xref: /titanic_44/usr/src/uts/common/fs/nfs/nfs4_client.c (revision 86d7016b0051dd58772baafe5b5bcee51d560b05)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 1986, 2010, Oracle and/or its affiliates. All rights reserved.
23  */
24 
25 /*
26  *  	Copyright (c) 1983,1984,1985,1986,1987,1988,1989  AT&T.
27  *	All Rights Reserved
28  */
29 
30 #include <sys/param.h>
31 #include <sys/types.h>
32 #include <sys/systm.h>
33 #include <sys/thread.h>
34 #include <sys/t_lock.h>
35 #include <sys/time.h>
36 #include <sys/vnode.h>
37 #include <sys/vfs.h>
38 #include <sys/errno.h>
39 #include <sys/buf.h>
40 #include <sys/stat.h>
41 #include <sys/cred.h>
42 #include <sys/kmem.h>
43 #include <sys/debug.h>
44 #include <sys/dnlc.h>
45 #include <sys/vmsystm.h>
46 #include <sys/flock.h>
47 #include <sys/share.h>
48 #include <sys/cmn_err.h>
49 #include <sys/tiuser.h>
50 #include <sys/sysmacros.h>
51 #include <sys/callb.h>
52 #include <sys/acl.h>
53 #include <sys/kstat.h>
54 #include <sys/signal.h>
55 #include <sys/disp.h>
56 #include <sys/atomic.h>
57 #include <sys/list.h>
58 #include <sys/sdt.h>
59 
60 #include <rpc/types.h>
61 #include <rpc/xdr.h>
62 #include <rpc/auth.h>
63 #include <rpc/clnt.h>
64 
65 #include <nfs/nfs.h>
66 #include <nfs/nfs_clnt.h>
67 #include <nfs/nfs_acl.h>
68 
69 #include <nfs/nfs4.h>
70 #include <nfs/rnode4.h>
71 #include <nfs/nfs4_clnt.h>
72 
73 #include <vm/hat.h>
74 #include <vm/as.h>
75 #include <vm/page.h>
76 #include <vm/pvn.h>
77 #include <vm/seg.h>
78 #include <vm/seg_map.h>
79 #include <vm/seg_vn.h>
80 
81 #include <sys/ddi.h>
82 
83 /*
84  * Arguments to page-flush thread.
85  */
86 typedef struct {
87 	vnode_t *vp;
88 	cred_t *cr;
89 } pgflush_t;
90 
91 #ifdef DEBUG
92 int nfs4_client_lease_debug;
93 int nfs4_sharedfh_debug;
94 int nfs4_fname_debug;
95 
96 /* temporary: panic if v_type is inconsistent with r_attr va_type */
97 int nfs4_vtype_debug;
98 
99 uint_t nfs4_tsd_key;
100 #endif
101 
102 static time_t	nfs4_client_resumed = 0;
103 static	callb_id_t cid = 0;
104 
105 static int	nfs4renew(nfs4_server_t *);
106 static void	nfs4_attrcache_va(vnode_t *, nfs4_ga_res_t *, int);
107 static void	nfs4_pgflush_thread(pgflush_t *);
108 
109 static boolean_t nfs4_client_cpr_callb(void *, int);
110 
111 struct mi4_globals {
112 	kmutex_t	mig_lock;  /* lock protecting mig_list */
113 	list_t		mig_list;  /* list of NFS v4 mounts in zone */
114 	boolean_t	mig_destructor_called;
115 };
116 
117 static zone_key_t mi4_list_key;
118 
119 /*
120  * Attributes caching:
121  *
122  * Attributes are cached in the rnode in struct vattr form.
123  * There is a time associated with the cached attributes (r_time_attr_inval)
124  * which tells whether the attributes are valid. The time is initialized
125  * to the difference between current time and the modify time of the vnode
126  * when new attributes are cached. This allows the attributes for
127  * files that have changed recently to be timed out sooner than for files
128  * that have not changed for a long time. There are minimum and maximum
129  * timeout values that can be set per mount point.
130  */
131 
132 /*
133  * If a cache purge is in progress, wait for it to finish.
134  *
135  * The current thread must not be in the middle of an
136  * nfs4_start_op/nfs4_end_op region.  Otherwise, there could be a deadlock
137  * between this thread, a recovery thread, and the page flush thread.
138  */
139 int
140 nfs4_waitfor_purge_complete(vnode_t *vp)
141 {
142 	rnode4_t *rp;
143 	k_sigset_t smask;
144 
145 	rp = VTOR4(vp);
146 	if ((rp->r_serial != NULL && rp->r_serial != curthread) ||
147 	    ((rp->r_flags & R4PGFLUSH) && rp->r_pgflush != curthread)) {
148 		mutex_enter(&rp->r_statelock);
149 		sigintr(&smask, VTOMI4(vp)->mi_flags & MI4_INT);
150 		while ((rp->r_serial != NULL && rp->r_serial != curthread) ||
151 		    ((rp->r_flags & R4PGFLUSH) &&
152 		    rp->r_pgflush != curthread)) {
153 			if (!cv_wait_sig(&rp->r_cv, &rp->r_statelock)) {
154 				sigunintr(&smask);
155 				mutex_exit(&rp->r_statelock);
156 				return (EINTR);
157 			}
158 		}
159 		sigunintr(&smask);
160 		mutex_exit(&rp->r_statelock);
161 	}
162 	return (0);
163 }
164 
165 /*
166  * Validate caches by checking cached attributes. If they have timed out,
167  * then get new attributes from the server.  As a side effect, cache
168  * invalidation is done if the attributes have changed.
169  *
170  * If the attributes have not timed out and if there is a cache
171  * invalidation being done by some other thread, then wait until that
172  * thread has completed the cache invalidation.
173  */
174 int
175 nfs4_validate_caches(vnode_t *vp, cred_t *cr)
176 {
177 	int error;
178 	nfs4_ga_res_t gar;
179 
180 	if (ATTRCACHE4_VALID(vp)) {
181 		error = nfs4_waitfor_purge_complete(vp);
182 		if (error)
183 			return (error);
184 		return (0);
185 	}
186 
187 	gar.n4g_va.va_mask = AT_ALL;
188 	return (nfs4_getattr_otw(vp, &gar, cr, 0));
189 }
190 
191 /*
192  * Fill in attribute from the cache.
193  * If valid, then return 0 to indicate that no error occurred,
194  * otherwise return 1 to indicate that an error occurred.
195  */
196 static int
197 nfs4_getattr_cache(vnode_t *vp, struct vattr *vap)
198 {
199 	rnode4_t *rp;
200 
201 	rp = VTOR4(vp);
202 	mutex_enter(&rp->r_statelock);
203 	mutex_enter(&rp->r_statev4_lock);
204 	if (ATTRCACHE4_VALID(vp)) {
205 		mutex_exit(&rp->r_statev4_lock);
206 		/*
207 		 * Cached attributes are valid
208 		 */
209 		*vap = rp->r_attr;
210 		mutex_exit(&rp->r_statelock);
211 		return (0);
212 	}
213 	mutex_exit(&rp->r_statev4_lock);
214 	mutex_exit(&rp->r_statelock);
215 	return (1);
216 }
217 
218 
219 /*
220  * If returned error is ESTALE flush all caches.  The nfs4_purge_caches()
221  * call is synchronous because all the pages were invalidated by the
222  * nfs4_invalidate_pages() call.
223  */
224 void
225 nfs4_purge_stale_fh(int errno, vnode_t *vp, cred_t *cr)
226 {
227 	struct rnode4 *rp = VTOR4(vp);
228 
229 	/* Ensure that the ..._end_op() call has been done */
230 	ASSERT(tsd_get(nfs4_tsd_key) == NULL);
231 
232 	if (errno != ESTALE)
233 		return;
234 
235 	mutex_enter(&rp->r_statelock);
236 	rp->r_flags |= R4STALE;
237 	if (!rp->r_error)
238 		rp->r_error = errno;
239 	mutex_exit(&rp->r_statelock);
240 	if (nfs4_has_pages(vp))
241 		nfs4_invalidate_pages(vp, (u_offset_t)0, cr);
242 	nfs4_purge_caches(vp, NFS4_PURGE_DNLC, cr, FALSE);
243 }
244 
245 /*
246  * Purge all of the various NFS `data' caches.  If "asyncpg" is TRUE, the
247  * page purge is done asynchronously.
248  */
249 void
250 nfs4_purge_caches(vnode_t *vp, int purge_dnlc, cred_t *cr, int asyncpg)
251 {
252 	rnode4_t *rp;
253 	char *contents;
254 	vnode_t *xattr;
255 	int size;
256 	int pgflush;			/* are we the page flush thread? */
257 
258 	/*
259 	 * Purge the DNLC for any entries which refer to this file.
260 	 */
261 	if (vp->v_count > 1 &&
262 	    (vp->v_type == VDIR || purge_dnlc == NFS4_PURGE_DNLC))
263 		dnlc_purge_vp(vp);
264 
265 	/*
266 	 * Clear any readdir state bits and purge the readlink response cache.
267 	 */
268 	rp = VTOR4(vp);
269 	mutex_enter(&rp->r_statelock);
270 	rp->r_flags &= ~R4LOOKUP;
271 	contents = rp->r_symlink.contents;
272 	size = rp->r_symlink.size;
273 	rp->r_symlink.contents = NULL;
274 
275 	xattr = rp->r_xattr_dir;
276 	rp->r_xattr_dir = NULL;
277 
278 	/*
279 	 * Purge pathconf cache too.
280 	 */
281 	rp->r_pathconf.pc4_xattr_valid = 0;
282 	rp->r_pathconf.pc4_cache_valid = 0;
283 
284 	pgflush = (curthread == rp->r_pgflush);
285 	mutex_exit(&rp->r_statelock);
286 
287 	if (contents != NULL) {
288 
289 		kmem_free((void *)contents, size);
290 	}
291 
292 	if (xattr != NULL)
293 		VN_RELE(xattr);
294 
295 	/*
296 	 * Flush the page cache.  If the current thread is the page flush
297 	 * thread, don't initiate a new page flush.  There's no need for
298 	 * it, and doing it correctly is hard.
299 	 */
300 	if (nfs4_has_pages(vp) && !pgflush) {
301 		if (!asyncpg) {
302 			(void) nfs4_waitfor_purge_complete(vp);
303 			nfs4_flush_pages(vp, cr);
304 		} else {
305 			pgflush_t *args;
306 
307 			/*
308 			 * We don't hold r_statelock while creating the
309 			 * thread, in case the call blocks.  So we use a
310 			 * flag to indicate that a page flush thread is
311 			 * active.
312 			 */
313 			mutex_enter(&rp->r_statelock);
314 			if (rp->r_flags & R4PGFLUSH) {
315 				mutex_exit(&rp->r_statelock);
316 			} else {
317 				rp->r_flags |= R4PGFLUSH;
318 				mutex_exit(&rp->r_statelock);
319 
320 				args = kmem_alloc(sizeof (pgflush_t),
321 				    KM_SLEEP);
322 				args->vp = vp;
323 				VN_HOLD(args->vp);
324 				args->cr = cr;
325 				crhold(args->cr);
326 				(void) zthread_create(NULL, 0,
327 				    nfs4_pgflush_thread, args, 0,
328 				    minclsyspri);
329 			}
330 		}
331 	}
332 
333 	/*
334 	 * Flush the readdir response cache.
335 	 */
336 	nfs4_purge_rddir_cache(vp);
337 }
338 
339 /*
340  * Invalidate all pages for the given file, after writing back the dirty
341  * ones.
342  */
343 
344 void
345 nfs4_flush_pages(vnode_t *vp, cred_t *cr)
346 {
347 	int error;
348 	rnode4_t *rp = VTOR4(vp);
349 
350 	error = VOP_PUTPAGE(vp, (u_offset_t)0, 0, B_INVAL, cr, NULL);
351 	if (error == ENOSPC || error == EDQUOT) {
352 		mutex_enter(&rp->r_statelock);
353 		if (!rp->r_error)
354 			rp->r_error = error;
355 		mutex_exit(&rp->r_statelock);
356 	}
357 }
358 
359 /*
360  * Page flush thread.
361  */
362 
363 static void
364 nfs4_pgflush_thread(pgflush_t *args)
365 {
366 	rnode4_t *rp = VTOR4(args->vp);
367 
368 	/* remember which thread we are, so we don't deadlock ourselves */
369 	mutex_enter(&rp->r_statelock);
370 	ASSERT(rp->r_pgflush == NULL);
371 	rp->r_pgflush = curthread;
372 	mutex_exit(&rp->r_statelock);
373 
374 	nfs4_flush_pages(args->vp, args->cr);
375 
376 	mutex_enter(&rp->r_statelock);
377 	rp->r_pgflush = NULL;
378 	rp->r_flags &= ~R4PGFLUSH;
379 	cv_broadcast(&rp->r_cv);
380 	mutex_exit(&rp->r_statelock);
381 
382 	VN_RELE(args->vp);
383 	crfree(args->cr);
384 	kmem_free(args, sizeof (pgflush_t));
385 	zthread_exit();
386 }
387 
388 /*
389  * Purge the readdir cache of all entries which are not currently
390  * being filled.
391  */
392 void
393 nfs4_purge_rddir_cache(vnode_t *vp)
394 {
395 	rnode4_t *rp;
396 
397 	rp = VTOR4(vp);
398 
399 	mutex_enter(&rp->r_statelock);
400 	rp->r_direof = NULL;
401 	rp->r_flags &= ~R4LOOKUP;
402 	rp->r_flags |= R4READDIRWATTR;
403 	rddir4_cache_purge(rp);
404 	mutex_exit(&rp->r_statelock);
405 }
406 
407 /*
408  * Set attributes cache for given vnode using virtual attributes.  There is
409  * no cache validation, but if the attributes are deemed to be stale, they
410  * are ignored.  This corresponds to nfs3_attrcache().
411  *
412  * Set the timeout value on the attribute cache and fill it
413  * with the passed in attributes.
414  */
415 void
416 nfs4_attrcache_noinval(vnode_t *vp, nfs4_ga_res_t *garp, hrtime_t t)
417 {
418 	rnode4_t *rp = VTOR4(vp);
419 
420 	mutex_enter(&rp->r_statelock);
421 	if (rp->r_time_attr_saved <= t)
422 		nfs4_attrcache_va(vp, garp, FALSE);
423 	mutex_exit(&rp->r_statelock);
424 }
425 
426 /*
427  * Use the passed in virtual attributes to check to see whether the
428  * data and metadata caches are valid, cache the new attributes, and
429  * then do the cache invalidation if required.
430  *
431  * The cache validation and caching of the new attributes is done
432  * atomically via the use of the mutex, r_statelock.  If required,
433  * the cache invalidation is done atomically w.r.t. the cache
434  * validation and caching of the attributes via the pseudo lock,
435  * r_serial.
436  *
437  * This routine is used to do cache validation and attributes caching
438  * for operations with a single set of post operation attributes.
439  */
440 
441 void
442 nfs4_attr_cache(vnode_t *vp, nfs4_ga_res_t *garp,
443     hrtime_t t, cred_t *cr, int async,
444     change_info4 *cinfo)
445 {
446 	rnode4_t *rp;
447 	int mtime_changed = 0;
448 	int ctime_changed = 0;
449 	vsecattr_t *vsp;
450 	int was_serial, set_time_cache_inval, recov;
451 	vattr_t *vap = &garp->n4g_va;
452 	mntinfo4_t *mi = VTOMI4(vp);
453 	len_t preattr_rsize;
454 	boolean_t writemodify_set = B_FALSE;
455 	boolean_t cachepurge_set = B_FALSE;
456 
457 	ASSERT(mi->mi_vfsp->vfs_dev == garp->n4g_va.va_fsid);
458 
459 	/* Is curthread the recovery thread? */
460 	mutex_enter(&mi->mi_lock);
461 	recov = (VTOMI4(vp)->mi_recovthread == curthread);
462 	mutex_exit(&mi->mi_lock);
463 
464 	rp = VTOR4(vp);
465 	mutex_enter(&rp->r_statelock);
466 	was_serial = (rp->r_serial == curthread);
467 	if (rp->r_serial && !was_serial) {
468 		klwp_t *lwp = ttolwp(curthread);
469 
470 		/*
471 		 * If we're the recovery thread, then purge current attrs
472 		 * and bail out to avoid potential deadlock between another
473 		 * thread caching attrs (r_serial thread), recov thread,
474 		 * and an async writer thread.
475 		 */
476 		if (recov) {
477 			PURGE_ATTRCACHE4_LOCKED(rp);
478 			mutex_exit(&rp->r_statelock);
479 			return;
480 		}
481 
482 		if (lwp != NULL)
483 			lwp->lwp_nostop++;
484 		while (rp->r_serial != NULL) {
485 			if (!cv_wait_sig(&rp->r_cv, &rp->r_statelock)) {
486 				mutex_exit(&rp->r_statelock);
487 				if (lwp != NULL)
488 					lwp->lwp_nostop--;
489 				return;
490 			}
491 		}
492 		if (lwp != NULL)
493 			lwp->lwp_nostop--;
494 	}
495 
496 	/*
497 	 * If there is a page flush thread, the current thread needs to
498 	 * bail out, to prevent a possible deadlock between the current
499 	 * thread (which might be in a start_op/end_op region), the
500 	 * recovery thread, and the page flush thread.  Expire the
501 	 * attribute cache, so that any attributes the current thread was
502 	 * going to set are not lost.
503 	 */
504 	if ((rp->r_flags & R4PGFLUSH) && rp->r_pgflush != curthread) {
505 		PURGE_ATTRCACHE4_LOCKED(rp);
506 		mutex_exit(&rp->r_statelock);
507 		return;
508 	}
509 
510 	if (rp->r_time_attr_saved > t) {
511 		/*
512 		 * Attributes have been cached since these attributes were
513 		 * probably made. If there is an inconsistency in what is
514 		 * cached, mark them invalid. If not, don't act on them.
515 		 */
516 		if (!CACHE4_VALID(rp, vap->va_mtime, vap->va_size))
517 			PURGE_ATTRCACHE4_LOCKED(rp);
518 		mutex_exit(&rp->r_statelock);
519 		return;
520 	}
521 	set_time_cache_inval = 0;
522 	if (cinfo) {
523 		/*
524 		 * Only directory modifying callers pass non-NULL cinfo.
525 		 */
526 		ASSERT(vp->v_type == VDIR);
527 		/*
528 		 * If the cache timeout either doesn't exist or hasn't expired,
529 		 * and dir didn't changed on server before dirmod op
530 		 * and dir didn't change after dirmod op but before getattr
531 		 * then there's a chance that the client's cached data for
532 		 * this object is current (not stale).  No immediate cache
533 		 * flush is required.
534 		 *
535 		 */
536 		if ((! rp->r_time_cache_inval || t < rp->r_time_cache_inval) &&
537 		    cinfo->before == rp->r_change &&
538 		    (garp->n4g_change_valid &&
539 		    cinfo->after == garp->n4g_change)) {
540 
541 			/*
542 			 * If atomic isn't set, then the before/after info
543 			 * cannot be blindly trusted.  For this case, we tell
544 			 * nfs4_attrcache_va to cache the attrs but also
545 			 * establish an absolute maximum cache timeout.  When
546 			 * the timeout is reached, caches will be flushed.
547 			 */
548 			if (! cinfo->atomic)
549 				set_time_cache_inval = 1;
550 		} else {
551 
552 			/*
553 			 * We're not sure exactly what changed, but we know
554 			 * what to do.  flush all caches for dir.  remove the
555 			 * attr timeout.
556 			 *
557 			 * a) timeout expired.  flush all caches.
558 			 * b) r_change != cinfo.before.  flush all caches.
559 			 * c) r_change == cinfo.before, but cinfo.after !=
560 			 *    post-op getattr(change).  flush all caches.
561 			 * d) post-op getattr(change) not provided by server.
562 			 *    flush all caches.
563 			 */
564 			mtime_changed = 1;
565 			ctime_changed = 1;
566 			rp->r_time_cache_inval = 0;
567 		}
568 	} else {
569 		/*
570 		 * Write thread after writing data to file on remote server,
571 		 * will always set R4WRITEMODIFIED to indicate that file on
572 		 * remote server was modified with a WRITE operation and would
573 		 * have marked attribute cache as timed out. If R4WRITEMODIFIED
574 		 * is set, then do not check for mtime and ctime change.
575 		 */
576 		if (!(rp->r_flags & R4WRITEMODIFIED)) {
577 			if (!CACHE4_VALID(rp, vap->va_mtime, vap->va_size))
578 				mtime_changed = 1;
579 
580 			if (rp->r_attr.va_ctime.tv_sec !=
581 			    vap->va_ctime.tv_sec ||
582 			    rp->r_attr.va_ctime.tv_nsec !=
583 			    vap->va_ctime.tv_nsec)
584 				ctime_changed = 1;
585 		} else {
586 			writemodify_set = B_TRUE;
587 		}
588 	}
589 
590 	preattr_rsize = rp->r_size;
591 
592 	nfs4_attrcache_va(vp, garp, set_time_cache_inval);
593 
594 	/*
595 	 * If we have updated filesize in nfs4_attrcache_va, as soon as we
596 	 * drop statelock we will be in transition of purging all
597 	 * our caches and updating them. It is possible for another
598 	 * thread to pick this new file size and read in zeroed data.
599 	 * stall other threads till cache purge is complete.
600 	 */
601 	if ((!cinfo) && (rp->r_size != preattr_rsize)) {
602 		/*
603 		 * If R4WRITEMODIFIED was set and we have updated the file
604 		 * size, Server's returned file size need not necessarily
605 		 * be because of this Client's WRITE. We need to purge
606 		 * all caches.
607 		 */
608 		if (writemodify_set)
609 			mtime_changed = 1;
610 
611 		if (mtime_changed && !(rp->r_flags & R4INCACHEPURGE)) {
612 			rp->r_flags |= R4INCACHEPURGE;
613 			cachepurge_set = B_TRUE;
614 		}
615 	}
616 
617 	if (!mtime_changed && !ctime_changed) {
618 		mutex_exit(&rp->r_statelock);
619 		return;
620 	}
621 
622 	rp->r_serial = curthread;
623 
624 	mutex_exit(&rp->r_statelock);
625 
626 	/*
627 	 * If we're the recov thread, then force async nfs4_purge_caches
628 	 * to avoid potential deadlock.
