xref: /titanic_44/usr/src/uts/common/fs/hsfs/hsfs_vnops.c (revision 1e4c938b57d1656808e4112127ff1dce3eba5314)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 /*
28  * Vnode operations for the High Sierra filesystem
29  */
30 
31 #include <sys/types.h>
32 #include <sys/t_lock.h>
33 #include <sys/param.h>
34 #include <sys/time.h>
35 #include <sys/systm.h>
36 #include <sys/sysmacros.h>
37 #include <sys/resource.h>
38 #include <sys/signal.h>
39 #include <sys/cred.h>
40 #include <sys/user.h>
41 #include <sys/buf.h>
42 #include <sys/vfs.h>
43 #include <sys/vfs_opreg.h>
44 #include <sys/stat.h>
45 #include <sys/vnode.h>
46 #include <sys/mode.h>
47 #include <sys/proc.h>
48 #include <sys/disp.h>
49 #include <sys/file.h>
50 #include <sys/fcntl.h>
51 #include <sys/flock.h>
52 #include <sys/kmem.h>
53 #include <sys/uio.h>
54 #include <sys/conf.h>
55 #include <sys/errno.h>
56 #include <sys/mman.h>
57 #include <sys/pathname.h>
58 #include <sys/debug.h>
59 #include <sys/vmsystm.h>
60 #include <sys/cmn_err.h>
61 #include <sys/fbuf.h>
62 #include <sys/dirent.h>
63 #include <sys/errno.h>
64 #include <sys/dkio.h>
65 #include <sys/cmn_err.h>
66 #include <sys/atomic.h>
67 
68 #include <vm/hat.h>
69 #include <vm/page.h>
70 #include <vm/pvn.h>
71 #include <vm/as.h>
72 #include <vm/seg.h>
73 #include <vm/seg_map.h>
74 #include <vm/seg_kmem.h>
75 #include <vm/seg_vn.h>
76 #include <vm/rm.h>
77 #include <vm/page.h>
78 #include <sys/swap.h>
79 #include <sys/avl.h>
80 #include <sys/sunldi.h>
81 #include <sys/ddi.h>
82 #include <sys/sunddi.h>
83 #include <sys/sdt.h>
84 
85 /*
86  * For struct modlinkage
87  */
88 #include <sys/modctl.h>
89 
90 #include <sys/fs/hsfs_spec.h>
91 #include <sys/fs/hsfs_node.h>
92 #include <sys/fs/hsfs_impl.h>
93 #include <sys/fs/hsfs_susp.h>
94 #include <sys/fs/hsfs_rrip.h>
95 
96 #include <fs/fs_subr.h>
97 
98 /* # of contiguous requests to detect sequential access pattern */
99 static int seq_contig_requests = 2;
100 
101 /*
102  * This is the max number os taskq threads that will be created
103  * if required. Since we are using a Dynamic TaskQ by default only
104  * one thread is created initially.
105  *
106  * NOTE: In the usual hsfs use case this per fs instance number
107  * of taskq threads should not place any undue load on a system.
108  * Even on an unusual system with say 100 CDROM drives, 800 threads
109  * will not be created unless all the drives are loaded and all
110  * of them are saturated with I/O at the same time! If there is at
111  * all a complaint of system load due to such an unusual case it
112  * should be easy enough to change to one per-machine Dynamic TaskQ
113  * for all hsfs mounts with a nthreads of say 32.
114  */
115 static int hsfs_taskq_nthreads = 8;	/* # of taskq threads per fs */
116 
117 /* Min count of adjacent bufs that will avoid buf coalescing */
118 static int hsched_coalesce_min = 2;
119 
120 /*
121  * Kmem caches for heavily used small allocations. Using these kmem
122  * caches provides a factor of 3 reduction in system time and greatly
123  * aids overall throughput esp. on SPARC.
124  */
125 struct kmem_cache *hio_cache;
126 struct kmem_cache *hio_info_cache;
127 
128 /*
129  * This tunable allows us to ignore inode numbers from rrip-1.12.
130  * In this case, we fall back to our default inode algorithm.
131  */
132 extern int use_rrip_inodes;
133 
134 /*
135  * Free behind logic from UFS to tame our thirst for
136  * the page cache.
137  * See usr/src/uts/common/fs/ufs/ufs_vnops.c for more
138  * explanation.
139  */
140 static int	freebehind = 1;
141 static int	smallfile = 0;
142 static int	cache_read_ahead = 0;
143 static u_offset_t smallfile64 = 32 * 1024;
144 #define	SMALLFILE1_D 1000
145 #define	SMALLFILE2_D 10
146 static u_offset_t smallfile1 = 32 * 1024;
147 static u_offset_t smallfile2 = 32 * 1024;
148 static clock_t smallfile_update = 0; /* when to recompute */
149 static uint_t smallfile1_d = SMALLFILE1_D;
150 static uint_t smallfile2_d = SMALLFILE2_D;
151 
152 static int hsched_deadline_compare(const void *x1, const void *x2);
153 static int hsched_offset_compare(const void *x1, const void *x2);
154 static void hsched_enqueue_io(struct hsfs *fsp, struct hio *hsio, int ra);
155 int hsched_invoke_strategy(struct hsfs *fsp);
156 
157 /* ARGSUSED */
158 static int
159 hsfs_fsync(vnode_t *cp,
160 	int syncflag,
161 	cred_t *cred,
162 	caller_context_t *ct)
163 {
164 	return (0);
165 }
166 
167 
168 /*ARGSUSED*/
169 static int
170 hsfs_read(struct vnode *vp,
171 	struct uio *uiop,
172 	int ioflag,
173 	struct cred *cred,
174 	struct caller_context *ct)
175 {
176 	caddr_t base;
177 	offset_t diff;
178 	int error;
179 	struct hsnode *hp;
180 	uint_t filesize;
181 	int dofree;
182 
183 	hp = VTOH(vp);
184 	/*
185 	 * if vp is of type VDIR, make sure dirent
186 	 * is filled up with all info (because of ptbl)
187 	 */
188 	if (vp->v_type == VDIR) {
189 		if (hp->hs_dirent.ext_size == 0)
190 			hs_filldirent(vp, &hp->hs_dirent);
191 	}
192 	filesize = hp->hs_dirent.ext_size;
193 
194 	/* Sanity checks. */
195 	if (uiop->uio_resid == 0 ||		/* No data wanted. */
196 	    uiop->uio_loffset > HS_MAXFILEOFF ||	/* Offset too big. */
197 	    uiop->uio_loffset >= filesize)	/* Past EOF. */
198 		return (0);
199 
200 	do {
201 		/*
202 		 * We want to ask for only the "right" amount of data.
203 		 * In this case that means:-
204 		 *
205 		 * We can't get data from beyond our EOF. If asked,
206 		 * we will give a short read.
207 		 *
208 		 * segmap_getmapflt returns buffers of MAXBSIZE bytes.
209 		 * These buffers are always MAXBSIZE aligned.
210 		 * If our starting offset is not MAXBSIZE aligned,
211 		 * we can only ask for less than MAXBSIZE bytes.
212 		 *
213 		 * If our requested offset and length are such that
214 		 * they belong in different MAXBSIZE aligned slots
215 		 * then we'll be making more than one call on
216 		 * segmap_getmapflt.
217 		 *
218 		 * This diagram shows the variables we use and their
219 		 * relationships.
220 		 *
221 		 * |<-----MAXBSIZE----->|
222 		 * +--------------------------...+
223 		 * |.....mapon->|<--n-->|....*...|EOF
224 		 * +--------------------------...+
225 		 * uio_loffset->|
226 		 * uio_resid....|<---------->|
227 		 * diff.........|<-------------->|
228 		 *
229 		 * So, in this case our offset is not aligned
230 		 * and our request takes us outside of the
231 		 * MAXBSIZE window. We will break this up into
232 		 * two segmap_getmapflt calls.
233 		 */
234 		size_t nbytes;
235 		offset_t mapon;
236 		size_t n;
237 		uint_t flags;
238 
239 		mapon = uiop->uio_loffset & MAXBOFFSET;
240 		diff = filesize - uiop->uio_loffset;
241 		nbytes = (size_t)MIN(MAXBSIZE - mapon, uiop->uio_resid);
242 		n = MIN(diff, nbytes);
243 		if (n <= 0) {
244 			/* EOF or request satisfied. */
245 			return (0);
246 		}
247 
248 		/*
249 		 * Freebehind computation taken from:
250 		 * usr/src/uts/common/fs/ufs/ufs_vnops.c
251 		 */
252 		if (drv_hztousec(ddi_get_lbolt()) >= smallfile_update) {
253 			uint64_t percpufreeb;
254 			if (smallfile1_d == 0) smallfile1_d = SMALLFILE1_D;
255 			if (smallfile2_d == 0) smallfile2_d = SMALLFILE2_D;
256 			percpufreeb = ptob((uint64_t)freemem) / ncpus_online;
257 			smallfile1 = percpufreeb / smallfile1_d;
258 			smallfile2 = percpufreeb / smallfile2_d;
259 			smallfile1 = MAX(smallfile1, smallfile);
260 			smallfile1 = MAX(smallfile1, smallfile64);
261 			smallfile2 = MAX(smallfile1, smallfile2);
262 			smallfile_update = drv_hztousec(ddi_get_lbolt())
263 			    + 1000000;
264 		}
265 
266 		dofree = freebehind &&
267 		    hp->hs_prev_offset == uiop->uio_loffset &&
268 		    hp->hs_ra_bytes > 0;
269 
270 		base = segmap_getmapflt(segkmap, vp,
271 		    (u_offset_t)uiop->uio_loffset, n, 1, S_READ);
272 
273 		error = uiomove(base + mapon, n, UIO_READ, uiop);
274 
275 		if (error == 0) {
276 			/*
277 			 * if read a whole block, or read to eof,
278 			 *  won't need this buffer again soon.
