1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 /* 30 * DTrace - Dynamic Tracing for Solaris 31 * 32 * This is the implementation of the Solaris Dynamic Tracing framework 33 * (DTrace). The user-visible interface to DTrace is described at length in 34 * the "Solaris Dynamic Tracing Guide". The interfaces between the libdtrace 35 * library, the in-kernel DTrace framework, and the DTrace providers are 36 * described in the block comments in the <sys/dtrace.h> header file. The 37 * internal architecture of DTrace is described in the block comments in the 38 * <sys/dtrace_impl.h> header file. The comments contained within the DTrace 39 * implementation very much assume mastery of all of these sources; if one has 40 * an unanswered question about the implementation, one should consult them 41 * first. 42 * 43 * The functions here are ordered roughly as follows: 44 * 45 * - Probe context functions 46 * - Probe hashing functions 47 * - Non-probe context utility functions 48 * - Matching functions 49 * - Provider-to-Framework API functions 50 * - Probe management functions 51 * - DIF object functions 52 * - Format functions 53 * - Predicate functions 54 * - ECB functions 55 * - Buffer functions 56 * - Enabling functions 57 * - DOF functions 58 * - Anonymous enabling functions 59 * - Consumer state functions 60 * - Helper functions 61 * - Hook functions 62 * - Driver cookbook functions 63 * 64 * Each group of functions begins with a block comment labelled the "DTrace 65 * [Group] Functions", allowing one to find each block by searching forward 66 * on capital-f functions. 67 */ 68 #include <sys/errno.h> 69 #include <sys/stat.h> 70 #include <sys/modctl.h> 71 #include <sys/conf.h> 72 #include <sys/systm.h> 73 #include <sys/ddi.h> 74 #include <sys/sunddi.h> 75 #include <sys/cpuvar.h> 76 #include <sys/kmem.h> 77 #include <sys/strsubr.h> 78 #include <sys/sysmacros.h> 79 #include <sys/dtrace_impl.h> 80 #include <sys/atomic.h> 81 #include <sys/cmn_err.h> 82 #include <sys/mutex_impl.h> 83 #include <sys/rwlock_impl.h> 84 #include <sys/ctf_api.h> 85 #include <sys/panic.h> 86 #include <sys/priv_impl.h> 87 #include <sys/policy.h> 88 #include <sys/cred_impl.h> 89 #include <sys/procfs_isa.h> 90 #include <sys/taskq.h> 91 #include <sys/mkdev.h> 92 #include <sys/kdi.h> 93 #include <sys/zone.h> 94 #include <sys/socket.h> 95 #include <netinet/in.h> 96 97 /* 98 * DTrace Tunable Variables 99 * 100 * The following variables may be tuned by adding a line to /etc/system that 101 * includes both the name of the DTrace module ("dtrace") and the name of the 102 * variable. For example: 103 * 104 * set dtrace:dtrace_destructive_disallow = 1 105 * 106 * In general, the only variables that one should be tuning this way are those 107 * that affect system-wide DTrace behavior, and for which the default behavior 108 * is undesirable. Most of these variables are tunable on a per-consumer 109 * basis using DTrace options, and need not be tuned on a system-wide basis. 110 * When tuning these variables, avoid pathological values; while some attempt 111 * is made to verify the integrity of these variables, they are not considered 112 * part of the supported interface to DTrace, and they are therefore not 113 * checked comprehensively. Further, these variables should not be tuned 114 * dynamically via "mdb -kw" or other means; they should only be tuned via 115 * /etc/system. 116 */ 117 int dtrace_destructive_disallow = 0; 118 dtrace_optval_t dtrace_nonroot_maxsize = (16 * 1024 * 1024); 119 size_t dtrace_difo_maxsize = (256 * 1024); 120 dtrace_optval_t dtrace_dof_maxsize = (256 * 1024); 121 size_t dtrace_global_maxsize = (16 * 1024); 122 size_t dtrace_actions_max = (16 * 1024); 123 size_t dtrace_retain_max = 1024; 124 dtrace_optval_t dtrace_helper_actions_max = 32; 125 dtrace_optval_t dtrace_helper_providers_max = 32; 126 dtrace_optval_t dtrace_dstate_defsize = (1 * 1024 * 1024); 127 size_t dtrace_strsize_default = 256; 128 dtrace_optval_t dtrace_cleanrate_default = 9900990; /* 101 hz */ 129 dtrace_optval_t dtrace_cleanrate_min = 200000; /* 5000 hz */ 130 dtrace_optval_t dtrace_cleanrate_max = (uint64_t)60 * NANOSEC; /* 1/minute */ 131 dtrace_optval_t dtrace_aggrate_default = NANOSEC; /* 1 hz */ 132 dtrace_optval_t dtrace_statusrate_default = NANOSEC; /* 1 hz */ 133 dtrace_optval_t dtrace_statusrate_max = (hrtime_t)10 * NANOSEC; /* 6/minute */ 134 dtrace_optval_t dtrace_switchrate_default = NANOSEC; /* 1 hz */ 135 dtrace_optval_t dtrace_nspec_default = 1; 136 dtrace_optval_t dtrace_specsize_default = 32 * 1024; 137 dtrace_optval_t dtrace_stackframes_default = 20; 138 dtrace_optval_t dtrace_ustackframes_default = 20; 139 dtrace_optval_t dtrace_jstackframes_default = 50; 140 dtrace_optval_t dtrace_jstackstrsize_default = 512; 141 int dtrace_msgdsize_max = 128; 142 hrtime_t dtrace_chill_max = 500 * (NANOSEC / MILLISEC); /* 500 ms */ 143 hrtime_t dtrace_chill_interval = NANOSEC; /* 1000 ms */ 144 int dtrace_devdepth_max = 32; 145 int dtrace_err_verbose; 146 hrtime_t dtrace_deadman_interval = NANOSEC; 147 hrtime_t dtrace_deadman_timeout = (hrtime_t)10 * NANOSEC; 148 hrtime_t dtrace_deadman_user = (hrtime_t)30 * NANOSEC; 149 150 /* 151 * DTrace External Variables 152 * 153 * As dtrace(7D) is a kernel module, any DTrace variables are obviously 154 * available to DTrace consumers via the backtick (`) syntax. One of these, 155 * dtrace_zero, is made deliberately so: it is provided as a source of 156 * well-known, zero-filled memory. While this variable is not documented, 157 * it is used by some translators as an implementation detail. 158 */ 159 const char dtrace_zero[256] = { 0 }; /* zero-filled memory */ 160 161 /* 162 * DTrace Internal Variables 163 */ 164 static dev_info_t *dtrace_devi; /* device info */ 165 static vmem_t *dtrace_arena; /* probe ID arena */ 166 static vmem_t *dtrace_minor; /* minor number arena */ 167 static taskq_t *dtrace_taskq; /* task queue */ 168 static dtrace_probe_t **dtrace_probes; /* array of all probes */ 169 static int dtrace_nprobes; /* number of probes */ 170 static dtrace_provider_t *dtrace_provider; /* provider list */ 171 static dtrace_meta_t *dtrace_meta_pid; /* user-land meta provider */ 172 static int dtrace_opens; /* number of opens */ 173 static int dtrace_helpers; /* number of helpers */ 174 static void *dtrace_softstate; /* softstate pointer */ 175 static dtrace_hash_t *dtrace_bymod; /* probes hashed by module */ 176 static dtrace_hash_t *dtrace_byfunc; /* probes hashed by function */ 177 static dtrace_hash_t *dtrace_byname; /* probes hashed by name */ 178 static dtrace_toxrange_t *dtrace_toxrange; /* toxic range array */ 179 static int dtrace_toxranges; /* number of toxic ranges */ 180 static int dtrace_toxranges_max; /* size of toxic range array */ 181 static dtrace_anon_t dtrace_anon; /* anonymous enabling */ 182 static kmem_cache_t *dtrace_state_cache; /* cache for dynamic state */ 183 static uint64_t dtrace_vtime_references; /* number of vtimestamp refs */ 184 static kthread_t *dtrace_panicked; /* panicking thread */ 185 static dtrace_ecb_t *dtrace_ecb_create_cache; /* cached created ECB */ 186 static dtrace_genid_t dtrace_probegen; /* current probe generation */ 187 static dtrace_helpers_t *dtrace_deferred_pid; /* deferred helper list */ 188 static dtrace_enabling_t *dtrace_retained; /* list of retained enablings */ 189 static dtrace_dynvar_t dtrace_dynhash_sink; /* end of dynamic hash chains */ 190 191 /* 192 * DTrace Locking 193 * DTrace is protected by three (relatively coarse-grained) locks: 194 * 195 * (1) dtrace_lock is required to manipulate essentially any DTrace state, 196 * including enabling state, probes, ECBs, consumer state, helper state, 197 * etc. Importantly, dtrace_lock is _not_ required when in probe context; 198 * probe context is lock-free -- synchronization is handled via the 199 * dtrace_sync() cross call mechanism. 