xref: /titanic_44/usr/src/uts/common/fs/nfs/nfs3_vnops.c (revision 5fd03bc0f2e00e7ba02316c2e08f45d52aab15db)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2010 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /*
27  *	Copyright (c) 1983,1984,1985,1986,1987,1988,1989 AT&T.
28  *	All rights reserved.
29  */
30 
31 /*
32  * Copyright (c) 2013, Joyent, Inc. All rights reserved.
33  */
34 
35 #include <sys/param.h>
36 #include <sys/types.h>
37 #include <sys/systm.h>
38 #include <sys/cred.h>
39 #include <sys/time.h>
40 #include <sys/vnode.h>
41 #include <sys/vfs.h>
42 #include <sys/vfs_opreg.h>
43 #include <sys/file.h>
44 #include <sys/filio.h>
45 #include <sys/uio.h>
46 #include <sys/buf.h>
47 #include <sys/mman.h>
48 #include <sys/pathname.h>
49 #include <sys/dirent.h>
50 #include <sys/debug.h>
51 #include <sys/vmsystm.h>
52 #include <sys/fcntl.h>
53 #include <sys/flock.h>
54 #include <sys/swap.h>
55 #include <sys/errno.h>
56 #include <sys/strsubr.h>
57 #include <sys/sysmacros.h>
58 #include <sys/kmem.h>
59 #include <sys/cmn_err.h>
60 #include <sys/pathconf.h>
61 #include <sys/utsname.h>
62 #include <sys/dnlc.h>
63 #include <sys/acl.h>
64 #include <sys/systeminfo.h>
65 #include <sys/atomic.h>
66 #include <sys/policy.h>
67 #include <sys/sdt.h>
68 #include <sys/zone.h>
69 
70 #include <rpc/types.h>
71 #include <rpc/auth.h>
72 #include <rpc/clnt.h>
73 #include <rpc/rpc_rdma.h>
74 
75 #include <nfs/nfs.h>
76 #include <nfs/nfs_clnt.h>
77 #include <nfs/rnode.h>
78 #include <nfs/nfs_acl.h>
79 #include <nfs/lm.h>
80 
81 #include <vm/hat.h>
82 #include <vm/as.h>
83 #include <vm/page.h>
84 #include <vm/pvn.h>
85 #include <vm/seg.h>
86 #include <vm/seg_map.h>
87 #include <vm/seg_kpm.h>
88 #include <vm/seg_vn.h>
89 
90 #include <fs/fs_subr.h>
91 
92 #include <sys/ddi.h>
93 
94 static int	nfs3_rdwrlbn(vnode_t *, page_t *, u_offset_t, size_t, int,
95 			cred_t *);
96 static int	nfs3write(vnode_t *, caddr_t, u_offset_t, int, cred_t *,
97 			stable_how *);
98 static int	nfs3read(vnode_t *, caddr_t, offset_t, int, size_t *, cred_t *);
99 static int	nfs3setattr(vnode_t *, struct vattr *, int, cred_t *);
100 static int	nfs3_accessx(void *, int, cred_t *);
101 static int	nfs3lookup_dnlc(vnode_t *, char *, vnode_t **, cred_t *);
102 static int	nfs3lookup_otw(vnode_t *, char *, vnode_t **, cred_t *, int);
103 static int	nfs3create(vnode_t *, char *, struct vattr *, enum vcexcl,
104 			int, vnode_t **, cred_t *, int);
105 static int	nfs3excl_create_settimes(vnode_t *, struct vattr *, cred_t *);
106 static int	nfs3mknod(vnode_t *, char *, struct vattr *, enum vcexcl,
107 			int, vnode_t **, cred_t *);
108 static int	nfs3rename(vnode_t *, char *, vnode_t *, char *, cred_t *,
109 			caller_context_t *);
110 static int	do_nfs3readdir(vnode_t *, rddir_cache *, cred_t *);
111 static void	nfs3readdir(vnode_t *, rddir_cache *, cred_t *);
112 static void	nfs3readdirplus(vnode_t *, rddir_cache *, cred_t *);
113 static int	nfs3_bio(struct buf *, stable_how *, cred_t *);
114 static int	nfs3_getapage(vnode_t *, u_offset_t, size_t, uint_t *,
115 			page_t *[], size_t, struct seg *, caddr_t,
116 			enum seg_rw, cred_t *);
117 static void	nfs3_readahead(vnode_t *, u_offset_t, caddr_t, struct seg *,
118 			cred_t *);
119 static int	nfs3_sync_putapage(vnode_t *, page_t *, u_offset_t, size_t,
120 			int, cred_t *);
121 static int	nfs3_sync_pageio(vnode_t *, page_t *, u_offset_t, size_t,
122 			int, cred_t *);
123 static int	nfs3_commit(vnode_t *, offset3, count3, cred_t *);
124 static void	nfs3_set_mod(vnode_t *);
125 static void	nfs3_get_commit(vnode_t *);
126 static void	nfs3_get_commit_range(vnode_t *, u_offset_t, size_t);
127 static int	nfs3_putpage_commit(vnode_t *, offset_t, size_t, cred_t *);
128 static int	nfs3_commit_vp(vnode_t *, u_offset_t, size_t,  cred_t *);
129 static int	nfs3_sync_commit(vnode_t *, page_t *, offset3, count3,
130 			cred_t *);
131 static void	nfs3_async_commit(vnode_t *, page_t *, offset3, count3,
132 			cred_t *);
133 static void	nfs3_delmap_callback(struct as *, void *, uint_t);
134 
135 /*
136  * Error flags used to pass information about certain special errors
137  * which need to be handled specially.
138  */
139 #define	NFS_EOF			-98
140 #define	NFS_VERF_MISMATCH	-97
141 
142 /* ALIGN64 aligns the given buffer and adjust buffer size to 64 bit */
143 #define	ALIGN64(x, ptr, sz)						\
144 	x = ((uintptr_t)(ptr)) & (sizeof (uint64_t) - 1);		\
145 	if (x) {							\
146 		x = sizeof (uint64_t) - (x);				\
147 		sz -= (x);						\
148 		ptr += (x);						\
149 	}
150 
151 /*
152  * These are the vnode ops routines which implement the vnode interface to
153  * the networked file system.  These routines just take their parameters,
154  * make them look networkish by putting the right info into interface structs,
155  * and then calling the appropriate remote routine(s) to do the work.
156  *
157  * Note on directory name lookup cacheing:  If we detect a stale fhandle,
158  * we purge the directory cache relative to that vnode.  This way, the
159  * user won't get burned by the cache repeatedly.  See <nfs/rnode.h> for
160  * more details on rnode locking.
161  */
162 
163 static int	nfs3_open(vnode_t **, int, cred_t *, caller_context_t *);
164 static int	nfs3_close(vnode_t *, int, int, offset_t, cred_t *,
165 			caller_context_t *);
166 static int	nfs3_read(vnode_t *, struct uio *, int, cred_t *,
167 			caller_context_t *);
168 static int	nfs3_write(vnode_t *, struct uio *, int, cred_t *,
169 			caller_context_t *);
170 static int	nfs3_ioctl(vnode_t *, int, intptr_t, int, cred_t *, int *,
171 			caller_context_t *);
172 static int	nfs3_getattr(vnode_t *, struct vattr *, int, cred_t *,
173 			caller_context_t *);
174 static int	nfs3_setattr(vnode_t *, struct vattr *, int, cred_t *,
175 			caller_context_t *);
176 static int	nfs3_access(vnode_t *, int, int, cred_t *, caller_context_t *);
177 static int	nfs3_readlink(vnode_t *, struct uio *, cred_t *,
178 			caller_context_t *);
179 static int	nfs3_fsync(vnode_t *, int, cred_t *, caller_context_t *);
180 static void	nfs3_inactive(vnode_t *, cred_t *, caller_context_t *);
181 static int	nfs3_lookup(vnode_t *, char *, vnode_t **,
182 			struct pathname *, int, vnode_t *, cred_t *,
183 			caller_context_t *, int *, pathname_t *);
184 static int	nfs3_create(vnode_t *, char *, struct vattr *, enum vcexcl,
185 			int, vnode_t **, cred_t *, int, caller_context_t *,
186 			vsecattr_t *);
187 static int	nfs3_remove(vnode_t *, char *, cred_t *, caller_context_t *,
188 			int);
189 static int	nfs3_link(vnode_t *, vnode_t *, char *, cred_t *,
190 			caller_context_t *, int);
191 static int	nfs3_rename(vnode_t *, char *, vnode_t *, char *, cred_t *,
192 			caller_context_t *, int);
193 static int	nfs3_mkdir(vnode_t *, char *, struct vattr *, vnode_t **,
194 			cred_t *, caller_context_t *, int, vsecattr_t *);
195 static int	nfs3_rmdir(vnode_t *, char *, vnode_t *, cred_t *,
196 			caller_context_t *, int);
197 static int	nfs3_symlink(vnode_t *, char *, struct vattr *, char *,
198 			cred_t *, caller_context_t *, int);
199 static int	nfs3_readdir(vnode_t *, struct uio *, cred_t *, int *,
200 			caller_context_t *, int);
201 static int	nfs3_fid(vnode_t *, fid_t *, caller_context_t *);
202 static int	nfs3_rwlock(vnode_t *, int, caller_context_t *);
203 static void	nfs3_rwunlock(vnode_t *, int, caller_context_t *);
204 static int	nfs3_seek(vnode_t *, offset_t, offset_t *, caller_context_t *);
205 static int	nfs3_getpage(vnode_t *, offset_t, size_t, uint_t *,
206 			page_t *[], size_t, struct seg *, caddr_t,
207 			enum seg_rw, cred_t *, caller_context_t *);
208 static int	nfs3_putpage(vnode_t *, offset_t, size_t, int, cred_t *,
209 			caller_context_t *);
210 static int	nfs3_map(vnode_t *, offset_t, struct as *, caddr_t *, size_t,
211 			uchar_t, uchar_t, uint_t, cred_t *, caller_context_t *);
212 static int	nfs3_addmap(vnode_t *, offset_t, struct as *, caddr_t, size_t,
213 			uchar_t, uchar_t, uint_t, cred_t *, caller_context_t *);
214 static int	nfs3_frlock(vnode_t *, int, struct flock64 *, int, offset_t,
215 			struct flk_callback *, cred_t *, caller_context_t *);
216 static int	nfs3_space(vnode_t *, int, struct flock64 *, int, offset_t,
217 			cred_t *, caller_context_t *);
218 static int	nfs3_realvp(vnode_t *, vnode_t **, caller_context_t *);
219 static int	nfs3_delmap(vnode_t *, offset_t, struct as *, caddr_t, size_t,
220 			uint_t, uint_t, uint_t, cred_t *, caller_context_t *);
221 static int	nfs3_pathconf(vnode_t *, int, ulong_t *, cred_t *,
222 			caller_context_t *);
223 static int	nfs3_pageio(vnode_t *, page_t *, u_offset_t, size_t, int,
224 			cred_t *, caller_context_t *);
225 static void	nfs3_dispose(vnode_t *, page_t *, int, int, cred_t *,
226 			caller_context_t *);
227 static int	nfs3_setsecattr(vnode_t *, vsecattr_t *, int, cred_t *,
228 			caller_context_t *);
229 static int	nfs3_getsecattr(vnode_t *, vsecattr_t *, int, cred_t *,
230 			caller_context_t *);
231 static int	nfs3_shrlock(vnode_t *, int, struct shrlock *, int, cred_t *,
232 			caller_context_t *);
233 
234 struct vnodeops *nfs3_vnodeops;
235 
236 const fs_operation_def_t nfs3_vnodeops_template[] = {
237 	VOPNAME_OPEN,		{ .vop_open = nfs3_open },
238 	VOPNAME_CLOSE,		{ .vop_close = nfs3_close },
239 	VOPNAME_READ,		{ .vop_read = nfs3_read },
240 	VOPNAME_WRITE,		{ .vop_write = nfs3_write },
241 	VOPNAME_IOCTL,		{ .vop_ioctl = nfs3_ioctl },
242 	VOPNAME_GETATTR,	{ .vop_getattr = nfs3_getattr },
243 	VOPNAME_SETATTR,	{ .vop_setattr = nfs3_setattr },
244 	VOPNAME_ACCESS,		{ .vop_access = nfs3_access },
245 	VOPNAME_LOOKUP,		{ .vop_lookup = nfs3_lookup },
246 	VOPNAME_CREATE,		{ .vop_create = nfs3_create },
247 	VOPNAME_REMOVE,		{ .vop_remove = nfs3_remove },
248 	VOPNAME_LINK,		{ .vop_link = nfs3_link },
249 	VOPNAME_RENAME,		{ .vop_rename = nfs3_rename },
250 	VOPNAME_MKDIR,		{ .vop_mkdir = nfs3_mkdir },
251 	VOPNAME_RMDIR,		{ .vop_rmdir = nfs3_rmdir },
252 	VOPNAME_READDIR,	{ .vop_readdir = nfs3_readdir },
253 	VOPNAME_SYMLINK,	{ .vop_symlink = nfs3_symlink },
254 	VOPNAME_READLINK,	{ .vop_readlink = nfs3_readlink },
255 	VOPNAME_FSYNC,		{ .vop_fsync = nfs3_fsync },
256 	VOPNAME_INACTIVE,	{ .vop_inactive = nfs3_inactive },
257 	VOPNAME_FID,		{ .vop_fid = nfs3_fid },
258 	VOPNAME_RWLOCK,		{ .vop_rwlock = nfs3_rwlock },
259 	VOPNAME_RWUNLOCK,	{ .vop_rwunlock = nfs3_rwunlock },
260 	VOPNAME_SEEK,		{ .vop_seek = nfs3_seek },
261 	VOPNAME_FRLOCK,		{ .vop_frlock = nfs3_frlock },
262 	VOPNAME_SPACE,		{ .vop_space = nfs3_space },
263 	VOPNAME_REALVP,		{ .vop_realvp = nfs3_realvp },
264 	VOPNAME_GETPAGE,	{ .vop_getpage = nfs3_getpage },
265 	VOPNAME_PUTPAGE,	{ .vop_putpage = nfs3_putpage },
266 	VOPNAME_MAP,		{ .vop_map = nfs3_map },
267 	VOPNAME_ADDMAP,		{ .vop_addmap = nfs3_addmap },
268 	VOPNAME_DELMAP,		{ .vop_delmap = nfs3_delmap },
269 	/* no separate nfs3_dump */
270 	VOPNAME_DUMP,		{ .vop_dump = nfs_dump },
271 	VOPNAME_PATHCONF,	{ .vop_pathconf = nfs3_pathconf },
272 	VOPNAME_PAGEIO,		{ .vop_pageio = nfs3_pageio },
273 	VOPNAME_DISPOSE,	{ .vop_dispose = nfs3_dispose },
274 	VOPNAME_SETSECATTR,	{ .vop_setsecattr = nfs3_setsecattr },
275 	VOPNAME_GETSECATTR,	{ .vop_getsecattr = nfs3_getsecattr },
276 	VOPNAME_SHRLOCK,	{ .vop_shrlock = nfs3_shrlock },
277 	VOPNAME_VNEVENT, 	{ .vop_vnevent = fs_vnevent_support },
278 	NULL,			NULL
279 };
280 
281 /*
282  * XXX:  This is referenced in modstubs.s
283  */
284 struct vnodeops *
285 nfs3_getvnodeops(void)
286 {
287 	return (nfs3_vnodeops);
288 }
289 
290 /* ARGSUSED */
291 static int
292 nfs3_open(vnode_t **vpp, int flag, cred_t *cr, caller_context_t *ct)
293 {
294 	int error;
295 	struct vattr va;
296 	rnode_t *rp;
297 	vnode_t *vp;
298 
299 	vp = *vpp;
300 	if (nfs_zone() != VTOMI(vp)->mi_zone)
301 		return (EIO);
302 	rp = VTOR(vp);
303 	mutex_enter(&rp->r_statelock);
304 	if (rp->r_cred == NULL) {
305 		crhold(cr);
306 		rp->r_cred = cr;
307 	}
308 	mutex_exit(&rp->r_statelock);
309 
310 	/*
311 	 * If there is no cached data or if close-to-open
312 	 * consistency checking is turned off, we can avoid
313 	 * the over the wire getattr.  Otherwise, if the
314 	 * file system is mounted readonly, then just verify
315 	 * the caches are up to date using the normal mechanism.
316 	 * Else, if the file is not mmap'd, then just mark
317 	 * the attributes as timed out.  They will be refreshed
318 	 * and the caches validated prior to being used.
319 	 * Else, the file system is mounted writeable so
320 	 * force an over the wire GETATTR in order to ensure
321 	 * that all cached data is valid.
322 	 */
323 	if (vp->v_count > 1 ||
324 	    ((vn_has_cached_data(vp) || HAVE_RDDIR_CACHE(rp)) &&
325 	    !(VTOMI(vp)->mi_flags & MI_NOCTO))) {
326 		if (vn_is_readonly(vp))
327 			error = nfs3_validate_caches(vp, cr);
328 		else if (rp->r_mapcnt == 0 && vp->v_count == 1) {
329 			PURGE_ATTRCACHE(vp);
330 			error = 0;
331 		} else {
332 			va.va_mask = AT_ALL;
333 			error = nfs3_getattr_otw(vp, &va, cr);
334 		}
335 	} else
336 		error = 0;
337 
338 	return (error);
339 }
340 
341 /* ARGSUSED */
342 static int
343 nfs3_close(vnode_t *vp, int flag, int count, offset_t offset, cred_t *cr,
344 		caller_context_t *ct)
345 {
346 	rnode_t *rp;
347 	int error;
348 	struct vattr va;
349 
350 	/*
351 	 * zone_enter(2) prevents processes from changing zones with NFS files
352 	 * open; if we happen to get here from the wrong zone we can't do
353 	 * anything over the wire.
354 	 */
355 	if (VTOMI(vp)->mi_zone != nfs_zone()) {
356 		/*
357 		 * We could attempt to clean up locks, except we're sure
358 		 * that the current process didn't acquire any locks on
359 		 * the file: any attempt to lock a file belong to another zone
360 		 * will fail, and one can't lock an NFS file and then change
361 		 * zones, as that fails too.
362 		 *
363 		 * Returning an error here is the sane thing to do.  A
364 		 * subsequent call to VN_RELE() which translates to a
365 		 * nfs3_inactive() will clean up state: if the zone of the
366 		 * vnode's origin is still alive and kicking, an async worker
367 		 * thread will handle the request (from the correct zone), and
368 		 * everything (minus the commit and final nfs3_getattr_otw()
369 		 * call) should be OK. If the zone is going away
370 		 * nfs_async_inactive() will throw away cached pages inline.
371 		 */
372 		return (EIO);
373 	}
374 
375 	/*
376 	 * If we are using local locking for this filesystem, then
377 	 * release all of the SYSV style record locks.  Otherwise,
378 	 * we are doing network locking and we need to release all
379 	 * of the network locks.  All of the locks held by this
380 	 * process on this file are released no matter what the
381 	 * incoming reference count is.
382 	 */
383 	if (VTOMI(vp)->mi_flags & MI_LLOCK) {
384 		cleanlocks(vp, ttoproc(curthread)->p_pid, 0);
385 		cleanshares(vp, ttoproc(curthread)->p_pid);
386 	} else
387 		nfs_lockrelease(vp, flag, offset, cr);
388 
389 	if (count > 1)
390 		return (0);
391 
392 	/*
393 	 * If the file has been `unlinked', then purge the
394 	 * DNLC so that this vnode will get reycled quicker
395 	 * and the .nfs* file on the server will get removed.
396 	 */
397 	rp = VTOR(vp);
398 	if (rp->r_unldvp != NULL)
399 		dnlc_purge_vp(vp);
400 
401 	/*
402 	 * If the file was open for write and there are pages,
403 	 * then if the file system was mounted using the "no-close-
404 	 *	to-open" semantics, then start an asynchronous flush
405 	 *	of the all of the pages in the file.
406 	 * else the file system was not mounted using the "no-close-
407 	 *	to-open" semantics, then do a synchronous flush and
408 	 *	commit of all of the dirty and uncommitted pages.
409 	 *
410 	 * The asynchronous flush of the pages in the "nocto" path
411 	 * mostly just associates a cred pointer with the rnode so
412 	 * writes which happen later will have a better chance of
413 	 * working.  It also starts the data being written to the
414 	 * server, but without unnecessarily delaying the application.
415 	 */
416 	if ((flag & FWRITE) && vn_has_cached_data(vp)) {
417 		if (VTOMI(vp)->mi_flags & MI_NOCTO) {
418 			error = nfs3_putpage(vp, (offset_t)0, 0, B_ASYNC,
419 			    cr, ct);
420 			if (error == EAGAIN)
421 				error = 0;
422 		} else
423 			error = nfs3_putpage_commit(vp, (offset_t)0, 0, cr);
424 		if (!error) {
425 			mutex_enter(&rp->r_statelock);
426 			error = rp->r_error;
427 			rp->r_error = 0;
428 			mutex_exit(&rp->r_statelock);
429 		}
430 	} else {
431 		mutex_enter(&rp->r_statelock);
432 		error = rp->r_error;
433 		rp->r_error = 0;
434 		mutex_exit(&rp->r_statelock);
435 	}
436 
437 	/*
438 	 * If RWRITEATTR is set, then issue an over the wire GETATTR to
439 	 * refresh the attribute cache with a set of attributes which
440 	 * weren't returned from a WRITE.  This will enable the close-
441 	 * to-open processing to work.
442 	 */
443 	if (rp->r_flags & RWRITEATTR)
444 		(void) nfs3_getattr_otw(vp, &va, cr);
445 
446 	return (error);
447 }
448 
449 /* ARGSUSED */
450 static int
451 nfs3_directio_read(vnode_t *vp, struct uio *uiop, cred_t *cr)
452 {
453 	mntinfo_t *mi;
454 	READ3args args;
455 	READ3uiores res;
456 	int tsize;
457 	offset_t offset;
458 	ssize_t count;
459 	int error;
460 	int douprintf;
461 	failinfo_t fi;
462 	char *sv_hostname;
463 
464 	mi = VTOMI(vp);
465 	ASSERT(nfs_zone() == VTOMI(vp)->mi_zone);
466 	sv_hostname = VTOR(vp)->r_server->sv_hostname;
467 
468 	douprintf = 1;
469 	args.file = *VTOFH3(vp);
470 	fi.vp = vp;
471 	fi.fhp = (caddr_t)&args.file;
472 	fi.copyproc = nfs3copyfh;
473 	fi.lookupproc = nfs3lookup;
474 	fi.xattrdirproc = acl_getxattrdir3;
475 
476 	res.uiop = uiop;
477 
478 	res.wlist = NULL;
479 
480 	offset = uiop->uio_loffset;
481 	count = uiop->uio_resid;
482 
483 	do {
484 		if (mi->mi_io_kstats) {
485 			mutex_enter(&mi->mi_lock);
486 			kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats));
487 			mutex_exit(&mi->mi_lock);
488 		}
489 
490 		do {
491 			tsize = MIN(mi->mi_tsize, count);
492 			args.offset = (offset3)offset;
493 			args.count = (count3)tsize;
494 			res.size = (uint_t)tsize;
495 			args.res_uiop = uiop;
496 			args.res_data_val_alt = NULL;
497 
498 			error = rfs3call(mi, NFSPROC3_READ,
499 			    xdr_READ3args, (caddr_t)&args,
500 			    xdr_READ3uiores, (caddr_t)&res, cr,
501 			    &douprintf, &res.status, 0, &fi);
502 		} while (error == ENFS_TRYAGAIN);
503 
504 		if (mi->mi_io_kstats) {
505 			mutex_enter(&mi->mi_lock);
506 			kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats));
507 			mutex_exit(&mi->mi_lock);
508 		}
509 
510 		if (error)
511 			return (error);
512 
513 		error = geterrno3(res.status);
514 		if (error)
515 			return (error);
516 
517 		if (res.count != res.size) {
518 			zcmn_err(getzoneid(), CE_WARN,
519 "nfs3_directio_read: server %s returned incorrect amount",
520 			    sv_hostname);
521 			return (EIO);
522 		}
523 		count -= res.count;
524 		offset += res.count;
525 		if (mi->mi_io_kstats) {
526 			mutex_enter(&mi->mi_lock);
527 			KSTAT_IO_PTR(mi->mi_io_kstats)->reads++;
528 			KSTAT_IO_PTR(mi->mi_io_kstats)->nread += res.count;
529 			mutex_exit(&mi->mi_lock);
530 		}
531 		lwp_stat_update(LWP_STAT_INBLK, 1);
532 	} while (count && !res.eof);
533 
534 	return (0);
535 }
536 
537 /* ARGSUSED */
538 static int
539 nfs3_read(vnode_t *vp, struct uio *uiop, int ioflag, cred_t *cr,
540 	caller_context_t *ct)
541 {
542 	rnode_t *rp;
543 	u_offset_t off;
544 	offset_t diff;
545 	int on;
546 	size_t n;
547 	caddr_t base;
548 	uint_t flags;
549 	int error = 0;
550 	mntinfo_t *mi;
551 
552 	rp = VTOR(vp);
553 	mi = VTOMI(vp);
554 
555 	ASSERT(nfs_rw_lock_held(&rp->r_rwlock, RW_READER));
556 
557 	if (nfs_zone() != mi->mi_zone)
558 		return (EIO);
559 
560 	if (vp->v_type != VREG)
561 		return (EISDIR);
562 
563 	if (uiop->uio_resid == 0)
564 		return (0);
565 
566 	if (uiop->uio_loffset < 0 || uiop->uio_loffset + uiop->uio_resid < 0)
567 		return (EINVAL);
568 
569 	/*
570 	 * Bypass VM if caching has been disabled (e.g., locking) or if
571 	 * using client-side direct I/O and the file is not mmap'd and
572 	 * there are no cached pages.
573 	 */
574 	if ((vp->v_flag & VNOCACHE) ||
575 	    (((rp->r_flags & RDIRECTIO) || (mi->mi_flags & MI_DIRECTIO)) &&
576 	    rp->r_mapcnt == 0 && rp->r_inmap == 0 &&
577 	    !vn_has_cached_data(vp))) {
578 		return (nfs3_directio_read(vp, uiop, cr));
579 	}
580 
581 	do {
582 		off = uiop->uio_loffset & MAXBMASK; /* mapping offset */
583 		on = uiop->uio_loffset & MAXBOFFSET; /* Relative offset */
584 		n = MIN(MAXBSIZE - on, uiop->uio_resid);
585 
586 		error = nfs3_validate_caches(vp, cr);
587 		if (error)
588 			break;
589 
590 		mutex_enter(&rp->r_statelock);
591 		while (rp->r_flags & RINCACHEPURGE) {
592 			if (!cv_wait_sig(&rp->r_cv, &rp->r_statelock)) {
593 				mutex_exit(&rp->r_statelock);
594 				return (EINTR);
595 			}
596 		}
597 		diff = rp->r_size - uiop->uio_loffset;
598 		mutex_exit(&rp->r_statelock);
599 		if (diff <= 0)
600 			break;
601 		if (diff < n)
602 			n = (size_t)diff;
603 
604 		if (vpm_enable) {
605 			/*
606 			 * Copy data.
607 			 */
608 			error = vpm_data_copy(vp, off + on, n, uiop,
609 			    1, NULL, 0, S_READ);
610 		} else {
611 			base = segmap_getmapflt(segkmap, vp, off + on, n, 1,
612 			    S_READ);
613 
614 			error = uiomove(base + on, n, UIO_READ, uiop);
615 		}
616 
617 		if (!error) {
618 			/*
619 			 * If read a whole block or read to eof,
620 			 * won't need this buffer again soon.
621 			 */
622 			mutex_enter(&rp->r_statelock);
623 			if (n + on == MAXBSIZE ||
624 			    uiop->uio_loffset == rp->r_size)
625 				flags = SM_DONTNEED;
626 			else
627 				flags = 0;
628 			mutex_exit(&rp->r_statelock);
629 			if (vpm_enable) {
630 				error = vpm_sync_pages(vp, off, n, flags);
631 			} else {
632 				error = segmap_release(segkmap, base, flags);
633 			}
634 		} else {
635 			if (vpm_enable) {
636 				(void) vpm_sync_pages(vp, off, n, 0);
637 			} else {
638 				(void) segmap_release(segkmap, base, 0);
639 			}
640 		}
641 	} while (!error && uiop->uio_resid > 0);
642 
643 	return (error);
644 }
645 
646 /* ARGSUSED */
647 static int
648 nfs3_write(vnode_t *vp, struct uio *uiop, int ioflag, cred_t *cr,
649 	caller_context_t *ct)
650 {
651 	rlim64_t limit = uiop->uio_llimit;
652 	rnode_t *rp;
653 	u_offset_t off;
654 	caddr_t base;
655 	uint_t flags;
656 	int remainder;
657 	size_t n;
658 	int on;
659 	int error;
660 	int resid;
661 	offset_t offset;
662 	mntinfo_t *mi;
663 	uint_t bsize;
664 
665 	rp = VTOR(vp);
666 
667 	if (vp->v_type != VREG)
668 		return (EISDIR);
669 
670 	mi = VTOMI(vp);
671 	if (nfs_zone() != mi->mi_zone)
672 		return (EIO);
673 	if (uiop->uio_resid == 0)
674 		return (0);
675 
676 	if (ioflag & FAPPEND) {
677 		struct vattr va;
678 
679 		/*
680 		 * Must serialize if appending.
681 		 */
682 		if (nfs_rw_lock_held(&rp->r_rwlock, RW_READER)) {
683 			nfs_rw_exit(&rp->r_rwlock);
684 			if (nfs_rw_enter_sig(&rp->r_rwlock, RW_WRITER,
685 			    INTR(vp)))
686 				return (EINTR);
687 		}
688 
689 		va.va_mask = AT_SIZE;
690 		error = nfs3getattr(vp, &va, cr);
691 		if (error)
692 			return (error);
693 		uiop->uio_loffset = va.va_size;
694 	}
695 
696 	offset = uiop->uio_loffset + uiop->uio_resid;
697 
698 	if (uiop->uio_loffset < 0 || offset < 0)
699 		return (EINVAL);
700 
701 	if (limit == RLIM64_INFINITY || limit > MAXOFFSET_T)
702 		limit = MAXOFFSET_T;
703 
704 	/*
705 	 * Check to make sure that the process will not exceed
706 	 * its limit on file size.  It is okay to write up to
707 	 * the limit, but not beyond.  Thus, the write which
708 	 * reaches the limit will be short and the next write
709 	 * will return an error.
710 	 */
711 	remainder = 0;
712 	if (offset > limit) {
713 		remainder = offset - limit;
714 		uiop->uio_resid = limit - uiop->uio_loffset;
715 		if (uiop->uio_resid <= 0) {
716 			proc_t *p = ttoproc(curthread);
717 
718 			uiop->uio_resid += remainder;
719 			mutex_enter(&p->p_lock);
720 			(void) rctl_action(rctlproc_legacy[RLIMIT_FSIZE],
721 			    p->p_rctls, p, RCA_UNSAFE_SIGINFO);
722 			mutex_exit(&p->p_lock);
723 			return (EFBIG);
724 		}
725 	}
726 
727 	if (nfs_rw_enter_sig(&rp->r_lkserlock, RW_READER, INTR(vp)))
728 		return (EINTR);
729 
730 	/*
731 	 * Bypass VM if caching has been disabled (e.g., locking) or if
732 	 * using client-side direct I/O and the file is not mmap'd and
733 	 * there are no cached pages.
734 	 */
735 	if ((vp->v_flag & VNOCACHE) ||
736 	    (((rp->r_flags & RDIRECTIO) || (mi->mi_flags & MI_DIRECTIO)) &&
737 	    rp->r_mapcnt == 0 && rp->r_inmap == 0 &&
738 	    !vn_has_cached_data(vp))) {
739 		size_t bufsize;
740 		int count;
741 		u_offset_t org_offset;
742 		stable_how stab_comm;
743 
744 nfs3_fwrite:
745 		if (rp->r_flags & RSTALE) {
746 			resid = uiop->uio_resid;
747 			offset = uiop->uio_loffset;
748 			error = rp->r_error;
749 			/*
750 			 * A close may have cleared r_error, if so,
751 			 * propagate ESTALE error return properly
752 			 */
753 			if (error == 0)
754 				error = ESTALE;
755 			goto bottom;
756 		}
757 		bufsize = MIN(uiop->uio_resid, mi->mi_stsize);
758 		base = kmem_alloc(bufsize, KM_SLEEP);
759 		do {
760 			if (ioflag & FDSYNC)
761 				stab_comm = DATA_SYNC;
762 			else
763 				stab_comm = FILE_SYNC;
764 			resid = uiop->uio_resid;
765 			offset = uiop->uio_loffset;
766 			count = MIN(uiop->uio_resid, bufsize);
767 			org_offset = uiop->uio_loffset;
768 			error = uiomove(base, count, UIO_WRITE, uiop);
769 			if (!error) {
770 				error = nfs3write(vp, base, org_offset,
771 				    count, cr, &stab_comm);
772 			}
773 		} while (!error && uiop->uio_resid > 0);
774 		kmem_free(base, bufsize);
775 		goto bottom;
776 	}
777 
778 
779 	bsize = vp->v_vfsp->vfs_bsize;
780 
781 	do {
782 		off = uiop->uio_loffset & MAXBMASK; /* mapping offset */
783 		on = uiop->uio_loffset & MAXBOFFSET; /* Relative offset */
784 		n = MIN(MAXBSIZE - on, uiop->uio_resid);
785 
786 		resid = uiop->uio_resid;
787 		offset = uiop->uio_loffset;
788 
789 		if (rp->r_flags & RSTALE) {
790 			error = rp->r_error;
791 			/*
792 			 * A close may have cleared r_error, if so,
793 			 * propagate ESTALE error return properly
794 			 */
795 			if (error == 0)
796 				error = ESTALE;
797 			break;
798 		}
799 
800 		/*
801 		 * Don't create dirty pages faster than they
802 		 * can be cleaned so that the system doesn't
803 		 * get imbalanced.  If the async queue is
804 		 * maxed out, then wait for it to drain before
805 		 * creating more dirty pages.  Also, wait for
806 		 * any threads doing pagewalks in the vop_getattr
807 		 * entry points so that they don't block for
808 		 * long periods.
