enough that their 2618 * ids will leave enough bits free for the nodeid. If the 2619 * tables become larger, we mustn't overwrite the id. 2620 * Equally, we only have room for so many bits of nodeid, so 2621 * must check that too. 2622 */ 2623 ASSERT(cluster_bootflags & CLUSTER_BOOTED); 2624 ASSERT(cidp->impl_id.c_id >> CLUSTER_NODEID_SHIFT == 0); 2625 clnodeid = clconf_get_nodeid(); 2626 ASSERT(clnodeid <= CLUSTER_MAX_NODEID); 2627 ASSERT(clnodeid != NODEID_UNKNOWN); 2628 cidp->impl_id.c_id |= (clnodeid << CLUSTER_NODEID_SHIFT); 2629 } 2630 2631 static uint32_t 2632 state_hash(void *key) 2633 { 2634 stateid_t *ip = (stateid_t *)key; 2635 2636 return (ip->bits.ident); 2637 } 2638 2639 static bool_t 2640 state_compare(rfs4_entry_t u_entry, void *key) 2641 { 2642 rfs4_state_t *sp = (rfs4_state_t *)u_entry; 2643 stateid_t *id = (stateid_t *)key; 2644 bool_t rc; 2645 2646 rc = (sp->stateid.bits.boottime == id->bits.boottime && 2647 sp->stateid.bits.ident == id->bits.ident); 2648 2649 return (rc); 2650 } 2651 2652 static void * 2653 state_mkkey(rfs4_entry_t u_entry) 2654 { 2655 rfs4_state_t *sp = (rfs4_state_t *)u_entry; 2656 2657 return (&sp->stateid); 2658 } 2659 2660 static void 2661 rfs4_state_destroy(rfs4_entry_t u_entry) 2662 { 2663 rfs4_state_t *sp = (rfs4_state_t *)u_entry; 2664 2665 ASSERT(&sp->lockownerlist == sp->lockownerlist.next); 2666 2667 /* release any share locks for this stateid if it's still open */ 2668 if (!sp->closed) 2669 rfs4_unshare(sp); 2670 2671 /* Were done with the file */ 2672 rfs4_file_rele(sp->finfo); 2673 sp->finfo = NULL; 2674 2675 /* And now with the openowner */ 2676 rfs4_dbe_lock(sp->owner->dbe); 2677 2678 remque(&sp->ownerstateids); 2679 sp->ownerstateids.next = sp->ownerstateids.prev = &sp->ownerstateids; 2680 2681 rfs4_dbe_unlock(sp->owner->dbe); 2682 2683 rfs4_openowner_rele(sp->owner); 2684 sp->owner = NULL; 2685 } 2686 2687 static void 2688 rfs4_state_rele_nounlock(rfs4_state_t *sp) 2689 { 2690 rfs4_dbe_rele(sp->dbe); 2691 } 2692 2693 void 2694 rfs4_state_rele(rfs4_state_t *sp) 2695 { 2696 rw_exit(&sp->finfo->file_rwlock); 2697 rfs4_dbe_rele(sp->dbe); 2698 } 2699 2700 static uint32_t 2701 deleg_hash(void *key) 2702 { 2703 rfs4_deleg_state_t *dsp = (rfs4_deleg_state_t *)key; 2704 2705 return (ADDRHASH(dsp->client) ^ ADDRHASH(dsp->finfo)); 2706 } 2707 2708 static bool_t 2709 deleg_compare(rfs4_entry_t u_entry, void *key) 2710 { 2711 rfs4_deleg_state_t *dsp = (rfs4_deleg_state_t *)u_entry; 2712 rfs4_deleg_state_t *kdsp = (rfs4_deleg_state_t *)key; 2713 2714 return (dsp->client == kdsp->client && dsp->finfo == kdsp->finfo); 2715 } 2716 2717 static void * 2718 deleg_mkkey(rfs4_entry_t u_entry) 2719 { 2720 return (u_entry); 2721 } 2722 2723 static uint32_t 2724 deleg_state_hash(void *key) 2725 { 2726 stateid_t *ip = (stateid_t *)key; 2727 2728 return (ip->bits.ident); 2729 } 2730 2731 static bool_t 2732 deleg_state_compare(rfs4_entry_t u_entry, void *key) 2733 { 2734 rfs4_deleg_state_t *dsp = (rfs4_deleg_state_t *)u_entry; 2735 stateid_t *id = (stateid_t *)key; 2736 bool_t rc; 2737 2738 if (id->bits.type != DELEGID) 2739 return (FALSE); 2740 2741 rc = (dsp->delegid.bits.boottime == id->bits.boottime && 2742 dsp->delegid.bits.ident == id->bits.ident); 2743 2744 return (rc); 2745 } 2746 2747 static void * 2748 deleg_state_mkkey(rfs4_entry_t u_entry) 2749 { 2750 rfs4_deleg_state_t *dsp = (rfs4_deleg_state_t *)u_entry; 2751 2752 return (&dsp->delegid); 2753 } 2754 2755 static bool_t 2756 rfs4_deleg_state_expiry(rfs4_entry_t u_entry) 2757 { 2758 rfs4_deleg_state_t *dsp = (rfs4_deleg_state_t *)u_entry; 2759 2760 if (rfs4_dbe_is_invalid(dsp->dbe)) 2761 return (TRUE); 2762 2763 if ((gethrestime_sec() - dsp->client->last_access 2764 > rfs4_lease_time)) { 2765 rfs4_dbe_invalidate(dsp->dbe); 2766 return (TRUE); 2767 } 2768 2769 return (FALSE); 2770 } 2771 2772 static bool_t 2773 rfs4_deleg_state_create(rfs4_entry_t u_entry, void *argp) 2774 { 2775 rfs4_deleg_state_t *dsp = (rfs4_deleg_state_t *)u_entry; 2776 rfs4_file_t *fp = ((rfs4_deleg_state_t *)argp)->finfo; 2777 rfs4_client_t *cp = ((rfs4_deleg_state_t *)argp)->client; 2778 2779 rfs4_dbe_hold(fp->dbe); 2780 rfs4_dbe_hold(cp->dbe); 2781 2782 dsp->delegid = get_stateid(rfs4_dbe_getid(dsp->dbe)); 2783 dsp->delegid.bits.type = DELEGID; 2784 dsp->finfo = fp; 2785 dsp->client = cp; 2786 dsp->dtype = OPEN_DELEGATE_NONE; 2787 2788 dsp->time_granted = gethrestime_sec(); /* observability */ 2789 dsp->time_revoked = 0; 2790 2791 /* Init lists for remque/insque */ 2792 dsp->delegationlist.next = dsp->delegationlist.prev = 2793 &dsp->delegationlist; 2794 dsp->delegationlist.dsp = dsp; 2795 2796 dsp->clientdeleglist.next = dsp->clientdeleglist.prev = 2797 &dsp->clientdeleglist; 2798 dsp->clientdeleglist.dsp = dsp; 2799 2800 /* Insert state on per open owner's list */ 2801 rfs4_dbe_lock(cp->dbe); 2802 2803 insque(&dsp->clientdeleglist, cp->clientdeleglist.prev); 2804 2805 rfs4_dbe_unlock(cp->dbe); 2806 2807 return (TRUE); 2808 } 2809 2810 static void 2811 rfs4_deleg_state_destroy(rfs4_entry_t u_entry) 2812 { 2813 rfs4_deleg_state_t *dsp = (rfs4_deleg_state_t *)u_entry; 2814 2815 if (&dsp->delegationlist != dsp->delegationlist.next) 2816 rfs4_return_deleg(dsp, FALSE); 2817 2818 /* Were done with the file */ 2819 rfs4_file_rele(dsp->finfo); 2820 dsp->finfo = NULL; 2821 2822 /* And now with the openowner */ 2823 rfs4_dbe_lock(dsp->client->dbe); 2824 2825 remque(&dsp->clientdeleglist); 2826 dsp->clientdeleglist.next = dsp->clientdeleglist.prev = 2827 &dsp->clientdeleglist; 2828 2829 rfs4_dbe_unlock(dsp->client->dbe); 2830 2831 rfs4_client_rele(dsp->client); 2832 dsp->client = NULL; 2833 } 2834 2835 rfs4_deleg_state_t * 2836 rfs4_finddeleg(rfs4_state_t *sp, bool_t *create) 2837 { 2838 rfs4_deleg_state_t ds, *dsp; 2839 2840 ds.client = sp->owner->client; 2841 ds.finfo = sp->finfo; 2842 2843 dsp = (rfs4_deleg_state_t *)rfs4_dbsearch(rfs4_deleg_idx, &ds, 2844 create, &ds, RFS4_DBS_VALID); 2845 2846 return (dsp); 2847 } 2848 2849 rfs4_deleg_state_t * 2850 rfs4_finddelegstate(stateid_t *id) 2851 { 2852 rfs4_deleg_state_t *dsp; 2853 bool_t create = FALSE; 2854 2855 dsp = (rfs4_deleg_state_t *)rfs4_dbsearch(rfs4_deleg_state_idx, id, 2856 &create, NULL, RFS4_DBS_VALID); 2857 2858 return (dsp); 2859 } 2860 2861 void 2862 rfs4_deleg_state_rele(rfs4_deleg_state_t *dsp) 2863 { 2864 rfs4_dbe_rele(dsp->dbe); 2865 } 2866 2867 void 2868 rfs4_update_lock_sequence(rfs4_lo_state_t *lsp) 2869 { 2870 2871 rfs4_dbe_lock(lsp->dbe); 2872 2873 /* 2874 * If we are skipping sequence id checking, this means that 2875 * this is the first lock request and therefore the sequence 2876 * id does not need to be updated. This only happens on the 2877 * first lock request for a lockowner 2878 */ 2879 if (!lsp->skip_seqid_check) 2880 lsp->seqid++; 2881 2882 rfs4_dbe_unlock(lsp->dbe); 2883 } 2884 2885 void 2886 rfs4_update_lock_resp(rfs4_lo_state_t *lsp, nfs_resop4 *resp) 2887 { 2888 2889 rfs4_dbe_lock(lsp->dbe); 2890 2891 rfs4_free_reply(lsp->reply); 2892 2893 rfs4_copy_reply(lsp->reply, resp); 2894 2895 rfs4_dbe_unlock(lsp->dbe); 2896 } 2897 2898 void 2899 rfs4_free_opens(rfs4_openowner_t *op, bool_t invalidate, 2900 bool_t close_of_client) 2901 { 2902 rfs4_state_t *sp; 2903 2904 rfs4_dbe_lock(op->dbe); 2905 2906 for (sp = op->ownerstateids.next->sp; sp != NULL; 2907 sp = sp->ownerstateids.next->sp) { 2908 rfs4_state_close(sp, FALSE, close_of_client, CRED()); 2909 if (invalidate == TRUE) 2910 rfs4_dbe_invalidate(sp->dbe); 2911 } 2912 2913 rfs4_dbe_unlock(op->dbe); 2914 rfs4_dbe_invalidate(op->dbe); 2915 } 2916 2917 static uint32_t 2918 state_owner_file_hash(void *key) 2919 { 2920 rfs4_state_t *sp = key; 2921 2922 return (ADDRHASH(sp->owner) ^ ADDRHASH(sp->finfo)); 2923 } 2924 2925 static bool_t 2926 state_owner_file_compare(rfs4_entry_t u_entry, void *key) 2927 { 2928 rfs4_state_t *sp = (rfs4_state_t *)u_entry; 2929 rfs4_state_t *arg = key; 2930 2931 if (sp->closed == TRUE) 2932 return (FALSE); 2933 2934 return (arg->owner == sp->owner && arg->finfo == sp->finfo); 2935 } 2936 2937 static void * 2938 state_owner_file_mkkey(rfs4_entry_t u_entry) 2939 { 2940 return (u_entry); 2941 } 2942 2943 static uint32_t 2944 state_file_hash(void *key) 2945 { 2946 return (ADDRHASH(key)); 2947 } 2948 2949 static bool_t 2950 state_file_compare(rfs4_entry_t u_entry, void *key) 2951 { 2952 rfs4_state_t *sp = (rfs4_state_t *)u_entry; 2953 rfs4_file_t *fp = key; 2954 2955 if (sp->closed == TRUE) 2956 return (FALSE); 2957 2958 return (fp == sp->finfo); 2959 } 2960 2961 static void * 2962 state_file_mkkey(rfs4_entry_t u_entry) 2963 { 2964 rfs4_state_t *sp = (rfs4_state_t *)u_entry; 2965 2966 return (sp->finfo); 2967 } 2968 2969 rfs4_state_t * 2970 rfs4_findstate_by_owner_file(rfs4_openowner_t *op, rfs4_file_t *file, 2971 bool_t *create) 2972 { 2973 rfs4_state_t *sp; 2974 rfs4_state_t key; 2975 2976 key.owner = op; 2977 key.finfo = file; 2978 2979 sp = (rfs4_state_t *)rfs4_dbsearch(rfs4_state_owner_file_idx, &key, 2980 create, &key, RFS4_DBS_VALID); 2981 2982 return (sp); 2983 } 2984 2985 /* This returns ANY state struct that refers to this file */ 2986 static rfs4_state_t * 2987 rfs4_findstate_by_file(rfs4_file_t *fp) 2988 { 2989 bool_t create = FALSE; 2990 2991 return ((rfs4_state_t *)rfs4_dbsearch(rfs4_state_file_idx, fp, 2992 &create, fp, RFS4_DBS_VALID)); 2993 } 2994 2995 static bool_t 2996 rfs4_state_expiry(rfs4_entry_t u_entry) 2997 { 2998 rfs4_state_t *sp = (rfs4_state_t *)u_entry; 2999 3000 if (rfs4_dbe_is_invalid(sp->dbe)) 3001 return (TRUE); 3002 3003 if (sp->closed == TRUE && 3004 ((gethrestime_sec() - rfs4_dbe_get_timerele(sp->dbe)) 3005 > rfs4_lease_time)) 3006 return (TRUE); 3007 3008 return ((gethrestime_sec() - sp->owner->client->last_access 3009 > rfs4_lease_time)); 3010 } 3011 3012 static bool_t 3013 rfs4_state_create(rfs4_entry_t u_entry, void *argp) 3014 { 3015 rfs4_state_t *sp = (rfs4_state_t *)u_entry; 3016 rfs4_file_t *fp = ((rfs4_state_t *)argp)->finfo; 3017 rfs4_openowner_t *op = ((rfs4_state_t *)argp)->owner; 3018 3019 rfs4_dbe_hold(fp->dbe); 3020 rfs4_dbe_hold(op->dbe); 3021 sp->stateid = get_stateid(rfs4_dbe_getid(sp->dbe)); 3022 sp->stateid.bits.type = OPENID; 3023 sp->owner = op; 3024 sp->finfo = fp; 3025 3026 /* Init lists for remque/insque */ 3027 sp->ownerstateids.next = sp->ownerstateids.prev = &sp->ownerstateids; 3028 sp->ownerstateids.sp = sp; 3029 sp->lockownerlist.next = sp->lockownerlist.prev = &sp->lockownerlist; 3030 sp->lockownerlist.lsp = NULL; 3031 3032 /* Insert state on per open owner's list */ 3033 rfs4_dbe_lock(op->dbe); 3034 3035 insque(&sp->ownerstateids, op->ownerstateids.prev); 3036 3037 rfs4_dbe_unlock(op->dbe); 3038 3039 return (TRUE); 3040 } 3041 3042 static rfs4_state_t * 3043 rfs4_findstate(stateid_t *id, rfs4_dbsearch_type_t find_invalid, 3044 bool_t lock_fp) 3045 { 3046 rfs4_state_t *sp; 3047 bool_t create = FALSE; 3048 3049 sp = (rfs4_state_t *)rfs4_dbsearch(rfs4_state_idx, id, 3050 &create, NULL, find_invalid); 3051 if (lock_fp == TRUE && sp != NULL) 3052 rw_enter(&sp->finfo->file_rwlock, RW_READER); 3053 3054 return (sp); 3055 } 3056 3057 void 3058 rfs4_state_close(rfs4_state_t *sp, bool_t lock_held, 3059 bool_t close_of_client, cred_t *cr) 3060 { 3061 /* Remove the associated lo_state owners */ 3062 if (!lock_held) 3063 rfs4_dbe_lock(sp->dbe); 3064 3065 /* 3066 * If refcnt == 0, the dbe is about to be destroyed. 3067 * lock state will be released by the reaper thread. 3068 */ 3069 3070 if (rfs4_dbe_refcnt(sp->dbe) > 0) { 3071 if (sp->closed == FALSE) { 3072 sp->closed = TRUE; 3073 3074 rfs4_release_share_lock_state(sp, cr, close_of_client); 3075 } 3076 } 3077 3078 if (!lock_held) 3079 rfs4_dbe_unlock(sp->dbe); 3080 } 3081 3082 /* 3083 * Remove all state associated with the given client. 3084 */ 3085 void 3086 rfs4_client_state_remove(rfs4_client_t *cp) 3087 { 3088 rfs4_openowner_t *oop; 3089 3090 rfs4_dbe_lock(cp->dbe); 3091 3092 for (oop = cp->openownerlist.next->oop; oop != NULL; 3093 oop = oop->openownerlist.next->oop) { 3094 rfs4_free_opens(oop, TRUE, TRUE); 3095 } 3096 3097 rfs4_dbe_unlock(cp->dbe); 3098 } 3099 3100 void 3101 rfs4_client_close(rfs4_client_t *cp) 3102 { 3103 /* Mark client as going away. */ 3104 rfs4_dbe_lock(cp->dbe); 3105 rfs4_dbe_invalidate(cp->dbe); 3106 rfs4_dbe_unlock(cp->dbe); 3107 3108 rfs4_client_state_remove(cp); 3109 3110 /* Release the client */ 3111 rfs4_client_rele(cp); 3112 } 3113 3114 nfsstat4 3115 rfs4_check_clientid(clientid4 *cp, int setclid_confirm) 3116 { 3117 cid *cidp = (cid *) cp; 3118 3119 /* 3120 * If we are booted as a cluster node, check the embedded nodeid. 3121 * If it indicates that this clientid was generated on another node, 3122 * inform the client accordingly. 3123 */ 3124 if (cluster_bootflags & CLUSTER_BOOTED && foreign_clientid(cidp)) 3125 return (NFS4ERR_STALE_CLIENTID); 3126 3127 /* 3128 * If the server start time matches the time provided 3129 * by the client (via the clientid) and this is NOT a 3130 * setclientid_confirm then return EXPIRED. 