200 * 201 * (2) dtrace_provider_lock is required when manipulating provider state, or 202 * when provider state must be held constant. 203 * 204 * (3) dtrace_meta_lock is required when manipulating meta provider state, or 205 * when meta provider state must be held constant. 206 * 207 * The lock ordering between these three locks is dtrace_meta_lock before 208 * dtrace_provider_lock before dtrace_lock. (In particular, there are 209 * several places where dtrace_provider_lock is held by the framework as it 210 * calls into the providers -- which then call back into the framework, 211 * grabbing dtrace_lock.) 212 * 213 * There are two other locks in the mix: mod_lock and cpu_lock. With respect 214 * to dtrace_provider_lock and dtrace_lock, cpu_lock continues its historical 215 * role as a coarse-grained lock; it is acquired before both of these locks. 216 * With respect to dtrace_meta_lock, its behavior is stranger: cpu_lock must 217 * be acquired _between_ dtrace_meta_lock and any other DTrace locks. 218 * mod_lock is similar with respect to dtrace_provider_lock in that it must be 219 * acquired _between_ dtrace_provider_lock and dtrace_lock. 220 */ 221 static kmutex_t dtrace_lock; /* probe state lock */ 222 static kmutex_t dtrace_provider_lock; /* provider state lock */ 223 static kmutex_t dtrace_meta_lock; /* meta-provider state lock */ 224 225 /* 226 * DTrace Provider Variables 227 * 228 * These are the variables relating to DTrace as a provider (that is, the 229 * provider of the BEGIN, END, and ERROR probes). 230 */ 231 static dtrace_pattr_t dtrace_provider_attr = { 232 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON }, 233 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN }, 234 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN }, 235 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON }, 236 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON }, 237 }; 238 239 static void 240 dtrace_nullop(void) 241 {} 242 243 static dtrace_pops_t dtrace_provider_ops = { 244 (void (*)(void *, const dtrace_probedesc_t *))dtrace_nullop, 245 (void (*)(void *, struct modctl *))dtrace_nullop, 246 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop, 247 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop, 248 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop, 249 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop, 250 NULL, 251 NULL, 252 NULL, 253 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop 254 }; 255 256 static dtrace_id_t dtrace_probeid_begin; /* special BEGIN probe */ 257 static dtrace_id_t dtrace_probeid_end; /* special END probe */ 258 dtrace_id_t dtrace_probeid_error; /* special ERROR probe */ 259 260 /* 261 * DTrace Helper Tracing Variables 262 */ 263 uint32_t dtrace_helptrace_next = 0; 264 uint32_t dtrace_helptrace_nlocals; 265 char *dtrace_helptrace_buffer; 266 int dtrace_helptrace_bufsize = 512 * 1024; 267 268 #ifdef DEBUG 269 int dtrace_helptrace_enabled = 1; 270 #else 271 int dtrace_helptrace_enabled = 0; 272 #endif 273 274 /* 275 * DTrace Error Hashing 276 * 277 * On DEBUG kernels, DTrace will track the errors that has seen in a hash 278 * table. This is very useful for checking coverage of tests that are 279 * expected to induce DIF or DOF processing errors, and may be useful for 280 * debugging problems in the DIF code generator or in DOF generation . The 281 * error hash may be examined with the ::dtrace_errhash MDB dcmd. 282 */ 283 #ifdef DEBUG 284 static dtrace_errhash_t dtrace_errhash[DTRACE_ERRHASHSZ]; 285 static const char *dtrace_errlast; 286 static kthread_t *dtrace_errthread; 287 static kmutex_t dtrace_errlock; 288 #endif 289 290 /* 291 * DTrace Macros and Constants 292 * 293 * These are various macros that are useful in various spots in the 294 * implementation, along with a few random constants that have no meaning 295 * outside of the implementation. There is no real structure to this cpp 296 * mishmash -- but is there ever? 297 */ 298 #define DTRACE_HASHSTR(hash, probe) \ 299 dtrace_hash_str(*((char **)((uintptr_t)(probe) + (hash)->dth_stroffs))) 300 301 #define DTRACE_HASHNEXT(hash, probe) \ 302 (dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_nextoffs) 303 304 #define DTRACE_HASHPREV(hash, probe) \ 305 (dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_prevoffs) 306 307 #define DTRACE_HASHEQ(hash, lhs, rhs) \ 308 (strcmp(*((char **)((uintptr_t)(lhs) + (hash)->dth_stroffs)), \ 309 *((char **)((uintptr_t)(rhs) + (hash)->dth_stroffs))) == 0) 310 311 #define DTRACE_AGGHASHSIZE_SLEW 17 312 313 #define DTRACE_V4MAPPED_OFFSET (sizeof (uint32_t) * 3) 314 315 /* 316 * The key for a thread-local variable consists of the lower 61 bits of the 317 * t_did, plus the 3 bits of the highest active interrupt above LOCK_LEVEL. 318 * We add DIF_VARIABLE_MAX to t_did to assure that the thread key is never 319 * equal to a variable identifier. This is necessary (but not sufficient) to 320 * assure that global associative arrays never collide with thread-local 321 * variables. To guarantee that they cannot collide, we must also define the 322 * order for keying dynamic variables. That order is: 323 * 324 * [ key0 ] ... [ keyn ] [ variable-key ] [ tls-key ] 325 * 326 * Because the variable-key and the tls-key are in orthogonal spaces, there is 327 * no way for a global variable key signature to match a thread-local key 328 * signature. 329 */ 330 #define DTRACE_TLS_THRKEY(where) { \ 331 uint_t intr = 0; \ 332 uint_t actv = CPU->cpu_intr_actv >> (LOCK_LEVEL + 1); \ 333 for (; actv; actv >>= 1) \ 334 intr++; \ 335 ASSERT(intr < (1 << 3)); \ 336 (where) = ((curthread->t_did + DIF_VARIABLE_MAX) & \ 337 (((uint64_t)1 << 61) - 1)) | ((uint64_t)intr << 61); \ 338 } 339 340 #define DT_BSWAP_8(x) ((x) & 0xff) 341 #define DT_BSWAP_16(x) ((DT_BSWAP_8(x) << 8) | DT_BSWAP_8((x) >> 8)) 342 #define DT_BSWAP_32(x) ((DT_BSWAP_16(x) << 16) | DT_BSWAP_16((x) >> 16)) 343 #define DT_BSWAP_64(x) ((DT_BSWAP_32(x) << 32) | DT_BSWAP_32((x) >> 32)) 344 345 #define DTRACE_STORE(type, tomax, offset, what) \ 346 *((type *)((uintptr_t)(tomax) + (uintptr_t)offset)) = (type)(what); 347 348 #ifndef __i386 349 #define DTRACE_ALIGNCHECK(addr, size, flags) \ 350 if (addr & (size - 1)) { \ 351 *flags |= CPU_DTRACE_BADALIGN; \ 352 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = addr; \ 353 return (0); \ 354 } 355 #else 356 #define DTRACE_ALIGNCHECK(addr, size, flags) 357 #endif 358 359 /* 360 * Test whether a range of memory starting at testaddr of size testsz falls 361 * within the range of memory described by addr, sz. We take care to avoid 362 * problems with overflow and underflow of the unsigned quantities, and 363 * disallow all negative sizes. Ranges of size 0 are allowed. 