279 			 */
280 			if (n + mapon == MAXBSIZE ||
281 			    uiop->uio_loffset == filesize)
282 				flags = SM_DONTNEED;
283 			else
284 				flags = 0;
285 
286 			if (dofree) {
287 				flags = SM_FREE | SM_ASYNC;
288 				if ((cache_read_ahead == 0) &&
289 				    uiop->uio_loffset > smallfile2)
290 					flags |=  SM_DONTNEED;
291 			}
292 
293 			error = segmap_release(segkmap, base, flags);
294 		} else
295 			(void) segmap_release(segkmap, base, 0);
296 	} while (error == 0 && uiop->uio_resid > 0);
297 
298 	return (error);
299 }
300 
301 /*ARGSUSED2*/
302 static int
303 hsfs_getattr(
304 	struct vnode *vp,
305 	struct vattr *vap,
306 	int flags,
307 	struct cred *cred,
308 	caller_context_t *ct)
309 {
310 	struct hsnode *hp;
311 	struct vfs *vfsp;
312 	struct hsfs *fsp;
313 
314 	hp = VTOH(vp);
315 	fsp = VFS_TO_HSFS(vp->v_vfsp);
316 	vfsp = vp->v_vfsp;
317 
318 	if ((hp->hs_dirent.ext_size == 0) && (vp->v_type == VDIR)) {
319 		hs_filldirent(vp, &hp->hs_dirent);
320 	}
321 	vap->va_type = IFTOVT(hp->hs_dirent.mode);
322 	vap->va_mode = hp->hs_dirent.mode;
323 	vap->va_uid = hp->hs_dirent.uid;
324 	vap->va_gid = hp->hs_dirent.gid;
325 
326 	vap->va_fsid = vfsp->vfs_dev;
327 	vap->va_nodeid = (ino64_t)hp->hs_nodeid;
328 	vap->va_nlink = hp->hs_dirent.nlink;
329 	vap->va_size =	(offset_t)hp->hs_dirent.ext_size;
330 
331 	vap->va_atime.tv_sec = hp->hs_dirent.adate.tv_sec;
332 	vap->va_atime.tv_nsec = hp->hs_dirent.adate.tv_usec*1000;
333 	vap->va_mtime.tv_sec = hp->hs_dirent.mdate.tv_sec;
334 	vap->va_mtime.tv_nsec = hp->hs_dirent.mdate.tv_usec*1000;
335 	vap->va_ctime.tv_sec = hp->hs_dirent.cdate.tv_sec;
336 	vap->va_ctime.tv_nsec = hp->hs_dirent.cdate.tv_usec*1000;
337 	if (vp->v_type == VCHR || vp->v_type == VBLK)
338 		vap->va_rdev = hp->hs_dirent.r_dev;
339 	else
340 		vap->va_rdev = 0;
341 	vap->va_blksize = vfsp->vfs_bsize;
342 	/* no. of blocks = no. of data blocks + no. of xar blocks */
343 	vap->va_nblocks = (fsblkcnt64_t)howmany(vap->va_size + (u_longlong_t)
344 	    (hp->hs_dirent.xar_len << fsp->hsfs_vol.lbn_shift), DEV_BSIZE);
345 	vap->va_seq = hp->hs_seq;
346 	return (0);
347 }
348 
349 /*ARGSUSED*/
350 static int
351 hsfs_readlink(struct vnode *vp,
352 	struct uio *uiop,
353 	struct cred *cred,
354 	caller_context_t *ct)
355 {
356 	struct hsnode *hp;
357 
358 	if (vp->v_type != VLNK)
359 		return (EINVAL);
360 
361 	hp = VTOH(vp);
362 
363 	if (hp->hs_dirent.sym_link == (char *)NULL)
364 		return (ENOENT);
365 
366 	return (uiomove(hp->hs_dirent.sym_link,
367 	    (size_t)MIN(hp->hs_dirent.ext_size,
368 	    uiop->uio_resid), UIO_READ, uiop));
369 }
370 
371 /*ARGSUSED*/
372 static void
373 hsfs_inactive(struct vnode *vp,
374 	struct cred *cred,
375 	caller_context_t *ct)
376 {
377 	struct hsnode *hp;
378 	struct hsfs *fsp;
379 
380 	int nopage;
381 
382 	hp = VTOH(vp);
383 	fsp = VFS_TO_HSFS(vp->v_vfsp);
384 	/*
385 	 * Note: acquiring and holding v_lock for quite a while
386 	 * here serializes on the vnode; this is unfortunate, but
387 	 * likely not to overly impact performance, as the underlying
388 	 * device (CDROM drive) is quite slow.
389 	 */
390 	rw_enter(&fsp->hsfs_hash_lock, RW_WRITER);
391 	mutex_enter(&hp->hs_contents_lock);
392 	mutex_enter(&vp->v_lock);
393 
394 	if (vp->v_count < 1) {
395 		panic("hsfs_inactive: v_count < 1");
396 		/*NOTREACHED*/
397 	}
398 
399 	if (vp->v_count > 1 || (hp->hs_flags & HREF) == 0) {
400 		vp->v_count--;	/* release hold from vn_rele */
401 		mutex_exit(&vp->v_lock);
402 		mutex_exit(&hp->hs_contents_lock);
403 		rw_exit(&fsp->hsfs_hash_lock);
404 		return;
405 	}
406 	vp->v_count--;	/* release hold from vn_rele */
407 	if (vp->v_count == 0) {
408 		/*
409 		 * Free the hsnode.
410 		 * If there are no pages associated with the
411 		 * hsnode, give it back to the kmem_cache,
412 		 * else put at the end of this file system's
413 		 * internal free list.
414 		 */
415 		nopage = !vn_has_cached_data(vp);
416 		hp->hs_flags = 0;
417 		/*
418 		 * exit these locks now, since hs_freenode may
419 		 * kmem_free the hsnode and embedded vnode
420 		 */
421 		mutex_exit(&vp->v_lock);
422 		mutex_exit(&hp->hs_contents_lock);
423 		hs_freenode(vp, fsp, nopage);
424 	} else {
425 		mutex_exit(&vp->v_lock);
426 		mutex_exit(&hp->hs_contents_lock);
427 	}
428 	rw_exit(&fsp->hsfs_hash_lock);
429 }
430 
431 
432 /*ARGSUSED*/
433 static int
434 hsfs_lookup(
435 	struct vnode *dvp,
436 	char *nm,
437 	struct vnode **vpp,
438 	struct pathname *pnp,
439 	int flags,
440 	struct vnode *rdir,
441 	struct cred *cred,
442 	caller_context_t *ct,
443 	int *direntflags,
444 	pathname_t *realpnp)
445 {
446 	int error;
447 	int namelen = (int)strlen(nm);
448 
449 	if (*nm == '\0') {
450 		VN_HOLD(dvp);
451 		*vpp = dvp;
452 		return (0);
453 	}
454 
455 	/*
456 	 * If we're looking for ourself, life is simple.
457 	 */
458 	if (namelen == 1 && *nm == '.') {
459 		if (error = hs_access(dvp, (mode_t)VEXEC, cred))
460 			return (error);
461 		VN_HOLD(dvp);
462 		*vpp = dvp;
463 		return (0);
464 	}
465 
466 	return (hs_dirlook(dvp, nm, namelen, vpp, cred));
467 }
468 
469 
470 /*ARGSUSED*/
471 static int
472 hsfs_readdir(
473 	struct vnode		*vp,
474 	struct uio		*uiop,
475 	struct cred		*cred,
476 	int			*eofp,
477 	caller_context_t	*ct,
478 	int			flags)
479 {
480 	struct hsnode	*dhp;
481 	struct hsfs	*fsp;
482 	struct hs_direntry hd;
483 	struct dirent64	*nd;
484 	int		error;
485 	uint_t		offset;		/* real offset in directory */
486 	uint_t		dirsiz;		/* real size of directory */
487 	uchar_t		*blkp;
488 	int		hdlen;		/* length of hs directory entry */
489 	long		ndlen;		/* length of dirent entry */
490 	int		bytes_wanted;
491 	size_t		bufsize;	/* size of dirent buffer */
492 	char		*outbuf;	/* ptr to dirent buffer */
493 	char		*dname;
494 	int		dnamelen;
495 	size_t		dname_size;
496 	struct fbuf	*fbp;
497 	uint_t		last_offset;	/* last index into current dir block */
498 	ino64_t		dirino;	/* temporary storage before storing in dirent */
499 	off_t		diroff;
500 
501 	dhp = VTOH(vp);
502 	fsp = VFS_TO_HSFS(vp->v_vfsp);
503 	if (dhp->hs_dirent.ext_size == 0)
504 		hs_filldirent(vp, &dhp->hs_dirent);
505 	dirsiz = dhp->hs_dirent.ext_size;
506 	if (uiop->uio_loffset >= dirsiz) {	/* at or beyond EOF */
507 		if (eofp)
508 			*eofp = 1;
509 		return (0);
510 	}
511 	ASSERT(uiop->uio_loffset <= HS_MAXFILEOFF);
512 	offset = uiop->uio_loffset;
513 
514 	dname_size = fsp->hsfs_namemax + 1;	/* 1 for the ending NUL */
515 	dname = kmem_alloc(dname_size, KM_SLEEP);
516 	bufsize = uiop->uio_resid + sizeof (struct dirent64);
517 
518 	outbuf = kmem_alloc(bufsize, KM_SLEEP);
519 	nd = (struct dirent64 *)outbuf;
520 
521 	while (offset < dirsiz) {
522 		bytes_wanted = MIN(MAXBSIZE, dirsiz - (offset & MAXBMASK));
523 
524 		error = fbread(vp, (offset_t)(offset & MAXBMASK),
525 		    (unsigned int)bytes_wanted, S_READ, &fbp);
526 		if (error)
527 			goto done;
528 
529 		blkp = (uchar_t *)fbp->fb_addr;
530 		last_offset = (offset & MAXBMASK) + fbp->fb_count;
531 
532 #define	rel_offset(offset) ((offset) & MAXBOFFSET)	/* index into blkp */
533 
534 		while (offset < last_offset) {
535 			/*
536 			 * Very similar validation code is found in
537 			 * process_dirblock(), hsfs_node.c.
538 			 * For an explanation, see there.
539 			 * It may make sense for the future to
540 			 * "consolidate" the code in hs_parsedir(),
541 			 * process_dirblock() and hsfs_readdir() into
542 			 * a single utility function.
543 			 */
544 			hdlen = (int)((uchar_t)
545 			    HDE_DIR_LEN(&blkp[rel_offset(offset)]));
546 			if (hdlen < HDE_ROOT_DIR_REC_SIZE ||
547 			    offset + hdlen > last_offset) {
548 				/*
549 				 * advance to next sector boundary
550 				 */
551 				offset = roundup(offset + 1, HS_SECTOR_SIZE);
552 				if (hdlen)
553 					hs_log_bogus_disk_warning(fsp,
554 					    HSFS_ERR_TRAILING_JUNK, 0);
555 
556 				continue;
557 			}
558 
559 			bzero(&hd, sizeof (hd));
560 
561 			/*
562 			 * Just ignore invalid directory entries.
563 			 * XXX - maybe hs_parsedir() will detect EXISTENCE bit
564 			 */
565 			if (!hs_parsedir(fsp, &blkp[rel_offset(offset)],
566 			    &hd, dname, &dnamelen, last_offset - offset)) {
567 				/*
568 				 * Determine if there is enough room
569 				 */
570 				ndlen = (long)DIRENT64_RECLEN((dnamelen));
571 
572 				if ((ndlen + ((char *)nd - outbuf)) >
573 				    uiop->uio_resid) {
574 					fbrelse(fbp, S_READ);
575 					goto done; /* output buffer full */
576 				}
577 
578 				diroff = offset + hdlen;
579 				/*
580 				 * If the media carries rrip-v1.12 or newer,
581 				 * and we trust the inodes from the rrip data
582 				 * (use_rrip_inodes != 0), use that data. If the
583 				 * media has been created by a recent mkisofs
584 				 * version, we may trust all numbers in the
585 				 * starting extent number; otherwise, we cannot
586 				 * do this for zero sized files and symlinks,
587 				 * because if we did we'd end up mapping all of
588 				 * them to the same node. We use HS_DUMMY_INO
589 				 * in this case and make sure that we will not
590 				 * map all files to the same meta data.
591 				 */
592 				if (hd.inode != 0 && use_rrip_inodes) {
593 					dirino = hd.inode;
594 				} else if ((hd.ext_size == 0 ||
595 				    hd.sym_link != (char *)NULL) &&
596 				    (fsp->hsfs_flags & HSFSMNT_INODE) == 0) {
597 					dirino = HS_DUMMY_INO;
598 				} else {
599 					dirino = hd.ext_lbn;
600 				}
601 
602 				/* strncpy(9f) will zero uninitialized bytes */
603 
604 				ASSERT(strlen(dname) + 1 <=
605 				    DIRENT64_NAMELEN(ndlen));
606 				(void) strncpy(nd->d_name, dname,
607 				    DIRENT64_NAMELEN(ndlen));
608 				nd->d_reclen = (ushort_t)ndlen;
609 				nd->d_off = (offset_t)diroff;
610 				nd->d_ino = dirino;
611 				nd = (struct dirent64 *)((char *)nd + ndlen);
612 
613 				/*
614 				 * free up space allocated for symlink
615 				 */
616 				if (hd.sym_link != (char *)NULL) {
617 					kmem_free(hd.sym_link,
618 					    (size_t)(hd.ext_size+1));
619 					hd.sym_link = (char *)NULL;
620 				}
621 			}
622 			offset += hdlen;
623 		}
624 		fbrelse(fbp, S_READ);
625 	}
626 
627 	/*
628 	 * Got here for one of the following reasons:
629 	 *	1) outbuf is full (error == 0)
630 	 *	2) end of directory reached (error == 0)
631 	 *	3) error reading directory sector (error != 0)
632 	 *	4) directory entry crosses sector boundary (error == 0)
633 	 *
634 	 * If any directory entries have been copied, don't report
635 	 * case 4.  Instead, return the valid directory entries.
636 	 *
637 	 * If no entries have been copied, report the error.