629 	 */
630 	if (mtime_changed)
631 		nfs4_purge_caches(vp, NFS4_NOPURGE_DNLC, cr, recov ? 1 : async);
632 
633 	if ((rp->r_flags & R4INCACHEPURGE) && cachepurge_set) {
634 		mutex_enter(&rp->r_statelock);
635 		rp->r_flags &= ~R4INCACHEPURGE;
636 		cv_broadcast(&rp->r_cv);
637 		mutex_exit(&rp->r_statelock);
638 		cachepurge_set = B_FALSE;
639 	}
640 
641 	if (ctime_changed) {
642 		(void) nfs4_access_purge_rp(rp);
643 		if (rp->r_secattr != NULL) {
644 			mutex_enter(&rp->r_statelock);
645 			vsp = rp->r_secattr;
646 			rp->r_secattr = NULL;
647 			mutex_exit(&rp->r_statelock);
648 			if (vsp != NULL)
649 				nfs4_acl_free_cache(vsp);
650 		}
651 	}
652 
653 	if (!was_serial) {
654 		mutex_enter(&rp->r_statelock);
655 		rp->r_serial = NULL;
656 		cv_broadcast(&rp->r_cv);
657 		mutex_exit(&rp->r_statelock);
658 	}
659 }
660 
661 /*
662  * Set attributes cache for given vnode using virtual attributes.
663  *
664  * Set the timeout value on the attribute cache and fill it
665  * with the passed in attributes.
666  *
667  * The caller must be holding r_statelock.
668  */
669 static void
670 nfs4_attrcache_va(vnode_t *vp, nfs4_ga_res_t *garp, int set_cache_timeout)
671 {
672 	rnode4_t *rp;
673 	mntinfo4_t *mi;
674 	hrtime_t delta;
675 	hrtime_t now;
676 	vattr_t *vap = &garp->n4g_va;
677 
678 	rp = VTOR4(vp);
679 
680 	ASSERT(MUTEX_HELD(&rp->r_statelock));
681 	ASSERT(vap->va_mask == AT_ALL);
682 
683 	/* Switch to master before checking v_flag */
684 	if (IS_SHADOW(vp, rp))
685 		vp = RTOV4(rp);
686 
687 	now = gethrtime();
688 
689 	mi = VTOMI4(vp);
690 
691 	/*
692 	 * Only establish a new cache timeout (if requested).  Never
693 	 * extend a timeout.  Never clear a timeout.  Clearing a timeout
694 	 * is done by nfs4_update_dircaches (ancestor in our call chain)
695 	 */
696 	if (set_cache_timeout && ! rp->r_time_cache_inval)
697 		rp->r_time_cache_inval = now + mi->mi_acdirmax;
698 
699 	/*
700 	 * Delta is the number of nanoseconds that we will
701 	 * cache the attributes of the file.  It is based on
702 	 * the number of nanoseconds since the last time that
703 	 * we detected a change.  The assumption is that files
704 	 * that changed recently are likely to change again.
705 	 * There is a minimum and a maximum for regular files
706 	 * and for directories which is enforced though.
707 	 *
708 	 * Using the time since last change was detected
709 	 * eliminates direct comparison or calculation
710 	 * using mixed client and server times.  NFS does
711 	 * not make any assumptions regarding the client
712 	 * and server clocks being synchronized.
713 	 */
714 	if (vap->va_mtime.tv_sec != rp->r_attr.va_mtime.tv_sec ||
715 	    vap->va_mtime.tv_nsec != rp->r_attr.va_mtime.tv_nsec ||
716 	    vap->va_size != rp->r_attr.va_size) {
717 		rp->r_time_attr_saved = now;
718 	}
719 
720 	if ((mi->mi_flags & MI4_NOAC) || (vp->v_flag & VNOCACHE))
721 		delta = 0;
722 	else {
723 		delta = now - rp->r_time_attr_saved;
724 		if (vp->v_type == VDIR) {
725 			if (delta < mi->mi_acdirmin)
726 				delta = mi->mi_acdirmin;
727 			else if (delta > mi->mi_acdirmax)
728 				delta = mi->mi_acdirmax;
729 		} else {
730 			if (delta < mi->mi_acregmin)
731 				delta = mi->mi_acregmin;
732 			else if (delta > mi->mi_acregmax)
733 				delta = mi->mi_acregmax;
734 		}
735 	}
736 	rp->r_time_attr_inval = now + delta;
737 
738 	rp->r_attr = *vap;
739 	if (garp->n4g_change_valid)
740 		rp->r_change = garp->n4g_change;
741 
742 	/*
743 	 * The attributes that were returned may be valid and can
744 	 * be used, but they may not be allowed to be cached.
745 	 * Reset the timers to cause immediate invalidation and
746 	 * clear r_change so no VERIFY operations will suceed
747 	 */
748 	if (garp->n4g_attrwhy == NFS4_GETATTR_NOCACHE_OK) {
749 		rp->r_time_attr_inval = now;
750 		rp->r_time_attr_saved = now;
751 		rp->r_change = 0;
752 	}
753 
754 	/*
755 	 * If mounted_on_fileid returned AND the object is a stub,
756 	 * then set object's va_nodeid to the mounted over fid
757 	 * returned by server.
758 	 *
759 	 * If mounted_on_fileid not provided/supported, then
760 	 * just set it to 0 for now.  Eventually it would be
761 	 * better to set it to a hashed version of FH.  This
762 	 * would probably be good enough to provide a unique
763 	 * fid/d_ino within a dir.
764 	 *
765 	 * We don't need to carry mounted_on_fileid in the
766 	 * rnode as long as the client never requests fileid
767 	 * without also requesting mounted_on_fileid.  For
768 	 * now, it stays.
769 	 */
770 	if (garp->n4g_mon_fid_valid) {
771 		rp->r_mntd_fid = garp->n4g_mon_fid;
772 
773 		if (RP_ISSTUB(rp))
774 			rp->r_attr.va_nodeid = rp->r_mntd_fid;
775 	}
776 
777 	/*
778 	 * Check to see if there are valid pathconf bits to
779 	 * cache in the rnode.
780 	 */
781 	if (garp->n4g_ext_res) {
782 		if (garp->n4g_ext_res->n4g_pc4.pc4_cache_valid) {
783 			rp->r_pathconf = garp->n4g_ext_res->n4g_pc4;
784 		} else {
785 			if (garp->n4g_ext_res->n4g_pc4.pc4_xattr_valid) {
786 				rp->r_pathconf.pc4_xattr_valid = TRUE;
787 				rp->r_pathconf.pc4_xattr_exists =
788 				    garp->n4g_ext_res->n4g_pc4.pc4_xattr_exists;
789 			}
790 		}
791 	}
792 	/*
793 	 * Update the size of the file if there is no cached data or if
794 	 * the cached data is clean and there is no data being written
795 	 * out.
796 	 */
797 	if (rp->r_size != vap->va_size &&
798 	    (!vn_has_cached_data(vp) ||
799 	    (!(rp->r_flags & R4DIRTY) && rp->r_count == 0))) {
800 		rp->r_size = vap->va_size;
801 	}
802 	nfs_setswaplike(vp, vap);
803 	rp->r_flags &= ~R4WRITEMODIFIED;
804 }
805 
806 /*
807  * Get attributes over-the-wire and update attributes cache
808  * if no error occurred in the over-the-wire operation.
809  * Return 0 if successful, otherwise error.
810  */
811 int
812 nfs4_getattr_otw(vnode_t *vp, nfs4_ga_res_t *garp, cred_t *cr, int get_acl)
813 {
814 	mntinfo4_t *mi = VTOMI4(vp);
815 	hrtime_t t;
816 	nfs4_recov_state_t recov_state;
817 	nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS };
818 
819 	recov_state.rs_flags = 0;
820 	recov_state.rs_num_retry_despite_err = 0;
821 
822 	/* Save the original mount point security flavor */
823 	(void) save_mnt_secinfo(mi->mi_curr_serv);
824 
825 recov_retry:
826 
827 	if ((e.error = nfs4_start_fop(mi, vp, NULL, OH_GETATTR,
828 	    &recov_state, NULL))) {
829 		(void) check_mnt_secinfo(mi->mi_curr_serv, vp);
830 		return (e.error);
831 	}
832 
833 	t = gethrtime();
834 
835 	nfs4_getattr_otw_norecovery(vp, garp, &e, cr, get_acl);
836 
837 	if (nfs4_needs_recovery(&e, FALSE, vp->v_vfsp)) {
838 		if (nfs4_start_recovery(&e, VTOMI4(vp), vp, NULL, NULL,
839 		    NULL, OP_GETATTR, NULL, NULL, NULL) == FALSE)  {
840 			nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_GETATTR,
841 			    &recov_state, 1);
842 			goto recov_retry;
843 		}
844 	}
845 
846 	nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_GETATTR, &recov_state, 0);
847 
848 	if (!e.error) {
849 		if (e.stat == NFS4_OK) {
850 			nfs4_attr_cache(vp, garp, t, cr, FALSE, NULL);
851 		} else {
852 			e.error = geterrno4(e.stat);
853 
854 			nfs4_purge_stale_fh(e.error, vp, cr);
855 		}
856 	}
857 
858 	/*
859 	 * If getattr a node that is a stub for a crossed
860 	 * mount point, keep the original secinfo flavor for
861 	 * the current file system, not the crossed one.
862 	 */
863 	(void) check_mnt_secinfo(mi->mi_curr_serv, vp);
864 
865 	return (e.error);
866 }
867 
868 /*
869  * Generate a compound to get attributes over-the-wire.
870  */
871 void
872 nfs4_getattr_otw_norecovery(vnode_t *vp, nfs4_ga_res_t *garp,
873     nfs4_error_t *ep, cred_t *cr, int get_acl)
874 {
875 	COMPOUND4args_clnt args;
876 	COMPOUND4res_clnt res;
877 	int doqueue;
878 	rnode4_t *rp = VTOR4(vp);
879 	nfs_argop4 argop[2];
880 
881 	args.ctag = TAG_GETATTR;
882 
883 	args.array_len = 2;
884 	args.array = argop;
885 
886 	/* putfh */
887 	argop[0].argop = OP_CPUTFH;
888 	argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh;
889 
890 	/* getattr */
891 	/*
892 	 * Unlike nfs version 2 and 3, where getattr returns all the
893 	 * attributes, nfs version 4 returns only the ones explicitly
894 	 * asked for. This creates problems, as some system functions
895 	 * (e.g. cache check) require certain attributes and if the
896 	 * cached node lacks some attributes such as uid/gid, it can
897 	 * affect system utilities (e.g. "ls") that rely on the information
898 	 * to be there. This can lead to anything from system crashes to
899 	 * corrupted information processed by user apps.
900 	 * So to ensure that all bases are covered, request at least
901 	 * the AT_ALL attribute mask.
902 	 */
903 	argop[1].argop = OP_GETATTR;
904 	argop[1].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
905 	if (get_acl)
906 		argop[1].nfs_argop4_u.opgetattr.attr_request |= FATTR4_ACL_MASK;
907 	argop[1].nfs_argop4_u.opgetattr.mi = VTOMI4(vp);
908 
909 	doqueue = 1;
910 
911 	rfs4call(VTOMI4(vp), &args, &res, cr, &doqueue, 0, ep);
912 
913 	if (ep->error)
914 		return;
915 
916 	if (res.status != NFS4_OK) {
917 		(void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
918 		return;
919 	}
920 
921 	*garp = res.array[1].nfs_resop4_u.opgetattr.ga_res;
922 
923 	(void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
924 }
925 
926 /*
927  * Return either cached or remote attributes. If get remote attr
928  * use them to check and invalidate caches, then cache the new attributes.
929  */
930 int
931 nfs4getattr(vnode_t *vp, vattr_t *vap, cred_t *cr)
932 {
933 	int error;
934 	rnode4_t *rp;
935 	nfs4_ga_res_t gar;
936 
937 	ASSERT(nfs4_consistent_type(vp));
938 
939 	/*
940 	 * If we've got cached attributes, we're done, otherwise go
941 	 * to the server to get attributes, which will update the cache
942 	 * in the process. Either way, use the cached attributes for
943 	 * the caller's vattr_t.
944 	 *
945 	 * Note that we ignore the gar set by the OTW call: the attr caching
946 	 * code may make adjustments when storing to the rnode, and we want
947 	 * to see those changes here.
948 	 */
949 	rp = VTOR4(vp);
950 	error = 0;
951 	mutex_enter(&rp->r_statelock);
952 	if (!ATTRCACHE4_VALID(vp)) {
953 		mutex_exit(&rp->r_statelock);
954 		error = nfs4_getattr_otw(vp, &gar, cr, 0);
955 		mutex_enter(&rp->r_statelock);
956 	}
957 
958 	if (!error)
959 		*vap = rp->r_attr;
960 
961 	/* Return the client's view of file size */
962 	vap->va_size = rp->r_size;
963 
964 	mutex_exit(&rp->r_statelock);
965 
966 	ASSERT(nfs4_consistent_type(vp));
967 
968 	return (error);
969 }
970 
971 int
972 nfs4_attr_otw(vnode_t *vp, nfs4_tag_type_t tag_type,
973     nfs4_ga_res_t *garp, bitmap4 reqbitmap, cred_t *cr)
974 {
975 	COMPOUND4args_clnt args;
976 	COMPOUND4res_clnt res;
977 	int doqueue;
978 	nfs_argop4 argop[2];
979 	mntinfo4_t *mi = VTOMI4(vp);
980 	bool_t needrecov = FALSE;
981 	nfs4_recov_state_t recov_state;
982 	nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS };
983 	nfs4_ga_ext_res_t *gerp;
984 
985 	recov_state.rs_flags = 0;
986 	recov_state.rs_num_retry_despite_err = 0;
987 
988 recov_retry:
989 	args.ctag = tag_type;
990 
991 	args.array_len = 2;
992 	args.array = argop;
993 
994 	e.error = nfs4_start_fop(mi, vp, NULL, OH_GETATTR, &recov_state, NULL);
995 	if (e.error)
996 		return (e.error);
997 
998 	/* putfh */
999 	argop[0].argop = OP_CPUTFH;
1000 	argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(vp)->r_fh;
1001 
1002 	/* getattr */
1003 	argop[1].argop = OP_GETATTR;
1004 	argop[1].nfs_argop4_u.opgetattr.attr_request = reqbitmap;
1005 	argop[1].nfs_argop4_u.opgetattr.mi = mi;
1006 
1007 	doqueue = 1;
1008 
1009 	NFS4_DEBUG(nfs4_client_call_debug, (CE_NOTE,
1010 	    "nfs4_attr_otw: %s call, rp %s", needrecov ? "recov" : "first",
1011 	    rnode4info(VTOR4(vp))));
1012 
1013 	rfs4call(mi, &args, &res, cr, &doqueue, 0, &e);
1014 
1015 	needrecov = nfs4_needs_recovery(&e, FALSE, vp->v_vfsp);
1016 	if (!needrecov && e.error) {
1017 		nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_GETATTR, &recov_state,
1018 		    needrecov);
1019 		return (e.error);
1020 	}
1021 
1022 	if (needrecov) {
1023 		bool_t abort;
1024 
1025 		NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE,
1026 		    "nfs4_attr_otw: initiating recovery\n"));
1027 
1028 		abort = nfs4_start_recovery(&e, VTOMI4(vp), vp, NULL, NULL,
1029 		    NULL, OP_GETATTR, NULL, NULL, NULL);
1030 		nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_GETATTR, &recov_state,
1031 		    needrecov);
1032 		if (!e.error) {
1033 			(void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
1034 			e.error = geterrno4(res.status);
1035 		}
1036 		if (abort == FALSE)
1037 			goto recov_retry;
1038 		return (e.error);
1039 	}
1040 
1041 	if (res.status) {
1042 		e.error = geterrno4(res.status);
1043 	} else {
1044 		gerp = garp->n4g_ext_res;
1045 		bcopy(&res.array[1].nfs_resop4_u.opgetattr.ga_res,
1046 		    garp, sizeof (nfs4_ga_res_t));
1047 		garp->n4g_ext_res = gerp;
1048 		if (garp->n4g_ext_res &&
1049 		    res.array[1].nfs_resop4_u.opgetattr.ga_res.n4g_ext_res)
1050 			bcopy(res.array[1].nfs_resop4_u.opgetattr.
1051 			    ga_res.n4g_ext_res,
1052 			    garp->n4g_ext_res, sizeof (nfs4_ga_ext_res_t));
1053 	}
1054 	(void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
1055 	nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_GETATTR, &recov_state,
1056 	    needrecov);
1057 	return (e.error);
1058 }
1059 
1060 /*
1061  * Asynchronous I/O parameters.  nfs_async_threads is the high-water mark
1062  * for the demand-based allocation of async threads per-mount.  The
1063  * nfs_async_timeout is the amount of time a thread will live after it
1064  * becomes idle, unless new I/O requests are received before the thread
1065  * dies.  See nfs4_async_putpage and nfs4_async_start.
1066  */
1067 
1068 static void	nfs4_async_start(struct vfs *);
1069 static void	nfs4_async_pgops_start(struct vfs *);
1070 static void	nfs4_async_common_start(struct vfs *, int);
1071 
1072 static void
1073 free_async_args4(struct nfs4_async_reqs *args)
1074 {
1075 	rnode4_t *rp;
1076 
1077 	if (args->a_io != NFS4_INACTIVE) {
1078 		rp = VTOR4(args->a_vp);
1079 		mutex_enter(&rp->r_statelock);
1080 		rp->r_count--;
1081 		if (args->a_io == NFS4_PUTAPAGE ||
1082 		    args->a_io == NFS4_PAGEIO)
1083 			rp->r_awcount--;
1084 		cv_broadcast(&rp->r_cv);
1085 		mutex_exit(&rp->r_statelock);
1086 		VN_RELE(args->a_vp);
1087 	}
1088 	crfree(args->a_cred);
1089 	kmem_free(args, sizeof (*args));
1090 }
1091 
1092 /*
1093  * Cross-zone thread creation and NFS access is disallowed, yet fsflush() and
1094  * pageout(), running in the global zone, have legitimate reasons to do
1095  * VOP_PUTPAGE(B_ASYNC) on other zones' NFS mounts.  We avoid the problem by
1096  * use of a a per-mount "asynchronous requests manager thread" which is
1097  * signaled by the various asynchronous work routines when there is
1098  * asynchronous work to be done.  It is responsible for creating new
1099  * worker threads if necessary, and notifying existing worker threads
1100  * that there is work to be done.
1101  *
1102  * In other words, it will "take the specifications from the customers and
1103  * give them to the engineers."
1104  *
1105  * Worker threads die off of their own accord if they are no longer
1106  * needed.
1107  *
1108  * This thread is killed when the zone is going away or the filesystem
1109  * is being unmounted.
1110  */
1111 void
1112 nfs4_async_manager(vfs_t *vfsp)
1113 {
1114 	callb_cpr_t cprinfo;
1115 	mntinfo4_t *mi;
1116 	uint_t max_threads;
1117 
1118 	mi = VFTOMI4(vfsp);
1119 
1120 	CALLB_CPR_INIT(&cprinfo, &mi->mi_async_lock, callb_generic_cpr,
1121 	    "nfs4_async_manager");
1122 
1123 	mutex_enter(&mi->mi_async_lock);
1124 	/*
1125 	 * We want to stash the max number of threads that this mount was
1126 	 * allowed so we can use it later when the variable is set to zero as
1127 	 * part of the zone/mount going away.
1128 	 *
1129 	 * We want to be able to create at least one thread to handle
1130 	 * asynchronous inactive calls.
1131 	 */
1132 	max_threads = MAX(mi->mi_max_threads, 1);
1133 	/*
1134 	 * We don't want to wait for mi_max_threads to go to zero, since that
1135 	 * happens as part of a failed unmount, but this thread should only
1136 	 * exit when the mount is really going away.
1137 	 *
1138 	 * Once MI4_ASYNC_MGR_STOP is set, no more async operations will be
1139 	 * attempted: the various _async_*() functions know to do things
1140 	 * inline if mi_max_threads == 0.  Henceforth we just drain out the
1141 	 * outstanding requests.
1142 	 *
1143 	 * Note that we still create zthreads even if we notice the zone is
1144 	 * shutting down (MI4_ASYNC_MGR_STOP is set); this may cause the zone
1145 	 * shutdown sequence to take slightly longer in some cases, but
1146 	 * doesn't violate the protocol, as all threads will exit as soon as
1147 	 * they're done processing the remaining requests.
1148 	 */
1149 	for (;;) {
1150 		while (mi->mi_async_req_count > 0) {
1151 			/*
1152 			 * Paranoia: If the mount started out having
1153 			 * (mi->mi_max_threads == 0), and the value was
1154 			 * later changed (via a debugger or somesuch),
1155 			 * we could be confused since we will think we
1156 			 * can't create any threads, and the calling
1157 			 * code (which looks at the current value of
1158 			 * mi->mi_max_threads, now non-zero) thinks we
1159 			 * can.
1160 			 *
1161 			 * So, because we're paranoid, we create threads
1162 			 * up to the maximum of the original and the
1163 			 * current value. This means that future
1164 			 * (debugger-induced) alterations of
1165 			 * mi->mi_max_threads are ignored for our
1166 			 * purposes, but who told them they could change
1167 			 * random values on a live kernel anyhow?
1168 			 */
1169 			if (mi->mi_threads[NFS4_ASYNC_QUEUE] <
1170 			    MAX(mi->mi_max_threads, max_threads)) {
1171 				mi->mi_threads[NFS4_ASYNC_QUEUE]++;
1172 				mutex_exit(&mi->mi_async_lock);
1173 				MI4_HOLD(mi);
1174 				VFS_HOLD(vfsp);	/* hold for new thread */
1175 				(void) zthread_create(NULL, 0, nfs4_async_start,
1176 				    vfsp, 0, minclsyspri);
1177 				mutex_enter(&mi->mi_async_lock);
1178 			} else if (mi->mi_threads[NFS4_ASYNC_PGOPS_QUEUE] <
1179 			    NUM_ASYNC_PGOPS_THREADS) {
1180 				mi->mi_threads[NFS4_ASYNC_PGOPS_QUEUE]++;
1181 				mutex_exit(&mi->mi_async_lock);
1182 				MI4_HOLD(mi);
1183 				VFS_HOLD(vfsp); /* hold for new thread */
1184 				(void) zthread_create(NULL, 0,
1185 				    nfs4_async_pgops_start, vfsp, 0,
1186 				    minclsyspri);
1187 				mutex_enter(&mi->mi_async_lock);
1188 			}
1189 			NFS4_WAKE_ASYNC_WORKER(mi->mi_async_work_cv);
1190 			ASSERT(mi->mi_async_req_count != 0);
1191 			mi->mi_async_req_count--;
1192 		}
1193 
1194 		mutex_enter(&mi->mi_lock);
1195 		if (mi->mi_flags & MI4_ASYNC_MGR_STOP) {
1196 			mutex_exit(&mi->mi_lock);
1197 			break;
1198 		}
1199 		mutex_exit(&mi->mi_lock);
1200 
1201 		CALLB_CPR_SAFE_BEGIN(&cprinfo);
1202 		cv_wait(&mi->mi_async_reqs_cv, &mi->mi_async_lock);
1203 		CALLB_CPR_SAFE_END(&cprinfo, &mi->mi_async_lock);
1204 	}
1205 
1206 	NFS4_DEBUG(nfs4_client_zone_debug, (CE_NOTE,
1207 	    "nfs4_async_manager exiting for vfs %p\n", (void *)mi->mi_vfsp));
1208 	/*
1209 	 * Let everyone know we're done.