3131 */ 3132 if (!setclid_confirm && cidp->impl_id.start_time == rfs4_start_time) 3133 return (NFS4ERR_EXPIRED); 3134 3135 return (NFS4ERR_STALE_CLIENTID); 3136 } 3137 3138 /* 3139 * This is used when a stateid has not been found amongst the 3140 * current server's state. Check the stateid to see if it 3141 * was from this server instantiation or not. 3142 */ 3143 static nfsstat4 3144 what_stateid_error(stateid_t *id, stateid_type_t type) 3145 { 3146 /* If we are booted as a cluster node, was stateid locally generated? */ 3147 if ((cluster_bootflags & CLUSTER_BOOTED) && foreign_stateid(id)) 3148 return (NFS4ERR_STALE_STATEID); 3149 3150 /* If types don't match then no use checking further */ 3151 if (type != id->bits.type) 3152 return (NFS4ERR_BAD_STATEID); 3153 3154 /* From a previous server instantiation, return STALE */ 3155 if (id->bits.boottime < rfs4_start_time) 3156 return (NFS4ERR_STALE_STATEID); 3157 3158 /* 3159 * From this server but the state is most likely beyond lease 3160 * timeout: return NFS4ERR_EXPIRED. However, there is the 3161 * case of a delegation stateid. For delegations, there is a 3162 * case where the state can be removed without the client's 3163 * knowledge/consent: revocation. In the case of delegation 3164 * revocation, the delegation state will be removed and will 3165 * not be found. If the client does something like a 3166 * DELEGRETURN or even a READ/WRITE with a delegatoin stateid 3167 * that has been revoked, the server should return BAD_STATEID 3168 * instead of the more common EXPIRED error. 3169 */ 3170 if (id->bits.boottime == rfs4_start_time) { 3171 if (type == DELEGID) 3172 return (NFS4ERR_BAD_STATEID); 3173 else 3174 return (NFS4ERR_EXPIRED); 3175 } 3176 3177 return (NFS4ERR_BAD_STATEID); 3178 } 3179 3180 /* 3181 * Used later on to find the various state structs. When called from 3182 * rfs4_check_stateid()->rfs4_get_all_state(), no file struct lock is 3183 * taken (it is not needed) and helps on the read/write path with 3184 * respect to performance. 3185 */ 3186 static nfsstat4 3187 rfs4_get_state_lockit(stateid4 *stateid, rfs4_state_t **spp, 3188 rfs4_dbsearch_type_t find_invalid, bool_t lock_fp) 3189 { 3190 stateid_t *id = (stateid_t *)stateid; 3191 rfs4_state_t *sp; 3192 3193 *spp = NULL; 3194 3195 /* If we are booted as a cluster node, was stateid locally generated? */ 3196 if ((cluster_bootflags & CLUSTER_BOOTED) && foreign_stateid(id)) 3197 return (NFS4ERR_STALE_STATEID); 3198 3199 sp = rfs4_findstate(id, find_invalid, lock_fp); 3200 if (sp == NULL) { 3201 return (what_stateid_error(id, OPENID)); 3202 } 3203 3204 if (rfs4_lease_expired(sp->owner->client)) { 3205 if (lock_fp == TRUE) 3206 rfs4_state_rele(sp); 3207 else 3208 rfs4_state_rele_nounlock(sp); 3209 return (NFS4ERR_EXPIRED); 3210 } 3211 3212 *spp = sp; 3213 3214 return (NFS4_OK); 3215 } 3216 3217 nfsstat4 3218 rfs4_get_state(stateid4 *stateid, rfs4_state_t **spp, 3219 rfs4_dbsearch_type_t find_invalid) 3220 { 3221 return (rfs4_get_state_lockit(stateid, spp, find_invalid, TRUE)); 3222 } 3223 3224 int 3225 rfs4_check_stateid_seqid(rfs4_state_t *sp, stateid4 *stateid) 3226 { 3227 stateid_t *id = (stateid_t *)stateid; 3228 3229 if (rfs4_lease_expired(sp->owner->client)) 3230 return (NFS4_CHECK_STATEID_EXPIRED); 3231 3232 /* Stateid is some time in the future - that's bad */ 3233 if (sp->stateid.bits.chgseq < id->bits.chgseq) 3234 return (NFS4_CHECK_STATEID_BAD); 3235 3236 if (sp->stateid.bits.chgseq == id->bits.chgseq + 1) 3237 return (NFS4_CHECK_STATEID_REPLAY); 3238 3239 /* Stateid is some time in the past - that's old */ 3240 if (sp->stateid.bits.chgseq > id->bits.chgseq) 3241 return (NFS4_CHECK_STATEID_OLD); 3242 3243 /* Caller needs to know about confirmation before closure */ 3244 if (sp->owner->need_confirm) 3245 return (NFS4_CHECK_STATEID_UNCONFIRMED); 3246 3247 if (sp->closed == TRUE) 3248 return (NFS4_CHECK_STATEID_CLOSED); 3249 3250 return (NFS4_CHECK_STATEID_OKAY); 3251 } 3252 3253 int 3254 rfs4_check_lo_stateid_seqid(rfs4_lo_state_t *lsp, stateid4 *stateid) 3255 { 3256 stateid_t *id = (stateid_t *)stateid; 3257 3258 if (rfs4_lease_expired(lsp->state->owner->client)) 3259 return (NFS4_CHECK_STATEID_EXPIRED); 3260 3261 /* Stateid is some time in the future - that's bad */ 3262 if (lsp->lockid.bits.chgseq < id->bits.chgseq) 3263 return (NFS4_CHECK_STATEID_BAD); 3264 3265 if (lsp->lockid.bits.chgseq == id->bits.chgseq + 1) 3266 return (NFS4_CHECK_STATEID_REPLAY); 3267 3268 /* Stateid is some time in the past - that's old */ 3269 if (lsp->lockid.bits.chgseq > id->bits.chgseq) 3270 return (NFS4_CHECK_STATEID_OLD); 3271 3272 return (NFS4_CHECK_STATEID_OKAY); 3273 } 3274 3275 nfsstat4 3276 rfs4_get_deleg_state(stateid4 *stateid, rfs4_deleg_state_t **dspp) 3277 { 3278 stateid_t *id = (stateid_t *)stateid; 3279 rfs4_deleg_state_t *dsp; 3280 3281 *dspp = NULL; 3282 3283 /* If we are booted as a cluster node, was stateid locally generated? */ 3284 if ((cluster_bootflags & CLUSTER_BOOTED) && foreign_stateid(id)) 3285 return (NFS4ERR_STALE_STATEID); 3286 3287 dsp = rfs4_finddelegstate(id); 3288 if (dsp == NULL) { 3289 return (what_stateid_error(id, DELEGID)); 3290 } 3291 3292 if (rfs4_lease_expired(dsp->client)) { 3293 rfs4_deleg_state_rele(dsp); 3294 return (NFS4ERR_EXPIRED); 3295 } 3296 3297 *dspp = dsp; 3298 3299 return (NFS4_OK); 3300 } 3301 3302 nfsstat4 3303 rfs4_get_lo_state(stateid4 *stateid, rfs4_lo_state_t **lspp, bool_t lock_fp) 3304 { 3305 stateid_t *id = (stateid_t *)stateid; 3306 rfs4_lo_state_t *lsp; 3307 3308 *lspp = NULL; 3309 3310 /* If we are booted as a cluster node, was stateid locally generated? */ 3311 if ((cluster_bootflags & CLUSTER_BOOTED) && foreign_stateid(id)) 3312 return (NFS4ERR_STALE_STATEID); 3313 3314 lsp = rfs4_findlo_state(id, lock_fp); 3315 if (lsp == NULL) { 3316 return (what_stateid_error(id, LOCKID)); 3317 } 3318 3319 if (rfs4_lease_expired(lsp->state->owner->client)) { 3320 rfs4_lo_state_rele(lsp, lock_fp); 3321 return (NFS4ERR_EXPIRED); 3322 } 3323 3324 *lspp = lsp; 3325 3326 return (NFS4_OK); 3327 } 3328 3329 static nfsstat4 3330 rfs4_get_all_state(stateid4 *sid, rfs4_state_t **spp, 3331 rfs4_deleg_state_t **dspp, rfs4_lo_state_t **lospp) 3332 { 3333 rfs4_state_t *sp = NULL; 3334 rfs4_deleg_state_t *dsp = NULL; 3335 rfs4_lo_state_t *losp = NULL; 3336 stateid_t *id; 3337 nfsstat4 status; 3338 3339 *spp = NULL; *dspp = NULL; *lospp = NULL; 3340 3341 id = (stateid_t *)sid; 3342 switch (id->bits.type) { 3343 case OPENID: 3344 status = rfs4_get_state_lockit(sid, &sp, FALSE, FALSE); 3345 break; 3346 case DELEGID: 3347 status = rfs4_get_deleg_state(sid, &dsp); 3348 break; 3349 case LOCKID: 3350 status = rfs4_get_lo_state(sid, &losp, FALSE); 3351 if (status == NFS4_OK) { 3352 sp = losp->state; 3353 rfs4_dbe_hold(sp->dbe); 3354 } 3355 break; 3356 default: 3357 status = NFS4ERR_BAD_STATEID; 3358 } 3359 3360 if (status == NFS4_OK) { 3361 *spp = sp; 3362 *dspp = dsp; 3363 *lospp = losp; 3364 } 3365 3366 return (status); 3367 } 3368 3369 /* 3370 * Given the I/O mode (FREAD or FWRITE), this checks whether the 3371 * rfs4_state_t struct has access to do this operation and if so 3372 * return NFS4_OK; otherwise the proper NFSv4 error is returned. 3373 */ 3374 nfsstat4 3375 rfs4_state_has_access(rfs4_state_t *sp, int mode, vnode_t *vp) 3376 { 3377 nfsstat4 stat = NFS4_OK; 3378 rfs4_file_t *fp; 3379 bool_t create = FALSE; 3380 3381 rfs4_dbe_lock(sp->dbe); 3382 if (mode == FWRITE) { 3383 if (!(sp->share_access & OPEN4_SHARE_ACCESS_WRITE)) { 3384 stat = NFS4ERR_OPENMODE; 3385 } 3386 } else if (mode == FREAD) { 3387 if (!(sp->share_access & OPEN4_SHARE_ACCESS_READ)) { 3388 /* 3389 * If we have OPENed the file with DENYing access 3390 * to both READ and WRITE then no one else could 3391 * have OPENed the file, hence no conflicting READ 3392 * deny. This check is merely an optimization. 3393 */ 3394 if (sp->share_deny == OPEN4_SHARE_DENY_BOTH) 3395 goto out; 3396 3397 /* Check against file struct's DENY mode */ 3398 fp = rfs4_findfile(vp, NULL, &create); 3399 if (fp != NULL) { 3400 int deny_read = 0; 3401 rfs4_dbe_lock(fp->dbe); 3402 /* 3403 * Check if any other open owner has the file 3404 * OPENed with deny READ. 3405 */ 3406 if (sp->share_deny & OPEN4_SHARE_DENY_READ) 3407 deny_read = 1; 3408 ASSERT(fp->deny_read - deny_read >= 0); 3409 if (fp->deny_read - deny_read > 0) 3410 stat = NFS4ERR_OPENMODE; 3411 rfs4_dbe_unlock(fp->dbe); 3412 rfs4_file_rele(fp); 3413 } 3414 } 3415 } else { 3416 /* Illegal I/O mode */ 3417 stat = NFS4ERR_INVAL; 3418 } 3419 out: 3420 rfs4_dbe_unlock(sp->dbe); 3421 return (stat); 3422 } 3423 3424 /* 3425 * Given the I/O mode (FREAD or FWRITE), the vnode, the stateid and whether 3426 * the file is being truncated, return NFS4_OK if allowed or approriate 3427 * V4 error if not. Note NFS4ERR_DELAY will be returned and a recall on 3428 * the associated file will be done if the I/O is not consistent with any 3429 * delegation in effect on the file. Should be holding VOP_RWLOCK, either 3430 * as reader or writer as appropriate. rfs4_op_open will accquire the 3431 * VOP_RWLOCK as writer when setting up delegation. If the stateid is bad 3432 * this routine will return NFS4ERR_BAD_STATEID. In addition, through the 3433 * deleg parameter, we will return whether a write delegation is held by 3434 * the client associated with this stateid. 