1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 /* 29 * Vnode operations for the High Sierra filesystem 30 */ 31 32 #include <sys/types.h> 33 #include <sys/t_lock.h> 34 #include <sys/param.h> 35 #include <sys/time.h> 36 #include <sys/systm.h> 37 #include <sys/sysmacros.h> 38 #include <sys/resource.h> 39 #include <sys/signal.h> 40 #include <sys/cred.h> 41 #include <sys/user.h> 42 #include <sys/buf.h> 43 #include <sys/vfs.h> 44 #include <sys/vfs_opreg.h> 45 #include <sys/stat.h> 46 #include <sys/vnode.h> 47 #include <sys/mode.h> 48 #include <sys/proc.h> 49 #include <sys/disp.h> 50 #include <sys/file.h> 51 #include <sys/fcntl.h> 52 #include <sys/flock.h> 53 #include <sys/kmem.h> 54 #include <sys/uio.h> 55 #include <sys/conf.h> 56 #include <sys/errno.h> 57 #include <sys/mman.h> 58 #include <sys/pathname.h> 59 #include <sys/debug.h> 60 #include <sys/vmsystm.h> 61 #include <sys/cmn_err.h> 62 #include <sys/fbuf.h> 63 #include <sys/dirent.h> 64 #include <sys/errno.h> 65 #include <sys/dkio.h> 66 #include <sys/cmn_err.h> 67 #include <sys/atomic.h> 68 69 #include <vm/hat.h> 70 #include <vm/page.h> 71 #include <vm/pvn.h> 72 #include <vm/as.h> 73 #include <vm/seg.h> 74 #include <vm/seg_map.h> 75 #include <vm/seg_kmem.h> 76 #include <vm/seg_vn.h> 77 #include <vm/rm.h> 78 #include <vm/page.h> 79 #include <sys/swap.h> 80 #include <sys/avl.h> 81 #include <sys/sunldi.h> 82 #include <sys/ddi.h> 83 #include <sys/sunddi.h> 84 #include <sys/sdt.h> 85 86 /* 87 * For struct modlinkage 88 */ 89 #include <sys/modctl.h> 90 91 #include <sys/fs/hsfs_spec.h> 92 #include <sys/fs/hsfs_node.h> 93 #include <sys/fs/hsfs_impl.h> 94 #include <sys/fs/hsfs_susp.h> 95 #include <sys/fs/hsfs_rrip.h> 96 97 #include <fs/fs_subr.h> 98 99 /* # of contiguous requests to detect sequential access pattern */ 100 static int seq_contig_requests = 2; 101 102 /* 103 * This is the max number os taskq threads that will be created 104 * if required. Since we are using a Dynamic TaskQ by default only 105 * one thread is created initially. 106 * 107 * NOTE: In the usual hsfs use case this per fs instance number 108 * of taskq threads should not place any undue load on a system. 109 * Even on an unusual system with say 100 CDROM drives, 800 threads 110 * will not be created unless all the drives are loaded and all 111 * of them are saturated with I/O at the same time! If there is at 112 * all a complaint of system load due to such an unusual case it 113 * should be easy enough to change to one per-machine Dynamic TaskQ 114 * for all hsfs mounts with a nthreads of say 32. 115 */ 116 static int hsfs_taskq_nthreads = 8; /* # of taskq threads per fs */ 117 118 /* Min count of adjacent bufs that will avoid buf coalescing */ 119 static int hsched_coalesce_min = 2; 120 121 /* 122 * Kmem caches for heavily used small allocations. Using these kmem 123 * caches provides a factor of 3 reduction in system time and greatly 124 * aids overall throughput esp. on SPARC. 125 */ 126 struct kmem_cache *hio_cache; 127 struct kmem_cache *hio_info_cache; 128 129 /* 130 * This tunable allows us to ignore inode numbers from rrip-1.12. 131 * In this case, we fall back to our default inode algorithm. 132 */ 133 extern int use_rrip_inodes; 134 135 /* 136 * Free behind logic from UFS to tame our thirst for 137 * the page cache. 138 * See usr/src/uts/common/fs/ufs/ufs_vnops.c for more 139 * explanation. 140 */ 141 static int freebehind = 1; 142 static int smallfile = 0; 143 static int cache_read_ahead = 0; 144 static u_offset_t smallfile64 = 32 * 1024; 145 #define SMALLFILE1_D 1000 146 #define SMALLFILE2_D 10 147 static u_offset_t smallfile1 = 32 * 1024; 148 static u_offset_t smallfile2 = 32 * 1024; 149 static clock_t smallfile_update = 0; /* when to recompute */ 150 static uint_t smallfile1_d = SMALLFILE1_D; 151 static uint_t smallfile2_d = SMALLFILE2_D; 152 153 static int hsched_deadline_compare(const void *x1, const void *x2); 154 static int hsched_offset_compare(const void *x1, const void *x2); 155 static void hsched_enqueue_io(struct hsfs *fsp, struct hio *hsio, int ra); 156 int hsched_invoke_strategy(struct hsfs *fsp); 157 158 /* ARGSUSED */ 159 static int 160 hsfs_fsync(vnode_t *cp, 161 int syncflag, 162 cred_t *cred, 163 caller_context_t *ct) 164 { 165 return (0); 166 } 167 168 169 /*ARGSUSED*/ 170 static int 171 hsfs_read(struct vnode *vp, 172 struct uio *uiop, 173 int ioflag, 174 struct cred *cred, 175 struct caller_context *ct) 176 { 177 caddr_t base; 178 offset_t diff; 179 int error; 180 struct hsnode *hp; 181 uint_t filesize; 182 int dofree; 183 184 hp = VTOH(vp); 185 /* 186 * if vp is of type VDIR, make sure dirent 187 * is filled up with all info (because of ptbl) 188 */ 189 if (vp->v_type == VDIR) { 190 if (hp->hs_dirent.ext_size == 0) 191 hs_filldirent(vp, &hp->hs_dirent); 192 } 193 filesize = hp->hs_dirent.ext_size; 194 195 /* Sanity checks. */ 196 if (uiop->uio_resid == 0 || /* No data wanted. */ 197 uiop->uio_loffset > HS_MAXFILEOFF || /* Offset too big. */ 198 uiop->uio_loffset >= filesize) /* Past EOF. */ 199 return (0); 200 201 do { 202 /* 203 * We want to ask for only the "right" amount of data. 204 * In this case that means:- 205 * 206 * We can't get data from beyond our EOF. If asked, 207 * we will give a short read. 208 * 209 * segmap_getmapflt returns buffers of MAXBSIZE bytes. 210 * These buffers are always MAXBSIZE aligned. 211 * If our starting offset is not MAXBSIZE aligned, 212 * we can only ask for less than MAXBSIZE bytes. 213 * 214 * If our requested offset and length are such that 215 * they belong in different MAXBSIZE aligned slots 216 * then we'll be making more than one call on 217 * segmap_getmapflt. 218 * 219 * This diagram shows the variables we use and their 220 * relationships. 221 * 222 * |<-----MAXBSIZE----->| 223 * +--------------------------...+ 224 * |.....mapon->|<--n-->|....*...|EOF 225 * +--------------------------...+ 226 * uio_loffset->| 227 * uio_resid....|<---------->| 228 * diff.........|<-------------->| 229 * 230 * So, in this case our offset is not aligned 231 * and our request takes us outside of the 232 * MAXBSIZE window. We will break this up into 233 * two segmap_getmapflt calls. 234 */ 235 size_t nbytes; 236 offset_t mapon; 237 size_t n; 238 uint_t flags; 239 240 mapon = uiop->uio_loffset & MAXBOFFSET; 241 diff = filesize - uiop->uio_loffset; 242 nbytes = (size_t)MIN(MAXBSIZE - mapon, uiop->uio_resid); 243 n = MIN(diff, nbytes); 244 if (n <= 0) { 245 /* EOF or request satisfied. */ 246 return (0); 247 } 248 249 /* 250 * Freebehind computation taken from: 251 * usr/src/uts/common/fs/ufs/ufs_vnops.c 252 */ 253 if (drv_hztousec(ddi_get_lbolt()) >= smallfile_update) { 254 uint64_t percpufreeb; 255 if (smallfile1_d == 0) smallfile1_d = SMALLFILE1_D; 256 if (smallfile2_d == 0) smallfile2_d = SMALLFILE2_D; 257 percpufreeb = ptob((uint64_t)freemem) / ncpus_online; 258 smallfile1 = percpufreeb / smallfile1_d; 259 smallfile2 = percpufreeb / smallfile2_d; 260 smallfile1 = MAX(smallfile1, smallfile); 261 smallfile1 = MAX(smallfile1, smallfile64); 262 smallfile2 = MAX(smallfile1, smallfile2); 263 smallfile_update = drv_hztousec(ddi_get_lbolt()) 264 + 1000000; 265 } 266 267 dofree = freebehind && 268 hp->hs_prev_offset == uiop->uio_loffset && 269 hp->hs_ra_bytes > 0; 270 271 base = segmap_getmapflt(segkmap, vp, 272 (u_offset_t)uiop->uio_loffset, n, 1, S_READ); 273 274 error = uiomove(base + mapon, n, UIO_READ, uiop); 275 276 if (error == 0) { 277 /* 278 * if read a whole block, or read to eof, 279 * won't need this buffer again soon. 280 */ 281 if (n + mapon == MAXBSIZE || 282 uiop->uio_loffset == filesize) 283 flags = SM_DONTNEED; 284 else 285 flags = 0; 286 287 if (dofree) { 288 flags = SM_FREE | SM_ASYNC; 289 if ((cache_read_ahead == 0) && 290 uiop->uio_loffset > smallfile2) 291 flags |= SM_DONTNEED; 292 } 293 294 error = segmap_release(segkmap, base, flags); 295 } else 296 (void) segmap_release(segkmap, base, 0); 297 } while (error == 0 && uiop->uio_resid > 0); 298 299 return (error); 300 } 301 302 /*ARGSUSED2*/ 303 static int 304 hsfs_getattr( 305 struct vnode *vp, 306 struct vattr *vap, 307 int flags, 308 struct cred *cred, 309 caller_context_t *ct) 310 { 311 struct hsnode *hp; 312 struct vfs *vfsp; 313 struct hsfs *fsp; 314 315 hp = VTOH(vp); 316 fsp = VFS_TO_HSFS(vp->v_vfsp); 317 vfsp = vp->v_vfsp; 318 319 if ((hp->hs_dirent.ext_size == 0) && (vp->v_type == VDIR)) { 320 hs_filldirent(vp, &hp->hs_dirent); 321 } 322 vap->va_type = IFTOVT(hp->hs_dirent.mode); 323 vap->va_mode = hp->hs_dirent.mode; 324 vap->va_uid = hp->hs_dirent.uid; 325 vap->va_gid = hp->hs_dirent.gid; 326 327 vap->va_fsid = vfsp->vfs_dev; 328 vap->va_nodeid = (ino64_t)hp->hs_nodeid; 329 vap->va_nlink = hp->hs_dirent.nlink; 330 vap->va_size = (offset_t)hp->hs_dirent.ext_size; 331 332 vap->va_atime.tv_sec = hp->hs_dirent.adate.tv_sec; 333 vap->va_atime.tv_nsec = hp->hs_dirent.adate.tv_usec*1000; 334 vap->va_mtime.tv_sec = hp->hs_dirent.mdate.tv_sec; 335 vap->va_mtime.tv_nsec = hp->hs_dirent.mdate.tv_usec*1000; 336 vap->va_ctime.tv_sec = hp->hs_dirent.cdate.tv_sec; 337 vap->va_ctime.tv_nsec = hp->hs_dirent.cdate.tv_usec*1000; 338 if (vp->v_type == VCHR || vp->v_type == VBLK) 339 vap->va_rdev = hp->hs_dirent.r_dev; 340 else 341 vap->va_rdev = 0; 342 vap->va_blksize = vfsp->vfs_bsize; 343 /* no. of blocks = no. of data blocks + no. of xar blocks */ 344 vap->va_nblocks = (fsblkcnt64_t)howmany(vap->va_size + (u_longlong_t) 345 (hp->hs_dirent.xar_len << fsp->hsfs_vol.lbn_shift), DEV_BSIZE); 346 vap->va_seq = hp->hs_seq; 347 return (0); 348 } 349 350 /*ARGSUSED*/ 351 static int 352 hsfs_readlink(struct vnode *vp, 353 struct uio *uiop, 354 struct cred *cred, 355 caller_context_t *ct) 356 { 357 struct hsnode *hp; 358 359 if (vp->v_type != VLNK) 360 return (EINVAL); 361 362 hp = VTOH(vp); 363 364 if (hp->hs_dirent.sym_link == (char *)NULL) 365 return (ENOENT); 366 367 return (uiomove(hp->hs_dirent.sym_link, 368 (size_t)MIN(hp->hs_dirent.ext_size, 369 uiop->uio_resid), UIO_READ, uiop)); 370 } 371 372 /*ARGSUSED*/ 373 static void 374 hsfs_inactive(struct vnode *vp, 375 struct cred *cred, 376 caller_context_t *ct) 377 { 378 struct hsnode *hp; 379 struct hsfs *fsp; 380 381 int nopage; 382 383 hp = VTOH(vp); 384 fsp = VFS_TO_HSFS(vp->v_vfsp); 385 /* 386 * Note: acquiring and holding v_lock for quite a while 387 * here serializes on the vnode; this is unfortunate, but 388 * likely not to overly impact performance, as the underlying 389 * device (CDROM drive) is quite slow. 390 */ 391 rw_enter(&fsp->hsfs_hash_lock, RW_WRITER); 392 mutex_enter(&hp->hs_contents_lock); 393 mutex_enter(&vp->v_lock); 394 395 if (vp->v_count < 1) { 396 panic("hsfs_inactive: v_count < 1"); 397 /*NOTREACHED*/ 398 } 399 400 if (vp->v_count > 1 || (hp->hs_flags & HREF) == 0) { 401 vp->v_count--; /* release hold from vn_rele */ 402 mutex_exit(&vp->v_lock); 403 mutex_exit(&hp->hs_contents_lock); 404 rw_exit(&fsp->hsfs_hash_lock); 405 return; 406 } 407 vp->v_count--; /* release hold from vn_rele */ 408 if (vp->v_count == 0) { 409 /* 410 * Free the hsnode. 411 * If there are no pages associated with the 412 * hsnode, give it back to the kmem_cache, 413 * else put at the end of this file system's 414 * internal free list. 415 */ 416 nopage = !vn_has_cached_data(vp); 417 hp->hs_flags = 0; 418 /* 419 * exit these locks now, since hs_freenode may 420 * kmem_free the hsnode and embedded vnode 421 */ 422 mutex_exit(&vp->v_lock); 423 mutex_exit(&hp->hs_contents_lock); 424 hs_freenode(vp, fsp, nopage); 425 } else { 426 mutex_exit(&vp->v_lock); 427 mutex_exit(&hp->hs_contents_lock); 428 } 429 rw_exit(&fsp->hsfs_hash_lock); 430 } 431 432 433 /*ARGSUSED*/ 434 static int 435 hsfs_lookup( 436 struct vnode *dvp, 437 char *nm, 438 struct vnode **vpp, 439 struct pathname *pnp, 440 int flags, 441 struct vnode *rdir, 442 struct cred *cred, 443 caller_context_t *ct, 444 int *direntflags, 445 pathname_t *realpnp) 446 { 447 int error; 448 int namelen = (int)strlen(nm); 449 450 if (*nm == '\0') { 451 VN_HOLD(dvp); 452 *vpp = dvp; 453 return (0); 454 } 455 456 /* 457 * If we're looking for ourself, life is simple. 458 */ 459 if (namelen == 1 && *nm == '.') { 460 if (error = hs_access(dvp, (mode_t)VEXEC, cred)) 461 return (error); 462 VN_HOLD(dvp); 463 *vpp = dvp; 464 return (0); 465 } 466 467 return (hs_dirlook(dvp, nm, namelen, vpp, cred)); 468 } 469 470 471 /*ARGSUSED*/ 472 static int 473 hsfs_readdir( 474 struct vnode *vp, 475 struct uio *uiop, 476 struct cred *cred, 477 int *eofp, 478 caller_context_t *ct, 479 int flags) 480 { 481 struct hsnode *dhp; 482 struct hsfs *fsp; 483 struct hs_direntry hd; 484 struct dirent64 *nd; 485 int error; 486 uint_t offset; /* real offset in directory */ 487 uint_t dirsiz; /* real size of directory */ 488 uchar_t *blkp; 489 int hdlen; /* length of hs directory entry */ 490 long ndlen; /* length of dirent entry */ 491 int bytes_wanted; 492 size_t bufsize; /* size of dirent buffer */ 493 char *outbuf; /* ptr to dirent buffer */ 494 char *dname; 495 int dnamelen; 496 size_t dname_size; 497 struct fbuf *fbp; 498 uint_t last_offset; /* last index into current dir block */ 499 ino64_t dirino; /* temporary storage before storing in dirent */ 500 off_t diroff; 501 502 dhp = VTOH(vp); 503 fsp = VFS_TO_HSFS(vp->v_vfsp); 504 if (dhp->hs_dirent.ext_size == 0) 505 hs_filldirent(vp, &dhp->hs_dirent); 506 dirsiz = dhp->hs_dirent.ext_size; 507 if (uiop->uio_loffset >= dirsiz) { /* at or beyond EOF */ 508 if (eofp) 509 *eofp = 1; 510 return (0); 511 } 512 ASSERT(uiop->uio_loffset <= HS_MAXFILEOFF); 513 offset = uiop->uio_loffset; 514 515 dname_size = fsp->hsfs_namemax + 1; /* 1 for the ending NUL */ 516 dname = kmem_alloc(dname_size, KM_SLEEP); 517 bufsize = uiop->uio_resid + sizeof (struct dirent64); 518 519 outbuf = kmem_alloc(bufsize, KM_SLEEP); 520 nd = (struct dirent64 *)outbuf; 521 522 while (offset < dirsiz) { 523 bytes_wanted = MIN(MAXBSIZE, dirsiz - (offset & MAXBMASK)); 524 525 error = fbread(vp, (offset_t)(offset & MAXBMASK), 526 (unsigned int)bytes_wanted, S_READ, &fbp); 527 if (error) 528 goto done; 529 530 blkp = (uchar_t *)fbp->fb_addr; 531 last_offset = (offset & MAXBMASK) + fbp->fb_count; 532 533 #define rel_offset(offset) ((offset) & MAXBOFFSET) /* index into blkp */ 534 535 while (offset < last_offset) { 536 /* 537 * Very similar validation code is found in 538 * process_dirblock(), hsfs_node.c. 539 * For an explanation, see there. 540 * It may make sense for the future to 541 * "consolidate" the code in hs_parsedir(), 542 * process_dirblock() and hsfs_readdir() into 543 * a single utility function. 544 */ 545 hdlen = (int)((uchar_t) 546 HDE_DIR_LEN(&blkp[rel_offset(offset)])); 547 if (hdlen < HDE_ROOT_DIR_REC_SIZE || 548 offset + hdlen > last_offset) { 549 /* 550 * advance to next sector boundary 551 */ 552 offset = roundup(offset + 1, HS_SECTOR_SIZE); 553 if (hdlen) 554 hs_log_bogus_disk_warning(fsp, 555 HSFS_ERR_TRAILING_JUNK, 0); 556 557 continue; 558 } 559 560 bzero(&hd, sizeof (hd)); 561 562 /* 563 * Just ignore invalid directory entries. 564 * XXX - maybe hs_parsedir() will detect EXISTENCE bit 565 */ 566 if (!hs_parsedir(fsp, &blkp[rel_offset(offset)], 567 &hd, dname, &dnamelen, last_offset - offset)) { 568 /* 569 * Determine if there is enough room 570 */ 571 ndlen = (long)DIRENT64_RECLEN((dnamelen)); 572 573 if ((ndlen + ((char *)nd - outbuf)) > 574 uiop->uio_resid) { 575 fbrelse(fbp, S_READ); 576 goto done; /* output buffer full */ 577 } 578 579 diroff = offset + hdlen; 580 /* 581 * If the media carries rrip-v1.12 or newer, 582 * and we trust the inodes from the rrip data 583 * (use_rrip_inodes != 0), use that data. If the 584 * media has been created by a recent mkisofs 585 * version, we may trust all numbers in the 586 * starting extent number; otherwise, we cannot 587 * do this for zero sized files and symlinks, 588 * because if we did we'd end up mapping all of 589 * them to the same node. We use HS_DUMMY_INO 590 * in this case and make sure that we will not 591 * map all files to the same meta data. 592 */ 593 if (hd.inode != 0 && use_rrip_inodes) { 594 dirino = hd.inode; 595 } else if ((hd.ext_size == 0 || 596 hd.sym_link != (char *)NULL) && 597 (fsp->hsfs_flags & HSFSMNT_INODE) == 0) { 598 dirino = HS_DUMMY_INO; 599 } else { 600 dirino = hd.ext_lbn; 601 } 602 603 /* strncpy(9f) will zero uninitialized bytes */ 604 605 ASSERT(strlen(dname) + 1 <= 606 DIRENT64_NAMELEN(ndlen)); 607 (void) strncpy(nd->d_name, dname, 608 DIRENT64_NAMELEN(ndlen)); 609 nd->d_reclen = (ushort_t)ndlen; 610 nd->d_off = (offset_t)diroff; 611 nd->d_ino = dirino; 612 nd = (struct dirent64 *)((char *)nd + ndlen); 613 614 /* 615 * free up space allocated for symlink 616 */ 617 if (hd.sym_link != (char *)NULL) { 618 kmem_free(hd.sym_link, 619 (size_t)(hd.ext_size+1)); 620 hd.sym_link = (char *)NULL; 621 } 622 } 623 offset += hdlen; 624 } 625 fbrelse(fbp, S_READ); 626 } 627 628 /* 629 * Got here for one of the following reasons: 630 * 1) outbuf is full (error == 0) 631 * 2) end of directory reached (error == 0) 632 * 3) error reading directory sector (error != 0) 633 * 4) directory entry crosses sector boundary (error == 0) 634 * 635 * If any directory entries have been copied, don't report 636 * case 4. Instead, return the valid directory entries. 