1210 	 */
1211 	mi->mi_manager_thread = NULL;
1212 	/*
1213 	 * Wake up the inactive thread.
1214 	 */
1215 	cv_broadcast(&mi->mi_inact_req_cv);
1216 	/*
1217 	 * Wake up anyone sitting in nfs4_async_manager_stop()
1218 	 */
1219 	cv_broadcast(&mi->mi_async_cv);
1220 	/*
1221 	 * There is no explicit call to mutex_exit(&mi->mi_async_lock)
1222 	 * since CALLB_CPR_EXIT is actually responsible for releasing
1223 	 * 'mi_async_lock'.
1224 	 */
1225 	CALLB_CPR_EXIT(&cprinfo);
1226 	VFS_RELE(vfsp);	/* release thread's hold */
1227 	MI4_RELE(mi);
1228 	zthread_exit();
1229 }
1230 
1231 /*
1232  * Signal (and wait for) the async manager thread to clean up and go away.
1233  */
1234 void
1235 nfs4_async_manager_stop(vfs_t *vfsp)
1236 {
1237 	mntinfo4_t *mi = VFTOMI4(vfsp);
1238 
1239 	mutex_enter(&mi->mi_async_lock);
1240 	mutex_enter(&mi->mi_lock);
1241 	mi->mi_flags |= MI4_ASYNC_MGR_STOP;
1242 	mutex_exit(&mi->mi_lock);
1243 	cv_broadcast(&mi->mi_async_reqs_cv);
1244 	/*
1245 	 * Wait for the async manager thread to die.
1246 	 */
1247 	while (mi->mi_manager_thread != NULL)
1248 		cv_wait(&mi->mi_async_cv, &mi->mi_async_lock);
1249 	mutex_exit(&mi->mi_async_lock);
1250 }
1251 
1252 int
1253 nfs4_async_readahead(vnode_t *vp, u_offset_t blkoff, caddr_t addr,
1254     struct seg *seg, cred_t *cr, void (*readahead)(vnode_t *,
1255     u_offset_t, caddr_t, struct seg *, cred_t *))
1256 {
1257 	rnode4_t *rp;
1258 	mntinfo4_t *mi;
1259 	struct nfs4_async_reqs *args;
1260 
1261 	rp = VTOR4(vp);
1262 	ASSERT(rp->r_freef == NULL);
1263 
1264 	mi = VTOMI4(vp);
1265 
1266 	/*
1267 	 * If addr falls in a different segment, don't bother doing readahead.
1268 	 */
1269 	if (addr >= seg->s_base + seg->s_size)
1270 		return (-1);
1271 
1272 	/*
1273 	 * If we can't allocate a request structure, punt on the readahead.
1274 	 */
1275 	if ((args = kmem_alloc(sizeof (*args), KM_NOSLEEP)) == NULL)
1276 		return (-1);
1277 
1278 	/*
1279 	 * If a lock operation is pending, don't initiate any new
1280 	 * readaheads.  Otherwise, bump r_count to indicate the new
1281 	 * asynchronous I/O.
1282 	 */
1283 	if (!nfs_rw_tryenter(&rp->r_lkserlock, RW_READER)) {
1284 		kmem_free(args, sizeof (*args));
1285 		return (-1);
1286 	}
1287 	mutex_enter(&rp->r_statelock);
1288 	rp->r_count++;
1289 	mutex_exit(&rp->r_statelock);
1290 	nfs_rw_exit(&rp->r_lkserlock);
1291 
1292 	args->a_next = NULL;
1293 #ifdef DEBUG
1294 	args->a_queuer = curthread;
1295 #endif
1296 	VN_HOLD(vp);
1297 	args->a_vp = vp;
1298 	ASSERT(cr != NULL);
1299 	crhold(cr);
1300 	args->a_cred = cr;
1301 	args->a_io = NFS4_READ_AHEAD;
1302 	args->a_nfs4_readahead = readahead;
1303 	args->a_nfs4_blkoff = blkoff;
1304 	args->a_nfs4_seg = seg;
1305 	args->a_nfs4_addr = addr;
1306 
1307 	mutex_enter(&mi->mi_async_lock);
1308 
1309 	/*
1310 	 * If asyncio has been disabled, don't bother readahead.
1311 	 */
1312 	if (mi->mi_max_threads == 0) {
1313 		mutex_exit(&mi->mi_async_lock);
1314 		goto noasync;
1315 	}
1316 
1317 	/*
1318 	 * Link request structure into the async list and
1319 	 * wakeup async thread to do the i/o.
1320 	 */
1321 	if (mi->mi_async_reqs[NFS4_READ_AHEAD] == NULL) {
1322 		mi->mi_async_reqs[NFS4_READ_AHEAD] = args;
1323 		mi->mi_async_tail[NFS4_READ_AHEAD] = args;
1324 	} else {
1325 		mi->mi_async_tail[NFS4_READ_AHEAD]->a_next = args;
1326 		mi->mi_async_tail[NFS4_READ_AHEAD] = args;
1327 	}
1328 
1329 	if (mi->mi_io_kstats) {
1330 		mutex_enter(&mi->mi_lock);
1331 		kstat_waitq_enter(KSTAT_IO_PTR(mi->mi_io_kstats));
1332 		mutex_exit(&mi->mi_lock);
1333 	}
1334 
1335 	mi->mi_async_req_count++;
1336 	ASSERT(mi->mi_async_req_count != 0);
1337 	cv_signal(&mi->mi_async_reqs_cv);
1338 	mutex_exit(&mi->mi_async_lock);
1339 	return (0);
1340 
1341 noasync:
1342 	mutex_enter(&rp->r_statelock);
1343 	rp->r_count--;
1344 	cv_broadcast(&rp->r_cv);
1345 	mutex_exit(&rp->r_statelock);
1346 	VN_RELE(vp);
1347 	crfree(cr);
1348 	kmem_free(args, sizeof (*args));
1349 	return (-1);
1350 }
1351 
1352 static void
1353 nfs4_async_start(struct vfs *vfsp)
1354 {
1355 	nfs4_async_common_start(vfsp, NFS4_ASYNC_QUEUE);
1356 }
1357 
1358 static void
1359 nfs4_async_pgops_start(struct vfs *vfsp)
1360 {
1361 	nfs4_async_common_start(vfsp, NFS4_ASYNC_PGOPS_QUEUE);
1362 }
1363 
1364 /*
1365  * The async queues for each mounted file system are arranged as a
1366  * set of queues, one for each async i/o type.  Requests are taken
1367  * from the queues in a round-robin fashion.  A number of consecutive
1368  * requests are taken from each queue before moving on to the next
1369  * queue.  This functionality may allow the NFS Version 2 server to do
1370  * write clustering, even if the client is mixing writes and reads
1371  * because it will take multiple write requests from the queue
1372  * before processing any of the other async i/o types.
1373  *
1374  * XXX The nfs4_async_common_start thread is unsafe in the light of the present
1375  * model defined by cpr to suspend the system. Specifically over the
1376  * wire calls are cpr-unsafe. The thread should be reevaluated in
1377  * case of future updates to the cpr model.
1378  */
1379 static void
1380 nfs4_async_common_start(struct vfs *vfsp, int async_queue)
1381 {
1382 	struct nfs4_async_reqs *args;
1383 	mntinfo4_t *mi = VFTOMI4(vfsp);
1384 	clock_t time_left = 1;
1385 	callb_cpr_t cprinfo;
1386 	int i;
1387 	extern int nfs_async_timeout;
1388 	int async_types;
1389 	kcondvar_t *async_work_cv;
1390 
1391 	if (async_queue == NFS4_ASYNC_QUEUE) {
1392 		async_types = NFS4_ASYNC_TYPES;
1393 		async_work_cv = &mi->mi_async_work_cv[NFS4_ASYNC_QUEUE];
1394 	} else {
1395 		async_types = NFS4_ASYNC_PGOPS_TYPES;
1396 		async_work_cv = &mi->mi_async_work_cv[NFS4_ASYNC_PGOPS_QUEUE];
1397 	}
1398 
1399 	/*
1400 	 * Dynamic initialization of nfs_async_timeout to allow nfs to be
1401 	 * built in an implementation independent manner.
1402 	 */
1403 	if (nfs_async_timeout == -1)
1404 		nfs_async_timeout = NFS_ASYNC_TIMEOUT;
1405 
1406 	CALLB_CPR_INIT(&cprinfo, &mi->mi_async_lock, callb_generic_cpr, "nas");
1407 
1408 	mutex_enter(&mi->mi_async_lock);
1409 	for (;;) {
1410 		/*
1411 		 * Find the next queue containing an entry.  We start
1412 		 * at the current queue pointer and then round robin
1413 		 * through all of them until we either find a non-empty
1414 		 * queue or have looked through all of them.
1415 		 */
1416 		for (i = 0; i < async_types; i++) {
1417 			args = *mi->mi_async_curr[async_queue];
1418 			if (args != NULL)
1419 				break;
1420 			mi->mi_async_curr[async_queue]++;
1421 			if (mi->mi_async_curr[async_queue] ==
1422 			    &mi->mi_async_reqs[async_types]) {
1423 				mi->mi_async_curr[async_queue] =
1424 				    &mi->mi_async_reqs[0];
1425 			}
1426 		}
1427 		/*
1428 		 * If we didn't find a entry, then block until woken up
1429 		 * again and then look through the queues again.
1430 		 */
1431 		if (args == NULL) {
1432 			/*
1433 			 * Exiting is considered to be safe for CPR as well
1434 			 */
1435 			CALLB_CPR_SAFE_BEGIN(&cprinfo);
1436 
1437 			/*
1438 			 * Wakeup thread waiting to unmount the file
1439 			 * system only if all async threads are inactive.
1440 			 *
1441 			 * If we've timed-out and there's nothing to do,
1442 			 * then get rid of this thread.
1443 			 */
1444 			if (mi->mi_max_threads == 0 || time_left <= 0) {
1445 				--mi->mi_threads[async_queue];
1446 
1447 				if (mi->mi_threads[NFS4_ASYNC_QUEUE] == 0 &&
1448 				    mi->mi_threads[NFS4_ASYNC_PGOPS_QUEUE] == 0)
1449 					cv_signal(&mi->mi_async_cv);
1450 				CALLB_CPR_EXIT(&cprinfo);
1451 				VFS_RELE(vfsp);	/* release thread's hold */
1452 				MI4_RELE(mi);
1453 				zthread_exit();
1454 				/* NOTREACHED */
1455 			}
1456 			time_left = cv_reltimedwait(async_work_cv,
1457 			    &mi->mi_async_lock, nfs_async_timeout,
1458 			    TR_CLOCK_TICK);
1459 
1460 			CALLB_CPR_SAFE_END(&cprinfo, &mi->mi_async_lock);
1461 
1462 			continue;
1463 		} else {
1464 			time_left = 1;
1465 		}
1466 
1467 		/*
1468 		 * Remove the request from the async queue and then
1469 		 * update the current async request queue pointer.  If
1470 		 * the current queue is empty or we have removed enough
1471 		 * consecutive entries from it, then reset the counter
1472 		 * for this queue and then move the current pointer to
1473 		 * the next queue.
1474 		 */
1475 		*mi->mi_async_curr[async_queue] = args->a_next;
1476 		if (*mi->mi_async_curr[async_queue] == NULL ||
1477 		    --mi->mi_async_clusters[args->a_io] == 0) {
1478 			mi->mi_async_clusters[args->a_io] =
1479 			    mi->mi_async_init_clusters;
1480 			mi->mi_async_curr[async_queue]++;
1481 			if (mi->mi_async_curr[async_queue] ==
1482 			    &mi->mi_async_reqs[async_types]) {
1483 				mi->mi_async_curr[async_queue] =
1484 				    &mi->mi_async_reqs[0];
1485 			}
1486 		}
1487 
1488 		if (args->a_io != NFS4_INACTIVE && mi->mi_io_kstats) {
1489 			mutex_enter(&mi->mi_lock);
1490 			kstat_waitq_exit(KSTAT_IO_PTR(mi->mi_io_kstats));
1491 			mutex_exit(&mi->mi_lock);
1492 		}
1493 
1494 		mutex_exit(&mi->mi_async_lock);
1495 
1496 		/*
1497 		 * Obtain arguments from the async request structure.
1498 		 */
1499 		if (args->a_io == NFS4_READ_AHEAD && mi->mi_max_threads > 0) {
1500 			(*args->a_nfs4_readahead)(args->a_vp,
1501 			    args->a_nfs4_blkoff, args->a_nfs4_addr,
1502 			    args->a_nfs4_seg, args->a_cred);
1503 		} else if (args->a_io == NFS4_PUTAPAGE) {
1504 			(void) (*args->a_nfs4_putapage)(args->a_vp,
1505 			    args->a_nfs4_pp, args->a_nfs4_off,
1506 			    args->a_nfs4_len, args->a_nfs4_flags,
1507 			    args->a_cred);
1508 		} else if (args->a_io == NFS4_PAGEIO) {
1509 			(void) (*args->a_nfs4_pageio)(args->a_vp,
1510 			    args->a_nfs4_pp, args->a_nfs4_off,
1511 			    args->a_nfs4_len, args->a_nfs4_flags,
1512 			    args->a_cred);
1513 		} else if (args->a_io == NFS4_READDIR) {
1514 			(void) ((*args->a_nfs4_readdir)(args->a_vp,
1515 			    args->a_nfs4_rdc, args->a_cred));
1516 		} else if (args->a_io == NFS4_COMMIT) {
1517 			(*args->a_nfs4_commit)(args->a_vp, args->a_nfs4_plist,
1518 			    args->a_nfs4_offset, args->a_nfs4_count,
1519 			    args->a_cred);
1520 		} else if (args->a_io == NFS4_INACTIVE) {
1521 			nfs4_inactive_otw(args->a_vp, args->a_cred);
1522 		}
1523 
1524 		/*
1525 		 * Now, release the vnode and free the credentials
1526 		 * structure.
1527 		 */
1528 		free_async_args4(args);
1529 		/*
1530 		 * Reacquire the mutex because it will be needed above.
1531 		 */
1532 		mutex_enter(&mi->mi_async_lock);
1533 	}
1534 }
1535 
1536 /*
1537  * nfs4_inactive_thread - look for vnodes that need over-the-wire calls as
1538  * part of VOP_INACTIVE.
1539  */
1540 
1541 void
1542 nfs4_inactive_thread(mntinfo4_t *mi)
1543 {
1544 	struct nfs4_async_reqs *args;
1545 	callb_cpr_t cprinfo;
1546 	vfs_t *vfsp = mi->mi_vfsp;
1547 
1548 	CALLB_CPR_INIT(&cprinfo, &mi->mi_async_lock, callb_generic_cpr,
1549 	    "nfs4_inactive_thread");
1550 
1551 	for (;;) {
1552 		mutex_enter(&mi->mi_async_lock);
1553 		args = mi->mi_async_reqs[NFS4_INACTIVE];
1554 		if (args == NULL) {
1555 			mutex_enter(&mi->mi_lock);
1556 			/*
1557 			 * We don't want to exit until the async manager is done
1558 			 * with its work; hence the check for mi_manager_thread
1559 			 * being NULL.
1560 			 *
1561 			 * The async manager thread will cv_broadcast() on
1562 			 * mi_inact_req_cv when it's done, at which point we'll
1563 			 * wake up and exit.
1564 			 */
1565 			if (mi->mi_manager_thread == NULL)
1566 				goto die;
1567 			mi->mi_flags |= MI4_INACTIVE_IDLE;
1568 			mutex_exit(&mi->mi_lock);
1569 			cv_signal(&mi->mi_async_cv);
1570 			CALLB_CPR_SAFE_BEGIN(&cprinfo);
1571 			cv_wait(&mi->mi_inact_req_cv, &mi->mi_async_lock);
1572 			CALLB_CPR_SAFE_END(&cprinfo, &mi->mi_async_lock);
1573 			mutex_exit(&mi->mi_async_lock);
1574 		} else {
1575 			mutex_enter(&mi->mi_lock);
1576 			mi->mi_flags &= ~MI4_INACTIVE_IDLE;
1577 			mutex_exit(&mi->mi_lock);
1578 			mi->mi_async_reqs[NFS4_INACTIVE] = args->a_next;
1579 			mutex_exit(&mi->mi_async_lock);
1580 			nfs4_inactive_otw(args->a_vp, args->a_cred);
1581 			crfree(args->a_cred);
1582 			kmem_free(args, sizeof (*args));
1583 		}
1584 	}
1585 die:
1586 	mutex_exit(&mi->mi_lock);
1587 	mi->mi_inactive_thread = NULL;
1588 	cv_signal(&mi->mi_async_cv);
1589 
1590 	/*
1591 	 * There is no explicit call to mutex_exit(&mi->mi_async_lock) since
1592 	 * CALLB_CPR_EXIT is actually responsible for releasing 'mi_async_lock'.
1593 	 */
1594 	CALLB_CPR_EXIT(&cprinfo);
1595 
1596 	NFS4_DEBUG(nfs4_client_zone_debug, (CE_NOTE,
1597 	    "nfs4_inactive_thread exiting for vfs %p\n", (void *)vfsp));
1598 
1599 	MI4_RELE(mi);
1600 	zthread_exit();
1601 	/* NOTREACHED */
1602 }
1603 
1604 /*
1605  * nfs_async_stop:
1606  * Wait for all outstanding putpage operations and the inactive thread to
1607  * complete; nfs4_async_stop_sig() without interruptibility.
1608  */
1609 void
1610 nfs4_async_stop(struct vfs *vfsp)
1611 {
1612 	mntinfo4_t *mi = VFTOMI4(vfsp);
1613 
1614 	/*
1615 	 * Wait for all outstanding async operations to complete and for
1616 	 * worker threads to exit.
1617 	 */
1618 	mutex_enter(&mi->mi_async_lock);
1619 	mi->mi_max_threads = 0;
1620 	NFS4_WAKEALL_ASYNC_WORKERS(mi->mi_async_work_cv);
1621 	while (mi->mi_threads[NFS4_ASYNC_QUEUE] != 0 ||
1622 	    mi->mi_threads[NFS4_ASYNC_PGOPS_QUEUE] != 0)
1623 		cv_wait(&mi->mi_async_cv, &mi->mi_async_lock);
1624 
1625 	/*
1626 	 * Wait for the inactive thread to finish doing what it's doing.  It
1627 	 * won't exit until the last reference to the vfs_t goes away.
1628 	 */
1629 	if (mi->mi_inactive_thread != NULL) {
1630 		mutex_enter(&mi->mi_lock);
1631 		while (!(mi->mi_flags & MI4_INACTIVE_IDLE) ||
1632 		    (mi->mi_async_reqs[NFS4_INACTIVE] != NULL)) {
1633 			mutex_exit(&mi->mi_lock);
1634 			cv_wait(&mi->mi_async_cv, &mi->mi_async_lock);
1635 			mutex_enter(&mi->mi_lock);
1636 		}
1637 		mutex_exit(&mi->mi_lock);
1638 	}
1639 	mutex_exit(&mi->mi_async_lock);
1640 }
1641 
1642 /*
1643  * nfs_async_stop_sig:
1644  * Wait for all outstanding putpage operations and the inactive thread to
1645  * complete. If a signal is delivered we will abort and return non-zero;
1646  * otherwise return 0. Since this routine is called from nfs4_unmount, we
1647  * need to make it interruptible.
1648  */
1649 int
1650 nfs4_async_stop_sig(struct vfs *vfsp)
1651 {
1652 	mntinfo4_t *mi = VFTOMI4(vfsp);
1653 	ushort_t omax;
1654 	bool_t intr = FALSE;
1655 
1656 	/*
1657 	 * Wait for all outstanding putpage operations to complete and for
1658 	 * worker threads to exit.
1659 	 */
1660 	mutex_enter(&mi->mi_async_lock);
1661 	omax = mi->mi_max_threads;
1662 	mi->mi_max_threads = 0;
1663 	NFS4_WAKEALL_ASYNC_WORKERS(mi->mi_async_work_cv);
1664 	while (mi->mi_threads[NFS4_ASYNC_QUEUE] != 0 ||
1665 	    mi->mi_threads[NFS4_ASYNC_PGOPS_QUEUE] != 0) {
1666 		if (!cv_wait_sig(&mi->mi_async_cv, &mi->mi_async_lock)) {
1667 			intr = TRUE;
1668 			goto interrupted;
1669 		}
1670 	}
1671 
1672 	/*
1673 	 * Wait for the inactive thread to finish doing what it's doing.  It
1674 	 * won't exit until the a last reference to the vfs_t goes away.
1675 	 */
1676 	if (mi->mi_inactive_thread != NULL) {
1677 		mutex_enter(&mi->mi_lock);
1678 		while (!(mi->mi_flags & MI4_INACTIVE_IDLE) ||
1679 		    (mi->mi_async_reqs[NFS4_INACTIVE] != NULL)) {
1680 			mutex_exit(&mi->mi_lock);
1681 			if (!cv_wait_sig(&mi->mi_async_cv,
1682 			    &mi->mi_async_lock)) {
1683 				intr = TRUE;
1684 				goto interrupted;
1685 			}
1686 			mutex_enter(&mi->mi_lock);
1687 		}
1688 		mutex_exit(&mi->mi_lock);
1689 	}
1690 interrupted:
1691 	if (intr)
1692 		mi->mi_max_threads = omax;
1693 	mutex_exit(&mi->mi_async_lock);
1694 
1695 	return (intr);
1696 }
1697 
1698 int
1699 nfs4_async_putapage(vnode_t *vp, page_t *pp, u_offset_t off, size_t len,
1700     int flags, cred_t *cr, int (*putapage)(vnode_t *, page_t *,
1701     u_offset_t, size_t, int, cred_t *))
1702 {
1703 	rnode4_t *rp;
1704 	mntinfo4_t *mi;
1705 	struct nfs4_async_reqs *args;
1706 
1707 	ASSERT(flags & B_ASYNC);
1708 	ASSERT(vp->v_vfsp != NULL);
1709 
1710 	rp = VTOR4(vp);
1711 	ASSERT(rp->r_count > 0);
1712 
1713 	mi = VTOMI4(vp);
1714 
1715 	/*
1716 	 * If we can't allocate a request structure, do the putpage
1717 	 * operation synchronously in this thread's context.