809 		 */
810 		mutex_enter(&rp->r_statelock);
811 		while ((mi->mi_max_threads != 0 &&
812 		    rp->r_awcount > 2 * mi->mi_max_threads) ||
813 		    rp->r_gcount > 0) {
814 			if (INTR(vp)) {
815 				klwp_t *lwp = ttolwp(curthread);
816 
817 				if (lwp != NULL)
818 					lwp->lwp_nostop++;
819 				if (!cv_wait_sig(&rp->r_cv, &rp->r_statelock)) {
820 					mutex_exit(&rp->r_statelock);
821 					if (lwp != NULL)
822 						lwp->lwp_nostop--;
823 					error = EINTR;
824 					goto bottom;
825 				}
826 				if (lwp != NULL)
827 					lwp->lwp_nostop--;
828 			} else
829 				cv_wait(&rp->r_cv, &rp->r_statelock);
830 		}
831 		mutex_exit(&rp->r_statelock);
832 
833 		/*
834 		 * Touch the page and fault it in if it is not in core
835 		 * before segmap_getmapflt or vpm_data_copy can lock it.
836 		 * This is to avoid the deadlock if the buffer is mapped
837 		 * to the same file through mmap which we want to write.
838 		 */
839 		uio_prefaultpages((long)n, uiop);
840 
841 		if (vpm_enable) {
842 			/*
843 			 * It will use kpm mappings, so no need to
844 			 * pass an address.
845 			 */
846 			error = writerp(rp, NULL, n, uiop, 0);
847 		} else  {
848 			if (segmap_kpm) {
849 				int pon = uiop->uio_loffset & PAGEOFFSET;
850 				size_t pn = MIN(PAGESIZE - pon,
851 				    uiop->uio_resid);
852 				int pagecreate;
853 
854 				mutex_enter(&rp->r_statelock);
855 				pagecreate = (pon == 0) && (pn == PAGESIZE ||
856 				    uiop->uio_loffset + pn >= rp->r_size);
857 				mutex_exit(&rp->r_statelock);
858 
859 				base = segmap_getmapflt(segkmap, vp, off + on,
860 				    pn, !pagecreate, S_WRITE);
861 
862 				error = writerp(rp, base + pon, n, uiop,
863 				    pagecreate);
864 
865 			} else {
866 				base = segmap_getmapflt(segkmap, vp, off + on,
867 				    n, 0, S_READ);
868 				error = writerp(rp, base + on, n, uiop, 0);
869 			}
870 		}
871 
872 		if (!error) {
873 			if (mi->mi_flags & MI_NOAC)
874 				flags = SM_WRITE;
875 			else if ((uiop->uio_loffset % bsize) == 0 ||
876 			    IS_SWAPVP(vp)) {
877 				/*
878 				 * Have written a whole block.
879 				 * Start an asynchronous write
880 				 * and mark the buffer to
881 				 * indicate that it won't be
882 				 * needed again soon.
883 				 */
884 				flags = SM_WRITE | SM_ASYNC | SM_DONTNEED;
885 			} else
886 				flags = 0;
887 			if ((ioflag & (FSYNC|FDSYNC)) ||
888 			    (rp->r_flags & ROUTOFSPACE)) {
889 				flags &= ~SM_ASYNC;
890 				flags |= SM_WRITE;
891 			}
892 			if (vpm_enable) {
893 				error = vpm_sync_pages(vp, off, n, flags);
894 			} else {
895 				error = segmap_release(segkmap, base, flags);
896 			}
897 		} else {
898 			if (vpm_enable) {
899 				(void) vpm_sync_pages(vp, off, n, 0);
900 			} else {
901 				(void) segmap_release(segkmap, base, 0);
902 			}
903 			/*
904 			 * In the event that we got an access error while
905 			 * faulting in a page for a write-only file just
906 			 * force a write.
907 			 */
908 			if (error == EACCES)
909 				goto nfs3_fwrite;
910 		}
911 	} while (!error && uiop->uio_resid > 0);
912 
913 bottom:
914 	if (error) {
915 		uiop->uio_resid = resid + remainder;
916 		uiop->uio_loffset = offset;
917 	} else
918 		uiop->uio_resid += remainder;
919 
920 	nfs_rw_exit(&rp->r_lkserlock);
921 
922 	return (error);
923 }
924 
925 /*
926  * Flags are composed of {B_ASYNC, B_INVAL, B_FREE, B_DONTNEED}
927  */
928 static int
929 nfs3_rdwrlbn(vnode_t *vp, page_t *pp, u_offset_t off, size_t len,
930 	int flags, cred_t *cr)
931 {
932 	struct buf *bp;
933 	int error;
934 	page_t *savepp;
935 	uchar_t fsdata;
936 	stable_how stab_comm;
937 
938 	ASSERT(nfs_zone() == VTOMI(vp)->mi_zone);
939 	bp = pageio_setup(pp, len, vp, flags);
940 	ASSERT(bp != NULL);
941 
942 	/*
943 	 * pageio_setup should have set b_addr to 0.  This
944 	 * is correct since we want to do I/O on a page
945 	 * boundary.  bp_mapin will use this addr to calculate
946 	 * an offset, and then set b_addr to the kernel virtual
947 	 * address it allocated for us.
948 	 */
949 	ASSERT(bp->b_un.b_addr == 0);
950 
951 	bp->b_edev = 0;
952 	bp->b_dev = 0;
953 	bp->b_lblkno = lbtodb(off);
954 	bp->b_file = vp;
955 	bp->b_offset = (offset_t)off;
956 	bp_mapin(bp);
957 
958 	/*
959 	 * Calculate the desired level of stability to write data
960 	 * on the server and then mark all of the pages to reflect
961 	 * this.
962 	 */
963 	if ((flags & (B_WRITE|B_ASYNC)) == (B_WRITE|B_ASYNC) &&
964 	    freemem > desfree) {
965 		stab_comm = UNSTABLE;
966 		fsdata = C_DELAYCOMMIT;
967 	} else {
968 		stab_comm = FILE_SYNC;
969 		fsdata = C_NOCOMMIT;
970 	}
971 
972 	savepp = pp;
973 	do {
974 		pp->p_fsdata = fsdata;
975 	} while ((pp = pp->p_next) != savepp);
976 
977 	error = nfs3_bio(bp, &stab_comm, cr);
978 
979 	bp_mapout(bp);
980 	pageio_done(bp);
981 
982 	/*
983 	 * If the server wrote pages in a more stable fashion than
984 	 * was requested, then clear all of the marks in the pages
985 	 * indicating that COMMIT operations were required.
986 	 */
987 	if (stab_comm != UNSTABLE && fsdata == C_DELAYCOMMIT) {
988 		do {
989 			pp->p_fsdata = C_NOCOMMIT;
990 		} while ((pp = pp->p_next) != savepp);
991 	}
992 
993 	return (error);
994 }
995 
996 /*
997  * Write to file.  Writes to remote server in largest size
998  * chunks that the server can handle.  Write is synchronous.
999  */
1000 static int
1001 nfs3write(vnode_t *vp, caddr_t base, u_offset_t offset, int count, cred_t *cr,
1002 	stable_how *stab_comm)
1003 {
1004 	mntinfo_t *mi;
1005 	WRITE3args args;
1006 	WRITE3res res;
1007 	int error;
1008 	int tsize;
1009 	rnode_t *rp;
1010 	int douprintf;
1011 
1012 	rp = VTOR(vp);
1013 	mi = VTOMI(vp);
1014 
1015 	ASSERT(nfs_zone() == mi->mi_zone);
1016 
1017 	args.file = *VTOFH3(vp);
1018 	args.stable = *stab_comm;
1019 
1020 	*stab_comm = FILE_SYNC;
1021 
1022 	douprintf = 1;
1023 
1024 	do {
1025 		if ((vp->v_flag & VNOCACHE) ||
1026 		    (rp->r_flags & RDIRECTIO) ||
1027 		    (mi->mi_flags & MI_DIRECTIO))
1028 			tsize = MIN(mi->mi_stsize, count);
1029 		else
1030 			tsize = MIN(mi->mi_curwrite, count);
1031 		args.offset = (offset3)offset;
1032 		args.count = (count3)tsize;
1033 		args.data.data_len = (uint_t)tsize;
1034 		args.data.data_val = base;
1035 
1036 		if (mi->mi_io_kstats) {
1037 			mutex_enter(&mi->mi_lock);
1038 			kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats));
1039 			mutex_exit(&mi->mi_lock);
1040 		}
1041 		args.mblk = NULL;
1042 		do {
1043 			error = rfs3call(mi, NFSPROC3_WRITE,
1044 			    xdr_WRITE3args, (caddr_t)&args,
1045 			    xdr_WRITE3res, (caddr_t)&res, cr,
1046 			    &douprintf, &res.status, 0, NULL);
1047 		} while (error == ENFS_TRYAGAIN);
1048 		if (mi->mi_io_kstats) {
1049 			mutex_enter(&mi->mi_lock);
1050 			kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats));
1051 			mutex_exit(&mi->mi_lock);
1052 		}
1053 
1054 		if (error)
1055 			return (error);
1056 		error = geterrno3(res.status);
1057 		if (!error) {
1058 			if (res.resok.count > args.count) {
1059 				zcmn_err(getzoneid(), CE_WARN,
1060 				    "nfs3write: server %s wrote %u, "
1061 				    "requested was %u",
1062 				    rp->r_server->sv_hostname,
1063 				    res.resok.count, args.count);
1064 				return (EIO);
1065 			}
1066 			if (res.resok.committed == UNSTABLE) {
1067 				*stab_comm = UNSTABLE;
1068 				if (args.stable == DATA_SYNC ||
1069 				    args.stable == FILE_SYNC) {
1070 					zcmn_err(getzoneid(), CE_WARN,
1071 			"nfs3write: server %s did not commit to stable storage",
1072 					    rp->r_server->sv_hostname);
1073 					return (EIO);
1074 				}
1075 			}
1076 			tsize = (int)res.resok.count;
1077 			count -= tsize;
1078 			base += tsize;
1079 			offset += tsize;
1080 			if (mi->mi_io_kstats) {
1081 				mutex_enter(&mi->mi_lock);
1082 				KSTAT_IO_PTR(mi->mi_io_kstats)->writes++;
1083 				KSTAT_IO_PTR(mi->mi_io_kstats)->nwritten +=
1084 				    tsize;
1085 				mutex_exit(&mi->mi_lock);
1086 			}
1087 			lwp_stat_update(LWP_STAT_OUBLK, 1);
1088 			mutex_enter(&rp->r_statelock);
1089 			if (rp->r_flags & RHAVEVERF) {
1090 				if (rp->r_verf != res.resok.verf) {
1091 					nfs3_set_mod(vp);
1092 					rp->r_verf = res.resok.verf;
1093 					/*
1094 					 * If the data was written UNSTABLE,
1095 					 * then might as well stop because
1096 					 * the whole block will have to get
1097 					 * rewritten anyway.
1098 					 */
1099 					if (*stab_comm == UNSTABLE) {
1100 						mutex_exit(&rp->r_statelock);
1101 						break;
1102 					}
1103 				}
1104 			} else {
1105 				rp->r_verf = res.resok.verf;
1106 				rp->r_flags |= RHAVEVERF;
1107 			}
1108 			/*
1109 			 * Mark the attribute cache as timed out and
1110 			 * set RWRITEATTR to indicate that the file
1111 			 * was modified with a WRITE operation and
1112 			 * that the attributes can not be trusted.
1113 			 */
1114 			PURGE_ATTRCACHE_LOCKED(rp);
1115 			rp->r_flags |= RWRITEATTR;
1116 			mutex_exit(&rp->r_statelock);
1117 		}
1118 	} while (!error && count);
1119 
1120 	return (error);
1121 }
1122 
1123 /*
1124  * Read from a file.  Reads data in largest chunks our interface can handle.
1125  */
1126 static int
1127 nfs3read(vnode_t *vp, caddr_t base, offset_t offset, int count,
1128 	size_t *residp, cred_t *cr)
1129 {
1130 	mntinfo_t *mi;
1131 	READ3args args;
1132 	READ3vres res;
1133 	int tsize;
1134 	int error;
1135 	int douprintf;
1136 	failinfo_t fi;
1137 	rnode_t *rp;
1138 	struct vattr va;
1139 	hrtime_t t;
1140 
1141 	rp = VTOR(vp);
1142 	mi = VTOMI(vp);
1143 	ASSERT(nfs_zone() == mi->mi_zone);
1144 	douprintf = 1;
1145 
1146 	args.file = *VTOFH3(vp);
1147 	fi.vp = vp;
1148 	fi.fhp = (caddr_t)&args.file;
1149 	fi.copyproc = nfs3copyfh;
1150 	fi.lookupproc = nfs3lookup;
1151 	fi.xattrdirproc = acl_getxattrdir3;
1152 
1153 	res.pov.fres.vp = vp;
1154 	res.pov.fres.vap = &va;
1155 
1156 	res.wlist = NULL;
1157 	*residp = count;
1158 	do {
1159 		if (mi->mi_io_kstats) {
1160 			mutex_enter(&mi->mi_lock);
1161 			kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats));
1162 			mutex_exit(&mi->mi_lock);
1163 		}
1164 
1165 		do {
1166 			if ((vp->v_flag & VNOCACHE) ||
1167 			    (rp->r_flags & RDIRECTIO) ||
1168 			    (mi->mi_flags & MI_DIRECTIO))
1169 				tsize = MIN(mi->mi_tsize, count);
1170 			else
1171 				tsize = MIN(mi->mi_curread, count);
1172 			res.data.data_val = base;
1173 			res.data.data_len = tsize;
1174 			args.offset = (offset3)offset;
1175 			args.count = (count3)tsize;
1176 			args.res_uiop = NULL;
1177 			args.res_data_val_alt = base;
1178 
1179 			t = gethrtime();
1180 			error = rfs3call(mi, NFSPROC3_READ,
1181 			    xdr_READ3args, (caddr_t)&args,
1182 			    xdr_READ3vres, (caddr_t)&res, cr,
1183 			    &douprintf, &res.status, 0, &fi);
1184 		} while (error == ENFS_TRYAGAIN);
1185 
1186 		if (mi->mi_io_kstats) {
1187 			mutex_enter(&mi->mi_lock);
1188 			kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats));
1189 			mutex_exit(&mi->mi_lock);
1190 		}
1191 
1192 		if (error)
1193 			return (error);
1194 
1195 		error = geterrno3(res.status);
1196 		if (error)
1197 			return (error);
1198 
1199 		if (res.count != res.data.data_len) {
1200 			zcmn_err(getzoneid(), CE_WARN,
1201 			    "nfs3read: server %s returned incorrect amount",
1202 			    rp->r_server->sv_hostname);
1203 			return (EIO);
1204 		}
1205 
1206 		count -= res.count;
1207 		*residp = count;
1208 		base += res.count;
1209 		offset += res.count;
1210 		if (mi->mi_io_kstats) {
1211 			mutex_enter(&mi->mi_lock);
1212 			KSTAT_IO_PTR(mi->mi_io_kstats)->reads++;
1213 			KSTAT_IO_PTR(mi->mi_io_kstats)->nread += res.count;
1214 			mutex_exit(&mi->mi_lock);
1215 		}
1216 		lwp_stat_update(LWP_STAT_INBLK, 1);
1217 	} while (count && !res.eof);
1218 
1219 	if (res.pov.attributes) {
1220 		mutex_enter(&rp->r_statelock);
1221 		if (!CACHE_VALID(rp, va.va_mtime, va.va_size)) {
1222 			mutex_exit(&rp->r_statelock);
1223 			PURGE_ATTRCACHE(vp);
1224 		} else {
1225 			if (rp->r_mtime <= t)
1226 				nfs_attrcache_va(vp, &va);
1227 			mutex_exit(&rp->r_statelock);
1228 		}
1229 	}
1230 
1231 	return (0);
1232 }
1233 
1234 /* ARGSUSED */
1235 static int
1236 nfs3_ioctl(vnode_t *vp, int cmd, intptr_t arg, int flag, cred_t *cr, int *rvalp,
1237 	caller_context_t *ct)
1238 {
1239 
1240 	if (nfs_zone() != VTOMI(vp)->mi_zone)
1241 		return (EIO);
1242 	switch (cmd) {
1243 		case _FIODIRECTIO:
1244 			return (nfs_directio(vp, (int)arg, cr));
1245 		default:
1246 			return (ENOTTY);
1247 	}
1248 }
1249 
1250 /* ARGSUSED */
1251 static int
1252 nfs3_getattr(vnode_t *vp, struct vattr *vap, int flags, cred_t *cr,
1253 	caller_context_t *ct)
1254 {
1255 	int error;
1256 	rnode_t *rp;
1257 
1258 	if (nfs_zone() != VTOMI(vp)->mi_zone)
1259 		return (EIO);
1260 	/*
1261 	 * If it has been specified that the return value will
1262 	 * just be used as a hint, and we are only being asked
1263 	 * for size, fsid or rdevid, then return the client's
1264 	 * notion of these values without checking to make sure
1265 	 * that the attribute cache is up to date.
1266 	 * The whole point is to avoid an over the wire GETATTR
1267 	 * call.
1268 	 */
1269 	rp = VTOR(vp);
1270 	if (flags & ATTR_HINT) {
1271 		if (vap->va_mask ==
1272 		    (vap->va_mask & (AT_SIZE | AT_FSID | AT_RDEV))) {
1273 			mutex_enter(&rp->r_statelock);
1274 			if (vap->va_mask | AT_SIZE)
1275 				vap->va_size = rp->r_size;
1276 			if (vap->va_mask | AT_FSID)
1277 				vap->va_fsid = rp->r_attr.va_fsid;
1278 			if (vap->va_mask | AT_RDEV)
1279 				vap->va_rdev = rp->r_attr.va_rdev;
1280 			mutex_exit(&rp->r_statelock);
1281 			return (0);
1282 		}
1283 	}
1284 
1285 	/*
1286 	 * Only need to flush pages if asking for the mtime
1287 	 * and if there any dirty pages or any outstanding
1288 	 * asynchronous (write) requests for this file.
1289 	 */
1290 	if (vap->va_mask & AT_MTIME) {
1291 		if (vn_has_cached_data(vp) &&
1292 		    ((rp->r_flags & RDIRTY) || rp->r_awcount > 0)) {
1293 			mutex_enter(&rp->r_statelock);
1294 			rp->r_gcount++;
1295 			mutex_exit(&rp->r_statelock);
1296 			error = nfs3_putpage(vp, (offset_t)0, 0, 0, cr, ct);
1297 			mutex_enter(&rp->r_statelock);
1298 			if (error && (error == ENOSPC || error == EDQUOT)) {
1299 				if (!rp->r_error)
1300 					rp->r_error = error;
1301 			}
1302 			if (--rp->r_gcount == 0)
1303 				cv_broadcast(&rp->r_cv);
1304 			mutex_exit(&rp->r_statelock);
1305 		}
1306 	}
1307 
1308 	return (nfs3getattr(vp, vap, cr));
1309 }
1310 
1311 /*ARGSUSED4*/
1312 static int
1313 nfs3_setattr(vnode_t *vp, struct vattr *vap, int flags, cred_t *cr,
1314 		caller_context_t *ct)
1315 {
1316 	int error;
1317 	struct vattr va;
1318 
1319 	if (vap->va_mask & AT_NOSET)
1320 		return (EINVAL);
1321 	if (nfs_zone() != VTOMI(vp)->mi_zone)
1322 		return (EIO);
1323 
1324 	va.va_mask = AT_UID | AT_MODE;
1325 	error = nfs3getattr(vp, &va, cr);
1326 	if (error)
1327 		return (error);
1328 
1329 	error = secpolicy_vnode_setattr(cr, vp, vap, &va, flags, nfs3_accessx,
1330 	    vp);
1331 	if (error)
1332 		return (error);
1333 
1334 	error = nfs3setattr(vp, vap, flags, cr);
1335 
1336 	if (error == 0 && (vap->va_mask & AT_SIZE) && vap->va_size == 0)
1337 		vnevent_truncate(vp, ct);
1338 
1339 	return (error);
1340 }
1341 
1342 static int
1343 nfs3setattr(vnode_t *vp, struct vattr *vap, int flags, cred_t *cr)
1344 {
1345 	int error;
1346 	uint_t mask;
1347 	SETATTR3args args;
1348 	SETATTR3res res;
1349 	int douprintf;
1350 	rnode_t *rp;
1351 	struct vattr va;
1352 	mode_t omode;
1353 	vsecattr_t *vsp;
1354 	hrtime_t t;
1355 
1356 	ASSERT(nfs_zone() == VTOMI(vp)->mi_zone);
1357 	mask = vap->va_mask;
1358 
1359 	rp = VTOR(vp);
1360 
1361 	/*
1362 	 * Only need to flush pages if there are any pages and
1363 	 * if the file is marked as dirty in some fashion.  The
1364 	 * file must be flushed so that we can accurately
1365 	 * determine the size of the file and the cached data
1366 	 * after the SETATTR returns.  A file is considered to
1367 	 * be dirty if it is either marked with RDIRTY, has
1368 	 * outstanding i/o's active, or is mmap'd.  In this
1369 	 * last case, we can't tell whether there are dirty
1370 	 * pages, so we flush just to be sure.
1371 	 */
1372 	if (vn_has_cached_data(vp) &&
1373 	    ((rp->r_flags & RDIRTY) ||
1374 	    rp->r_count > 0 ||
1375 	    rp->r_mapcnt > 0)) {
1376 		ASSERT(vp->v_type != VCHR);
1377 		error = nfs3_putpage(vp, (offset_t)0, 0, 0, cr, NULL);
1378 		if (error && (error == ENOSPC || error == EDQUOT)) {
1379 			mutex_enter(&rp->r_statelock);
1380 			if (!rp->r_error)
1381 				rp->r_error = error;
1382 			mutex_exit(&rp->r_statelock);
1383 		}
1384 	}
1385 
1386 	args.object = *RTOFH3(rp);
1387 	/*
1388 	 * If the intent is for the server to set the times,
1389 	 * there is no point in have the mask indicating set mtime or
1390 	 * atime, because the vap values may be junk, and so result
1391 	 * in an overflow error. Remove these flags from the vap mask
1392 	 * before calling in this case, and restore them afterwards.
1393 	 */
1394 	if ((mask & (AT_ATIME | AT_MTIME)) && !(flags & ATTR_UTIME)) {
1395 		/* Use server times, so don't set the args time fields */
1396 		vap->va_mask &= ~(AT_ATIME | AT_MTIME);
1397 		error = vattr_to_sattr3(vap, &args.new_attributes);
1398 		vap->va_mask |= (mask & (AT_ATIME | AT_MTIME));
1399 		if (mask & AT_ATIME) {
1400 			args.new_attributes.atime.set_it = SET_TO_SERVER_TIME;
1401 		}
1402 		if (mask & AT_MTIME) {
1403 			args.new_attributes.mtime.set_it = SET_TO_SERVER_TIME;
1404 		}
1405 	} else {
1406 		/* Either do not set times or use the client specified times */
1407 		error = vattr_to_sattr3(vap, &args.new_attributes);
1408 	}
1409 
1410 	if (error) {
1411 		/* req time field(s) overflow - return immediately */
1412 		return (error);
1413 	}
1414 
1415 	va.va_mask = AT_MODE | AT_CTIME;
1416 	error = nfs3getattr(vp, &va, cr);
1417 	if (error)
1418 		return (error);
1419 	omode = va.va_mode;
1420 
1421 tryagain:
1422 	if (mask & AT_SIZE) {
1423 		args.guard.check = TRUE;
1424 		args.guard.obj_ctime.seconds = va.va_ctime.tv_sec;
1425 		args.guard.obj_ctime.nseconds = va.va_ctime.tv_nsec;
1426 	} else
1427 		args.guard.check = FALSE;
1428 
1429 	douprintf = 1;
1430 
1431 	t = gethrtime();
1432 
1433 	error = rfs3call(VTOMI(vp), NFSPROC3_SETATTR,
1434 	    xdr_SETATTR3args, (caddr_t)&args,
1435 	    xdr_SETATTR3res, (caddr_t)&res, cr,
1436 	    &douprintf, &res.status, 0, NULL);
1437 
1438 	/*
1439 	 * Purge the access cache and ACL cache if changing either the
1440 	 * owner of the file, the group owner, or the mode.  These may
1441 	 * change the access permissions of the file, so purge old
1442 	 * information and start over again.
1443 	 */
1444 	if (mask & (AT_UID | AT_GID | AT_MODE)) {
1445 		(void) nfs_access_purge_rp(rp);
1446 		if (rp->r_secattr != NULL) {
1447 			mutex_enter(&rp->r_statelock);
1448 			vsp = rp->r_secattr;
1449 			rp->r_secattr = NULL;
1450 			mutex_exit(&rp->r_statelock);
1451 			if (vsp != NULL)
1452 				nfs_acl_free(vsp);
1453 		}
1454 	}
1455 
1456 	if (error) {
1457 		PURGE_ATTRCACHE(vp);
1458 		return (error);
1459 	}
1460 
1461 	error = geterrno3(res.status);
1462 	if (!error) {
1463 		/*
1464 		 * If changing the size of the file, invalidate
1465 		 * any local cached data which is no longer part
1466 		 * of the file.  We also possibly invalidate the
1467 		 * last page in the file.  We could use
1468 		 * pvn_vpzero(), but this would mark the page as
1469 		 * modified and require it to be written back to
1470 		 * the server for no particularly good reason.
1471 		 * This way, if we access it, then we bring it
1472 		 * back in.  A read should be cheaper than a
1473 		 * write.
1474 		 */
1475 		if (mask & AT_SIZE) {
1476 			nfs_invalidate_pages(vp,
1477 			    (vap->va_size & PAGEMASK), cr);
1478 		}
1479 		nfs3_cache_wcc_data(vp, &res.resok.obj_wcc, t, cr);
1480 		/*
1481 		 * Some servers will change the mode to clear the setuid
1482 		 * and setgid bits when changing the uid or gid.  The
1483 		 * client needs to compensate appropriately.
1484 		 */
1485 		if (mask & (AT_UID | AT_GID)) {
1486 			int terror;
1487 
1488 			va.va_mask = AT_MODE;
1489 			terror = nfs3getattr(vp, &va, cr);
1490 			if (!terror &&
1491 			    (((mask & AT_MODE) && va.va_mode != vap->va_mode) ||
1492 			    (!(mask & AT_MODE) && va.va_mode != omode))) {
1493 				va.va_mask = AT_MODE;
1494 				if (mask & AT_MODE)
1495 					va.va_mode = vap->va_mode;
1496 				else
1497 					va.va_mode = omode;
1498 				(void) nfs3setattr(vp, &va, 0, cr);
1499 			}
1500 		}
1501 	} else {
1502 		nfs3_cache_wcc_data(vp, &res.resfail.obj_wcc, t, cr);
1503 		/*
1504 		 * If we got back a "not synchronized" error, then
1505 		 * we need to retry with a new guard value.  The
1506 		 * guard value used is the change time.  If the
1507 		 * server returned post_op_attr, then we can just
1508 		 * retry because we have the latest attributes.
1509 		 * Otherwise, we issue a GETATTR to get the latest
1510 		 * attributes and then retry.  If we couldn't get
1511 		 * the attributes this way either, then we give
1512 		 * up because we can't complete the operation as
1513 		 * required.
1514 		 */
1515 		if (res.status == NFS3ERR_NOT_SYNC) {
1516 			va.va_mask = AT_CTIME;
1517 			if (nfs3getattr(vp, &va, cr) == 0)
1518 				goto tryagain;
1519 		}
1520 		PURGE_STALE_FH(error, vp, cr);
1521 	}
1522 
1523 	return (error);
1524 }
1525 
1526 static int
1527 nfs3_accessx(void *vp, int mode, cred_t *cr)
1528 {
1529 	ASSERT(nfs_zone() == VTOMI((vnode_t *)vp)->mi_zone);
1530 	return (nfs3_access(vp, mode, 0, cr, NULL));
1531 }
1532 
1533 /* ARGSUSED */
1534 static int
1535 nfs3_access(vnode_t *vp, int mode, int flags, cred_t *cr, caller_context_t *ct)
1536 {
1537 	int error;
1538 	ACCESS3args args;
1539 	ACCESS3res res;
1540 	int douprintf;
1541 	uint32 acc;
1542 	rnode_t *rp;
1543 	cred_t *cred, *ncr, *ncrfree = NULL;
1544 	failinfo_t fi;
1545 	nfs_access_type_t cacc;
1546 	hrtime_t t;
1547 
1548 	acc = 0;
1549 	if (nfs_zone() != VTOMI(vp)->mi_zone)
1550 		return (EIO);
1551 	if (mode & VREAD)
1552 		acc |= ACCESS3_READ;
1553 	if (mode & VWRITE) {
1554 		if (vn_is_readonly(vp) && !IS_DEVVP(vp))
1555 			return (EROFS);
1556 		if (vp->v_type == VDIR)
1557 			acc |= ACCESS3_DELETE;
1558 		acc |= ACCESS3_MODIFY | ACCESS3_EXTEND;
1559 	}
1560 	if (mode & VEXEC) {
1561 		if (vp->v_type == VDIR)
1562 			acc |= ACCESS3_LOOKUP;
1563 		else
1564 			acc |= ACCESS3_EXECUTE;
1565 	}
1566 
1567 	rp = VTOR(vp);
1568 	args.object = *VTOFH3(vp);
1569 	if (vp->v_type == VDIR) {
1570 		args.access = ACCESS3_READ | ACCESS3_DELETE | ACCESS3_MODIFY |
1571 		    ACCESS3_EXTEND | ACCESS3_LOOKUP;
1572 	} else {
1573 		args.access = ACCESS3_READ | ACCESS3_MODIFY | ACCESS3_EXTEND |
1574 		    ACCESS3_EXECUTE;
1575 	}
1576 	fi.vp = vp;
1577 	fi.fhp = (caddr_t)&args.object;
1578 	fi.copyproc = nfs3copyfh;
1579 	fi.lookupproc = nfs3lookup;
1580 	fi.xattrdirproc = acl_getxattrdir3;
1581 
1582 	cred = cr;
1583 	/*
1584 	 * ncr and ncrfree both initially
1585 	 * point to the memory area returned
1586 	 * by crnetadjust();
1587 	 * ncrfree not NULL when exiting means
1588 	 * that we need to release it
1589 	 */
1590 	ncr = crnetadjust(cred);
1591 	ncrfree = ncr;
1592 tryagain:
1593 	if (rp->r_acache != NULL) {
1594 		cacc = nfs_access_check(rp, acc, cred);
1595 		if (cacc == NFS_ACCESS_ALLOWED) {
1596 			if (ncrfree != NULL)
1597 				crfree(ncrfree);
1598 			return (0);
1599 		}
1600 		if (cacc == NFS_ACCESS_DENIED) {
1601 			/*
1602 			 * If the cred can be adjusted, try again
1603 			 * with the new cred.
1604 			 */
1605 			if (ncr != NULL) {
1606 				cred = ncr;
1607 				ncr = NULL;
1608 				goto tryagain;
1609 			}
1610 			if (ncrfree != NULL)
1611 				crfree(ncrfree);
1612 			return (EACCES);
1613 		}
1614 	}
1615 
1616 	douprintf = 1;
1617 
1618 	t = gethrtime();
1619 
1620 	error = rfs3call(VTOMI(vp), NFSPROC3_ACCESS,
1621 	    xdr_ACCESS3args, (caddr_t)&args,
1622 	    xdr_ACCESS3res, (caddr_t)&res, cred,
1623 	    &douprintf, &res.status, 0, &fi);
1624 
1625 	if (error) {
1626 		if (ncrfree != NULL)
1627 			crfree(ncrfree);
1628 		return (error);
1629 	}
1630 
1631 	error = geterrno3(res.status);
1632 	if (!error) {
1633 		nfs3_cache_post_op_attr(vp, &res.resok.obj_attributes, t, cr);
1634 		nfs_access_cache(rp, args.access, res.resok.access, cred);
1635 		/*
1636 		 * we just cached results with cred; if cred is the
1637 		 * adjusted credentials from crnetadjust, we do not want
1638 		 * to release them before exiting: hence setting ncrfree
1639 		 * to NULL
1640 		 */
1641 		if (cred != cr)
1642 			ncrfree = NULL;
1643 		if ((acc & res.resok.access) != acc) {
1644 			/*
1645 			 * If the cred can be adjusted, try again
1646 			 * with the new cred.