638 	 * If case 4, this will be indistiguishable from EOF.
639 	 */
640 done:
641 	ndlen = ((char *)nd - outbuf);
642 	if (ndlen != 0) {
643 		error = uiomove(outbuf, (size_t)ndlen, UIO_READ, uiop);
644 		uiop->uio_loffset = offset;
645 	}
646 	kmem_free(dname, dname_size);
647 	kmem_free(outbuf, bufsize);
648 	if (eofp && error == 0)
649 		*eofp = (uiop->uio_loffset >= dirsiz);
650 	return (error);
651 }
652 
653 /*ARGSUSED2*/
654 static int
655 hsfs_fid(struct vnode *vp, struct fid *fidp, caller_context_t *ct)
656 {
657 	struct hsnode *hp;
658 	struct hsfid *fid;
659 
660 	if (fidp->fid_len < (sizeof (*fid) - sizeof (fid->hf_len))) {
661 		fidp->fid_len = sizeof (*fid) - sizeof (fid->hf_len);
662 		return (ENOSPC);
663 	}
664 
665 	fid = (struct hsfid *)fidp;
666 	fid->hf_len = sizeof (*fid) - sizeof (fid->hf_len);
667 	hp = VTOH(vp);
668 	mutex_enter(&hp->hs_contents_lock);
669 	fid->hf_dir_lbn = hp->hs_dir_lbn;
670 	fid->hf_dir_off = (ushort_t)hp->hs_dir_off;
671 	fid->hf_ino = hp->hs_nodeid;
672 	mutex_exit(&hp->hs_contents_lock);
673 	return (0);
674 }
675 
676 /*ARGSUSED*/
677 static int
678 hsfs_open(struct vnode **vpp,
679 	int flag,
680 	struct cred *cred,
681 	caller_context_t *ct)
682 {
683 	return (0);
684 }
685 
686 /*ARGSUSED*/
687 static int
688 hsfs_close(
689 	struct vnode *vp,
690 	int flag,
691 	int count,
692 	offset_t offset,
693 	struct cred *cred,
694 	caller_context_t *ct)
695 {
696 	(void) cleanlocks(vp, ttoproc(curthread)->p_pid, 0);
697 	cleanshares(vp, ttoproc(curthread)->p_pid);
698 	return (0);
699 }
700 
701 /*ARGSUSED2*/
702 static int
703 hsfs_access(struct vnode *vp,
704 	int mode,
705 	int flags,
706 	cred_t *cred,
707 	caller_context_t *ct)
708 {
709 	return (hs_access(vp, (mode_t)mode, cred));
710 }
711 
712 /*
713  * the seek time of a CD-ROM is very slow, and data transfer
714  * rate is even worse (max. 150K per sec).  The design
715  * decision is to reduce access to cd-rom as much as possible,
716  * and to transfer a sizable block (read-ahead) of data at a time.
717  * UFS style of read ahead one block at a time is not appropriate,
718  * and is not supported
719  */
720 
721 /*
722  * KLUSTSIZE should be a multiple of PAGESIZE and <= MAXPHYS.
723  */
724 #define	KLUSTSIZE	(56 * 1024)
725 /* we don't support read ahead */
726 int hsfs_lostpage;	/* no. of times we lost original page */
727 
728 /*
729  * Used to prevent biodone() from releasing buf resources that
730  * we didn't allocate in quite the usual way.
731  */
732 /*ARGSUSED*/
733 int
734 hsfs_iodone(struct buf *bp)
735 {
736 	sema_v(&bp->b_io);
737 	return (0);
738 }
739 
740 /*
741  * The taskq thread that invokes the scheduling function to ensure
742  * that all readaheads are complete and cleans up the associated
743  * memory and releases the page lock.
744  */
745 void
746 hsfs_ra_task(void *arg)
747 {
748 	struct hio_info *info = arg;
749 	uint_t count;
750 	struct buf *wbuf;
751 
752 	ASSERT(info->pp != NULL);
753 
754 	for (count = 0; count < info->bufsused; count++) {
755 		wbuf = &(info->bufs[count]);
756 
757 		DTRACE_PROBE1(hsfs_io_wait_ra, struct buf *, wbuf);
758 		while (sema_tryp(&(info->sema[count])) == 0) {
759 			if (hsched_invoke_strategy(info->fsp)) {
760 				sema_p(&(info->sema[count]));
761 				break;
762 			}
763 		}
764 		sema_destroy(&(info->sema[count]));
765 		DTRACE_PROBE1(hsfs_io_done_ra, struct buf *, wbuf);
766 		biofini(&(info->bufs[count]));
767 	}
768 	for (count = 0; count < info->bufsused; count++) {
769 		if (info->vas[count] != NULL) {
770 			ppmapout(info->vas[count]);
771 		}
772 	}
773 	kmem_free(info->vas, info->bufcnt * sizeof (caddr_t));
774 	kmem_free(info->bufs, info->bufcnt * sizeof (struct buf));
775 	kmem_free(info->sema, info->bufcnt * sizeof (ksema_t));
776 
777 	pvn_read_done(info->pp, 0);
778 	kmem_cache_free(hio_info_cache, info);
779 }
780 
781 /*
782  * Submit asynchronous readahead requests to the I/O scheduler
783  * depending on the number of pages to read ahead. These requests
784  * are asynchronous to the calling thread but I/O requests issued
785  * subsequently by other threads with higher LBNs must wait for
786  * these readaheads to complete since we have a single ordered
787  * I/O pipeline. Thus these readaheads are semi-asynchronous.
788  * A TaskQ handles waiting for the readaheads to complete.
789  *
790  * This function is mostly a copy of hsfs_getapage but somewhat
791  * simpler. A readahead request is aborted if page allocation
792  * fails.
793  */
794 /*ARGSUSED*/
795 static int
796 hsfs_getpage_ra(
797 	struct vnode *vp,
798 	u_offset_t off,
799 	struct seg *seg,
800 	caddr_t addr,
801 	struct hsnode *hp,
802 	struct hsfs *fsp,
803 	int	xarsiz,
804 	offset_t	bof,
805 	int	chunk_lbn_count,
806 	int	chunk_data_bytes)
807 {
808 	struct buf *bufs;
809 	caddr_t *vas;
810 	caddr_t va;
811 	struct page *pp, *searchp, *lastp;
812 	struct vnode *devvp;
813 	ulong_t	byte_offset;
814 	size_t	io_len_tmp;
815 	uint_t	io_off, io_len;
816 	uint_t	xlen;
817 	uint_t	filsiz;
818 	uint_t	secsize;
819 	uint_t	bufcnt;
820 	uint_t	bufsused;
821 	uint_t	count;
822 	uint_t	io_end;
823 	uint_t	which_chunk_lbn;
824 	uint_t	offset_lbn;
825 	uint_t	offset_extra;
826 	offset_t	offset_bytes;
827 	uint_t	remaining_bytes;
828 	uint_t	extension;
829 	int	remainder;	/* must be signed */
830 	diskaddr_t driver_block;
831 	u_offset_t io_off_tmp;
832 	ksema_t	*fio_done;
833 	struct hio_info *info;
834 	size_t len;
835 
836 	ASSERT(fsp->hqueue != NULL);
837 
838 	if (addr >= seg->s_base + seg->s_size) {
839 		return (-1);
840 	}
841 
842 	devvp = fsp->hsfs_devvp;
843 	secsize = fsp->hsfs_vol.lbn_size;  /* bytes per logical block */
844 
845 	/* file data size */
846 	filsiz = hp->hs_dirent.ext_size;
847 
848 	if (off >= filsiz)
849 		return (0);
850 
851 	extension = 0;
852 	pp = NULL;
853 
854 	extension += hp->hs_ra_bytes;
855 
856 	/*
857 	 * Some CD writers (e.g. Kodak Photo CD writers)
858 	 * create CDs in TAO mode and reserve tracks that
859 	 * are not completely written. Some sectors remain
860 	 * unreadable for this reason and give I/O errors.
861 	 * Also, there's no point in reading sectors
862 	 * we'll never look at.  So, if we're asked to go
863 	 * beyond the end of a file, truncate to the length
864 	 * of that file.
865 	 *
866 	 * Additionally, this behaviour is required by section
867 	 * 6.4.5 of ISO 9660:1988(E).
868 	 */
869 	len = MIN(extension ? extension : PAGESIZE, filsiz - off);
870 
871 	/* A little paranoia */
872 	if (len <= 0)
873 		return (-1);
874 
875 	/*
876 	 * After all that, make sure we're asking for things in units
877 	 * that bdev_strategy() will understand (see bug 4202551).
878 	 */
879 	len = roundup(len, DEV_BSIZE);
880 
881 	pp = pvn_read_kluster(vp, off, seg, addr, &io_off_tmp,
882 	    &io_len_tmp, off, len, 1);
883 
884 	if (pp == NULL) {
885 		hp->hs_num_contig = 0;
886 		hp->hs_ra_bytes = 0;
887 		hp->hs_prev_offset = 0;
888 		return (-1);
889 	}
890 
891 	io_off = (uint_t)io_off_tmp;
892 	io_len = (uint_t)io_len_tmp;
893 
894 	/* check for truncation */
895 	/*
896 	 * xxx Clean up and return EIO instead?
897 	 * xxx Ought to go to u_offset_t for everything, but we
898 	 * xxx call lots of things that want uint_t arguments.
899 	 */
900 	ASSERT(io_off == io_off_tmp);
901 
902 	/*
903 	 * get enough buffers for worst-case scenario
904 	 * (i.e., no coalescing possible).
905 	 */
906 	bufcnt = (len + secsize - 1) / secsize;
907 	bufs = kmem_alloc(bufcnt * sizeof (struct buf), KM_SLEEP);
908 	vas = kmem_alloc(bufcnt * sizeof (caddr_t), KM_SLEEP);
909 
910 	/*
911 	 * Allocate a array of semaphores since we are doing I/O
912 	 * scheduling.
913 	 */
914 	fio_done = kmem_alloc(bufcnt * sizeof (ksema_t), KM_SLEEP);
915 
916 	/*
917 	 * If our filesize is not an integer multiple of PAGESIZE,
918 	 * we zero that part of the last page that's between EOF and
919 	 * the PAGESIZE boundary.
920 	 */
921 	xlen = io_len & PAGEOFFSET;
922 	if (xlen != 0)
923 		pagezero(pp->p_prev, xlen, PAGESIZE - xlen);
924 
925 	DTRACE_PROBE2(hsfs_readahead, struct vnode *, vp, uint_t, io_len);
926 
927 	va = NULL;
928 	lastp = NULL;
929 	searchp = pp;
930 	io_end = io_off + io_len;
931 	for (count = 0, byte_offset = io_off;
932 	    byte_offset < io_end;
933 	    count++) {
934 		ASSERT(count < bufcnt);
935 
936 		bioinit(&bufs[count]);
937 		bufs[count].b_edev = devvp->v_rdev;
938 		bufs[count].b_dev = cmpdev(devvp->v_rdev);
939 		bufs[count].b_flags = B_NOCACHE|B_BUSY|B_READ;
940 		bufs[count].b_iodone = hsfs_iodone;
941 		bufs[count].b_vp = vp;
942 		bufs[count].b_file = vp;
943 
944 		/* Compute disk address for interleaving. */
945 
946 		/* considered without skips */
947 		which_chunk_lbn = byte_offset / chunk_data_bytes;
948 
949 		/* factor in skips */
950 		offset_lbn = which_chunk_lbn * chunk_lbn_count;
951 
952 		/* convert to physical byte offset for lbn */
953 		offset_bytes = LBN_TO_BYTE(offset_lbn, vp->v_vfsp);
954 
955 		/* don't forget offset into lbn */
956 		offset_extra = byte_offset % chunk_data_bytes;
957 
958 		/* get virtual block number for driver */
959 		driver_block = lbtodb(bof + xarsiz
960 		    + offset_bytes + offset_extra);
961 
962 		if (lastp != searchp) {
963 			/* this branch taken first time through loop */
964 			va = vas[count] = ppmapin(searchp, PROT_WRITE,
965 			    (caddr_t)-1);
966 			/* ppmapin() guarantees not to return NULL */
967 		} else {
968 			vas[count] = NULL;
969 		}
970 
971 		bufs[count].b_un.b_addr = va + byte_offset % PAGESIZE;
972 		bufs[count].b_offset =
973 		    (offset_t)(byte_offset - io_off + off);
974 
975 		/*
976 		 * We specifically use the b_lblkno member here
977 		 * as even in the 32 bit world driver_block can
978 		 * get very large in line with the ISO9660 spec.