364 */ 365 #define DTRACE_INRANGE(testaddr, testsz, baseaddr, basesz) \ 366 ((testaddr) - (baseaddr) < (basesz) && \ 367 (testaddr) + (testsz) - (baseaddr) <= (basesz) && \ 368 (testaddr) + (testsz) >= (testaddr)) 369 370 /* 371 * Test whether alloc_sz bytes will fit in the scratch region. We isolate 372 * alloc_sz on the righthand side of the comparison in order to avoid overflow 373 * or underflow in the comparison with it. This is simpler than the INRANGE 374 * check above, because we know that the dtms_scratch_ptr is valid in the 375 * range. Allocations of size zero are allowed. 376 */ 377 #define DTRACE_INSCRATCH(mstate, alloc_sz) \ 378 ((mstate)->dtms_scratch_base + (mstate)->dtms_scratch_size - \ 379 (mstate)->dtms_scratch_ptr >= (alloc_sz)) 380 381 #define DTRACE_LOADFUNC(bits) \ 382 /*CSTYLED*/ \ 383 uint##bits##_t \ 384 dtrace_load##bits(uintptr_t addr) \ 385 { \ 386 size_t size = bits / NBBY; \ 387 /*CSTYLED*/ \ 388 uint##bits##_t rval; \ 389 int i; \ 390 volatile uint16_t *flags = (volatile uint16_t *) \ 391 &cpu_core[CPU->cpu_id].cpuc_dtrace_flags; \ 392 \ 393 DTRACE_ALIGNCHECK(addr, size, flags); \ 394 \ 395 for (i = 0; i < dtrace_toxranges; i++) { \ 396 if (addr >= dtrace_toxrange[i].dtt_limit) \ 397 continue; \ 398 \ 399 if (addr + size <= dtrace_toxrange[i].dtt_base) \ 400 continue; \ 401 \ 402 /* \ 403 * This address falls within a toxic region; return 0. \ 404 */ \ 405 *flags |= CPU_DTRACE_BADADDR; \ 406 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = addr; \ 407 return (0); \ 408 } \ 409 \ 410 *flags |= CPU_DTRACE_NOFAULT; \ 411 /*CSTYLED*/ \ 412 rval = *((volatile uint##bits##_t *)addr); \ 413 *flags &= ~CPU_DTRACE_NOFAULT; \ 414 \ 415 return (!(*flags & CPU_DTRACE_FAULT) ? rval : 0); \ 416 } 417 418 #ifdef _LP64 419 #define dtrace_loadptr dtrace_load64 420 #else 421 #define dtrace_loadptr dtrace_load32 422 #endif 423 424 #define DTRACE_DYNHASH_FREE 0 425 #define DTRACE_DYNHASH_SINK 1 426 #define DTRACE_DYNHASH_VALID 2 427 428 #define DTRACE_MATCH_NEXT 0 429 #define DTRACE_MATCH_DONE 1 430 #define DTRACE_ANCHORED(probe) ((probe)->dtpr_func[0] != '\0') 431 #define DTRACE_STATE_ALIGN 64 432 433 #define DTRACE_FLAGS2FLT(flags) \ 434 (((flags) & CPU_DTRACE_BADADDR) ? DTRACEFLT_BADADDR : \ 435 ((flags) & CPU_DTRACE_ILLOP) ? DTRACEFLT_ILLOP : \ 436 ((flags) & CPU_DTRACE_DIVZERO) ? DTRACEFLT_DIVZERO : \ 437 ((flags) & CPU_DTRACE_KPRIV) ? DTRACEFLT_KPRIV : \ 438 ((flags) & CPU_DTRACE_UPRIV) ? DTRACEFLT_UPRIV : \ 439 ((flags) & CPU_DTRACE_TUPOFLOW) ? DTRACEFLT_TUPOFLOW : \ 440 ((flags) & CPU_DTRACE_BADALIGN) ? DTRACEFLT_BADALIGN : \ 441 ((flags) & CPU_DTRACE_NOSCRATCH) ? DTRACEFLT_NOSCRATCH : \ 442 ((flags) & CPU_DTRACE_BADSTACK) ? DTRACEFLT_BADSTACK : \ 443 DTRACEFLT_UNKNOWN) 444 445 #define DTRACEACT_ISSTRING(act) \ 446 ((act)->dta_kind == DTRACEACT_DIFEXPR && \ 447 (act)->dta_difo->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) 448 449 static size_t dtrace_strlen(const char *, size_t); 450 static dtrace_probe_t *dtrace_probe_lookup_id(dtrace_id_t id); 451 static void dtrace_enabling_provide(dtrace_provider_t *); 452 static int dtrace_enabling_match(dtrace_enabling_t *, int *); 453 static void dtrace_enabling_matchall(void); 454 static dtrace_state_t *dtrace_anon_grab(void); 455 static uint64_t dtrace_helper(int, dtrace_mstate_t *, 456 dtrace_state_t *, uint64_t, uint64_t); 457 static dtrace_helpers_t *dtrace_helpers_create(proc_t *); 458 static void dtrace_buffer_drop(dtrace_buffer_t *); 459 static intptr_t dtrace_buffer_reserve(dtrace_buffer_t *, size_t, size_t, 460 dtrace_state_t *, dtrace_mstate_t *); 461 static int dtrace_state_option(dtrace_state_t *, dtrace_optid_t, 462 dtrace_optval_t); 463 static int dtrace_ecb_create_enable(dtrace_probe_t *, void *); 464 static void dtrace_helper_provider_destroy(dtrace_helper_provider_t *); 465 466 /* 467 * DTrace Probe Context Functions 468 * 469 * These functions are called from probe context. Because probe context is 470 * any context in which C may be called, arbitrarily locks may be held, 471 * interrupts may be disabled, we may be in arbitrary dispatched state, etc. 472 * As a result, functions called from probe context may only call other DTrace 473 * support functions -- they may not interact at all with the system at large. 474 * (Note that the ASSERT macro is made probe-context safe by redefining it in 475 * terms of dtrace_assfail(), a probe-context safe function.) If arbitrary 476 * loads are to be performed from probe context, they _must_ be in terms of 477 * the safe dtrace_load*() variants. 478 * 479 * Some functions in this block are not actually called from probe context; 480 * for these functions, there will be a comment above the function reading 481 * "Note: not called from probe context." 482 */ 483 void 484 dtrace_panic(const char *format, ...) 485 { 486 va_list alist; 487 488 va_start(alist, format); 489 dtrace_vpanic(format, alist); 490 va_end(alist); 491 } 492 493 int 494 dtrace_assfail(const char *a, const char *f, int l) 495 { 496 dtrace_panic("assertion failed: %s, file: %s, line: %d", a, f, l); 497 498 /* 499 * We just need something here that even the most clever compiler 500 * cannot optimize away. 501 */ 502 return (a[(uintptr_t)f]); 503 } 504 505 /* 506 * Atomically increment a specified error counter from probe context. 507 */ 508 static void 509 dtrace_error(uint32_t *counter) 510 { 511 /* 512 * Most counters stored to in probe context are per-CPU counters. 513 * However, there are some error conditions that are sufficiently 514 * arcane that they don't merit per-CPU storage. If these counters 515 * are incremented concurrently on different CPUs, scalability will be 516 * adversely affected -- but we don't expect them to be white-hot in a 517 * correctly constructed enabling... 518 */ 519 uint32_t oval, nval; 520 521 do { 522 oval = *counter; 523 524 if ((nval = oval + 1) == 0) { 525 /* 526 * If the counter would wrap, set it to 1 -- assuring 527 * that the counter is never zero when we have seen 528 * errors. (The counter must be 32-bits because we 529 * aren't guaranteed a 64-bit compare&swap operation.) 530 * To save this code both the infamy of being fingered 531 * by a priggish news story and the indignity of being 532 * the target of a neo-puritan witch trial, we're 533 * carefully avoiding any colorful description of the 534 * likelihood of this condition -- but suffice it to 535 * say that it is only slightly more likely than the 536 * overflow of predicate cache IDs, as discussed in 537 * dtrace_predicate_create(). 