1718 	 */
1719 	if ((args = kmem_alloc(sizeof (*args), KM_NOSLEEP)) == NULL)
1720 		goto noasync;
1721 
1722 	args->a_next = NULL;
1723 #ifdef DEBUG
1724 	args->a_queuer = curthread;
1725 #endif
1726 	VN_HOLD(vp);
1727 	args->a_vp = vp;
1728 	ASSERT(cr != NULL);
1729 	crhold(cr);
1730 	args->a_cred = cr;
1731 	args->a_io = NFS4_PUTAPAGE;
1732 	args->a_nfs4_putapage = putapage;
1733 	args->a_nfs4_pp = pp;
1734 	args->a_nfs4_off = off;
1735 	args->a_nfs4_len = (uint_t)len;
1736 	args->a_nfs4_flags = flags;
1737 
1738 	mutex_enter(&mi->mi_async_lock);
1739 
1740 	/*
1741 	 * If asyncio has been disabled, then make a synchronous request.
1742 	 * This check is done a second time in case async io was diabled
1743 	 * while this thread was blocked waiting for memory pressure to
1744 	 * reduce or for the queue to drain.
1745 	 */
1746 	if (mi->mi_max_threads == 0) {
1747 		mutex_exit(&mi->mi_async_lock);
1748 
1749 		VN_RELE(vp);
1750 		crfree(cr);
1751 		kmem_free(args, sizeof (*args));
1752 		goto noasync;
1753 	}
1754 
1755 	/*
1756 	 * Link request structure into the async list and
1757 	 * wakeup async thread to do the i/o.
1758 	 */
1759 	if (mi->mi_async_reqs[NFS4_PUTAPAGE] == NULL) {
1760 		mi->mi_async_reqs[NFS4_PUTAPAGE] = args;
1761 		mi->mi_async_tail[NFS4_PUTAPAGE] = args;
1762 	} else {
1763 		mi->mi_async_tail[NFS4_PUTAPAGE]->a_next = args;
1764 		mi->mi_async_tail[NFS4_PUTAPAGE] = args;
1765 	}
1766 
1767 	mutex_enter(&rp->r_statelock);
1768 	rp->r_count++;
1769 	rp->r_awcount++;
1770 	mutex_exit(&rp->r_statelock);
1771 
1772 	if (mi->mi_io_kstats) {
1773 		mutex_enter(&mi->mi_lock);
1774 		kstat_waitq_enter(KSTAT_IO_PTR(mi->mi_io_kstats));
1775 		mutex_exit(&mi->mi_lock);
1776 	}
1777 
1778 	mi->mi_async_req_count++;
1779 	ASSERT(mi->mi_async_req_count != 0);
1780 	cv_signal(&mi->mi_async_reqs_cv);
1781 	mutex_exit(&mi->mi_async_lock);
1782 	return (0);
1783 
1784 noasync:
1785 
1786 	if (curproc == proc_pageout || curproc == proc_fsflush ||
1787 	    nfs_zone() == mi->mi_zone) {
1788 		/*
1789 		 * If we get here in the context of the pageout/fsflush,
1790 		 * or we have run out of memory or we're attempting to
1791 		 * unmount we refuse to do a sync write, because this may
1792 		 * hang pageout/fsflush and the machine. In this case,
1793 		 * we just re-mark the page as dirty and punt on the page.
1794 		 *
1795 		 * Make sure B_FORCE isn't set.  We can re-mark the
1796 		 * pages as dirty and unlock the pages in one swoop by
1797 		 * passing in B_ERROR to pvn_write_done().  However,
1798 		 * we should make sure B_FORCE isn't set - we don't
1799 		 * want the page tossed before it gets written out.
1800 		 */
1801 		if (flags & B_FORCE)
1802 			flags &= ~(B_INVAL | B_FORCE);
1803 		pvn_write_done(pp, flags | B_ERROR);
1804 		return (0);
1805 	}
1806 
1807 	/*
1808 	 * We'll get here only if (nfs_zone() != mi->mi_zone)
1809 	 * which means that this was a cross-zone sync putpage.
1810 	 *
1811 	 * We pass in B_ERROR to pvn_write_done() to re-mark the pages
1812 	 * as dirty and unlock them.
1813 	 *
1814 	 * We don't want to clear B_FORCE here as the caller presumably
1815 	 * knows what they're doing if they set it.
1816 	 */
1817 	pvn_write_done(pp, flags | B_ERROR);
1818 	return (EPERM);
1819 }
1820 
1821 int
1822 nfs4_async_pageio(vnode_t *vp, page_t *pp, u_offset_t io_off, size_t io_len,
1823     int flags, cred_t *cr, int (*pageio)(vnode_t *, page_t *, u_offset_t,
1824     size_t, int, cred_t *))
1825 {
1826 	rnode4_t *rp;
1827 	mntinfo4_t *mi;
1828 	struct nfs4_async_reqs *args;
1829 
1830 	ASSERT(flags & B_ASYNC);
1831 	ASSERT(vp->v_vfsp != NULL);
1832 
1833 	rp = VTOR4(vp);
1834 	ASSERT(rp->r_count > 0);
1835 
1836 	mi = VTOMI4(vp);
1837 
1838 	/*
1839 	 * If we can't allocate a request structure, do the pageio
1840 	 * request synchronously in this thread's context.
1841 	 */
1842 	if ((args = kmem_alloc(sizeof (*args), KM_NOSLEEP)) == NULL)
1843 		goto noasync;
1844 
1845 	args->a_next = NULL;
1846 #ifdef DEBUG
1847 	args->a_queuer = curthread;
1848 #endif
1849 	VN_HOLD(vp);
1850 	args->a_vp = vp;
1851 	ASSERT(cr != NULL);
1852 	crhold(cr);
1853 	args->a_cred = cr;
1854 	args->a_io = NFS4_PAGEIO;
1855 	args->a_nfs4_pageio = pageio;
1856 	args->a_nfs4_pp = pp;
1857 	args->a_nfs4_off = io_off;
1858 	args->a_nfs4_len = (uint_t)io_len;
1859 	args->a_nfs4_flags = flags;
1860 
1861 	mutex_enter(&mi->mi_async_lock);
1862 
1863 	/*
1864 	 * If asyncio has been disabled, then make a synchronous request.
1865 	 * This check is done a second time in case async io was diabled
1866 	 * while this thread was blocked waiting for memory pressure to
1867 	 * reduce or for the queue to drain.
1868 	 */
1869 	if (mi->mi_max_threads == 0) {
1870 		mutex_exit(&mi->mi_async_lock);
1871 
1872 		VN_RELE(vp);
1873 		crfree(cr);
1874 		kmem_free(args, sizeof (*args));
1875 		goto noasync;
1876 	}
1877 
1878 	/*
1879 	 * Link request structure into the async list and
1880 	 * wakeup async thread to do the i/o.
1881 	 */
1882 	if (mi->mi_async_reqs[NFS4_PAGEIO] == NULL) {
1883 		mi->mi_async_reqs[NFS4_PAGEIO] = args;
1884 		mi->mi_async_tail[NFS4_PAGEIO] = args;
1885 	} else {
1886 		mi->mi_async_tail[NFS4_PAGEIO]->a_next = args;
1887 		mi->mi_async_tail[NFS4_PAGEIO] = args;
1888 	}
1889 
1890 	mutex_enter(&rp->r_statelock);
1891 	rp->r_count++;
1892 	rp->r_awcount++;
1893 	mutex_exit(&rp->r_statelock);
1894 
1895 	if (mi->mi_io_kstats) {
1896 		mutex_enter(&mi->mi_lock);
1897 		kstat_waitq_enter(KSTAT_IO_PTR(mi->mi_io_kstats));
1898 		mutex_exit(&mi->mi_lock);
1899 	}
1900 
1901 	mi->mi_async_req_count++;
1902 	ASSERT(mi->mi_async_req_count != 0);
1903 	cv_signal(&mi->mi_async_reqs_cv);
1904 	mutex_exit(&mi->mi_async_lock);
1905 	return (0);
1906 
1907 noasync:
1908 	/*
1909 	 * If we can't do it ASYNC, for reads we do nothing (but cleanup
1910 	 * the page list), for writes we do it synchronously, except for
1911 	 * proc_pageout/proc_fsflush as described below.
1912 	 */
1913 	if (flags & B_READ) {
1914 		pvn_read_done(pp, flags | B_ERROR);
1915 		return (0);
1916 	}
1917 
1918 	if (curproc == proc_pageout || curproc == proc_fsflush) {
1919 		/*
1920 		 * If we get here in the context of the pageout/fsflush,
1921 		 * we refuse to do a sync write, because this may hang
1922 		 * pageout/fsflush (and the machine). In this case, we just
1923 		 * re-mark the page as dirty and punt on the page.
1924 		 *
1925 		 * Make sure B_FORCE isn't set.  We can re-mark the
1926 		 * pages as dirty and unlock the pages in one swoop by
1927 		 * passing in B_ERROR to pvn_write_done().  However,
1928 		 * we should make sure B_FORCE isn't set - we don't
1929 		 * want the page tossed before it gets written out.
1930 		 */
1931 		if (flags & B_FORCE)
1932 			flags &= ~(B_INVAL | B_FORCE);
1933 		pvn_write_done(pp, flags | B_ERROR);
1934 		return (0);
1935 	}
1936 
1937 	if (nfs_zone() != mi->mi_zone) {
1938 		/*
1939 		 * So this was a cross-zone sync pageio.  We pass in B_ERROR
1940 		 * to pvn_write_done() to re-mark the pages as dirty and unlock
1941 		 * them.
1942 		 *
1943 		 * We don't want to clear B_FORCE here as the caller presumably
1944 		 * knows what they're doing if they set it.
1945 		 */
1946 		pvn_write_done(pp, flags | B_ERROR);
1947 		return (EPERM);
1948 	}
1949 	return ((*pageio)(vp, pp, io_off, io_len, flags, cr));
1950 }
1951 
1952 void
1953 nfs4_async_readdir(vnode_t *vp, rddir4_cache *rdc, cred_t *cr,
1954     int (*readdir)(vnode_t *, rddir4_cache *, cred_t *))
1955 {
1956 	rnode4_t *rp;
1957 	mntinfo4_t *mi;
1958 	struct nfs4_async_reqs *args;
1959 
1960 	rp = VTOR4(vp);
1961 	ASSERT(rp->r_freef == NULL);
1962 
1963 	mi = VTOMI4(vp);
1964 
1965 	/*
1966 	 * If we can't allocate a request structure, skip the readdir.
1967 	 */
1968 	if ((args = kmem_alloc(sizeof (*args), KM_NOSLEEP)) == NULL)
1969 		goto noasync;
1970 
1971 	args->a_next = NULL;
1972 #ifdef DEBUG
1973 	args->a_queuer = curthread;
1974 #endif
1975 	VN_HOLD(vp);
1976 	args->a_vp = vp;
1977 	ASSERT(cr != NULL);
1978 	crhold(cr);
1979 	args->a_cred = cr;
1980 	args->a_io = NFS4_READDIR;
1981 	args->a_nfs4_readdir = readdir;
1982 	args->a_nfs4_rdc = rdc;
1983 
1984 	mutex_enter(&mi->mi_async_lock);
1985 
1986 	/*
1987 	 * If asyncio has been disabled, then skip this request
1988 	 */
1989 	if (mi->mi_max_threads == 0) {
1990 		mutex_exit(&mi->mi_async_lock);
1991 
1992 		VN_RELE(vp);
1993 		crfree(cr);
1994 		kmem_free(args, sizeof (*args));
1995 		goto noasync;
1996 	}
1997 
1998 	/*
1999 	 * Link request structure into the async list and
2000 	 * wakeup async thread to do the i/o.
2001 	 */
2002 	if (mi->mi_async_reqs[NFS4_READDIR] == NULL) {
2003 		mi->mi_async_reqs[NFS4_READDIR] = args;
2004 		mi->mi_async_tail[NFS4_READDIR] = args;
2005 	} else {
2006 		mi->mi_async_tail[NFS4_READDIR]->a_next = args;
2007 		mi->mi_async_tail[NFS4_READDIR] = args;
2008 	}
2009 
2010 	mutex_enter(&rp->r_statelock);
2011 	rp->r_count++;
2012 	mutex_exit(&rp->r_statelock);
2013 
2014 	if (mi->mi_io_kstats) {
2015 		mutex_enter(&mi->mi_lock);
2016 		kstat_waitq_enter(KSTAT_IO_PTR(mi->mi_io_kstats));
2017 		mutex_exit(&mi->mi_lock);
2018 	}
2019 
2020 	mi->mi_async_req_count++;
2021 	ASSERT(mi->mi_async_req_count != 0);
2022 	cv_signal(&mi->mi_async_reqs_cv);
2023 	mutex_exit(&mi->mi_async_lock);
2024 	return;
2025 
2026 noasync:
2027 	mutex_enter(&rp->r_statelock);
2028 	rdc->entries = NULL;
2029 	/*
2030 	 * Indicate that no one is trying to fill this entry and
2031 	 * it still needs to be filled.
2032 	 */
2033 	rdc->flags &= ~RDDIR;
2034 	rdc->flags |= RDDIRREQ;
2035 	rddir4_cache_rele(rp, rdc);
2036 	mutex_exit(&rp->r_statelock);
2037 }
2038 
2039 void
2040 nfs4_async_commit(vnode_t *vp, page_t *plist, offset3 offset, count3 count,
2041     cred_t *cr, void (*commit)(vnode_t *, page_t *, offset3, count3,
2042     cred_t *))
2043 {
2044 	rnode4_t *rp;
2045 	mntinfo4_t *mi;
2046 	struct nfs4_async_reqs *args;
2047 	page_t *pp;
2048 
2049 	rp = VTOR4(vp);
2050 	mi = VTOMI4(vp);
2051 
2052 	/*
2053 	 * If we can't allocate a request structure, do the commit
2054 	 * operation synchronously in this thread's context.
2055 	 */
2056 	if ((args = kmem_alloc(sizeof (*args), KM_NOSLEEP)) == NULL)
2057 		goto noasync;
2058 
2059 	args->a_next = NULL;
2060 #ifdef DEBUG
2061 	args->a_queuer = curthread;
2062 #endif
2063 	VN_HOLD(vp);
2064 	args->a_vp = vp;
2065 	ASSERT(cr != NULL);
2066 	crhold(cr);
2067 	args->a_cred = cr;
2068 	args->a_io = NFS4_COMMIT;
2069 	args->a_nfs4_commit = commit;
2070 	args->a_nfs4_plist = plist;
2071 	args->a_nfs4_offset = offset;
2072 	args->a_nfs4_count = count;
2073 
2074 	mutex_enter(&mi->mi_async_lock);
2075 
2076 	/*
2077 	 * If asyncio has been disabled, then make a synchronous request.
2078 	 * This check is done a second time in case async io was diabled
2079 	 * while this thread was blocked waiting for memory pressure to
2080 	 * reduce or for the queue to drain.
2081 	 */
2082 	if (mi->mi_max_threads == 0) {
2083 		mutex_exit(&mi->mi_async_lock);
2084 
2085 		VN_RELE(vp);
2086 		crfree(cr);
2087 		kmem_free(args, sizeof (*args));
2088 		goto noasync;
2089 	}
2090 
2091 	/*
2092 	 * Link request structure into the async list and
2093 	 * wakeup async thread to do the i/o.
2094 	 */
2095 	if (mi->mi_async_reqs[NFS4_COMMIT] == NULL) {
2096 		mi->mi_async_reqs[NFS4_COMMIT] = args;
2097 		mi->mi_async_tail[NFS4_COMMIT] = args;
2098 	} else {
2099 		mi->mi_async_tail[NFS4_COMMIT]->a_next = args;
2100 		mi->mi_async_tail[NFS4_COMMIT] = args;
2101 	}
2102 
2103 	mutex_enter(&rp->r_statelock);
2104 	rp->r_count++;
2105 	mutex_exit(&rp->r_statelock);
2106 
2107 	if (mi->mi_io_kstats) {
2108 		mutex_enter(&mi->mi_lock);
2109 		kstat_waitq_enter(KSTAT_IO_PTR(mi->mi_io_kstats));
2110 		mutex_exit(&mi->mi_lock);
2111 	}
2112 
2113 	mi->mi_async_req_count++;
2114 	ASSERT(mi->mi_async_req_count != 0);
2115 	cv_signal(&mi->mi_async_reqs_cv);
2116 	mutex_exit(&mi->mi_async_lock);
2117 	return;
2118 
2119 noasync:
2120 	if (curproc == proc_pageout || curproc == proc_fsflush ||
2121 	    nfs_zone() != mi->mi_zone) {
2122 		while (plist != NULL) {
2123 			pp = plist;
2124 			page_sub(&plist, pp);
2125 			pp->p_fsdata = C_COMMIT;
2126 			page_unlock(pp);
2127 		}
2128 		return;
2129 	}
2130 	(*commit)(vp, plist, offset, count, cr);
2131 }
2132 
2133 /*
2134  * nfs4_async_inactive - hand off a VOP_INACTIVE call to a thread.  The
2135  * reference to the vnode is handed over to the thread; the caller should
2136  * no longer refer to the vnode.
2137  *
2138  * Unlike most of the async routines, this handoff is needed for
2139  * correctness reasons, not just performance.  So doing operations in the
2140  * context of the current thread is not an option.
2141  */
2142 void
2143 nfs4_async_inactive(vnode_t *vp, cred_t *cr)
2144 {
2145 	mntinfo4_t *mi;
2146 	struct nfs4_async_reqs *args;
2147 	boolean_t signal_inactive_thread = B_FALSE;
2148 
2149 	mi = VTOMI4(vp);
2150 
2151 	args = kmem_alloc(sizeof (*args), KM_SLEEP);
2152 	args->a_next = NULL;
2153 #ifdef DEBUG
2154 	args->a_queuer = curthread;
2155 #endif
2156 	args->a_vp = vp;
2157 	ASSERT(cr != NULL);
2158 	crhold(cr);
2159 	args->a_cred = cr;
2160 	args->a_io = NFS4_INACTIVE;
2161 
2162 	/*
2163 	 * Note that we don't check mi->mi_max_threads here, since we
2164 	 * *need* to get rid of this vnode regardless of whether someone
2165 	 * set nfs4_max_threads to zero in /etc/system.
2166 	 *
2167 	 * The manager thread knows about this and is willing to create
2168 	 * at least one thread to accommodate us.
2169 	 */
2170 	mutex_enter(&mi->mi_async_lock);
2171 	if (mi->mi_inactive_thread == NULL) {
2172 		rnode4_t *rp;
2173 		vnode_t *unldvp = NULL;
2174 		char *unlname;
2175 		cred_t *unlcred;
2176 
2177 		mutex_exit(&mi->mi_async_lock);
2178 		/*
2179 		 * We just need to free up the memory associated with the
2180 		 * vnode, which can be safely done from within the current
2181 		 * context.
2182 		 */
2183 		crfree(cr);	/* drop our reference */
2184 		kmem_free(args, sizeof (*args));
2185 		rp = VTOR4(vp);
2186 		mutex_enter(&rp->r_statelock);
2187 		if (rp->r_unldvp != NULL) {
2188 			unldvp = rp->r_unldvp;
2189 			rp->r_unldvp = NULL;
2190 			unlname = rp->r_unlname;
2191 			rp->r_unlname = NULL;
2192 			unlcred = rp->r_unlcred;
2193 			rp->r_unlcred = NULL;
2194 		}
2195 		mutex_exit(&rp->r_statelock);
2196 		/*
2197 		 * No need to explicitly throw away any cached pages.  The
2198 		 * eventual r4inactive() will attempt a synchronous
2199 		 * VOP_PUTPAGE() which will immediately fail since the request
2200 		 * is coming from the wrong zone, and then will proceed to call
2201 		 * nfs4_invalidate_pages() which will clean things up for us.
2202 		 *
2203 		 * Throw away the delegation here so rp4_addfree()'s attempt to
2204 		 * return any existing delegations becomes a no-op.
2205 		 */
2206 		if (rp->r_deleg_type != OPEN_DELEGATE_NONE) {
2207 			(void) nfs_rw_enter_sig(&mi->mi_recovlock, RW_READER,
2208 			    FALSE);
2209 			(void) nfs4delegreturn(rp, NFS4_DR_DISCARD);
2210 			nfs_rw_exit(&mi->mi_recovlock);
2211 		}
2212 		nfs4_clear_open_streams(rp);
2213 
2214 		rp4_addfree(rp, cr);
2215 		if (unldvp != NULL) {
2216 			kmem_free(unlname, MAXNAMELEN);
2217 			VN_RELE(unldvp);
2218 			crfree(unlcred);
2219 		}
2220 		return;
2221 	}
2222 
2223 	if (mi->mi_manager_thread == NULL) {
2224 		/*
2225 		 * We want to talk to the inactive thread.
2226 		 */
2227 		signal_inactive_thread = B_TRUE;
2228 	}
2229 
2230 	/*
2231 	 * Enqueue the vnode and wake up either the special thread (empty
2232 	 * list) or an async thread.
2233 	 */
2234 	if (mi->mi_async_reqs[NFS4_INACTIVE] == NULL) {
2235 		mi->mi_async_reqs[NFS4_INACTIVE] = args;
2236 		mi->mi_async_tail[NFS4_INACTIVE] = args;
2237 		signal_inactive_thread = B_TRUE;
2238 	} else {
2239 		mi->mi_async_tail[NFS4_INACTIVE]->a_next = args;
2240 		mi->mi_async_tail[NFS4_INACTIVE] = args;
2241 	}
2242 	if (signal_inactive_thread) {
2243 		cv_signal(&mi->mi_inact_req_cv);
2244 	} else  {
2245 		mi->mi_async_req_count++;
2246 		ASSERT(mi->mi_async_req_count != 0);
2247 		cv_signal(&mi->mi_async_reqs_cv);
2248 	}
2249 
2250 	mutex_exit(&mi->mi_async_lock);
2251 }
2252 
2253 int
2254 writerp4(rnode4_t *rp, caddr_t base, int tcount, struct uio *uio, int pgcreated)
2255 {
2256 	int pagecreate;
2257 	int n;
2258 	int saved_n;
2259 	caddr_t saved_base;
2260 	u_offset_t offset;
2261 	int error;
2262 	int sm_error;
2263 	vnode_t *vp = RTOV(rp);
2264 
2265 	ASSERT(tcount <= MAXBSIZE && tcount <= uio->uio_resid);
2266 	ASSERT(nfs_rw_lock_held(&rp->r_rwlock, RW_WRITER));
2267 	if (!vpm_enable) {
2268 		ASSERT(((uintptr_t)base & MAXBOFFSET) + tcount <= MAXBSIZE);
2269 	}
2270 
2271 	/*
2272 	 * Move bytes in at most PAGESIZE chunks. We must avoid
2273 	 * spanning pages in uiomove() because page faults may cause
2274 	 * the cache to be invalidated out from under us. The r_size is not
2275 	 * updated until after the uiomove. If we push the last page of a
2276 	 * file before r_size is correct, we will lose the data written past
2277 	 * the current (and invalid) r_size.