637 * 638 * If no entries have been copied, report the error. 639 * If case 4, this will be indistiguishable from EOF. 640 */ 641 done: 642 ndlen = ((char *)nd - outbuf); 643 if (ndlen != 0) { 644 error = uiomove(outbuf, (size_t)ndlen, UIO_READ, uiop); 645 uiop->uio_loffset = offset; 646 } 647 kmem_free(dname, dname_size); 648 kmem_free(outbuf, bufsize); 649 if (eofp && error == 0) 650 *eofp = (uiop->uio_loffset >= dirsiz); 651 return (error); 652 } 653 654 /*ARGSUSED2*/ 655 static int 656 hsfs_fid(struct vnode *vp, struct fid *fidp, caller_context_t *ct) 657 { 658 struct hsnode *hp; 659 struct hsfid *fid; 660 661 if (fidp->fid_len < (sizeof (*fid) - sizeof (fid->hf_len))) { 662 fidp->fid_len = sizeof (*fid) - sizeof (fid->hf_len); 663 return (ENOSPC); 664 } 665 666 fid = (struct hsfid *)fidp; 667 fid->hf_len = sizeof (*fid) - sizeof (fid->hf_len); 668 hp = VTOH(vp); 669 mutex_enter(&hp->hs_contents_lock); 670 fid->hf_dir_lbn = hp->hs_dir_lbn; 671 fid->hf_dir_off = (ushort_t)hp->hs_dir_off; 672 fid->hf_ino = hp->hs_nodeid; 673 mutex_exit(&hp->hs_contents_lock); 674 return (0); 675 } 676 677 /*ARGSUSED*/ 678 static int 679 hsfs_open(struct vnode **vpp, 680 int flag, 681 struct cred *cred, 682 caller_context_t *ct) 683 { 684 return (0); 685 } 686 687 /*ARGSUSED*/ 688 static int 689 hsfs_close( 690 struct vnode *vp, 691 int flag, 692 int count, 693 offset_t offset, 694 struct cred *cred, 695 caller_context_t *ct) 696 { 697 (void) cleanlocks(vp, ttoproc(curthread)->p_pid, 0); 698 cleanshares(vp, ttoproc(curthread)->p_pid); 699 return (0); 700 } 701 702 /*ARGSUSED2*/ 703 static int 704 hsfs_access(struct vnode *vp, 705 int mode, 706 int flags, 707 cred_t *cred, 708 caller_context_t *ct) 709 { 710 return (hs_access(vp, (mode_t)mode, cred)); 711 } 712 713 /* 714 * the seek time of a CD-ROM is very slow, and data transfer 715 * rate is even worse (max. 150K per sec). The design 716 * decision is to reduce access to cd-rom as much as possible, 717 * and to transfer a sizable block (read-ahead) of data at a time. 718 * UFS style of read ahead one block at a time is not appropriate, 719 * and is not supported 720 */ 721 722 /* 723 * KLUSTSIZE should be a multiple of PAGESIZE and <= MAXPHYS. 724 */ 725 #define KLUSTSIZE (56 * 1024) 726 /* we don't support read ahead */ 727 int hsfs_lostpage; /* no. of times we lost original page */ 728 729 /* 730 * Used to prevent biodone() from releasing buf resources that 731 * we didn't allocate in quite the usual way. 732 */ 733 /*ARGSUSED*/ 734 int 735 hsfs_iodone(struct buf *bp) 736 { 737 sema_v(&bp->b_io); 738 return (0); 739 } 740 741 /* 742 * The taskq thread that invokes the scheduling function to ensure 743 * that all readaheads are complete and cleans up the associated 744 * memory and releases the page lock. 745 */ 746 void 747 hsfs_ra_task(void *arg) 748 { 749 struct hio_info *info = arg; 750 uint_t count; 751 struct buf *wbuf; 752 753 ASSERT(info->pp != NULL); 754 755 for (count = 0; count < info->bufsused; count++) { 756 wbuf = &(info->bufs[count]); 757 758 DTRACE_PROBE1(hsfs_io_wait_ra, struct buf *, wbuf); 759 while (sema_tryp(&(info->sema[count])) == 0) { 760 if (hsched_invoke_strategy(info->fsp)) { 761 sema_p(&(info->sema[count])); 762 break; 763 } 764 } 765 sema_destroy(&(info->sema[count])); 766 DTRACE_PROBE1(hsfs_io_done_ra, struct buf *, wbuf); 767 biofini(&(info->bufs[count])); 768 } 769 for (count = 0; count < info->bufsused; count++) { 770 if (info->vas[count] != NULL) { 771 ppmapout(info->vas[count]); 772 } 773 } 774 kmem_free(info->vas, info->bufcnt * sizeof (caddr_t)); 775 kmem_free(info->bufs, info->bufcnt * sizeof (struct buf)); 776 kmem_free(info->sema, info->bufcnt * sizeof (ksema_t)); 777 778 pvn_read_done(info->pp, 0); 779 kmem_cache_free(hio_info_cache, info); 780 } 781 782 /* 783 * Submit asynchronous readahead requests to the I/O scheduler 784 * depending on the number of pages to read ahead. These requests 785 * are asynchronous to the calling thread but I/O requests issued 786 * subsequently by other threads with higher LBNs must wait for 787 * these readaheads to complete since we have a single ordered 788 * I/O pipeline. Thus these readaheads are semi-asynchronous. 789 * A TaskQ handles waiting for the readaheads to complete. 790 * 791 * This function is mostly a copy of hsfs_getapage but somewhat 792 * simpler. A readahead request is aborted if page allocation 793 * fails. 794 */ 795 /*ARGSUSED*/ 796 static int 797 hsfs_getpage_ra( 798 struct vnode *vp, 799 u_offset_t off, 800 struct seg *seg, 801 caddr_t addr, 802 struct hsnode *hp, 803 struct hsfs *fsp, 804 int xarsiz, 805 offset_t bof, 806 int chunk_lbn_count, 807 int chunk_data_bytes) 808 { 809 struct buf *bufs; 810 caddr_t *vas; 811 caddr_t va; 812 struct page *pp, *searchp, *lastp; 813 struct vnode *devvp; 814 ulong_t byte_offset; 815 size_t io_len_tmp; 816 uint_t io_off, io_len; 817 uint_t xlen; 818 uint_t filsiz; 819 uint_t secsize; 820 uint_t bufcnt; 821 uint_t bufsused; 822 uint_t count; 823 uint_t io_end; 824 uint_t which_chunk_lbn; 825 uint_t offset_lbn; 826 uint_t offset_extra; 827 offset_t offset_bytes; 828 uint_t remaining_bytes; 829 uint_t extension; 830 int remainder; /* must be signed */ 831 diskaddr_t driver_block; 832 u_offset_t io_off_tmp; 833 ksema_t *fio_done; 834 struct hio_info *info; 835 size_t len; 836 837 ASSERT(fsp->hqueue != NULL); 838 839 if (addr >= seg->s_base + seg->s_size) { 840 return (-1); 841 } 842 843 devvp = fsp->hsfs_devvp; 844 secsize = fsp->hsfs_vol.lbn_size; /* bytes per logical block */ 845 846 /* file data size */ 847 filsiz = hp->hs_dirent.ext_size; 848 849 if (off >= filsiz) 850 return (0); 851 852 extension = 0; 853 pp = NULL; 854 855 extension += hp->hs_ra_bytes; 856 857 /* 858 * Some CD writers (e.g. Kodak Photo CD writers) 859 * create CDs in TAO mode and reserve tracks that 860 * are not completely written. Some sectors remain 861 * unreadable for this reason and give I/O errors. 862 * Also, there's no point in reading sectors 863 * we'll never look at. So, if we're asked to go 864 * beyond the end of a file, truncate to the length 865 * of that file. 866 * 867 * Additionally, this behaviour is required by section 868 * 6.4.5 of ISO 9660:1988(E). 869 */ 870 len = MIN(extension ? extension : PAGESIZE, filsiz - off); 871 872 /* A little paranoia */ 873 if (len <= 0) 874 return (-1); 875 876 /* 877 * After all that, make sure we're asking for things in units 878 * that bdev_strategy() will understand (see bug 4202551). 879 */ 880 len = roundup(len, DEV_BSIZE); 881 882 pp = pvn_read_kluster(vp, off, seg, addr, &io_off_tmp, 883 &io_len_tmp, off, len, 1); 884 885 if (pp == NULL) { 886 hp->hs_num_contig = 0; 887 hp->hs_ra_bytes = 0; 888 hp->hs_prev_offset = 0; 889 return (-1); 890 } 891 892 io_off = (uint_t)io_off_tmp; 893 io_len = (uint_t)io_len_tmp; 894 895 /* check for truncation */ 896 /* 897 * xxx Clean up and return EIO instead? 898 * xxx Ought to go to u_offset_t for everything, but we 899 * xxx call lots of things that want uint_t arguments. 900 */ 901 ASSERT(io_off == io_off_tmp); 902 903 /* 904 * get enough buffers for worst-case scenario 905 * (i.e., no coalescing possible). 906 */ 907 bufcnt = (len + secsize - 1) / secsize; 908 bufs = kmem_alloc(bufcnt * sizeof (struct buf), KM_SLEEP); 909 vas = kmem_alloc(bufcnt * sizeof (caddr_t), KM_SLEEP); 910 911 /* 912 * Allocate a array of semaphores since we are doing I/O 913 * scheduling. 914 */ 915 fio_done = kmem_alloc(bufcnt * sizeof (ksema_t), KM_SLEEP); 916 917 /* 918 * If our filesize is not an integer multiple of PAGESIZE, 919 * we zero that part of the last page that's between EOF and 920 * the PAGESIZE boundary. 