3435 * If the server instance associated with the relevant client is in its 3436 * grace period, return NFS4ERR_GRACE. 3437 */ 3438 3439 nfsstat4 3440 rfs4_check_stateid(int mode, vnode_t *vp, 3441 stateid4 *stateid, bool_t trunc, bool_t *deleg, 3442 bool_t do_access) 3443 { 3444 rfs4_file_t *fp; 3445 bool_t create = FALSE; 3446 rfs4_state_t *sp; 3447 rfs4_deleg_state_t *dsp; 3448 rfs4_lo_state_t *lsp; 3449 stateid_t *id = (stateid_t *)stateid; 3450 nfsstat4 stat = NFS4_OK; 3451 3452 if (ISSPECIAL(stateid)) { 3453 fp = rfs4_findfile(vp, NULL, &create); 3454 if (fp == NULL) 3455 return (NFS4_OK); 3456 if (fp->dinfo->dtype == OPEN_DELEGATE_NONE) { 3457 rfs4_file_rele(fp); 3458 return (NFS4_OK); 3459 } 3460 if (mode == FWRITE || 3461 fp->dinfo->dtype == OPEN_DELEGATE_WRITE) { 3462 rfs4_recall_deleg(fp, trunc, NULL); 3463 rfs4_file_rele(fp); 3464 return (NFS4ERR_DELAY); 3465 } 3466 rfs4_file_rele(fp); 3467 return (NFS4_OK); 3468 } else { 3469 stat = rfs4_get_all_state(stateid, &sp, &dsp, &lsp); 3470 if (stat != NFS4_OK) 3471 return (stat); 3472 if (lsp != NULL) { 3473 /* Is associated server instance in its grace period? */ 3474 if (rfs4_clnt_in_grace(lsp->locker->client)) { 3475 rfs4_lo_state_rele(lsp, FALSE); 3476 if (sp != NULL) 3477 rfs4_state_rele_nounlock(sp); 3478 return (NFS4ERR_GRACE); 3479 } 3480 if (id->bits.type == LOCKID) { 3481 /* Seqid in the future? - that's bad */ 3482 if (lsp->lockid.bits.chgseq < 3483 id->bits.chgseq) { 3484 rfs4_lo_state_rele(lsp, FALSE); 3485 if (sp != NULL) 3486 rfs4_state_rele_nounlock(sp); 3487 return (NFS4ERR_BAD_STATEID); 3488 } 3489 /* Seqid in the past? - that's old */ 3490 if (lsp->lockid.bits.chgseq > 3491 id->bits.chgseq) { 3492 rfs4_lo_state_rele(lsp, FALSE); 3493 if (sp != NULL) 3494 rfs4_state_rele_nounlock(sp); 3495 return (NFS4ERR_OLD_STATEID); 3496 } 3497 /* Ensure specified filehandle matches */ 3498 if (lsp->state->finfo->vp != vp) { 3499 rfs4_lo_state_rele(lsp, FALSE); 3500 if (sp != NULL) 3501 rfs4_state_rele_nounlock(sp); 3502 return (NFS4ERR_BAD_STATEID); 3503 } 3504 } 3505 rfs4_lo_state_rele(lsp, FALSE); 3506 } 3507 3508 /* Stateid provided was an "open" stateid */ 3509 if (sp != NULL) { 3510 /* Is associated server instance in its grace period? */ 3511 if (rfs4_clnt_in_grace(sp->owner->client)) { 3512 rfs4_state_rele_nounlock(sp); 3513 return (NFS4ERR_GRACE); 3514 } 3515 if (id->bits.type == OPENID) { 3516 /* Seqid in the future? - that's bad */ 3517 if (sp->stateid.bits.chgseq < 3518 id->bits.chgseq) { 3519 rfs4_state_rele_nounlock(sp); 3520 return (NFS4ERR_BAD_STATEID); 3521 } 3522 /* Seqid in the past - that's old */ 3523 if (sp->stateid.bits.chgseq > 3524 id->bits.chgseq) { 3525 rfs4_state_rele_nounlock(sp); 3526 return (NFS4ERR_OLD_STATEID); 3527 } 3528 } 3529 /* Ensure specified filehandle matches */ 3530 if (sp->finfo->vp != vp) { 3531 rfs4_state_rele_nounlock(sp); 3532 return (NFS4ERR_BAD_STATEID); 3533 } 3534 3535 if (sp->owner->need_confirm) { 3536 rfs4_state_rele_nounlock(sp); 3537 return (NFS4ERR_BAD_STATEID); 3538 } 3539 3540 if (sp->closed == TRUE) { 3541 rfs4_state_rele_nounlock(sp); 3542 return (NFS4ERR_OLD_STATEID); 3543 } 3544 3545 if (do_access) 3546 stat = rfs4_state_has_access(sp, mode, vp); 3547 else 3548 stat = NFS4_OK; 3549 3550 /* 3551 * Return whether this state has write 3552 * delegation if desired 3553 */ 3554 if (deleg && 3555 (sp->finfo->dinfo->dtype == OPEN_DELEGATE_WRITE)) 3556 *deleg = TRUE; 3557 3558 /* 3559 * We got a valid stateid, so we update the 3560 * lease on the client. Ideally we would like 3561 * to do this after the calling op succeeds, 3562 * but for now this will be good 3563 * enough. Callers of this routine are 3564 * currently insulated from the state stuff. 3565 */ 3566 rfs4_update_lease(sp->owner->client); 3567 3568 /* 3569 * If a delegation is present on this file and 3570 * this is a WRITE, then update the lastwrite 3571 * time to indicate that activity is present. 