2278 	 */
2279 	do {
2280 		offset = uio->uio_loffset;
2281 		pagecreate = 0;
2282 
2283 		/*
2284 		 * n is the number of bytes required to satisfy the request
2285 		 *   or the number of bytes to fill out the page.
2286 		 */
2287 		n = (int)MIN((PAGESIZE - (offset & PAGEOFFSET)), tcount);
2288 
2289 		/*
2290 		 * Check to see if we can skip reading in the page
2291 		 * and just allocate the memory.  We can do this
2292 		 * if we are going to rewrite the entire mapping
2293 		 * or if we are going to write to or beyond the current
2294 		 * end of file from the beginning of the mapping.
2295 		 *
2296 		 * The read of r_size is now protected by r_statelock.
2297 		 */
2298 		mutex_enter(&rp->r_statelock);
2299 		/*
2300 		 * When pgcreated is nonzero the caller has already done
2301 		 * a segmap_getmapflt with forcefault 0 and S_WRITE. With
2302 		 * segkpm this means we already have at least one page
2303 		 * created and mapped at base.
2304 		 */
2305 		pagecreate = pgcreated ||
2306 		    ((offset & PAGEOFFSET) == 0 &&
2307 		    (n == PAGESIZE || ((offset + n) >= rp->r_size)));
2308 
2309 		mutex_exit(&rp->r_statelock);
2310 
2311 		if (!vpm_enable && pagecreate) {
2312 			/*
2313 			 * The last argument tells segmap_pagecreate() to
2314 			 * always lock the page, as opposed to sometimes
2315 			 * returning with the page locked. This way we avoid a
2316 			 * fault on the ensuing uiomove(), but also
2317 			 * more importantly (to fix bug 1094402) we can
2318 			 * call segmap_fault() to unlock the page in all
2319 			 * cases. An alternative would be to modify
2320 			 * segmap_pagecreate() to tell us when it is
2321 			 * locking a page, but that's a fairly major
2322 			 * interface change.
2323 			 */
2324 			if (pgcreated == 0)
2325 				(void) segmap_pagecreate(segkmap, base,
2326 				    (uint_t)n, 1);
2327 			saved_base = base;
2328 			saved_n = n;
2329 		}
2330 
2331 		/*
2332 		 * The number of bytes of data in the last page can not
2333 		 * be accurately be determined while page is being
2334 		 * uiomove'd to and the size of the file being updated.
2335 		 * Thus, inform threads which need to know accurately
2336 		 * how much data is in the last page of the file.  They
2337 		 * will not do the i/o immediately, but will arrange for
2338 		 * the i/o to happen later when this modify operation
2339 		 * will have finished.
2340 		 */
2341 		ASSERT(!(rp->r_flags & R4MODINPROGRESS));
2342 		mutex_enter(&rp->r_statelock);
2343 		rp->r_flags |= R4MODINPROGRESS;
2344 		rp->r_modaddr = (offset & MAXBMASK);
2345 		mutex_exit(&rp->r_statelock);
2346 
2347 		if (vpm_enable) {
2348 			/*
2349 			 * Copy data. If new pages are created, part of
2350 			 * the page that is not written will be initizliazed
2351 			 * with zeros.
2352 			 */
2353 			error = vpm_data_copy(vp, offset, n, uio,
2354 			    !pagecreate, NULL, 0, S_WRITE);
2355 		} else {
2356 			error = uiomove(base, n, UIO_WRITE, uio);
2357 		}
2358 
2359 		/*
2360 		 * r_size is the maximum number of
2361 		 * bytes known to be in the file.
2362 		 * Make sure it is at least as high as the
2363 		 * first unwritten byte pointed to by uio_loffset.
2364 		 */
2365 		mutex_enter(&rp->r_statelock);
2366 		if (rp->r_size < uio->uio_loffset)
2367 			rp->r_size = uio->uio_loffset;
2368 		rp->r_flags &= ~R4MODINPROGRESS;
2369 		rp->r_flags |= R4DIRTY;
2370 		mutex_exit(&rp->r_statelock);
2371 
2372 		/* n = # of bytes written */
2373 		n = (int)(uio->uio_loffset - offset);
2374 
2375 		if (!vpm_enable) {
2376 			base += n;
2377 		}
2378 
2379 		tcount -= n;
2380 		/*
2381 		 * If we created pages w/o initializing them completely,
2382 		 * we need to zero the part that wasn't set up.
2383 		 * This happens on a most EOF write cases and if
2384 		 * we had some sort of error during the uiomove.
2385 		 */
2386 		if (!vpm_enable && pagecreate) {
2387 			if ((uio->uio_loffset & PAGEOFFSET) || n == 0)
2388 				(void) kzero(base, PAGESIZE - n);
2389 
2390 			if (pgcreated) {
2391 				/*
2392 				 * Caller is responsible for this page,
2393 				 * it was not created in this loop.
2394 				 */
2395 				pgcreated = 0;
2396 			} else {
2397 				/*
2398 				 * For bug 1094402: segmap_pagecreate locks
2399 				 * page. Unlock it. This also unlocks the
2400 				 * pages allocated by page_create_va() in
2401 				 * segmap_pagecreate().
2402 				 */
2403 				sm_error = segmap_fault(kas.a_hat, segkmap,
2404 				    saved_base, saved_n,
2405 				    F_SOFTUNLOCK, S_WRITE);
2406 				if (error == 0)
2407 					error = sm_error;
2408 			}
2409 		}
2410 	} while (tcount > 0 && error == 0);
2411 
2412 	return (error);
2413 }
2414 
2415 int
2416 nfs4_putpages(vnode_t *vp, u_offset_t off, size_t len, int flags, cred_t *cr)
2417 {
2418 	rnode4_t *rp;
2419 	page_t *pp;
2420 	u_offset_t eoff;
2421 	u_offset_t io_off;
2422 	size_t io_len;
2423 	int error;
2424 	int rdirty;
2425 	int err;
2426 
2427 	rp = VTOR4(vp);
2428 	ASSERT(rp->r_count > 0);
2429 
2430 	if (!nfs4_has_pages(vp))
2431 		return (0);
2432 
2433 	ASSERT(vp->v_type != VCHR);
2434 
2435 	/*
2436 	 * If R4OUTOFSPACE is set, then all writes turn into B_INVAL
2437 	 * writes.  B_FORCE is set to force the VM system to actually
2438 	 * invalidate the pages, even if the i/o failed.  The pages
2439 	 * need to get invalidated because they can't be written out
2440 	 * because there isn't any space left on either the server's
2441 	 * file system or in the user's disk quota.  The B_FREE bit
2442 	 * is cleared to avoid confusion as to whether this is a
2443 	 * request to place the page on the freelist or to destroy
2444 	 * it.
2445 	 */
2446 	if ((rp->r_flags & R4OUTOFSPACE) ||
2447 	    (vp->v_vfsp->vfs_flag & VFS_UNMOUNTED))
2448 		flags = (flags & ~B_FREE) | B_INVAL | B_FORCE;
2449 
2450 	if (len == 0) {
2451 		/*
2452 		 * If doing a full file synchronous operation, then clear
2453 		 * the R4DIRTY bit.  If a page gets dirtied while the flush
2454 		 * is happening, then R4DIRTY will get set again.  The
2455 		 * R4DIRTY bit must get cleared before the flush so that
2456 		 * we don't lose this information.
2457 		 *
2458 		 * If there are no full file async write operations
2459 		 * pending and RDIRTY bit is set, clear it.
2460 		 */
2461 		if (off == (u_offset_t)0 &&
2462 		    !(flags & B_ASYNC) &&
2463 		    (rp->r_flags & R4DIRTY)) {
2464 			mutex_enter(&rp->r_statelock);
2465 			rdirty = (rp->r_flags & R4DIRTY);
2466 			rp->r_flags &= ~R4DIRTY;
2467 			mutex_exit(&rp->r_statelock);
2468 		} else if (flags & B_ASYNC && off == (u_offset_t)0) {
2469 			mutex_enter(&rp->r_statelock);
2470 			if (rp->r_flags & R4DIRTY && rp->r_awcount == 0) {
2471 				rdirty = (rp->r_flags & R4DIRTY);
2472 				rp->r_flags &= ~R4DIRTY;
2473 			}
2474 			mutex_exit(&rp->r_statelock);
2475 		} else
2476 			rdirty = 0;
2477 
2478 		/*
2479 		 * Search the entire vp list for pages >= off, and flush
2480 		 * the dirty pages.
2481 		 */
2482 		error = pvn_vplist_dirty(vp, off, rp->r_putapage,
2483 		    flags, cr);
2484 
2485 		/*
2486 		 * If an error occurred and the file was marked as dirty
2487 		 * before and we aren't forcibly invalidating pages, then
2488 		 * reset the R4DIRTY flag.
2489 		 */
2490 		if (error && rdirty &&
2491 		    (flags & (B_INVAL | B_FORCE)) != (B_INVAL | B_FORCE)) {
2492 			mutex_enter(&rp->r_statelock);
2493 			rp->r_flags |= R4DIRTY;
2494 			mutex_exit(&rp->r_statelock);
2495 		}
2496 	} else {
2497 		/*
2498 		 * Do a range from [off...off + len) looking for pages
2499 		 * to deal with.
2500 		 */
2501 		error = 0;
2502 		io_len = 0;
2503 		eoff = off + len;
2504 		mutex_enter(&rp->r_statelock);
2505 		for (io_off = off; io_off < eoff && io_off < rp->r_size;
2506 		    io_off += io_len) {
2507 			mutex_exit(&rp->r_statelock);
2508 			/*
2509 			 * If we are not invalidating, synchronously
2510 			 * freeing or writing pages use the routine
2511 			 * page_lookup_nowait() to prevent reclaiming
2512 			 * them from the free list.
2513 			 */
2514 			if ((flags & B_INVAL) || !(flags & B_ASYNC)) {
2515 				pp = page_lookup(vp, io_off,
2516 				    (flags & (B_INVAL | B_FREE)) ?
2517 				    SE_EXCL : SE_SHARED);
2518 			} else {
2519 				pp = page_lookup_nowait(vp, io_off,
2520 				    (flags & B_FREE) ? SE_EXCL : SE_SHARED);
2521 			}
2522 
2523 			if (pp == NULL || !pvn_getdirty(pp, flags))
2524 				io_len = PAGESIZE;
2525 			else {
2526 				err = (*rp->r_putapage)(vp, pp, &io_off,
2527 				    &io_len, flags, cr);
2528 				if (!error)
2529 					error = err;
2530 				/*
2531 				 * "io_off" and "io_len" are returned as
2532 				 * the range of pages we actually wrote.
2533 				 * This allows us to skip ahead more quickly
2534 				 * since several pages may've been dealt
2535 				 * with by this iteration of the loop.
2536 				 */
2537 			}
2538 			mutex_enter(&rp->r_statelock);
2539 		}
2540 		mutex_exit(&rp->r_statelock);
2541 	}
2542 
2543 	return (error);
2544 }
2545 
2546 void
2547 nfs4_invalidate_pages(vnode_t *vp, u_offset_t off, cred_t *cr)
2548 {
2549 	rnode4_t *rp;
2550 
2551 	rp = VTOR4(vp);
2552 	if (IS_SHADOW(vp, rp))
2553 		vp = RTOV4(rp);
2554 	mutex_enter(&rp->r_statelock);
2555 	while (rp->r_flags & R4TRUNCATE)
2556 		cv_wait(&rp->r_cv, &rp->r_statelock);
2557 	rp->r_flags |= R4TRUNCATE;
2558 	if (off == (u_offset_t)0) {
2559 		rp->r_flags &= ~R4DIRTY;
2560 		if (!(rp->r_flags & R4STALE))
2561 			rp->r_error = 0;
2562 	}
2563 	rp->r_truncaddr = off;
2564 	mutex_exit(&rp->r_statelock);
2565 	(void) pvn_vplist_dirty(vp, off, rp->r_putapage,
2566 	    B_INVAL | B_TRUNC, cr);
2567 	mutex_enter(&rp->r_statelock);
2568 	rp->r_flags &= ~R4TRUNCATE;
2569 	cv_broadcast(&rp->r_cv);
2570 	mutex_exit(&rp->r_statelock);
2571 }
2572 
2573 static int
2574 nfs4_mnt_kstat_update(kstat_t *ksp, int rw)
2575 {
2576 	mntinfo4_t *mi;
2577 	struct mntinfo_kstat *mik;
2578 	vfs_t *vfsp;
2579 
2580 	/* this is a read-only kstat. Bail out on a write */
2581 	if (rw == KSTAT_WRITE)
2582 		return (EACCES);
2583 
2584 
2585 	/*
2586 	 * We don't want to wait here as kstat_chain_lock could be held by
2587 	 * dounmount(). dounmount() takes vfs_reflock before the chain lock
2588 	 * and thus could lead to a deadlock.
2589 	 */
2590 	vfsp = (struct vfs *)ksp->ks_private;
2591 
2592 	mi = VFTOMI4(vfsp);
2593 	mik = (struct mntinfo_kstat *)ksp->ks_data;
2594 
2595 	(void) strcpy(mik->mik_proto, mi->mi_curr_serv->sv_knconf->knc_proto);
2596 
2597 	mik->mik_vers = (uint32_t)mi->mi_vers;
2598 	mik->mik_flags = mi->mi_flags;
2599 	/*
2600 	 * The sv_secdata holds the flavor the client specifies.
2601 	 * If the client uses default and a security negotiation
2602 	 * occurs, sv_currsec will point to the current flavor
2603 	 * selected from the server flavor list.
2604 	 * sv_currsec is NULL if no security negotiation takes place.
2605 	 */
2606 	mik->mik_secmod = mi->mi_curr_serv->sv_currsec ?
2607 	    mi->mi_curr_serv->sv_currsec->secmod :
2608 	    mi->mi_curr_serv->sv_secdata->secmod;
2609 	mik->mik_curread = (uint32_t)mi->mi_curread;
2610 	mik->mik_curwrite = (uint32_t)mi->mi_curwrite;
2611 	mik->mik_retrans = mi->mi_retrans;
2612 	mik->mik_timeo = mi->mi_timeo;
2613 	mik->mik_acregmin = HR2SEC(mi->mi_acregmin);
2614 	mik->mik_acregmax = HR2SEC(mi->mi_acregmax);
2615 	mik->mik_acdirmin = HR2SEC(mi->mi_acdirmin);
2616 	mik->mik_acdirmax = HR2SEC(mi->mi_acdirmax);
2617 	mik->mik_noresponse = (uint32_t)mi->mi_noresponse;
2618 	mik->mik_failover = (uint32_t)mi->mi_failover;
2619 	mik->mik_remap = (uint32_t)mi->mi_remap;
2620 
2621 	(void) strcpy(mik->mik_curserver, mi->mi_curr_serv->sv_hostname);
2622 
2623 	return (0);
2624 }
2625 
2626 void
2627 nfs4_mnt_kstat_init(struct vfs *vfsp)
2628 {
2629 	mntinfo4_t *mi = VFTOMI4(vfsp);
2630 
2631 	/*
2632 	 * PSARC 2001/697 Contract Private Interface
2633 	 * All nfs kstats are under SunMC contract
2634 	 * Please refer to the PSARC listed above and contact
2635 	 * SunMC before making any changes!
2636 	 *
2637 	 * Changes must be reviewed by Solaris File Sharing
2638 	 * Changes must be communicated to contract-2001-697@sun.com
2639 	 *
2640 	 */
2641 
2642 	mi->mi_io_kstats = kstat_create_zone("nfs", getminor(vfsp->vfs_dev),
2643 	    NULL, "nfs", KSTAT_TYPE_IO, 1, 0, mi->mi_zone->zone_id);
2644 	if (mi->mi_io_kstats) {
2645 		if (mi->mi_zone->zone_id != GLOBAL_ZONEID)
2646 			kstat_zone_add(mi->mi_io_kstats, GLOBAL_ZONEID);
2647 		mi->mi_io_kstats->ks_lock = &mi->mi_lock;
2648 		kstat_install(mi->mi_io_kstats);
2649 	}
2650 
2651 	if ((mi->mi_ro_kstats = kstat_create_zone("nfs",
2652 	    getminor(vfsp->vfs_dev), "mntinfo", "misc", KSTAT_TYPE_RAW,
2653 	    sizeof (struct mntinfo_kstat), 0, mi->mi_zone->zone_id)) != NULL) {
2654 		if (mi->mi_zone->zone_id != GLOBAL_ZONEID)
2655 			kstat_zone_add(mi->mi_ro_kstats, GLOBAL_ZONEID);
2656 		mi->mi_ro_kstats->ks_update = nfs4_mnt_kstat_update;
2657 		mi->mi_ro_kstats->ks_private = (void *)vfsp;
2658 		kstat_install(mi->mi_ro_kstats);
2659 	}
2660 
2661 	nfs4_mnt_recov_kstat_init(vfsp);
2662 }
2663 
2664 void
2665 nfs4_write_error(vnode_t *vp, int error, cred_t *cr)
2666 {
2667 	mntinfo4_t *mi;
2668 	clock_t now = ddi_get_lbolt();
2669 
2670 	mi = VTOMI4(vp);
2671 	/*
2672 	 * In case of forced unmount, do not print any messages
2673 	 * since it can flood the console with error messages.
2674 	 */
2675 	if (mi->mi_vfsp->vfs_flag & VFS_UNMOUNTED)
2676 		return;
2677 
2678 	/*
2679 	 * If the mount point is dead, not recoverable, do not
2680 	 * print error messages that can flood the console.
2681 	 */
2682 	if (mi->mi_flags & MI4_RECOV_FAIL)
2683 		return;
2684 
2685 	/*
2686 	 * No use in flooding the console with ENOSPC
2687 	 * messages from the same file system.
2688 	 */
2689 	if ((error != ENOSPC && error != EDQUOT) ||
2690 	    now - mi->mi_printftime > 0) {
2691 		zoneid_t zoneid = mi->mi_zone->zone_id;
2692 
2693 #ifdef DEBUG
2694 		nfs_perror(error, "NFS%ld write error on host %s: %m.\n",
2695 		    mi->mi_vers, VTOR4(vp)->r_server->sv_hostname, NULL);
2696 #else
2697 		nfs_perror(error, "NFS write error on host %s: %m.\n",
2698 		    VTOR4(vp)->r_server->sv_hostname, NULL);
2699 #endif
2700 		if (error == ENOSPC || error == EDQUOT) {
2701 			zcmn_err(zoneid, CE_CONT,
2702 			    "^File: userid=%d, groupid=%d\n",
2703 			    crgetuid(cr), crgetgid(cr));
2704 			if (crgetuid(curthread->t_cred) != crgetuid(cr) ||
2705 			    crgetgid(curthread->t_cred) != crgetgid(cr)) {
2706 				zcmn_err(zoneid, CE_CONT,
2707 				    "^User: userid=%d, groupid=%d\n",
2708 				    crgetuid(curthread->t_cred),
2709 				    crgetgid(curthread->t_cred));
2710 			}
2711 			mi->mi_printftime = now +
2712 			    nfs_write_error_interval * hz;
2713 		}
2714 		sfh4_printfhandle(VTOR4(vp)->r_fh);
2715 #ifdef DEBUG
2716 		if (error == EACCES) {
2717 			zcmn_err(zoneid, CE_CONT,
2718 			    "nfs_bio: cred is%s kcred\n",
2719 			    cr == kcred ? "" : " not");
2720 		}
2721 #endif
2722 	}
2723 }
2724 
2725 /*
2726  * Return non-zero if the given file can be safely memory mapped.  Locks
2727  * are safe if whole-file (length and offset are both zero).
2728  */
2729 
2730 #define	SAFE_LOCK(flk)	((flk).l_start == 0 && (flk).l_len == 0)
2731 
2732 static int
2733 nfs4_safemap(const vnode_t *vp)
2734 {
2735 	locklist_t	*llp, *next_llp;
2736 	int		safe = 1;
2737 	rnode4_t	*rp = VTOR4(vp);
2738 
2739 	ASSERT(nfs_rw_lock_held(&rp->r_lkserlock, RW_WRITER));
2740 
2741 	NFS4_DEBUG(nfs4_client_map_debug, (CE_NOTE, "nfs4_safemap: "
2742 	    "vp = %p", (void *)vp));
2743 
2744 	/*
2745 	 * Review all the locks for the vnode, both ones that have been
2746 	 * acquired and ones that are pending.  We assume that
2747 	 * flk_active_locks_for_vp() has merged any locks that can be
2748 	 * merged (so that if a process has the entire file locked, it is
2749 	 * represented as a single lock).
2750 	 *
2751 	 * Note that we can't bail out of the loop if we find a non-safe
2752 	 * lock, because we have to free all the elements in the llp list.
2753 	 * We might be able to speed up this code slightly by not looking
2754 	 * at each lock's l_start and l_len fields once we've found a
2755 	 * non-safe lock.
2756 	 */
2757 
2758 	llp = flk_active_locks_for_vp(vp);
2759 	while (llp) {
2760 		NFS4_DEBUG(nfs4_client_map_debug, (CE_NOTE,
2761 		    "nfs4_safemap: active lock (%" PRId64 ", %" PRId64 ")",
2762 		    llp->ll_flock.l_start, llp->ll_flock.l_len));
2763 		if (!SAFE_LOCK(llp->ll_flock)) {
2764 			safe = 0;
2765 			NFS4_DEBUG(nfs4_client_map_debug, (CE_NOTE,
2766 			    "nfs4_safemap: unsafe active lock (%" PRId64
2767 			    ", %" PRId64 ")", llp->ll_flock.l_start,
2768 			    llp->ll_flock.l_len));
2769 		}
2770 		next_llp = llp->ll_next;
2771 		VN_RELE(llp->ll_vp);
2772 		kmem_free(llp, sizeof (*llp));
2773 		llp = next_llp;
2774 	}
2775 
2776 	NFS4_DEBUG(nfs4_client_map_debug, (CE_NOTE, "nfs4_safemap: %s",
2777 	    safe ? "safe" : "unsafe"));
2778 	return (safe);
2779 }
2780 
2781 /*
2782  * Return whether there is a lost LOCK or LOCKU queued up for the given
2783  * file that would make an mmap request unsafe.  cf. nfs4_safemap().