538 */ 539 nval = 1; 540 } 541 } while (dtrace_cas32(counter, oval, nval) != oval); 542 } 543 544 /* 545 * Use the DTRACE_LOADFUNC macro to define functions for each of loading a 546 * uint8_t, a uint16_t, a uint32_t and a uint64_t. 547 */ 548 DTRACE_LOADFUNC(8) 549 DTRACE_LOADFUNC(16) 550 DTRACE_LOADFUNC(32) 551 DTRACE_LOADFUNC(64) 552 553 static int 554 dtrace_inscratch(uintptr_t dest, size_t size, dtrace_mstate_t *mstate) 555 { 556 if (dest < mstate->dtms_scratch_base) 557 return (0); 558 559 if (dest + size < dest) 560 return (0); 561 562 if (dest + size > mstate->dtms_scratch_ptr) 563 return (0); 564 565 return (1); 566 } 567 568 static int 569 dtrace_canstore_statvar(uint64_t addr, size_t sz, 570 dtrace_statvar_t **svars, int nsvars) 571 { 572 int i; 573 574 for (i = 0; i < nsvars; i++) { 575 dtrace_statvar_t *svar = svars[i]; 576 577 if (svar == NULL || svar->dtsv_size == 0) 578 continue; 579 580 if (DTRACE_INRANGE(addr, sz, svar->dtsv_data, svar->dtsv_size)) 581 return (1); 582 } 583 584 return (0); 585 } 586 587 /* 588 * Check to see if the address is within a memory region to which a store may 589 * be issued. This includes the DTrace scratch areas, and any DTrace variable 590 * region. The caller of dtrace_canstore() is responsible for performing any 591 * alignment checks that are needed before stores are actually executed. 592 */ 593 static int 594 dtrace_canstore(uint64_t addr, size_t sz, dtrace_mstate_t *mstate, 595 dtrace_vstate_t *vstate) 596 { 597 /* 598 * First, check to see if the address is in scratch space... 599 */ 600 if (DTRACE_INRANGE(addr, sz, mstate->dtms_scratch_base, 601 mstate->dtms_scratch_size)) 602 return (1); 603 604 /* 605 * Now check to see if it's a dynamic variable. This check will pick 606 * up both thread-local variables and any global dynamically-allocated 607 * variables. 608 */ 609 if (DTRACE_INRANGE(addr, sz, (uintptr_t)vstate->dtvs_dynvars.dtds_base, 610 vstate->dtvs_dynvars.dtds_size)) { 611 dtrace_dstate_t *dstate = &vstate->dtvs_dynvars; 612 uintptr_t base = (uintptr_t)dstate->dtds_base + 613 (dstate->dtds_hashsize * sizeof (dtrace_dynhash_t)); 614 uintptr_t chunkoffs; 615 616 /* 617 * Before we assume that we can store here, we need to make 618 * sure that it isn't in our metadata -- storing to our 619 * dynamic variable metadata would corrupt our state. For 620 * the range to not include any dynamic variable metadata, 621 * it must: 622 * 623 * (1) Start above the hash table that is at the base of 624 * the dynamic variable space 625 * 626 * (2) Have a starting chunk offset that is beyond the 627 * dtrace_dynvar_t that is at the base of every chunk 628 * 629 * (3) Not span a chunk boundary 630 * 631 */ 632 if (addr < base) 633 return (0); 634 635 chunkoffs = (addr - base) % dstate->dtds_chunksize; 636 637 if (chunkoffs < sizeof (dtrace_dynvar_t)) 638 return (0); 639 640 if (chunkoffs + sz > dstate->dtds_chunksize) 641 return (0); 642 643 return (1); 644 } 645 646 /* 647 * Finally, check the static local and global variables. These checks 648 * take the longest, so we perform them last. 649 */ 650 if (dtrace_canstore_statvar(addr, sz, 651 vstate->dtvs_locals, vstate->dtvs_nlocals)) 652 return (1); 653 654 if (dtrace_canstore_statvar(addr, sz, 655 vstate->dtvs_globals, vstate->dtvs_nglobals)) 656 return (1); 657 658 return (0); 659 } 660 661 662 /* 663 * Convenience routine to check to see if the address is within a memory 664 * region in which a load may be issued given the user's privilege level; 665 * if not, it sets the appropriate error flags and loads 'addr' into the 666 * illegal value slot. 667 * 668 * DTrace subroutines (DIF_SUBR_*) should use this helper to implement 669 * appropriate memory access protection. 670 */ 671 static int 672 dtrace_canload(uint64_t addr, size_t sz, dtrace_mstate_t *mstate, 673 dtrace_vstate_t *vstate) 674 { 675 volatile uintptr_t *illval = &cpu_core[CPU->cpu_id].cpuc_dtrace_illval; 676 677 /* 678 * If we hold the privilege to read from kernel memory, then 679 * everything is readable. 680 */ 681 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) 682 return (1); 683 684 /* 685 * You can obviously read that which you can store. 686 */ 687 if (dtrace_canstore(addr, sz, mstate, vstate)) 688 return (1); 689 690 /* 691 * We're allowed to read from our own string table. 692 */ 693 if (DTRACE_INRANGE(addr, sz, (uintptr_t)mstate->dtms_difo->dtdo_strtab, 694 mstate->dtms_difo->dtdo_strlen)) 695 return (1); 696 697 DTRACE_CPUFLAG_SET(CPU_DTRACE_KPRIV); 698 *illval = addr; 699 return (0); 700 } 701 702 /* 703 * Convenience routine to check to see if a given string is within a memory 704 * region in which a load may be issued given the user's privilege level; 705 * this exists so that we don't need to issue unnecessary dtrace_strlen() 706 * calls in the event that the user has all privileges. 707 */ 708 static int 709 dtrace_strcanload(uint64_t addr, size_t sz, dtrace_mstate_t *mstate, 710 dtrace_vstate_t *vstate) 711 { 712 size_t strsz; 713 714 /* 715 * If we hold the privilege to read from kernel memory, then 716 * everything is readable. 717 */ 718 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) 719 return (1); 720 721 strsz = 1 + dtrace_strlen((char *)(uintptr_t)addr, sz); 722 if (dtrace_canload(addr, strsz, mstate, vstate)) 723 return (1); 724 725 return (0); 726 } 727 728 /* 729 * Convenience routine to check to see if a given variable is within a memory 730 * region in which a load may be issued given the user's privilege level. 731 */ 732 static int 733 dtrace_vcanload(void *src, dtrace_diftype_t *type, dtrace_mstate_t *mstate, 734 dtrace_vstate_t *vstate) 735 { 736 size_t sz; 737 ASSERT(type->dtdt_flags & DIF_TF_BYREF); 738 739 /* 740 * If we hold the privilege to read from kernel memory, then 741 * everything is readable. 742 */ 743 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) 744 return (1); 745 746 if (type->dtdt_kind == DIF_TYPE_STRING) 747 sz = dtrace_strlen(src, 748 vstate->dtvs_state->dts_options[DTRACEOPT_STRSIZE]) + 1; 749 else 750 sz = type->dtdt_size; 751 752 return (dtrace_canload((uintptr_t)src, sz, mstate, vstate)); 753 } 754 755 /* 756 * Compare two strings using safe loads. 757 */ 758 static int 759 dtrace_strncmp(char *s1, char *s2, size_t limit) 760 { 761 uint8_t c1, c2; 762 volatile uint16_t *flags; 763 764 if (s1 == s2 || limit == 0) 765 return (0); 766 767 flags = (volatile uint16_t *)&cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 768 769 do { 770 if (s1 == NULL) { 771 c1 = '\0'; 772 } else { 773 c1 = dtrace_load8((uintptr_t)s1++); 774 } 775 776 if (s2 == NULL) { 777 c2 = '\0'; 778 } else { 779 c2 = dtrace_load8((uintptr_t)s2++); 780 } 781 782 if (c1 != c2) 783 return (c1 - c2); 784 } while (--limit && c1 != '\0' && !(*flags & CPU_DTRACE_FAULT)); 785 786 return (0); 787 } 788 789 /* 790 * Compute strlen(s) for a string using safe memory accesses. The additional 791 * len parameter is used to specify a maximum length to ensure completion. 792 */ 793 static size_t 794 dtrace_strlen(const char *s, size_t lim) 795 { 796 uint_t len; 797 798 for (len = 0; len != lim; len++) { 799 if (dtrace_load8((uintptr_t)s++) == '\0') 800 break; 801 } 802 803 return (len); 804 } 805 806 /* 807 * Check if an address falls within a toxic region. 