1647 			 */
1648 			if (ncr != NULL) {
1649 				cred = ncr;
1650 				ncr = NULL;
1651 				goto tryagain;
1652 			}
1653 			error = EACCES;
1654 		}
1655 	} else {
1656 		nfs3_cache_post_op_attr(vp, &res.resfail.obj_attributes, t, cr);
1657 		PURGE_STALE_FH(error, vp, cr);
1658 	}
1659 
1660 	if (ncrfree != NULL)
1661 		crfree(ncrfree);
1662 
1663 	return (error);
1664 }
1665 
1666 static int nfs3_do_symlink_cache = 1;
1667 
1668 /* ARGSUSED */
1669 static int
1670 nfs3_readlink(vnode_t *vp, struct uio *uiop, cred_t *cr, caller_context_t *ct)
1671 {
1672 	int error;
1673 	READLINK3args args;
1674 	READLINK3res res;
1675 	nfspath3 resdata_backup;
1676 	rnode_t *rp;
1677 	int douprintf;
1678 	int len;
1679 	failinfo_t fi;
1680 	hrtime_t t;
1681 
1682 	/*
1683 	 * Can't readlink anything other than a symbolic link.
1684 	 */
1685 	if (vp->v_type != VLNK)
1686 		return (EINVAL);
1687 	if (nfs_zone() != VTOMI(vp)->mi_zone)
1688 		return (EIO);
1689 
1690 	rp = VTOR(vp);
1691 	if (nfs3_do_symlink_cache && rp->r_symlink.contents != NULL) {
1692 		error = nfs3_validate_caches(vp, cr);
1693 		if (error)
1694 			return (error);
1695 		mutex_enter(&rp->r_statelock);
1696 		if (rp->r_symlink.contents != NULL) {
1697 			error = uiomove(rp->r_symlink.contents,
1698 			    rp->r_symlink.len, UIO_READ, uiop);
1699 			mutex_exit(&rp->r_statelock);
1700 			return (error);
1701 		}
1702 		mutex_exit(&rp->r_statelock);
1703 	}
1704 
1705 	args.symlink = *VTOFH3(vp);
1706 	fi.vp = vp;
1707 	fi.fhp = (caddr_t)&args.symlink;
1708 	fi.copyproc = nfs3copyfh;
1709 	fi.lookupproc = nfs3lookup;
1710 	fi.xattrdirproc = acl_getxattrdir3;
1711 
1712 	res.resok.data = kmem_alloc(MAXPATHLEN, KM_SLEEP);
1713 
1714 	resdata_backup = res.resok.data;
1715 
1716 	douprintf = 1;
1717 
1718 	t = gethrtime();
1719 
1720 	error = rfs3call(VTOMI(vp), NFSPROC3_READLINK,
1721 	    xdr_READLINK3args, (caddr_t)&args,
1722 	    xdr_READLINK3res, (caddr_t)&res, cr,
1723 	    &douprintf, &res.status, 0, &fi);
1724 
1725 	if (res.resok.data == nfs3nametoolong)
1726 		error = EINVAL;
1727 
1728 	if (error) {
1729 		kmem_free(resdata_backup, MAXPATHLEN);
1730 		return (error);
1731 	}
1732 
1733 	error = geterrno3(res.status);
1734 	if (!error) {
1735 		nfs3_cache_post_op_attr(vp, &res.resok.symlink_attributes, t,
1736 		    cr);
1737 		len = strlen(res.resok.data);
1738 		error = uiomove(res.resok.data, len, UIO_READ, uiop);
1739 		if (nfs3_do_symlink_cache && rp->r_symlink.contents == NULL) {
1740 			mutex_enter(&rp->r_statelock);
1741 				if (rp->r_symlink.contents == NULL) {
1742 				rp->r_symlink.contents = res.resok.data;
1743 				rp->r_symlink.len = len;
1744 				rp->r_symlink.size = MAXPATHLEN;
1745 				mutex_exit(&rp->r_statelock);
1746 			} else {
1747 				mutex_exit(&rp->r_statelock);
1748 
1749 				kmem_free((void *)res.resok.data, MAXPATHLEN);
1750 			}
1751 		} else {
1752 			kmem_free((void *)res.resok.data, MAXPATHLEN);
1753 		}
1754 	} else {
1755 		nfs3_cache_post_op_attr(vp,
1756 		    &res.resfail.symlink_attributes, t, cr);
1757 		PURGE_STALE_FH(error, vp, cr);
1758 
1759 		kmem_free((void *)res.resok.data, MAXPATHLEN);
1760 
1761 	}
1762 
1763 	/*
1764 	 * The over the wire error for attempting to readlink something
1765 	 * other than a symbolic link is ENXIO.  However, we need to
1766 	 * return EINVAL instead of ENXIO, so we map it here.
1767 	 */
1768 	return (error == ENXIO ? EINVAL : error);
1769 }
1770 
1771 /*
1772  * Flush local dirty pages to stable storage on the server.
1773  *
1774  * If FNODSYNC is specified, then there is nothing to do because
1775  * metadata changes are not cached on the client before being
1776  * sent to the server.
1777  */
1778 /* ARGSUSED */
1779 static int
1780 nfs3_fsync(vnode_t *vp, int syncflag, cred_t *cr, caller_context_t *ct)
1781 {
1782 	int error;
1783 
1784 	if ((syncflag & FNODSYNC) || IS_SWAPVP(vp))
1785 		return (0);
1786 	if (nfs_zone() != VTOMI(vp)->mi_zone)
1787 		return (EIO);
1788 
1789 	error = nfs3_putpage_commit(vp, (offset_t)0, 0, cr);
1790 	if (!error)
1791 		error = VTOR(vp)->r_error;
1792 	return (error);
1793 }
1794 
1795 /*
1796  * Weirdness: if the file was removed or the target of a rename
1797  * operation while it was open, it got renamed instead.  Here we
1798  * remove the renamed file.
1799  */
1800 /* ARGSUSED */
1801 static void
1802 nfs3_inactive(vnode_t *vp, cred_t *cr, caller_context_t *ct)
1803 {
1804 	rnode_t *rp;
1805 
1806 	ASSERT(vp != DNLC_NO_VNODE);
1807 
1808 	/*
1809 	 * If this is coming from the wrong zone, we let someone in the right
1810 	 * zone take care of it asynchronously.  We can get here due to
1811 	 * VN_RELE() being called from pageout() or fsflush().  This call may
1812 	 * potentially turn into an expensive no-op if, for instance, v_count
1813 	 * gets incremented in the meantime, but it's still correct.
1814 	 */
1815 	if (nfs_zone() != VTOMI(vp)->mi_zone) {
1816 		nfs_async_inactive(vp, cr, nfs3_inactive);
1817 		return;
1818 	}
1819 
1820 	rp = VTOR(vp);
1821 redo:
1822 	if (rp->r_unldvp != NULL) {
1823 		/*
1824 		 * Save the vnode pointer for the directory where the
1825 		 * unlinked-open file got renamed, then set it to NULL
1826 		 * to prevent another thread from getting here before
1827 		 * we're done with the remove.  While we have the
1828 		 * statelock, make local copies of the pertinent rnode
1829 		 * fields.  If we weren't to do this in an atomic way, the
1830 		 * the unl* fields could become inconsistent with respect
1831 		 * to each other due to a race condition between this
1832 		 * code and nfs_remove().  See bug report 1034328.
1833 		 */
1834 		mutex_enter(&rp->r_statelock);
1835 		if (rp->r_unldvp != NULL) {
1836 			vnode_t *unldvp;
1837 			char *unlname;
1838 			cred_t *unlcred;
1839 			REMOVE3args args;
1840 			REMOVE3res res;
1841 			int douprintf;
1842 			int error;
1843 			hrtime_t t;
1844 
1845 			unldvp = rp->r_unldvp;
1846 			rp->r_unldvp = NULL;
1847 			unlname = rp->r_unlname;
1848 			rp->r_unlname = NULL;
1849 			unlcred = rp->r_unlcred;
1850 			rp->r_unlcred = NULL;
1851 			mutex_exit(&rp->r_statelock);
1852 
1853 			/*
1854 			 * If there are any dirty pages left, then flush
1855 			 * them.  This is unfortunate because they just
1856 			 * may get thrown away during the remove operation,
1857 			 * but we have to do this for correctness.
1858 			 */
1859 			if (vn_has_cached_data(vp) &&
1860 			    ((rp->r_flags & RDIRTY) || rp->r_count > 0)) {
1861 				ASSERT(vp->v_type != VCHR);
1862 				error = nfs3_putpage(vp, (offset_t)0, 0, 0,
1863 				    cr, ct);
1864 				if (error) {
1865 					mutex_enter(&rp->r_statelock);
1866 					if (!rp->r_error)
1867 						rp->r_error = error;
1868 					mutex_exit(&rp->r_statelock);
1869 				}
1870 			}
1871 
1872 			/*
1873 			 * Do the remove operation on the renamed file
1874 			 */
1875 			setdiropargs3(&args.object, unlname, unldvp);
1876 
1877 			douprintf = 1;
1878 
1879 			t = gethrtime();
1880 
1881 			error = rfs3call(VTOMI(unldvp), NFSPROC3_REMOVE,
1882 			    xdr_diropargs3, (caddr_t)&args,
1883 			    xdr_REMOVE3res, (caddr_t)&res, unlcred,
1884 			    &douprintf, &res.status, 0, NULL);
1885 
1886 			if (error) {
1887 				PURGE_ATTRCACHE(unldvp);
1888 			} else {
1889 				error = geterrno3(res.status);
1890 				if (!error) {
1891 					nfs3_cache_wcc_data(unldvp,
1892 					    &res.resok.dir_wcc, t, cr);
1893 					if (HAVE_RDDIR_CACHE(VTOR(unldvp)))
1894 						nfs_purge_rddir_cache(unldvp);
1895 				} else {
1896 					nfs3_cache_wcc_data(unldvp,
1897 					    &res.resfail.dir_wcc, t, cr);
1898 					PURGE_STALE_FH(error, unldvp, cr);
1899 				}
1900 			}
1901 
1902 			/*
1903 			 * Release stuff held for the remove
1904 			 */
1905 			VN_RELE(unldvp);
1906 			kmem_free(unlname, MAXNAMELEN);
1907 			crfree(unlcred);
1908 			goto redo;
1909 		}
1910 		mutex_exit(&rp->r_statelock);
1911 	}
1912 
1913 	rp_addfree(rp, cr);
1914 }
1915 
1916 /*
1917  * Remote file system operations having to do with directory manipulation.
1918  */
1919 
1920 /* ARGSUSED */
1921 static int
1922 nfs3_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp,
1923 	int flags, vnode_t *rdir, cred_t *cr, caller_context_t *ct,
1924 	int *direntflags, pathname_t *realpnp)
1925 {
1926 	int error;
1927 	vnode_t *vp;
1928 	vnode_t *avp = NULL;
1929 	rnode_t *drp;
1930 
1931 	if (nfs_zone() != VTOMI(dvp)->mi_zone)
1932 		return (EPERM);
1933 
1934 	drp = VTOR(dvp);
1935 
1936 	/*
1937 	 * Are we looking up extended attributes?  If so, "dvp" is
1938 	 * the file or directory for which we want attributes, and
1939 	 * we need a lookup of the hidden attribute directory
1940 	 * before we lookup the rest of the path.
1941 	 */
1942 	if (flags & LOOKUP_XATTR) {
1943 		bool_t cflag = ((flags & CREATE_XATTR_DIR) != 0);
1944 		mntinfo_t *mi;
1945 
1946 		mi = VTOMI(dvp);
1947 		if (!(mi->mi_flags & MI_EXTATTR))
1948 			return (EINVAL);
1949 
1950 		if (nfs_rw_enter_sig(&drp->r_rwlock, RW_READER, INTR(dvp)))
1951 			return (EINTR);
1952 
1953 		(void) nfs3lookup_dnlc(dvp, XATTR_DIR_NAME, &avp, cr);
1954 		if (avp == NULL)
1955 			error = acl_getxattrdir3(dvp, &avp, cflag, cr, 0);
1956 		else
1957 			error = 0;
1958 
1959 		nfs_rw_exit(&drp->r_rwlock);
1960 
1961 		if (error) {
1962 			if (mi->mi_flags & MI_EXTATTR)
1963 				return (error);
1964 			return (EINVAL);
1965 		}
1966 		dvp = avp;
1967 		drp = VTOR(dvp);
1968 	}
1969 
1970 	if (nfs_rw_enter_sig(&drp->r_rwlock, RW_READER, INTR(dvp))) {
1971 		error = EINTR;
1972 		goto out;
1973 	}
1974 
1975 	error = nfs3lookup(dvp, nm, vpp, pnp, flags, rdir, cr, 0);
1976 
1977 	nfs_rw_exit(&drp->r_rwlock);
1978 
1979 	/*
1980 	 * If vnode is a device, create special vnode.
1981 	 */
1982 	if (!error && IS_DEVVP(*vpp)) {
1983 		vp = *vpp;
1984 		*vpp = specvp(vp, vp->v_rdev, vp->v_type, cr);
1985 		VN_RELE(vp);
1986 	}
1987 
1988 out:
1989 	if (avp != NULL)
1990 		VN_RELE(avp);
1991 
1992 	return (error);
1993 }
1994 
1995 static int nfs3_lookup_neg_cache = 1;
1996 
1997 #ifdef DEBUG
1998 static int nfs3_lookup_dnlc_hits = 0;
1999 static int nfs3_lookup_dnlc_misses = 0;
2000 static int nfs3_lookup_dnlc_neg_hits = 0;
2001 static int nfs3_lookup_dnlc_disappears = 0;
2002 static int nfs3_lookup_dnlc_lookups = 0;
2003 #endif
2004 
2005 /* ARGSUSED */
2006 int
2007 nfs3lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp,
2008 	int flags, vnode_t *rdir, cred_t *cr, int rfscall_flags)
2009 {
2010 	int error;
2011 	rnode_t *drp;
2012 
2013 	ASSERT(nfs_zone() == VTOMI(dvp)->mi_zone);
2014 	/*
2015 	 * If lookup is for "", just return dvp.  Don't need
2016 	 * to send it over the wire, look it up in the dnlc,
2017 	 * or perform any access checks.
2018 	 */
2019 	if (*nm == '\0') {
2020 		VN_HOLD(dvp);
2021 		*vpp = dvp;
2022 		return (0);
2023 	}
2024 
2025 	/*
2026 	 * Can't do lookups in non-directories.
2027 	 */
2028 	if (dvp->v_type != VDIR)
2029 		return (ENOTDIR);
2030 
2031 	/*
2032 	 * If we're called with RFSCALL_SOFT, it's important that
2033 	 * the only rfscall is one we make directly; if we permit
2034 	 * an access call because we're looking up "." or validating
2035 	 * a dnlc hit, we'll deadlock because that rfscall will not
2036 	 * have the RFSCALL_SOFT set.
2037 	 */
2038 	if (rfscall_flags & RFSCALL_SOFT)
2039 		goto callit;
2040 
2041 	/*
2042 	 * If lookup is for ".", just return dvp.  Don't need
2043 	 * to send it over the wire or look it up in the dnlc,
2044 	 * just need to check access.
2045 	 */
2046 	if (strcmp(nm, ".") == 0) {
2047 		error = nfs3_access(dvp, VEXEC, 0, cr, NULL);
2048 		if (error)
2049 			return (error);
2050 		VN_HOLD(dvp);
2051 		*vpp = dvp;
2052 		return (0);
2053 	}
2054 
2055 	drp = VTOR(dvp);
2056 	if (!(drp->r_flags & RLOOKUP)) {
2057 		mutex_enter(&drp->r_statelock);
2058 		drp->r_flags |= RLOOKUP;
2059 		mutex_exit(&drp->r_statelock);
2060 	}
2061 
2062 	/*
2063 	 * Lookup this name in the DNLC.  If there was a valid entry,
2064 	 * then return the results of the lookup.
2065 	 */
2066 	error = nfs3lookup_dnlc(dvp, nm, vpp, cr);
2067 	if (error || *vpp != NULL)
2068 		return (error);
2069 
2070 callit:
2071 	error = nfs3lookup_otw(dvp, nm, vpp, cr, rfscall_flags);
2072 
2073 	return (error);
2074 }
2075 
2076 static int
2077 nfs3lookup_dnlc(vnode_t *dvp, char *nm, vnode_t **vpp, cred_t *cr)
2078 {
2079 	int error;
2080 	vnode_t *vp;
2081 
2082 	ASSERT(*nm != '\0');
2083 	ASSERT(nfs_zone() == VTOMI(dvp)->mi_zone);
2084 	/*
2085 	 * Lookup this name in the DNLC.  If successful, then validate
2086 	 * the caches and then recheck the DNLC.  The DNLC is rechecked
2087 	 * just in case this entry got invalidated during the call
2088 	 * to nfs3_validate_caches.
2089 	 *
2090 	 * An assumption is being made that it is safe to say that a
2091 	 * file exists which may not on the server.  Any operations to
2092 	 * the server will fail with ESTALE.
2093 	 */
2094 #ifdef DEBUG
2095 	nfs3_lookup_dnlc_lookups++;
2096 #endif
2097 	vp = dnlc_lookup(dvp, nm);
2098 	if (vp != NULL) {
2099 		VN_RELE(vp);
2100 		if (vp == DNLC_NO_VNODE && !vn_is_readonly(dvp)) {
2101 			PURGE_ATTRCACHE(dvp);
2102 		}
2103 		error = nfs3_validate_caches(dvp, cr);
2104 		if (error)
2105 			return (error);
2106 		vp = dnlc_lookup(dvp, nm);
2107 		if (vp != NULL) {
2108 			error = nfs3_access(dvp, VEXEC, 0, cr, NULL);
2109 			if (error) {
2110 				VN_RELE(vp);
2111 				return (error);
2112 			}
2113 			if (vp == DNLC_NO_VNODE) {
2114 				VN_RELE(vp);
2115 #ifdef DEBUG
2116 				nfs3_lookup_dnlc_neg_hits++;
2117 #endif
2118 				return (ENOENT);
2119 			}
2120 			*vpp = vp;
2121 #ifdef DEBUG
2122 			nfs3_lookup_dnlc_hits++;
2123 #endif
2124 			return (0);
2125 		}
2126 #ifdef DEBUG
2127 		nfs3_lookup_dnlc_disappears++;
2128 #endif
2129 	}
2130 #ifdef DEBUG
2131 	else
2132 		nfs3_lookup_dnlc_misses++;
2133 #endif
2134 
2135 	*vpp = NULL;
2136 
2137 	return (0);
2138 }
2139 
2140 static int
2141 nfs3lookup_otw(vnode_t *dvp, char *nm, vnode_t **vpp, cred_t *cr,
2142 	int rfscall_flags)
2143 {
2144 	int error;
2145 	LOOKUP3args args;
2146 	LOOKUP3vres res;
2147 	int douprintf;
2148 	struct vattr vattr;
2149 	struct vattr dvattr;
2150 	vnode_t *vp;
2151 	failinfo_t fi;
2152 	hrtime_t t;
2153 
2154 	ASSERT(*nm != '\0');
2155 	ASSERT(dvp->v_type == VDIR);
2156 	ASSERT(nfs_zone() == VTOMI(dvp)->mi_zone);
2157 
2158 	setdiropargs3(&args.what, nm, dvp);
2159 
2160 	fi.vp = dvp;
2161 	fi.fhp = (caddr_t)&args.what.dir;
2162 	fi.copyproc = nfs3copyfh;
2163 	fi.lookupproc = nfs3lookup;
2164 	fi.xattrdirproc = acl_getxattrdir3;
2165 	res.obj_attributes.fres.vp = dvp;
2166 	res.obj_attributes.fres.vap = &vattr;
2167 	res.dir_attributes.fres.vp = dvp;
2168 	res.dir_attributes.fres.vap = &dvattr;
2169 
2170 	douprintf = 1;
2171 
2172 	t = gethrtime();
2173 
2174 	error = rfs3call(VTOMI(dvp), NFSPROC3_LOOKUP,
2175 	    xdr_diropargs3, (caddr_t)&args,
2176 	    xdr_LOOKUP3vres, (caddr_t)&res, cr,
2177 	    &douprintf, &res.status, rfscall_flags, &fi);
2178 
2179 	if (error)
2180 		return (error);
2181 
2182 	nfs3_cache_post_op_vattr(dvp, &res.dir_attributes, t, cr);
2183 
2184 	error = geterrno3(res.status);
2185 	if (error) {
2186 		PURGE_STALE_FH(error, dvp, cr);
2187 		if (error == ENOENT && nfs3_lookup_neg_cache)
2188 			dnlc_enter(dvp, nm, DNLC_NO_VNODE);
2189 		return (error);
2190 	}
2191 
2192 	if (res.obj_attributes.attributes) {
2193 		vp = makenfs3node_va(&res.object, res.obj_attributes.fres.vap,
2194 		    dvp->v_vfsp, t, cr, VTOR(dvp)->r_path, nm);
2195 	} else {
2196 		vp = makenfs3node_va(&res.object, NULL,
2197 		    dvp->v_vfsp, t, cr, VTOR(dvp)->r_path, nm);
2198 		if (vp->v_type == VNON) {
2199 			vattr.va_mask = AT_TYPE;
2200 			error = nfs3getattr(vp, &vattr, cr);
2201 			if (error) {
2202 				VN_RELE(vp);
2203 				return (error);
2204 			}
2205 			vp->v_type = vattr.va_type;
2206 		}
2207 	}
2208 
2209 	if (!(rfscall_flags & RFSCALL_SOFT))
2210 		dnlc_update(dvp, nm, vp);
2211 
2212 	*vpp = vp;
2213 
2214 	return (error);
2215 }
2216 
2217 #ifdef DEBUG
2218 static int nfs3_create_misses = 0;
2219 #endif
2220 
2221 /* ARGSUSED */
2222 static int
2223 nfs3_create(vnode_t *dvp, char *nm, struct vattr *va, enum vcexcl exclusive,
2224 	int mode, vnode_t **vpp, cred_t *cr, int lfaware, caller_context_t *ct,
2225 	vsecattr_t *vsecp)
2226 {
2227 	int error;
2228 	vnode_t *vp;
2229 	rnode_t *rp;
2230 	struct vattr vattr;
2231 	rnode_t *drp;
2232 	vnode_t *tempvp;
2233 
2234 	drp = VTOR(dvp);
2235 	if (nfs_zone() != VTOMI(dvp)->mi_zone)
2236 		return (EPERM);
2237 	if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR(dvp)))
2238 		return (EINTR);
2239 
2240 top:
2241 	/*
2242 	 * We make a copy of the attributes because the caller does not
2243 	 * expect us to change what va points to.
2244 	 */
2245 	vattr = *va;
2246 
2247 	/*
2248 	 * If the pathname is "", just use dvp.  Don't need
2249 	 * to send it over the wire, look it up in the dnlc,
2250 	 * or perform any access checks.
2251 	 */
2252 	if (*nm == '\0') {
2253 		error = 0;
2254 		VN_HOLD(dvp);
2255 		vp = dvp;
2256 	/*
2257 	 * If the pathname is ".", just use dvp.  Don't need
2258 	 * to send it over the wire or look it up in the dnlc,
2259 	 * just need to check access.
2260 	 */
2261 	} else if (strcmp(nm, ".") == 0) {
2262 		error = nfs3_access(dvp, VEXEC, 0, cr, ct);
2263 		if (error) {
2264 			nfs_rw_exit(&drp->r_rwlock);
2265 			return (error);
2266 		}
2267 		VN_HOLD(dvp);
2268 		vp = dvp;
2269 	/*
2270 	 * We need to go over the wire, just to be sure whether the
2271 	 * file exists or not.  Using the DNLC can be dangerous in
2272 	 * this case when making a decision regarding existence.
2273 	 */
2274 	} else {
2275 		error = nfs3lookup_otw(dvp, nm, &vp, cr, 0);
2276 	}
2277 	if (!error) {
2278 		if (exclusive == EXCL)
2279 			error = EEXIST;
2280 		else if (vp->v_type == VDIR && (mode & VWRITE))
2281 			error = EISDIR;
2282 		else {
2283 			/*
2284 			 * If vnode is a device, create special vnode.
2285 			 */
2286 			if (IS_DEVVP(vp)) {
2287 				tempvp = vp;
2288 				vp = specvp(vp, vp->v_rdev, vp->v_type, cr);
2289 				VN_RELE(tempvp);
2290 			}
2291 			if (!(error = VOP_ACCESS(vp, mode, 0, cr, ct))) {
2292 				if ((vattr.va_mask & AT_SIZE) &&
2293 				    vp->v_type == VREG) {
2294 					rp = VTOR(vp);
2295 					/*
2296 					 * Check here for large file handled
2297 					 * by LF-unaware process (as
2298 					 * ufs_create() does)
2299 					 */
2300 					if (!(lfaware & FOFFMAX)) {
2301 						mutex_enter(&rp->r_statelock);
2302 						if (rp->r_size > MAXOFF32_T)
2303 							error = EOVERFLOW;
2304 						mutex_exit(&rp->r_statelock);
2305 					}
2306 					if (!error) {
2307 						vattr.va_mask = AT_SIZE;
2308 						error = nfs3setattr(vp,
2309 						    &vattr, 0, cr);
2310 
2311 						/*
2312 						 * Existing file was truncated;
2313 						 * emit a create event.
2314 						 */
2315 						vnevent_create(vp, ct);
2316 					}
2317 				}
2318 			}
2319 		}
2320 		nfs_rw_exit(&drp->r_rwlock);
2321 		if (error) {
2322 			VN_RELE(vp);
2323 		} else {
2324 			*vpp = vp;
2325 		}
2326 
2327 		return (error);
2328 	}
2329 
2330 	dnlc_remove(dvp, nm);
2331 
2332 	/*
2333 	 * Decide what the group-id of the created file should be.
2334 	 * Set it in attribute list as advisory...
2335 	 */
2336 	error = setdirgid(dvp, &vattr.va_gid, cr);
2337 	if (error) {
2338 		nfs_rw_exit(&drp->r_rwlock);
2339 		return (error);
2340 	}
2341 	vattr.va_mask |= AT_GID;
2342 
2343 	ASSERT(vattr.va_mask & AT_TYPE);
2344 	if (vattr.va_type == VREG) {
2345 		ASSERT(vattr.va_mask & AT_MODE);
2346 		if (MANDMODE(vattr.va_mode)) {
2347 			nfs_rw_exit(&drp->r_rwlock);
2348 			return (EACCES);
2349 		}
2350 		error = nfs3create(dvp, nm, &vattr, exclusive, mode, vpp, cr,
2351 		    lfaware);
2352 		/*
2353 		 * If this is not an exclusive create, then the CREATE
2354 		 * request will be made with the GUARDED mode set.  This
2355 		 * means that the server will return EEXIST if the file
2356 		 * exists.  The file could exist because of a retransmitted
2357 		 * request.  In this case, we recover by starting over and
2358 		 * checking to see whether the file exists.  This second
2359 		 * time through it should and a CREATE request will not be
2360 		 * sent.
2361 		 *
2362 		 * This handles the problem of a dangling CREATE request
2363 		 * which contains attributes which indicate that the file
2364 		 * should be truncated.  This retransmitted request could
2365 		 * possibly truncate valid data in the file if not caught
2366 		 * by the duplicate request mechanism on the server or if
2367 		 * not caught by other means.  The scenario is:
2368 		 *
2369 		 * Client transmits CREATE request with size = 0
2370 		 * Client times out, retransmits request.
2371 		 * Response to the first request arrives from the server
2372 		 *  and the client proceeds on.
2373 		 * Client writes data to the file.
2374 		 * The server now processes retransmitted CREATE request
2375 		 *  and truncates file.
2376 		 *
2377 		 * The use of the GUARDED CREATE request prevents this from
2378 		 * happening because the retransmitted CREATE would fail
2379 		 * with EEXIST and would not truncate the file.
2380 		 */
2381 		if (error == EEXIST && exclusive == NONEXCL) {
2382 #ifdef DEBUG
2383 			nfs3_create_misses++;
2384 #endif
2385 			goto top;
2386 		}
2387 		nfs_rw_exit(&drp->r_rwlock);
2388 		return (error);
2389 	}
2390 	error = nfs3mknod(dvp, nm, &vattr, exclusive, mode, vpp, cr);
2391 	nfs_rw_exit(&drp->r_rwlock);
2392 	return (error);
2393 }
2394 
2395 /* ARGSUSED */
2396 static int
2397 nfs3create(vnode_t *dvp, char *nm, struct vattr *va, enum vcexcl exclusive,
2398 	int mode, vnode_t **vpp, cred_t *cr, int lfaware)
2399 {
2400 	int error;
2401 	CREATE3args args;
2402 	CREATE3res res;
2403 	int douprintf;
2404 	vnode_t *vp;
2405 	struct vattr vattr;
2406 	nfstime3 *verfp;
2407 	rnode_t *rp;
2408 	timestruc_t now;
2409 	hrtime_t t;
2410 
2411 	ASSERT(nfs_zone() == VTOMI(dvp)->mi_zone);
2412 	setdiropargs3(&args.where, nm, dvp);
2413 	if (exclusive == EXCL) {
2414 		args.how.mode = EXCLUSIVE;
2415 		/*
2416 		 * Construct the create verifier.  This verifier needs
2417 		 * to be unique between different clients.  It also needs
2418 		 * to vary for each exclusive create request generated
2419 		 * from the client to the server.
2420 		 *
2421 		 * The first attempt is made to use the hostid and a
2422 		 * unique number on the client.  If the hostid has not
2423 		 * been set, the high resolution time that the exclusive
2424 		 * create request is being made is used.  This will work
2425 		 * unless two different clients, both with the hostid
2426 		 * not set, attempt an exclusive create request on the
2427 		 * same file, at exactly the same clock time.  The
2428 		 * chances of this happening seem small enough to be
2429 		 * reasonable.
2430 		 */
2431 		verfp = (nfstime3 *)&args.how.createhow3_u.verf;
2432 		verfp->seconds = zone_get_hostid(NULL);
2433 		if (verfp->seconds != 0)
2434 			verfp->nseconds = newnum();
2435 		else {
2436 			gethrestime(&now);
2437 			verfp->seconds = now.tv_sec;
2438 			verfp->nseconds = now.tv_nsec;
2439 		}
2440 		/*
2441 		 * Since the server will use this value for the mtime,
2442 		 * make sure that it can't overflow. Zero out the MSB.
2443 		 * The actual value does not matter here, only its uniqeness.
2444 		 */
2445 		verfp->seconds %= INT32_MAX;
2446 	} else {
2447 		/*
2448 		 * Issue the non-exclusive create in guarded mode.  This
2449 		 * may result in some false EEXIST responses for
2450 		 * retransmitted requests, but these will be handled at
2451 		 * a higher level.  By using GUARDED, duplicate requests
2452 		 * to do file truncation and possible access problems
2453 		 * can be avoided.
2454 		 */
2455 		args.how.mode = GUARDED;
2456 		error = vattr_to_sattr3(va,
2457 		    &args.how.createhow3_u.obj_attributes);
2458 		if (error) {
2459 			/* req time field(s) overflow - return immediately */
2460 			return (error);
2461 		}
2462 	}
2463 
2464 	douprintf = 1;
2465 
2466 	t = gethrtime();
2467 
2468 	error = rfs3call(VTOMI(dvp), NFSPROC3_CREATE,
2469 	    xdr_CREATE3args, (caddr_t)&args,
2470 	    xdr_CREATE3res, (caddr_t)&res, cr,
2471 	    &douprintf, &res.status, 0, NULL);
2472 
2473 	if (error) {
2474 		PURGE_ATTRCACHE(dvp);
2475 		return (error);
2476 	}
2477 
2478 	error = geterrno3(res.status);
2479 	if (!error) {
2480 		nfs3_cache_wcc_data(dvp, &res.resok.dir_wcc, t, cr);
2481 		if (HAVE_RDDIR_CACHE(VTOR(dvp)))
2482 			nfs_purge_rddir_cache(dvp);
2483 
2484 		/*
2485 		 * On exclusive create the times need to be explicitly
2486 		 * set to clear any potential verifier that may be stored
2487 		 * in one of these fields (see comment below).  This
2488 		 * is done here to cover the case where no post op attrs
2489 		 * were returned or a 'invalid' time was returned in
2490 		 * the attributes.