2784  */
2785 
2786 bool_t
2787 nfs4_map_lost_lock_conflict(vnode_t *vp)
2788 {
2789 	bool_t conflict = FALSE;
2790 	nfs4_lost_rqst_t *lrp;
2791 	mntinfo4_t *mi = VTOMI4(vp);
2792 
2793 	mutex_enter(&mi->mi_lock);
2794 	for (lrp = list_head(&mi->mi_lost_state); lrp != NULL;
2795 	    lrp = list_next(&mi->mi_lost_state, lrp)) {
2796 		if (lrp->lr_op != OP_LOCK && lrp->lr_op != OP_LOCKU)
2797 			continue;
2798 		ASSERT(lrp->lr_vp != NULL);
2799 		if (!VOP_CMP(lrp->lr_vp, vp, NULL))
2800 			continue;	/* different file */
2801 		if (!SAFE_LOCK(*lrp->lr_flk)) {
2802 			conflict = TRUE;
2803 			break;
2804 		}
2805 	}
2806 
2807 	mutex_exit(&mi->mi_lock);
2808 	return (conflict);
2809 }
2810 
2811 /*
2812  * nfs_lockcompletion:
2813  *
2814  * If the vnode has a lock that makes it unsafe to cache the file, mark it
2815  * as non cachable (set VNOCACHE bit).
2816  */
2817 
2818 void
2819 nfs4_lockcompletion(vnode_t *vp, int cmd)
2820 {
2821 	rnode4_t *rp = VTOR4(vp);
2822 
2823 	ASSERT(nfs_rw_lock_held(&rp->r_lkserlock, RW_WRITER));
2824 	ASSERT(!IS_SHADOW(vp, rp));
2825 
2826 	if (cmd == F_SETLK || cmd == F_SETLKW) {
2827 
2828 		if (!nfs4_safemap(vp)) {
2829 			mutex_enter(&vp->v_lock);
2830 			vp->v_flag |= VNOCACHE;
2831 			mutex_exit(&vp->v_lock);
2832 		} else {
2833 			mutex_enter(&vp->v_lock);
2834 			vp->v_flag &= ~VNOCACHE;
2835 			mutex_exit(&vp->v_lock);
2836 		}
2837 	}
2838 	/*
2839 	 * The cached attributes of the file are stale after acquiring
2840 	 * the lock on the file. They were updated when the file was
2841 	 * opened, but not updated when the lock was acquired. Therefore the
2842 	 * cached attributes are invalidated after the lock is obtained.
2843 	 */
2844 	PURGE_ATTRCACHE4(vp);
2845 }
2846 
2847 /* ARGSUSED */
2848 static void *
2849 nfs4_mi_init(zoneid_t zoneid)
2850 {
2851 	struct mi4_globals *mig;
2852 
2853 	mig = kmem_alloc(sizeof (*mig), KM_SLEEP);
2854 	mutex_init(&mig->mig_lock, NULL, MUTEX_DEFAULT, NULL);
2855 	list_create(&mig->mig_list, sizeof (mntinfo4_t),
2856 	    offsetof(mntinfo4_t, mi_zone_node));
2857 	mig->mig_destructor_called = B_FALSE;
2858 	return (mig);
2859 }
2860 
2861 /*
2862  * Callback routine to tell all NFSv4 mounts in the zone to start tearing down
2863  * state and killing off threads.
2864  */
2865 /* ARGSUSED */
2866 static void
2867 nfs4_mi_shutdown(zoneid_t zoneid, void *data)
2868 {
2869 	struct mi4_globals *mig = data;
2870 	mntinfo4_t *mi;
2871 	nfs4_server_t *np;
2872 
2873 	NFS4_DEBUG(nfs4_client_zone_debug, (CE_NOTE,
2874 	    "nfs4_mi_shutdown zone %d\n", zoneid));
2875 	ASSERT(mig != NULL);
2876 	for (;;) {
2877 		mutex_enter(&mig->mig_lock);
2878 		mi = list_head(&mig->mig_list);
2879 		if (mi == NULL) {
2880 			mutex_exit(&mig->mig_lock);
2881 			break;
2882 		}
2883 
2884 		NFS4_DEBUG(nfs4_client_zone_debug, (CE_NOTE,
2885 		    "nfs4_mi_shutdown stopping vfs %p\n", (void *)mi->mi_vfsp));
2886 		/*
2887 		 * purge the DNLC for this filesystem
2888 		 */
2889 		(void) dnlc_purge_vfsp(mi->mi_vfsp, 0);
2890 		/*
2891 		 * Tell existing async worker threads to exit.
2892 		 */
2893 		mutex_enter(&mi->mi_async_lock);
2894 		mi->mi_max_threads = 0;
2895 		NFS4_WAKEALL_ASYNC_WORKERS(mi->mi_async_work_cv);
2896 		/*
2897 		 * Set the appropriate flags, signal and wait for both the
2898 		 * async manager and the inactive thread to exit when they're
2899 		 * done with their current work.
2900 		 */
2901 		mutex_enter(&mi->mi_lock);
2902 		mi->mi_flags |= (MI4_ASYNC_MGR_STOP|MI4_DEAD);
2903 		mutex_exit(&mi->mi_lock);
2904 		mutex_exit(&mi->mi_async_lock);
2905 		if (mi->mi_manager_thread) {
2906 			nfs4_async_manager_stop(mi->mi_vfsp);
2907 		}
2908 		if (mi->mi_inactive_thread) {
2909 			mutex_enter(&mi->mi_async_lock);
2910 			cv_signal(&mi->mi_inact_req_cv);
2911 			/*
2912 			 * Wait for the inactive thread to exit.
2913 			 */
2914 			while (mi->mi_inactive_thread != NULL) {
2915 				cv_wait(&mi->mi_async_cv, &mi->mi_async_lock);
2916 			}
2917 			mutex_exit(&mi->mi_async_lock);
2918 		}
2919 		/*
2920 		 * Wait for the recovery thread to complete, that is, it will
2921 		 * signal when it is done using the "mi" structure and about
2922 		 * to exit
2923 		 */
2924 		mutex_enter(&mi->mi_lock);
2925 		while (mi->mi_in_recovery > 0)
2926 			cv_wait(&mi->mi_cv_in_recov, &mi->mi_lock);
2927 		mutex_exit(&mi->mi_lock);
2928 		/*
2929 		 * We're done when every mi has been done or the list is empty.
2930 		 * This one is done, remove it from the list.
2931 		 */
2932 		list_remove(&mig->mig_list, mi);
2933 		mutex_exit(&mig->mig_lock);
2934 		zone_rele_ref(&mi->mi_zone_ref, ZONE_REF_NFSV4);
2935 
2936 		/*
2937 		 * Release hold on vfs and mi done to prevent race with zone
2938 		 * shutdown. This releases the hold in nfs4_mi_zonelist_add.
2939 		 */
2940 		VFS_RELE(mi->mi_vfsp);
2941 		MI4_RELE(mi);
2942 	}
2943 	/*
2944 	 * Tell each renew thread in the zone to exit
2945 	 */
2946 	mutex_enter(&nfs4_server_lst_lock);
2947 	for (np = nfs4_server_lst.forw; np != &nfs4_server_lst; np = np->forw) {
2948 		mutex_enter(&np->s_lock);
2949 		if (np->zoneid == zoneid) {
2950 			/*
2951 			 * We add another hold onto the nfs4_server_t
2952 			 * because this will make sure tha the nfs4_server_t
2953 			 * stays around until nfs4_callback_fini_zone destroys
2954 			 * the zone. This way, the renew thread can
2955 			 * unconditionally release its holds on the
2956 			 * nfs4_server_t.
2957 			 */
2958 			np->s_refcnt++;
2959 			nfs4_mark_srv_dead(np);
2960 		}
2961 		mutex_exit(&np->s_lock);
2962 	}
2963 	mutex_exit(&nfs4_server_lst_lock);
2964 }
2965 
2966 static void
2967 nfs4_mi_free_globals(struct mi4_globals *mig)
2968 {
2969 	list_destroy(&mig->mig_list);	/* makes sure the list is empty */
2970 	mutex_destroy(&mig->mig_lock);
2971 	kmem_free(mig, sizeof (*mig));
2972 }
2973 
2974 /* ARGSUSED */
2975 static void
2976 nfs4_mi_destroy(zoneid_t zoneid, void *data)
2977 {
2978 	struct mi4_globals *mig = data;
2979 
2980 	NFS4_DEBUG(nfs4_client_zone_debug, (CE_NOTE,
2981 	    "nfs4_mi_destroy zone %d\n", zoneid));
2982 	ASSERT(mig != NULL);
2983 	mutex_enter(&mig->mig_lock);
2984 	if (list_head(&mig->mig_list) != NULL) {
2985 		/* Still waiting for VFS_FREEVFS() */
2986 		mig->mig_destructor_called = B_TRUE;
2987 		mutex_exit(&mig->mig_lock);
2988 		return;
2989 	}
2990 	nfs4_mi_free_globals(mig);
2991 }
2992 
2993 /*
2994  * Add an NFS mount to the per-zone list of NFS mounts.
2995  */
2996 void
2997 nfs4_mi_zonelist_add(mntinfo4_t *mi)
2998 {
2999 	struct mi4_globals *mig;
3000 
3001 	mig = zone_getspecific(mi4_list_key, mi->mi_zone);
3002 	mutex_enter(&mig->mig_lock);
3003 	list_insert_head(&mig->mig_list, mi);
3004 	/*
3005 	 * hold added to eliminate race with zone shutdown -this will be
3006 	 * released in mi_shutdown
3007 	 */
3008 	MI4_HOLD(mi);
3009 	VFS_HOLD(mi->mi_vfsp);
3010 	mutex_exit(&mig->mig_lock);
3011 }
3012 
3013 /*
3014  * Remove an NFS mount from the per-zone list of NFS mounts.
3015  */
3016 int
3017 nfs4_mi_zonelist_remove(mntinfo4_t *mi)
3018 {
3019 	struct mi4_globals *mig;
3020 	int ret = 0;
3021 
3022 	mig = zone_getspecific(mi4_list_key, mi->mi_zone);
3023 	mutex_enter(&mig->mig_lock);
3024 	mutex_enter(&mi->mi_lock);
3025 	/* if this mi is marked dead, then the zone already released it */
3026 	if (!(mi->mi_flags & MI4_DEAD)) {
3027 		list_remove(&mig->mig_list, mi);
3028 		mutex_exit(&mi->mi_lock);
3029 
3030 		/* release the holds put on in zonelist_add(). */
3031 		VFS_RELE(mi->mi_vfsp);
3032 		MI4_RELE(mi);
3033 		ret = 1;
3034 	} else {
3035 		mutex_exit(&mi->mi_lock);
3036 	}
3037 
3038 	/*
3039 	 * We can be called asynchronously by VFS_FREEVFS() after the zone
3040 	 * shutdown/destroy callbacks have executed; if so, clean up the zone's
3041 	 * mi globals.
3042 	 */
3043 	if (list_head(&mig->mig_list) == NULL &&
3044 	    mig->mig_destructor_called == B_TRUE) {
3045 		nfs4_mi_free_globals(mig);
3046 		return (ret);
3047 	}
3048 	mutex_exit(&mig->mig_lock);
3049 	return (ret);
3050 }
3051 
3052 void
3053 nfs_free_mi4(mntinfo4_t *mi)
3054 {
3055 	nfs4_open_owner_t	*foop;
3056 	nfs4_oo_hash_bucket_t   *bucketp;
3057 	nfs4_debug_msg_t	*msgp;
3058 	int i;
3059 	servinfo4_t 		*svp;
3060 
3061 	/*
3062 	 * Code introduced here should be carefully evaluated to make
3063 	 * sure none of the freed resources are accessed either directly
3064 	 * or indirectly after freeing them. For eg: Introducing calls to
3065 	 * NFS4_DEBUG that use mntinfo4_t structure member after freeing
3066 	 * the structure members or other routines calling back into NFS
3067 	 * accessing freed mntinfo4_t structure member.
3068 	 */
3069 	mutex_enter(&mi->mi_lock);
3070 	ASSERT(mi->mi_recovthread == NULL);
3071 	ASSERT(mi->mi_flags & MI4_ASYNC_MGR_STOP);
3072 	mutex_exit(&mi->mi_lock);
3073 	mutex_enter(&mi->mi_async_lock);
3074 	ASSERT(mi->mi_threads[NFS4_ASYNC_QUEUE] == 0 &&
3075 	    mi->mi_threads[NFS4_ASYNC_PGOPS_QUEUE] == 0);
3076 	ASSERT(mi->mi_manager_thread == NULL);
3077 	mutex_exit(&mi->mi_async_lock);
3078 	if (mi->mi_io_kstats) {
3079 		kstat_delete(mi->mi_io_kstats);
3080 		mi->mi_io_kstats = NULL;
3081 	}
3082 	if (mi->mi_ro_kstats) {
3083 		kstat_delete(mi->mi_ro_kstats);
3084 		mi->mi_ro_kstats = NULL;
3085 	}
3086 	if (mi->mi_recov_ksp) {
3087 		kstat_delete(mi->mi_recov_ksp);
3088 		mi->mi_recov_ksp = NULL;
3089 	}
3090 	mutex_enter(&mi->mi_msg_list_lock);
3091 	while (msgp = list_head(&mi->mi_msg_list)) {
3092 		list_remove(&mi->mi_msg_list, msgp);
3093 		nfs4_free_msg(msgp);
3094 	}
3095 	mutex_exit(&mi->mi_msg_list_lock);
3096 	list_destroy(&mi->mi_msg_list);
3097 	if (mi->mi_fname != NULL)
3098 		fn_rele(&mi->mi_fname);
3099 	if (mi->mi_rootfh != NULL)
3100 		sfh4_rele(&mi->mi_rootfh);
3101 	if (mi->mi_srvparentfh != NULL)
3102 		sfh4_rele(&mi->mi_srvparentfh);
3103 	svp = mi->mi_servers;
3104 	sv4_free(svp);
3105 	mutex_destroy(&mi->mi_lock);
3106 	mutex_destroy(&mi->mi_async_lock);
3107 	mutex_destroy(&mi->mi_msg_list_lock);
3108 	nfs_rw_destroy(&mi->mi_recovlock);
3109 	nfs_rw_destroy(&mi->mi_rename_lock);
3110 	nfs_rw_destroy(&mi->mi_fh_lock);
3111 	cv_destroy(&mi->mi_failover_cv);
3112 	cv_destroy(&mi->mi_async_reqs_cv);
3113 	cv_destroy(&mi->mi_async_work_cv[NFS4_ASYNC_QUEUE]);
3114 	cv_destroy(&mi->mi_async_work_cv[NFS4_ASYNC_PGOPS_QUEUE]);
3115 	cv_destroy(&mi->mi_async_cv);
3116 	cv_destroy(&mi->mi_inact_req_cv);
3117 	/*
3118 	 * Destroy the oo hash lists and mutexes for the cred hash table.
3119 	 */
3120 	for (i = 0; i < NFS4_NUM_OO_BUCKETS; i++) {
3121 		bucketp = &(mi->mi_oo_list[i]);
3122 		/* Destroy any remaining open owners on the list */
3123 		foop = list_head(&bucketp->b_oo_hash_list);
3124 		while (foop != NULL) {
3125 			list_remove(&bucketp->b_oo_hash_list, foop);
3126 			nfs4_destroy_open_owner(foop);
3127 			foop = list_head(&bucketp->b_oo_hash_list);
3128 		}
3129 		list_destroy(&bucketp->b_oo_hash_list);
3130 		mutex_destroy(&bucketp->b_lock);
3131 	}
3132 	/*
3133 	 * Empty and destroy the freed open owner list.
3134 	 */
3135 	foop = list_head(&mi->mi_foo_list);
3136 	while (foop != NULL) {
3137 		list_remove(&mi->mi_foo_list, foop);
3138 		nfs4_destroy_open_owner(foop);
3139 		foop = list_head(&mi->mi_foo_list);
3140 	}
3141 	list_destroy(&mi->mi_foo_list);
3142 	list_destroy(&mi->mi_bseqid_list);
3143 	list_destroy(&mi->mi_lost_state);
3144 	avl_destroy(&mi->mi_filehandles);
3145 	kmem_free(mi, sizeof (*mi));
3146 }
3147 void
3148 mi_hold(mntinfo4_t *mi)
3149 {
3150 	atomic_add_32(&mi->mi_count, 1);
3151 	ASSERT(mi->mi_count != 0);
3152 }
3153 
3154 void
3155 mi_rele(mntinfo4_t *mi)
3156 {
3157 	ASSERT(mi->mi_count != 0);
3158 	if (atomic_add_32_nv(&mi->mi_count, -1) == 0) {
3159 		nfs_free_mi4(mi);
3160 	}
3161 }
3162 
3163 vnode_t    nfs4_xattr_notsupp_vnode;
3164 
3165 void
3166 nfs4_clnt_init(void)
3167 {
3168 	nfs4_vnops_init();
3169 	(void) nfs4_rnode_init();
3170 	(void) nfs4_shadow_init();
3171 	(void) nfs4_acache_init();
3172 	(void) nfs4_subr_init();
3173 	nfs4_acl_init();
3174 	nfs_idmap_init();
3175 	nfs4_callback_init();
3176 	nfs4_secinfo_init();
3177 #ifdef	DEBUG
3178 	tsd_create(&nfs4_tsd_key, NULL);
3179 #endif
3180 
3181 	/*
3182 	 * Add a CPR callback so that we can update client
3183 	 * lease after a suspend and resume.
3184 	 */
3185 	cid = callb_add(nfs4_client_cpr_callb, 0, CB_CL_CPR_RPC, "nfs4");
3186 
3187 	zone_key_create(&mi4_list_key, nfs4_mi_init, nfs4_mi_shutdown,
3188 	    nfs4_mi_destroy);
3189 
3190 	/*
3191 	 * Initialise the reference count of the notsupp xattr cache vnode to 1
3192 	 * so that it never goes away (VOP_INACTIVE isn't called on it).
3193 	 */
3194 	nfs4_xattr_notsupp_vnode.v_count = 1;
3195 }
3196 
3197 void
3198 nfs4_clnt_fini(void)
3199 {
3200 	(void) zone_key_delete(mi4_list_key);
3201 	nfs4_vnops_fini();
3202 	(void) nfs4_rnode_fini();
3203 	(void) nfs4_shadow_fini();
3204 	(void) nfs4_acache_fini();
3205 	(void) nfs4_subr_fini();
3206 	nfs_idmap_fini();
3207 	nfs4_callback_fini();
3208 	nfs4_secinfo_fini();
3209 #ifdef	DEBUG
3210 	tsd_destroy(&nfs4_tsd_key);
3211 #endif
3212 	if (cid)
3213 		(void) callb_delete(cid);
3214 }
3215 
3216 /*ARGSUSED*/
3217 static boolean_t
3218 nfs4_client_cpr_callb(void *arg, int code)
3219 {
3220 	/*
3221 	 * We get called for Suspend and Resume events.
3222 	 * For the suspend case we simply don't care!
3223 	 */
3224 	if (code == CB_CODE_CPR_CHKPT) {
3225 		return (B_TRUE);
3226 	}
3227 
3228 	/*
3229 	 * When we get to here we are in the process of
3230 	 * resuming the system from a previous suspend.
3231 	 */
3232 	nfs4_client_resumed = gethrestime_sec();
3233 	return (B_TRUE);
3234 }
3235 
3236 void
3237 nfs4_renew_lease_thread(nfs4_server_t *sp)
3238 {
3239 	int	error = 0;
3240 	time_t	tmp_last_renewal_time, tmp_time, tmp_now_time, kip_secs;
3241 	clock_t	tick_delay = 0;
3242 	clock_t time_left = 0;
3243 	callb_cpr_t cpr_info;
3244 	kmutex_t cpr_lock;
3245 
3246 	NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE,
3247 	    "nfs4_renew_lease_thread: acting on sp 0x%p", (void*)sp));
3248 	mutex_init(&cpr_lock, NULL, MUTEX_DEFAULT, NULL);
3249 	CALLB_CPR_INIT(&cpr_info, &cpr_lock, callb_generic_cpr, "nfsv4Lease");
3250 
3251 	mutex_enter(&sp->s_lock);
3252 	/* sp->s_lease_time is set via a GETATTR */
3253 	sp->last_renewal_time = gethrestime_sec();
3254 	sp->lease_valid = NFS4_LEASE_UNINITIALIZED;
3255 	ASSERT(sp->s_refcnt >= 1);
3256 
3257 	for (;;) {
3258 		if (!sp->state_ref_count ||
3259 		    sp->lease_valid != NFS4_LEASE_VALID) {
3260 
3261 			kip_secs = MAX((sp->s_lease_time >> 1) -
3262 			    (3 * sp->propagation_delay.tv_sec), 1);
3263 
3264 			tick_delay = SEC_TO_TICK(kip_secs);
3265 
3266 			NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE,
3267 			    "nfs4_renew_lease_thread: no renew : thread "
3268 			    "wait %ld secs", kip_secs));
3269 
3270 			NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE,
3271 			    "nfs4_renew_lease_thread: no renew : "
3272 			    "state_ref_count %d, lease_valid %d",
3273 			    sp->state_ref_count, sp->lease_valid));
3274 
3275 			mutex_enter(&cpr_lock);
3276 			CALLB_CPR_SAFE_BEGIN(&cpr_info);
3277 			mutex_exit(&cpr_lock);
3278 			time_left = cv_reltimedwait(&sp->cv_thread_exit,
3279 			    &sp->s_lock, tick_delay, TR_CLOCK_TICK);
3280 			mutex_enter(&cpr_lock);
3281 			CALLB_CPR_SAFE_END(&cpr_info, &cpr_lock);
3282 			mutex_exit(&cpr_lock);
3283 
3284 			NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE,
3285 			    "nfs4_renew_lease_thread: no renew: "
3286 			    "time left %ld", time_left));
3287 
3288 			if (sp->s_thread_exit == NFS4_THREAD_EXIT)
3289 				goto die;
3290 			continue;
3291 		}
3292 
3293 		tmp_last_renewal_time = sp->last_renewal_time;
3294 
3295 		tmp_time = gethrestime_sec() - sp->last_renewal_time +
3296 		    (3 * sp->propagation_delay.tv_sec);
3297 
3298 		NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE,
3299 		    "nfs4_renew_lease_thread: tmp_time %ld, "
3300 		    "sp->last_renewal_time %ld", tmp_time,
3301 		    sp->last_renewal_time));
3302 
3303 		kip_secs = MAX((sp->s_lease_time >> 1) - tmp_time, 1);
3304 
3305 		tick_delay = SEC_TO_TICK(kip_secs);
3306 
3307 		NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE,
3308 		    "nfs4_renew_lease_thread: valid lease: sleep for %ld "
3309 		    "secs", kip_secs));
3310 
3311 		mutex_enter(&cpr_lock);
3312 		CALLB_CPR_SAFE_BEGIN(&cpr_info);
3313 		mutex_exit(&cpr_lock);
3314 		time_left = cv_reltimedwait(&sp->cv_thread_exit, &sp->s_lock,
3315 		    tick_delay, TR_CLOCK_TICK);
3316 		mutex_enter(&cpr_lock);
3317 		CALLB_CPR_SAFE_END(&cpr_info, &cpr_lock);
3318 		mutex_exit(&cpr_lock);
3319 
3320 		NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE,
3321 		    "nfs4_renew_lease_thread: valid lease: time left %ld :"
3322 		    "sp last_renewal_time %ld, nfs4_client_resumed %ld, "
3323 		    "tmp_last_renewal_time %ld", time_left,
3324 		    sp->last_renewal_time, nfs4_client_resumed,
3325 		    tmp_last_renewal_time));
3326 
3327 		if (sp->s_thread_exit == NFS4_THREAD_EXIT)
3328 			goto die;
3329 
3330 		if (tmp_last_renewal_time == sp->last_renewal_time ||
3331 		    (nfs4_client_resumed != 0 &&
3332 		    nfs4_client_resumed > sp->last_renewal_time)) {
3333 			/*
3334 			 * Issue RENEW op since we haven't renewed the lease
3335 			 * since we slept.