921 */ 922 xlen = io_len & PAGEOFFSET; 923 if (xlen != 0) 924 pagezero(pp->p_prev, xlen, PAGESIZE - xlen); 925 926 DTRACE_PROBE2(hsfs_readahead, struct vnode *, vp, uint_t, io_len); 927 928 va = NULL; 929 lastp = NULL; 930 searchp = pp; 931 io_end = io_off + io_len; 932 for (count = 0, byte_offset = io_off; 933 byte_offset < io_end; 934 count++) { 935 ASSERT(count < bufcnt); 936 937 bioinit(&bufs[count]); 938 bufs[count].b_edev = devvp->v_rdev; 939 bufs[count].b_dev = cmpdev(devvp->v_rdev); 940 bufs[count].b_flags = B_NOCACHE|B_BUSY|B_READ; 941 bufs[count].b_iodone = hsfs_iodone; 942 bufs[count].b_vp = vp; 943 bufs[count].b_file = vp; 944 945 /* Compute disk address for interleaving. */ 946 947 /* considered without skips */ 948 which_chunk_lbn = byte_offset / chunk_data_bytes; 949 950 /* factor in skips */ 951 offset_lbn = which_chunk_lbn * chunk_lbn_count; 952 953 /* convert to physical byte offset for lbn */ 954 offset_bytes = LBN_TO_BYTE(offset_lbn, vp->v_vfsp); 955 956 /* don't forget offset into lbn */ 957 offset_extra = byte_offset % chunk_data_bytes; 958 959 /* get virtual block number for driver */ 960 driver_block = lbtodb(bof + xarsiz 961 + offset_bytes + offset_extra); 962 963 if (lastp != searchp) { 964 /* this branch taken first time through loop */ 965 va = vas[count] = ppmapin(searchp, PROT_WRITE, 966 (caddr_t)-1); 967 /* ppmapin() guarantees not to return NULL */ 968 } else { 969 vas[count] = NULL; 970 } 971 972 bufs[count].b_un.b_addr = va + byte_offset % PAGESIZE; 973 bufs[count].b_offset = 974 (offset_t)(byte_offset - io_off + off); 975 976 /* 977 * We specifically use the b_lblkno member here 978 * as even in the 32 bit world driver_block can 979 * get very large in line with the ISO9660 spec. 980 */ 981 982 bufs[count].b_lblkno = driver_block; 983 984 remaining_bytes = ((which_chunk_lbn + 1) * chunk_data_bytes) 985 - byte_offset; 986 987 /* 988 * remaining_bytes can't be zero, as we derived 989 * which_chunk_lbn directly from byte_offset. 990 */ 991 if ((remaining_bytes + byte_offset) < (off + len)) { 992 /* coalesce-read the rest of the chunk */ 993 bufs[count].b_bcount = remaining_bytes; 994 } else { 995 /* get the final bits */ 996 bufs[count].b_bcount = off + len - byte_offset; 997 } 998 999 remainder = PAGESIZE - (byte_offset % PAGESIZE); 1000 if (bufs[count].b_bcount > remainder) { 1001 bufs[count].b_bcount = remainder; 1002 } 1003 1004 bufs[count].b_bufsize = bufs[count].b_bcount; 1005 if (((offset_t)byte_offset + bufs[count].b_bcount) > 1006 HS_MAXFILEOFF) { 1007 break; 1008 } 1009 byte_offset += bufs[count].b_bcount; 1010 1011 /* 1012 * We are scheduling I/O so we need to enqueue 1013 * requests rather than calling bdev_strategy 1014 * here. A later invocation of the scheduling 1015 * function will take care of doing the actual 1016 * I/O as it selects requests from the queue as 1017 * per the scheduling logic. 1018 */ 1019 struct hio *hsio = kmem_cache_alloc(hio_cache, 1020 KM_SLEEP); 1021 1022 sema_init(&fio_done[count], 0, NULL, 1023 SEMA_DEFAULT, NULL); 1024 hsio->bp = &bufs[count]; 1025 hsio->sema = &fio_done[count]; 1026 hsio->io_lblkno = bufs[count].b_lblkno; 1027 hsio->nblocks = howmany(hsio->bp->b_bcount, 1028 DEV_BSIZE); 1029 1030 /* used for deadline */ 1031 hsio->io_timestamp = drv_hztousec(ddi_get_lbolt()); 1032 1033 /* for I/O coalescing */ 1034 hsio->contig_chain = NULL; 1035 hsched_enqueue_io(fsp, hsio, 1); 1036 1037 lwp_stat_update(LWP_STAT_INBLK, 1); 1038 lastp = searchp; 1039 if ((remainder - bufs[count].b_bcount) < 1) { 1040 searchp = searchp->p_next; 1041 } 1042 } 1043 1044 bufsused = count; 1045 info = kmem_cache_alloc(hio_info_cache, KM_SLEEP); 1046 info->bufs = bufs; 1047 info->vas = vas; 1048 info->sema = fio_done; 1049 info->bufsused = bufsused; 1050 info->bufcnt = bufcnt; 1051 info->fsp = fsp; 1052 info->pp = pp; 1053 1054 (void) taskq_dispatch(fsp->hqueue->ra_task, 1055 hsfs_ra_task, info, KM_SLEEP); 1056 /* 1057 * The I/O locked pages are unlocked in our taskq thread. 1058 */ 1059 return (0); 1060 } 1061 1062 /* 1063 * Each file may have a different interleaving on disk. This makes 1064 * things somewhat interesting. The gist is that there are some 1065 * number of contiguous data sectors, followed by some other number 1066 * of contiguous skip sectors. The sum of those two sets of sectors 1067 * defines the interleave size. Unfortunately, it means that we generally 1068 * can't simply read N sectors starting at a given offset to satisfy 1069 * any given request. 1070 * 1071 * What we do is get the relevant memory pages via pvn_read_kluster(), 1072 * then stride through the interleaves, setting up a buf for each 1073 * sector that needs to be brought in. Instead of kmem_alloc'ing 1074 * space for the sectors, though, we just point at the appropriate 1075 * spot in the relevant page for each of them. This saves us a bunch 1076 * of copying. 1077 * 1078 * NOTICE: The code below in hsfs_getapage is mostly same as the code 1079 * in hsfs_getpage_ra above (with some omissions). If you are 1080 * making any change to this function, please also look at 1081 * hsfs_getpage_ra. 1082 */ 1083 /*ARGSUSED*/ 1084 static int 1085 hsfs_getapage( 1086 struct vnode *vp, 1087 u_offset_t off, 1088 size_t len, 1089 uint_t *protp, 1090 struct page *pl[], 1091 size_t plsz, 1092 struct seg *seg, 1093 caddr_t addr, 1094 enum seg_rw rw, 1095 struct cred *cred) 1096 { 1097 struct hsnode *hp; 1098 struct hsfs *fsp; 1099 int err; 1100 struct buf *bufs; 1101 caddr_t *vas; 1102 caddr_t va; 1103 struct page *pp, *searchp, *lastp; 1104 page_t *pagefound; 1105 offset_t bof; 1106 struct vnode *devvp; 1107 ulong_t byte_offset; 1108 size_t io_len_tmp; 1109 uint_t io_off, io_len; 1110 uint_t xlen; 1111 uint_t filsiz; 1112 uint_t secsize; 1113 uint_t bufcnt; 1114 uint_t bufsused; 1115 uint_t count; 1116 uint_t io_end; 1117 uint_t which_chunk_lbn; 1118 uint_t offset_lbn; 1119 uint_t offset_extra; 1120 offset_t offset_bytes; 1121 uint_t remaining_bytes; 1122 uint_t extension; 1123 int remainder; /* must be signed */ 1124 int chunk_lbn_count; 1125 int chunk_data_bytes; 1126 int xarsiz; 1127 diskaddr_t driver_block; 1128 u_offset_t io_off_tmp; 1129 ksema_t *fio_done; 1130 int calcdone; 1131 1132 /* 1133 * We don't support asynchronous operation at the moment, so 1134 * just pretend we did it. If the pages are ever actually 1135 * needed, they'll get brought in then. 1136 */ 1137 if (pl == NULL) 1138 return (0); 1139 1140 hp = VTOH(vp); 1141 fsp = VFS_TO_HSFS(vp->v_vfsp); 1142 devvp = fsp->hsfs_devvp; 1143 secsize = fsp->hsfs_vol.lbn_size; /* bytes per logical block */ 1144 1145 /* file data size */ 1146 filsiz = hp->hs_dirent.ext_size; 1147 1148 /* disk addr for start of file */ 1149 bof = LBN_TO_BYTE((offset_t)hp->hs_dirent.ext_lbn, vp->v_vfsp); 1150 1151 /* xarsiz byte must be skipped for data */ 1152 xarsiz = hp->hs_dirent.xar_len << fsp->hsfs_vol.lbn_shift; 1153 1154 /* how many logical blocks in an interleave (data+skip) */ 1155 chunk_lbn_count = hp->hs_dirent.intlf_sz + hp->hs_dirent.intlf_sk; 1156 1157 if (chunk_lbn_count == 0) { 1158 chunk_lbn_count = 1; 1159 } 1160 1161 /* 1162 * Convert interleaving size into bytes. The zero case 1163 * (no interleaving) optimization is handled as a side- 1164 * effect of the read-ahead logic. 1165 */ 1166 if (hp->hs_dirent.intlf_sz == 0) { 1167 chunk_data_bytes = LBN_TO_BYTE(1, vp->v_vfsp); 1168 /* 1169 * Optimization: If our pagesize is a multiple of LBN 1170 * bytes, we can avoid breaking up a page into individual 1171 * lbn-sized requests. 1172 */ 1173 if (PAGESIZE % chunk_data_bytes == 0) { 1174 chunk_lbn_count = BYTE_TO_LBN(PAGESIZE, vp->v_vfsp); 1175 chunk_data_bytes = PAGESIZE; 1176 } 1177 } else { 1178 chunk_data_bytes = 1179 LBN_TO_BYTE(hp->hs_dirent.intlf_sz, vp->v_vfsp); 1180 } 1181 1182 reread: 1183 err = 0; 1184 pagefound = 0; 1185 calcdone = 0; 1186 1187 /* 1188 * Do some read-ahead. This mostly saves us a bit of 1189 * system cpu time more than anything else when doing 1190 * sequential reads. At some point, could do the 1191 * read-ahead asynchronously which might gain us something 1192 * on wall time, but it seems unlikely.... 1193 * 1194 * We do the easy case here, which is to read through 1195 * the end of the chunk, minus whatever's at the end that 1196 * won't exactly fill a page. 1197 */ 1198 if (hp->hs_ra_bytes > 0 && chunk_data_bytes != PAGESIZE) { 1199 which_chunk_lbn = (off + len) / chunk_data_bytes; 1200 extension = ((which_chunk_lbn + 1) * chunk_data_bytes) - off; 1201 extension -= (extension % PAGESIZE); 1202 } else { 1203 extension = roundup(len, PAGESIZE); 1204 } 1205 1206 atomic_inc_64(&fsp->total_pages_requested); 1207 1208 pp = NULL; 1209 again: 1210 /* search for page in buffer */ 1211 if ((pagefound = page_exists(vp, off)) == 0) { 1212 /* 1213 * Need to really do disk IO to get the page. 1214 */ 1215 if (!calcdone) { 1216 extension += hp->hs_ra_bytes; 1217 1218 /* 1219 * Some cd writers don't write sectors that aren't 1220 * used. Also, there's no point in reading sectors 1221 * we'll never look at. So, if we're asked to go 1222 * beyond the end of a file, truncate to the length 1223 * of that file. 1224 * 1225 * Additionally, this behaviour is required by section 1226 * 6.4.5 of ISO 9660:1988(E). 1227 */ 1228 len = MIN(extension ? extension : PAGESIZE, 1229 filsiz - off); 1230 1231 /* A little paranoia. */ 1232 ASSERT(len > 0); 1233 1234 /* 1235 * After all that, make sure we're asking for things 1236 * in units that bdev_strategy() will understand 1237 * (see bug 4202551). 