2491 		 */
2492 		if (exclusive == EXCL)
2493 			va->va_mask |= (AT_MTIME | AT_ATIME);
2494 
2495 		if (!res.resok.obj.handle_follows) {
2496 			error = nfs3lookup(dvp, nm, &vp, NULL, 0, NULL, cr, 0);
2497 			if (error)
2498 				return (error);
2499 		} else {
2500 			if (res.resok.obj_attributes.attributes) {
2501 				vp = makenfs3node(&res.resok.obj.handle,
2502 				    &res.resok.obj_attributes.attr,
2503 				    dvp->v_vfsp, t, cr, NULL, NULL);
2504 			} else {
2505 				vp = makenfs3node(&res.resok.obj.handle, NULL,
2506 				    dvp->v_vfsp, t, cr, NULL, NULL);
2507 
2508 				/*
2509 				 * On an exclusive create, it is possible
2510 				 * that attributes were returned but those
2511 				 * postop attributes failed to decode
2512 				 * properly.  If this is the case,
2513 				 * then most likely the atime or mtime
2514 				 * were invalid for our client; this
2515 				 * is caused by the server storing the
2516 				 * create verifier in one of the time
2517 				 * fields(most likely mtime).
2518 				 * So... we are going to setattr just the
2519 				 * atime/mtime to clear things up.
2520 				 */
2521 				if (exclusive == EXCL) {
2522 					if (error =
2523 					    nfs3excl_create_settimes(vp,
2524 					    va, cr)) {
2525 						/*
2526 						 * Setting the times failed.
2527 						 * Remove the file and return
2528 						 * the error.
2529 						 */
2530 						VN_RELE(vp);
2531 						(void) nfs3_remove(dvp,
2532 						    nm, cr, NULL, 0);
2533 						return (error);
2534 					}
2535 				}
2536 
2537 				/*
2538 				 * This handles the non-exclusive case
2539 				 * and the exclusive case where no post op
2540 				 * attrs were returned.
2541 				 */
2542 				if (vp->v_type == VNON) {
2543 					vattr.va_mask = AT_TYPE;
2544 					error = nfs3getattr(vp, &vattr, cr);
2545 					if (error) {
2546 						VN_RELE(vp);
2547 						return (error);
2548 					}
2549 					vp->v_type = vattr.va_type;
2550 				}
2551 			}
2552 			dnlc_update(dvp, nm, vp);
2553 		}
2554 
2555 		rp = VTOR(vp);
2556 
2557 		/*
2558 		 * Check here for large file handled by
2559 		 * LF-unaware process (as ufs_create() does)
2560 		 */
2561 		if ((va->va_mask & AT_SIZE) && vp->v_type == VREG &&
2562 		    !(lfaware & FOFFMAX)) {
2563 			mutex_enter(&rp->r_statelock);
2564 			if (rp->r_size > MAXOFF32_T) {
2565 				mutex_exit(&rp->r_statelock);
2566 				VN_RELE(vp);
2567 				return (EOVERFLOW);
2568 			}
2569 			mutex_exit(&rp->r_statelock);
2570 		}
2571 
2572 		if (exclusive == EXCL &&
2573 		    (va->va_mask & ~(AT_GID | AT_SIZE))) {
2574 			/*
2575 			 * If doing an exclusive create, then generate
2576 			 * a SETATTR to set the initial attributes.
2577 			 * Try to set the mtime and the atime to the
2578 			 * server's current time.  It is somewhat
2579 			 * expected that these fields will be used to
2580 			 * store the exclusive create cookie.  If not,
2581 			 * server implementors will need to know that
2582 			 * a SETATTR will follow an exclusive create
2583 			 * and the cookie should be destroyed if
2584 			 * appropriate. This work may have been done
2585 			 * earlier in this function if post op attrs
2586 			 * were not available.
2587 			 *
2588 			 * The AT_GID and AT_SIZE bits are turned off
2589 			 * so that the SETATTR request will not attempt
2590 			 * to process these.  The gid will be set
2591 			 * separately if appropriate.  The size is turned
2592 			 * off because it is assumed that a new file will
2593 			 * be created empty and if the file wasn't empty,
2594 			 * then the exclusive create will have failed
2595 			 * because the file must have existed already.
2596 			 * Therefore, no truncate operation is needed.
2597 			 */
2598 			va->va_mask &= ~(AT_GID | AT_SIZE);
2599 			error = nfs3setattr(vp, va, 0, cr);
2600 			if (error) {
2601 				/*
2602 				 * Couldn't correct the attributes of
2603 				 * the newly created file and the
2604 				 * attributes are wrong.  Remove the
2605 				 * file and return an error to the
2606 				 * application.
2607 				 */
2608 				VN_RELE(vp);
2609 				(void) nfs3_remove(dvp, nm, cr, NULL, 0);
2610 				return (error);
2611 			}
2612 		}
2613 
2614 		if (va->va_gid != rp->r_attr.va_gid) {
2615 			/*
2616 			 * If the gid on the file isn't right, then
2617 			 * generate a SETATTR to attempt to change
2618 			 * it.  This may or may not work, depending
2619 			 * upon the server's semantics for allowing
2620 			 * file ownership changes.
2621 			 */
2622 			va->va_mask = AT_GID;
2623 			(void) nfs3setattr(vp, va, 0, cr);
2624 		}
2625 
2626 		/*
2627 		 * If vnode is a device create special vnode
2628 		 */
2629 		if (IS_DEVVP(vp)) {
2630 			*vpp = specvp(vp, vp->v_rdev, vp->v_type, cr);
2631 			VN_RELE(vp);
2632 		} else
2633 			*vpp = vp;
2634 	} else {
2635 		nfs3_cache_wcc_data(dvp, &res.resfail.dir_wcc, t, cr);
2636 		PURGE_STALE_FH(error, dvp, cr);
2637 	}
2638 
2639 	return (error);
2640 }
2641 
2642 /*
2643  * Special setattr function to take care of rest of atime/mtime
2644  * after successful exclusive create.  This function exists to avoid
2645  * handling attributes from the server; exclusive the atime/mtime fields
2646  * may be 'invalid' in client's view and therefore can not be trusted.
2647  */
2648 static int
2649 nfs3excl_create_settimes(vnode_t *vp, struct vattr *vap, cred_t *cr)
2650 {
2651 	int error;
2652 	uint_t mask;
2653 	SETATTR3args args;
2654 	SETATTR3res res;
2655 	int douprintf;
2656 	rnode_t *rp;
2657 	hrtime_t t;
2658 
2659 	ASSERT(nfs_zone() == VTOMI(vp)->mi_zone);
2660 	/* save the caller's mask so that it can be reset later */
2661 	mask = vap->va_mask;
2662 
2663 	rp = VTOR(vp);
2664 
2665 	args.object = *RTOFH3(rp);
2666 	args.guard.check = FALSE;
2667 
2668 	/* Use the mask to initialize the arguments */
2669 	vap->va_mask = 0;
2670 	error = vattr_to_sattr3(vap, &args.new_attributes);
2671 
2672 	/* We want to set just atime/mtime on this request */
2673 	args.new_attributes.atime.set_it = SET_TO_SERVER_TIME;
2674 	args.new_attributes.mtime.set_it = SET_TO_SERVER_TIME;
2675 
2676 	douprintf = 1;
2677 
2678 	t = gethrtime();
2679 
2680 	error = rfs3call(VTOMI(vp), NFSPROC3_SETATTR,
2681 	    xdr_SETATTR3args, (caddr_t)&args,
2682 	    xdr_SETATTR3res, (caddr_t)&res, cr,
2683 	    &douprintf, &res.status, 0, NULL);
2684 
2685 	if (error) {
2686 		vap->va_mask = mask;
2687 		return (error);
2688 	}
2689 
2690 	error = geterrno3(res.status);
2691 	if (!error) {
2692 		/*
2693 		 * It is important to pick up the attributes.
2694 		 * Since this is the exclusive create path, the
2695 		 * attributes on the initial create were ignored
2696 		 * and we need these to have the correct info.
2697 		 */
2698 		nfs3_cache_wcc_data(vp, &res.resok.obj_wcc, t, cr);
2699 		/*
2700 		 * No need to do the atime/mtime work again so clear
2701 		 * the bits.
2702 		 */
2703 		mask &= ~(AT_ATIME | AT_MTIME);
2704 	} else {
2705 		nfs3_cache_wcc_data(vp, &res.resfail.obj_wcc, t, cr);
2706 	}
2707 
2708 	vap->va_mask = mask;
2709 
2710 	return (error);
2711 }
2712 
2713 /* ARGSUSED */
2714 static int
2715 nfs3mknod(vnode_t *dvp, char *nm, struct vattr *va, enum vcexcl exclusive,
2716 	int mode, vnode_t **vpp, cred_t *cr)
2717 {
2718 	int error;
2719 	MKNOD3args args;
2720 	MKNOD3res res;
2721 	int douprintf;
2722 	vnode_t *vp;
2723 	struct vattr vattr;
2724 	hrtime_t t;
2725 
2726 	ASSERT(nfs_zone() == VTOMI(dvp)->mi_zone);
2727 	switch (va->va_type) {
2728 	case VCHR:
2729 	case VBLK:
2730 		setdiropargs3(&args.where, nm, dvp);
2731 		args.what.type = (va->va_type == VCHR) ? NF3CHR : NF3BLK;
2732 		error = vattr_to_sattr3(va,
2733 		    &args.what.mknoddata3_u.device.dev_attributes);
2734 		if (error) {
2735 			/* req time field(s) overflow - return immediately */
2736 			return (error);
2737 		}
2738 		args.what.mknoddata3_u.device.spec.specdata1 =
2739 		    getmajor(va->va_rdev);
2740 		args.what.mknoddata3_u.device.spec.specdata2 =
2741 		    getminor(va->va_rdev);
2742 		break;
2743 
2744 	case VFIFO:
2745 	case VSOCK:
2746 		setdiropargs3(&args.where, nm, dvp);
2747 		args.what.type = (va->va_type == VFIFO) ? NF3FIFO : NF3SOCK;
2748 		error = vattr_to_sattr3(va,
2749 		    &args.what.mknoddata3_u.pipe_attributes);
2750 		if (error) {
2751 			/* req time field(s) overflow - return immediately */
2752 			return (error);
2753 		}
2754 		break;
2755 
2756 	default:
2757 		return (EINVAL);
2758 	}
2759 
2760 	douprintf = 1;
2761 
2762 	t = gethrtime();
2763 
2764 	error = rfs3call(VTOMI(dvp), NFSPROC3_MKNOD,
2765 	    xdr_MKNOD3args, (caddr_t)&args,
2766 	    xdr_MKNOD3res, (caddr_t)&res, cr,
2767 	    &douprintf, &res.status, 0, NULL);
2768 
2769 	if (error) {
2770 		PURGE_ATTRCACHE(dvp);
2771 		return (error);
2772 	}
2773 
2774 	error = geterrno3(res.status);
2775 	if (!error) {
2776 		nfs3_cache_wcc_data(dvp, &res.resok.dir_wcc, t, cr);
2777 		if (HAVE_RDDIR_CACHE(VTOR(dvp)))
2778 			nfs_purge_rddir_cache(dvp);
2779 
2780 		if (!res.resok.obj.handle_follows) {
2781 			error = nfs3lookup(dvp, nm, &vp, NULL, 0, NULL, cr, 0);
2782 			if (error)
2783 				return (error);
2784 		} else {
2785 			if (res.resok.obj_attributes.attributes) {
2786 				vp = makenfs3node(&res.resok.obj.handle,
2787 				    &res.resok.obj_attributes.attr,
2788 				    dvp->v_vfsp, t, cr, NULL, NULL);
2789 			} else {
2790 				vp = makenfs3node(&res.resok.obj.handle, NULL,
2791 				    dvp->v_vfsp, t, cr, NULL, NULL);
2792 				if (vp->v_type == VNON) {
2793 					vattr.va_mask = AT_TYPE;
2794 					error = nfs3getattr(vp, &vattr, cr);
2795 					if (error) {
2796 						VN_RELE(vp);
2797 						return (error);
2798 					}
2799 					vp->v_type = vattr.va_type;
2800 				}
2801 
2802 			}
2803 			dnlc_update(dvp, nm, vp);
2804 		}
2805 
2806 		if (va->va_gid != VTOR(vp)->r_attr.va_gid) {
2807 			va->va_mask = AT_GID;
2808 			(void) nfs3setattr(vp, va, 0, cr);
2809 		}
2810 
2811 		/*
2812 		 * If vnode is a device create special vnode
2813 		 */
2814 		if (IS_DEVVP(vp)) {
2815 			*vpp = specvp(vp, vp->v_rdev, vp->v_type, cr);
2816 			VN_RELE(vp);
2817 		} else
2818 			*vpp = vp;
2819 	} else {
2820 		nfs3_cache_wcc_data(dvp, &res.resfail.dir_wcc, t, cr);
2821 		PURGE_STALE_FH(error, dvp, cr);
2822 	}
2823 	return (error);
2824 }
2825 
2826 /*
2827  * Weirdness: if the vnode to be removed is open
2828  * we rename it instead of removing it and nfs_inactive
2829  * will remove the new name.
2830  */
2831 /* ARGSUSED */
2832 static int
2833 nfs3_remove(vnode_t *dvp, char *nm, cred_t *cr, caller_context_t *ct, int flags)
2834 {
2835 	int error;
2836 	REMOVE3args args;
2837 	REMOVE3res res;
2838 	vnode_t *vp;
2839 	char *tmpname;
2840 	int douprintf;
2841 	rnode_t *rp;
2842 	rnode_t *drp;
2843 	hrtime_t t;
2844 
2845 	if (nfs_zone() != VTOMI(dvp)->mi_zone)
2846 		return (EPERM);
2847 	drp = VTOR(dvp);
2848 	if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR(dvp)))
2849 		return (EINTR);
2850 
2851 	error = nfs3lookup(dvp, nm, &vp, NULL, 0, NULL, cr, 0);
2852 	if (error) {
2853 		nfs_rw_exit(&drp->r_rwlock);
2854 		return (error);
2855 	}
2856 
2857 	if (vp->v_type == VDIR && secpolicy_fs_linkdir(cr, dvp->v_vfsp)) {
2858 		VN_RELE(vp);
2859 		nfs_rw_exit(&drp->r_rwlock);
2860 		return (EPERM);
2861 	}
2862 
2863 	/*
2864 	 * First just remove the entry from the name cache, as it
2865 	 * is most likely the only entry for this vp.
2866 	 */
2867 	dnlc_remove(dvp, nm);
2868 
2869 	/*
2870 	 * If the file has a v_count > 1 then there may be more than one
2871 	 * entry in the name cache due multiple links or an open file,
2872 	 * but we don't have the real reference count so flush all
2873 	 * possible entries.
2874 	 */
2875 	if (vp->v_count > 1)
2876 		dnlc_purge_vp(vp);
2877 
2878 	/*
2879 	 * Now we have the real reference count on the vnode
2880 	 */
2881 	rp = VTOR(vp);
2882 	mutex_enter(&rp->r_statelock);
2883 	if (vp->v_count > 1 &&
2884 	    (rp->r_unldvp == NULL || strcmp(nm, rp->r_unlname) == 0)) {
2885 		mutex_exit(&rp->r_statelock);
2886 		tmpname = newname();
2887 		error = nfs3rename(dvp, nm, dvp, tmpname, cr, ct);
2888 		if (error)
2889 			kmem_free(tmpname, MAXNAMELEN);
2890 		else {
2891 			mutex_enter(&rp->r_statelock);
2892 			if (rp->r_unldvp == NULL) {
2893 				VN_HOLD(dvp);
2894 				rp->r_unldvp = dvp;
2895 				if (rp->r_unlcred != NULL)
2896 					crfree(rp->r_unlcred);
2897 				crhold(cr);
2898 				rp->r_unlcred = cr;
2899 				rp->r_unlname = tmpname;
2900 			} else {
2901 				kmem_free(rp->r_unlname, MAXNAMELEN);
2902 				rp->r_unlname = tmpname;
2903 			}
2904 			mutex_exit(&rp->r_statelock);
2905 		}
2906 	} else {
2907 		mutex_exit(&rp->r_statelock);
2908 		/*
2909 		 * We need to flush any dirty pages which happen to
2910 		 * be hanging around before removing the file.  This
2911 		 * shouldn't happen very often and mostly on file
2912 		 * systems mounted "nocto".
2913 		 */
2914 		if (vn_has_cached_data(vp) &&
2915 		    ((rp->r_flags & RDIRTY) || rp->r_count > 0)) {
2916 			error = nfs3_putpage(vp, (offset_t)0, 0, 0, cr, ct);
2917 			if (error && (error == ENOSPC || error == EDQUOT)) {
2918 				mutex_enter(&rp->r_statelock);
2919 				if (!rp->r_error)
2920 					rp->r_error = error;
2921 				mutex_exit(&rp->r_statelock);
2922 			}
2923 		}
2924 
2925 		setdiropargs3(&args.object, nm, dvp);
2926 
2927 		douprintf = 1;
2928 
2929 		t = gethrtime();
2930 
2931 		error = rfs3call(VTOMI(dvp), NFSPROC3_REMOVE,
2932 		    xdr_diropargs3, (caddr_t)&args,
2933 		    xdr_REMOVE3res, (caddr_t)&res, cr,
2934 		    &douprintf, &res.status, 0, NULL);
2935 
2936 		/*
2937 		 * The xattr dir may be gone after last attr is removed,
2938 		 * so flush it from dnlc.
2939 		 */
2940 		if (dvp->v_flag & V_XATTRDIR)
2941 			dnlc_purge_vp(dvp);
2942 
2943 		PURGE_ATTRCACHE(vp);
2944 
2945 		if (error) {
2946 			PURGE_ATTRCACHE(dvp);
2947 		} else {
2948 			error = geterrno3(res.status);
2949 			if (!error) {
2950 				nfs3_cache_wcc_data(dvp, &res.resok.dir_wcc, t,
2951 				    cr);
2952 				if (HAVE_RDDIR_CACHE(drp))
2953 					nfs_purge_rddir_cache(dvp);
2954 			} else {
2955 				nfs3_cache_wcc_data(dvp, &res.resfail.dir_wcc,
2956 				    t, cr);
2957 				PURGE_STALE_FH(error, dvp, cr);
2958 			}
2959 		}
2960 	}
2961 
2962 	if (error == 0) {
2963 		vnevent_remove(vp, dvp, nm, ct);
2964 	}
2965 	VN_RELE(vp);
2966 
2967 	nfs_rw_exit(&drp->r_rwlock);
2968 
2969 	return (error);
2970 }
2971 
2972 /* ARGSUSED */
2973 static int
2974 nfs3_link(vnode_t *tdvp, vnode_t *svp, char *tnm, cred_t *cr,
2975 	caller_context_t *ct, int flags)
2976 {
2977 	int error;
2978 	LINK3args args;
2979 	LINK3res res;
2980 	vnode_t *realvp;
2981 	int douprintf;
2982 	mntinfo_t *mi;
2983 	rnode_t *tdrp;
2984 	hrtime_t t;
2985 
2986 	if (nfs_zone() != VTOMI(tdvp)->mi_zone)
2987 		return (EPERM);
2988 	if (VOP_REALVP(svp, &realvp, ct) == 0)
2989 		svp = realvp;
2990 
2991 	mi = VTOMI(svp);
2992 
2993 	if (!(mi->mi_flags & MI_LINK))
2994 		return (EOPNOTSUPP);
2995 
2996 	args.file = *VTOFH3(svp);
2997 	setdiropargs3(&args.link, tnm, tdvp);
2998 
2999 	tdrp = VTOR(tdvp);
3000 	if (nfs_rw_enter_sig(&tdrp->r_rwlock, RW_WRITER, INTR(tdvp)))
3001 		return (EINTR);
3002 
3003 	dnlc_remove(tdvp, tnm);
3004 
3005 	douprintf = 1;
3006 
3007 	t = gethrtime();
3008 
3009 	error = rfs3call(mi, NFSPROC3_LINK,
3010 	    xdr_LINK3args, (caddr_t)&args,
3011 	    xdr_LINK3res, (caddr_t)&res, cr,
3012 	    &douprintf, &res.status, 0, NULL);
3013 
3014 	if (error) {
3015 		PURGE_ATTRCACHE(tdvp);
3016 		PURGE_ATTRCACHE(svp);
3017 		nfs_rw_exit(&tdrp->r_rwlock);
3018 		return (error);
3019 	}
3020 
3021 	error = geterrno3(res.status);
3022 
3023 	if (!error) {
3024 		nfs3_cache_post_op_attr(svp, &res.resok.file_attributes, t, cr);
3025 		nfs3_cache_wcc_data(tdvp, &res.resok.linkdir_wcc, t, cr);
3026 		if (HAVE_RDDIR_CACHE(tdrp))
3027 			nfs_purge_rddir_cache(tdvp);
3028 		dnlc_update(tdvp, tnm, svp);
3029 	} else {
3030 		nfs3_cache_post_op_attr(svp, &res.resfail.file_attributes, t,
3031 		    cr);
3032 		nfs3_cache_wcc_data(tdvp, &res.resfail.linkdir_wcc, t, cr);
3033 		if (error == EOPNOTSUPP) {
3034 			mutex_enter(&mi->mi_lock);
3035 			mi->mi_flags &= ~MI_LINK;
3036 			mutex_exit(&mi->mi_lock);
3037 		}
3038 	}
3039 
3040 	nfs_rw_exit(&tdrp->r_rwlock);
3041 
3042 	if (!error) {
3043 		/*
3044 		 * Notify the source file of this link operation.
3045 		 */
3046 		vnevent_link(svp, ct);
3047 	}
3048 	return (error);
3049 }
3050 
3051 /* ARGSUSED */
3052 static int
3053 nfs3_rename(vnode_t *odvp, char *onm, vnode_t *ndvp, char *nnm, cred_t *cr,
3054 	caller_context_t *ct, int flags)
3055 {
3056 	vnode_t *realvp;
3057 
3058 	if (nfs_zone() != VTOMI(odvp)->mi_zone)
3059 		return (EPERM);
3060 	if (VOP_REALVP(ndvp, &realvp, ct) == 0)
3061 		ndvp = realvp;
3062 
3063 	return (nfs3rename(odvp, onm, ndvp, nnm, cr, ct));
3064 }
3065 
3066 /*
3067  * nfs3rename does the real work of renaming in NFS Version 3.
3068  */
3069 static int
3070 nfs3rename(vnode_t *odvp, char *onm, vnode_t *ndvp, char *nnm, cred_t *cr,
3071     caller_context_t *ct)
3072 {
3073 	int error;
3074 	RENAME3args args;
3075 	RENAME3res res;
3076 	int douprintf;
3077 	vnode_t *nvp = NULL;
3078 	vnode_t *ovp = NULL;
3079 	char *tmpname;
3080 	rnode_t *rp;
3081 	rnode_t *odrp;
3082 	rnode_t *ndrp;
3083 	hrtime_t t;
3084 
3085 	ASSERT(nfs_zone() == VTOMI(odvp)->mi_zone);
3086 
3087 	if (strcmp(onm, ".") == 0 || strcmp(onm, "..") == 0 ||
3088 	    strcmp(nnm, ".") == 0 || strcmp(nnm, "..") == 0)
3089 		return (EINVAL);
3090 
3091 	odrp = VTOR(odvp);
3092 	ndrp = VTOR(ndvp);
3093 	if ((intptr_t)odrp < (intptr_t)ndrp) {
3094 		if (nfs_rw_enter_sig(&odrp->r_rwlock, RW_WRITER, INTR(odvp)))
3095 			return (EINTR);
3096 		if (nfs_rw_enter_sig(&ndrp->r_rwlock, RW_WRITER, INTR(ndvp))) {
3097 			nfs_rw_exit(&odrp->r_rwlock);
3098 			return (EINTR);
3099 		}
3100 	} else {
3101 		if (nfs_rw_enter_sig(&ndrp->r_rwlock, RW_WRITER, INTR(ndvp)))
3102 			return (EINTR);
3103 		if (nfs_rw_enter_sig(&odrp->r_rwlock, RW_WRITER, INTR(odvp))) {
3104 			nfs_rw_exit(&ndrp->r_rwlock);
3105 			return (EINTR);
3106 		}
3107 	}
3108 
3109 	/*
3110 	 * Lookup the target file.  If it exists, it needs to be
3111 	 * checked to see whether it is a mount point and whether
3112 	 * it is active (open).
3113 	 */
3114 	error = nfs3lookup(ndvp, nnm, &nvp, NULL, 0, NULL, cr, 0);
3115 	if (!error) {
3116 		/*
3117 		 * If this file has been mounted on, then just
3118 		 * return busy because renaming to it would remove
3119 		 * the mounted file system from the name space.
3120 		 */
3121 		if (vn_mountedvfs(nvp) != NULL) {
3122 			VN_RELE(nvp);
3123 			nfs_rw_exit(&odrp->r_rwlock);
3124 			nfs_rw_exit(&ndrp->r_rwlock);
3125 			return (EBUSY);
3126 		}
3127 
3128 		/*
3129 		 * Purge the name cache of all references to this vnode
3130 		 * so that we can check the reference count to infer
3131 		 * whether it is active or not.
3132 		 */
3133 		/*
3134 		 * First just remove the entry from the name cache, as it
3135 		 * is most likely the only entry for this vp.
3136 		 */
3137 		dnlc_remove(ndvp, nnm);
3138 		/*
3139 		 * If the file has a v_count > 1 then there may be more
3140 		 * than one entry in the name cache due multiple links
3141 		 * or an open file, but we don't have the real reference
3142 		 * count so flush all possible entries.
3143 		 */
3144 		if (nvp->v_count > 1)
3145 			dnlc_purge_vp(nvp);
3146 
3147 		/*
3148 		 * If the vnode is active and is not a directory,
3149 		 * arrange to rename it to a
3150 		 * temporary file so that it will continue to be
3151 		 * accessible.  This implements the "unlink-open-file"
3152 		 * semantics for the target of a rename operation.
3153 		 * Before doing this though, make sure that the
3154 		 * source and target files are not already the same.
3155 		 */
3156 		if (nvp->v_count > 1 && nvp->v_type != VDIR) {
3157 			/*
3158 			 * Lookup the source name.
3159 			 */
3160 			error = nfs3lookup(odvp, onm, &ovp, NULL, 0, NULL,
3161 			    cr, 0);
3162 
3163 			/*
3164 			 * The source name *should* already exist.
3165 			 */
3166 			if (error) {
3167 				VN_RELE(nvp);
3168 				nfs_rw_exit(&odrp->r_rwlock);
3169 				nfs_rw_exit(&ndrp->r_rwlock);
3170 				return (error);
3171 			}
3172 
3173 			/*
3174 			 * Compare the two vnodes.  If they are the same,
3175 			 * just release all held vnodes and return success.
3176 			 */
3177 			if (ovp == nvp) {
3178 				VN_RELE(ovp);
3179 				VN_RELE(nvp);
3180 				nfs_rw_exit(&odrp->r_rwlock);
3181 				nfs_rw_exit(&ndrp->r_rwlock);
3182 				return (0);
3183 			}
3184 
3185 			/*
3186 			 * Can't mix and match directories and non-
3187 			 * directories in rename operations.  We already
3188 			 * know that the target is not a directory.  If
3189 			 * the source is a directory, return an error.
3190 			 */
3191 			if (ovp->v_type == VDIR) {
3192 				VN_RELE(ovp);
3193 				VN_RELE(nvp);
3194 				nfs_rw_exit(&odrp->r_rwlock);
3195 				nfs_rw_exit(&ndrp->r_rwlock);
3196 				return (ENOTDIR);
3197 			}
3198 
3199 			/*
3200 			 * The target file exists, is not the same as
3201 			 * the source file, and is active.  Link it
3202 			 * to a temporary filename to avoid having
3203 			 * the server removing the file completely.
3204 			 */
3205 			tmpname = newname();
3206 			error = nfs3_link(ndvp, nvp, tmpname, cr, NULL, 0);
3207 			if (error == EOPNOTSUPP) {
3208 				error = nfs3_rename(ndvp, nnm, ndvp, tmpname,
3209 				    cr, NULL, 0);
3210 			}
3211 			if (error) {
3212 				kmem_free(tmpname, MAXNAMELEN);
3213 				VN_RELE(ovp);
3214 				VN_RELE(nvp);
3215 				nfs_rw_exit(&odrp->r_rwlock);
3216 				nfs_rw_exit(&ndrp->r_rwlock);
3217 				return (error);
3218 			}
3219 			rp = VTOR(nvp);
3220 			mutex_enter(&rp->r_statelock);
3221 			if (rp->r_unldvp == NULL) {
3222 				VN_HOLD(ndvp);
3223 				rp->r_unldvp = ndvp;
3224 				if (rp->r_unlcred != NULL)
3225 					crfree(rp->r_unlcred);
3226 				crhold(cr);
3227 				rp->r_unlcred = cr;
3228 				rp->r_unlname = tmpname;
3229 			} else {
3230 				kmem_free(rp->r_unlname, MAXNAMELEN);
3231 				rp->r_unlname = tmpname;
3232 			}
3233 			mutex_exit(&rp->r_statelock);
3234 		}
3235 	}
3236 
3237 	if (ovp == NULL) {
3238 		/*
3239 		 * When renaming directories to be a subdirectory of a
3240 		 * different parent, the dnlc entry for ".." will no
3241 		 * longer be valid, so it must be removed.
3242 		 *
3243 		 * We do a lookup here to determine whether we are renaming
3244 		 * a directory and we need to check if we are renaming
3245 		 * an unlinked file.  This might have already been done
3246 		 * in previous code, so we check ovp == NULL to avoid
3247 		 * doing it twice.
3248 		 */
3249 
3250 		error = nfs3lookup(odvp, onm, &ovp, NULL, 0, NULL, cr, 0);
3251 		/*
3252 		 * The source name *should* already exist.
3253 		 */
3254 		if (error) {
3255 			nfs_rw_exit(&odrp->r_rwlock);
3256 			nfs_rw_exit(&ndrp->r_rwlock);
3257 			if (nvp) {
3258 				VN_RELE(nvp);
3259 			}
3260 			return (error);
3261 		}
3262 		ASSERT(ovp != NULL);
3263 	}
3264 
3265 	dnlc_remove(odvp, onm);
3266 	dnlc_remove(ndvp, nnm);
3267 
3268 	setdiropargs3(&args.from, onm, odvp);
3269 	setdiropargs3(&args.to, nnm, ndvp);
3270 
3271 	douprintf = 1;
3272 
3273 	t = gethrtime();
3274 
3275 	error = rfs3call(VTOMI(odvp), NFSPROC3_RENAME,
3276 	    xdr_RENAME3args, (caddr_t)&args,
3277 	    xdr_RENAME3res, (caddr_t)&res, cr,
3278 	    &douprintf, &res.status, 0, NULL);
3279 
3280 	if (error) {
3281 		PURGE_ATTRCACHE(odvp);
3282 		PURGE_ATTRCACHE(ndvp);
3283 		VN_RELE(ovp);
3284 		nfs_rw_exit(&odrp->r_rwlock);
3285 		nfs_rw_exit(&ndrp->r_rwlock);
3286 		if (nvp) {
3287 			VN_RELE(nvp);
3288 		}
3289 		return (error);
3290 	}
3291 
3292 	error = geterrno3(res.status);
3293 
3294 	if (!error) {
3295 		nfs3_cache_wcc_data(odvp, &res.resok.fromdir_wcc, t, cr);
3296 		if (HAVE_RDDIR_CACHE(odrp))
3297 			nfs_purge_rddir_cache(odvp);
3298 		if (ndvp != odvp) {
3299 			nfs3_cache_wcc_data(ndvp, &res.resok.todir_wcc, t, cr);
3300 			if (HAVE_RDDIR_CACHE(ndrp))
3301 				nfs_purge_rddir_cache(ndvp);
3302 		}
3303 		/*
3304 		 * when renaming directories to be a subdirectory of a
3305 		 * different parent, the dnlc entry for ".." will no
3306 		 * longer be valid, so it must be removed
3307 		 */
3308 		rp = VTOR(ovp);
3309 		if (ndvp != odvp) {
3310 			if (ovp->v_type == VDIR) {
3311 				dnlc_remove(ovp, "..");
3312 				if (HAVE_RDDIR_CACHE(rp))
3313 					nfs_purge_rddir_cache(ovp);
3314 			}
3315 		}
3316 
3317 		/*
3318 		 * If we are renaming the unlinked file, update the
3319 		 * r_unldvp and r_unlname as needed.
3320 		 */
3321 		mutex_enter(&rp->r_statelock);
3322 		if (rp->r_unldvp != NULL) {
3323 			if (strcmp(rp->r_unlname, onm) == 0) {
3324 				(void) strncpy(rp->r_unlname, nnm, MAXNAMELEN);
3325 				rp->r_unlname[MAXNAMELEN - 1] = '\0';
3326 
3327 				if (ndvp != rp->r_unldvp) {
3328 					VN_RELE(rp->r_unldvp);
3329 					rp->r_unldvp = ndvp;
3330 					VN_HOLD(ndvp);
3331 				}
3332 			}
3333 		}
3334 		mutex_exit(&rp->r_statelock);
3335 	} else {
3336 		nfs3_cache_wcc_data(odvp, &res.resfail.fromdir_wcc, t, cr);
3337 		if (ndvp != odvp) {
3338 			nfs3_cache_wcc_data(ndvp, &res.resfail.todir_wcc, t,
3339 			    cr);
3340 		}
3341 		/*
3342 		 * System V defines rename to return EEXIST, not
3343 		 * ENOTEMPTY if the target directory is not empty.