979 		 */
980 
981 		bufs[count].b_lblkno = driver_block;
982 
983 		remaining_bytes = ((which_chunk_lbn + 1) * chunk_data_bytes)
984 		    - byte_offset;
985 
986 		/*
987 		 * remaining_bytes can't be zero, as we derived
988 		 * which_chunk_lbn directly from byte_offset.
989 		 */
990 		if ((remaining_bytes + byte_offset) < (off + len)) {
991 			/* coalesce-read the rest of the chunk */
992 			bufs[count].b_bcount = remaining_bytes;
993 		} else {
994 			/* get the final bits */
995 			bufs[count].b_bcount = off + len - byte_offset;
996 		}
997 
998 		remainder = PAGESIZE - (byte_offset % PAGESIZE);
999 		if (bufs[count].b_bcount > remainder) {
1000 			bufs[count].b_bcount = remainder;
1001 		}
1002 
1003 		bufs[count].b_bufsize = bufs[count].b_bcount;
1004 		if (((offset_t)byte_offset + bufs[count].b_bcount) >
1005 		    HS_MAXFILEOFF) {
1006 			break;
1007 		}
1008 		byte_offset += bufs[count].b_bcount;
1009 
1010 		/*
1011 		 * We are scheduling I/O so we need to enqueue
1012 		 * requests rather than calling bdev_strategy
1013 		 * here. A later invocation of the scheduling
1014 		 * function will take care of doing the actual
1015 		 * I/O as it selects requests from the queue as
1016 		 * per the scheduling logic.
1017 		 */
1018 		struct hio *hsio = kmem_cache_alloc(hio_cache,
1019 		    KM_SLEEP);
1020 
1021 		sema_init(&fio_done[count], 0, NULL,
1022 		    SEMA_DEFAULT, NULL);
1023 		hsio->bp = &bufs[count];
1024 		hsio->sema = &fio_done[count];
1025 		hsio->io_lblkno = bufs[count].b_lblkno;
1026 		hsio->nblocks = howmany(hsio->bp->b_bcount,
1027 		    DEV_BSIZE);
1028 
1029 		/* used for deadline */
1030 		hsio->io_timestamp = drv_hztousec(ddi_get_lbolt());
1031 
1032 		/* for I/O coalescing */
1033 		hsio->contig_chain = NULL;
1034 		hsched_enqueue_io(fsp, hsio, 1);
1035 
1036 		lwp_stat_update(LWP_STAT_INBLK, 1);
1037 		lastp = searchp;
1038 		if ((remainder - bufs[count].b_bcount) < 1) {
1039 			searchp = searchp->p_next;
1040 		}
1041 	}
1042 
1043 	bufsused = count;
1044 	info = kmem_cache_alloc(hio_info_cache, KM_SLEEP);
1045 	info->bufs = bufs;
1046 	info->vas = vas;
1047 	info->sema = fio_done;
1048 	info->bufsused = bufsused;
1049 	info->bufcnt = bufcnt;
1050 	info->fsp = fsp;
1051 	info->pp = pp;
1052 
1053 	(void) taskq_dispatch(fsp->hqueue->ra_task,
1054 	    hsfs_ra_task, info, KM_SLEEP);
1055 	/*
1056 	 * The I/O locked pages are unlocked in our taskq thread.
1057 	 */
1058 	return (0);
1059 }
1060 
1061 /*
1062  * Each file may have a different interleaving on disk.  This makes
1063  * things somewhat interesting.  The gist is that there are some
1064  * number of contiguous data sectors, followed by some other number
1065  * of contiguous skip sectors.  The sum of those two sets of sectors
1066  * defines the interleave size.  Unfortunately, it means that we generally
1067  * can't simply read N sectors starting at a given offset to satisfy
1068  * any given request.
1069  *
1070  * What we do is get the relevant memory pages via pvn_read_kluster(),
1071  * then stride through the interleaves, setting up a buf for each
1072  * sector that needs to be brought in.  Instead of kmem_alloc'ing
1073  * space for the sectors, though, we just point at the appropriate
1074  * spot in the relevant page for each of them.  This saves us a bunch
1075  * of copying.
1076  *
1077  * NOTICE: The code below in hsfs_getapage is mostly same as the code
1078  *         in hsfs_getpage_ra above (with some omissions). If you are
1079  *         making any change to this function, please also look at
1080  *         hsfs_getpage_ra.
1081  */
1082 /*ARGSUSED*/
1083 static int
1084 hsfs_getapage(
1085 	struct vnode *vp,
1086 	u_offset_t off,
1087 	size_t len,
1088 	uint_t *protp,
1089 	struct page *pl[],
1090 	size_t plsz,
1091 	struct seg *seg,
1092 	caddr_t addr,
1093 	enum seg_rw rw,
1094 	struct cred *cred)
1095 {
1096 	struct hsnode *hp;
1097 	struct hsfs *fsp;
1098 	int	err;
1099 	struct buf *bufs;
1100 	caddr_t *vas;
1101 	caddr_t va;
1102 	struct page *pp, *searchp, *lastp;
1103 	page_t	*pagefound;
1104 	offset_t	bof;
1105 	struct vnode *devvp;
1106 	ulong_t	byte_offset;
1107 	size_t	io_len_tmp;
1108 	uint_t	io_off, io_len;
1109 	uint_t	xlen;
1110 	uint_t	filsiz;
1111 	uint_t	secsize;
1112 	uint_t	bufcnt;
1113 	uint_t	bufsused;
1114 	uint_t	count;
1115 	uint_t	io_end;
1116 	uint_t	which_chunk_lbn;
1117 	uint_t	offset_lbn;
1118 	uint_t	offset_extra;
1119 	offset_t	offset_bytes;
1120 	uint_t	remaining_bytes;
1121 	uint_t	extension;
1122 	int	remainder;	/* must be signed */
1123 	int	chunk_lbn_count;
1124 	int	chunk_data_bytes;
1125 	int	xarsiz;
1126 	diskaddr_t driver_block;
1127 	u_offset_t io_off_tmp;
1128 	ksema_t *fio_done;
1129 	int	calcdone;
1130 
1131 	/*
1132 	 * We don't support asynchronous operation at the moment, so
1133 	 * just pretend we did it.  If the pages are ever actually
1134 	 * needed, they'll get brought in then.
1135 	 */
1136 	if (pl == NULL)
1137 		return (0);
1138 
1139 	hp = VTOH(vp);
1140 	fsp = VFS_TO_HSFS(vp->v_vfsp);
1141 	devvp = fsp->hsfs_devvp;
1142 	secsize = fsp->hsfs_vol.lbn_size;  /* bytes per logical block */
1143 
1144 	/* file data size */
1145 	filsiz = hp->hs_dirent.ext_size;
1146 
1147 	/* disk addr for start of file */
1148 	bof = LBN_TO_BYTE((offset_t)hp->hs_dirent.ext_lbn, vp->v_vfsp);
1149 
1150 	/* xarsiz byte must be skipped for data */
1151 	xarsiz = hp->hs_dirent.xar_len << fsp->hsfs_vol.lbn_shift;
1152 
1153 	/* how many logical blocks in an interleave (data+skip) */
1154 	chunk_lbn_count = hp->hs_dirent.intlf_sz + hp->hs_dirent.intlf_sk;
1155 
1156 	if (chunk_lbn_count == 0) {
1157 		chunk_lbn_count = 1;
1158 	}
1159 
1160 	/*
1161 	 * Convert interleaving size into bytes.  The zero case
1162 	 * (no interleaving) optimization is handled as a side-
1163 	 * effect of the read-ahead logic.
1164 	 */
1165 	if (hp->hs_dirent.intlf_sz == 0) {
1166 		chunk_data_bytes = LBN_TO_BYTE(1, vp->v_vfsp);
1167 		/*
1168 		 * Optimization: If our pagesize is a multiple of LBN
1169 		 * bytes, we can avoid breaking up a page into individual
1170 		 * lbn-sized requests.
1171 		 */
1172 		if (PAGESIZE % chunk_data_bytes == 0) {
1173 			chunk_lbn_count = BYTE_TO_LBN(PAGESIZE, vp->v_vfsp);
1174 			chunk_data_bytes = PAGESIZE;
1175 		}
1176 	} else {
1177 		chunk_data_bytes =
1178 		    LBN_TO_BYTE(hp->hs_dirent.intlf_sz, vp->v_vfsp);
1179 	}
1180 
1181 reread:
1182 	err = 0;
1183 	pagefound = 0;
1184 	calcdone = 0;
1185 
1186 	/*
1187 	 * Do some read-ahead.  This mostly saves us a bit of
1188 	 * system cpu time more than anything else when doing
1189 	 * sequential reads.  At some point, could do the
1190 	 * read-ahead asynchronously which might gain us something
1191 	 * on wall time, but it seems unlikely....
1192 	 *
1193 	 * We do the easy case here, which is to read through
1194 	 * the end of the chunk, minus whatever's at the end that
1195 	 * won't exactly fill a page.
1196 	 */
1197 	if (hp->hs_ra_bytes > 0 && chunk_data_bytes != PAGESIZE) {
1198 		which_chunk_lbn = (off + len) / chunk_data_bytes;
1199 		extension = ((which_chunk_lbn + 1) * chunk_data_bytes) - off;
1200 		extension -= (extension % PAGESIZE);
1201 	} else {
1202 		extension = roundup(len, PAGESIZE);
1203 	}
1204 
1205 	atomic_inc_64(&fsp->total_pages_requested);
1206 
1207 	pp = NULL;
1208 again:
1209 	/* search for page in buffer */
1210 	if ((pagefound = page_exists(vp, off)) == 0) {
1211 		/*
1212 		 * Need to really do disk IO to get the page.
1213 		 */
1214 		if (!calcdone) {
1215 			extension += hp->hs_ra_bytes;
1216 
1217 			/*
1218 			 * Some cd writers don't write sectors that aren't
1219 			 * used. Also, there's no point in reading sectors
1220 			 * we'll never look at.  So, if we're asked to go
1221 			 * beyond the end of a file, truncate to the length
1222 			 * of that file.
1223 			 *
1224 			 * Additionally, this behaviour is required by section
1225 			 * 6.4.5 of ISO 9660:1988(E).
1226 			 */
1227 			len = MIN(extension ? extension : PAGESIZE,
1228 			    filsiz - off);
1229 
1230 			/* A little paranoia. */
1231 			ASSERT(len > 0);
1232 
1233 			/*
1234 			 * After all that, make sure we're asking for things
1235 			 * in units that bdev_strategy() will understand
1236 			 * (see bug 4202551).
1237 			 */
1238 			len = roundup(len, DEV_BSIZE);
1239 			calcdone = 1;
1240 		}
1241 
1242 		pp = pvn_read_kluster(vp, off, seg, addr, &io_off_tmp,
1243 		    &io_len_tmp, off, len, 0);
1244 
1245 		if (pp == NULL) {
1246 			/*
1247 			 * Pressure on memory, roll back readahead
1248 			 */
1249 			hp->hs_num_contig = 0;
1250 			hp->hs_ra_bytes = 0;
1251 			hp->hs_prev_offset = 0;
1252 			goto again;
1253 		}
1254 
1255 		io_off = (uint_t)io_off_tmp;
1256 		io_len = (uint_t)io_len_tmp;
1257 
1258 		/* check for truncation */
1259 		/*
1260 		 * xxx Clean up and return EIO instead?
1261 		 * xxx Ought to go to u_offset_t for everything, but we
1262 		 * xxx call lots of things that want uint_t arguments.