1238 */ 1239 len = roundup(len, DEV_BSIZE); 1240 calcdone = 1; 1241 } 1242 1243 pp = pvn_read_kluster(vp, off, seg, addr, &io_off_tmp, 1244 &io_len_tmp, off, len, 0); 1245 1246 if (pp == NULL) { 1247 /* 1248 * Pressure on memory, roll back readahead 1249 */ 1250 hp->hs_num_contig = 0; 1251 hp->hs_ra_bytes = 0; 1252 hp->hs_prev_offset = 0; 1253 goto again; 1254 } 1255 1256 io_off = (uint_t)io_off_tmp; 1257 io_len = (uint_t)io_len_tmp; 1258 1259 /* check for truncation */ 1260 /* 1261 * xxx Clean up and return EIO instead? 1262 * xxx Ought to go to u_offset_t for everything, but we 1263 * xxx call lots of things that want uint_t arguments. 1264 */ 1265 ASSERT(io_off == io_off_tmp); 1266 1267 /* 1268 * get enough buffers for worst-case scenario 1269 * (i.e., no coalescing possible). 1270 */ 1271 bufcnt = (len + secsize - 1) / secsize; 1272 bufs = kmem_zalloc(bufcnt * sizeof (struct buf), KM_SLEEP); 1273 vas = kmem_alloc(bufcnt * sizeof (caddr_t), KM_SLEEP); 1274 1275 /* 1276 * Allocate a array of semaphores if we are doing I/O 1277 * scheduling. 1278 */ 1279 if (fsp->hqueue != NULL) 1280 fio_done = kmem_alloc(bufcnt * sizeof (ksema_t), 1281 KM_SLEEP); 1282 for (count = 0; count < bufcnt; count++) { 1283 bioinit(&bufs[count]); 1284 bufs[count].b_edev = devvp->v_rdev; 1285 bufs[count].b_dev = cmpdev(devvp->v_rdev); 1286 bufs[count].b_flags = B_NOCACHE|B_BUSY|B_READ; 1287 bufs[count].b_iodone = hsfs_iodone; 1288 bufs[count].b_vp = vp; 1289 bufs[count].b_file = vp; 1290 } 1291 1292 /* 1293 * If our filesize is not an integer multiple of PAGESIZE, 1294 * we zero that part of the last page that's between EOF and 1295 * the PAGESIZE boundary. 1296 */ 1297 xlen = io_len & PAGEOFFSET; 1298 if (xlen != 0) 1299 pagezero(pp->p_prev, xlen, PAGESIZE - xlen); 1300 1301 va = NULL; 1302 lastp = NULL; 1303 searchp = pp; 1304 io_end = io_off + io_len; 1305 for (count = 0, byte_offset = io_off; 1306 byte_offset < io_end; count++) { 1307 ASSERT(count < bufcnt); 1308 1309 /* Compute disk address for interleaving. */ 1310 1311 /* considered without skips */ 1312 which_chunk_lbn = byte_offset / chunk_data_bytes; 1313 1314 /* factor in skips */ 1315 offset_lbn = which_chunk_lbn * chunk_lbn_count; 1316 1317 /* convert to physical byte offset for lbn */ 1318 offset_bytes = LBN_TO_BYTE(offset_lbn, vp->v_vfsp); 1319 1320 /* don't forget offset into lbn */ 1321 offset_extra = byte_offset % chunk_data_bytes; 1322 1323 /* get virtual block number for driver */ 1324 driver_block = 1325 lbtodb(bof + xarsiz + offset_bytes + offset_extra); 1326 1327 if (lastp != searchp) { 1328 /* this branch taken first time through loop */ 1329 va = vas[count] = 1330 ppmapin(searchp, PROT_WRITE, (caddr_t)-1); 1331 /* ppmapin() guarantees not to return NULL */ 1332 } else { 1333 vas[count] = NULL; 1334 } 1335 1336 bufs[count].b_un.b_addr = va + byte_offset % PAGESIZE; 1337 bufs[count].b_offset = 1338 (offset_t)(byte_offset - io_off + off); 1339 1340 /* 1341 * We specifically use the b_lblkno member here 1342 * as even in the 32 bit world driver_block can 1343 * get very large in line with the ISO9660 spec. 1344 */ 1345 1346 bufs[count].b_lblkno = driver_block; 1347 1348 remaining_bytes = 1349 ((which_chunk_lbn + 1) * chunk_data_bytes) 1350 - byte_offset; 1351 1352 /* 1353 * remaining_bytes can't be zero, as we derived 1354 * which_chunk_lbn directly from byte_offset. 1355 */ 1356 if ((remaining_bytes + byte_offset) < (off + len)) { 1357 /* coalesce-read the rest of the chunk */ 1358 bufs[count].b_bcount = remaining_bytes; 1359 } else { 1360 /* get the final bits */ 1361 bufs[count].b_bcount = off + len - byte_offset; 1362 } 1363 1364 /* 1365 * It would be nice to do multiple pages' 1366 * worth at once here when the opportunity 1367 * arises, as that has been shown to improve 1368 * our wall time. However, to do that 1369 * requires that we use the pageio subsystem, 1370 * which doesn't mix well with what we're 1371 * already using here. We can't use pageio 1372 * all the time, because that subsystem 1373 * assumes that a page is stored in N 1374 * contiguous blocks on the device. 1375 * Interleaving violates that assumption. 1376 * 1377 * Update: This is now not so big a problem 1378 * because of the I/O scheduler sitting below 1379 * that can re-order and coalesce I/O requests. 1380 */ 1381 1382 remainder = PAGESIZE - (byte_offset % PAGESIZE); 1383 if (bufs[count].b_bcount > remainder) { 1384 bufs[count].b_bcount = remainder; 1385 } 1386 1387 bufs[count].b_bufsize = bufs[count].b_bcount; 1388 if (((offset_t)byte_offset + bufs[count].b_bcount) > 1389 HS_MAXFILEOFF) { 1390 break; 1391 } 1392 byte_offset += bufs[count].b_bcount; 1393 1394 if (fsp->hqueue == NULL) { 1395 (void) bdev_strategy(&bufs[count]); 1396 1397 } else { 1398 /* 1399 * We are scheduling I/O so we need to enqueue 1400 * requests rather than calling bdev_strategy 1401 * here. A later invocation of the scheduling 1402 * function will take care of doing the actual 1403 * I/O as it selects requests from the queue as 1404 * per the scheduling logic. 1405 */ 1406 struct hio *hsio = kmem_cache_alloc(hio_cache, 1407 KM_SLEEP); 1408 1409 sema_init(&fio_done[count], 0, NULL, 1410 SEMA_DEFAULT, NULL); 1411 hsio->bp = &bufs[count]; 1412 hsio->sema = &fio_done[count]; 1413 hsio->io_lblkno = bufs[count].b_lblkno; 1414 hsio->nblocks = howmany(hsio->bp->b_bcount, 1415 DEV_BSIZE); 1416 1417 /* used for deadline */ 1418 hsio->io_timestamp = 1419 drv_hztousec(ddi_get_lbolt()); 1420 1421 /* for I/O coalescing */ 1422 hsio->contig_chain = NULL; 1423 hsched_enqueue_io(fsp, hsio, 0); 1424 } 1425 1426 lwp_stat_update(LWP_STAT_INBLK, 1); 1427 lastp = searchp; 1428 if ((remainder - bufs[count].b_bcount) < 1) { 1429 searchp = searchp->p_next; 1430 } 1431 } 1432 1433 bufsused = count; 1434 /* Now wait for everything to come in */ 1435 if (fsp->hqueue == NULL) { 1436 for (count = 0; count < bufsused; count++) { 1437 if (err == 0) { 1438 err = biowait(&bufs[count]); 1439 } else 1440 (void) biowait(&bufs[count]); 1441 } 1442 } else { 1443 for (count = 0; count < bufsused; count++) { 1444 struct buf *wbuf; 1445 1446 /* 1447 * Invoke scheduling function till our buf 1448 * is processed. In doing this it might 1449 * process bufs enqueued by other threads 1450 * which is good. 1451 */ 1452 wbuf = &bufs[count]; 1453 DTRACE_PROBE1(hsfs_io_wait, struct buf *, wbuf); 1454 while (sema_tryp(&fio_done[count]) == 0) { 1455 /* 1456 * hsched_invoke_strategy will return 1 1457 * if the I/O queue is empty. This means 1458 * that there is another thread who has 1459 * issued our buf and is waiting. So we 1460 * just block instead of spinning. 1461 */ 1462 if (hsched_invoke_strategy(fsp)) { 1463 sema_p(&fio_done[count]); 1464 break; 1465 } 1466 } 1467 sema_destroy(&fio_done[count]); 1468 DTRACE_PROBE1(hsfs_io_done, struct buf *, wbuf); 1469 1470 if (err == 0) { 1471 err = geterror(wbuf); 1472 } 1473 } 1474 kmem_free(fio_done, bufcnt * sizeof (ksema_t)); 1475 } 1476 1477 /* Don't leak resources */ 1478 for (count = 0; count < bufcnt; count++) { 1479 biofini(&bufs[count]); 1480 if (count < bufsused && vas[count] != NULL) { 1481 ppmapout(vas[count]); 1482 } 1483 } 1484 1485 kmem_free(vas, bufcnt * sizeof (caddr_t)); 1486 kmem_free(bufs, bufcnt * sizeof (struct buf)); 1487 } 1488 1489 if (err) { 1490 pvn_read_done(pp, B_ERROR); 1491 return (err); 1492 } 1493 1494 /* 1495 * Lock the requested page, and the one after it if possible. 1496 * Don't bother if our caller hasn't given us a place to stash 1497 * the page pointers, since otherwise we'd lock pages that would 1498 * never get unlocked. 1499 */ 1500 if (pagefound) { 1501 int index; 1502 ulong_t soff; 1503 1504 /* 1505 * Make sure it's in memory before we say it's here. 1506 */ 1507 if ((pp = page_lookup(vp, off, SE_SHARED)) == NULL) { 1508 hsfs_lostpage++; 1509 goto reread; 1510 } 1511 1512 pl[0] = pp; 1513 index = 1; 1514 atomic_inc_64(&fsp->cache_read_pages); 1515 1516 /* 1517 * Try to lock the next page, if it exists, without 1518 * blocking. 1519 */ 1520 plsz -= PAGESIZE; 1521 /* LINTED (plsz is unsigned) */ 1522 for (soff = off + PAGESIZE; plsz > 0; 1523 soff += PAGESIZE, plsz -= PAGESIZE) { 1524 pp = page_lookup_nowait(vp, (u_offset_t)soff, 1525 SE_SHARED); 1526 if (pp == NULL) 1527 break; 1528 pl[index++] = pp; 1529 } 1530 pl[index] = NULL; 1531 1532 /* 1533 * Schedule a semi-asynchronous readahead if we are 1534 * accessing the last cached page for the current 1535 * file. 1536 * 1537 * Doing this here means that readaheads will be 1538 * issued only if cache-hits occur. This is an advantage 1539 * since cache-hits would mean that readahead is giving 1540 * the desired benefit. If cache-hits do not occur there 1541 * is no point in reading ahead of time - the system 1542 * is loaded anyway. 