3344 		 * Over the wire, the error is NFSERR_ENOTEMPTY
3345 		 * which geterrno maps to ENOTEMPTY.
3346 		 */
3347 		if (error == ENOTEMPTY)
3348 			error = EEXIST;
3349 	}
3350 
3351 	if (error == 0) {
3352 		if (nvp)
3353 			vnevent_rename_dest(nvp, ndvp, nnm, ct);
3354 
3355 		if (odvp != ndvp)
3356 			vnevent_rename_dest_dir(ndvp, ct);
3357 		ASSERT(ovp != NULL);
3358 		vnevent_rename_src(ovp, odvp, onm, ct);
3359 	}
3360 
3361 	if (nvp) {
3362 		VN_RELE(nvp);
3363 	}
3364 	VN_RELE(ovp);
3365 
3366 	nfs_rw_exit(&odrp->r_rwlock);
3367 	nfs_rw_exit(&ndrp->r_rwlock);
3368 
3369 	return (error);
3370 }
3371 
3372 /* ARGSUSED */
3373 static int
3374 nfs3_mkdir(vnode_t *dvp, char *nm, struct vattr *va, vnode_t **vpp, cred_t *cr,
3375 	caller_context_t *ct, int flags, vsecattr_t *vsecp)
3376 {
3377 	int error;
3378 	MKDIR3args args;
3379 	MKDIR3res res;
3380 	int douprintf;
3381 	struct vattr vattr;
3382 	vnode_t *vp;
3383 	rnode_t *drp;
3384 	hrtime_t t;
3385 
3386 	if (nfs_zone() != VTOMI(dvp)->mi_zone)
3387 		return (EPERM);
3388 	setdiropargs3(&args.where, nm, dvp);
3389 
3390 	/*
3391 	 * Decide what the group-id and set-gid bit of the created directory
3392 	 * should be.  May have to do a setattr to get the gid right.
3393 	 */
3394 	error = setdirgid(dvp, &va->va_gid, cr);
3395 	if (error)
3396 		return (error);
3397 	error = setdirmode(dvp, &va->va_mode, cr);
3398 	if (error)
3399 		return (error);
3400 	va->va_mask |= AT_MODE|AT_GID;
3401 
3402 	error = vattr_to_sattr3(va, &args.attributes);
3403 	if (error) {
3404 		/* req time field(s) overflow - return immediately */
3405 		return (error);
3406 	}
3407 
3408 	drp = VTOR(dvp);
3409 	if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR(dvp)))
3410 		return (EINTR);
3411 
3412 	dnlc_remove(dvp, nm);
3413 
3414 	douprintf = 1;
3415 
3416 	t = gethrtime();
3417 
3418 	error = rfs3call(VTOMI(dvp), NFSPROC3_MKDIR,
3419 	    xdr_MKDIR3args, (caddr_t)&args,
3420 	    xdr_MKDIR3res, (caddr_t)&res, cr,
3421 	    &douprintf, &res.status, 0, NULL);
3422 
3423 	if (error) {
3424 		PURGE_ATTRCACHE(dvp);
3425 		nfs_rw_exit(&drp->r_rwlock);
3426 		return (error);
3427 	}
3428 
3429 	error = geterrno3(res.status);
3430 	if (!error) {
3431 		nfs3_cache_wcc_data(dvp, &res.resok.dir_wcc, t, cr);
3432 		if (HAVE_RDDIR_CACHE(drp))
3433 			nfs_purge_rddir_cache(dvp);
3434 
3435 		if (!res.resok.obj.handle_follows) {
3436 			error = nfs3lookup(dvp, nm, &vp, NULL, 0, NULL, cr, 0);
3437 			if (error) {
3438 				nfs_rw_exit(&drp->r_rwlock);
3439 				return (error);
3440 			}
3441 		} else {
3442 			if (res.resok.obj_attributes.attributes) {
3443 				vp = makenfs3node(&res.resok.obj.handle,
3444 				    &res.resok.obj_attributes.attr,
3445 				    dvp->v_vfsp, t, cr, NULL, NULL);
3446 			} else {
3447 				vp = makenfs3node(&res.resok.obj.handle, NULL,
3448 				    dvp->v_vfsp, t, cr, NULL, NULL);
3449 				if (vp->v_type == VNON) {
3450 					vattr.va_mask = AT_TYPE;
3451 					error = nfs3getattr(vp, &vattr, cr);
3452 					if (error) {
3453 						VN_RELE(vp);
3454 						nfs_rw_exit(&drp->r_rwlock);
3455 						return (error);
3456 					}
3457 					vp->v_type = vattr.va_type;
3458 				}
3459 			}
3460 			dnlc_update(dvp, nm, vp);
3461 		}
3462 		if (va->va_gid != VTOR(vp)->r_attr.va_gid) {
3463 			va->va_mask = AT_GID;
3464 			(void) nfs3setattr(vp, va, 0, cr);
3465 		}
3466 		*vpp = vp;
3467 	} else {
3468 		nfs3_cache_wcc_data(dvp, &res.resfail.dir_wcc, t, cr);
3469 		PURGE_STALE_FH(error, dvp, cr);
3470 	}
3471 
3472 	nfs_rw_exit(&drp->r_rwlock);
3473 
3474 	return (error);
3475 }
3476 
3477 /* ARGSUSED */
3478 static int
3479 nfs3_rmdir(vnode_t *dvp, char *nm, vnode_t *cdir, cred_t *cr,
3480 	caller_context_t *ct, int flags)
3481 {
3482 	int error;
3483 	RMDIR3args args;
3484 	RMDIR3res res;
3485 	vnode_t *vp;
3486 	int douprintf;
3487 	rnode_t *drp;
3488 	hrtime_t t;
3489 
3490 	if (nfs_zone() != VTOMI(dvp)->mi_zone)
3491 		return (EPERM);
3492 	drp = VTOR(dvp);
3493 	if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR(dvp)))
3494 		return (EINTR);
3495 
3496 	/*
3497 	 * Attempt to prevent a rmdir(".") from succeeding.
3498 	 */
3499 	error = nfs3lookup(dvp, nm, &vp, NULL, 0, NULL, cr, 0);
3500 	if (error) {
3501 		nfs_rw_exit(&drp->r_rwlock);
3502 		return (error);
3503 	}
3504 
3505 	if (vp == cdir) {
3506 		VN_RELE(vp);
3507 		nfs_rw_exit(&drp->r_rwlock);
3508 		return (EINVAL);
3509 	}
3510 
3511 	setdiropargs3(&args.object, nm, dvp);
3512 
3513 	/*
3514 	 * First just remove the entry from the name cache, as it
3515 	 * is most likely an entry for this vp.
3516 	 */
3517 	dnlc_remove(dvp, nm);
3518 
3519 	/*
3520 	 * If there vnode reference count is greater than one, then
3521 	 * there may be additional references in the DNLC which will
3522 	 * need to be purged.  First, trying removing the entry for
3523 	 * the parent directory and see if that removes the additional
3524 	 * reference(s).  If that doesn't do it, then use dnlc_purge_vp
3525 	 * to completely remove any references to the directory which
3526 	 * might still exist in the DNLC.
3527 	 */
3528 	if (vp->v_count > 1) {
3529 		dnlc_remove(vp, "..");
3530 		if (vp->v_count > 1)
3531 			dnlc_purge_vp(vp);
3532 	}
3533 
3534 	douprintf = 1;
3535 
3536 	t = gethrtime();
3537 
3538 	error = rfs3call(VTOMI(dvp), NFSPROC3_RMDIR,
3539 	    xdr_diropargs3, (caddr_t)&args,
3540 	    xdr_RMDIR3res, (caddr_t)&res, cr,
3541 	    &douprintf, &res.status, 0, NULL);
3542 
3543 	PURGE_ATTRCACHE(vp);
3544 
3545 	if (error) {
3546 		PURGE_ATTRCACHE(dvp);
3547 		VN_RELE(vp);
3548 		nfs_rw_exit(&drp->r_rwlock);
3549 		return (error);
3550 	}
3551 
3552 	error = geterrno3(res.status);
3553 	if (!error) {
3554 		nfs3_cache_wcc_data(dvp, &res.resok.dir_wcc, t, cr);
3555 		if (HAVE_RDDIR_CACHE(drp))
3556 			nfs_purge_rddir_cache(dvp);
3557 		if (HAVE_RDDIR_CACHE(VTOR(vp)))
3558 			nfs_purge_rddir_cache(vp);
3559 	} else {
3560 		nfs3_cache_wcc_data(dvp, &res.resfail.dir_wcc, t, cr);
3561 		PURGE_STALE_FH(error, dvp, cr);
3562 		/*
3563 		 * System V defines rmdir to return EEXIST, not
3564 		 * ENOTEMPTY if the directory is not empty.  Over
3565 		 * the wire, the error is NFSERR_ENOTEMPTY which
3566 		 * geterrno maps to ENOTEMPTY.
3567 		 */
3568 		if (error == ENOTEMPTY)
3569 			error = EEXIST;
3570 	}
3571 
3572 	if (error == 0) {
3573 		vnevent_rmdir(vp, dvp, nm, ct);
3574 	}
3575 	VN_RELE(vp);
3576 
3577 	nfs_rw_exit(&drp->r_rwlock);
3578 
3579 	return (error);
3580 }
3581 
3582 /* ARGSUSED */
3583 static int
3584 nfs3_symlink(vnode_t *dvp, char *lnm, struct vattr *tva, char *tnm, cred_t *cr,
3585 	caller_context_t *ct, int flags)
3586 {
3587 	int error;
3588 	SYMLINK3args args;
3589 	SYMLINK3res res;
3590 	int douprintf;
3591 	mntinfo_t *mi;
3592 	vnode_t *vp;
3593 	rnode_t *rp;
3594 	char *contents;
3595 	rnode_t *drp;
3596 	hrtime_t t;
3597 
3598 	mi = VTOMI(dvp);
3599 
3600 	if (nfs_zone() != mi->mi_zone)
3601 		return (EPERM);
3602 	if (!(mi->mi_flags & MI_SYMLINK))
3603 		return (EOPNOTSUPP);
3604 
3605 	setdiropargs3(&args.where, lnm, dvp);
3606 	error = vattr_to_sattr3(tva, &args.symlink.symlink_attributes);
3607 	if (error) {
3608 		/* req time field(s) overflow - return immediately */
3609 		return (error);
3610 	}
3611 	args.symlink.symlink_data = tnm;
3612 
3613 	drp = VTOR(dvp);
3614 	if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR(dvp)))
3615 		return (EINTR);
3616 
3617 	dnlc_remove(dvp, lnm);
3618 
3619 	douprintf = 1;
3620 
3621 	t = gethrtime();
3622 
3623 	error = rfs3call(mi, NFSPROC3_SYMLINK,
3624 	    xdr_SYMLINK3args, (caddr_t)&args,
3625 	    xdr_SYMLINK3res, (caddr_t)&res, cr,
3626 	    &douprintf, &res.status, 0, NULL);
3627 
3628 	if (error) {
3629 		PURGE_ATTRCACHE(dvp);
3630 		nfs_rw_exit(&drp->r_rwlock);
3631 		return (error);
3632 	}
3633 
3634 	error = geterrno3(res.status);
3635 	if (!error) {
3636 		nfs3_cache_wcc_data(dvp, &res.resok.dir_wcc, t, cr);
3637 		if (HAVE_RDDIR_CACHE(drp))
3638 			nfs_purge_rddir_cache(dvp);
3639 
3640 		if (res.resok.obj.handle_follows) {
3641 			if (res.resok.obj_attributes.attributes) {
3642 				vp = makenfs3node(&res.resok.obj.handle,
3643 				    &res.resok.obj_attributes.attr,
3644 				    dvp->v_vfsp, t, cr, NULL, NULL);
3645 			} else {
3646 				vp = makenfs3node(&res.resok.obj.handle, NULL,
3647 				    dvp->v_vfsp, t, cr, NULL, NULL);
3648 				vp->v_type = VLNK;
3649 				vp->v_rdev = 0;
3650 			}
3651 			dnlc_update(dvp, lnm, vp);
3652 			rp = VTOR(vp);
3653 			if (nfs3_do_symlink_cache &&
3654 			    rp->r_symlink.contents == NULL) {
3655 
3656 				contents = kmem_alloc(MAXPATHLEN,
3657 				    KM_NOSLEEP);
3658 
3659 				if (contents != NULL) {
3660 					mutex_enter(&rp->r_statelock);
3661 					if (rp->r_symlink.contents == NULL) {
3662 						rp->r_symlink.len = strlen(tnm);
3663 						bcopy(tnm, contents,
3664 						    rp->r_symlink.len);
3665 						rp->r_symlink.contents =
3666 						    contents;
3667 						rp->r_symlink.size = MAXPATHLEN;
3668 						mutex_exit(&rp->r_statelock);
3669 					} else {
3670 						mutex_exit(&rp->r_statelock);
3671 						kmem_free((void *)contents,
3672 						    MAXPATHLEN);
3673 					}
3674 				}
3675 			}
3676 			VN_RELE(vp);
3677 		}
3678 	} else {
3679 		nfs3_cache_wcc_data(dvp, &res.resfail.dir_wcc, t, cr);
3680 		PURGE_STALE_FH(error, dvp, cr);
3681 		if (error == EOPNOTSUPP) {
3682 			mutex_enter(&mi->mi_lock);
3683 			mi->mi_flags &= ~MI_SYMLINK;
3684 			mutex_exit(&mi->mi_lock);
3685 		}
3686 	}
3687 
3688 	nfs_rw_exit(&drp->r_rwlock);
3689 
3690 	return (error);
3691 }
3692 
3693 #ifdef DEBUG
3694 static int nfs3_readdir_cache_hits = 0;
3695 static int nfs3_readdir_cache_shorts = 0;
3696 static int nfs3_readdir_cache_waits = 0;
3697 static int nfs3_readdir_cache_misses = 0;
3698 static int nfs3_readdir_readahead = 0;
3699 #endif
3700 
3701 static int nfs3_shrinkreaddir = 0;
3702 
3703 /*
3704  * Read directory entries.
3705  * There are some weird things to look out for here.  The uio_loffset
3706  * field is either 0 or it is the offset returned from a previous
3707  * readdir.  It is an opaque value used by the server to find the
3708  * correct directory block to read. The count field is the number
3709  * of blocks to read on the server.  This is advisory only, the server
3710  * may return only one block's worth of entries.  Entries may be compressed
3711  * on the server.
3712  */
3713 /* ARGSUSED */
3714 static int
3715 nfs3_readdir(vnode_t *vp, struct uio *uiop, cred_t *cr, int *eofp,
3716 	caller_context_t *ct, int flags)
3717 {
3718 	int error;
3719 	size_t count;
3720 	rnode_t *rp;
3721 	rddir_cache *rdc;
3722 	rddir_cache *nrdc;
3723 	rddir_cache *rrdc;
3724 #ifdef DEBUG
3725 	int missed;
3726 #endif
3727 	int doreadahead;
3728 	rddir_cache srdc;
3729 	avl_index_t where;
3730 
3731 	if (nfs_zone() != VTOMI(vp)->mi_zone)
3732 		return (EIO);
3733 	rp = VTOR(vp);
3734 
3735 	ASSERT(nfs_rw_lock_held(&rp->r_rwlock, RW_READER));
3736 
3737 	/*
3738 	 * Make sure that the directory cache is valid.
3739 	 */
3740 	if (HAVE_RDDIR_CACHE(rp)) {
3741 		if (nfs_disable_rddir_cache) {
3742 			/*
3743 			 * Setting nfs_disable_rddir_cache in /etc/system
3744 			 * allows interoperability with servers that do not
3745 			 * properly update the attributes of directories.
3746 			 * Any cached information gets purged before an
3747 			 * access is made to it.
3748 			 */
3749 			nfs_purge_rddir_cache(vp);
3750 		} else {
3751 			error = nfs3_validate_caches(vp, cr);
3752 			if (error)
3753 				return (error);
3754 		}
3755 	}
3756 
3757 	/*
3758 	 * It is possible that some servers may not be able to correctly
3759 	 * handle a large READDIR or READDIRPLUS request due to bugs in
3760 	 * their implementation.  In order to continue to interoperate
3761 	 * with them, this workaround is provided to limit the maximum
3762 	 * size of a READDIRPLUS request to 1024.  In any case, the request
3763 	 * size is limited to MAXBSIZE.
3764 	 */
3765 	count = MIN(uiop->uio_iov->iov_len,
3766 	    nfs3_shrinkreaddir ? 1024 : MAXBSIZE);
3767 
3768 	nrdc = NULL;
3769 #ifdef DEBUG
3770 	missed = 0;
3771 #endif
3772 top:
3773 	/*
3774 	 * Short circuit last readdir which always returns 0 bytes.
3775 	 * This can be done after the directory has been read through
3776 	 * completely at least once.  This will set r_direof which
3777 	 * can be used to find the value of the last cookie.
3778 	 */
3779 	mutex_enter(&rp->r_statelock);
3780 	if (rp->r_direof != NULL &&
3781 	    uiop->uio_loffset == rp->r_direof->nfs3_ncookie) {
3782 		mutex_exit(&rp->r_statelock);
3783 #ifdef DEBUG
3784 		nfs3_readdir_cache_shorts++;
3785 #endif
3786 		if (eofp)
3787 			*eofp = 1;
3788 		if (nrdc != NULL)
3789 			rddir_cache_rele(nrdc);
3790 		return (0);
3791 	}
3792 	/*
3793 	 * Look for a cache entry.  Cache entries are identified
3794 	 * by the NFS cookie value and the byte count requested.
3795 	 */
3796 	srdc.nfs3_cookie = uiop->uio_loffset;
3797 	srdc.buflen = count;
3798 	rdc = avl_find(&rp->r_dir, &srdc, &where);
3799 	if (rdc != NULL) {
3800 		rddir_cache_hold(rdc);
3801 		/*
3802 		 * If the cache entry is in the process of being
3803 		 * filled in, wait until this completes.  The
3804 		 * RDDIRWAIT bit is set to indicate that someone
3805 		 * is waiting and then the thread currently
3806 		 * filling the entry is done, it should do a
3807 		 * cv_broadcast to wakeup all of the threads
3808 		 * waiting for it to finish.
3809 		 */
3810 		if (rdc->flags & RDDIR) {
3811 			nfs_rw_exit(&rp->r_rwlock);
3812 			rdc->flags |= RDDIRWAIT;
3813 #ifdef DEBUG
3814 			nfs3_readdir_cache_waits++;
3815 #endif
3816 			if (!cv_wait_sig(&rdc->cv, &rp->r_statelock)) {
3817 				/*
3818 				 * We got interrupted, probably
3819 				 * the user typed ^C or an alarm
3820 				 * fired.  We free the new entry
3821 				 * if we allocated one.
3822 				 */
3823 				mutex_exit(&rp->r_statelock);
3824 				(void) nfs_rw_enter_sig(&rp->r_rwlock,
3825 				    RW_READER, FALSE);
3826 				rddir_cache_rele(rdc);
3827 				if (nrdc != NULL)
3828 					rddir_cache_rele(nrdc);
3829 				return (EINTR);
3830 			}
3831 			mutex_exit(&rp->r_statelock);
3832 			(void) nfs_rw_enter_sig(&rp->r_rwlock,
3833 			    RW_READER, FALSE);
3834 			rddir_cache_rele(rdc);
3835 			goto top;
3836 		}
3837 		/*
3838 		 * Check to see if a readdir is required to
3839 		 * fill the entry.  If so, mark this entry
3840 		 * as being filled, remove our reference,
3841 		 * and branch to the code to fill the entry.
3842 		 */
3843 		if (rdc->flags & RDDIRREQ) {
3844 			rdc->flags &= ~RDDIRREQ;
3845 			rdc->flags |= RDDIR;
3846 			if (nrdc != NULL)
3847 				rddir_cache_rele(nrdc);
3848 			nrdc = rdc;
3849 			mutex_exit(&rp->r_statelock);
3850 			goto bottom;
3851 		}
3852 #ifdef DEBUG
3853 		if (!missed)
3854 			nfs3_readdir_cache_hits++;
3855 #endif
3856 		/*
3857 		 * If an error occurred while attempting
3858 		 * to fill the cache entry, just return it.
3859 		 */
3860 		if (rdc->error) {
3861 			error = rdc->error;
3862 			mutex_exit(&rp->r_statelock);
3863 			rddir_cache_rele(rdc);
3864 			if (nrdc != NULL)
3865 				rddir_cache_rele(nrdc);
3866 			return (error);
3867 		}
3868 
3869 		/*
3870 		 * The cache entry is complete and good,
3871 		 * copyout the dirent structs to the calling
3872 		 * thread.
3873 		 */
3874 		error = uiomove(rdc->entries, rdc->entlen, UIO_READ, uiop);
3875 
3876 		/*
3877 		 * If no error occurred during the copyout,
3878 		 * update the offset in the uio struct to
3879 		 * contain the value of the next cookie
3880 		 * and set the eof value appropriately.
3881 		 */
3882 		if (!error) {
3883 			uiop->uio_loffset = rdc->nfs3_ncookie;
3884 			if (eofp)
3885 				*eofp = rdc->eof;
3886 		}
3887 
3888 		/*
3889 		 * Decide whether to do readahead.
3890 		 *
3891 		 * Don't if have already read to the end of
3892 		 * directory.  There is nothing more to read.
3893 		 *
3894 		 * Don't if the application is not doing
3895 		 * lookups in the directory.  The readahead
3896 		 * is only effective if the application can
3897 		 * be doing work while an async thread is
3898 		 * handling the over the wire request.
3899 		 */
3900 		if (rdc->eof) {
3901 			rp->r_direof = rdc;
3902 			doreadahead = FALSE;
3903 		} else if (!(rp->r_flags & RLOOKUP))
3904 			doreadahead = FALSE;
3905 		else
3906 			doreadahead = TRUE;
3907 
3908 		if (!doreadahead) {
3909 			mutex_exit(&rp->r_statelock);
3910 			rddir_cache_rele(rdc);
3911 			if (nrdc != NULL)
3912 				rddir_cache_rele(nrdc);
3913 			return (error);
3914 		}
3915 
3916 		/*
3917 		 * Check to see whether we found an entry
3918 		 * for the readahead.  If so, we don't need
3919 		 * to do anything further, so free the new
3920 		 * entry if one was allocated.  Otherwise,
3921 		 * allocate a new entry, add it to the cache,
3922 		 * and then initiate an asynchronous readdir
3923 		 * operation to fill it.
3924 		 */
3925 		srdc.nfs3_cookie = rdc->nfs3_ncookie;
3926 		srdc.buflen = count;
3927 		rrdc = avl_find(&rp->r_dir, &srdc, &where);
3928 		if (rrdc != NULL) {
3929 			if (nrdc != NULL)
3930 				rddir_cache_rele(nrdc);
3931 		} else {
3932 			if (nrdc != NULL)
3933 				rrdc = nrdc;
3934 			else {
3935 				rrdc = rddir_cache_alloc(KM_NOSLEEP);
3936 			}
3937 			if (rrdc != NULL) {
3938 				rrdc->nfs3_cookie = rdc->nfs3_ncookie;
3939 				rrdc->buflen = count;
3940 				avl_insert(&rp->r_dir, rrdc, where);
3941 				rddir_cache_hold(rrdc);
3942 				mutex_exit(&rp->r_statelock);
3943 				rddir_cache_rele(rdc);
3944 #ifdef DEBUG
3945 				nfs3_readdir_readahead++;
3946 #endif
3947 				nfs_async_readdir(vp, rrdc, cr, do_nfs3readdir);
3948 				return (error);
3949 			}
3950 		}
3951 
3952 		mutex_exit(&rp->r_statelock);
3953 		rddir_cache_rele(rdc);
3954 		return (error);
3955 	}
3956 
3957 	/*
3958 	 * Didn't find an entry in the cache.  Construct a new empty
3959 	 * entry and link it into the cache.  Other processes attempting
3960 	 * to access this entry will need to wait until it is filled in.
3961 	 *
3962 	 * Since kmem_alloc may block, another pass through the cache
3963 	 * will need to be taken to make sure that another process
3964 	 * hasn't already added an entry to the cache for this request.
3965 	 */
3966 	if (nrdc == NULL) {
3967 		mutex_exit(&rp->r_statelock);
3968 		nrdc = rddir_cache_alloc(KM_SLEEP);
3969 		nrdc->nfs3_cookie = uiop->uio_loffset;
3970 		nrdc->buflen = count;
3971 		goto top;
3972 	}
3973 
3974 	/*
3975 	 * Add this entry to the cache.
3976 	 */
3977 	avl_insert(&rp->r_dir, nrdc, where);
3978 	rddir_cache_hold(nrdc);
3979 	mutex_exit(&rp->r_statelock);
3980 
3981 bottom:
3982 #ifdef DEBUG
3983 	missed = 1;
3984 	nfs3_readdir_cache_misses++;
3985 #endif
3986 	/*
3987 	 * Do the readdir.  This routine decides whether to use
3988 	 * READDIR or READDIRPLUS.
3989 	 */
3990 	error = do_nfs3readdir(vp, nrdc, cr);
3991 
3992 	/*
3993 	 * If this operation failed, just return the error which occurred.
3994 	 */
3995 	if (error != 0)
3996 		return (error);
3997 
3998 	/*
3999 	 * Since the RPC operation will have taken sometime and blocked
4000 	 * this process, another pass through the cache will need to be
4001 	 * taken to find the correct cache entry.  It is possible that
4002 	 * the correct cache entry will not be there (although one was
4003 	 * added) because the directory changed during the RPC operation
4004 	 * and the readdir cache was flushed.  In this case, just start
4005 	 * over.  It is hoped that this will not happen too often... :-)
4006 	 */
4007 	nrdc = NULL;
4008 	goto top;
4009 	/* NOTREACHED */
4010 }
4011 
4012 static int
4013 do_nfs3readdir(vnode_t *vp, rddir_cache *rdc, cred_t *cr)
4014 {
4015 	int error;
4016 	rnode_t *rp;
4017 	mntinfo_t *mi;
4018 
4019 	rp = VTOR(vp);
4020 	mi = VTOMI(vp);
4021 	ASSERT(nfs_zone() == mi->mi_zone);
4022 	/*
4023 	 * Issue the proper request.
4024 	 *
4025 	 * If the server does not support READDIRPLUS, then use READDIR.
4026 	 *
4027 	 * Otherwise --
4028 	 * Issue a READDIRPLUS if reading to fill an empty cache or if
4029 	 * an application has performed a lookup in the directory which
4030 	 * required an over the wire lookup.  The use of READDIRPLUS
4031 	 * will help to (re)populate the DNLC.
4032 	 */
4033 	if (!(mi->mi_flags & MI_READDIRONLY) &&
4034 	    (rp->r_flags & (RLOOKUP | RREADDIRPLUS))) {
4035 		if (rp->r_flags & RREADDIRPLUS) {
4036 			mutex_enter(&rp->r_statelock);
4037 			rp->r_flags &= ~RREADDIRPLUS;
4038 			mutex_exit(&rp->r_statelock);
4039 		}
4040 		nfs3readdirplus(vp, rdc, cr);
4041 		if (rdc->error == EOPNOTSUPP)
4042 			nfs3readdir(vp, rdc, cr);
4043 	} else
4044 		nfs3readdir(vp, rdc, cr);
4045 
4046 	mutex_enter(&rp->r_statelock);
4047 	rdc->flags &= ~RDDIR;
4048 	if (rdc->flags & RDDIRWAIT) {
4049 		rdc->flags &= ~RDDIRWAIT;
4050 		cv_broadcast(&rdc->cv);
4051 	}
4052 	error = rdc->error;
4053 	if (error)
4054 		rdc->flags |= RDDIRREQ;
4055 	mutex_exit(&rp->r_statelock);
4056 
4057 	rddir_cache_rele(rdc);
4058 
4059 	return (error);
4060 }
4061 
4062 static void
4063 nfs3readdir(vnode_t *vp, rddir_cache *rdc, cred_t *cr)
4064 {
4065 	int error;
4066 	READDIR3args args;
4067 	READDIR3vres res;
4068 	vattr_t dva;
4069 	rnode_t *rp;
4070 	int douprintf;
4071 	failinfo_t fi, *fip = NULL;
4072 	mntinfo_t *mi;
4073 	hrtime_t t;
4074 
4075 	rp = VTOR(vp);
4076 	mi = VTOMI(vp);
4077 	ASSERT(nfs_zone() == mi->mi_zone);
4078 
4079 	args.dir = *RTOFH3(rp);
4080 	args.cookie = (cookie3)rdc->nfs3_cookie;
4081 	args.cookieverf = rp->r_cookieverf;
4082 	args.count = rdc->buflen;
4083 
4084 	/*
4085 	 * NFS client failover support
4086 	 * suppress failover unless we have a zero cookie
4087 	 */
4088 	if (args.cookie == (cookie3) 0) {
4089 		fi.vp = vp;
4090 		fi.fhp = (caddr_t)&args.dir;
4091 		fi.copyproc = nfs3copyfh;
4092 		fi.lookupproc = nfs3lookup;
4093 		fi.xattrdirproc = acl_getxattrdir3;
4094 		fip = &fi;
4095 	}
4096 
4097 #ifdef DEBUG
4098 	rdc->entries = rddir_cache_buf_alloc(rdc->buflen, KM_SLEEP);
4099 #else
4100 	rdc->entries = kmem_alloc(rdc->buflen, KM_SLEEP);
4101 #endif
4102 
4103 	res.entries = (dirent64_t *)rdc->entries;
4104 	res.entries_size = rdc->buflen;
4105 	res.dir_attributes.fres.vap = &dva;
4106 	res.dir_attributes.fres.vp = vp;
4107 	res.loff = rdc->nfs3_cookie;
4108 
4109 	douprintf = 1;
4110 
4111 	if (mi->mi_io_kstats) {
4112 		mutex_enter(&mi->mi_lock);
4113 		kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats));
4114 		mutex_exit(&mi->mi_lock);
4115 	}
4116 
4117 	t = gethrtime();
4118 
4119 	error = rfs3call(VTOMI(vp), NFSPROC3_READDIR,
4120 	    xdr_READDIR3args, (caddr_t)&args,
4121 	    xdr_READDIR3vres, (caddr_t)&res, cr,
4122 	    &douprintf, &res.status, 0, fip);
4123 
4124 	if (mi->mi_io_kstats) {
4125 		mutex_enter(&mi->mi_lock);
4126 		kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats));
4127 		mutex_exit(&mi->mi_lock);
4128 	}
4129 
4130 	if (error)
4131 		goto err;
4132 
4133 	nfs3_cache_post_op_vattr(vp, &res.dir_attributes, t, cr);
4134 
4135 	error = geterrno3(res.status);
4136 	if (error) {
4137 		PURGE_STALE_FH(error, vp, cr);
4138 		goto err;
4139 	}
4140 
4141 	if (mi->mi_io_kstats) {
4142 		mutex_enter(&mi->mi_lock);
4143 		KSTAT_IO_PTR(mi->mi_io_kstats)->reads++;
4144 		KSTAT_IO_PTR(mi->mi_io_kstats)->nread += res.size;
4145 		mutex_exit(&mi->mi_lock);
4146 	}
4147 
4148 	rdc->nfs3_ncookie = res.loff;
4149 	rp->r_cookieverf = res.cookieverf;
4150 	rdc->eof = res.eof ? 1 : 0;
4151 	rdc->entlen = res.size;
4152 	ASSERT(rdc->entlen <= rdc->buflen);
4153 	rdc->error = 0;
4154 	return;
4155 
4156 err:
4157 	kmem_free(rdc->entries, rdc->buflen);
4158 	rdc->entries = NULL;
4159 	rdc->error = error;
4160 }
4161 
4162 /*
4163  * Read directory entries.
4164  * There are some weird things to look out for here.  The uio_loffset
4165  * field is either 0 or it is the offset returned from a previous
4166  * readdir.  It is an opaque value used by the server to find the
4167  * correct directory block to read. The count field is the number
4168  * of blocks to read on the server.  This is advisory only, the server
4169  * may return only one block's worth of entries.  Entries may be compressed
4170  * on the server.