808 */ 809 static int 810 dtrace_istoxic(uintptr_t kaddr, size_t size) 811 { 812 uintptr_t taddr, tsize; 813 int i; 814 815 for (i = 0; i < dtrace_toxranges; i++) { 816 taddr = dtrace_toxrange[i].dtt_base; 817 tsize = dtrace_toxrange[i].dtt_limit - taddr; 818 819 if (kaddr - taddr < tsize) { 820 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); 821 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = kaddr; 822 return (1); 823 } 824 825 if (taddr - kaddr < size) { 826 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); 827 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = taddr; 828 return (1); 829 } 830 } 831 832 return (0); 833 } 834 835 /* 836 * Copy src to dst using safe memory accesses. The src is assumed to be unsafe 837 * memory specified by the DIF program. The dst is assumed to be safe memory 838 * that we can store to directly because it is managed by DTrace. As with 839 * standard bcopy, overlapping copies are handled properly. 840 */ 841 static void 842 dtrace_bcopy(const void *src, void *dst, size_t len) 843 { 844 if (len != 0) { 845 uint8_t *s1 = dst; 846 const uint8_t *s2 = src; 847 848 if (s1 <= s2) { 849 do { 850 *s1++ = dtrace_load8((uintptr_t)s2++); 851 } while (--len != 0); 852 } else { 853 s2 += len; 854 s1 += len; 855 856 do { 857 *--s1 = dtrace_load8((uintptr_t)--s2); 858 } while (--len != 0); 859 } 860 } 861 } 862 863 /* 864 * Copy src to dst using safe memory accesses, up to either the specified 865 * length, or the point that a nul byte is encountered. The src is assumed to 866 * be unsafe memory specified by the DIF program. The dst is assumed to be 867 * safe memory that we can store to directly because it is managed by DTrace. 868 * Unlike dtrace_bcopy(), overlapping regions are not handled. 869 */ 870 static void 871 dtrace_strcpy(const void *src, void *dst, size_t len) 872 { 873 if (len != 0) { 874 uint8_t *s1 = dst, c; 875 const uint8_t *s2 = src; 876 877 do { 878 *s1++ = c = dtrace_load8((uintptr_t)s2++); 879 } while (--len != 0 && c != '\0'); 880 } 881 } 882 883 /* 884 * Copy src to dst, deriving the size and type from the specified (BYREF) 885 * variable type. The src is assumed to be unsafe memory specified by the DIF 886 * program. The dst is assumed to be DTrace variable memory that is of the 887 * specified type; we assume that we can store to directly. 888 */ 889 static void 890 dtrace_vcopy(void *src, void *dst, dtrace_diftype_t *type) 891 { 892 ASSERT(type->dtdt_flags & DIF_TF_BYREF); 893 894 if (type->dtdt_kind == DIF_TYPE_STRING) { 895 dtrace_strcpy(src, dst, type->dtdt_size); 896 } else { 897 dtrace_bcopy(src, dst, type->dtdt_size); 898 } 899 } 900 901 /* 902 * Compare s1 to s2 using safe memory accesses. The s1 data is assumed to be 903 * unsafe memory specified by the DIF program. The s2 data is assumed to be 904 * safe memory that we can access directly because it is managed by DTrace. 905 */ 906 static int 907 dtrace_bcmp(const void *s1, const void *s2, size_t len) 908 { 909 volatile uint16_t *flags; 910 911 flags = (volatile uint16_t *)&cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 912 913 if (s1 == s2) 914 return (0); 915 916 if (s1 == NULL || s2 == NULL) 917 return (1); 918 919 if (s1 != s2 && len != 0) { 920 const uint8_t *ps1 = s1; 921 const uint8_t *ps2 = s2; 922 923 do { 924 if (dtrace_load8((uintptr_t)ps1++) != *ps2++) 925 return (1); 926 } while (--len != 0 && !(*flags & CPU_DTRACE_FAULT)); 927 } 928 return (0); 929 } 930 931 /* 932 * Zero the specified region using a simple byte-by-byte loop. Note that this 933 * is for safe DTrace-managed memory only. 934 */ 935 static void 936 dtrace_bzero(void *dst, size_t len) 937 { 938 uchar_t *cp; 939 940 for (cp = dst; len != 0; len--) 941 *cp++ = 0; 942 } 943 944 /* 945 * This privilege check should be used by actions and subroutines to 946 * verify that the user credentials of the process that enabled the 947 * invoking ECB match the target credentials 948 */ 949 static int 950 dtrace_priv_proc_common_user(dtrace_state_t *state) 951 { 952 cred_t *cr, *s_cr = state->dts_cred.dcr_cred; 953 954 /* 955 * We should always have a non-NULL state cred here, since if cred 956 * is null (anonymous tracing), we fast-path bypass this routine. 957 */ 958 ASSERT(s_cr != NULL); 959 960 if ((cr = CRED()) != NULL && 961 s_cr->cr_uid == cr->cr_uid && 962 s_cr->cr_uid == cr->cr_ruid && 963 s_cr->cr_uid == cr->cr_suid && 964 s_cr->cr_gid == cr->cr_gid && 965 s_cr->cr_gid == cr->cr_rgid && 966 s_cr->cr_gid == cr->cr_sgid) 967 return (1); 968 969 return (0); 970 } 971 972 /* 973 * This privilege check should be used by actions and subroutines to 974 * verify that the zone of the process that enabled the invoking ECB 975 * matches the target credentials 976 */ 977 static int 978 dtrace_priv_proc_common_zone(dtrace_state_t *state) 979 { 980 cred_t *cr, *s_cr = state->dts_cred.dcr_cred; 981 982 /* 983 * We should always have a non-NULL state cred here, since if cred 984 * is null (anonymous tracing), we fast-path bypass this routine. 985 */ 986 ASSERT(s_cr != NULL); 987 988 if ((cr = CRED()) != NULL && 989 s_cr->cr_zone == cr->cr_zone) 990 return (1); 991 992 return (0); 993 } 994 995 /* 996 * This privilege check should be used by actions and subroutines to 997 * verify that the process has not setuid or changed credentials. 998 */ 999 static int 1000 dtrace_priv_proc_common_nocd() 1001 { 1002 proc_t *proc; 1003 1004 if ((proc = ttoproc(curthread)) != NULL && 1005 !(proc->p_flag & SNOCD)) 1006 return (1); 1007 1008 return (0); 1009 } 1010 1011 static int 1012 dtrace_priv_proc_destructive(dtrace_state_t *state) 1013 { 1014 int action = state->dts_cred.dcr_action; 1015 1016 if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE) == 0) && 1017 dtrace_priv_proc_common_zone(state) == 0) 1018 goto bad; 1019 1020 if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER) == 0) && 1021 dtrace_priv_proc_common_user(state) == 0) 1022 goto bad; 1023 1024 if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG) == 0) && 1025 dtrace_priv_proc_common_nocd() == 0) 1026 goto bad; 1027 1028 return (1); 1029 1030 bad: 1031 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV; 1032 1033 return (0); 1034 } 1035 1036 static int 1037 dtrace_priv_proc_control(dtrace_state_t *state) 1038 { 1039 if (state->dts_cred.dcr_action & DTRACE_CRA_PROC_CONTROL) 1040 return (1); 1041 1042 if (dtrace_priv_proc_common_zone(state) && 1043 dtrace_priv_proc_common_user(state) && 1044 dtrace_priv_proc_common_nocd()) 1045 return (1); 1046 1047 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV; 1048 1049 return (0); 1050 } 1051 1052 static int 1053 dtrace_priv_proc(dtrace_state_t *state) 1054 { 1055 if (state->dts_cred.dcr_action & DTRACE_CRA_PROC) 1056 return (1); 1057 1058 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV; 1059 1060 return (0); 1061 } 1062 1063 static int 1064 dtrace_priv_kernel(dtrace_state_t *state) 1065 { 1066 if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL) 1067 return (1); 1068 1069 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV; 1070 1071 return (0); 1072 } 1073 1074 static int 1075 dtrace_priv_kernel_destructive(dtrace_state_t *state) 1076 { 1077 if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL_DESTRUCTIVE) 1078 return (1); 1079 1080 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV; 1081 1082 return (0); 1083 } 1084 1085 /* 1086 * Note: not called from probe context. This function is called 1087 * asynchronously (and at a regular interval) from outside of probe context to 1088 * clean the dirty dynamic variable lists on all CPUs. Dynamic variable 1089 * cleaning is explained in detail in <sys/dtrace_impl.h>. 