1263 		 */
1264 		ASSERT(io_off == io_off_tmp);
1265 
1266 		/*
1267 		 * get enough buffers for worst-case scenario
1268 		 * (i.e., no coalescing possible).
1269 		 */
1270 		bufcnt = (len + secsize - 1) / secsize;
1271 		bufs = kmem_zalloc(bufcnt * sizeof (struct buf), KM_SLEEP);
1272 		vas = kmem_alloc(bufcnt * sizeof (caddr_t), KM_SLEEP);
1273 
1274 		/*
1275 		 * Allocate a array of semaphores if we are doing I/O
1276 		 * scheduling.
1277 		 */
1278 		if (fsp->hqueue != NULL)
1279 			fio_done = kmem_alloc(bufcnt * sizeof (ksema_t),
1280 			    KM_SLEEP);
1281 		for (count = 0; count < bufcnt; count++) {
1282 			bioinit(&bufs[count]);
1283 			bufs[count].b_edev = devvp->v_rdev;
1284 			bufs[count].b_dev = cmpdev(devvp->v_rdev);
1285 			bufs[count].b_flags = B_NOCACHE|B_BUSY|B_READ;
1286 			bufs[count].b_iodone = hsfs_iodone;
1287 			bufs[count].b_vp = vp;
1288 			bufs[count].b_file = vp;
1289 		}
1290 
1291 		/*
1292 		 * If our filesize is not an integer multiple of PAGESIZE,
1293 		 * we zero that part of the last page that's between EOF and
1294 		 * the PAGESIZE boundary.
1295 		 */
1296 		xlen = io_len & PAGEOFFSET;
1297 		if (xlen != 0)
1298 			pagezero(pp->p_prev, xlen, PAGESIZE - xlen);
1299 
1300 		va = NULL;
1301 		lastp = NULL;
1302 		searchp = pp;
1303 		io_end = io_off + io_len;
1304 		for (count = 0, byte_offset = io_off;
1305 		    byte_offset < io_end; count++) {
1306 			ASSERT(count < bufcnt);
1307 
1308 			/* Compute disk address for interleaving. */
1309 
1310 			/* considered without skips */
1311 			which_chunk_lbn = byte_offset / chunk_data_bytes;
1312 
1313 			/* factor in skips */
1314 			offset_lbn = which_chunk_lbn * chunk_lbn_count;
1315 
1316 			/* convert to physical byte offset for lbn */
1317 			offset_bytes = LBN_TO_BYTE(offset_lbn, vp->v_vfsp);
1318 
1319 			/* don't forget offset into lbn */
1320 			offset_extra = byte_offset % chunk_data_bytes;
1321 
1322 			/* get virtual block number for driver */
1323 			driver_block =
1324 			    lbtodb(bof + xarsiz + offset_bytes + offset_extra);
1325 
1326 			if (lastp != searchp) {
1327 				/* this branch taken first time through loop */
1328 				va = vas[count] =
1329 				    ppmapin(searchp, PROT_WRITE, (caddr_t)-1);
1330 				/* ppmapin() guarantees not to return NULL */
1331 			} else {
1332 				vas[count] = NULL;
1333 			}
1334 
1335 			bufs[count].b_un.b_addr = va + byte_offset % PAGESIZE;
1336 			bufs[count].b_offset =
1337 			    (offset_t)(byte_offset - io_off + off);
1338 
1339 			/*
1340 			 * We specifically use the b_lblkno member here
1341 			 * as even in the 32 bit world driver_block can
1342 			 * get very large in line with the ISO9660 spec.
1343 			 */
1344 
1345 			bufs[count].b_lblkno = driver_block;
1346 
1347 			remaining_bytes =
1348 			    ((which_chunk_lbn + 1) * chunk_data_bytes)
1349 			    - byte_offset;
1350 
1351 			/*
1352 			 * remaining_bytes can't be zero, as we derived
1353 			 * which_chunk_lbn directly from byte_offset.
1354 			 */
1355 			if ((remaining_bytes + byte_offset) < (off + len)) {
1356 				/* coalesce-read the rest of the chunk */
1357 				bufs[count].b_bcount = remaining_bytes;
1358 			} else {
1359 				/* get the final bits */
1360 				bufs[count].b_bcount = off + len - byte_offset;
1361 			}
1362 
1363 			/*
1364 			 * It would be nice to do multiple pages'
1365 			 * worth at once here when the opportunity
1366 			 * arises, as that has been shown to improve
1367 			 * our wall time.  However, to do that
1368 			 * requires that we use the pageio subsystem,
1369 			 * which doesn't mix well with what we're
1370 			 * already using here.  We can't use pageio
1371 			 * all the time, because that subsystem
1372 			 * assumes that a page is stored in N
1373 			 * contiguous blocks on the device.
1374 			 * Interleaving violates that assumption.
1375 			 *
1376 			 * Update: This is now not so big a problem
1377 			 * because of the I/O scheduler sitting below
1378 			 * that can re-order and coalesce I/O requests.
1379 			 */
1380 
1381 			remainder = PAGESIZE - (byte_offset % PAGESIZE);
1382 			if (bufs[count].b_bcount > remainder) {
1383 				bufs[count].b_bcount = remainder;
1384 			}
1385 
1386 			bufs[count].b_bufsize = bufs[count].b_bcount;
1387 			if (((offset_t)byte_offset + bufs[count].b_bcount) >
1388 			    HS_MAXFILEOFF) {
1389 				break;
1390 			}
1391 			byte_offset += bufs[count].b_bcount;
1392 
1393 			if (fsp->hqueue == NULL) {
1394 				(void) bdev_strategy(&bufs[count]);
1395 
1396 			} else {
1397 				/*
1398 				 * We are scheduling I/O so we need to enqueue
1399 				 * requests rather than calling bdev_strategy
1400 				 * here. A later invocation of the scheduling
1401 				 * function will take care of doing the actual
1402 				 * I/O as it selects requests from the queue as
1403 				 * per the scheduling logic.
1404 				 */
1405 				struct hio *hsio = kmem_cache_alloc(hio_cache,
1406 				    KM_SLEEP);
1407 
1408 				sema_init(&fio_done[count], 0, NULL,
1409 				    SEMA_DEFAULT, NULL);
1410 				hsio->bp = &bufs[count];
1411 				hsio->sema = &fio_done[count];
1412 				hsio->io_lblkno = bufs[count].b_lblkno;
1413 				hsio->nblocks = howmany(hsio->bp->b_bcount,
1414 				    DEV_BSIZE);
1415 
1416 				/* used for deadline */
1417 				hsio->io_timestamp =
1418 				    drv_hztousec(ddi_get_lbolt());
1419 
1420 				/* for I/O coalescing */
1421 				hsio->contig_chain = NULL;
1422 				hsched_enqueue_io(fsp, hsio, 0);
1423 			}
1424 
1425 			lwp_stat_update(LWP_STAT_INBLK, 1);
1426 			lastp = searchp;
1427 			if ((remainder - bufs[count].b_bcount) < 1) {
1428 				searchp = searchp->p_next;
1429 			}
1430 		}
1431 
1432 		bufsused = count;
1433 		/* Now wait for everything to come in */
1434 		if (fsp->hqueue == NULL) {
1435 			for (count = 0; count < bufsused; count++) {
1436 				if (err == 0) {
1437 					err = biowait(&bufs[count]);
1438 				} else
1439 					(void) biowait(&bufs[count]);
1440 			}
1441 		} else {
1442 			for (count = 0; count < bufsused; count++) {
1443 				struct buf *wbuf;
1444 
1445 				/*
1446 				 * Invoke scheduling function till our buf
1447 				 * is processed. In doing this it might
1448 				 * process bufs enqueued by other threads
1449 				 * which is good.
1450 				 */
1451 				wbuf = &bufs[count];
1452 				DTRACE_PROBE1(hsfs_io_wait, struct buf *, wbuf);
1453 				while (sema_tryp(&fio_done[count]) == 0) {
1454 					/*
1455 					 * hsched_invoke_strategy will return 1
1456 					 * if the I/O queue is empty. This means
1457 					 * that there is another thread who has
1458 					 * issued our buf and is waiting. So we
1459 					 * just block instead of spinning.
1460 					 */
1461 					if (hsched_invoke_strategy(fsp)) {
1462 						sema_p(&fio_done[count]);
1463 						break;
1464 					}
1465 				}
1466 				sema_destroy(&fio_done[count]);
1467 				DTRACE_PROBE1(hsfs_io_done, struct buf *, wbuf);
1468 
1469 				if (err == 0) {
1470 					err = geterror(wbuf);
1471 				}
1472 			}
1473 			kmem_free(fio_done, bufcnt * sizeof (ksema_t));
1474 		}
1475 
1476 		/* Don't leak resources */
1477 		for (count = 0; count < bufcnt; count++) {
1478 			biofini(&bufs[count]);
1479 			if (count < bufsused && vas[count] != NULL) {
1480 				ppmapout(vas[count]);
1481 			}
1482 		}
1483 
1484 		kmem_free(vas, bufcnt * sizeof (caddr_t));
1485 		kmem_free(bufs, bufcnt * sizeof (struct buf));
1486 	}
1487 
1488 	if (err) {
1489 		pvn_read_done(pp, B_ERROR);
1490 		return (err);
1491 	}
1492 
1493 	/*
1494 	 * Lock the requested page, and the one after it if possible.
1495 	 * Don't bother if our caller hasn't given us a place to stash
1496 	 * the page pointers, since otherwise we'd lock pages that would
1497 	 * never get unlocked.
1498 	 */
1499 	if (pagefound) {
1500 		int index;
1501 		ulong_t soff;
1502 
1503 		/*
1504 		 * Make sure it's in memory before we say it's here.
1505 		 */
1506 		if ((pp = page_lookup(vp, off, SE_SHARED)) == NULL) {
1507 			hsfs_lostpage++;
1508 			goto reread;
1509 		}
1510 
1511 		pl[0] = pp;
1512 		index = 1;
1513 		atomic_inc_64(&fsp->cache_read_pages);
1514 
1515 		/*
1516 		 * Try to lock the next page, if it exists, without
1517 		 * blocking.
1518 		 */
1519 		plsz -= PAGESIZE;
1520 		/* LINTED (plsz is unsigned) */
1521 		for (soff = off + PAGESIZE; plsz > 0;
1522 		    soff += PAGESIZE, plsz -= PAGESIZE) {
1523 			pp = page_lookup_nowait(vp, (u_offset_t)soff,
1524 			    SE_SHARED);
1525 			if (pp == NULL)
1526 				break;
1527 			pl[index++] = pp;
1528 		}
1529 		pl[index] = NULL;
1530 
1531 		/*
1532 		 * Schedule a semi-asynchronous readahead if we are
1533 		 * accessing the last cached page for the current
1534 		 * file.
1535 		 *
1536 		 * Doing this here means that readaheads will be
1537 		 * issued only if cache-hits occur. This is an advantage
1538 		 * since cache-hits would mean that readahead is giving
1539 		 * the desired benefit. If cache-hits do not occur there
1540 		 * is no point in reading ahead of time - the system
1541 		 * is loaded anyway.