4171  */
4172 static void
4173 nfs3readdirplus(vnode_t *vp, rddir_cache *rdc, cred_t *cr)
4174 {
4175 	int error;
4176 	READDIRPLUS3args args;
4177 	READDIRPLUS3vres res;
4178 	vattr_t dva;
4179 	rnode_t *rp;
4180 	mntinfo_t *mi;
4181 	int douprintf;
4182 	failinfo_t fi, *fip = NULL;
4183 
4184 	rp = VTOR(vp);
4185 	mi = VTOMI(vp);
4186 	ASSERT(nfs_zone() == mi->mi_zone);
4187 
4188 	args.dir = *RTOFH3(rp);
4189 	args.cookie = (cookie3)rdc->nfs3_cookie;
4190 	args.cookieverf = rp->r_cookieverf;
4191 	args.dircount = rdc->buflen;
4192 	args.maxcount = mi->mi_tsize;
4193 
4194 	/*
4195 	 * NFS client failover support
4196 	 * suppress failover unless we have a zero cookie
4197 	 */
4198 	if (args.cookie == (cookie3)0) {
4199 		fi.vp = vp;
4200 		fi.fhp = (caddr_t)&args.dir;
4201 		fi.copyproc = nfs3copyfh;
4202 		fi.lookupproc = nfs3lookup;
4203 		fi.xattrdirproc = acl_getxattrdir3;
4204 		fip = &fi;
4205 	}
4206 
4207 #ifdef DEBUG
4208 	rdc->entries = rddir_cache_buf_alloc(rdc->buflen, KM_SLEEP);
4209 #else
4210 	rdc->entries = kmem_alloc(rdc->buflen, KM_SLEEP);
4211 #endif
4212 
4213 	res.entries = (dirent64_t *)rdc->entries;
4214 	res.entries_size = rdc->buflen;
4215 	res.dir_attributes.fres.vap = &dva;
4216 	res.dir_attributes.fres.vp = vp;
4217 	res.loff = rdc->nfs3_cookie;
4218 	res.credentials = cr;
4219 
4220 	douprintf = 1;
4221 
4222 	if (mi->mi_io_kstats) {
4223 		mutex_enter(&mi->mi_lock);
4224 		kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats));
4225 		mutex_exit(&mi->mi_lock);
4226 	}
4227 
4228 	res.time = gethrtime();
4229 
4230 	error = rfs3call(mi, NFSPROC3_READDIRPLUS,
4231 	    xdr_READDIRPLUS3args, (caddr_t)&args,
4232 	    xdr_READDIRPLUS3vres, (caddr_t)&res, cr,
4233 	    &douprintf, &res.status, 0, fip);
4234 
4235 	if (mi->mi_io_kstats) {
4236 		mutex_enter(&mi->mi_lock);
4237 		kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats));
4238 		mutex_exit(&mi->mi_lock);
4239 	}
4240 
4241 	if (error) {
4242 		goto err;
4243 	}
4244 
4245 	nfs3_cache_post_op_vattr(vp, &res.dir_attributes, res.time, cr);
4246 
4247 	error = geterrno3(res.status);
4248 	if (error) {
4249 		PURGE_STALE_FH(error, vp, cr);
4250 		if (error == EOPNOTSUPP) {
4251 			mutex_enter(&mi->mi_lock);
4252 			mi->mi_flags |= MI_READDIRONLY;
4253 			mutex_exit(&mi->mi_lock);
4254 		}
4255 		goto err;
4256 	}
4257 
4258 	if (mi->mi_io_kstats) {
4259 		mutex_enter(&mi->mi_lock);
4260 		KSTAT_IO_PTR(mi->mi_io_kstats)->reads++;
4261 		KSTAT_IO_PTR(mi->mi_io_kstats)->nread += res.size;
4262 		mutex_exit(&mi->mi_lock);
4263 	}
4264 
4265 	rdc->nfs3_ncookie = res.loff;
4266 	rp->r_cookieverf = res.cookieverf;
4267 	rdc->eof = res.eof ? 1 : 0;
4268 	rdc->entlen = res.size;
4269 	ASSERT(rdc->entlen <= rdc->buflen);
4270 	rdc->error = 0;
4271 
4272 	return;
4273 
4274 err:
4275 	kmem_free(rdc->entries, rdc->buflen);
4276 	rdc->entries = NULL;
4277 	rdc->error = error;
4278 }
4279 
4280 #ifdef DEBUG
4281 static int nfs3_bio_do_stop = 0;
4282 #endif
4283 
4284 static int
4285 nfs3_bio(struct buf *bp, stable_how *stab_comm, cred_t *cr)
4286 {
4287 	rnode_t *rp = VTOR(bp->b_vp);
4288 	int count;
4289 	int error;
4290 	cred_t *cred;
4291 	offset_t offset;
4292 
4293 	ASSERT(nfs_zone() == VTOMI(bp->b_vp)->mi_zone);
4294 	offset = ldbtob(bp->b_lblkno);
4295 
4296 	DTRACE_IO1(start, struct buf *, bp);
4297 
4298 	if (bp->b_flags & B_READ) {
4299 		mutex_enter(&rp->r_statelock);
4300 		if (rp->r_cred != NULL) {
4301 			cred = rp->r_cred;
4302 			crhold(cred);
4303 		} else {
4304 			rp->r_cred = cr;
4305 			crhold(cr);
4306 			cred = cr;
4307 			crhold(cred);
4308 		}
4309 		mutex_exit(&rp->r_statelock);
4310 	read_again:
4311 		error = bp->b_error = nfs3read(bp->b_vp, bp->b_un.b_addr,
4312 		    offset, bp->b_bcount, &bp->b_resid, cred);
4313 		crfree(cred);
4314 		if (!error) {
4315 			if (bp->b_resid) {
4316 				/*
4317 				 * Didn't get it all because we hit EOF,
4318 				 * zero all the memory beyond the EOF.
4319 				 */
4320 				/* bzero(rdaddr + */
4321 				bzero(bp->b_un.b_addr +
4322 				    bp->b_bcount - bp->b_resid, bp->b_resid);
4323 			}
4324 			mutex_enter(&rp->r_statelock);
4325 			if (bp->b_resid == bp->b_bcount &&
4326 			    offset >= rp->r_size) {
4327 				/*
4328 				 * We didn't read anything at all as we are
4329 				 * past EOF.  Return an error indicator back
4330 				 * but don't destroy the pages (yet).
4331 				 */
4332 				error = NFS_EOF;
4333 			}
4334 			mutex_exit(&rp->r_statelock);
4335 		} else if (error == EACCES) {
4336 			mutex_enter(&rp->r_statelock);
4337 			if (cred != cr) {
4338 				if (rp->r_cred != NULL)
4339 					crfree(rp->r_cred);
4340 				rp->r_cred = cr;
4341 				crhold(cr);
4342 				cred = cr;
4343 				crhold(cred);
4344 				mutex_exit(&rp->r_statelock);
4345 				goto read_again;
4346 			}
4347 			mutex_exit(&rp->r_statelock);
4348 		}
4349 	} else {
4350 		if (!(rp->r_flags & RSTALE)) {
4351 			mutex_enter(&rp->r_statelock);
4352 			if (rp->r_cred != NULL) {
4353 				cred = rp->r_cred;
4354 				crhold(cred);
4355 			} else {
4356 				rp->r_cred = cr;
4357 				crhold(cr);
4358 				cred = cr;
4359 				crhold(cred);
4360 			}
4361 			mutex_exit(&rp->r_statelock);
4362 		write_again:
4363 			mutex_enter(&rp->r_statelock);
4364 			count = MIN(bp->b_bcount, rp->r_size - offset);
4365 			mutex_exit(&rp->r_statelock);
4366 			if (count < 0)
4367 				cmn_err(CE_PANIC, "nfs3_bio: write count < 0");
4368 #ifdef DEBUG
4369 			if (count == 0) {
4370 				zcmn_err(getzoneid(), CE_WARN,
4371 				    "nfs3_bio: zero length write at %lld",
4372 				    offset);
4373 				nfs_printfhandle(&rp->r_fh);
4374 				if (nfs3_bio_do_stop)
4375 					debug_enter("nfs3_bio");
4376 			}
4377 #endif
4378 			error = nfs3write(bp->b_vp, bp->b_un.b_addr, offset,
4379 			    count, cred, stab_comm);
4380 			if (error == EACCES) {
4381 				mutex_enter(&rp->r_statelock);
4382 				if (cred != cr) {
4383 					if (rp->r_cred != NULL)
4384 						crfree(rp->r_cred);
4385 					rp->r_cred = cr;
4386 					crhold(cr);
4387 					crfree(cred);
4388 					cred = cr;
4389 					crhold(cred);
4390 					mutex_exit(&rp->r_statelock);
4391 					goto write_again;
4392 				}
4393 				mutex_exit(&rp->r_statelock);
4394 			}
4395 			bp->b_error = error;
4396 			if (error && error != EINTR) {
4397 				/*
4398 				 * Don't print EDQUOT errors on the console.
4399 				 * Don't print asynchronous EACCES errors.
4400 				 * Don't print EFBIG errors.
4401 				 * Print all other write errors.
4402 				 */
4403 				if (error != EDQUOT && error != EFBIG &&
4404 				    (error != EACCES ||
4405 				    !(bp->b_flags & B_ASYNC)))
4406 					nfs_write_error(bp->b_vp, error, cred);
4407 				/*
4408 				 * Update r_error and r_flags as appropriate.
4409 				 * If the error was ESTALE, then mark the
4410 				 * rnode as not being writeable and save
4411 				 * the error status.  Otherwise, save any
4412 				 * errors which occur from asynchronous
4413 				 * page invalidations.  Any errors occurring
4414 				 * from other operations should be saved
4415 				 * by the caller.
4416 				 */
4417 				mutex_enter(&rp->r_statelock);
4418 				if (error == ESTALE) {
4419 					rp->r_flags |= RSTALE;
4420 					if (!rp->r_error)
4421 						rp->r_error = error;
4422 				} else if (!rp->r_error &&
4423 				    (bp->b_flags &
4424 				    (B_INVAL|B_FORCE|B_ASYNC)) ==
4425 				    (B_INVAL|B_FORCE|B_ASYNC)) {
4426 					rp->r_error = error;
4427 				}
4428 				mutex_exit(&rp->r_statelock);
4429 			}
4430 			crfree(cred);
4431 		} else {
4432 			error = rp->r_error;
4433 			/*
4434 			 * A close may have cleared r_error, if so,
4435 			 * propagate ESTALE error return properly
4436 			 */
4437 			if (error == 0)
4438 				error = ESTALE;
4439 		}
4440 	}
4441 
4442 	if (error != 0 && error != NFS_EOF)
4443 		bp->b_flags |= B_ERROR;
4444 
4445 	DTRACE_IO1(done, struct buf *, bp);
4446 
4447 	return (error);
4448 }
4449 
4450 /* ARGSUSED */
4451 static int
4452 nfs3_fid(vnode_t *vp, fid_t *fidp, caller_context_t *ct)
4453 {
4454 	rnode_t *rp;
4455 
4456 	if (nfs_zone() != VTOMI(vp)->mi_zone)
4457 		return (EIO);
4458 	rp = VTOR(vp);
4459 
4460 	if (fidp->fid_len < (ushort_t)rp->r_fh.fh_len) {
4461 		fidp->fid_len = rp->r_fh.fh_len;
4462 		return (ENOSPC);
4463 	}
4464 	fidp->fid_len = rp->r_fh.fh_len;
4465 	bcopy(rp->r_fh.fh_buf, fidp->fid_data, fidp->fid_len);
4466 	return (0);
4467 }
4468 
4469 /* ARGSUSED2 */
4470 static int
4471 nfs3_rwlock(vnode_t *vp, int write_lock, caller_context_t *ctp)
4472 {
4473 	rnode_t *rp = VTOR(vp);
4474 
4475 	if (!write_lock) {
4476 		(void) nfs_rw_enter_sig(&rp->r_rwlock, RW_READER, FALSE);
4477 		return (V_WRITELOCK_FALSE);
4478 	}
4479 
4480 	if ((rp->r_flags & RDIRECTIO) || (VTOMI(vp)->mi_flags & MI_DIRECTIO)) {
4481 		(void) nfs_rw_enter_sig(&rp->r_rwlock, RW_READER, FALSE);
4482 		if (rp->r_mapcnt == 0 && !vn_has_cached_data(vp))
4483 			return (V_WRITELOCK_FALSE);
4484 		nfs_rw_exit(&rp->r_rwlock);
4485 	}
4486 
4487 	(void) nfs_rw_enter_sig(&rp->r_rwlock, RW_WRITER, FALSE);
4488 	return (V_WRITELOCK_TRUE);
4489 }
4490 
4491 /* ARGSUSED */
4492 static void
4493 nfs3_rwunlock(vnode_t *vp, int write_lock, caller_context_t *ctp)
4494 {
4495 	rnode_t *rp = VTOR(vp);
4496 
4497 	nfs_rw_exit(&rp->r_rwlock);
4498 }
4499 
4500 /* ARGSUSED */
4501 static int
4502 nfs3_seek(vnode_t *vp, offset_t ooff, offset_t *noffp, caller_context_t *ct)
4503 {
4504 
4505 	/*
4506 	 * Because we stuff the readdir cookie into the offset field
4507 	 * someone may attempt to do an lseek with the cookie which
4508 	 * we want to succeed.
4509 	 */
4510 	if (vp->v_type == VDIR)
4511 		return (0);
4512 	if (*noffp < 0)
4513 		return (EINVAL);
4514 	return (0);
4515 }
4516 
4517 /*
4518  * number of nfs3_bsize blocks to read ahead.
4519  */
4520 static int nfs3_nra = 4;
4521 
4522 #ifdef DEBUG
4523 static int nfs3_lostpage = 0;	/* number of times we lost original page */
4524 #endif
4525 
4526 /*
4527  * Return all the pages from [off..off+len) in file
4528  */
4529 /* ARGSUSED */
4530 static int
4531 nfs3_getpage(vnode_t *vp, offset_t off, size_t len, uint_t *protp,
4532 	page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr,
4533 	enum seg_rw rw, cred_t *cr, caller_context_t *ct)
4534 {
4535 	rnode_t *rp;
4536 	int error;
4537 	mntinfo_t *mi;
4538 
4539 	if (vp->v_flag & VNOMAP)
4540 		return (ENOSYS);
4541 
4542 	if (nfs_zone() != VTOMI(vp)->mi_zone)
4543 		return (EIO);
4544 	if (protp != NULL)
4545 		*protp = PROT_ALL;
4546 
4547 	/*
4548 	 * Now valididate that the caches are up to date.
4549 	 */
4550 	error = nfs3_validate_caches(vp, cr);
4551 	if (error)
4552 		return (error);
4553 
4554 	rp = VTOR(vp);
4555 	mi = VTOMI(vp);
4556 retry:
4557 	mutex_enter(&rp->r_statelock);
4558 
4559 	/*
4560 	 * Don't create dirty pages faster than they
4561 	 * can be cleaned so that the system doesn't
4562 	 * get imbalanced.  If the async queue is
4563 	 * maxed out, then wait for it to drain before
4564 	 * creating more dirty pages.  Also, wait for
4565 	 * any threads doing pagewalks in the vop_getattr
4566 	 * entry points so that they don't block for
4567 	 * long periods.
4568 	 */
4569 	if (rw == S_CREATE) {
4570 		while ((mi->mi_max_threads != 0 &&
4571 		    rp->r_awcount > 2 * mi->mi_max_threads) ||
4572 		    rp->r_gcount > 0)
4573 			cv_wait(&rp->r_cv, &rp->r_statelock);
4574 	}
4575 
4576 	/*
4577 	 * If we are getting called as a side effect of an nfs_write()
4578 	 * operation the local file size might not be extended yet.
4579 	 * In this case we want to be able to return pages of zeroes.
4580 	 */
4581 	if (off + len > rp->r_size + PAGEOFFSET && seg != segkmap) {
4582 		mutex_exit(&rp->r_statelock);
4583 		return (EFAULT);		/* beyond EOF */
4584 	}
4585 
4586 	mutex_exit(&rp->r_statelock);
4587 
4588 	if (len <= PAGESIZE) {
4589 		error = nfs3_getapage(vp, off, len, protp, pl, plsz,
4590 		    seg, addr, rw, cr);
4591 	} else {
4592 		error = pvn_getpages(nfs3_getapage, vp, off, len, protp,
4593 		    pl, plsz, seg, addr, rw, cr);
4594 	}
4595 
4596 	switch (error) {
4597 	case NFS_EOF:
4598 		nfs_purge_caches(vp, NFS_NOPURGE_DNLC, cr);
4599 		goto retry;
4600 	case ESTALE:
4601 		PURGE_STALE_FH(error, vp, cr);
4602 	}
4603 
4604 	return (error);
4605 }
4606 
4607 /*
4608  * Called from pvn_getpages or nfs3_getpage to get a particular page.
4609  */
4610 /* ARGSUSED */
4611 static int
4612 nfs3_getapage(vnode_t *vp, u_offset_t off, size_t len, uint_t *protp,
4613 	page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr,
4614 	enum seg_rw rw, cred_t *cr)
4615 {
4616 	rnode_t *rp;
4617 	uint_t bsize;
4618 	struct buf *bp;
4619 	page_t *pp;
4620 	u_offset_t lbn;
4621 	u_offset_t io_off;
4622 	u_offset_t blkoff;
4623 	u_offset_t rablkoff;
4624 	size_t io_len;
4625 	uint_t blksize;
4626 	int error;
4627 	int readahead;
4628 	int readahead_issued = 0;
4629 	int ra_window; /* readahead window */
4630 	page_t *pagefound;
4631 	page_t *savepp;
4632 
4633 	if (nfs_zone() != VTOMI(vp)->mi_zone)
4634 		return (EIO);
4635 	rp = VTOR(vp);
4636 	bsize = MAX(vp->v_vfsp->vfs_bsize, PAGESIZE);
4637 
4638 reread:
4639 	bp = NULL;
4640 	pp = NULL;
4641 	pagefound = NULL;
4642 
4643 	if (pl != NULL)
4644 		pl[0] = NULL;
4645 
4646 	error = 0;
4647 	lbn = off / bsize;
4648 	blkoff = lbn * bsize;
4649 
4650 	/*
4651 	 * Queueing up the readahead before doing the synchronous read
4652 	 * results in a significant increase in read throughput because
4653 	 * of the increased parallelism between the async threads and
4654 	 * the process context.
4655 	 */
4656 	if ((off & ((vp->v_vfsp->vfs_bsize) - 1)) == 0 &&
4657 	    rw != S_CREATE &&
4658 	    !(vp->v_flag & VNOCACHE)) {
4659 		mutex_enter(&rp->r_statelock);
4660 
4661 		/*
4662 		 * Calculate the number of readaheads to do.
4663 		 * a) No readaheads at offset = 0.
4664 		 * b) Do maximum(nfs3_nra) readaheads when the readahead
4665 		 *    window is closed.
4666 		 * c) Do readaheads between 1 to (nfs3_nra - 1) depending
4667 		 *    upon how far the readahead window is open or close.
4668 		 * d) No readaheads if rp->r_nextr is not within the scope
4669 		 *    of the readahead window (random i/o).
4670 		 */
4671 
4672 		if (off == 0)
4673 			readahead = 0;
4674 		else if (blkoff == rp->r_nextr)
4675 			readahead = nfs3_nra;
4676 		else if (rp->r_nextr > blkoff &&
4677 		    ((ra_window = (rp->r_nextr - blkoff) / bsize)
4678 		    <= (nfs3_nra - 1)))
4679 			readahead = nfs3_nra - ra_window;
4680 		else
4681 			readahead = 0;
4682 
4683 		rablkoff = rp->r_nextr;
4684 		while (readahead > 0 && rablkoff + bsize < rp->r_size) {
4685 			mutex_exit(&rp->r_statelock);
4686 			if (nfs_async_readahead(vp, rablkoff + bsize,
4687 			    addr + (rablkoff + bsize - off), seg, cr,
4688 			    nfs3_readahead) < 0) {
4689 				mutex_enter(&rp->r_statelock);
4690 				break;
4691 			}
4692 			readahead--;
4693 			rablkoff += bsize;
4694 			/*
4695 			 * Indicate that we did a readahead so
4696 			 * readahead offset is not updated
4697 			 * by the synchronous read below.
4698 			 */
4699 			readahead_issued = 1;
4700 			mutex_enter(&rp->r_statelock);
4701 			/*
4702 			 * set readahead offset to
4703 			 * offset of last async readahead
4704 			 * request.
4705 			 */
4706 			rp->r_nextr = rablkoff;
4707 		}
4708 		mutex_exit(&rp->r_statelock);
4709 	}
4710 
4711 again:
4712 	if ((pagefound = page_exists(vp, off)) == NULL) {
4713 		if (pl == NULL) {
4714 			(void) nfs_async_readahead(vp, blkoff, addr, seg, cr,
4715 			    nfs3_readahead);
4716 		} else if (rw == S_CREATE) {
4717 			/*
4718 			 * Block for this page is not allocated, or the offset
4719 			 * is beyond the current allocation size, or we're
4720 			 * allocating a swap slot and the page was not found,
4721 			 * so allocate it and return a zero page.
4722 			 */
4723 			if ((pp = page_create_va(vp, off,
4724 			    PAGESIZE, PG_WAIT, seg, addr)) == NULL)
4725 				cmn_err(CE_PANIC, "nfs3_getapage: page_create");
4726 			io_len = PAGESIZE;
4727 			mutex_enter(&rp->r_statelock);
4728 			rp->r_nextr = off + PAGESIZE;
4729 			mutex_exit(&rp->r_statelock);
4730 		} else {
4731 			/*
4732 			 * Need to go to server to get a BLOCK, exception to
4733 			 * that being while reading at offset = 0 or doing
4734 			 * random i/o, in that case read only a PAGE.
4735 			 */
4736 			mutex_enter(&rp->r_statelock);
4737 			if (blkoff < rp->r_size &&
4738 			    blkoff + bsize >= rp->r_size) {
4739 				/*
4740 				 * If only a block or less is left in
4741 				 * the file, read all that is remaining.
4742 				 */
4743 				if (rp->r_size <= off) {
4744 					/*
4745 					 * Trying to access beyond EOF,
4746 					 * set up to get at least one page.
4747 					 */
4748 					blksize = off + PAGESIZE - blkoff;
4749 				} else
4750 					blksize = rp->r_size - blkoff;
4751 			} else if ((off == 0) ||
4752 			    (off != rp->r_nextr && !readahead_issued)) {
4753 				blksize = PAGESIZE;
4754 				blkoff = off; /* block = page here */
4755 			} else
4756 				blksize = bsize;
4757 			mutex_exit(&rp->r_statelock);
4758 
4759 			pp = pvn_read_kluster(vp, off, seg, addr, &io_off,
4760 			    &io_len, blkoff, blksize, 0);
4761 
4762 			/*
4763 			 * Some other thread has entered the page,
4764 			 * so just use it.
4765 			 */
4766 			if (pp == NULL)
4767 				goto again;
4768 
4769 			/*
4770 			 * Now round the request size up to page boundaries.
4771 			 * This ensures that the entire page will be
4772 			 * initialized to zeroes if EOF is encountered.
4773 			 */
4774 			io_len = ptob(btopr(io_len));
4775 
4776 			bp = pageio_setup(pp, io_len, vp, B_READ);
4777 			ASSERT(bp != NULL);
4778 
4779 			/*
4780 			 * pageio_setup should have set b_addr to 0.  This
4781 			 * is correct since we want to do I/O on a page
4782 			 * boundary.  bp_mapin will use this addr to calculate
4783 			 * an offset, and then set b_addr to the kernel virtual
4784 			 * address it allocated for us.
4785 			 */
4786 			ASSERT(bp->b_un.b_addr == 0);
4787 
4788 			bp->b_edev = 0;
4789 			bp->b_dev = 0;
4790 			bp->b_lblkno = lbtodb(io_off);
4791 			bp->b_file = vp;
4792 			bp->b_offset = (offset_t)off;
4793 			bp_mapin(bp);
4794 
4795 			/*
4796 			 * If doing a write beyond what we believe is EOF,
4797 			 * don't bother trying to read the pages from the
4798 			 * server, we'll just zero the pages here.  We
4799 			 * don't check that the rw flag is S_WRITE here
4800 			 * because some implementations may attempt a
4801 			 * read access to the buffer before copying data.
4802 			 */
4803 			mutex_enter(&rp->r_statelock);
4804 			if (io_off >= rp->r_size && seg == segkmap) {
4805 				mutex_exit(&rp->r_statelock);
4806 				bzero(bp->b_un.b_addr, io_len);
4807 			} else {
4808 				mutex_exit(&rp->r_statelock);
4809 				error = nfs3_bio(bp, NULL, cr);
4810 			}
4811 
4812 			/*
4813 			 * Unmap the buffer before freeing it.
4814 			 */
4815 			bp_mapout(bp);
4816 			pageio_done(bp);
4817 
4818 			savepp = pp;
4819 			do {
4820 				pp->p_fsdata = C_NOCOMMIT;
4821 			} while ((pp = pp->p_next) != savepp);
4822 
4823 			if (error == NFS_EOF) {
4824 				/*
4825 				 * If doing a write system call just return
4826 				 * zeroed pages, else user tried to get pages
4827 				 * beyond EOF, return error.  We don't check
4828 				 * that the rw flag is S_WRITE here because
4829 				 * some implementations may attempt a read
4830 				 * access to the buffer before copying data.
4831 				 */
4832 				if (seg == segkmap)
4833 					error = 0;
4834 				else
4835 					error = EFAULT;
4836 			}
4837 
4838 			if (!readahead_issued && !error) {
4839 				mutex_enter(&rp->r_statelock);
4840 				rp->r_nextr = io_off + io_len;
4841 				mutex_exit(&rp->r_statelock);
4842 			}
4843 		}
4844 	}
4845 
4846 out:
4847 	if (pl == NULL)
4848 		return (error);
4849 
4850 	if (error) {
4851 		if (pp != NULL)
4852 			pvn_read_done(pp, B_ERROR);
4853 		return (error);
4854 	}
4855 
4856 	if (pagefound) {
4857 		se_t se = (rw == S_CREATE ? SE_EXCL : SE_SHARED);
4858 
4859 		/*
4860 		 * Page exists in the cache, acquire the appropriate lock.
4861 		 * If this fails, start all over again.
4862 		 */
4863 		if ((pp = page_lookup(vp, off, se)) == NULL) {
4864 #ifdef DEBUG
4865 			nfs3_lostpage++;
4866 #endif
4867 			goto reread;
4868 		}
4869 		pl[0] = pp;
4870 		pl[1] = NULL;
4871 		return (0);
4872 	}
4873 
4874 	if (pp != NULL)
4875 		pvn_plist_init(pp, pl, plsz, off, io_len, rw);
4876 
4877 	return (error);
4878 }
4879 
4880 static void
4881 nfs3_readahead(vnode_t *vp, u_offset_t blkoff, caddr_t addr, struct seg *seg,
4882 	cred_t *cr)
4883 {
4884 	int error;
4885 	page_t *pp;
4886 	u_offset_t io_off;
4887 	size_t io_len;
4888 	struct buf *bp;
4889 	uint_t bsize, blksize;
4890 	rnode_t *rp = VTOR(vp);
4891 	page_t *savepp;
4892 
4893 	ASSERT(nfs_zone() == VTOMI(vp)->mi_zone);
4894 	bsize = MAX(vp->v_vfsp->vfs_bsize, PAGESIZE);
4895 
4896 	mutex_enter(&rp->r_statelock);
4897 	if (blkoff < rp->r_size && blkoff + bsize > rp->r_size) {
4898 		/*
4899 		 * If less than a block left in file read less
4900 		 * than a block.
4901 		 */
4902 		blksize = rp->r_size - blkoff;
4903 	} else
4904 		blksize = bsize;
4905 	mutex_exit(&rp->r_statelock);
4906 
4907 	pp = pvn_read_kluster(vp, blkoff, segkmap, addr,
4908 	    &io_off, &io_len, blkoff, blksize, 1);
4909 	/*
4910 	 * The isra flag passed to the kluster function is 1, we may have
4911 	 * gotten a return value of NULL for a variety of reasons (# of free
4912 	 * pages < minfree, someone entered the page on the vnode etc). In all
4913 	 * cases, we want to punt on the readahead.
4914 	 */
4915 	if (pp == NULL)
4916 		return;
4917 
4918 	/*
4919 	 * Now round the request size up to page boundaries.
4920 	 * This ensures that the entire page will be
4921 	 * initialized to zeroes if EOF is encountered.
4922 	 */
4923 	io_len = ptob(btopr(io_len));
4924 
4925 	bp = pageio_setup(pp, io_len, vp, B_READ);
4926 	ASSERT(bp != NULL);
4927 
4928 	/*
4929 	 * pageio_setup should have set b_addr to 0.  This is correct since
4930 	 * we want to do I/O on a page boundary. bp_mapin() will use this addr
4931 	 * to calculate an offset, and then set b_addr to the kernel virtual
4932 	 * address it allocated for us.
4933 	 */
4934 	ASSERT(bp->b_un.b_addr == 0);
4935 
4936 	bp->b_edev = 0;
4937 	bp->b_dev = 0;
4938 	bp->b_lblkno = lbtodb(io_off);
4939 	bp->b_file = vp;
4940 	bp->b_offset = (offset_t)blkoff;
4941 	bp_mapin(bp);
4942 
4943 	/*
4944 	 * If doing a write beyond what we believe is EOF, don't bother trying
4945 	 * to read the pages from the server, we'll just zero the pages here.
4946 	 * We don't check that the rw flag is S_WRITE here because some
4947 	 * implementations may attempt a read access to the buffer before
4948 	 * copying data.
4949 	 */
4950 	mutex_enter(&rp->r_statelock);
4951 	if (io_off >= rp->r_size && seg == segkmap) {
4952 		mutex_exit(&rp->r_statelock);
4953 		bzero(bp->b_un.b_addr, io_len);
4954 		error = 0;
4955 	} else {
4956 		mutex_exit(&rp->r_statelock);
4957 		error = nfs3_bio(bp, NULL, cr);
4958 		if (error == NFS_EOF)
4959 			error = 0;
4960 	}
4961 
4962 	/*
4963 	 * Unmap the buffer before freeing it.
4964 	 */
4965 	bp_mapout(bp);
4966 	pageio_done(bp);
4967 
4968 	savepp = pp;
4969 	do {
4970 		pp->p_fsdata = C_NOCOMMIT;
4971 	} while ((pp = pp->p_next) != savepp);
4972 
4973 	pvn_read_done(pp, error ? B_READ | B_ERROR : B_READ);
4974 
4975 	/*
4976 	 * In case of error set readahead offset
4977 	 * to the lowest offset.
4978 	 * pvn_read_done() calls VN_DISPOSE to destroy the pages
4979 	 */
4980 	if (error && rp->r_nextr > io_off) {
4981 		mutex_enter(&rp->r_statelock);
4982 		if (rp->r_nextr > io_off)
4983 			rp->r_nextr = io_off;
4984 		mutex_exit(&rp->r_statelock);
4985 	}
4986 }
4987 
4988 /*
4989  * Flags are composed of {B_INVAL, B_FREE, B_DONTNEED, B_FORCE}
4990  * If len == 0, do from off to EOF.
4991  *
4992  * The normal cases should be len == 0 && off == 0 (entire vp list),
4993  * len == MAXBSIZE (from segmap_release actions), and len == PAGESIZE
4994  * (from pageout).
4995  */
4996 /* ARGSUSED */
4997 static int
4998 nfs3_putpage(vnode_t *vp, offset_t off, size_t len, int flags, cred_t *cr,
4999 	caller_context_t *ct)
5000 {
5001 	int error;
5002 	rnode_t *rp;
5003 
5004 	ASSERT(cr != NULL);
5005 
5006 	/*
5007 	 * XXX - Why should this check be made here?
5008 	 */
5009 	if (vp->v_flag & VNOMAP)
5010 		return (ENOSYS);
5011 	if (len == 0 && !(flags & B_INVAL) && vn_is_readonly(vp))
5012 		return (0);
5013 	if (!(flags & B_ASYNC) && nfs_zone() != VTOMI(vp)->mi_zone)
5014 		return (EIO);
5015 
5016 	rp = VTOR(vp);
5017 	mutex_enter(&rp->r_statelock);
5018 	rp->r_count++;
5019 	mutex_exit(&rp->r_statelock);
5020 	error = nfs_putpages(vp, off, len, flags, cr);
5021 	mutex_enter(&rp->r_statelock);
5022 	rp->r_count--;
5023 	cv_broadcast(&rp->r_cv);
5024 	mutex_exit(&rp->r_statelock);
5025 
5026 	return (error);
5027 }
5028 
5029 /*
5030  * Write out a single page, possibly klustering adjacent dirty pages.
5031  */
5032 int
5033 nfs3_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp, size_t *lenp,
5034 	int flags, cred_t *cr)
5035 {
5036 	u_offset_t io_off;
5037 	u_offset_t lbn_off;
5038 	u_offset_t lbn;
5039 	size_t io_len;
5040 	uint_t bsize;
5041 	int error;
5042 	rnode_t *rp;
5043 
5044 	ASSERT(!vn_is_readonly(vp));
5045 	ASSERT(pp != NULL);
5046 	ASSERT(cr != NULL);
5047 	ASSERT((flags & B_ASYNC) || nfs_zone() == VTOMI(vp)->mi_zone);
5048 
5049 	rp = VTOR(vp);
5050 	ASSERT(rp->r_count > 0);
5051 
5052 	bsize = MAX(vp->v_vfsp->vfs_bsize, PAGESIZE);
5053 	lbn = pp->p_offset / bsize;
5054 	lbn_off = lbn * bsize;
5055 
5056 	/*
5057 	 * Find a kluster that fits in one block, or in
5058 	 * one page if pages are bigger than blocks.  If
5059 	 * there is less file space allocated than a whole
5060 	 * page, we'll shorten the i/o request below.
5061 	 */
5062 	pp = pvn_write_kluster(vp, pp, &io_off, &io_len, lbn_off,
5063 	    roundup(bsize, PAGESIZE), flags);
5064 
5065 	/*
5066 	 * pvn_write_kluster shouldn't have returned a page with offset
5067 	 * behind the original page we were given.  Verify that.