1090 */ 1091 void 1092 dtrace_dynvar_clean(dtrace_dstate_t *dstate) 1093 { 1094 dtrace_dynvar_t *dirty; 1095 dtrace_dstate_percpu_t *dcpu; 1096 int i, work = 0; 1097 1098 for (i = 0; i < NCPU; i++) { 1099 dcpu = &dstate->dtds_percpu[i]; 1100 1101 ASSERT(dcpu->dtdsc_rinsing == NULL); 1102 1103 /* 1104 * If the dirty list is NULL, there is no dirty work to do. 1105 */ 1106 if (dcpu->dtdsc_dirty == NULL) 1107 continue; 1108 1109 /* 1110 * If the clean list is non-NULL, then we're not going to do 1111 * any work for this CPU -- it means that there has not been 1112 * a dtrace_dynvar() allocation on this CPU (or from this CPU) 1113 * since the last time we cleaned house. 1114 */ 1115 if (dcpu->dtdsc_clean != NULL) 1116 continue; 1117 1118 work = 1; 1119 1120 /* 1121 * Atomically move the dirty list aside. 1122 */ 1123 do { 1124 dirty = dcpu->dtdsc_dirty; 1125 1126 /* 1127 * Before we zap the dirty list, set the rinsing list. 1128 * (This allows for a potential assertion in 1129 * dtrace_dynvar(): if a free dynamic variable appears 1130 * on a hash chain, either the dirty list or the 1131 * rinsing list for some CPU must be non-NULL.) 1132 */ 1133 dcpu->dtdsc_rinsing = dirty; 1134 dtrace_membar_producer(); 1135 } while (dtrace_casptr(&dcpu->dtdsc_dirty, 1136 dirty, NULL) != dirty); 1137 } 1138 1139 if (!work) { 1140 /* 1141 * We have no work to do; we can simply return. 1142 */ 1143 return; 1144 } 1145 1146 dtrace_sync(); 1147 1148 for (i = 0; i < NCPU; i++) { 1149 dcpu = &dstate->dtds_percpu[i]; 1150 1151 if (dcpu->dtdsc_rinsing == NULL) 1152 continue; 1153 1154 /* 1155 * We are now guaranteed that no hash chain contains a pointer 1156 * into this dirty list; we can make it clean. 1157 */ 1158 ASSERT(dcpu->dtdsc_clean == NULL); 1159 dcpu->dtdsc_clean = dcpu->dtdsc_rinsing; 1160 dcpu->dtdsc_rinsing = NULL; 1161 } 1162 1163 /* 1164 * Before we actually set the state to be DTRACE_DSTATE_CLEAN, make 1165 * sure that all CPUs have seen all of the dtdsc_clean pointers. 1166 * This prevents a race whereby a CPU incorrectly decides that 1167 * the state should be something other than DTRACE_DSTATE_CLEAN 1168 * after dtrace_dynvar_clean() has completed. 1169 */ 1170 dtrace_sync(); 1171 1172 dstate->dtds_state = DTRACE_DSTATE_CLEAN; 1173 } 1174 1175 /* 1176 * Depending on the value of the op parameter, this function looks-up, 1177 * allocates or deallocates an arbitrarily-keyed dynamic variable. If an 1178 * allocation is requested, this function will return a pointer to a 1179 * dtrace_dynvar_t corresponding to the allocated variable -- or NULL if no 1180 * variable can be allocated. If NULL is returned, the appropriate counter 1181 * will be incremented. 1182 */ 1183 dtrace_dynvar_t * 1184 dtrace_dynvar(dtrace_dstate_t *dstate, uint_t nkeys, 1185 dtrace_key_t *key, size_t dsize, dtrace_dynvar_op_t op, 1186 dtrace_mstate_t *mstate, dtrace_vstate_t *vstate) 1187 { 1188 uint64_t hashval = DTRACE_DYNHASH_VALID; 1189 dtrace_dynhash_t *hash = dstate->dtds_hash; 1190 dtrace_dynvar_t *free, *new_free, *next, *dvar, *start, *prev = NULL; 1191 processorid_t me = CPU->cpu_id, cpu = me; 1192 dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[me]; 1193 size_t bucket, ksize; 1194 size_t chunksize = dstate->dtds_chunksize; 1195 uintptr_t kdata, lock, nstate; 1196 uint_t i; 1197 1198 ASSERT(nkeys != 0); 1199 1200 /* 1201 * Hash the key. As with aggregations, we use Jenkins' "One-at-a-time" 1202 * algorithm. For the by-value portions, we perform the algorithm in 1203 * 16-bit chunks (as opposed to 8-bit chunks). This speeds things up a 1204 * bit, and seems to have only a minute effect on distribution. For 1205 * the by-reference data, we perform "One-at-a-time" iterating (safely) 1206 * over each referenced byte. It's painful to do this, but it's much 1207 * better than pathological hash distribution. The efficacy of the 1208 * hashing algorithm (and a comparison with other algorithms) may be 1209 * found by running the ::dtrace_dynstat MDB dcmd. 1210 */ 1211 for (i = 0; i < nkeys; i++) { 1212 if (key[i].dttk_size == 0) { 1213 uint64_t val = key[i].dttk_value; 1214 1215 hashval += (val >> 48) & 0xffff; 1216 hashval += (hashval << 10); 1217 hashval ^= (hashval >> 6); 1218 1219 hashval += (val >> 32) & 0xffff; 1220 hashval += (hashval << 10); 1221 hashval ^= (hashval >> 6); 1222 1223 hashval += (val >> 16) & 0xffff; 1224 hashval += (hashval << 10); 1225 hashval ^= (hashval >> 6); 1226 1227 hashval += val & 0xffff; 1228 hashval += (hashval << 10); 1229 hashval ^= (hashval >> 6); 1230 } else { 1231 /* 1232 * This is incredibly painful, but it beats the hell 1233 * out of the alternative. 1234 */ 1235 uint64_t j, size = key[i].dttk_size; 1236 uintptr_t base = (uintptr_t)key[i].dttk_value; 1237 1238 if (!dtrace_canload(base, size, mstate, vstate)) 1239 break; 1240 1241 for (j = 0; j < size; j++) { 1242 hashval += dtrace_load8(base + j); 1243 hashval += (hashval << 10); 1244 hashval ^= (hashval >> 6); 1245 } 1246 } 1247 } 1248 1249 if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_FAULT)) 1250 return (NULL); 1251 1252 hashval += (hashval << 3); 1253 hashval ^= (hashval >> 11); 1254 hashval += (hashval << 15); 1255 1256 /* 1257 * There is a remote chance (ideally, 1 in 2^31) that our hashval 1258 * comes out to be one of our two sentinel hash values. If this 1259 * actually happens, we set the hashval to be a value known to be a 1260 * non-sentinel value. 1261 */ 1262 if (hashval == DTRACE_DYNHASH_FREE || hashval == DTRACE_DYNHASH_SINK) 1263 hashval = DTRACE_DYNHASH_VALID; 1264 1265 /* 1266 * Yes, it's painful to do a divide here. If the cycle count becomes 1267 * important here, tricks can be pulled to reduce it. (However, it's 1268 * critical that hash collisions be kept to an absolute minimum; 1269 * they're much more painful than a divide.) It's better to have a 1270 * solution that generates few collisions and still keeps things 1271 * relatively simple. 