3572 */ 3573 if (sp->finfo->dinfo->dtype == OPEN_DELEGATE_WRITE && 3574 mode == FWRITE) { 3575 sp->finfo->dinfo->time_lastwrite = 3576 gethrestime_sec(); 3577 } 3578 3579 rfs4_state_rele_nounlock(sp); 3580 3581 return (stat); 3582 } 3583 3584 if (dsp != NULL) { 3585 /* Is associated server instance in its grace period? */ 3586 if (rfs4_clnt_in_grace(dsp->client)) { 3587 rfs4_deleg_state_rele(dsp); 3588 return (NFS4ERR_GRACE); 3589 } 3590 if (dsp->delegid.bits.chgseq != id->bits.chgseq) { 3591 rfs4_deleg_state_rele(dsp); 3592 return (NFS4ERR_BAD_STATEID); 3593 } 3594 3595 /* Ensure specified filehandle matches */ 3596 if (dsp->finfo->vp != vp) { 3597 rfs4_deleg_state_rele(dsp); 3598 return (NFS4ERR_BAD_STATEID); 3599 } 3600 /* 3601 * Return whether this state has write 3602 * delegation if desired 3603 */ 3604 if (deleg && 3605 (dsp->finfo->dinfo->dtype == OPEN_DELEGATE_WRITE)) 3606 *deleg = TRUE; 3607 3608 rfs4_update_lease(dsp->client); 3609 3610 /* 3611 * If a delegation is present on this file and 3612 * this is a WRITE, then update the lastwrite 3613 * time to indicate that activity is present. 3614 */ 3615 if (dsp->finfo->dinfo->dtype == OPEN_DELEGATE_WRITE && 3616 mode == FWRITE) { 3617 dsp->finfo->dinfo->time_lastwrite = 3618 gethrestime_sec(); 3619 } 3620 3621 /* 3622 * XXX - what happens if this is a WRITE and the 3623 * delegation type of for READ. 3624 */ 3625 rfs4_deleg_state_rele(dsp); 3626 3627 return (stat); 3628 } 3629 /* 3630 * If we got this far, something bad happened 3631 */ 3632 return (NFS4ERR_BAD_STATEID); 3633 } 3634 } 3635 3636 3637 /* 3638 * This is a special function in that for the file struct provided the 3639 * server wants to remove/close all current state associated with the 3640 * file. The prime use of this would be with OP_REMOVE to force the 3641 * release of state and particularly of file locks. 3642 * 3643 * There is an assumption that there is no delegations outstanding on 3644 * this file at this point. The caller should have waited for those 3645 * to be returned or revoked. 3646 */ 3647 void 3648 rfs4_close_all_state(rfs4_file_t *fp) 3649 { 3650 rfs4_state_t *sp; 3651 3652 rfs4_dbe_lock(fp->dbe); 3653 3654 #ifdef DEBUG 3655 /* only applies when server is handing out delegations */ 3656 if (rfs4_deleg_policy != SRV_NEVER_DELEGATE) 3657 ASSERT(fp->dinfo->hold_grant > 0); 3658 #endif 3659 3660 /* No delegations for this file */ 3661 ASSERT(fp->delegationlist.next == &fp->delegationlist); 3662 3663 /* Make sure that it can not be found */ 3664 rfs4_dbe_invalidate(fp->dbe); 3665 3666 if (fp->vp == NULL) { 3667 rfs4_dbe_unlock(fp->dbe); 3668 return; 3669 } 3670 rfs4_dbe_unlock(fp->dbe); 3671 3672 /* 3673 * Hold as writer to prevent other server threads from 3674 * processing requests related to the file while all state is 3675 * being removed. 3676 */ 3677 rw_enter(&fp->file_rwlock, RW_WRITER); 3678 3679 /* Remove ALL state from the file */ 3680 while (sp = rfs4_findstate_by_file(fp)) { 3681 rfs4_state_close(sp, FALSE, FALSE, CRED()); 3682 rfs4_state_rele_nounlock(sp); 3683 } 3684 3685 /* 3686 * This is only safe since there are no further references to 3687 * the file. 3688 */ 3689 rfs4_dbe_lock(fp->dbe); 3690 if (fp->vp) { 3691 vnode_t *vp = fp->vp; 3692 3693 mutex_enter(&vp->v_lock); 3694 (void) vsd_set(vp, nfs4_srv_vkey, NULL); 3695 mutex_exit(&vp->v_lock); 3696 VN_RELE(vp); 3697 fp->vp = NULL; 3698 } 3699 rfs4_dbe_unlock(fp->dbe); 3700 3701 /* Finally let other references to proceed */ 3702 rw_exit(&fp->file_rwlock); 3703 } 3704 3705 /* 3706 * This function is used as a target for the rfs4_dbe_walk() call 3707 * below. The purpose of this function is to see if the 3708 * lockowner_state refers to a file that resides within the exportinfo 3709 * export. If so, then remove the lock_owner state (file locks and 3710 * share "locks") for this object since the intent is the server is 3711 * unexporting the specified directory. Be sure to invalidate the 3712 * object after the state has been released 3713 */ 3714 static void 3715 rfs4_lo_state_walk_callout(rfs4_entry_t u_entry, void *e) 3716 { 3717 rfs4_lo_state_t *lsp = (rfs4_lo_state_t *)u_entry; 3718 struct exportinfo *exi = (struct exportinfo *)e; 3719 nfs_fh4_fmt_t fhfmt4, *exi_fhp, *finfo_fhp; 3720 fhandle_t *efhp; 3721 3722 efhp = (fhandle_t *)&exi->exi_fh; 3723 exi_fhp = (nfs_fh4_fmt_t *)&fhfmt4; 3724 3725 FH_TO_FMT4(efhp, exi_fhp); 3726 3727 finfo_fhp = 3728 (nfs_fh4_fmt_t *)lsp->state->finfo->filehandle.nfs_fh4_val; 3729 3730 if (EQFSID(&finfo_fhp->fh4_fsid, &exi_fhp->fh4_fsid) && 3731 bcmp(&finfo_fhp->fh4_xdata, &exi_fhp->fh4_xdata, 3732 exi_fhp->fh4_xlen) == 0) { 3733 rfs4_state_close(lsp->state, FALSE, FALSE, CRED()); 3734 rfs4_dbe_invalidate(lsp->dbe); 3735 rfs4_dbe_invalidate(lsp->state->dbe); 3736 } 3737 } 3738 3739 /* 3740 * This function is used as a target for the rfs4_dbe_walk() call 3741 * below. The purpose of this function is to see if the state refers 3742 * to a file that resides within the exportinfo export. If so, then 3743 * remove the open state for this object since the intent is the 3744 * server is unexporting the specified directory. The main result for 3745 * this type of entry is to invalidate it such it will not be found in 3746 * the future. 