1542 		 */
1543 		if (fsp->hqueue != NULL &&
1544 		    hp->hs_prev_offset - off == PAGESIZE &&
1545 		    hp->hs_prev_offset < filsiz &&
1546 		    hp->hs_ra_bytes > 0 &&
1547 		    !page_exists(vp, hp->hs_prev_offset)) {
1548 			(void) hsfs_getpage_ra(vp, hp->hs_prev_offset, seg,
1549 			    addr + PAGESIZE, hp, fsp, xarsiz, bof,
1550 			    chunk_lbn_count, chunk_data_bytes);
1551 		}
1552 
1553 		return (0);
1554 	}
1555 
1556 	if (pp != NULL) {
1557 		pvn_plist_init(pp, pl, plsz, off, io_len, rw);
1558 	}
1559 
1560 	return (err);
1561 }
1562 
1563 /*ARGSUSED*/
1564 static int
1565 hsfs_getpage(
1566 	struct vnode *vp,
1567 	offset_t off,
1568 	size_t len,
1569 	uint_t *protp,
1570 	struct page *pl[],
1571 	size_t plsz,
1572 	struct seg *seg,
1573 	caddr_t addr,
1574 	enum seg_rw rw,
1575 	struct cred *cred,
1576 	caller_context_t *ct)
1577 {
1578 	int err;
1579 	uint_t filsiz;
1580 	struct hsfs *fsp;
1581 	struct hsnode *hp;
1582 
1583 	fsp = VFS_TO_HSFS(vp->v_vfsp);
1584 	hp = VTOH(vp);
1585 
1586 	/* does not support write */
1587 	if (rw == S_WRITE) {
1588 		panic("write attempt on READ ONLY HSFS");
1589 		/*NOTREACHED*/
1590 	}
1591 
1592 	if (vp->v_flag & VNOMAP) {
1593 		return (ENOSYS);
1594 	}
1595 
1596 	ASSERT(off <= HS_MAXFILEOFF);
1597 
1598 	/*
1599 	 * Determine file data size for EOF check.
1600 	 */
1601 	filsiz = hp->hs_dirent.ext_size;
1602 	if ((off + len) > (offset_t)(filsiz + PAGEOFFSET) && seg != segkmap)
1603 		return (EFAULT);	/* beyond EOF */
1604 
1605 	/*
1606 	 * Async Read-ahead computation.
1607 	 * This attempts to detect sequential access pattern and
1608 	 * enables reading extra pages ahead of time.
1609 	 */
1610 	if (fsp->hqueue != NULL) {
1611 		/*
1612 		 * This check for sequential access also takes into
1613 		 * account segmap weirdness when reading in chunks
1614 		 * less than the segmap size of 8K.
1615 		 */
1616 		if (hp->hs_prev_offset == off || (off <
1617 		    hp->hs_prev_offset && off + MAX(len, PAGESIZE)
1618 		    >= hp->hs_prev_offset)) {
1619 			if (hp->hs_num_contig <
1620 			    (seq_contig_requests - 1)) {
1621 				hp->hs_num_contig++;
1622 
1623 			} else {
1624 				/*
1625 				 * We increase readahead quantum till
1626 				 * a predefined max. max_readahead_bytes
1627 				 * is a multiple of PAGESIZE.
1628 				 */
1629 				if (hp->hs_ra_bytes <
1630 				    fsp->hqueue->max_ra_bytes) {
1631 					hp->hs_ra_bytes += PAGESIZE;
1632 				}
1633 			}
1634 		} else {
1635 			/*
1636 			 * Not contiguous so reduce read ahead counters.
1637 			 */
1638 			if (hp->hs_ra_bytes > 0)
1639 				hp->hs_ra_bytes -= PAGESIZE;
1640 
1641 			if (hp->hs_ra_bytes <= 0) {
1642 				hp->hs_ra_bytes = 0;
1643 				if (hp->hs_num_contig > 0)
1644 					hp->hs_num_contig--;
1645 			}
1646 		}
1647 		/*
1648 		 * Length must be rounded up to page boundary.
1649 		 * since we read in units of pages.
1650 		 */
1651 		hp->hs_prev_offset = off + roundup(len, PAGESIZE);
1652 		DTRACE_PROBE1(hsfs_compute_ra, struct hsnode *, hp);
1653 	}
1654 	if (protp != NULL)
1655 		*protp = PROT_ALL;
1656 
1657 	if (len <= PAGESIZE)
1658 		err = hsfs_getapage(vp, (u_offset_t)off, len, protp, pl, plsz,
1659 		    seg, addr, rw, cred);
1660 	else
1661 		err = pvn_getpages(hsfs_getapage, vp, off, len, protp,
1662 		    pl, plsz, seg, addr, rw, cred);
1663 
1664 	return (err);
1665 }
1666 
1667 
1668 
1669 /*
1670  * This function should never be called. We need to have it to pass
1671  * it as an argument to other functions.
1672  */
1673 /*ARGSUSED*/
1674 int
1675 hsfs_putapage(
1676 	vnode_t		*vp,
1677 	page_t		*pp,
1678 	u_offset_t	*offp,
1679 	size_t		*lenp,
1680 	int		flags,
1681 	cred_t		*cr)
1682 {
1683 	/* should never happen - just destroy it */
1684 	cmn_err(CE_NOTE, "hsfs_putapage: dirty HSFS page");
1685 	pvn_write_done(pp, B_ERROR | B_WRITE | B_INVAL | B_FORCE | flags);
1686 	return (0);
1687 }
1688 
1689 
1690 /*
1691  * The only flags we support are B_INVAL, B_FREE and B_DONTNEED.
1692  * B_INVAL is set by:
1693  *
1694  *	1) the MC_SYNC command of memcntl(2) to support the MS_INVALIDATE flag.
1695  *	2) the MC_ADVISE command of memcntl(2) with the MADV_DONTNEED advice
1696  *	   which translates to an MC_SYNC with the MS_INVALIDATE flag.
1697  *
1698  * The B_FREE (as well as the B_DONTNEED) flag is set when the
1699  * MADV_SEQUENTIAL advice has been used. VOP_PUTPAGE is invoked
1700  * from SEGVN to release pages behind a pagefault.
1701  */
1702 /*ARGSUSED*/
1703 static int
1704 hsfs_putpage(
1705 	struct vnode		*vp,
1706 	offset_t		off,
1707 	size_t			len,
1708 	int			flags,
1709 	struct cred		*cr,
1710 	caller_context_t	*ct)
1711 {
1712 	int error = 0;
1713 
1714 	if (vp->v_count == 0) {
1715 		panic("hsfs_putpage: bad v_count");
1716 		/*NOTREACHED*/
1717 	}
1718 
1719 	if (vp->v_flag & VNOMAP)
1720 		return (ENOSYS);
1721 
1722 	ASSERT(off <= HS_MAXFILEOFF);
1723 
1724 	if (!vn_has_cached_data(vp))	/* no pages mapped */
1725 		return (0);
1726 
1727 	if (len == 0) {		/* from 'off' to EOF */
1728 		error = pvn_vplist_dirty(vp, off, hsfs_putapage, flags, cr);
1729 	} else {
1730 		offset_t end_off = off + len;
1731 		offset_t file_size = VTOH(vp)->hs_dirent.ext_size;
1732 		offset_t io_off;
1733 
1734 		file_size = (file_size + PAGESIZE - 1) & PAGEMASK;
1735 		if (end_off > file_size)
1736 			end_off = file_size;
1737 
1738 		for (io_off = off; io_off < end_off; io_off += PAGESIZE) {
1739 			page_t *pp;
1740 
1741 			/*
1742 			 * We insist on getting the page only if we are
1743 			 * about to invalidate, free or write it and
1744 			 * the B_ASYNC flag is not set.
1745 			 */
1746 			if ((flags & B_INVAL) || ((flags & B_ASYNC) == 0)) {
1747 				pp = page_lookup(vp, io_off,
1748 				    (flags & (B_INVAL | B_FREE)) ?
1749 				    SE_EXCL : SE_SHARED);
1750 			} else {
1751 				pp = page_lookup_nowait(vp, io_off,
1752 				    (flags & B_FREE) ? SE_EXCL : SE_SHARED);
1753 			}
1754 
1755 			if (pp == NULL)
1756 				continue;
1757 
1758 			/*
1759 			 * Normally pvn_getdirty() should return 0, which
1760 			 * impies that it has done the job for us.
1761 			 * The shouldn't-happen scenario is when it returns 1.
1762 			 * This means that the page has been modified and
1763 			 * needs to be put back.
1764 			 * Since we can't write on a CD, we fake a failed
1765 			 * I/O and force pvn_write_done() to destroy the page.
1766 			 */
1767 			if (pvn_getdirty(pp, flags) == 1) {
1768 				cmn_err(CE_NOTE,
1769 				    "hsfs_putpage: dirty HSFS page");
1770 				pvn_write_done(pp, flags |
1771 				    B_ERROR | B_WRITE | B_INVAL | B_FORCE);
1772 			}
1773 		}
1774 	}
1775 	return (error);
1776 }
1777 
1778 
1779 /*ARGSUSED*/
1780 static int
1781 hsfs_map(
1782 	struct vnode *vp,
1783 	offset_t off,
1784 	struct as *as,
1785 	caddr_t *addrp,
1786 	size_t len,
1787 	uchar_t prot,
1788 	uchar_t maxprot,
1789 	uint_t flags,
1790 	struct cred *cred,
1791 	caller_context_t *ct)
1792 {
1793 	struct segvn_crargs vn_a;
1794 	int error;
1795 
1796 	/* VFS_RECORD(vp->v_vfsp, VS_MAP, VS_CALL); */
1797 
1798 	if (vp->v_flag & VNOMAP)
1799 		return (ENOSYS);
1800 
1801 	if (off > HS_MAXFILEOFF || off < 0 ||
1802 	    (off + len) < 0 || (off + len) > HS_MAXFILEOFF)
1803 		return (ENXIO);
1804 
1805 	if (vp->v_type != VREG) {
1806 		return (ENODEV);
1807 	}
1808 
1809 	/*
1810 	 * If file is being locked, disallow mapping.
1811 	 */
1812 	if (vn_has_mandatory_locks(vp, VTOH(vp)->hs_dirent.mode))
1813 		return (EAGAIN);
1814 
1815 	as_rangelock(as);
1816 	error = choose_addr(as, addrp, len, off, ADDR_VACALIGN, flags);
1817 	if (error != 0) {
1818 		as_rangeunlock(as);
1819 		return (error);
1820 	}
1821 
1822 	vn_a.vp = vp;
1823 	vn_a.offset = off;
1824 	vn_a.type = flags & MAP_TYPE;
1825 	vn_a.prot = prot;
1826 	vn_a.maxprot = maxprot;
1827 	vn_a.flags = flags & ~MAP_TYPE;
1828 	vn_a.cred = cred;
1829 	vn_a.amp = NULL;
1830 	vn_a.szc = 0;
1831 	vn_a.lgrp_mem_policy_flags = 0;
1832 
1833 	error = as_map(as, *addrp, len, segvn_create, &vn_a);
1834 	as_rangeunlock(as);
1835 	return (error);
1836 }
1837 
1838 /* ARGSUSED */
1839 static int
1840 hsfs_addmap(
1841 	struct vnode *vp,
1842 	offset_t off,
1843 	struct as *as,
1844 	caddr_t addr,
1845 	size_t len,
1846 	uchar_t prot,
1847 	uchar_t maxprot,
1848 	uint_t flags,
1849 	struct cred *cr,
1850 	caller_context_t *ct)
1851 {
1852 	struct hsnode *hp;
1853 
1854 	if (vp->v_flag & VNOMAP)
1855 		return (ENOSYS);
1856 
1857 	hp = VTOH(vp);
1858 	mutex_enter(&hp->hs_contents_lock);
1859 	hp->hs_mapcnt += btopr(len);
1860 	mutex_exit(&hp->hs_contents_lock);
1861 	return (0);
1862 }
1863 
1864 /*ARGSUSED*/
1865 static int
1866 hsfs_delmap(
1867 	struct vnode *vp,
1868 	offset_t off,
1869 	struct as *as,
1870 	caddr_t addr,
1871 	size_t len,
1872 	uint_t prot,
1873 	uint_t maxprot,
1874 	uint_t flags,
1875 	struct cred *cr,
1876 	caller_context_t *ct)
1877 {
1878 	struct hsnode *hp;
1879 
1880 	if (vp->v_flag & VNOMAP)
1881 		return (ENOSYS);
1882 
1883 	hp = VTOH(vp);
1884 	mutex_enter(&hp->hs_contents_lock);
1885 	hp->hs_mapcnt -= btopr(len);	/* Count released mappings */
1886 	ASSERT(hp->hs_mapcnt >= 0);
1887 	mutex_exit(&hp->hs_contents_lock);
1888 	return (0);
1889 }
1890 
1891 /* ARGSUSED */
1892 static int
1893 hsfs_seek(
1894 	struct vnode *vp,
1895 	offset_t ooff,
1896 	offset_t *noffp,
1897 	caller_context_t *ct)
1898 {
1899 	return ((*noffp < 0 || *noffp > MAXOFFSET_T) ? EINVAL : 0);
1900 }
1901 
1902 /* ARGSUSED */
1903 static int
1904 hsfs_frlock(
1905 	struct vnode *vp,
1906 	int cmd,
1907 	struct flock64 *bfp,
1908 	int flag,
1909 	offset_t offset,
1910 	struct flk_callback *flk_cbp,
1911 	cred_t *cr,
1912 	caller_context_t *ct)
1913 {
1914 	struct hsnode *hp = VTOH(vp);
1915 
1916 	/*
1917 	 * If the file is being mapped, disallow fs_frlock.