1272 */ 1273 bucket = hashval % dstate->dtds_hashsize; 1274 1275 if (op == DTRACE_DYNVAR_DEALLOC) { 1276 volatile uintptr_t *lockp = &hash[bucket].dtdh_lock; 1277 1278 for (;;) { 1279 while ((lock = *lockp) & 1) 1280 continue; 1281 1282 if (dtrace_casptr((void *)lockp, 1283 (void *)lock, (void *)(lock + 1)) == (void *)lock) 1284 break; 1285 } 1286 1287 dtrace_membar_producer(); 1288 } 1289 1290 top: 1291 prev = NULL; 1292 lock = hash[bucket].dtdh_lock; 1293 1294 dtrace_membar_consumer(); 1295 1296 start = hash[bucket].dtdh_chain; 1297 ASSERT(start != NULL && (start->dtdv_hashval == DTRACE_DYNHASH_SINK || 1298 start->dtdv_hashval != DTRACE_DYNHASH_FREE || 1299 op != DTRACE_DYNVAR_DEALLOC)); 1300 1301 for (dvar = start; dvar != NULL; dvar = dvar->dtdv_next) { 1302 dtrace_tuple_t *dtuple = &dvar->dtdv_tuple; 1303 dtrace_key_t *dkey = &dtuple->dtt_key[0]; 1304 1305 if (dvar->dtdv_hashval != hashval) { 1306 if (dvar->dtdv_hashval == DTRACE_DYNHASH_SINK) { 1307 /* 1308 * We've reached the sink, and therefore the 1309 * end of the hash chain; we can kick out of 1310 * the loop knowing that we have seen a valid 1311 * snapshot of state. 1312 */ 1313 ASSERT(dvar->dtdv_next == NULL); 1314 ASSERT(dvar == &dtrace_dynhash_sink); 1315 break; 1316 } 1317 1318 if (dvar->dtdv_hashval == DTRACE_DYNHASH_FREE) { 1319 /* 1320 * We've gone off the rails: somewhere along 1321 * the line, one of the members of this hash 1322 * chain was deleted. Note that we could also 1323 * detect this by simply letting this loop run 1324 * to completion, as we would eventually hit 1325 * the end of the dirty list. However, we 1326 * want to avoid running the length of the 1327 * dirty list unnecessarily (it might be quite 1328 * long), so we catch this as early as 1329 * possible by detecting the hash marker. In 1330 * this case, we simply set dvar to NULL and 1331 * break; the conditional after the loop will 1332 * send us back to top. 1333 */ 1334 dvar = NULL; 1335 break; 1336 } 1337 1338 goto next; 1339 } 1340 1341 if (dtuple->dtt_nkeys != nkeys) 1342 goto next; 1343 1344 for (i = 0; i < nkeys; i++, dkey++) { 1345 if (dkey->dttk_size != key[i].dttk_size) 1346 goto next; /* size or type mismatch */ 1347 1348 if (dkey->dttk_size != 0) { 1349 if (dtrace_bcmp( 1350 (void *)(uintptr_t)key[i].dttk_value, 1351 (void *)(uintptr_t)dkey->dttk_value, 1352 dkey->dttk_size)) 1353 goto next; 1354 } else { 1355 if (dkey->dttk_value != key[i].dttk_value) 1356 goto next; 1357 } 1358 } 1359 1360 if (op != DTRACE_DYNVAR_DEALLOC) 1361 return (dvar); 1362 1363 ASSERT(dvar->dtdv_next == NULL || 1364 dvar->dtdv_next->dtdv_hashval != DTRACE_DYNHASH_FREE); 1365 1366 if (prev != NULL) { 1367 ASSERT(hash[bucket].dtdh_chain != dvar); 1368 ASSERT(start != dvar); 1369 ASSERT(prev->dtdv_next == dvar); 1370 prev->dtdv_next = dvar->dtdv_next; 1371 } else { 1372 if (dtrace_casptr(&hash[bucket].dtdh_chain, 1373 start, dvar->dtdv_next) != start) { 1374 /* 1375 * We have failed to atomically swing the 1376 * hash table head pointer, presumably because 1377 * of a conflicting allocation on another CPU. 1378 * We need to reread the hash chain and try 1379 * again. 1380 */ 1381 goto top; 1382 } 1383 } 1384 1385 dtrace_membar_producer(); 1386 1387 /* 1388 * Now set the hash value to indicate that it's free. 1389 */ 1390 ASSERT(hash[bucket].dtdh_chain != dvar); 1391 dvar->dtdv_hashval = DTRACE_DYNHASH_FREE; 1392 1393 dtrace_membar_producer(); 1394 1395 /* 1396 * Set the next pointer to point at the dirty list, and 1397 * atomically swing the dirty pointer to the newly freed dvar. 1398 */ 1399 do { 1400 next = dcpu->dtdsc_dirty; 1401 dvar->dtdv_next = next; 1402 } while (dtrace_casptr(&dcpu->dtdsc_dirty, next, dvar) != next); 1403 1404 /* 1405 * Finally, unlock this hash bucket. 1406 */ 1407 ASSERT(hash[bucket].dtdh_lock == lock); 1408 ASSERT(lock & 1); 1409 hash[bucket].dtdh_lock++; 1410 1411 return (NULL); 1412 next: 1413 prev = dvar; 1414 continue; 1415 } 1416 1417 if (dvar == NULL) { 1418 /* 1419 * If dvar is NULL, it is because we went off the rails: 1420 * one of the elements that we traversed in the hash chain 1421 * was deleted while we were traversing it. In this case, 1422 * we assert that we aren't doing a dealloc (deallocs lock 1423 * the hash bucket to prevent themselves from racing with 1424 * one another), and retry the hash chain traversal. 1425 */ 1426 ASSERT(op != DTRACE_DYNVAR_DEALLOC); 1427 goto top; 1428 } 1429 1430 if (op != DTRACE_DYNVAR_ALLOC) { 1431 /* 1432 * If we are not to allocate a new variable, we want to 1433 * return NULL now. Before we return, check that the value 1434 * of the lock word hasn't changed. If it has, we may have 1435 * seen an inconsistent snapshot. 1436 */ 1437 if (op == DTRACE_DYNVAR_NOALLOC) { 1438 if (hash[bucket].dtdh_lock != lock) 1439 goto top; 1440 } else { 1441 ASSERT(op == DTRACE_DYNVAR_DEALLOC); 1442 ASSERT(hash[bucket].dtdh_lock == lock); 1443 ASSERT(lock & 1); 1444 hash[bucket].dtdh_lock++; 1445 } 1446 1447 return (NULL); 1448 } 1449 1450 /* 1451 * We need to allocate a new dynamic variable. The size we need is the 1452 * size of dtrace_dynvar plus the size of nkeys dtrace_key_t's plus the 1453 * size of any auxiliary key data (rounded up to 8-byte alignment) plus 1454 * the size of any referred-to data (dsize). We then round the final 1455 * size up to the chunksize for allocation. 1456 */ 1457 for (ksize = 0, i = 0; i < nkeys; i++) 1458 ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t)); 1459 1460 /* 1461 * This should be pretty much impossible, but could happen if, say, 1462 * strange DIF specified the tuple. Ideally, this should be an 1463 * assertion and not an error condition -- but that requires that the 1464 * chunksize calculation in dtrace_difo_chunksize() be absolutely 1465 * bullet-proof. (That is, it must not be able to be fooled by 1466 * malicious DIF.) Given the lack of backwards branches in DIF, 1467 * solving this would presumably not amount to solving the Halting 1468 * Problem -- but it still seems awfully hard. 1469 */ 1470 if (sizeof (dtrace_dynvar_t) + sizeof (dtrace_key_t) * (nkeys - 1) + 1471 ksize + dsize > chunksize) { 1472 dcpu->dtdsc_drops++; 1473 return (NULL); 1474 } 1475 1476 nstate = DTRACE_DSTATE_EMPTY; 1477 1478 do { 1479 retry: 1480 free = dcpu->dtdsc_free; 1481 1482 if (free == NULL) { 1483 dtrace_dynvar_t *clean = dcpu->dtdsc_clean; 1484 void *rval; 1485 1486 if (clean == NULL) { 1487 /* 1488 * We're out of dynamic variable space on 1489 * this CPU. Unless we have tried all CPUs, 1490 * we'll try to allocate from a different 1491 * CPU. 1492 */ 1493 switch (dstate->dtds_state) { 1494 case DTRACE_DSTATE_CLEAN: { 1495 void *sp = &dstate->dtds_state; 1496 1497 if (++cpu >= NCPU) 1498 cpu = 0; 1499 1500 if (dcpu->dtdsc_dirty != NULL && 1501 nstate == DTRACE_DSTATE_EMPTY) 1502 nstate = DTRACE_DSTATE_DIRTY; 1503 1504 if (dcpu->dtdsc_rinsing != NULL) 1505 nstate = DTRACE_DSTATE_RINSING; 1506 1507 dcpu = &dstate->dtds_percpu[cpu]; 1508 1509 if (cpu != me) 1510 goto retry; 1511 1512 (void) dtrace_cas32(sp, 1513 DTRACE_DSTATE_CLEAN, nstate); 1514 1515 /* 1516 * To increment the correct bean 1517 * counter, take another lap. 1518 */ 1519 goto retry; 1520 } 1521 1522 case DTRACE_DSTATE_DIRTY: 1523 dcpu->dtdsc_dirty_drops++; 1524 break; 1525 1526 case DTRACE_DSTATE_RINSING: 1527 dcpu->dtdsc_rinsing_drops++; 1528 break; 1529 1530 case DTRACE_DSTATE_EMPTY: 1531 dcpu->dtdsc_drops++; 1532 break; 1533 } 1534 1535 DTRACE_CPUFLAG_SET(CPU_DTRACE_DROP); 1536 return (NULL); 1537 } 1538 1539 /* 1540 * The clean list appears to be non-empty. We want to 1541 * move the clean list to the free list; we start by 1542 * moving the clean pointer aside. 