3747 */ 3748 static void 3749 rfs4_state_walk_callout(rfs4_entry_t u_entry, void *e) 3750 { 3751 rfs4_state_t *sp = (rfs4_state_t *)u_entry; 3752 struct exportinfo *exi = (struct exportinfo *)e; 3753 nfs_fh4_fmt_t fhfmt4, *exi_fhp, *finfo_fhp; 3754 fhandle_t *efhp; 3755 3756 efhp = (fhandle_t *)&exi->exi_fh; 3757 exi_fhp = (nfs_fh4_fmt_t *)&fhfmt4; 3758 3759 FH_TO_FMT4(efhp, exi_fhp); 3760 3761 finfo_fhp = 3762 (nfs_fh4_fmt_t *)sp->finfo->filehandle.nfs_fh4_val; 3763 3764 if (EQFSID(&finfo_fhp->fh4_fsid, &exi_fhp->fh4_fsid) && 3765 bcmp(&finfo_fhp->fh4_xdata, &exi_fhp->fh4_xdata, 3766 exi_fhp->fh4_xlen) == 0) { 3767 rfs4_state_close(sp, TRUE, FALSE, CRED()); 3768 rfs4_dbe_invalidate(sp->dbe); 3769 } 3770 } 3771 3772 /* 3773 * This function is used as a target for the rfs4_dbe_walk() call 3774 * below. The purpose of this function is to see if the state refers 3775 * to a file that resides within the exportinfo export. If so, then 3776 * remove the deleg state for this object since the intent is the 3777 * server is unexporting the specified directory. The main result for 3778 * this type of entry is to invalidate it such it will not be found in 3779 * the future. 3780 */ 3781 static void 3782 rfs4_deleg_state_walk_callout(rfs4_entry_t u_entry, void *e) 3783 { 3784 rfs4_deleg_state_t *dsp = (rfs4_deleg_state_t *)u_entry; 3785 struct exportinfo *exi = (struct exportinfo *)e; 3786 nfs_fh4_fmt_t fhfmt4, *exi_fhp, *finfo_fhp; 3787 fhandle_t *efhp; 3788 3789 efhp = (fhandle_t *)&exi->exi_fh; 3790 exi_fhp = (nfs_fh4_fmt_t *)&fhfmt4; 3791 3792 FH_TO_FMT4(efhp, exi_fhp); 3793 3794 finfo_fhp = 3795 (nfs_fh4_fmt_t *)dsp->finfo->filehandle.nfs_fh4_val; 3796 3797 if (EQFSID(&finfo_fhp->fh4_fsid, &exi_fhp->fh4_fsid) && 3798 bcmp(&finfo_fhp->fh4_xdata, &exi_fhp->fh4_xdata, 3799 exi_fhp->fh4_xlen) == 0) { 3800 rfs4_dbe_invalidate(dsp->dbe); 3801 } 3802 } 3803 3804 /* 3805 * This function is used as a target for the rfs4_dbe_walk() call 3806 * below. The purpose of this function is to see if the state refers 3807 * to a file that resides within the exportinfo export. If so, then 3808 * release vnode hold for this object since the intent is the server 3809 * is unexporting the specified directory. Invalidation will prevent 3810 * this struct from being found in the future. 3811 */ 3812 static void 3813 rfs4_file_walk_callout(rfs4_entry_t u_entry, void *e) 3814 { 3815 rfs4_file_t *fp = (rfs4_file_t *)u_entry; 3816 struct exportinfo *exi = (struct exportinfo *)e; 3817 nfs_fh4_fmt_t fhfmt4, *exi_fhp, *finfo_fhp; 3818 fhandle_t *efhp; 3819 3820 efhp = (fhandle_t *)&exi->exi_fh; 3821 exi_fhp = (nfs_fh4_fmt_t *)&fhfmt4; 3822 3823 FH_TO_FMT4(efhp, exi_fhp); 3824 3825 finfo_fhp = (nfs_fh4_fmt_t *)fp->filehandle.nfs_fh4_val; 3826 3827 if (EQFSID(&finfo_fhp->fh4_fsid, &exi_fhp->fh4_fsid) && 3828 bcmp(&finfo_fhp->fh4_xdata, &exi_fhp->fh4_xdata, 3829 exi_fhp->fh4_xlen) == 0) { 3830 if (fp->vp) { 3831 /* don't leak monitors */ 3832 if (fp->dinfo->dtype == OPEN_DELEGATE_READ) 3833 (void) fem_uninstall(fp->vp, deleg_rdops, 3834 (void *)fp); 3835 else if (fp->dinfo->dtype == OPEN_DELEGATE_WRITE) 3836 (void) fem_uninstall(fp->vp, deleg_wrops, 3837 (void *)fp); 3838 VN_RELE(fp->vp); 3839 fp->vp = NULL; 3840 } 3841 rfs4_dbe_invalidate(fp->dbe); 3842 } 3843 } 3844 3845 /* 3846 * Given a directory that is being unexported, cleanup/release all 3847 * state in the server that refers to objects residing underneath this 3848 * particular export. The ordering of the release is important. 3849 * Lock_owner, then state and then file. 3850 */ 3851 void 3852 rfs4_clean_state_exi(struct exportinfo *exi) 3853 { 3854 mutex_enter(&rfs4_state_lock); 3855 3856 if (rfs4_server_state == NULL) { 3857 mutex_exit(&rfs4_state_lock); 3858 return; 3859 } 3860 3861 rfs4_dbe_walk(rfs4_lo_state_tab, rfs4_lo_state_walk_callout, exi); 3862 rfs4_dbe_walk(rfs4_state_tab, rfs4_state_walk_callout, exi); 3863 rfs4_dbe_walk(rfs4_deleg_state_tab, rfs4_deleg_state_walk_callout, exi); 3864 rfs4_dbe_walk(rfs4_file_tab, rfs4_file_walk_callout, exi); 3865 3866 mutex_exit(&rfs4_state_lock); 3867 } 3868