3336 			 */
3337 			tmp_now_time = gethrestime_sec();
3338 			error = nfs4renew(sp);
3339 			/*
3340 			 * Need to re-acquire sp's lock, nfs4renew()
3341 			 * relinqueshes it.
3342 			 */
3343 			mutex_enter(&sp->s_lock);
3344 
3345 			/*
3346 			 * See if someone changed s_thread_exit while we gave
3347 			 * up s_lock.
3348 			 */
3349 			if (sp->s_thread_exit == NFS4_THREAD_EXIT)
3350 				goto die;
3351 
3352 			if (!error) {
3353 				/*
3354 				 * check to see if we implicitly renewed while
3355 				 * we waited for a reply for our RENEW call.
3356 				 */
3357 				if (tmp_last_renewal_time ==
3358 				    sp->last_renewal_time) {
3359 					/* no implicit renew came */
3360 					sp->last_renewal_time = tmp_now_time;
3361 				} else {
3362 					NFS4_DEBUG(nfs4_client_lease_debug,
3363 					    (CE_NOTE, "renew_thread: did "
3364 					    "implicit renewal before reply "
3365 					    "from server for RENEW"));
3366 				}
3367 			} else {
3368 				/* figure out error */
3369 				NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE,
3370 				    "renew_thread: nfs4renew returned error"
3371 				    " %d", error));
3372 			}
3373 
3374 		}
3375 	}
3376 
3377 die:
3378 	NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE,
3379 	    "nfs4_renew_lease_thread: thread exiting"));
3380 
3381 	while (sp->s_otw_call_count != 0) {
3382 		NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE,
3383 		    "nfs4_renew_lease_thread: waiting for outstanding "
3384 		    "otw calls to finish for sp 0x%p, current "
3385 		    "s_otw_call_count %d", (void *)sp,
3386 		    sp->s_otw_call_count));
3387 		mutex_enter(&cpr_lock);
3388 		CALLB_CPR_SAFE_BEGIN(&cpr_info);
3389 		mutex_exit(&cpr_lock);
3390 		cv_wait(&sp->s_cv_otw_count, &sp->s_lock);
3391 		mutex_enter(&cpr_lock);
3392 		CALLB_CPR_SAFE_END(&cpr_info, &cpr_lock);
3393 		mutex_exit(&cpr_lock);
3394 	}
3395 	mutex_exit(&sp->s_lock);
3396 
3397 	nfs4_server_rele(sp);		/* free the thread's reference */
3398 	nfs4_server_rele(sp);		/* free the list's reference */
3399 	sp = NULL;
3400 
3401 done:
3402 	mutex_enter(&cpr_lock);
3403 	CALLB_CPR_EXIT(&cpr_info);	/* drops cpr_lock */
3404 	mutex_destroy(&cpr_lock);
3405 
3406 	NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE,
3407 	    "nfs4_renew_lease_thread: renew thread exit officially"));
3408 
3409 	zthread_exit();
3410 	/* NOT REACHED */
3411 }
3412 
3413 /*
3414  * Send out a RENEW op to the server.
3415  * Assumes sp is locked down.
3416  */
3417 static int
3418 nfs4renew(nfs4_server_t *sp)
3419 {
3420 	COMPOUND4args_clnt args;
3421 	COMPOUND4res_clnt res;
3422 	nfs_argop4 argop[1];
3423 	int doqueue = 1;
3424 	int rpc_error;
3425 	cred_t *cr;
3426 	mntinfo4_t *mi;
3427 	timespec_t prop_time, after_time;
3428 	int needrecov = FALSE;
3429 	nfs4_recov_state_t recov_state;
3430 	nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS };
3431 
3432 	NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE, "nfs4renew"));
3433 
3434 	recov_state.rs_flags = 0;
3435 	recov_state.rs_num_retry_despite_err = 0;
3436 
3437 recov_retry:
3438 	mi = sp->mntinfo4_list;
3439 	VFS_HOLD(mi->mi_vfsp);
3440 	mutex_exit(&sp->s_lock);
3441 	ASSERT(mi != NULL);
3442 
3443 	e.error = nfs4_start_op(mi, NULL, NULL, &recov_state);
3444 	if (e.error) {
3445 		VFS_RELE(mi->mi_vfsp);
3446 		return (e.error);
3447 	}
3448 
3449 	/* Check to see if we're dealing with a marked-dead sp */
3450 	mutex_enter(&sp->s_lock);
3451 	if (sp->s_thread_exit == NFS4_THREAD_EXIT) {
3452 		mutex_exit(&sp->s_lock);
3453 		nfs4_end_op(mi, NULL, NULL, &recov_state, needrecov);
3454 		VFS_RELE(mi->mi_vfsp);
3455 		return (0);
3456 	}
3457 
3458 	/* Make sure mi hasn't changed on us */
3459 	if (mi != sp->mntinfo4_list) {
3460 		/* Must drop sp's lock to avoid a recursive mutex enter */
3461 		mutex_exit(&sp->s_lock);
3462 		nfs4_end_op(mi, NULL, NULL, &recov_state, needrecov);
3463 		VFS_RELE(mi->mi_vfsp);
3464 		mutex_enter(&sp->s_lock);
3465 		goto recov_retry;
3466 	}
3467 	mutex_exit(&sp->s_lock);
3468 
3469 	args.ctag = TAG_RENEW;
3470 
3471 	args.array_len = 1;
3472 	args.array = argop;
3473 
3474 	argop[0].argop = OP_RENEW;
3475 
3476 	mutex_enter(&sp->s_lock);
3477 	argop[0].nfs_argop4_u.oprenew.clientid = sp->clientid;
3478 	cr = sp->s_cred;
3479 	crhold(cr);
3480 	mutex_exit(&sp->s_lock);
3481 
3482 	ASSERT(cr != NULL);
3483 
3484 	/* used to figure out RTT for sp */
3485 	gethrestime(&prop_time);
3486 
3487 	NFS4_DEBUG(nfs4_client_call_debug, (CE_NOTE,
3488 	    "nfs4renew: %s call, sp 0x%p", needrecov ? "recov" : "first",
3489 	    (void*)sp));
3490 	NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE, "before: %ld s %ld ns ",
3491 	    prop_time.tv_sec, prop_time.tv_nsec));
3492 
3493 	DTRACE_PROBE2(nfs4__renew__start, nfs4_server_t *, sp,
3494 	    mntinfo4_t *, mi);
3495 
3496 	rfs4call(mi, &args, &res, cr, &doqueue, 0, &e);
3497 	crfree(cr);
3498 
3499 	DTRACE_PROBE2(nfs4__renew__end, nfs4_server_t *, sp,
3500 	    mntinfo4_t *, mi);
3501 
3502 	gethrestime(&after_time);
3503 
3504 	mutex_enter(&sp->s_lock);
3505 	sp->propagation_delay.tv_sec =
3506 	    MAX(1, after_time.tv_sec - prop_time.tv_sec);
3507 	mutex_exit(&sp->s_lock);
3508 
3509 	NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE, "after : %ld s %ld ns ",
3510 	    after_time.tv_sec, after_time.tv_nsec));
3511 
3512 	if (e.error == 0 && res.status == NFS4ERR_CB_PATH_DOWN) {
3513 		(void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
3514 		nfs4_delegreturn_all(sp);
3515 		nfs4_end_op(mi, NULL, NULL, &recov_state, needrecov);
3516 		VFS_RELE(mi->mi_vfsp);
3517 		/*
3518 		 * If the server returns CB_PATH_DOWN, it has renewed
3519 		 * the lease and informed us that the callback path is
3520 		 * down.  Since the lease is renewed, just return 0 and
3521 		 * let the renew thread proceed as normal.
3522 		 */
3523 		return (0);
3524 	}
3525 
3526 	needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp);
3527 	if (!needrecov && e.error) {
3528 		nfs4_end_op(mi, NULL, NULL, &recov_state, needrecov);
3529 		VFS_RELE(mi->mi_vfsp);
3530 		return (e.error);
3531 	}
3532 
3533 	rpc_error = e.error;
3534 
3535 	if (needrecov) {
3536 		NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE,
3537 		    "nfs4renew: initiating recovery\n"));
3538 
3539 		if (nfs4_start_recovery(&e, mi, NULL, NULL, NULL, NULL,
3540 		    OP_RENEW, NULL, NULL, NULL) == FALSE) {
3541 			nfs4_end_op(mi, NULL, NULL, &recov_state, needrecov);
3542 			VFS_RELE(mi->mi_vfsp);
3543 			if (!e.error)
3544 				(void) xdr_free(xdr_COMPOUND4res_clnt,
3545 				    (caddr_t)&res);
3546 			mutex_enter(&sp->s_lock);
3547 			goto recov_retry;
3548 		}
3549 		/* fall through for res.status case */
3550 	}
3551 
3552 	if (res.status) {
3553 		if (res.status == NFS4ERR_LEASE_MOVED) {
3554 			/*EMPTY*/
3555 			/*
3556 			 * XXX need to try every mntinfo4 in sp->mntinfo4_list
3557 			 * to renew the lease on that server
3558 			 */
3559 		}
3560 		e.error = geterrno4(res.status);
3561 	}
3562 
3563 	if (!rpc_error)
3564 		(void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
3565 
3566 	nfs4_end_op(mi, NULL, NULL, &recov_state, needrecov);
3567 
3568 	VFS_RELE(mi->mi_vfsp);
3569 
3570 	return (e.error);
3571 }
3572 
3573 void
3574 nfs4_inc_state_ref_count(mntinfo4_t *mi)
3575 {
3576 	nfs4_server_t	*sp;
3577 
3578 	/* this locks down sp if it is found */
3579 	sp = find_nfs4_server(mi);
3580 
3581 	if (sp != NULL) {
3582 		nfs4_inc_state_ref_count_nolock(sp, mi);
3583 		mutex_exit(&sp->s_lock);
3584 		nfs4_server_rele(sp);
3585 	}
3586 }
3587 
3588 /*
3589  * Bump the number of OPEN files (ie: those with state) so we know if this
3590  * nfs4_server has any state to maintain a lease for or not.
3591  *
3592  * Also, marks the nfs4_server's lease valid if it hasn't been done so already.
3593  */
3594 void
3595 nfs4_inc_state_ref_count_nolock(nfs4_server_t *sp, mntinfo4_t *mi)
3596 {
3597 	ASSERT(mutex_owned(&sp->s_lock));
3598 
3599 	sp->state_ref_count++;
3600 	NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE,
3601 	    "nfs4_inc_state_ref_count: state_ref_count now %d",
3602 	    sp->state_ref_count));
3603 
3604 	if (sp->lease_valid == NFS4_LEASE_UNINITIALIZED)
3605 		sp->lease_valid = NFS4_LEASE_VALID;
3606 
3607 	/*
3608 	 * If this call caused the lease to be marked valid and/or
3609 	 * took the state_ref_count from 0 to 1, then start the time
3610 	 * on lease renewal.
3611 	 */
3612 	if (sp->lease_valid == NFS4_LEASE_VALID && sp->state_ref_count == 1)
3613 		sp->last_renewal_time = gethrestime_sec();
3614 
3615 	/* update the number of open files for mi */
3616 	mi->mi_open_files++;
3617 }
3618 
3619 void
3620 nfs4_dec_state_ref_count(mntinfo4_t *mi)
3621 {
3622 	nfs4_server_t	*sp;
3623 
3624 	/* this locks down sp if it is found */
3625 	sp = find_nfs4_server_all(mi, 1);
3626 
3627 	if (sp != NULL) {
3628 		nfs4_dec_state_ref_count_nolock(sp, mi);
3629 		mutex_exit(&sp->s_lock);
3630 		nfs4_server_rele(sp);
3631 	}
3632 }
3633 
3634 /*
3635  * Decrement the number of OPEN files (ie: those with state) so we know if
3636  * this nfs4_server has any state to maintain a lease for or not.
3637  */
3638 void
3639 nfs4_dec_state_ref_count_nolock(nfs4_server_t *sp, mntinfo4_t *mi)
3640 {
3641 	ASSERT(mutex_owned(&sp->s_lock));
3642 	ASSERT(sp->state_ref_count != 0);
3643 	sp->state_ref_count--;
3644 
3645 	NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE,
3646 	    "nfs4_dec_state_ref_count: state ref count now %d",
3647 	    sp->state_ref_count));
3648 
3649 	mi->mi_open_files--;
3650 	NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE,
3651 	    "nfs4_dec_state_ref_count: mi open files %d, v4 flags 0x%x",
3652 	    mi->mi_open_files, mi->mi_flags));
3653 
3654 	/* We don't have to hold the mi_lock to test mi_flags */
3655 	if (mi->mi_open_files == 0 &&
3656 	    (mi->mi_flags & MI4_REMOVE_ON_LAST_CLOSE)) {
3657 		NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE,
3658 		    "nfs4_dec_state_ref_count: remove mntinfo4 %p since "
3659 		    "we have closed the last open file", (void*)mi));
3660 		nfs4_remove_mi_from_server(mi, sp);
3661 	}
3662 }
3663 
3664 bool_t
3665 inlease(nfs4_server_t *sp)
3666 {
3667 	bool_t result;
3668 
3669 	ASSERT(mutex_owned(&sp->s_lock));
3670 
3671 	if (sp->lease_valid == NFS4_LEASE_VALID &&
3672 	    gethrestime_sec() < sp->last_renewal_time + sp->s_lease_time)
3673 		result = TRUE;
3674 	else
3675 		result = FALSE;
3676 
3677 	return (result);
3678 }
3679 
3680 
3681 /*
3682  * Return non-zero if the given nfs4_server_t is going through recovery.
3683  */
3684 
3685 int
3686 nfs4_server_in_recovery(nfs4_server_t *sp)
3687 {
3688 	return (nfs_rw_lock_held(&sp->s_recovlock, RW_WRITER));
3689 }
3690 
3691 /*
3692  * Compare two shared filehandle objects.  Returns -1, 0, or +1, if the
3693  * first is less than, equal to, or greater than the second.
3694  */
3695 
3696 int
3697 sfh4cmp(const void *p1, const void *p2)
3698 {
3699 	const nfs4_sharedfh_t *sfh1 = (const nfs4_sharedfh_t *)p1;
3700 	const nfs4_sharedfh_t *sfh2 = (const nfs4_sharedfh_t *)p2;
3701 
3702 	return (nfs4cmpfh(&sfh1->sfh_fh, &sfh2->sfh_fh));
3703 }
3704 
3705 /*
3706  * Create a table for shared filehandle objects.
3707  */
3708 
3709 void
3710 sfh4_createtab(avl_tree_t *tab)
3711 {
3712 	avl_create(tab, sfh4cmp, sizeof (nfs4_sharedfh_t),
3713 	    offsetof(nfs4_sharedfh_t, sfh_tree));
3714 }
3715 
3716 /*
3717  * Return a shared filehandle object for the given filehandle.  The caller
3718  * is responsible for eventually calling sfh4_rele().
3719  */
3720 
3721 nfs4_sharedfh_t *
3722 sfh4_put(const nfs_fh4 *fh, mntinfo4_t *mi, nfs4_sharedfh_t *key)
3723 {
3724 	nfs4_sharedfh_t *sfh, *nsfh;
3725 	avl_index_t where;
3726 	nfs4_sharedfh_t skey;
3727 
3728 	if (!key) {
3729 		skey.sfh_fh = *fh;
3730 		key = &skey;
3731 	}
3732 
3733 	nsfh = kmem_alloc(sizeof (nfs4_sharedfh_t), KM_SLEEP);
3734 	nsfh->sfh_fh.nfs_fh4_len = fh->nfs_fh4_len;
3735 	/*
3736 	 * We allocate the largest possible filehandle size because it's
3737 	 * not that big, and it saves us from possibly having to resize the
3738 	 * buffer later.
3739 	 */
3740 	nsfh->sfh_fh.nfs_fh4_val = kmem_alloc(NFS4_FHSIZE, KM_SLEEP);
3741 	bcopy(fh->nfs_fh4_val, nsfh->sfh_fh.nfs_fh4_val, fh->nfs_fh4_len);
3742 	mutex_init(&nsfh->sfh_lock, NULL, MUTEX_DEFAULT, NULL);
3743 	nsfh->sfh_refcnt = 1;
3744 	nsfh->sfh_flags = SFH4_IN_TREE;
3745 	nsfh->sfh_mi = mi;
3746 	NFS4_DEBUG(nfs4_sharedfh_debug, (CE_NOTE, "sfh4_get: new object (%p)",
3747 	    (void *)nsfh));
3748 
3749 	(void) nfs_rw_enter_sig(&mi->mi_fh_lock, RW_WRITER, 0);
3750 	sfh = avl_find(&mi->mi_filehandles, key, &where);
3751 	if (sfh != NULL) {
3752 		mutex_enter(&sfh->sfh_lock);
3753 		sfh->sfh_refcnt++;
3754 		mutex_exit(&sfh->sfh_lock);
3755 		nfs_rw_exit(&mi->mi_fh_lock);
3756 		/* free our speculative allocs */
3757 		kmem_free(nsfh->sfh_fh.nfs_fh4_val, NFS4_FHSIZE);
3758 		kmem_free(nsfh, sizeof (nfs4_sharedfh_t));
3759 		return (sfh);
3760 	}
3761 
3762 	avl_insert(&mi->mi_filehandles, nsfh, where);
3763 	nfs_rw_exit(&mi->mi_fh_lock);
3764 
3765 	return (nsfh);
3766 }
3767 
3768 /*
3769  * Return a shared filehandle object for the given filehandle.  The caller
3770  * is responsible for eventually calling sfh4_rele().
3771  */
3772 
3773 nfs4_sharedfh_t *
3774 sfh4_get(const nfs_fh4 *fh, mntinfo4_t *mi)
3775 {
3776 	nfs4_sharedfh_t *sfh;
3777 	nfs4_sharedfh_t key;
3778 
3779 	ASSERT(fh->nfs_fh4_len <= NFS4_FHSIZE);
3780 
3781 #ifdef DEBUG
3782 	if (nfs4_sharedfh_debug) {
3783 		nfs4_fhandle_t fhandle;
3784 
3785 		fhandle.fh_len = fh->nfs_fh4_len;
3786 		bcopy(fh->nfs_fh4_val, fhandle.fh_buf, fhandle.fh_len);
3787 		zcmn_err(mi->mi_zone->zone_id, CE_NOTE, "sfh4_get:");
3788 		nfs4_printfhandle(&fhandle);
3789 	}
3790 #endif
3791 
3792 	/*
3793 	 * If there's already an object for the given filehandle, bump the
3794 	 * reference count and return it.  Otherwise, create a new object
3795 	 * and add it to the AVL tree.
3796 	 */
3797 
3798 	key.sfh_fh = *fh;
3799 
3800 	(void) nfs_rw_enter_sig(&mi->mi_fh_lock, RW_READER, 0);
3801 	sfh = avl_find(&mi->mi_filehandles, &key, NULL);
3802 	if (sfh != NULL) {
3803 		mutex_enter(&sfh->sfh_lock);
3804 		sfh->sfh_refcnt++;
3805 		NFS4_DEBUG(nfs4_sharedfh_debug, (CE_NOTE,
3806 		    "sfh4_get: found existing %p, new refcnt=%d",
3807 		    (void *)sfh, sfh->sfh_refcnt));
3808 		mutex_exit(&sfh->sfh_lock);
3809 		nfs_rw_exit(&mi->mi_fh_lock);
3810 		return (sfh);
3811 	}
3812 	nfs_rw_exit(&mi->mi_fh_lock);
3813 
3814 	return (sfh4_put(fh, mi, &key));
3815 }
3816 
3817 /*
3818  * Get a reference to the given shared filehandle object.
3819  */
3820 
3821 void
3822 sfh4_hold(nfs4_sharedfh_t *sfh)
3823 {
3824 	ASSERT(sfh->sfh_refcnt > 0);
3825 
3826 	mutex_enter(&sfh->sfh_lock);
3827 	sfh->sfh_refcnt++;
3828 	NFS4_DEBUG(nfs4_sharedfh_debug,
3829 	    (CE_NOTE, "sfh4_hold %p, new refcnt=%d",
3830 	    (void *)sfh, sfh->sfh_refcnt));
3831 	mutex_exit(&sfh->sfh_lock);
3832 }
3833 
3834 /*
3835  * Release a reference to the given shared filehandle object and null out
3836  * the given pointer.