1543 */ 1544 if (fsp->hqueue != NULL && 1545 hp->hs_prev_offset - off == PAGESIZE && 1546 hp->hs_prev_offset < filsiz && 1547 hp->hs_ra_bytes > 0 && 1548 !page_exists(vp, hp->hs_prev_offset)) { 1549 (void) hsfs_getpage_ra(vp, hp->hs_prev_offset, seg, 1550 addr + PAGESIZE, hp, fsp, xarsiz, bof, 1551 chunk_lbn_count, chunk_data_bytes); 1552 } 1553 1554 return (0); 1555 } 1556 1557 if (pp != NULL) { 1558 pvn_plist_init(pp, pl, plsz, off, io_len, rw); 1559 } 1560 1561 return (err); 1562 } 1563 1564 /*ARGSUSED*/ 1565 static int 1566 hsfs_getpage( 1567 struct vnode *vp, 1568 offset_t off, 1569 size_t len, 1570 uint_t *protp, 1571 struct page *pl[], 1572 size_t plsz, 1573 struct seg *seg, 1574 caddr_t addr, 1575 enum seg_rw rw, 1576 struct cred *cred, 1577 caller_context_t *ct) 1578 { 1579 int err; 1580 uint_t filsiz; 1581 struct hsfs *fsp; 1582 struct hsnode *hp; 1583 1584 fsp = VFS_TO_HSFS(vp->v_vfsp); 1585 hp = VTOH(vp); 1586 1587 /* does not support write */ 1588 if (rw == S_WRITE) { 1589 panic("write attempt on READ ONLY HSFS"); 1590 /*NOTREACHED*/ 1591 } 1592 1593 if (vp->v_flag & VNOMAP) { 1594 return (ENOSYS); 1595 } 1596 1597 ASSERT(off <= HS_MAXFILEOFF); 1598 1599 /* 1600 * Determine file data size for EOF check. 1601 */ 1602 filsiz = hp->hs_dirent.ext_size; 1603 if ((off + len) > (offset_t)(filsiz + PAGEOFFSET) && seg != segkmap) 1604 return (EFAULT); /* beyond EOF */ 1605 1606 /* 1607 * Async Read-ahead computation. 1608 * This attempts to detect sequential access pattern and 1609 * enables reading extra pages ahead of time. 1610 */ 1611 if (fsp->hqueue != NULL) { 1612 /* 1613 * This check for sequential access also takes into 1614 * account segmap weirdness when reading in chunks 1615 * less than the segmap size of 8K. 1616 */ 1617 if (hp->hs_prev_offset == off || (off < 1618 hp->hs_prev_offset && off + MAX(len, PAGESIZE) 1619 >= hp->hs_prev_offset)) { 1620 if (hp->hs_num_contig < 1621 (seq_contig_requests - 1)) { 1622 hp->hs_num_contig++; 1623 1624 } else { 1625 /* 1626 * We increase readahead quantum till 1627 * a predefined max. max_readahead_bytes 1628 * is a multiple of PAGESIZE. 1629 */ 1630 if (hp->hs_ra_bytes < 1631 fsp->hqueue->max_ra_bytes) { 1632 hp->hs_ra_bytes += PAGESIZE; 1633 } 1634 } 1635 } else { 1636 /* 1637 * Not contiguous so reduce read ahead counters. 1638 */ 1639 if (hp->hs_ra_bytes > 0) 1640 hp->hs_ra_bytes -= PAGESIZE; 1641 1642 if (hp->hs_ra_bytes <= 0) { 1643 hp->hs_ra_bytes = 0; 1644 if (hp->hs_num_contig > 0) 1645 hp->hs_num_contig--; 1646 } 1647 } 1648 /* 1649 * Length must be rounded up to page boundary. 1650 * since we read in units of pages. 1651 */ 1652 hp->hs_prev_offset = off + roundup(len, PAGESIZE); 1653 DTRACE_PROBE1(hsfs_compute_ra, struct hsnode *, hp); 1654 } 1655 if (protp != NULL) 1656 *protp = PROT_ALL; 1657 1658 if (len <= PAGESIZE) 1659 err = hsfs_getapage(vp, (u_offset_t)off, len, protp, pl, plsz, 1660 seg, addr, rw, cred); 1661 else 1662 err = pvn_getpages(hsfs_getapage, vp, off, len, protp, 1663 pl, plsz, seg, addr, rw, cred); 1664 1665 return (err); 1666 } 1667 1668 1669 1670 /* 1671 * This function should never be called. We need to have it to pass 1672 * it as an argument to other functions. 1673 */ 1674 /*ARGSUSED*/ 1675 int 1676 hsfs_putapage( 1677 vnode_t *vp, 1678 page_t *pp, 1679 u_offset_t *offp, 1680 size_t *lenp, 1681 int flags, 1682 cred_t *cr) 1683 { 1684 /* should never happen - just destroy it */ 1685 cmn_err(CE_NOTE, "hsfs_putapage: dirty HSFS page"); 1686 pvn_write_done(pp, B_ERROR | B_WRITE | B_INVAL | B_FORCE | flags); 1687 return (0); 1688 } 1689 1690 1691 /* 1692 * The only flags we support are B_INVAL, B_FREE and B_DONTNEED. 1693 * B_INVAL is set by: 1694 * 1695 * 1) the MC_SYNC command of memcntl(2) to support the MS_INVALIDATE flag. 1696 * 2) the MC_ADVISE command of memcntl(2) with the MADV_DONTNEED advice 1697 * which translates to an MC_SYNC with the MS_INVALIDATE flag. 1698 * 1699 * The B_FREE (as well as the B_DONTNEED) flag is set when the 1700 * MADV_SEQUENTIAL advice has been used. VOP_PUTPAGE is invoked 1701 * from SEGVN to release pages behind a pagefault. 1702 */ 1703 /*ARGSUSED*/ 1704 static int 1705 hsfs_putpage( 1706 struct vnode *vp, 1707 offset_t off, 1708 size_t len, 1709 int flags, 1710 struct cred *cr, 1711 caller_context_t *ct) 1712 { 1713 int error = 0; 1714 1715 if (vp->v_count == 0) { 1716 panic("hsfs_putpage: bad v_count"); 1717 /*NOTREACHED*/ 1718 } 1719 1720 if (vp->v_flag & VNOMAP) 1721 return (ENOSYS); 1722 1723 ASSERT(off <= HS_MAXFILEOFF); 1724 1725 if (!vn_has_cached_data(vp)) /* no pages mapped */ 1726 return (0); 1727 1728 if (len == 0) { /* from 'off' to EOF */ 1729 error = pvn_vplist_dirty(vp, off, hsfs_putapage, flags, cr); 1730 } else { 1731 offset_t end_off = off + len; 1732 offset_t file_size = VTOH(vp)->hs_dirent.ext_size; 1733 offset_t io_off; 1734 1735 file_size = (file_size + PAGESIZE - 1) & PAGEMASK; 1736 if (end_off > file_size) 1737 end_off = file_size; 1738 1739 for (io_off = off; io_off < end_off; io_off += PAGESIZE) { 1740 page_t *pp; 1741 1742 /* 1743 * We insist on getting the page only if we are 1744 * about to invalidate, free or write it and 1745 * the B_ASYNC flag is not set. 1746 */ 1747 if ((flags & B_INVAL) || ((flags & B_ASYNC) == 0)) { 1748 pp = page_lookup(vp, io_off, 1749 (flags & (B_INVAL | B_FREE)) ? 1750 SE_EXCL : SE_SHARED); 1751 } else { 1752 pp = page_lookup_nowait(vp, io_off, 1753 (flags & B_FREE) ? SE_EXCL : SE_SHARED); 1754 } 1755 1756 if (pp == NULL) 1757 continue; 1758 1759 /* 1760 * Normally pvn_getdirty() should return 0, which 1761 * impies that it has done the job for us. 1762 * The shouldn't-happen scenario is when it returns 1. 1763 * This means that the page has been modified and 1764 * needs to be put back. 1765 * Since we can't write on a CD, we fake a failed 1766 * I/O and force pvn_write_done() to destroy the page. 1767 */ 1768 if (pvn_getdirty(pp, flags) == 1) { 1769 cmn_err(CE_NOTE, 1770 "hsfs_putpage: dirty HSFS page"); 1771 pvn_write_done(pp, flags | 1772 B_ERROR | B_WRITE | B_INVAL | B_FORCE); 1773 } 1774 } 1775 } 1776 return (error); 1777 } 1778 1779 1780 /*ARGSUSED*/ 1781 static int 1782 hsfs_map( 1783 struct vnode *vp, 1784 offset_t off, 1785 struct as *as, 1786 caddr_t *addrp, 1787 size_t len, 1788 uchar_t prot, 1789 uchar_t maxprot, 1790 uint_t flags, 1791 struct cred *cred, 1792 caller_context_t *ct) 1793 { 1794 struct segvn_crargs vn_a; 1795 int error; 1796 1797 /* VFS_RECORD(vp->v_vfsp, VS_MAP, VS_CALL); */ 1798 1799 if (vp->v_flag & VNOMAP) 1800 return (ENOSYS); 1801 1802 if (off > HS_MAXFILEOFF || off < 0 || 1803 (off + len) < 0 || (off + len) > HS_MAXFILEOFF) 1804 return (ENXIO); 1805 1806 if (vp->v_type != VREG) { 1807 return (ENODEV); 1808 } 1809 1810 /* 1811 * If file is being locked, disallow mapping. 1812 */ 1813 if (vn_has_mandatory_locks(vp, VTOH(vp)->hs_dirent.mode)) 1814 return (EAGAIN); 1815 1816 as_rangelock(as); 1817 1818 if ((flags & MAP_FIXED) == 0) { 1819 map_addr(addrp, len, off, 1, flags); 1820 if (*addrp == NULL) { 1821 as_rangeunlock(as); 1822 return (ENOMEM); 1823 } 1824 } else { 1825 /* 1826 * User specified address - blow away any previous mappings 1827 */ 1828 (void) as_unmap(as, *addrp, len); 1829 } 1830 1831 vn_a.vp = vp; 1832 vn_a.offset = off; 1833 vn_a.type = flags & MAP_TYPE; 1834 vn_a.prot = prot; 1835 vn_a.maxprot = maxprot; 1836 vn_a.flags = flags & ~MAP_TYPE; 1837 vn_a.cred = cred; 1838 vn_a.amp = NULL; 1839 vn_a.szc = 0; 1840 vn_a.lgrp_mem_policy_flags = 0; 1841 1842 error = as_map(as, *addrp, len, segvn_create, &vn_a); 1843 as_rangeunlock(as); 1844 return (error); 1845 } 1846 1847 /* ARGSUSED */ 1848 static int 1849 hsfs_addmap( 1850 struct vnode *vp, 1851 offset_t off, 1852 struct as *as, 1853 caddr_t addr, 1854 size_t len, 1855 uchar_t prot, 1856 uchar_t maxprot, 1857 uint_t flags, 1858 struct cred *cr, 1859 caller_context_t *ct) 1860 { 1861 struct hsnode *hp; 1862 1863 if (vp->v_flag & VNOMAP) 1864 return (ENOSYS); 1865 1866 hp = VTOH(vp); 1867 mutex_enter(&hp->hs_contents_lock); 1868 hp->hs_mapcnt += btopr(len); 1869 mutex_exit(&hp->hs_contents_lock); 1870 return (0); 1871 } 1872 1873 /*ARGSUSED*/ 1874 static int 1875 hsfs_delmap( 1876 struct vnode *vp, 1877 offset_t off, 1878 struct as *as, 1879 caddr_t addr, 1880 size_t len, 1881 uint_t prot, 1882 uint_t maxprot, 1883 uint_t flags, 1884 struct cred *cr, 1885 caller_context_t *ct) 1886 { 1887 struct hsnode *hp; 1888 1889 if (vp->v_flag & VNOMAP) 1890 return (ENOSYS); 1891 1892 hp = VTOH(vp); 1893 mutex_enter(&hp->hs_contents_lock); 1894 hp->hs_mapcnt -= btopr(len); /* Count released mappings */ 1895 ASSERT(hp->hs_mapcnt >= 0); 1896 mutex_exit(&hp->hs_contents_lock); 1897 return (0); 1898 } 1899 1900 /* ARGSUSED */ 1901 static int 1902 hsfs_seek( 1903 struct vnode *vp, 1904 offset_t ooff, 1905 offset_t *noffp, 1906 caller_context_t *ct) 1907 { 1908 return ((*noffp < 0 || *noffp > MAXOFFSET_T) ? EINVAL : 0); 1909 } 1910 1911 /* ARGSUSED */ 1912 static int 1913 hsfs_frlock( 1914 struct vnode *vp, 1915 int cmd, 1916 struct flock64 *bfp, 1917 int flag, 1918 offset_t offset, 1919 struct flk_callback *flk_cbp, 1920 cred_t *cr, 1921 caller_context_t *ct) 1922 { 1923 struct hsnode *hp = VTOH(vp); 1924 1925 /* 1926 * If the file is being mapped, disallow fs_frlock. 