1918 	 * We are not holding the hs_contents_lock while checking
1919 	 * hs_mapcnt because the current locking strategy drops all
1920 	 * locks before calling fs_frlock.
1921 	 * So, hs_mapcnt could change before we enter fs_frlock making
1922 	 * it meaningless to have held hs_contents_lock in the first place.
1923 	 */
1924 	if (hp->hs_mapcnt > 0 && MANDLOCK(vp, hp->hs_dirent.mode))
1925 		return (EAGAIN);
1926 
1927 	return (fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr, ct));
1928 }
1929 
1930 static int
1931 hsched_deadline_compare(const void *x1, const void *x2)
1932 {
1933 	const struct hio *h1 = x1;
1934 	const struct hio *h2 = x2;
1935 
1936 	if (h1->io_timestamp < h2->io_timestamp)
1937 		return (-1);
1938 	if (h1->io_timestamp > h2->io_timestamp)
1939 		return (1);
1940 
1941 	if (h1->io_lblkno < h2->io_lblkno)
1942 		return (-1);
1943 	if (h1->io_lblkno > h2->io_lblkno)
1944 		return (1);
1945 
1946 	if (h1 < h2)
1947 		return (-1);
1948 	if (h1 > h2)
1949 		return (1);
1950 
1951 	return (0);
1952 }
1953 
1954 static int
1955 hsched_offset_compare(const void *x1, const void *x2)
1956 {
1957 	const struct hio *h1 = x1;
1958 	const struct hio *h2 = x2;
1959 
1960 	if (h1->io_lblkno < h2->io_lblkno)
1961 		return (-1);
1962 	if (h1->io_lblkno > h2->io_lblkno)
1963 		return (1);
1964 
1965 	if (h1 < h2)
1966 		return (-1);
1967 	if (h1 > h2)
1968 		return (1);
1969 
1970 	return (0);
1971 }
1972 
1973 void
1974 hsched_init_caches(void)
1975 {
1976 	hio_cache = kmem_cache_create("hsfs_hio_cache",
1977 	    sizeof (struct hio), 0, NULL,
1978 	    NULL, NULL, NULL, NULL, 0);
1979 
1980 	hio_info_cache = kmem_cache_create("hsfs_hio_info_cache",
1981 	    sizeof (struct hio_info), 0, NULL,
1982 	    NULL, NULL, NULL, NULL, 0);
1983 }
1984 
1985 void
1986 hsched_fini_caches(void)
1987 {
1988 	kmem_cache_destroy(hio_cache);
1989 	kmem_cache_destroy(hio_info_cache);
1990 }
1991 
1992 /*
1993  * Initialize I/O scheduling structures. This is called via hsfs_mount
1994  */
1995 void
1996 hsched_init(struct hsfs *fsp, int fsid, struct modlinkage *modlinkage)
1997 {
1998 	struct hsfs_queue *hqueue = fsp->hqueue;
1999 	struct vnode *vp = fsp->hsfs_devvp;
2000 
2001 	/* TaskQ name of the form: hsched_task_ + stringof(int) */
2002 	char namebuf[23];
2003 	int error, err;
2004 	struct dk_cinfo info;
2005 	ldi_handle_t lh;
2006 	ldi_ident_t li;
2007 
2008 	/*
2009 	 * Default maxtransfer = 16k chunk
2010 	 */
2011 	hqueue->dev_maxtransfer = 16384;
2012 
2013 	/*
2014 	 * Try to fetch the maximum device transfer size. This is used to
2015 	 * ensure that a coalesced block does not exceed the maxtransfer.
2016 	 */
2017 	err  = ldi_ident_from_mod(modlinkage, &li);
2018 	if (err) {
2019 		cmn_err(CE_NOTE, "hsched_init: Querying device failed");
2020 		cmn_err(CE_NOTE, "hsched_init: ldi_ident_from_mod err=%d\n",
2021 		    err);
2022 		goto set_ra;
2023 	}
2024 
2025 	err = ldi_open_by_dev(&(vp->v_rdev), OTYP_CHR, FREAD, CRED(), &lh, li);
2026 	ldi_ident_release(li);
2027 	if (err) {
2028 		cmn_err(CE_NOTE, "hsched_init: Querying device failed");
2029 		cmn_err(CE_NOTE, "hsched_init: ldi_open err=%d\n", err);
2030 		goto set_ra;
2031 	}
2032 
2033 	error = ldi_ioctl(lh, DKIOCINFO, (intptr_t)&info, FKIOCTL,
2034 	    CRED(), &err);
2035 	err = ldi_close(lh, FREAD, CRED());
2036 	if (err) {
2037 		cmn_err(CE_NOTE, "hsched_init: Querying device failed");
2038 		cmn_err(CE_NOTE, "hsched_init: ldi_close err=%d\n", err);
2039 	}
2040 
2041 	if (error == 0) {
2042 		hqueue->dev_maxtransfer = ldbtob(info.dki_maxtransfer);
2043 	}
2044 
2045 set_ra:
2046 	/*
2047 	 * Max size of data to read ahead for sequential access pattern.
2048 	 * Conservative to avoid letting the underlying CD drive to spin
2049 	 * down, in case the application is reading slowly.
2050 	 * We read ahead upto a max of 4 pages.
2051 	 */
2052 	hqueue->max_ra_bytes = PAGESIZE * 8;
2053 
2054 	mutex_init(&(hqueue->hsfs_queue_lock), NULL, MUTEX_DEFAULT, NULL);
2055 	mutex_init(&(hqueue->strategy_lock), NULL, MUTEX_DEFAULT, NULL);
2056 	avl_create(&(hqueue->read_tree), hsched_offset_compare,
2057 	    sizeof (struct hio), offsetof(struct hio, io_offset_node));
2058 	avl_create(&(hqueue->deadline_tree), hsched_deadline_compare,
2059 	    sizeof (struct hio), offsetof(struct hio, io_deadline_node));
2060 
2061 	(void) snprintf(namebuf, sizeof (namebuf), "hsched_task_%d", fsid);
2062 	hqueue->ra_task = taskq_create(namebuf, hsfs_taskq_nthreads,
2063 	    minclsyspri + 2, 1, 104857600 / PAGESIZE, TASKQ_DYNAMIC);
2064 
2065 	hqueue->next = NULL;
2066 	hqueue->nbuf = kmem_zalloc(sizeof (struct buf), KM_SLEEP);
2067 }
2068 
2069 void
2070 hsched_fini(struct hsfs_queue *hqueue)
2071 {
2072 	if (hqueue != NULL) {
2073 		/*
2074 		 * Remove the sentinel if there was one.
2075 		 */
2076 		if (hqueue->next != NULL) {
2077 			avl_remove(&hqueue->read_tree, hqueue->next);
2078 			kmem_cache_free(hio_cache, hqueue->next);
2079 		}
2080 		avl_destroy(&(hqueue->read_tree));
2081 		avl_destroy(&(hqueue->deadline_tree));
2082 		mutex_destroy(&(hqueue->hsfs_queue_lock));
2083 		mutex_destroy(&(hqueue->strategy_lock));
2084 
2085 		/*
2086 		 * If there are any existing readahead threads running
2087 		 * taskq_destroy will wait for them to finish.
2088 		 */
2089 		taskq_destroy(hqueue->ra_task);
2090 		kmem_free(hqueue->nbuf, sizeof (struct buf));
2091 	}
2092 }
2093 
2094 /*
2095  * Determine if two I/O requests are adjacent to each other so
2096  * that they can coalesced.
2097  */
2098 #define	IS_ADJACENT(io, nio) \
2099 	(((io)->io_lblkno + (io)->nblocks == (nio)->io_lblkno) && \
2100 	(io)->bp->b_edev == (nio)->bp->b_edev)
2101 
2102 /*
2103  * This performs the actual I/O scheduling logic. We use the Circular
2104  * Look algorithm here. Sort the I/O requests in ascending order of
2105  * logical block number and process them starting with the lowest
2106  * numbered block and progressing towards higher block numbers in the
2107  * queue. Once there are no more higher numbered blocks, start again
2108  * with the lowest one. This is good for CD/DVD as you keep moving
2109  * the head in one direction along the outward spiral track and avoid
2110  * too many seeks as much as possible. The re-ordering also allows
2111  * us to coalesce adjacent requests into one larger request.
2112  * This is thus essentially a 1-way Elevator with front merging.
2113  *
2114  * In addition each read request here has a deadline and will be
2115  * processed out of turn if the deadline (500ms) expires.
2116  *
2117  * This function is necessarily serialized via hqueue->strategy_lock.
2118  * This function sits just below hsfs_getapage and processes all read
2119  * requests orginating from that function.
2120  */
2121 int
2122 hsched_invoke_strategy(struct hsfs *fsp)
2123 {
2124 	struct hsfs_queue *hqueue;
2125 	struct buf *nbuf;
2126 	struct hio *fio, *nio, *tio, *prev, *last;
2127 	size_t bsize, soffset, offset, data;
2128 	int bioret, bufcount;
2129 	struct vnode *fvp;
2130 	ksema_t *io_done;
2131 	caddr_t iodata;
2132 
2133 	hqueue = fsp->hqueue;
2134 	mutex_enter(&hqueue->strategy_lock);
2135 	mutex_enter(&hqueue->hsfs_queue_lock);
2136 
2137 	/*
2138 	 * Check for Deadline expiration first
2139 	 */
2140 	fio = avl_first(&hqueue->deadline_tree);
2141 
2142 	/*
2143 	 * Paranoid check for empty I/O queue. Both deadline
2144 	 * and read trees contain same data sorted in different
2145 	 * ways. So empty deadline tree = empty read tree.
2146 	 */
2147 	if (fio == NULL) {
2148 		/*
2149 		 * Remove the sentinel if there was one.
2150 		 */
2151 		if (hqueue->next != NULL) {
2152 			avl_remove(&hqueue->read_tree, hqueue->next);
2153 			kmem_cache_free(hio_cache, hqueue->next);
2154 			hqueue->next = NULL;
2155 		}
2156 		mutex_exit(&hqueue->hsfs_queue_lock);
2157 		mutex_exit(&hqueue->strategy_lock);
2158 		return (1);
2159 	}
2160 
2161 	if (drv_hztousec(ddi_get_lbolt()) - fio->io_timestamp
2162 	    < HSFS_READ_DEADLINE) {
2163 		/*
2164 		 * Apply standard scheduling logic. This uses the
2165 		 * C-LOOK approach. Process I/O requests in ascending
2166 		 * order of logical block address till no subsequent
2167 		 * higher numbered block request remains. Then start
2168 		 * again from the lowest numbered block in the queue.
2169 		 *
2170 		 * We do this cheaply here by means of a sentinel.
2171 		 * The last processed I/O structure from the previous
2172 		 * invocation of this func, is left dangling in the
2173 		 * read_tree so that we can easily scan to the next
2174 		 * higher numbered request and remove the sentinel.