3837  */
3838 
3839 void
3840 sfh4_rele(nfs4_sharedfh_t **sfhpp)
3841 {
3842 	mntinfo4_t *mi;
3843 	nfs4_sharedfh_t *sfh = *sfhpp;
3844 
3845 	ASSERT(sfh->sfh_refcnt > 0);
3846 
3847 	mutex_enter(&sfh->sfh_lock);
3848 	if (sfh->sfh_refcnt > 1) {
3849 		sfh->sfh_refcnt--;
3850 		NFS4_DEBUG(nfs4_sharedfh_debug, (CE_NOTE,
3851 		    "sfh4_rele %p, new refcnt=%d",
3852 		    (void *)sfh, sfh->sfh_refcnt));
3853 		mutex_exit(&sfh->sfh_lock);
3854 		goto finish;
3855 	}
3856 	mutex_exit(&sfh->sfh_lock);
3857 
3858 	/*
3859 	 * Possibly the last reference, so get the lock for the table in
3860 	 * case it's time to remove the object from the table.
3861 	 */
3862 	mi = sfh->sfh_mi;
3863 	(void) nfs_rw_enter_sig(&mi->mi_fh_lock, RW_WRITER, 0);
3864 	mutex_enter(&sfh->sfh_lock);
3865 	sfh->sfh_refcnt--;
3866 	if (sfh->sfh_refcnt > 0) {
3867 		NFS4_DEBUG(nfs4_sharedfh_debug, (CE_NOTE,
3868 		    "sfh4_rele %p, new refcnt=%d",
3869 		    (void *)sfh, sfh->sfh_refcnt));
3870 		mutex_exit(&sfh->sfh_lock);
3871 		nfs_rw_exit(&mi->mi_fh_lock);
3872 		goto finish;
3873 	}
3874 
3875 	NFS4_DEBUG(nfs4_sharedfh_debug, (CE_NOTE,
3876 	    "sfh4_rele %p, last ref", (void *)sfh));
3877 	if (sfh->sfh_flags & SFH4_IN_TREE) {
3878 		avl_remove(&mi->mi_filehandles, sfh);
3879 		sfh->sfh_flags &= ~SFH4_IN_TREE;
3880 	}
3881 	mutex_exit(&sfh->sfh_lock);
3882 	nfs_rw_exit(&mi->mi_fh_lock);
3883 	mutex_destroy(&sfh->sfh_lock);
3884 	kmem_free(sfh->sfh_fh.nfs_fh4_val, NFS4_FHSIZE);
3885 	kmem_free(sfh, sizeof (nfs4_sharedfh_t));
3886 
3887 finish:
3888 	*sfhpp = NULL;
3889 }
3890 
3891 /*
3892  * Update the filehandle for the given shared filehandle object.
3893  */
3894 
3895 int nfs4_warn_dupfh = 0;	/* if set, always warn about dup fhs below */
3896 
3897 void
3898 sfh4_update(nfs4_sharedfh_t *sfh, const nfs_fh4 *newfh)
3899 {
3900 	mntinfo4_t *mi = sfh->sfh_mi;
3901 	nfs4_sharedfh_t *dupsfh;
3902 	avl_index_t where;
3903 	nfs4_sharedfh_t key;
3904 
3905 #ifdef DEBUG
3906 	mutex_enter(&sfh->sfh_lock);
3907 	ASSERT(sfh->sfh_refcnt > 0);
3908 	mutex_exit(&sfh->sfh_lock);
3909 #endif
3910 	ASSERT(newfh->nfs_fh4_len <= NFS4_FHSIZE);
3911 
3912 	/*
3913 	 * The basic plan is to remove the shared filehandle object from
3914 	 * the table, update it to have the new filehandle, then reinsert
3915 	 * it.
3916 	 */
3917 
3918 	(void) nfs_rw_enter_sig(&mi->mi_fh_lock, RW_WRITER, 0);
3919 	mutex_enter(&sfh->sfh_lock);
3920 	if (sfh->sfh_flags & SFH4_IN_TREE) {
3921 		avl_remove(&mi->mi_filehandles, sfh);
3922 		sfh->sfh_flags &= ~SFH4_IN_TREE;
3923 	}
3924 	mutex_exit(&sfh->sfh_lock);
3925 	sfh->sfh_fh.nfs_fh4_len = newfh->nfs_fh4_len;
3926 	bcopy(newfh->nfs_fh4_val, sfh->sfh_fh.nfs_fh4_val,
3927 	    sfh->sfh_fh.nfs_fh4_len);
3928 
3929 	/*
3930 	 * XXX If there is already a shared filehandle object with the new
3931 	 * filehandle, we're in trouble, because the rnode code assumes
3932 	 * that there is only one shared filehandle object for a given
3933 	 * filehandle.  So issue a warning (for read-write mounts only)
3934 	 * and don't try to re-insert the given object into the table.
3935 	 * Hopefully the given object will quickly go away and everyone
3936 	 * will use the new object.
3937 	 */
3938 	key.sfh_fh = *newfh;
3939 	dupsfh = avl_find(&mi->mi_filehandles, &key, &where);
3940 	if (dupsfh != NULL) {
3941 		if (!(mi->mi_vfsp->vfs_flag & VFS_RDONLY) || nfs4_warn_dupfh) {
3942 			zcmn_err(mi->mi_zone->zone_id, CE_WARN, "sfh4_update: "
3943 			    "duplicate filehandle detected");
3944 			sfh4_printfhandle(dupsfh);
3945 		}
3946 	} else {
3947 		avl_insert(&mi->mi_filehandles, sfh, where);
3948 		mutex_enter(&sfh->sfh_lock);
3949 		sfh->sfh_flags |= SFH4_IN_TREE;
3950 		mutex_exit(&sfh->sfh_lock);
3951 	}
3952 	nfs_rw_exit(&mi->mi_fh_lock);
3953 }
3954 
3955 /*
3956  * Copy out the current filehandle for the given shared filehandle object.
3957  */
3958 
3959 void
3960 sfh4_copyval(const nfs4_sharedfh_t *sfh, nfs4_fhandle_t *fhp)
3961 {
3962 	mntinfo4_t *mi = sfh->sfh_mi;
3963 
3964 	ASSERT(sfh->sfh_refcnt > 0);
3965 
3966 	(void) nfs_rw_enter_sig(&mi->mi_fh_lock, RW_READER, 0);
3967 	fhp->fh_len = sfh->sfh_fh.nfs_fh4_len;
3968 	ASSERT(fhp->fh_len <= NFS4_FHSIZE);
3969 	bcopy(sfh->sfh_fh.nfs_fh4_val, fhp->fh_buf, fhp->fh_len);
3970 	nfs_rw_exit(&mi->mi_fh_lock);
3971 }
3972 
3973 /*
3974  * Print out the filehandle for the given shared filehandle object.
3975  */
3976 
3977 void
3978 sfh4_printfhandle(const nfs4_sharedfh_t *sfh)
3979 {
3980 	nfs4_fhandle_t fhandle;
3981 
3982 	sfh4_copyval(sfh, &fhandle);
3983 	nfs4_printfhandle(&fhandle);
3984 }
3985 
3986 /*
3987  * Compare 2 fnames.  Returns -1 if the first is "less" than the second, 0
3988  * if they're the same, +1 if the first is "greater" than the second.  The
3989  * caller (or whoever's calling the AVL package) is responsible for
3990  * handling locking issues.
3991  */
3992 
3993 static int
3994 fncmp(const void *p1, const void *p2)
3995 {
3996 	const nfs4_fname_t *f1 = p1;
3997 	const nfs4_fname_t *f2 = p2;
3998 	int res;
3999 
4000 	res = strcmp(f1->fn_name, f2->fn_name);
4001 	/*
4002 	 * The AVL package wants +/-1, not arbitrary positive or negative
4003 	 * integers.
4004 	 */
4005 	if (res > 0)
4006 		res = 1;
4007 	else if (res < 0)
4008 		res = -1;
4009 	return (res);
4010 }
4011 
4012 /*
4013  * Get or create an fname with the given name, as a child of the given
4014  * fname.  The caller is responsible for eventually releasing the reference
4015  * (fn_rele()).  parent may be NULL.
4016  */
4017 
4018 nfs4_fname_t *
4019 fn_get(nfs4_fname_t *parent, char *name, nfs4_sharedfh_t *sfh)
4020 {
4021 	nfs4_fname_t key;
4022 	nfs4_fname_t *fnp;
4023 	avl_index_t where;
4024 
4025 	key.fn_name = name;
4026 
4027 	/*
4028 	 * If there's already an fname registered with the given name, bump
4029 	 * its reference count and return it.  Otherwise, create a new one
4030 	 * and add it to the parent's AVL tree.
4031 	 *
4032 	 * fname entries we are looking for should match both name
4033 	 * and sfh stored in the fname.
4034 	 */
4035 again:
4036 	if (parent != NULL) {
4037 		mutex_enter(&parent->fn_lock);
4038 		fnp = avl_find(&parent->fn_children, &key, &where);
4039 		if (fnp != NULL) {
4040 			/*
4041 			 * This hold on fnp is released below later,
4042 			 * in case this is not the fnp we want.
4043 			 */
4044 			fn_hold(fnp);
4045 
4046 			if (fnp->fn_sfh == sfh) {
4047 				/*
4048 				 * We have found our entry.
4049 				 * put an hold and return it.
4050 				 */
4051 				mutex_exit(&parent->fn_lock);
4052 				return (fnp);
4053 			}
4054 
4055 			/*
4056 			 * We have found an entry that has a mismatching
4057 			 * fn_sfh. This could be a stale entry due to
4058 			 * server side rename. We will remove this entry
4059 			 * and make sure no such entries exist.
4060 			 */
4061 			mutex_exit(&parent->fn_lock);
4062 			mutex_enter(&fnp->fn_lock);
4063 			if (fnp->fn_parent == parent) {
4064 				/*
4065 				 * Remove ourselves from parent's
4066 				 * fn_children tree.
4067 				 */
4068 				mutex_enter(&parent->fn_lock);
4069 				avl_remove(&parent->fn_children, fnp);
4070 				mutex_exit(&parent->fn_lock);
4071 				fn_rele(&fnp->fn_parent);
4072 			}
4073 			mutex_exit(&fnp->fn_lock);
4074 			fn_rele(&fnp);
4075 			goto again;
4076 		}
4077 	}
4078 
4079 	fnp = kmem_alloc(sizeof (nfs4_fname_t), KM_SLEEP);
4080 	mutex_init(&fnp->fn_lock, NULL, MUTEX_DEFAULT, NULL);
4081 	fnp->fn_parent = parent;
4082 	if (parent != NULL)
4083 		fn_hold(parent);
4084 	fnp->fn_len = strlen(name);
4085 	ASSERT(fnp->fn_len < MAXNAMELEN);
4086 	fnp->fn_name = kmem_alloc(fnp->fn_len + 1, KM_SLEEP);
4087 	(void) strcpy(fnp->fn_name, name);
4088 	fnp->fn_refcnt = 1;
4089 
4090 	/*
4091 	 * This hold on sfh is later released
4092 	 * when we do the final fn_rele() on this fname.
4093 	 */
4094 	sfh4_hold(sfh);
4095 	fnp->fn_sfh = sfh;
4096 
4097 	avl_create(&fnp->fn_children, fncmp, sizeof (nfs4_fname_t),
4098 	    offsetof(nfs4_fname_t, fn_tree));
4099 	NFS4_DEBUG(nfs4_fname_debug, (CE_NOTE,
4100 	    "fn_get %p:%s, a new nfs4_fname_t!",
4101 	    (void *)fnp, fnp->fn_name));
4102 	if (parent != NULL) {
4103 		avl_insert(&parent->fn_children, fnp, where);
4104 		mutex_exit(&parent->fn_lock);
4105 	}
4106 
4107 	return (fnp);
4108 }
4109 
4110 void
4111 fn_hold(nfs4_fname_t *fnp)
4112 {
4113 	atomic_add_32(&fnp->fn_refcnt, 1);
4114 	NFS4_DEBUG(nfs4_fname_debug, (CE_NOTE,
4115 	    "fn_hold %p:%s, new refcnt=%d",
4116 	    (void *)fnp, fnp->fn_name, fnp->fn_refcnt));
4117 }
4118 
4119 /*
4120  * Decrement the reference count of the given fname, and destroy it if its
4121  * reference count goes to zero.  Nulls out the given pointer.
4122  */
4123 
4124 void
4125 fn_rele(nfs4_fname_t **fnpp)
4126 {
4127 	nfs4_fname_t *parent;
4128 	uint32_t newref;
4129 	nfs4_fname_t *fnp;
4130 
4131 recur:
4132 	fnp = *fnpp;
4133 	*fnpp = NULL;
4134 
4135 	mutex_enter(&fnp->fn_lock);
4136 	parent = fnp->fn_parent;
4137 	if (parent != NULL)
4138 		mutex_enter(&parent->fn_lock);	/* prevent new references */
4139 	newref = atomic_add_32_nv(&fnp->fn_refcnt, -1);
4140 	if (newref > 0) {
4141 		NFS4_DEBUG(nfs4_fname_debug, (CE_NOTE,
4142 		    "fn_rele %p:%s, new refcnt=%d",
4143 		    (void *)fnp, fnp->fn_name, fnp->fn_refcnt));
4144 		if (parent != NULL)
4145 			mutex_exit(&parent->fn_lock);
4146 		mutex_exit(&fnp->fn_lock);
4147 		return;
4148 	}
4149 
4150 	NFS4_DEBUG(nfs4_fname_debug, (CE_NOTE,
4151 	    "fn_rele %p:%s, last reference, deleting...",
4152 	    (void *)fnp, fnp->fn_name));
4153 	if (parent != NULL) {
4154 		avl_remove(&parent->fn_children, fnp);
4155 		mutex_exit(&parent->fn_lock);
4156 	}
4157 	kmem_free(fnp->fn_name, fnp->fn_len + 1);
4158 	sfh4_rele(&fnp->fn_sfh);
4159 	mutex_destroy(&fnp->fn_lock);
4160 	avl_destroy(&fnp->fn_children);
4161 	kmem_free(fnp, sizeof (nfs4_fname_t));
4162 	/*
4163 	 * Recursivly fn_rele the parent.
4164 	 * Use goto instead of a recursive call to avoid stack overflow.
4165 	 */
4166 	if (parent != NULL) {
4167 		fnpp = &parent;
4168 		goto recur;
4169 	}
4170 }
4171 
4172 /*
4173  * Returns the single component name of the given fname, in a MAXNAMELEN
4174  * string buffer, which the caller is responsible for freeing.  Note that
4175  * the name may become invalid as a result of fn_move().
4176  */
4177 
4178 char *
4179 fn_name(nfs4_fname_t *fnp)
4180 {
4181 	char *name;
4182 
4183 	ASSERT(fnp->fn_len < MAXNAMELEN);
4184 	name = kmem_alloc(MAXNAMELEN, KM_SLEEP);
4185 	mutex_enter(&fnp->fn_lock);
4186 	(void) strcpy(name, fnp->fn_name);
4187 	mutex_exit(&fnp->fn_lock);
4188 
4189 	return (name);
4190 }
4191 
4192 
4193 /*
4194  * fn_path_realloc
4195  *
4196  * This function, used only by fn_path, constructs
4197  * a new string which looks like "prepend" + "/" + "current".
4198  * by allocating a new string and freeing the old one.
4199  */
4200 static void
4201 fn_path_realloc(char **curses, char *prepend)
4202 {
4203 	int len, curlen = 0;
4204 	char *news;
4205 
4206 	if (*curses == NULL) {
4207 		/*
4208 		 * Prime the pump, allocate just the
4209 		 * space for prepend and return that.
4210 		 */
4211 		len = strlen(prepend) + 1;
4212 		news = kmem_alloc(len, KM_SLEEP);
4213 		(void) strncpy(news, prepend, len);
4214 	} else {
4215 		/*
4216 		 * Allocate the space  for a new string
4217 		 * +1 +1 is for the "/" and the NULL
4218 		 * byte at the end of it all.
4219 		 */
4220 		curlen = strlen(*curses);
4221 		len = curlen + strlen(prepend) + 1 + 1;
4222 		news = kmem_alloc(len, KM_SLEEP);
4223 		(void) strncpy(news, prepend, len);
4224 		(void) strcat(news, "/");
4225 		(void) strcat(news, *curses);
4226 		kmem_free(*curses, curlen + 1);
4227 	}
4228 	*curses = news;
4229 }
4230 
4231 /*
4232  * Returns the path name (starting from the fs root) for the given fname.
4233  * The caller is responsible for freeing.  Note that the path may be or
4234  * become invalid as a result of fn_move().
4235  */
4236 
4237 char *
4238 fn_path(nfs4_fname_t *fnp)
4239 {
4240 	char *path;
4241 	nfs4_fname_t *nextfnp;
4242 
4243 	if (fnp == NULL)
4244 		return (NULL);
4245 
4246 	path = NULL;
4247 
4248 	/* walk up the tree constructing the pathname.  */
4249 
4250 	fn_hold(fnp);			/* adjust for later rele */
4251 	do {
4252 		mutex_enter(&fnp->fn_lock);
4253 		/*
4254 		 * Add fn_name in front of the current path
4255 		 */
4256 		fn_path_realloc(&path, fnp->fn_name);
4257 		nextfnp = fnp->fn_parent;
4258 		if (nextfnp != NULL)
4259 			fn_hold(nextfnp);
4260 		mutex_exit(&fnp->fn_lock);
4261 		fn_rele(&fnp);
4262 		fnp = nextfnp;
4263 	} while (fnp != NULL);
4264 
4265 	return (path);
4266 }
4267 
4268 /*
4269  * Return a reference to the parent of the given fname, which the caller is
4270  * responsible for eventually releasing.
4271  */
4272 
4273 nfs4_fname_t *
4274 fn_parent(nfs4_fname_t *fnp)
4275 {
4276 	nfs4_fname_t *parent;
4277 
4278 	mutex_enter(&fnp->fn_lock);
4279 	parent = fnp->fn_parent;
4280 	if (parent != NULL)
4281 		fn_hold(parent);
4282 	mutex_exit(&fnp->fn_lock);
4283 
4284 	return (parent);
4285 }
4286 
4287 /*
4288  * Update fnp so that its parent is newparent and its name is newname.
4289  */
4290 
4291 void
4292 fn_move(nfs4_fname_t *fnp, nfs4_fname_t *newparent, char *newname)
4293 {
4294 	nfs4_fname_t *parent, *tmpfnp;
4295 	ssize_t newlen;
4296 	nfs4_fname_t key;
4297 	avl_index_t where;
4298 
4299 	/*
4300 	 * This assert exists to catch the client trying to rename
4301 	 * a dir to be a child of itself.  This happened at a recent
4302 	 * bakeoff against a 3rd party (broken) server which allowed
4303 	 * the rename to succeed.  If it trips it means that:
4304 	 *	a) the code in nfs4rename that detects this case is broken
4305 	 *	b) the server is broken (since it allowed the bogus rename)
4306 	 *
4307 	 * For non-DEBUG kernels, prepare for a recursive mutex_enter
4308 	 * panic below from:  mutex_enter(&newparent->fn_lock);
4309 	 */
4310 	ASSERT(fnp != newparent);
4311 
4312 	/*
4313 	 * Remove fnp from its current parent, change its name, then add it
4314 	 * to newparent. It might happen that fnp was replaced by another
4315 	 * nfs4_fname_t with the same fn_name in parent->fn_children.
4316 	 * In such case, fnp->fn_parent is NULL and we skip the removal
4317 	 * of fnp from its current parent.
4318 	 */
4319 	mutex_enter(&fnp->fn_lock);
4320 	parent = fnp->fn_parent;
4321 	if (parent != NULL) {
4322 		mutex_enter(&parent->fn_lock);
4323 		avl_remove(&parent->fn_children, fnp);
4324 		mutex_exit(&parent->fn_lock);
4325 		fn_rele(&fnp->fn_parent);
4326 	}
4327 
4328 	newlen = strlen(newname);
4329 	if (newlen != fnp->fn_len) {
4330 		ASSERT(newlen < MAXNAMELEN);
4331 		kmem_free(fnp->fn_name, fnp->fn_len + 1);
4332 		fnp->fn_name = kmem_alloc(newlen + 1, KM_SLEEP);
4333 		fnp->fn_len = newlen;
4334 	}
4335 	(void) strcpy(fnp->fn_name, newname);
4336 
4337 again:
4338 	mutex_enter(&newparent->fn_lock);
4339 	key.fn_name = fnp->fn_name;
4340 	tmpfnp = avl_find(&newparent->fn_children, &key, &where);
4341 	if (tmpfnp != NULL) {
4342 		/*
4343 		 * This could be due to a file that was unlinked while
4344 		 * open, or perhaps the rnode is in the free list.  Remove
4345 		 * it from newparent and let it go away on its own.  The
4346 		 * contorted code is to deal with lock order issues and
4347 		 * race conditions.
4348 		 */
4349 		fn_hold(tmpfnp);
4350 		mutex_exit(&newparent->fn_lock);
4351 		mutex_enter(&tmpfnp->fn_lock);
4352 		if (tmpfnp->fn_parent == newparent) {
4353 			mutex_enter(&newparent->fn_lock);
4354 			avl_remove(&newparent->fn_children, tmpfnp);
4355 			mutex_exit(&newparent->fn_lock);
4356 			fn_rele(&tmpfnp->fn_parent);
4357 		}
4358 		mutex_exit(&tmpfnp->fn_lock);
4359 		fn_rele(&tmpfnp);
4360 		goto again;
4361 	}
4362 	fnp->fn_parent = newparent;
4363 	fn_hold(newparent);
4364 	avl_insert(&newparent->fn_children, fnp, where);
4365 	mutex_exit(&newparent->fn_lock);
4366 	mutex_exit(&fnp->fn_lock);
4367 }
4368 
4369 #ifdef DEBUG
4370 /*
4371  * Return non-zero if the type information makes sense for the given vnode.
4372  * Otherwise panic.
4373  */
4374 int
4375 nfs4_consistent_type(vnode_t *vp)
4376 {
4377 	rnode4_t *rp = VTOR4(vp);
4378 
4379 	if (nfs4_vtype_debug && vp->v_type != VNON &&
4380 	    rp->r_attr.va_type != VNON && vp->v_type != rp->r_attr.va_type) {
4381 		cmn_err(CE_PANIC, "vnode %p type mismatch; v_type=%d, "
4382 		    "rnode attr type=%d", (void *)vp, vp->v_type,
4383 		    rp->r_attr.va_type);
4384 	}
4385 
4386 	return (1);
4387 }
4388 #endif /* DEBUG */
4389