1927 * We are not holding the hs_contents_lock while checking 1928 * hs_mapcnt because the current locking strategy drops all 1929 * locks before calling fs_frlock. 1930 * So, hs_mapcnt could change before we enter fs_frlock making 1931 * it meaningless to have held hs_contents_lock in the first place. 1932 */ 1933 if (hp->hs_mapcnt > 0 && MANDLOCK(vp, hp->hs_dirent.mode)) 1934 return (EAGAIN); 1935 1936 return (fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr, ct)); 1937 } 1938 1939 static int 1940 hsched_deadline_compare(const void *x1, const void *x2) 1941 { 1942 const struct hio *h1 = x1; 1943 const struct hio *h2 = x2; 1944 1945 if (h1->io_timestamp < h2->io_timestamp) 1946 return (-1); 1947 if (h1->io_timestamp > h2->io_timestamp) 1948 return (1); 1949 1950 if (h1->io_lblkno < h2->io_lblkno) 1951 return (-1); 1952 if (h1->io_lblkno > h2->io_lblkno) 1953 return (1); 1954 1955 if (h1 < h2) 1956 return (-1); 1957 if (h1 > h2) 1958 return (1); 1959 1960 return (0); 1961 } 1962 1963 static int 1964 hsched_offset_compare(const void *x1, const void *x2) 1965 { 1966 const struct hio *h1 = x1; 1967 const struct hio *h2 = x2; 1968 1969 if (h1->io_lblkno < h2->io_lblkno) 1970 return (-1); 1971 if (h1->io_lblkno > h2->io_lblkno) 1972 return (1); 1973 1974 if (h1 < h2) 1975 return (-1); 1976 if (h1 > h2) 1977 return (1); 1978 1979 return (0); 1980 } 1981 1982 void 1983 hsched_init_caches(void) 1984 { 1985 hio_cache = kmem_cache_create("hsfs_hio_cache", 1986 sizeof (struct hio), 0, NULL, 1987 NULL, NULL, NULL, NULL, 0); 1988 1989 hio_info_cache = kmem_cache_create("hsfs_hio_info_cache", 1990 sizeof (struct hio_info), 0, NULL, 1991 NULL, NULL, NULL, NULL, 0); 1992 } 1993 1994 void 1995 hsched_fini_caches(void) 1996 { 1997 kmem_cache_destroy(hio_cache); 1998 kmem_cache_destroy(hio_info_cache); 1999 } 2000 2001 /* 2002 * Initialize I/O scheduling structures. This is called via hsfs_mount 2003 */ 2004 void 2005 hsched_init(struct hsfs *fsp, int fsid, struct modlinkage *modlinkage) 2006 { 2007 struct hsfs_queue *hqueue = fsp->hqueue; 2008 struct vnode *vp = fsp->hsfs_devvp; 2009 2010 /* TaskQ name of the form: hsched_task_ + stringof(int) */ 2011 char namebuf[23]; 2012 int error, err; 2013 struct dk_cinfo info; 2014 ldi_handle_t lh; 2015 ldi_ident_t li; 2016 2017 /* 2018 * Default maxtransfer = 16k chunk 2019 */ 2020 hqueue->dev_maxtransfer = 16384; 2021 2022 /* 2023 * Try to fetch the maximum device transfer size. This is used to 2024 * ensure that a coalesced block does not exceed the maxtransfer. 2025 */ 2026 err = ldi_ident_from_mod(modlinkage, &li); 2027 if (err) { 2028 cmn_err(CE_NOTE, "hsched_init: Querying device failed"); 2029 cmn_err(CE_NOTE, "hsched_init: ldi_ident_from_mod err=%d\n", 2030 err); 2031 goto set_ra; 2032 } 2033 2034 err = ldi_open_by_dev(&(vp->v_rdev), OTYP_CHR, FREAD, CRED(), &lh, li); 2035 ldi_ident_release(li); 2036 if (err) { 2037 cmn_err(CE_NOTE, "hsched_init: Querying device failed"); 2038 cmn_err(CE_NOTE, "hsched_init: ldi_open err=%d\n", err); 2039 goto set_ra; 2040 } 2041 2042 error = ldi_ioctl(lh, DKIOCINFO, (intptr_t)&info, FKIOCTL, 2043 CRED(), &err); 2044 err = ldi_close(lh, FREAD, CRED()); 2045 if (err) { 2046 cmn_err(CE_NOTE, "hsched_init: Querying device failed"); 2047 cmn_err(CE_NOTE, "hsched_init: ldi_close err=%d\n", err); 2048 } 2049 2050 if (error == 0) { 2051 hqueue->dev_maxtransfer = ldbtob(info.dki_maxtransfer); 2052 } 2053 2054 set_ra: 2055 /* 2056 * Max size of data to read ahead for sequential access pattern. 2057 * Conservative to avoid letting the underlying CD drive to spin 2058 * down, in case the application is reading slowly. 2059 * We read ahead upto a max of 4 pages. 2060 */ 2061 hqueue->max_ra_bytes = PAGESIZE * 8; 2062 2063 mutex_init(&(hqueue->hsfs_queue_lock), NULL, MUTEX_DEFAULT, NULL); 2064 mutex_init(&(hqueue->strategy_lock), NULL, MUTEX_DEFAULT, NULL); 2065 avl_create(&(hqueue->read_tree), hsched_offset_compare, 2066 sizeof (struct hio), offsetof(struct hio, io_offset_node)); 2067 avl_create(&(hqueue->deadline_tree), hsched_deadline_compare, 2068 sizeof (struct hio), offsetof(struct hio, io_deadline_node)); 2069 2070 (void) snprintf(namebuf, sizeof (namebuf), "hsched_task_%d", fsid); 2071 hqueue->ra_task = taskq_create(namebuf, hsfs_taskq_nthreads, 2072 minclsyspri + 2, 1, 104857600 / PAGESIZE, TASKQ_DYNAMIC); 2073 2074 hqueue->next = NULL; 2075 hqueue->nbuf = kmem_zalloc(sizeof (struct buf), KM_SLEEP); 2076 } 2077 2078 void 2079 hsched_fini(struct hsfs_queue *hqueue) 2080 { 2081 if (hqueue != NULL) { 2082 /* 2083 * Remove the sentinel if there was one. 2084 */ 2085 if (hqueue->next != NULL) { 2086 avl_remove(&hqueue->read_tree, hqueue->next); 2087 kmem_cache_free(hio_cache, hqueue->next); 2088 } 2089 avl_destroy(&(hqueue->read_tree)); 2090 avl_destroy(&(hqueue->deadline_tree)); 2091 mutex_destroy(&(hqueue->hsfs_queue_lock)); 2092 mutex_destroy(&(hqueue->strategy_lock)); 2093 2094 /* 2095 * If there are any existing readahead threads running 2096 * taskq_destroy will wait for them to finish. 2097 */ 2098 taskq_destroy(hqueue->ra_task); 2099 kmem_free(hqueue->nbuf, sizeof (struct buf)); 2100 } 2101 } 2102 2103 /* 2104 * Determine if two I/O requests are adjacent to each other so 2105 * that they can coalesced. 2106 */ 2107 #define IS_ADJACENT(io, nio) \ 2108 (((io)->io_lblkno + (io)->nblocks == (nio)->io_lblkno) && \ 2109 (io)->bp->b_edev == (nio)->bp->b_edev) 2110 2111 /* 2112 * This performs the actual I/O scheduling logic. We use the Circular 2113 * Look algorithm here. Sort the I/O requests in ascending order of 2114 * logical block number and process them starting with the lowest 2115 * numbered block and progressing towards higher block numbers in the 2116 * queue. Once there are no more higher numbered blocks, start again 2117 * with the lowest one. This is good for CD/DVD as you keep moving 2118 * the head in one direction along the outward spiral track and avoid 2119 * too many seeks as much as possible. The re-ordering also allows 2120 * us to coalesce adjacent requests into one larger request. 2121 * This is thus essentially a 1-way Elevator with front merging. 2122 * 2123 * In addition each read request here has a deadline and will be 2124 * processed out of turn if the deadline (500ms) expires. 2125 * 2126 * This function is necessarily serialized via hqueue->strategy_lock. 2127 * This function sits just below hsfs_getapage and processes all read 2128 * requests orginating from that function. 2129 */ 2130 int 2131 hsched_invoke_strategy(struct hsfs *fsp) 2132 { 2133 struct hsfs_queue *hqueue; 2134 struct buf *nbuf; 2135 struct hio *fio, *nio, *tio, *prev, *last; 2136 size_t bsize, soffset, offset, data; 2137 int bioret, bufcount; 2138 struct vnode *fvp; 2139 ksema_t *io_done; 2140 caddr_t iodata; 2141 2142 hqueue = fsp->hqueue; 2143 mutex_enter(&hqueue->strategy_lock); 2144 mutex_enter(&hqueue->hsfs_queue_lock); 2145 2146 /* 2147 * Check for Deadline expiration first 2148 */ 2149 fio = avl_first(&hqueue->deadline_tree); 2150 2151 /* 2152 * Paranoid check for empty I/O queue. Both deadline 2153 * and read trees contain same data sorted in different 2154 * ways. So empty deadline tree = empty read tree. 2155 */ 2156 if (fio == NULL) { 2157 /* 2158 * Remove the sentinel if there was one. 2159 */ 2160 if (hqueue->next != NULL) { 2161 avl_remove(&hqueue->read_tree, hqueue->next); 2162 kmem_cache_free(hio_cache, hqueue->next); 2163 hqueue->next = NULL; 2164 } 2165 mutex_exit(&hqueue->hsfs_queue_lock); 2166 mutex_exit(&hqueue->strategy_lock); 2167 return (1); 2168 } 2169 2170 if (drv_hztousec(ddi_get_lbolt()) - fio->io_timestamp 2171 < HSFS_READ_DEADLINE) { 2172 /* 2173 * Apply standard scheduling logic. This uses the 2174 * C-LOOK approach. Process I/O requests in ascending 2175 * order of logical block address till no subsequent 2176 * higher numbered block request remains. Then start 2177 * again from the lowest numbered block in the queue. 