5068 	 */
5069 	ASSERT((pp->p_offset / bsize) >= lbn);
5070 
5071 	/*
5072 	 * Now pp will have the list of kept dirty pages marked for
5073 	 * write back.  It will also handle invalidation and freeing
5074 	 * of pages that are not dirty.  Check for page length rounding
5075 	 * problems.
5076 	 */
5077 	if (io_off + io_len > lbn_off + bsize) {
5078 		ASSERT((io_off + io_len) - (lbn_off + bsize) < PAGESIZE);
5079 		io_len = lbn_off + bsize - io_off;
5080 	}
5081 	/*
5082 	 * The RMODINPROGRESS flag makes sure that nfs(3)_bio() sees a
5083 	 * consistent value of r_size. RMODINPROGRESS is set in writerp().
5084 	 * When RMODINPROGRESS is set it indicates that a uiomove() is in
5085 	 * progress and the r_size has not been made consistent with the
5086 	 * new size of the file. When the uiomove() completes the r_size is
5087 	 * updated and the RMODINPROGRESS flag is cleared.
5088 	 *
5089 	 * The RMODINPROGRESS flag makes sure that nfs(3)_bio() sees a
5090 	 * consistent value of r_size. Without this handshaking, it is
5091 	 * possible that nfs(3)_bio() picks  up the old value of r_size
5092 	 * before the uiomove() in writerp() completes. This will result
5093 	 * in the write through nfs(3)_bio() being dropped.
5094 	 *
5095 	 * More precisely, there is a window between the time the uiomove()
5096 	 * completes and the time the r_size is updated. If a VOP_PUTPAGE()
5097 	 * operation intervenes in this window, the page will be picked up,
5098 	 * because it is dirty (it will be unlocked, unless it was
5099 	 * pagecreate'd). When the page is picked up as dirty, the dirty
5100 	 * bit is reset (pvn_getdirty()). In nfs(3)write(), r_size is
5101 	 * checked. This will still be the old size. Therefore the page will
5102 	 * not be written out. When segmap_release() calls VOP_PUTPAGE(),
5103 	 * the page will be found to be clean and the write will be dropped.
5104 	 */
5105 	if (rp->r_flags & RMODINPROGRESS) {
5106 		mutex_enter(&rp->r_statelock);
5107 		if ((rp->r_flags & RMODINPROGRESS) &&
5108 		    rp->r_modaddr + MAXBSIZE > io_off &&
5109 		    rp->r_modaddr < io_off + io_len) {
5110 			page_t *plist;
5111 			/*
5112 			 * A write is in progress for this region of the file.
5113 			 * If we did not detect RMODINPROGRESS here then this
5114 			 * path through nfs_putapage() would eventually go to
5115 			 * nfs(3)_bio() and may not write out all of the data
5116 			 * in the pages. We end up losing data. So we decide
5117 			 * to set the modified bit on each page in the page
5118 			 * list and mark the rnode with RDIRTY. This write
5119 			 * will be restarted at some later time.
5120 			 */
5121 			plist = pp;
5122 			while (plist != NULL) {
5123 				pp = plist;
5124 				page_sub(&plist, pp);
5125 				hat_setmod(pp);
5126 				page_io_unlock(pp);
5127 				page_unlock(pp);
5128 			}
5129 			rp->r_flags |= RDIRTY;
5130 			mutex_exit(&rp->r_statelock);
5131 			if (offp)
5132 				*offp = io_off;
5133 			if (lenp)
5134 				*lenp = io_len;
5135 			return (0);
5136 		}
5137 		mutex_exit(&rp->r_statelock);
5138 	}
5139 
5140 	if (flags & B_ASYNC) {
5141 		error = nfs_async_putapage(vp, pp, io_off, io_len, flags, cr,
5142 		    nfs3_sync_putapage);
5143 	} else
5144 		error = nfs3_sync_putapage(vp, pp, io_off, io_len, flags, cr);
5145 
5146 	if (offp)
5147 		*offp = io_off;
5148 	if (lenp)
5149 		*lenp = io_len;
5150 	return (error);
5151 }
5152 
5153 static int
5154 nfs3_sync_putapage(vnode_t *vp, page_t *pp, u_offset_t io_off, size_t io_len,
5155 	int flags, cred_t *cr)
5156 {
5157 	int error;
5158 	rnode_t *rp;
5159 
5160 	ASSERT(nfs_zone() == VTOMI(vp)->mi_zone);
5161 
5162 	flags |= B_WRITE;
5163 
5164 	error = nfs3_rdwrlbn(vp, pp, io_off, io_len, flags, cr);
5165 
5166 	rp = VTOR(vp);
5167 
5168 	if ((error == ENOSPC || error == EDQUOT || error == EFBIG ||
5169 	    error == EACCES) &&
5170 	    (flags & (B_INVAL|B_FORCE)) != (B_INVAL|B_FORCE)) {
5171 		if (!(rp->r_flags & ROUTOFSPACE)) {
5172 			mutex_enter(&rp->r_statelock);
5173 			rp->r_flags |= ROUTOFSPACE;
5174 			mutex_exit(&rp->r_statelock);
5175 		}
5176 		flags |= B_ERROR;
5177 		pvn_write_done(pp, flags);
5178 		/*
5179 		 * If this was not an async thread, then try again to
5180 		 * write out the pages, but this time, also destroy
5181 		 * them whether or not the write is successful.  This
5182 		 * will prevent memory from filling up with these
5183 		 * pages and destroying them is the only alternative
5184 		 * if they can't be written out.
5185 		 *
5186 		 * Don't do this if this is an async thread because
5187 		 * when the pages are unlocked in pvn_write_done,
5188 		 * some other thread could have come along, locked
5189 		 * them, and queued for an async thread.  It would be
5190 		 * possible for all of the async threads to be tied
5191 		 * up waiting to lock the pages again and they would
5192 		 * all already be locked and waiting for an async
5193 		 * thread to handle them.  Deadlock.
5194 		 */
5195 		if (!(flags & B_ASYNC)) {
5196 			error = nfs3_putpage(vp, io_off, io_len,
5197 			    B_INVAL | B_FORCE, cr, NULL);
5198 		}
5199 	} else {
5200 		if (error)
5201 			flags |= B_ERROR;
5202 		else if (rp->r_flags & ROUTOFSPACE) {
5203 			mutex_enter(&rp->r_statelock);
5204 			rp->r_flags &= ~ROUTOFSPACE;
5205 			mutex_exit(&rp->r_statelock);
5206 		}
5207 		pvn_write_done(pp, flags);
5208 		if (freemem < desfree)
5209 			(void) nfs3_commit_vp(vp, (u_offset_t)0, 0, cr);
5210 	}
5211 
5212 	return (error);
5213 }
5214 
5215 /* ARGSUSED */
5216 static int
5217 nfs3_map(vnode_t *vp, offset_t off, struct as *as, caddr_t *addrp,
5218 	size_t len, uchar_t prot, uchar_t maxprot, uint_t flags,
5219 	cred_t *cr, caller_context_t *ct)
5220 {
5221 	struct segvn_crargs vn_a;
5222 	int error;
5223 	rnode_t *rp;
5224 	struct vattr va;
5225 
5226 	if (nfs_zone() != VTOMI(vp)->mi_zone)
5227 		return (EIO);
5228 
5229 	if (vp->v_flag & VNOMAP)
5230 		return (ENOSYS);
5231 
5232 	if (off < 0 || off + len < 0)
5233 		return (ENXIO);
5234 
5235 	if (vp->v_type != VREG)
5236 		return (ENODEV);
5237 
5238 	/*
5239 	 * If there is cached data and if close-to-open consistency
5240 	 * checking is not turned off and if the file system is not
5241 	 * mounted readonly, then force an over the wire getattr.
5242 	 * Otherwise, just invoke nfs3getattr to get a copy of the
5243 	 * attributes.  The attribute cache will be used unless it
5244 	 * is timed out and if it is, then an over the wire getattr
5245 	 * will be issued.
5246 	 */
5247 	va.va_mask = AT_ALL;
5248 	if (vn_has_cached_data(vp) &&
5249 	    !(VTOMI(vp)->mi_flags & MI_NOCTO) && !vn_is_readonly(vp))
5250 		error = nfs3_getattr_otw(vp, &va, cr);
5251 	else
5252 		error = nfs3getattr(vp, &va, cr);
5253 	if (error)
5254 		return (error);
5255 
5256 	/*
5257 	 * Check to see if the vnode is currently marked as not cachable.
5258 	 * This means portions of the file are locked (through VOP_FRLOCK).
5259 	 * In this case the map request must be refused.  We use
5260 	 * rp->r_lkserlock to avoid a race with concurrent lock requests.
5261 	 */
5262 	rp = VTOR(vp);
5263 
5264 	/*
5265 	 * Atomically increment r_inmap after acquiring r_rwlock. The
5266 	 * idea here is to acquire r_rwlock to block read/write and
5267 	 * not to protect r_inmap. r_inmap will inform nfs3_read/write()
5268 	 * that we are in nfs3_map(). Now, r_rwlock is acquired in order
5269 	 * and we can prevent the deadlock that would have occurred
5270 	 * when nfs3_addmap() would have acquired it out of order.
5271 	 *
5272 	 * Since we are not protecting r_inmap by any lock, we do not
5273 	 * hold any lock when we decrement it. We atomically decrement
5274 	 * r_inmap after we release r_lkserlock.
5275 	 */
5276 
5277 	if (nfs_rw_enter_sig(&rp->r_rwlock, RW_WRITER, INTR(vp)))
5278 		return (EINTR);
5279 	atomic_inc_uint(&rp->r_inmap);
5280 	nfs_rw_exit(&rp->r_rwlock);
5281 
5282 	if (nfs_rw_enter_sig(&rp->r_lkserlock, RW_READER, INTR(vp))) {
5283 		atomic_dec_uint(&rp->r_inmap);
5284 		return (EINTR);
5285 	}
5286 
5287 	if (vp->v_flag & VNOCACHE) {
5288 		error = EAGAIN;
5289 		goto done;
5290 	}
5291 
5292 	/*
5293 	 * Don't allow concurrent locks and mapping if mandatory locking is
5294 	 * enabled.
5295 	 */
5296 	if ((flk_has_remote_locks(vp) || lm_has_sleep(vp)) &&
5297 	    MANDLOCK(vp, va.va_mode)) {
5298 		error = EAGAIN;
5299 		goto done;
5300 	}
5301 
5302 	as_rangelock(as);
5303 	error = choose_addr(as, addrp, len, off, ADDR_VACALIGN, flags);
5304 	if (error != 0) {
5305 		as_rangeunlock(as);
5306 		goto done;
5307 	}
5308 
5309 	vn_a.vp = vp;
5310 	vn_a.offset = off;
5311 	vn_a.type = (flags & MAP_TYPE);
5312 	vn_a.prot = (uchar_t)prot;
5313 	vn_a.maxprot = (uchar_t)maxprot;
5314 	vn_a.flags = (flags & ~MAP_TYPE);
5315 	vn_a.cred = cr;
5316 	vn_a.amp = NULL;
5317 	vn_a.szc = 0;
5318 	vn_a.lgrp_mem_policy_flags = 0;
5319 
5320 	error = as_map(as, *addrp, len, segvn_create, &vn_a);
5321 	as_rangeunlock(as);
5322 
5323 done:
5324 	nfs_rw_exit(&rp->r_lkserlock);
5325 	atomic_dec_uint(&rp->r_inmap);
5326 	return (error);
5327 }
5328 
5329 /* ARGSUSED */
5330 static int
5331 nfs3_addmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr,
5332 	size_t len, uchar_t prot, uchar_t maxprot, uint_t flags,
5333 	cred_t *cr, caller_context_t *ct)
5334 {
5335 	rnode_t *rp;
5336 
5337 	if (vp->v_flag & VNOMAP)
5338 		return (ENOSYS);
5339 	if (nfs_zone() != VTOMI(vp)->mi_zone)
5340 		return (EIO);
5341 
5342 	rp = VTOR(vp);
5343 	atomic_add_long((ulong_t *)&rp->r_mapcnt, btopr(len));
5344 
5345 	return (0);
5346 }
5347 
5348 /* ARGSUSED */
5349 static int
5350 nfs3_frlock(vnode_t *vp, int cmd, struct flock64 *bfp, int flag,
5351 	offset_t offset, struct flk_callback *flk_cbp, cred_t *cr,
5352 	caller_context_t *ct)
5353 {
5354 	netobj lm_fh3;
5355 	int rc;
5356 	u_offset_t start, end;
5357 	rnode_t *rp;
5358 	int error = 0, intr = INTR(vp);
5359 
5360 	if (nfs_zone() != VTOMI(vp)->mi_zone)
5361 		return (EIO);
5362 	/* check for valid cmd parameter */
5363 	if (cmd != F_GETLK && cmd != F_SETLK && cmd != F_SETLKW)
5364 		return (EINVAL);
5365 
5366 	/* Verify l_type. */
5367 	switch (bfp->l_type) {
5368 	case F_RDLCK:
5369 		if (cmd != F_GETLK && !(flag & FREAD))
5370 			return (EBADF);
5371 		break;
5372 	case F_WRLCK:
5373 		if (cmd != F_GETLK && !(flag & FWRITE))
5374 			return (EBADF);
5375 		break;
5376 	case F_UNLCK:
5377 		intr = 0;
5378 		break;
5379 
5380 	default:
5381 		return (EINVAL);
5382 	}
5383 
5384 	/* check the validity of the lock range */
5385 	if (rc = flk_convert_lock_data(vp, bfp, &start, &end, offset))
5386 		return (rc);
5387 	if (rc = flk_check_lock_data(start, end, MAXEND))
5388 		return (rc);
5389 
5390 	/*
5391 	 * If the filesystem is mounted using local locking, pass the
5392 	 * request off to the local locking code.
5393 	 */
5394 	if (VTOMI(vp)->mi_flags & MI_LLOCK) {
5395 		if (cmd == F_SETLK || cmd == F_SETLKW) {
5396 			/*
5397 			 * For complete safety, we should be holding
5398 			 * r_lkserlock.  However, we can't call
5399 			 * lm_safelock and then fs_frlock while
5400 			 * holding r_lkserlock, so just invoke
5401 			 * lm_safelock and expect that this will
5402 			 * catch enough of the cases.
5403 			 */
5404 			if (!lm_safelock(vp, bfp, cr))
5405 				return (EAGAIN);
5406 		}
5407 		return (fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr, ct));
5408 	}
5409 
5410 	rp = VTOR(vp);
5411 
5412 	/*
5413 	 * Check whether the given lock request can proceed, given the
5414 	 * current file mappings.
5415 	 */
5416 	if (nfs_rw_enter_sig(&rp->r_lkserlock, RW_WRITER, intr))
5417 		return (EINTR);
5418 	if (cmd == F_SETLK || cmd == F_SETLKW) {
5419 		if (!lm_safelock(vp, bfp, cr)) {
5420 			rc = EAGAIN;
5421 			goto done;
5422 		}
5423 	}
5424 
5425 	/*
5426 	 * Flush the cache after waiting for async I/O to finish.  For new
5427 	 * locks, this is so that the process gets the latest bits from the
5428 	 * server.  For unlocks, this is so that other clients see the
5429 	 * latest bits once the file has been unlocked.  If currently dirty
5430 	 * pages can't be flushed, then don't allow a lock to be set.  But
5431 	 * allow unlocks to succeed, to avoid having orphan locks on the
5432 	 * server.
5433 	 */
5434 	if (cmd != F_GETLK) {
5435 		mutex_enter(&rp->r_statelock);
5436 		while (rp->r_count > 0) {
5437 			if (intr) {
5438 				klwp_t *lwp = ttolwp(curthread);
5439 
5440 				if (lwp != NULL)
5441 					lwp->lwp_nostop++;
5442 				if (cv_wait_sig(&rp->r_cv,
5443 				    &rp->r_statelock) == 0) {
5444 					if (lwp != NULL)
5445 						lwp->lwp_nostop--;
5446 					rc = EINTR;
5447 					break;
5448 				}
5449 				if (lwp != NULL)
5450 					lwp->lwp_nostop--;
5451 			} else
5452 				cv_wait(&rp->r_cv, &rp->r_statelock);
5453 		}
5454 		mutex_exit(&rp->r_statelock);
5455 		if (rc != 0)
5456 			goto done;
5457 		error = nfs3_putpage(vp, (offset_t)0, 0, B_INVAL, cr, ct);
5458 		if (error) {
5459 			if (error == ENOSPC || error == EDQUOT) {
5460 				mutex_enter(&rp->r_statelock);
5461 				if (!rp->r_error)
5462 					rp->r_error = error;
5463 				mutex_exit(&rp->r_statelock);
5464 			}
5465 			if (bfp->l_type != F_UNLCK) {
5466 				rc = ENOLCK;
5467 				goto done;
5468 			}
5469 		}
5470 	}
5471 
5472 	lm_fh3.n_len = VTOFH3(vp)->fh3_length;
5473 	lm_fh3.n_bytes = (char *)&(VTOFH3(vp)->fh3_u.data);
5474 
5475 	/*
5476 	 * Call the lock manager to do the real work of contacting
5477 	 * the server and obtaining the lock.
5478 	 */
5479 	rc = lm4_frlock(vp, cmd, bfp, flag, offset, cr, &lm_fh3, flk_cbp);
5480 
5481 	if (rc == 0)
5482 		nfs_lockcompletion(vp, cmd);
5483 
5484 done:
5485 	nfs_rw_exit(&rp->r_lkserlock);
5486 	return (rc);
5487 }
5488 
5489 /*
5490  * Free storage space associated with the specified vnode.  The portion
5491  * to be freed is specified by bfp->l_start and bfp->l_len (already
5492  * normalized to a "whence" of 0).
5493  *
5494  * This is an experimental facility whose continued existence is not
5495  * guaranteed.  Currently, we only support the special case
5496  * of l_len == 0, meaning free to end of file.
5497  */
5498 /* ARGSUSED */
5499 static int
5500 nfs3_space(vnode_t *vp, int cmd, struct flock64 *bfp, int flag,
5501 	offset_t offset, cred_t *cr, caller_context_t *ct)
5502 {
5503 	int error;
5504 
5505 	ASSERT(vp->v_type == VREG);
5506 	if (cmd != F_FREESP)
5507 		return (EINVAL);
5508 	if (nfs_zone() != VTOMI(vp)->mi_zone)
5509 		return (EIO);
5510 
5511 	error = convoff(vp, bfp, 0, offset);
5512 	if (!error) {
5513 		ASSERT(bfp->l_start >= 0);
5514 		if (bfp->l_len == 0) {
5515 			struct vattr va;
5516 
5517 			/*
5518 			 * ftruncate should not change the ctime and
5519 			 * mtime if we truncate the file to its
5520 			 * previous size.
5521 			 */
5522 			va.va_mask = AT_SIZE;
5523 			error = nfs3getattr(vp, &va, cr);
5524 			if (error || va.va_size == bfp->l_start)
5525 				return (error);
5526 			va.va_mask = AT_SIZE;
5527 			va.va_size = bfp->l_start;
5528 			error = nfs3setattr(vp, &va, 0, cr);
5529 
5530 			if (error == 0 && bfp->l_start == 0)
5531 				vnevent_truncate(vp, ct);
5532 		} else
5533 			error = EINVAL;
5534 	}
5535 
5536 	return (error);
5537 }
5538 
5539 /* ARGSUSED */
5540 static int
5541 nfs3_realvp(vnode_t *vp, vnode_t **vpp, caller_context_t *ct)
5542 {
5543 
5544 	return (EINVAL);
5545 }
5546 
5547 /*
5548  * Setup and add an address space callback to do the work of the delmap call.
5549  * The callback will (and must be) deleted in the actual callback function.
5550  *
5551  * This is done in order to take care of the problem that we have with holding
5552  * the address space's a_lock for a long period of time (e.g. if the NFS server
5553  * is down).  Callbacks will be executed in the address space code while the
5554  * a_lock is not held.	Holding the address space's a_lock causes things such
5555  * as ps and fork to hang because they are trying to acquire this lock as well.
5556  */
5557 /* ARGSUSED */
5558 static int
5559 nfs3_delmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr,
5560 	size_t len, uint_t prot, uint_t maxprot, uint_t flags,
5561 	cred_t *cr, caller_context_t *ct)
5562 {
5563 	int			caller_found;
5564 	int			error;
5565 	rnode_t			*rp;
5566 	nfs_delmap_args_t	*dmapp;
5567 	nfs_delmapcall_t	*delmap_call;
5568 
5569 	if (vp->v_flag & VNOMAP)
5570 		return (ENOSYS);
5571 	/*
5572 	 * A process may not change zones if it has NFS pages mmap'ed
5573 	 * in, so we can't legitimately get here from the wrong zone.
5574 	 */
5575 	ASSERT(nfs_zone() == VTOMI(vp)->mi_zone);
5576 
5577 	rp = VTOR(vp);
5578 
5579 	/*
5580 	 * The way that the address space of this process deletes its mapping
5581 	 * of this file is via the following call chains:
5582 	 * - as_free()->SEGOP_UNMAP()/segvn_unmap()->VOP_DELMAP()/nfs3_delmap()
5583 	 * - as_unmap()->SEGOP_UNMAP()/segvn_unmap()->VOP_DELMAP()/nfs3_delmap()
5584 	 *
5585 	 * With the use of address space callbacks we are allowed to drop the
5586 	 * address space lock, a_lock, while executing the NFS operations that
5587 	 * need to go over the wire.  Returning EAGAIN to the caller of this
5588 	 * function is what drives the execution of the callback that we add
5589 	 * below.  The callback will be executed by the address space code
5590 	 * after dropping the a_lock.  When the callback is finished, since
5591 	 * we dropped the a_lock, it must be re-acquired and segvn_unmap()
5592 	 * is called again on the same segment to finish the rest of the work
5593 	 * that needs to happen during unmapping.
5594 	 *
5595 	 * This action of calling back into the segment driver causes
5596 	 * nfs3_delmap() to get called again, but since the callback was
5597 	 * already executed at this point, it already did the work and there
5598 	 * is nothing left for us to do.
5599 	 *
5600 	 * To Summarize:
5601 	 * - The first time nfs3_delmap is called by the current thread is when
5602 	 * we add the caller associated with this delmap to the delmap caller
5603 	 * list, add the callback, and return EAGAIN.
5604 	 * - The second time in this call chain when nfs3_delmap is called we
5605 	 * will find this caller in the delmap caller list and realize there
5606 	 * is no more work to do thus removing this caller from the list and
5607 	 * returning the error that was set in the callback execution.
5608 	 */
5609 	caller_found = nfs_find_and_delete_delmapcall(rp, &error);
5610 	if (caller_found) {
5611 		/*
5612 		 * 'error' is from the actual delmap operations.  To avoid
5613 		 * hangs, we need to handle the return of EAGAIN differently
5614 		 * since this is what drives the callback execution.
5615 		 * In this case, we don't want to return EAGAIN and do the
5616 		 * callback execution because there are none to execute.
5617 		 */
5618 		if (error == EAGAIN)
5619 			return (0);
5620 		else
5621 			return (error);
5622 	}
5623 
5624 	/* current caller was not in the list */
5625 	delmap_call = nfs_init_delmapcall();
5626 
5627 	mutex_enter(&rp->r_statelock);
5628 	list_insert_tail(&rp->r_indelmap, delmap_call);
5629 	mutex_exit(&rp->r_statelock);
5630 
5631 	dmapp = kmem_alloc(sizeof (nfs_delmap_args_t), KM_SLEEP);
5632 
5633 	dmapp->vp = vp;
5634 	dmapp->off = off;
5635 	dmapp->addr = addr;
5636 	dmapp->len = len;
5637 	dmapp->prot = prot;
5638 	dmapp->maxprot = maxprot;
5639 	dmapp->flags = flags;
5640 	dmapp->cr = cr;
5641 	dmapp->caller = delmap_call;
5642 
5643 	error = as_add_callback(as, nfs3_delmap_callback, dmapp,
5644 	    AS_UNMAP_EVENT, addr, len, KM_SLEEP);
5645 
5646 	return (error ? error : EAGAIN);
5647 }
5648 
5649 /*
5650  * Remove some pages from an mmap'd vnode.  Just update the
5651  * count of pages.  If doing close-to-open, then flush and
5652  * commit all of the pages associated with this file.
5653  * Otherwise, start an asynchronous page flush to write out
5654  * any dirty pages.  This will also associate a credential
5655  * with the rnode which can be used to write the pages.
5656  */
5657 /* ARGSUSED */
5658 static void
5659 nfs3_delmap_callback(struct as *as, void *arg, uint_t event)
5660 {
5661 	int			error;
5662 	rnode_t			*rp;
5663 	mntinfo_t		*mi;
5664 	nfs_delmap_args_t	*dmapp = (nfs_delmap_args_t *)arg;
5665 
5666 	rp = VTOR(dmapp->vp);
5667 	mi = VTOMI(dmapp->vp);
5668 
5669 	atomic_add_long((ulong_t *)&rp->r_mapcnt, -btopr(dmapp->len));
5670 	ASSERT(rp->r_mapcnt >= 0);
5671 
5672 	/*
5673 	 * Initiate a page flush and potential commit if there are
5674 	 * pages, the file system was not mounted readonly, the segment
5675 	 * was mapped shared, and the pages themselves were writeable.
5676 	 */
5677 	if (vn_has_cached_data(dmapp->vp) && !vn_is_readonly(dmapp->vp) &&
5678 	    dmapp->flags == MAP_SHARED && (dmapp->maxprot & PROT_WRITE)) {
5679 		mutex_enter(&rp->r_statelock);
5680 		rp->r_flags |= RDIRTY;
5681 		mutex_exit(&rp->r_statelock);
5682 		/*
5683 		 * If this is a cross-zone access a sync putpage won't work, so
5684 		 * the best we can do is try an async putpage.  That seems
5685 		 * better than something more draconian such as discarding the
5686 		 * dirty pages.
5687 		 */
5688 		if ((mi->mi_flags & MI_NOCTO) ||
5689 		    nfs_zone() != mi->mi_zone)
5690 			error = nfs3_putpage(dmapp->vp, dmapp->off, dmapp->len,
5691 			    B_ASYNC, dmapp->cr, NULL);
5692 		else
5693 			error = nfs3_putpage_commit(dmapp->vp, dmapp->off,
5694 			    dmapp->len, dmapp->cr);
5695 		if (!error) {
5696 			mutex_enter(&rp->r_statelock);
5697 			error = rp->r_error;
5698 			rp->r_error = 0;
5699 			mutex_exit(&rp->r_statelock);
5700 		}
5701 	} else
5702 		error = 0;
5703 
5704 	if ((rp->r_flags & RDIRECTIO) || (mi->mi_flags & MI_DIRECTIO))
5705 		(void) nfs3_putpage(dmapp->vp, dmapp->off, dmapp->len,
5706 		    B_INVAL, dmapp->cr, NULL);
5707 
5708 	dmapp->caller->error = error;
5709 	(void) as_delete_callback(as, arg);
5710 	kmem_free(dmapp, sizeof (nfs_delmap_args_t));
5711 }
5712 
5713 static int nfs3_pathconf_disable_cache = 0;
5714 
5715 #ifdef DEBUG
5716 static int nfs3_pathconf_cache_hits = 0;
5717 static int nfs3_pathconf_cache_misses = 0;
5718 #endif
5719 
5720 /* ARGSUSED */
5721 static int
5722 nfs3_pathconf(vnode_t *vp, int cmd, ulong_t *valp, cred_t *cr,
5723 	caller_context_t *ct)
5724 {
5725 	int error;
5726 	PATHCONF3args args;
5727 	PATHCONF3res res;
5728 	int douprintf;
5729 	failinfo_t fi;
5730 	rnode_t *rp;
5731 	hrtime_t t;
5732 
5733 	if (nfs_zone() != VTOMI(vp)->mi_zone)
5734 		return (EIO);
5735 	/*
5736 	 * Large file spec - need to base answer on info stored
5737 	 * on original FSINFO response.
5738 	 */
5739 	if (cmd == _PC_FILESIZEBITS) {
5740 		unsigned long long ll;
5741 		long l = 1;
5742 
5743 		ll = VTOMI(vp)->mi_maxfilesize;
5744 
5745 		if (ll == 0) {
5746 			*valp = 0;
5747 			return (0);
5748 		}
5749 
5750 		if (ll & 0xffffffff00000000) {
5751 			l += 32; ll >>= 32;
5752 		}
5753 		if (ll & 0xffff0000) {
5754 			l += 16; ll >>= 16;
5755 		}
5756 		if (ll & 0xff00) {
5757 			l += 8; ll >>= 8;
5758 		}
5759 		if (ll & 0xf0) {
5760 			l += 4; ll >>= 4;
5761 		}
5762 		if (ll & 0xc) {
5763 			l += 2; ll >>= 2;
5764 		}
5765 		if (ll & 0x2)
5766 			l += 2;
5767 		else if (ll & 0x1)
5768 			l += 1;
5769 		*valp = l;
5770 		return (0);
5771 	}
5772 
5773 	if (cmd == _PC_ACL_ENABLED) {
5774 		*valp = _ACL_ACLENT_ENABLED;
5775 		return (0);
5776 	}
5777 
5778 	if (cmd == _PC_XATTR_EXISTS) {
5779 		error = 0;
5780 		*valp = 0;
5781 		if (vp->v_vfsp->vfs_flag & VFS_XATTR) {
5782 			vnode_t *avp;
5783 			rnode_t *rp;
5784 			int error = 0;
5785 			mntinfo_t *mi = VTOMI(vp);
5786 
5787 			if (!(mi->mi_flags & MI_EXTATTR))
5788 				return (0);
5789 
5790 			rp = VTOR(vp);
5791 			if (nfs_rw_enter_sig(&rp->r_rwlock, RW_READER,
5792 			    INTR(vp)))
5793 				return (EINTR);
5794 
5795 			error = nfs3lookup_dnlc(vp, XATTR_DIR_NAME, &avp, cr);
5796 			if (error || avp == NULL)
5797 				error = acl_getxattrdir3(vp, &avp, 0, cr, 0);
5798 
5799 			nfs_rw_exit(&rp->r_rwlock);
5800 
5801 			if (error == 0 && avp != NULL) {
5802 				error = do_xattr_exists_check(avp, valp, cr);
5803 				VN_RELE(avp);
5804 			} else if (error == ENOENT) {
5805 				error = 0;
5806 				*valp = 0;
5807 			}
5808 		}
5809 		return (error);
5810 	}
5811 
5812 	rp = VTOR(vp);
5813 	if (rp->r_pathconf != NULL) {
5814 		mutex_enter(&rp->r_statelock);
5815 		if (rp->r_pathconf != NULL && nfs3_pathconf_disable_cache) {
5816 			kmem_free(rp->r_pathconf, sizeof (*rp->r_pathconf));
5817 			rp->r_pathconf = NULL;
5818 		}
5819 		if (rp->r_pathconf != NULL) {
5820 			error = 0;
5821 			switch (cmd) {
5822 			case _PC_LINK_MAX:
5823 				*valp = rp->r_pathconf->link_max;
5824 				break;
5825 			case _PC_NAME_MAX:
5826 				*valp = rp->r_pathconf->name_max;
5827 				break;
5828 			case _PC_PATH_MAX:
5829 			case _PC_SYMLINK_MAX:
5830 				*valp = MAXPATHLEN;
5831 				break;
5832 			case _PC_CHOWN_RESTRICTED:
5833 				*valp = rp->r_pathconf->chown_restricted;
5834 				break;
5835 			case _PC_NO_TRUNC:
5836 				*valp = rp->r_pathconf->no_trunc;
5837 				break;
5838 			default:
5839 				error = EINVAL;
5840 				break;
5841 			}
5842 			mutex_exit(&rp->r_statelock);
5843 #ifdef DEBUG
5844 			nfs3_pathconf_cache_hits++;
5845 #endif
5846 			return (error);
5847 		}
5848 		mutex_exit(&rp->r_statelock);
5849 	}
5850 #ifdef DEBUG
5851 	nfs3_pathconf_cache_misses++;
5852 #endif
5853 
5854 	args.object = *VTOFH3(vp);
5855 	fi.vp = vp;
5856 	fi.fhp = (caddr_t)&args.object;
5857 	fi.copyproc = nfs3copyfh;
5858 	fi.lookupproc = nfs3lookup;
5859 	fi.xattrdirproc = acl_getxattrdir3;
5860 
5861 	douprintf = 1;
5862 
5863 	t = gethrtime();
5864 
5865 	error = rfs3call(VTOMI(vp), NFSPROC3_PATHCONF,
5866 	    xdr_nfs_fh3, (caddr_t)&args,
5867 	    xdr_PATHCONF3res, (caddr_t)&res, cr,
5868 	    &douprintf, &res.status, 0, &fi);
5869 
5870 	if (error)
5871 		return (error);
5872 
5873 	error = geterrno3(res.status);
5874 
5875 	if (!error) {
5876 		nfs3_cache_post_op_attr(vp, &res.resok.obj_attributes, t, cr);
5877 		if (!nfs3_pathconf_disable_cache) {
5878 			mutex_enter(&rp->r_statelock);
5879 			if (rp->r_pathconf == NULL) {
5880 				rp->r_pathconf = kmem_alloc(
5881 				    sizeof (*rp->r_pathconf), KM_NOSLEEP);
5882 				if (rp->r_pathconf != NULL)
5883 					*rp->r_pathconf = res.resok.info;
5884 			}
5885 			mutex_exit(&rp->r_statelock);
5886 		}
5887 		switch (cmd) {
5888 		case _PC_LINK_MAX:
5889 			*valp = res.resok.info.link_max;
5890 			break;
5891 		case _PC_NAME_MAX:
5892 			*valp = res.resok.info.name_max;
5893 			break;
5894 		case _PC_PATH_MAX:
5895 		case _PC_SYMLINK_MAX:
5896 			*valp = MAXPATHLEN;
5897 			break;
5898 		case _PC_CHOWN_RESTRICTED:
5899 			*valp = res.resok.info.chown_restricted;
5900 			break;
5901 		case _PC_NO_TRUNC:
5902 			*valp = res.resok.info.no_trunc;
5903 			break;
5904 		default:
5905 			return (EINVAL);
5906 		}
5907 	} else {
5908 		nfs3_cache_post_op_attr(vp, &res.resfail.obj_attributes, t, cr);
5909 		PURGE_STALE_FH(error, vp, cr);
5910 	}
5911 
5912 	return (error);
5913 }
5914 
5915 /*
5916  * Called by async thread to do synchronous pageio. Do the i/o, wait
5917  * for it to complete, and cleanup the page list when done.