2175 		 */
2176 		fio = NULL;
2177 		if (hqueue->next != NULL) {
2178 			fio = AVL_NEXT(&hqueue->read_tree, hqueue->next);
2179 			avl_remove(&hqueue->read_tree, hqueue->next);
2180 			kmem_cache_free(hio_cache, hqueue->next);
2181 			hqueue->next = NULL;
2182 		}
2183 		if (fio == NULL) {
2184 			fio = avl_first(&hqueue->read_tree);
2185 		}
2186 	} else if (hqueue->next != NULL) {
2187 		DTRACE_PROBE1(hsfs_deadline_expiry, struct hio *, fio);
2188 
2189 		avl_remove(&hqueue->read_tree, hqueue->next);
2190 		kmem_cache_free(hio_cache, hqueue->next);
2191 		hqueue->next = NULL;
2192 	}
2193 
2194 	/*
2195 	 * In addition we try to coalesce contiguous
2196 	 * requests into one bigger request.
2197 	 */
2198 	bufcount = 1;
2199 	bsize = ldbtob(fio->nblocks);
2200 	fvp = fio->bp->b_file;
2201 	nio = AVL_NEXT(&hqueue->read_tree, fio);
2202 	tio = fio;
2203 	while (nio != NULL && IS_ADJACENT(tio, nio) &&
2204 	    bsize < hqueue->dev_maxtransfer) {
2205 		avl_remove(&hqueue->deadline_tree, tio);
2206 		avl_remove(&hqueue->read_tree, tio);
2207 		tio->contig_chain = nio;
2208 		bsize += ldbtob(nio->nblocks);
2209 		prev = tio;
2210 		tio = nio;
2211 
2212 		/*
2213 		 * This check is required to detect the case where
2214 		 * we are merging adjacent buffers belonging to
2215 		 * different files. fvp is used to set the b_file
2216 		 * parameter in the coalesced buf. b_file is used
2217 		 * by DTrace so we do not want DTrace to accrue
2218 		 * requests to two different files to any one file.
2219 		 */
2220 		if (fvp && tio->bp->b_file != fvp) {
2221 			fvp = NULL;
2222 		}
2223 
2224 		nio = AVL_NEXT(&hqueue->read_tree, nio);
2225 		bufcount++;
2226 	}
2227 
2228 	/*
2229 	 * tio is not removed from the read_tree as it serves as a sentinel
2230 	 * to cheaply allow us to scan to the next higher numbered I/O
2231 	 * request.
2232 	 */
2233 	hqueue->next = tio;
2234 	avl_remove(&hqueue->deadline_tree, tio);
2235 	mutex_exit(&hqueue->hsfs_queue_lock);
2236 	DTRACE_PROBE3(hsfs_io_dequeued, struct hio *, fio, int, bufcount,
2237 	    size_t, bsize);
2238 
2239 	/*
2240 	 * The benefit of coalescing occurs if the the savings in I/O outweighs
2241 	 * the cost of doing the additional work below.
2242 	 * It was observed that coalescing 2 buffers results in diminishing
2243 	 * returns, so we do coalescing if we have >2 adjacent bufs.
2244 	 */
2245 	if (bufcount > hsched_coalesce_min) {
2246 		/*
2247 		 * We have coalesced blocks. First allocate mem and buf for
2248 		 * the entire coalesced chunk.
2249 		 * Since we are guaranteed single-threaded here we pre-allocate
2250 		 * one buf at mount time and that is re-used every time. This
2251 		 * is a synthesized buf structure that uses kmem_alloced chunk.
2252 		 * Not quite a normal buf attached to pages.
2253 		 */
2254 		fsp->coalesced_bytes += bsize;
2255 		nbuf = hqueue->nbuf;
2256 		bioinit(nbuf);
2257 		nbuf->b_edev = fio->bp->b_edev;
2258 		nbuf->b_dev = fio->bp->b_dev;
2259 		nbuf->b_flags = fio->bp->b_flags;
2260 		nbuf->b_iodone = fio->bp->b_iodone;
2261 		iodata = kmem_alloc(bsize, KM_SLEEP);
2262 		nbuf->b_un.b_addr = iodata;
2263 		nbuf->b_lblkno = fio->bp->b_lblkno;
2264 		nbuf->b_vp = fvp;
2265 		nbuf->b_file = fvp;
2266 		nbuf->b_bcount = bsize;
2267 		nbuf->b_bufsize = bsize;
2268 
2269 		DTRACE_PROBE3(hsfs_coalesced_io_start, struct hio *, fio, int,
2270 		    bufcount, size_t, bsize);
2271 
2272 		/*
2273 		 * Perform I/O for the coalesced block.
2274 		 */
2275 		(void) bdev_strategy(nbuf);
2276 
2277 		/*
2278 		 * Duplicate the last IO node to leave the sentinel alone.
2279 		 * The sentinel is freed in the next invocation of this
2280 		 * function.
2281 		 */
2282 		prev->contig_chain = kmem_cache_alloc(hio_cache, KM_SLEEP);
2283 		prev->contig_chain->bp = tio->bp;
2284 		prev->contig_chain->sema = tio->sema;
2285 		tio = prev->contig_chain;
2286 		tio->contig_chain = NULL;
2287 		soffset = ldbtob(fio->bp->b_lblkno);
2288 		nio = fio;
2289 
2290 		bioret = biowait(nbuf);
2291 		data = bsize - nbuf->b_resid;
2292 		biofini(nbuf);
2293 		mutex_exit(&hqueue->strategy_lock);
2294 
2295 		/*
2296 		 * We use the b_resid parameter to detect how much
2297 		 * data was succesfully transferred. We will signal
2298 		 * a success to all the fully retrieved actual bufs
2299 		 * before coalescing, rest is signaled as error,
2300 		 * if any.
2301 		 */
2302 		tio = nio;
2303 		DTRACE_PROBE3(hsfs_coalesced_io_done, struct hio *, nio,
2304 		    int, bioret, size_t, data);
2305 
2306 		/*
2307 		 * Copy data and signal success to all the bufs
2308 		 * which can be fully satisfied from b_resid.
2309 		 */
2310 		while (nio != NULL && data >= nio->bp->b_bcount) {
2311 			offset = ldbtob(nio->bp->b_lblkno) - soffset;
2312 			bcopy(iodata + offset, nio->bp->b_un.b_addr,
2313 			    nio->bp->b_bcount);
2314 			data -= nio->bp->b_bcount;
2315 			bioerror(nio->bp, 0);
2316 			biodone(nio->bp);
2317 			sema_v(nio->sema);
2318 			tio = nio;
2319 			nio = nio->contig_chain;
2320 			kmem_cache_free(hio_cache, tio);
2321 		}
2322 
2323 		/*
2324 		 * Signal error to all the leftover bufs (if any)
2325 		 * after b_resid data is exhausted.
2326 		 */
2327 		while (nio != NULL) {
2328 			nio->bp->b_resid = nio->bp->b_bcount - data;
2329 			bzero(nio->bp->b_un.b_addr + data, nio->bp->b_resid);
2330 			bioerror(nio->bp, bioret);
2331 			biodone(nio->bp);
2332 			sema_v(nio->sema);
2333 			tio = nio;
2334 			nio = nio->contig_chain;
2335 			kmem_cache_free(hio_cache, tio);
2336 			data = 0;
2337 		}
2338 		kmem_free(iodata, bsize);
2339 	} else {
2340 
2341 		nbuf = tio->bp;
2342 		io_done = tio->sema;
2343 		nio = fio;
2344 		last = tio;
2345 
2346 		while (nio != NULL) {
2347 			(void) bdev_strategy(nio->bp);
2348 			nio = nio->contig_chain;
2349 		}
2350 		nio = fio;
2351 		mutex_exit(&hqueue->strategy_lock);
2352 
2353 		while (nio != NULL) {
2354 			if (nio == last) {
2355 				(void) biowait(nbuf);
2356 				sema_v(io_done);
2357 				break;
2358 				/* sentinel last not freed. See above. */
2359 			} else {
2360 				(void) biowait(nio->bp);
2361 				sema_v(nio->sema);
2362 			}
2363 			tio = nio;
2364 			nio = nio->contig_chain;
2365 			kmem_cache_free(hio_cache, tio);
2366 		}
2367 	}
2368 	return (0);
2369 }
2370 
2371 /*
2372  * Insert an I/O request in the I/O scheduler's pipeline
2373  * Using AVL tree makes it easy to reorder the I/O request
2374  * based on logical block number.
2375  */
2376 static void
2377 hsched_enqueue_io(struct hsfs *fsp, struct hio *hsio, int ra)
2378 {
2379 	struct hsfs_queue *hqueue = fsp->hqueue;
2380 
2381 	mutex_enter(&hqueue->hsfs_queue_lock);
2382 
2383 	fsp->physical_read_bytes += hsio->bp->b_bcount;
2384 	if (ra)
2385 		fsp->readahead_bytes += hsio->bp->b_bcount;
2386 
2387 	avl_add(&hqueue->deadline_tree, hsio);
2388 	avl_add(&hqueue->read_tree, hsio);
2389 
2390 	DTRACE_PROBE3(hsfs_io_enqueued, struct hio *, hsio,
2391 	    struct hsfs_queue *, hqueue, int, ra);
2392 
2393 	mutex_exit(&hqueue->hsfs_queue_lock);
2394 }
2395 
2396 /* ARGSUSED */
2397 static int
2398 hsfs_pathconf(struct vnode *vp,
2399 	int cmd,
2400 	ulong_t *valp,
2401 	struct cred *cr,
2402 	caller_context_t *ct)
2403 {
2404 	struct hsfs	*fsp;
2405 
2406 	int		error = 0;
2407 
2408 	switch (cmd) {
2409 
2410 	case _PC_NAME_MAX:
2411 		fsp = VFS_TO_HSFS(vp->v_vfsp);
2412 		*valp = fsp->hsfs_namemax;
2413 		break;
2414 
2415 	case _PC_FILESIZEBITS:
2416 		*valp = 33;	/* Without multi extent support: 4 GB - 2k */
2417 		break;
2418 
2419 	case _PC_TIMESTAMP_RESOLUTION:
2420 		/*
2421 		 * HSFS keeps, at best, 1/100 second timestamp resolution.
2422 		 */
2423 		*valp = 10000000L;
2424 		break;
2425 
2426 	default:
2427 		error = fs_pathconf(vp, cmd, valp, cr, ct);
2428 		break;
2429 	}
2430 
2431 	return (error);
2432 }
2433 
2434 
2435 
2436 const fs_operation_def_t hsfs_vnodeops_template[] = {
2437 	VOPNAME_OPEN,		{ .vop_open = hsfs_open },
2438 	VOPNAME_CLOSE,		{ .vop_close = hsfs_close },
2439 	VOPNAME_READ,		{ .vop_read = hsfs_read },
2440 	VOPNAME_GETATTR,	{ .vop_getattr = hsfs_getattr },
2441 	VOPNAME_ACCESS,		{ .vop_access = hsfs_access },
2442 	VOPNAME_LOOKUP,		{ .vop_lookup = hsfs_lookup },
2443 	VOPNAME_READDIR,	{ .vop_readdir = hsfs_readdir },
2444 	VOPNAME_READLINK,	{ .vop_readlink = hsfs_readlink },
2445 	VOPNAME_FSYNC,		{ .vop_fsync = hsfs_fsync },
2446 	VOPNAME_INACTIVE,	{ .vop_inactive = hsfs_inactive },
2447 	VOPNAME_FID,		{ .vop_fid = hsfs_fid },
2448 	VOPNAME_SEEK,		{ .vop_seek = hsfs_seek },
2449 	VOPNAME_FRLOCK,		{ .vop_frlock = hsfs_frlock },
2450 	VOPNAME_GETPAGE,	{ .vop_getpage = hsfs_getpage },
2451 	VOPNAME_PUTPAGE,	{ .vop_putpage = hsfs_putpage },
2452 	VOPNAME_MAP,		{ .vop_map = hsfs_map },
2453 	VOPNAME_ADDMAP,		{ .vop_addmap = hsfs_addmap },
2454 	VOPNAME_DELMAP,		{ .vop_delmap = hsfs_delmap },
2455 	VOPNAME_PATHCONF,	{ .vop_pathconf = hsfs_pathconf },
2456 	NULL,			NULL
2457 };
2458 
2459 struct vnodeops *hsfs_vnodeops;
2460