2178 * 2179 * We do this cheaply here by means of a sentinel. 2180 * The last processed I/O structure from the previous 2181 * invocation of this func, is left dangling in the 2182 * read_tree so that we can easily scan to the next 2183 * higher numbered request and remove the sentinel. 2184 */ 2185 fio = NULL; 2186 if (hqueue->next != NULL) { 2187 fio = AVL_NEXT(&hqueue->read_tree, hqueue->next); 2188 avl_remove(&hqueue->read_tree, hqueue->next); 2189 kmem_cache_free(hio_cache, hqueue->next); 2190 hqueue->next = NULL; 2191 } 2192 if (fio == NULL) { 2193 fio = avl_first(&hqueue->read_tree); 2194 } 2195 } else if (hqueue->next != NULL) { 2196 DTRACE_PROBE1(hsfs_deadline_expiry, struct hio *, fio); 2197 2198 avl_remove(&hqueue->read_tree, hqueue->next); 2199 kmem_cache_free(hio_cache, hqueue->next); 2200 hqueue->next = NULL; 2201 } 2202 2203 /* 2204 * In addition we try to coalesce contiguous 2205 * requests into one bigger request. 2206 */ 2207 bufcount = 1; 2208 bsize = ldbtob(fio->nblocks); 2209 fvp = fio->bp->b_file; 2210 nio = AVL_NEXT(&hqueue->read_tree, fio); 2211 tio = fio; 2212 while (nio != NULL && IS_ADJACENT(tio, nio) && 2213 bsize < hqueue->dev_maxtransfer) { 2214 avl_remove(&hqueue->deadline_tree, tio); 2215 avl_remove(&hqueue->read_tree, tio); 2216 tio->contig_chain = nio; 2217 bsize += ldbtob(nio->nblocks); 2218 prev = tio; 2219 tio = nio; 2220 2221 /* 2222 * This check is required to detect the case where 2223 * we are merging adjacent buffers belonging to 2224 * different files. fvp is used to set the b_file 2225 * parameter in the coalesced buf. b_file is used 2226 * by DTrace so we do not want DTrace to accrue 2227 * requests to two different files to any one file. 2228 */ 2229 if (fvp && tio->bp->b_file != fvp) { 2230 fvp = NULL; 2231 } 2232 2233 nio = AVL_NEXT(&hqueue->read_tree, nio); 2234 bufcount++; 2235 } 2236 2237 /* 2238 * tio is not removed from the read_tree as it serves as a sentinel 2239 * to cheaply allow us to scan to the next higher numbered I/O 2240 * request. 2241 */ 2242 hqueue->next = tio; 2243 avl_remove(&hqueue->deadline_tree, tio); 2244 mutex_exit(&hqueue->hsfs_queue_lock); 2245 DTRACE_PROBE3(hsfs_io_dequeued, struct hio *, fio, int, bufcount, 2246 size_t, bsize); 2247 2248 /* 2249 * The benefit of coalescing occurs if the the savings in I/O outweighs 2250 * the cost of doing the additional work below. 2251 * It was observed that coalescing 2 buffers results in diminishing 2252 * returns, so we do coalescing if we have >2 adjacent bufs. 2253 */ 2254 if (bufcount > hsched_coalesce_min) { 2255 /* 2256 * We have coalesced blocks. First allocate mem and buf for 2257 * the entire coalesced chunk. 2258 * Since we are guaranteed single-threaded here we pre-allocate 2259 * one buf at mount time and that is re-used every time. This 2260 * is a synthesized buf structure that uses kmem_alloced chunk. 2261 * Not quite a normal buf attached to pages. 2262 */ 2263 fsp->coalesced_bytes += bsize; 2264 nbuf = hqueue->nbuf; 2265 bioinit(nbuf); 2266 nbuf->b_edev = fio->bp->b_edev; 2267 nbuf->b_dev = fio->bp->b_dev; 2268 nbuf->b_flags = fio->bp->b_flags; 2269 nbuf->b_iodone = fio->bp->b_iodone; 2270 iodata = kmem_alloc(bsize, KM_SLEEP); 2271 nbuf->b_un.b_addr = iodata; 2272 nbuf->b_lblkno = fio->bp->b_lblkno; 2273 nbuf->b_vp = fvp; 2274 nbuf->b_file = fvp; 2275 nbuf->b_bcount = bsize; 2276 nbuf->b_bufsize = bsize; 2277 nbuf->b_resid = bsize; 2278 2279 DTRACE_PROBE3(hsfs_coalesced_io_start, struct hio *, fio, int, 2280 bufcount, size_t, bsize); 2281 2282 /* 2283 * Perform I/O for the coalesced block. 2284 */ 2285 (void) bdev_strategy(nbuf); 2286 2287 /* 2288 * Duplicate the last IO node to leave the sentinel alone. 2289 * The sentinel is freed in the next invocation of this 2290 * function. 2291 */ 2292 prev->contig_chain = kmem_cache_alloc(hio_cache, KM_SLEEP); 2293 prev->contig_chain->bp = tio->bp; 2294 prev->contig_chain->sema = tio->sema; 2295 tio = prev->contig_chain; 2296 tio->contig_chain = NULL; 2297 soffset = ldbtob(fio->bp->b_lblkno); 2298 nio = fio; 2299 2300 bioret = biowait(nbuf); 2301 data = bsize - nbuf->b_resid; 2302 biofini(nbuf); 2303 mutex_exit(&hqueue->strategy_lock); 2304 2305 /* 2306 * We use the b_resid parameter to detect how much 2307 * data was succesfully transferred. We will signal 2308 * a success to all the fully retrieved actual bufs 2309 * before coalescing, rest is signaled as error, 2310 * if any. 2311 */ 2312 tio = nio; 2313 DTRACE_PROBE3(hsfs_coalesced_io_done, struct hio *, nio, 2314 int, bioret, size_t, data); 2315 2316 /* 2317 * Copy data and signal success to all the bufs 2318 * which can be fully satisfied from b_resid. 2319 */ 2320 while (nio != NULL && data >= nio->bp->b_bcount) { 2321 offset = ldbtob(nio->bp->b_lblkno) - soffset; 2322 bcopy(iodata + offset, nio->bp->b_un.b_addr, 2323 nio->bp->b_bcount); 2324 data -= nio->bp->b_bcount; 2325 bioerror(nio->bp, 0); 2326 biodone(nio->bp); 2327 sema_v(nio->sema); 2328 tio = nio; 2329 nio = nio->contig_chain; 2330 kmem_cache_free(hio_cache, tio); 2331 } 2332 2333 /* 2334 * Signal error to all the leftover bufs (if any) 2335 * after b_resid data is exhausted. 2336 */ 2337 while (nio != NULL) { 2338 nio->bp->b_resid = nio->bp->b_bcount - data; 2339 bzero(nio->bp->b_un.b_addr + data, nio->bp->b_resid); 2340 bioerror(nio->bp, bioret); 2341 biodone(nio->bp); 2342 sema_v(nio->sema); 2343 tio = nio; 2344 nio = nio->contig_chain; 2345 kmem_cache_free(hio_cache, tio); 2346 data = 0; 2347 } 2348 kmem_free(iodata, bsize); 2349 } else { 2350 2351 nbuf = tio->bp; 2352 io_done = tio->sema; 2353 nio = fio; 2354 last = tio; 2355 2356 while (nio != NULL) { 2357 (void) bdev_strategy(nio->bp); 2358 nio = nio->contig_chain; 2359 } 2360 nio = fio; 2361 mutex_exit(&hqueue->strategy_lock); 2362 2363 while (nio != NULL) { 2364 if (nio == last) { 2365 (void) biowait(nbuf); 2366 sema_v(io_done); 2367 break; 2368 /* sentinel last not freed. See above. */ 2369 } else { 2370 (void) biowait(nio->bp); 2371 sema_v(nio->sema); 2372 } 2373 tio = nio; 2374 nio = nio->contig_chain; 2375 kmem_cache_free(hio_cache, tio); 2376 } 2377 } 2378 return (0); 2379 } 2380 2381 /* 2382 * Insert an I/O request in the I/O scheduler's pipeline 2383 * Using AVL tree makes it easy to reorder the I/O request 2384 * based on logical block number. 2385 */ 2386 static void 2387 hsched_enqueue_io(struct hsfs *fsp, struct hio *hsio, int ra) 2388 { 2389 struct hsfs_queue *hqueue = fsp->hqueue; 2390 2391 mutex_enter(&hqueue->hsfs_queue_lock); 2392 2393 fsp->physical_read_bytes += hsio->bp->b_bcount; 2394 if (ra) 2395 fsp->readahead_bytes += hsio->bp->b_bcount; 2396 2397 avl_add(&hqueue->deadline_tree, hsio); 2398 avl_add(&hqueue->read_tree, hsio); 2399 2400 DTRACE_PROBE3(hsfs_io_enqueued, struct hio *, hsio, 2401 struct hsfs_queue *, hqueue, int, ra); 2402 2403 mutex_exit(&hqueue->hsfs_queue_lock); 2404 } 2405 2406 /* ARGSUSED */ 2407 static int 2408 hsfs_pathconf(struct vnode *vp, 2409 int cmd, 2410 ulong_t *valp, 2411 struct cred *cr, 2412 caller_context_t *ct) 2413 { 2414 struct hsfs *fsp; 2415 2416 int error = 0; 2417 2418 switch (cmd) { 2419 2420 case _PC_NAME_MAX: 2421 fsp = VFS_TO_HSFS(vp->v_vfsp); 2422 *valp = fsp->hsfs_namemax; 2423 break; 2424 2425 case _PC_FILESIZEBITS: 2426 *valp = 33; /* Without multi extent support: 4 GB - 2k */ 2427 break; 2428 2429 default: 2430 error = fs_pathconf(vp, cmd, valp, cr, ct); 2431 } 2432 2433 return (error); 2434 } 2435 2436 2437 2438 const fs_operation_def_t hsfs_vnodeops_template[] = { 2439 VOPNAME_OPEN, { .vop_open = hsfs_open }, 2440 VOPNAME_CLOSE, { .vop_close = hsfs_close }, 2441 VOPNAME_READ, { .vop_read = hsfs_read }, 2442 VOPNAME_GETATTR, { .vop_getattr = hsfs_getattr }, 2443 VOPNAME_ACCESS, { .vop_access = hsfs_access }, 2444 VOPNAME_LOOKUP, { .vop_lookup = hsfs_lookup }, 2445 VOPNAME_READDIR, { .vop_readdir = hsfs_readdir }, 2446 VOPNAME_READLINK, { .vop_readlink = hsfs_readlink }, 2447 VOPNAME_FSYNC, { .vop_fsync = hsfs_fsync }, 2448 VOPNAME_INACTIVE, { .vop_inactive = hsfs_inactive }, 2449 VOPNAME_FID, { .vop_fid = hsfs_fid }, 2450 VOPNAME_SEEK, { .vop_seek = hsfs_seek }, 2451 VOPNAME_FRLOCK, { .vop_frlock = hsfs_frlock }, 2452 VOPNAME_GETPAGE, { .vop_getpage = hsfs_getpage }, 2453 VOPNAME_PUTPAGE, { .vop_putpage = hsfs_putpage }, 2454 VOPNAME_MAP, { .vop_map = hsfs_map }, 2455 VOPNAME_ADDMAP, { .vop_addmap = hsfs_addmap }, 2456 VOPNAME_DELMAP, { .vop_delmap = hsfs_delmap }, 2457 VOPNAME_PATHCONF, { .vop_pathconf = hsfs_pathconf }, 2458 NULL, NULL 2459 }; 2460 2461 struct vnodeops *hsfs_vnodeops; 2462