5918  */
5919 static int
5920 nfs3_sync_pageio(vnode_t *vp, page_t *pp, u_offset_t io_off, size_t io_len,
5921 	int flags, cred_t *cr)
5922 {
5923 	int error;
5924 
5925 	ASSERT(nfs_zone() == VTOMI(vp)->mi_zone);
5926 	error = nfs3_rdwrlbn(vp, pp, io_off, io_len, flags, cr);
5927 	if (flags & B_READ)
5928 		pvn_read_done(pp, (error ? B_ERROR : 0) | flags);
5929 	else
5930 		pvn_write_done(pp, (error ? B_ERROR : 0) | flags);
5931 	return (error);
5932 }
5933 
5934 /* ARGSUSED */
5935 static int
5936 nfs3_pageio(vnode_t *vp, page_t *pp, u_offset_t io_off, size_t io_len,
5937 	int flags, cred_t *cr, caller_context_t *ct)
5938 {
5939 	int error;
5940 	rnode_t *rp;
5941 
5942 	if (pp == NULL)
5943 		return (EINVAL);
5944 	if (!(flags & B_ASYNC) && nfs_zone() != VTOMI(vp)->mi_zone)
5945 		return (EIO);
5946 
5947 	rp = VTOR(vp);
5948 	mutex_enter(&rp->r_statelock);
5949 	rp->r_count++;
5950 	mutex_exit(&rp->r_statelock);
5951 
5952 	if (flags & B_ASYNC) {
5953 		error = nfs_async_pageio(vp, pp, io_off, io_len, flags, cr,
5954 		    nfs3_sync_pageio);
5955 	} else
5956 		error = nfs3_rdwrlbn(vp, pp, io_off, io_len, flags, cr);
5957 	mutex_enter(&rp->r_statelock);
5958 	rp->r_count--;
5959 	cv_broadcast(&rp->r_cv);
5960 	mutex_exit(&rp->r_statelock);
5961 	return (error);
5962 }
5963 
5964 /* ARGSUSED */
5965 static void
5966 nfs3_dispose(vnode_t *vp, page_t *pp, int fl, int dn, cred_t *cr,
5967 	caller_context_t *ct)
5968 {
5969 	int error;
5970 	rnode_t *rp;
5971 	page_t *plist;
5972 	page_t *pptr;
5973 	offset3 offset;
5974 	count3 len;
5975 	k_sigset_t smask;
5976 
5977 	/*
5978 	 * We should get called with fl equal to either B_FREE or
5979 	 * B_INVAL.  Any other value is illegal.
5980 	 *
5981 	 * The page that we are either supposed to free or destroy
5982 	 * should be exclusive locked and its io lock should not
5983 	 * be held.
5984 	 */
5985 	ASSERT(fl == B_FREE || fl == B_INVAL);
5986 	ASSERT((PAGE_EXCL(pp) && !page_iolock_assert(pp)) || panicstr);
5987 	rp = VTOR(vp);
5988 
5989 	/*
5990 	 * If the page doesn't need to be committed or we shouldn't
5991 	 * even bother attempting to commit it, then just make sure
5992 	 * that the p_fsdata byte is clear and then either free or
5993 	 * destroy the page as appropriate.
5994 	 */
5995 	if (pp->p_fsdata == C_NOCOMMIT || (rp->r_flags & RSTALE)) {
5996 		pp->p_fsdata = C_NOCOMMIT;
5997 		if (fl == B_FREE)
5998 			page_free(pp, dn);
5999 		else
6000 			page_destroy(pp, dn);
6001 		return;
6002 	}
6003 
6004 	/*
6005 	 * If there is a page invalidation operation going on, then
6006 	 * if this is one of the pages being destroyed, then just
6007 	 * clear the p_fsdata byte and then either free or destroy
6008 	 * the page as appropriate.
6009 	 */
6010 	mutex_enter(&rp->r_statelock);
6011 	if ((rp->r_flags & RTRUNCATE) && pp->p_offset >= rp->r_truncaddr) {
6012 		mutex_exit(&rp->r_statelock);
6013 		pp->p_fsdata = C_NOCOMMIT;
6014 		if (fl == B_FREE)
6015 			page_free(pp, dn);
6016 		else
6017 			page_destroy(pp, dn);
6018 		return;
6019 	}
6020 
6021 	/*
6022 	 * If we are freeing this page and someone else is already
6023 	 * waiting to do a commit, then just unlock the page and
6024 	 * return.  That other thread will take care of commiting
6025 	 * this page.  The page can be freed sometime after the
6026 	 * commit has finished.  Otherwise, if the page is marked
6027 	 * as delay commit, then we may be getting called from
6028 	 * pvn_write_done, one page at a time.   This could result
6029 	 * in one commit per page, so we end up doing lots of small
6030 	 * commits instead of fewer larger commits.  This is bad,
6031 	 * we want do as few commits as possible.
6032 	 */
6033 	if (fl == B_FREE) {
6034 		if (rp->r_flags & RCOMMITWAIT) {
6035 			page_unlock(pp);
6036 			mutex_exit(&rp->r_statelock);
6037 			return;
6038 		}
6039 		if (pp->p_fsdata == C_DELAYCOMMIT) {
6040 			pp->p_fsdata = C_COMMIT;
6041 			page_unlock(pp);
6042 			mutex_exit(&rp->r_statelock);
6043 			return;
6044 		}
6045 	}
6046 
6047 	/*
6048 	 * Check to see if there is a signal which would prevent an
6049 	 * attempt to commit the pages from being successful.  If so,
6050 	 * then don't bother with all of the work to gather pages and
6051 	 * generate the unsuccessful RPC.  Just return from here and
6052 	 * let the page be committed at some later time.
6053 	 */
6054 	sigintr(&smask, VTOMI(vp)->mi_flags & MI_INT);
6055 	if (ttolwp(curthread) != NULL && ISSIG(curthread, JUSTLOOKING)) {
6056 		sigunintr(&smask);
6057 		page_unlock(pp);
6058 		mutex_exit(&rp->r_statelock);
6059 		return;
6060 	}
6061 	sigunintr(&smask);
6062 
6063 	/*
6064 	 * We are starting to need to commit pages, so let's try
6065 	 * to commit as many as possible at once to reduce the
6066 	 * overhead.
6067 	 *
6068 	 * Set the `commit inprogress' state bit.  We must
6069 	 * first wait until any current one finishes.  Then
6070 	 * we initialize the c_pages list with this page.
6071 	 */
6072 	while (rp->r_flags & RCOMMIT) {
6073 		rp->r_flags |= RCOMMITWAIT;
6074 		cv_wait(&rp->r_commit.c_cv, &rp->r_statelock);
6075 		rp->r_flags &= ~RCOMMITWAIT;
6076 	}
6077 	rp->r_flags |= RCOMMIT;
6078 	mutex_exit(&rp->r_statelock);
6079 	ASSERT(rp->r_commit.c_pages == NULL);
6080 	rp->r_commit.c_pages = pp;
6081 	rp->r_commit.c_commbase = (offset3)pp->p_offset;
6082 	rp->r_commit.c_commlen = PAGESIZE;
6083 
6084 	/*
6085 	 * Gather together all other pages which can be committed.
6086 	 * They will all be chained off r_commit.c_pages.
6087 	 */
6088 	nfs3_get_commit(vp);
6089 
6090 	/*
6091 	 * Clear the `commit inprogress' status and disconnect
6092 	 * the list of pages to be committed from the rnode.
6093 	 * At this same time, we also save the starting offset
6094 	 * and length of data to be committed on the server.
6095 	 */
6096 	plist = rp->r_commit.c_pages;
6097 	rp->r_commit.c_pages = NULL;
6098 	offset = rp->r_commit.c_commbase;
6099 	len = rp->r_commit.c_commlen;
6100 	mutex_enter(&rp->r_statelock);
6101 	rp->r_flags &= ~RCOMMIT;
6102 	cv_broadcast(&rp->r_commit.c_cv);
6103 	mutex_exit(&rp->r_statelock);
6104 
6105 	if (curproc == proc_pageout || curproc == proc_fsflush ||
6106 	    nfs_zone() != VTOMI(vp)->mi_zone) {
6107 		nfs_async_commit(vp, plist, offset, len, cr, nfs3_async_commit);
6108 		return;
6109 	}
6110 
6111 	/*
6112 	 * Actually generate the COMMIT3 over the wire operation.
6113 	 */
6114 	error = nfs3_commit(vp, offset, len, cr);
6115 
6116 	/*
6117 	 * If we got an error during the commit, just unlock all
6118 	 * of the pages.  The pages will get retransmitted to the
6119 	 * server during a putpage operation.
6120 	 */
6121 	if (error) {
6122 		while (plist != NULL) {
6123 			pptr = plist;
6124 			page_sub(&plist, pptr);
6125 			page_unlock(pptr);
6126 		}
6127 		return;
6128 	}
6129 
6130 	/*
6131 	 * We've tried as hard as we can to commit the data to stable
6132 	 * storage on the server.  We release the rest of the pages
6133 	 * and clear the commit required state.  They will be put
6134 	 * onto the tail of the cachelist if they are nolonger
6135 	 * mapped.
6136 	 */
6137 	while (plist != pp) {
6138 		pptr = plist;
6139 		page_sub(&plist, pptr);
6140 		pptr->p_fsdata = C_NOCOMMIT;
6141 		(void) page_release(pptr, 1);
6142 	}
6143 
6144 	/*
6145 	 * It is possible that nfs3_commit didn't return error but
6146 	 * some other thread has modified the page we are going
6147 	 * to free/destroy.
6148 	 *    In this case we need to rewrite the page. Do an explicit check
6149 	 * before attempting to free/destroy the page. If modified, needs to
6150 	 * be rewritten so unlock the page and return.
6151 	 */
6152 	if (hat_ismod(pp)) {
6153 		pp->p_fsdata = C_NOCOMMIT;
6154 		page_unlock(pp);
6155 		return;
6156 	}
6157 
6158 	/*
6159 	 * Now, as appropriate, either free or destroy the page
6160 	 * that we were called with.
6161 	 */
6162 	pp->p_fsdata = C_NOCOMMIT;
6163 	if (fl == B_FREE)
6164 		page_free(pp, dn);
6165 	else
6166 		page_destroy(pp, dn);
6167 }
6168 
6169 static int
6170 nfs3_commit(vnode_t *vp, offset3 offset, count3 count, cred_t *cr)
6171 {
6172 	int error;
6173 	rnode_t *rp;
6174 	COMMIT3args args;
6175 	COMMIT3res res;
6176 	int douprintf;
6177 	cred_t *cred;
6178 
6179 	rp = VTOR(vp);
6180 	ASSERT(nfs_zone() == VTOMI(vp)->mi_zone);
6181 
6182 	mutex_enter(&rp->r_statelock);
6183 	if (rp->r_cred != NULL) {
6184 		cred = rp->r_cred;
6185 		crhold(cred);
6186 	} else {
6187 		rp->r_cred = cr;
6188 		crhold(cr);
6189 		cred = cr;
6190 		crhold(cred);
6191 	}
6192 	mutex_exit(&rp->r_statelock);
6193 
6194 	args.file = *VTOFH3(vp);
6195 	args.offset = offset;
6196 	args.count = count;
6197 
6198 doitagain:
6199 	douprintf = 1;
6200 	error = rfs3call(VTOMI(vp), NFSPROC3_COMMIT,
6201 	    xdr_COMMIT3args, (caddr_t)&args,
6202 	    xdr_COMMIT3res, (caddr_t)&res, cred,
6203 	    &douprintf, &res.status, 0, NULL);
6204 
6205 	crfree(cred);
6206 
6207 	if (error)
6208 		return (error);
6209 
6210 	error = geterrno3(res.status);
6211 	if (!error) {
6212 		ASSERT(rp->r_flags & RHAVEVERF);
6213 		mutex_enter(&rp->r_statelock);
6214 		if (rp->r_verf == res.resok.verf) {
6215 			mutex_exit(&rp->r_statelock);
6216 			return (0);
6217 		}
6218 		nfs3_set_mod(vp);
6219 		rp->r_verf = res.resok.verf;
6220 		mutex_exit(&rp->r_statelock);
6221 		error = NFS_VERF_MISMATCH;
6222 	} else {
6223 		if (error == EACCES) {
6224 			mutex_enter(&rp->r_statelock);
6225 			if (cred != cr) {
6226 				if (rp->r_cred != NULL)
6227 					crfree(rp->r_cred);
6228 				rp->r_cred = cr;
6229 				crhold(cr);
6230 				cred = cr;
6231 				crhold(cred);
6232 				mutex_exit(&rp->r_statelock);
6233 				goto doitagain;
6234 			}
6235 			mutex_exit(&rp->r_statelock);
6236 		}
6237 		/*
6238 		 * Can't do a PURGE_STALE_FH here because this
6239 		 * can cause a deadlock.  nfs3_commit can
6240 		 * be called from nfs3_dispose which can be called
6241 		 * indirectly via pvn_vplist_dirty.  PURGE_STALE_FH
6242 		 * can call back to pvn_vplist_dirty.
6243 		 */
6244 		if (error == ESTALE) {
6245 			mutex_enter(&rp->r_statelock);
6246 			rp->r_flags |= RSTALE;
6247 			if (!rp->r_error)
6248 				rp->r_error = error;
6249 			mutex_exit(&rp->r_statelock);
6250 			PURGE_ATTRCACHE(vp);
6251 		} else {
6252 			mutex_enter(&rp->r_statelock);
6253 			if (!rp->r_error)
6254 				rp->r_error = error;
6255 			mutex_exit(&rp->r_statelock);
6256 		}
6257 	}
6258 
6259 	return (error);
6260 }
6261 
6262 static void
6263 nfs3_set_mod(vnode_t *vp)
6264 {
6265 	ASSERT(nfs_zone() == VTOMI(vp)->mi_zone);
6266 
6267 	pvn_vplist_setdirty(vp, nfs_setmod_check);
6268 }
6269 
6270 /*
6271  * This routine is used to gather together a page list of the pages
6272  * which are to be committed on the server.  This routine must not
6273  * be called if the calling thread holds any locked pages.
6274  *
6275  * The calling thread must have set RCOMMIT.  This bit is used to
6276  * serialize access to the commit structure in the rnode.  As long
6277  * as the thread has set RCOMMIT, then it can manipulate the commit
6278  * structure without requiring any other locks.
6279  */
6280 static void
6281 nfs3_get_commit(vnode_t *vp)
6282 {
6283 	rnode_t *rp;
6284 	page_t *pp;
6285 	kmutex_t *vphm;
6286 
6287 	rp = VTOR(vp);
6288 
6289 	ASSERT(rp->r_flags & RCOMMIT);
6290 
6291 	vphm = page_vnode_mutex(vp);
6292 	mutex_enter(vphm);
6293 
6294 	/*
6295 	 * If there are no pages associated with this vnode, then
6296 	 * just return.
6297 	 */
6298 	if ((pp = vp->v_pages) == NULL) {
6299 		mutex_exit(vphm);
6300 		return;
6301 	}
6302 
6303 	/*
6304 	 * Step through all of the pages associated with this vnode
6305 	 * looking for pages which need to be committed.
6306 	 */
6307 	do {
6308 		/* Skip marker pages. */
6309 		if (pp->p_hash == PVN_VPLIST_HASH_TAG)
6310 			continue;
6311 
6312 		/*
6313 		 * If this page does not need to be committed or is
6314 		 * modified, then just skip it.
6315 		 */
6316 		if (pp->p_fsdata == C_NOCOMMIT || hat_ismod(pp))
6317 			continue;
6318 
6319 		/*
6320 		 * Attempt to lock the page.  If we can't, then
6321 		 * someone else is messing with it and we will
6322 		 * just skip it.
6323 		 */
6324 		if (!page_trylock(pp, SE_EXCL))
6325 			continue;
6326 
6327 		/*
6328 		 * If this page does not need to be committed or is
6329 		 * modified, then just skip it.  Recheck now that
6330 		 * the page is locked.
6331 		 */
6332 		if (pp->p_fsdata == C_NOCOMMIT || hat_ismod(pp)) {
6333 			page_unlock(pp);
6334 			continue;
6335 		}
6336 
6337 		if (PP_ISFREE(pp)) {
6338 			cmn_err(CE_PANIC, "nfs3_get_commit: %p is free",
6339 			    (void *)pp);
6340 		}
6341 
6342 		/*
6343 		 * The page needs to be committed and we locked it.
6344 		 * Update the base and length parameters and add it
6345 		 * to r_pages.
6346 		 */
6347 		if (rp->r_commit.c_pages == NULL) {
6348 			rp->r_commit.c_commbase = (offset3)pp->p_offset;
6349 			rp->r_commit.c_commlen = PAGESIZE;
6350 		} else if (pp->p_offset < rp->r_commit.c_commbase) {
6351 			rp->r_commit.c_commlen = rp->r_commit.c_commbase -
6352 			    (offset3)pp->p_offset + rp->r_commit.c_commlen;
6353 			rp->r_commit.c_commbase = (offset3)pp->p_offset;
6354 		} else if ((rp->r_commit.c_commbase + rp->r_commit.c_commlen)
6355 		    <= pp->p_offset) {
6356 			rp->r_commit.c_commlen = (offset3)pp->p_offset -
6357 			    rp->r_commit.c_commbase + PAGESIZE;
6358 		}
6359 		page_add(&rp->r_commit.c_pages, pp);
6360 	} while ((pp = pp->p_vpnext) != vp->v_pages);
6361 
6362 	mutex_exit(vphm);
6363 }
6364 
6365 /*
6366  * This routine is used to gather together a page list of the pages
6367  * which are to be committed on the server.  This routine must not
6368  * be called if the calling thread holds any locked pages.
6369  *
6370  * The calling thread must have set RCOMMIT.  This bit is used to
6371  * serialize access to the commit structure in the rnode.  As long
6372  * as the thread has set RCOMMIT, then it can manipulate the commit
6373  * structure without requiring any other locks.
6374  */
6375 static void
6376 nfs3_get_commit_range(vnode_t *vp, u_offset_t soff, size_t len)
6377 {
6378 
6379 	rnode_t *rp;
6380 	page_t *pp;
6381 	u_offset_t end;
6382 	u_offset_t off;
6383 
6384 	ASSERT(len != 0);
6385 
6386 	rp = VTOR(vp);
6387 
6388 	ASSERT(rp->r_flags & RCOMMIT);
6389 	ASSERT(nfs_zone() == VTOMI(vp)->mi_zone);
6390 
6391 	/*
6392 	 * If there are no pages associated with this vnode, then
6393 	 * just return.
6394 	 */
6395 	if ((pp = vp->v_pages) == NULL)
6396 		return;
6397 
6398 	/*
6399 	 * Calculate the ending offset.
6400 	 */
6401 	end = soff + len;
6402 
6403 	for (off = soff; off < end; off += PAGESIZE) {
6404 		/*
6405 		 * Lookup each page by vp, offset.
6406 		 */
6407 		if ((pp = page_lookup_nowait(vp, off, SE_EXCL)) == NULL)
6408 			continue;
6409 
6410 		/*
6411 		 * If this page does not need to be committed or is
6412 		 * modified, then just skip it.
6413 		 */
6414 		if (pp->p_fsdata == C_NOCOMMIT || hat_ismod(pp)) {
6415 			page_unlock(pp);
6416 			continue;
6417 		}
6418 
6419 		ASSERT(PP_ISFREE(pp) == 0);
6420 
6421 		/*
6422 		 * The page needs to be committed and we locked it.
6423 		 * Update the base and length parameters and add it
6424 		 * to r_pages.
6425 		 */
6426 		if (rp->r_commit.c_pages == NULL) {
6427 			rp->r_commit.c_commbase = (offset3)pp->p_offset;
6428 			rp->r_commit.c_commlen = PAGESIZE;
6429 		} else {
6430 			rp->r_commit.c_commlen = (offset3)pp->p_offset -
6431 			    rp->r_commit.c_commbase + PAGESIZE;
6432 		}
6433 		page_add(&rp->r_commit.c_pages, pp);
6434 	}
6435 }
6436 
6437 static int
6438 nfs3_putpage_commit(vnode_t *vp, offset_t poff, size_t plen, cred_t *cr)
6439 {
6440 	int error;
6441 	writeverf3 write_verf;
6442 	rnode_t *rp = VTOR(vp);
6443 
6444 	ASSERT(nfs_zone() == VTOMI(vp)->mi_zone);
6445 	/*
6446 	 * Flush the data portion of the file and then commit any
6447 	 * portions which need to be committed.  This may need to
6448 	 * be done twice if the server has changed state since
6449 	 * data was last written.  The data will need to be
6450 	 * rewritten to the server and then a new commit done.
6451 	 *
6452 	 * In fact, this may need to be done several times if the
6453 	 * server is having problems and crashing while we are
6454 	 * attempting to do this.
6455 	 */
6456 
6457 top:
6458 	/*
6459 	 * Do a flush based on the poff and plen arguments.  This
6460 	 * will asynchronously write out any modified pages in the
6461 	 * range specified by (poff, plen).  This starts all of the
6462 	 * i/o operations which will be waited for in the next
6463 	 * call to nfs3_putpage
6464 	 */
6465 
6466 	mutex_enter(&rp->r_statelock);
6467 	write_verf = rp->r_verf;
6468 	mutex_exit(&rp->r_statelock);
6469 
6470 	error = nfs3_putpage(vp, poff, plen, B_ASYNC, cr, NULL);
6471 	if (error == EAGAIN)
6472 		error = 0;
6473 
6474 	/*
6475 	 * Do a flush based on the poff and plen arguments.  This
6476 	 * will synchronously write out any modified pages in the
6477 	 * range specified by (poff, plen) and wait until all of
6478 	 * the asynchronous i/o's in that range are done as well.
6479 	 */
6480 	if (!error)
6481 		error = nfs3_putpage(vp, poff, plen, 0, cr, NULL);
6482 
6483 	if (error)
6484 		return (error);
6485 
6486 	mutex_enter(&rp->r_statelock);
6487 	if (rp->r_verf != write_verf) {
6488 		mutex_exit(&rp->r_statelock);
6489 		goto top;
6490 	}
6491 	mutex_exit(&rp->r_statelock);
6492 
6493 	/*
6494 	 * Now commit any pages which might need to be committed.
6495 	 * If the error, NFS_VERF_MISMATCH, is returned, then
6496 	 * start over with the flush operation.
6497 	 */
6498 
6499 	error = nfs3_commit_vp(vp, poff, plen, cr);
6500 
6501 	if (error == NFS_VERF_MISMATCH)
6502 		goto top;
6503 
6504 	return (error);
6505 }
6506 
6507 static int
6508 nfs3_commit_vp(vnode_t *vp, u_offset_t poff, size_t plen, cred_t *cr)
6509 {
6510 	rnode_t *rp;
6511 	page_t *plist;
6512 	offset3 offset;
6513 	count3 len;
6514 
6515 
6516 	rp = VTOR(vp);
6517 
6518 	if (nfs_zone() != VTOMI(vp)->mi_zone)
6519 		return (EIO);
6520 	/*
6521 	 * Set the `commit inprogress' state bit.  We must
6522 	 * first wait until any current one finishes.
6523 	 */
6524 	mutex_enter(&rp->r_statelock);
6525 	while (rp->r_flags & RCOMMIT) {
6526 		rp->r_flags |= RCOMMITWAIT;
6527 		cv_wait(&rp->r_commit.c_cv, &rp->r_statelock);
6528 		rp->r_flags &= ~RCOMMITWAIT;
6529 	}
6530 	rp->r_flags |= RCOMMIT;
6531 	mutex_exit(&rp->r_statelock);
6532 
6533 	/*
6534 	 * Gather together all of the pages which need to be
6535 	 * committed.
6536 	 */
6537 	if (plen == 0)
6538 		nfs3_get_commit(vp);
6539 	else
6540 		nfs3_get_commit_range(vp, poff, plen);
6541 
6542 	/*
6543 	 * Clear the `commit inprogress' bit and disconnect the
6544 	 * page list which was gathered together in nfs3_get_commit.
6545 	 */
6546 	plist = rp->r_commit.c_pages;
6547 	rp->r_commit.c_pages = NULL;
6548 	offset = rp->r_commit.c_commbase;
6549 	len = rp->r_commit.c_commlen;
6550 	mutex_enter(&rp->r_statelock);
6551 	rp->r_flags &= ~RCOMMIT;
6552 	cv_broadcast(&rp->r_commit.c_cv);
6553 	mutex_exit(&rp->r_statelock);
6554 
6555 	/*
6556 	 * If any pages need to be committed, commit them and
6557 	 * then unlock them so that they can be freed some
6558 	 * time later.
6559 	 */
6560 	if (plist != NULL) {
6561 		/*
6562 		 * No error occurred during the flush portion
6563 		 * of this operation, so now attempt to commit
6564 		 * the data to stable storage on the server.
6565 		 *
6566 		 * This will unlock all of the pages on the list.
6567 		 */
6568 		return (nfs3_sync_commit(vp, plist, offset, len, cr));
6569 	}
6570 	return (0);
6571 }
6572 
6573 static int
6574 nfs3_sync_commit(vnode_t *vp, page_t *plist, offset3 offset, count3 count,
6575 	cred_t *cr)
6576 {
6577 	int error;
6578 	page_t *pp;
6579 
6580 	ASSERT(nfs_zone() == VTOMI(vp)->mi_zone);
6581 	error = nfs3_commit(vp, offset, count, cr);
6582 
6583 	/*
6584 	 * If we got an error, then just unlock all of the pages
6585 	 * on the list.
6586 	 */
6587 	if (error) {
6588 		while (plist != NULL) {
6589 			pp = plist;
6590 			page_sub(&plist, pp);
6591 			page_unlock(pp);
6592 		}
6593 		return (error);
6594 	}
6595 	/*
6596 	 * We've tried as hard as we can to commit the data to stable
6597 	 * storage on the server.  We just unlock the pages and clear
6598 	 * the commit required state.  They will get freed later.
6599 	 */
6600 	while (plist != NULL) {
6601 		pp = plist;
6602 		page_sub(&plist, pp);
6603 		pp->p_fsdata = C_NOCOMMIT;
6604 		page_unlock(pp);
6605 	}
6606 
6607 	return (error);
6608 }
6609 
6610 static void
6611 nfs3_async_commit(vnode_t *vp, page_t *plist, offset3 offset, count3 count,
6612 	cred_t *cr)
6613 {
6614 	ASSERT(nfs_zone() == VTOMI(vp)->mi_zone);
6615 	(void) nfs3_sync_commit(vp, plist, offset, count, cr);
6616 }
6617 
6618 /* ARGSUSED */
6619 static int
6620 nfs3_setsecattr(vnode_t *vp, vsecattr_t *vsecattr, int flag, cred_t *cr,
6621 	caller_context_t *ct)
6622 {
6623 	int error;
6624 	mntinfo_t *mi;
6625 
6626 	mi = VTOMI(vp);
6627 
6628 	if (nfs_zone() != mi->mi_zone)
6629 		return (EIO);
6630 
6631 	if (mi->mi_flags & MI_ACL) {
6632 		error = acl_setacl3(vp, vsecattr, flag, cr);
6633 		if (mi->mi_flags & MI_ACL)
6634 			return (error);
6635 	}
6636 
6637 	return (ENOSYS);
6638 }
6639 
6640 /* ARGSUSED */
6641 static int
6642 nfs3_getsecattr(vnode_t *vp, vsecattr_t *vsecattr, int flag, cred_t *cr,
6643 	caller_context_t *ct)
6644 {
6645 	int error;
6646 	mntinfo_t *mi;
6647 
6648 	mi = VTOMI(vp);
6649 
6650 	if (nfs_zone() != mi->mi_zone)
6651 		return (EIO);
6652 
6653 	if (mi->mi_flags & MI_ACL) {
6654 		error = acl_getacl3(vp, vsecattr, flag, cr);
6655 		if (mi->mi_flags & MI_ACL)
6656 			return (error);
6657 	}
6658 
6659 	return (fs_fab_acl(vp, vsecattr, flag, cr, ct));
6660 }
6661 
6662 /* ARGSUSED */
6663 static int
6664 nfs3_shrlock(vnode_t *vp, int cmd, struct shrlock *shr, int flag, cred_t *cr,
6665 	caller_context_t *ct)
6666 {
6667 	int error;
6668 	struct shrlock nshr;
6669 	struct nfs_owner nfs_owner;
6670 	netobj lm_fh3;
6671 
6672 	if (nfs_zone() != VTOMI(vp)->mi_zone)
6673 		return (EIO);
6674 
6675 	/*
6676 	 * check for valid cmd parameter
6677 	 */
6678 	if (cmd != F_SHARE && cmd != F_UNSHARE && cmd != F_HASREMOTELOCKS)
6679 		return (EINVAL);
6680 
6681 	/*
6682 	 * Check access permissions
6683 	 */
6684 	if (cmd == F_SHARE &&
6685 	    (((shr->s_access & F_RDACC) && !(flag & FREAD)) ||
6686 	    ((shr->s_access & F_WRACC) && !(flag & FWRITE))))
6687 		return (EBADF);
6688 
6689 	/*
6690 	 * If the filesystem is mounted using local locking, pass the
6691 	 * request off to the local share code.
6692 	 */
6693 	if (VTOMI(vp)->mi_flags & MI_LLOCK)
6694 		return (fs_shrlock(vp, cmd, shr, flag, cr, ct));
6695 
6696 	switch (cmd) {
6697 	case F_SHARE:
6698 	case F_UNSHARE:
6699 		lm_fh3.n_len = VTOFH3(vp)->fh3_length;
6700 		lm_fh3.n_bytes = (char *)&(VTOFH3(vp)->fh3_u.data);
6701 
6702 		/*
6703 		 * If passed an owner that is too large to fit in an
6704 		 * nfs_owner it is likely a recursive call from the
6705 		 * lock manager client and pass it straight through.  If
6706 		 * it is not a nfs_owner then simply return an error.
6707 		 */
6708 		if (shr->s_own_len > sizeof (nfs_owner.lowner)) {
6709 			if (((struct nfs_owner *)shr->s_owner)->magic !=
6710 			    NFS_OWNER_MAGIC)
6711 				return (EINVAL);
6712 
6713 			if (error = lm4_shrlock(vp, cmd, shr, flag, &lm_fh3)) {
6714 				error = set_errno(error);
6715 			}
6716 			return (error);
6717 		}
6718 		/*
6719 		 * Remote share reservations owner is a combination of
6720 		 * a magic number, hostname, and the local owner
6721 		 */
6722 		bzero(&nfs_owner, sizeof (nfs_owner));
6723 		nfs_owner.magic = NFS_OWNER_MAGIC;
6724 		(void) strncpy(nfs_owner.hname, uts_nodename(),
6725 		    sizeof (nfs_owner.hname));
6726 		bcopy(shr->s_owner, nfs_owner.lowner, shr->s_own_len);
6727 		nshr.s_access = shr->s_access;
6728 		nshr.s_deny = shr->s_deny;
6729 		nshr.s_sysid = 0;
6730 		nshr.s_pid = ttoproc(curthread)->p_pid;
6731 		nshr.s_own_len = sizeof (nfs_owner);
6732 		nshr.s_owner = (caddr_t)&nfs_owner;
6733 
6734 		if (error = lm4_shrlock(vp, cmd, &nshr, flag, &lm_fh3)) {
6735 			error = set_errno(error);
6736 		}
6737 
6738 		break;
6739 
6740 	case F_HASREMOTELOCKS:
6741 		/*
6742 		 * NFS client can't store remote locks itself
6743 		 */
6744 		shr->s_access = 0;
6745 		error = 0;
6746 		break;
6747 
6748 	default:
6749 		error = EINVAL;
6750 		break;
6751 	}
6752 
6753 	return (error);
6754 }
6755