1543 */ 1544 if (dtrace_casptr(&dcpu->dtdsc_clean, 1545 clean, NULL) != clean) { 1546 /* 1547 * We are in one of two situations: 1548 * 1549 * (a) The clean list was switched to the 1550 * free list by another CPU. 1551 * 1552 * (b) The clean list was added to by the 1553 * cleansing cyclic. 1554 * 1555 * In either of these situations, we can 1556 * just reattempt the free list allocation. 1557 */ 1558 goto retry; 1559 } 1560 1561 ASSERT(clean->dtdv_hashval == DTRACE_DYNHASH_FREE); 1562 1563 /* 1564 * Now we'll move the clean list to the free list. 1565 * It's impossible for this to fail: the only way 1566 * the free list can be updated is through this 1567 * code path, and only one CPU can own the clean list. 1568 * Thus, it would only be possible for this to fail if 1569 * this code were racing with dtrace_dynvar_clean(). 1570 * (That is, if dtrace_dynvar_clean() updated the clean 1571 * list, and we ended up racing to update the free 1572 * list.) This race is prevented by the dtrace_sync() 1573 * in dtrace_dynvar_clean() -- which flushes the 1574 * owners of the clean lists out before resetting 1575 * the clean lists. 1576 */ 1577 rval = dtrace_casptr(&dcpu->dtdsc_free, NULL, clean); 1578 ASSERT(rval == NULL); 1579 goto retry; 1580 } 1581 1582 dvar = free; 1583 new_free = dvar->dtdv_next; 1584 } while (dtrace_casptr(&dcpu->dtdsc_free, free, new_free) != free); 1585 1586 /* 1587 * We have now allocated a new chunk. We copy the tuple keys into the 1588 * tuple array and copy any referenced key data into the data space 1589 * following the tuple array. As we do this, we relocate dttk_value 1590 * in the final tuple to point to the key data address in the chunk. 1591 */ 1592 kdata = (uintptr_t)&dvar->dtdv_tuple.dtt_key[nkeys]; 1593 dvar->dtdv_data = (void *)(kdata + ksize); 1594 dvar->dtdv_tuple.dtt_nkeys = nkeys; 1595 1596 for (i = 0; i < nkeys; i++) { 1597 dtrace_key_t *dkey = &dvar->dtdv_tuple.dtt_key[i]; 1598 size_t kesize = key[i].dttk_size; 1599 1600 if (kesize != 0) { 1601 dtrace_bcopy( 1602 (const void *)(uintptr_t)key[i].dttk_value, 1603 (void *)kdata, kesize); 1604 dkey->dttk_value = kdata; 1605 kdata += P2ROUNDUP(kesize, sizeof (uint64_t)); 1606 } else { 1607 dkey->dttk_value = key[i].dttk_value; 1608 } 1609 1610 dkey->dttk_size = kesize; 1611 } 1612 1613 ASSERT(dvar->dtdv_hashval == DTRACE_DYNHASH_FREE); 1614 dvar->dtdv_hashval = hashval; 1615 dvar->dtdv_next = start; 1616 1617 if (dtrace_casptr(&hash[bucket].dtdh_chain, start, dvar) == start) 1618 return (dvar); 1619 1620 /* 1621 * The cas has failed. Either another CPU is adding an element to 1622 * this hash chain, or another CPU is deleting an element from this 1623 * hash chain. The simplest way to deal with both of these cases 1624 * (though not necessarily the most efficient) is to free our 1625 * allocated block and tail-call ourselves. Note that the free is 1626 * to the dirty list and _not_ to the free list. This is to prevent 1627 * races with allocators, above. 1628 */ 1629 dvar->dtdv_hashval = DTRACE_DYNHASH_FREE; 1630 1631 dtrace_membar_producer(); 1632 1633 do { 1634 free = dcpu->dtdsc_dirty; 1635 dvar->dtdv_next = free; 1636 } while (dtrace_casptr(&dcpu->dtdsc_dirty, free, dvar) != free); 1637 1638 return (dtrace_dynvar(dstate, nkeys, key, dsize, op, mstate, vstate)); 1639 } 1640 1641 /*ARGSUSED*/ 1642 static void 1643 dtrace_aggregate_min(uint64_t *oval, uint64_t nval, uint64_t arg) 1644 { 1645 if (nval < *oval) 1646 *oval = nval; 1647 } 1648 1649 /*ARGSUSED*/ 1650 static void 1651 dtrace_aggregate_max(uint64_t *oval, uint64_t nval, uint64_t arg) 1652 { 1653 if (nval > *oval) 1654 *oval = nval; 1655 } 1656 1657 static void 1658 dtrace_aggregate_quantize(uint64_t *quanta, uint64_t nval, uint64_t incr) 1659 { 1660 int i, zero = DTRACE_QUANTIZE_ZEROBUCKET; 1661 int64_t val = (int64_t)nval; 1662 1663 if (val < 0) { 1664 for (i = 0; i < zero; i++) { 1665 if (val <= DTRACE_QUANTIZE_BUCKETVAL(i)) { 1666 quanta[i] += incr; 1667 return; 1668 } 1669 } 1670 } else { 1671 for (i = zero + 1; i < DTRACE_QUANTIZE_NBUCKETS; i++) { 1672 if (val < DTRACE_QUANTIZE_BUCKETVAL(i)) { 1673 quanta[i - 1] += incr; 1674 return; 1675 } 1676 } 1677 1678 quanta[DTRACE_QUANTIZE_NBUCKETS - 1] += incr; 1679 return; 1680 } 1681 1682 ASSERT(0); 1683 } 1684 1685 static void 1686 dtrace_aggregate_lquantize(uint64_t *lquanta, uint64_t nval, uint64_t incr) 1687 { 1688 uint64_t arg = *lquanta++; 1689 int32_t base = DTRACE_LQUANTIZE_BASE(arg); 1690 uint16_t step = DTRACE_LQUANTIZE_STEP(arg); 1691 uint16_t levels = DTRACE_LQUANTIZE_LEVELS(arg); 1692 int32_t val = (int32_t)nval, level; 1693 1694 ASSERT(step != 0); 1695 ASSERT(levels != 0); 1696 1697 if (val < base) { 1698 /* 1699 * This is an underflow. 1700 */ 1701 lquanta[0] += incr; 1702 return; 1703 } 1704 1705 level = (val - base) / step; 1706 1707 if (level < levels) { 1708 lquanta[level + 1] += incr; 1709 return; 1710 } 1711 1712 /* 1713 * This is an overflow. 1714 */ 1715 lquanta[levels + 1] += incr; 1716 } 1717 1718 /*ARGSUSED*/ 1719 static void 1720 dtrace_aggregate_avg(uint64_t *data, uint64_t nval, uint64_t arg) 1721 { 1722 data[0]++; 1723 data[1] += nval; 1724 } 1725 1726 /*ARGSUSED*/ 1727 static void 1728 dtrace_aggregate_count(uint64_t *oval, uint64_t nval, uint64_t arg) 1729 { 1730 *oval = *oval + 1; 1731 } 1732 1733 /*ARGSUSED*/ 1734 static void 1735 dtrace_aggregate_sum(uint64_t *oval, uint64_t nval, uint64_t arg) 1736 { 1737 *oval += nval; 1738 } 1739 1740 /* 1741 * Aggregate given the tuple in the principal data buffer, and the aggregating 1742 * action denoted by the specified dtrace_aggregation_t. The aggregation 1743 * buffer is specified as the buf parameter. This routine does not return 1744 * failure; if there is no space in the aggregation buffer, the data will be 1745 * dropped, and a corresponding counter incremented. 1746 */ 1747 static void 1748 dtrace_aggregate(dtrace_aggregation_t *agg, dtrace_buffer_t *dbuf, 1749 intptr_t offset, dtrace_buffer_t *buf, uint64_t expr, uint64_t arg) 1750 { 1751 dtrace_recdesc_t *rec = &agg->dtag_action.dta_rec; 1752 uint32_t i, ndx, size, fsize; 1753 uint32_t align = sizeof (uint64_t) - 1; 1754 dtrace_aggbuffer_t *agb; 1755 dtrace_aggkey_t *key; 1756 uint32_t hashval = 0, limit, isstr; 1757 caddr_t tomax, data, kdata; 1758 dtrace_actkind_t action; 1759 dtrace_action_t *act; 1760 uintptr_t offs; 1761 1762 if (buf == NULL) 1763 return; 1764 1765 if (!agg->dtag_hasarg) { 1766 /* 1767 * Currently, only quantize() and lquantize() take additional 1768 * arguments, and they have the same semantics: an increment 1769 * value that defaults to 1 when not present. If additional 1770 * aggregating actions take arguments, the setting of the 1771 * default argument value will presumably have to become more 1772 * sophisticated... 1773 */ 1774 arg = 1; 1775 } 1776 1777 action = agg->dtag_action.dta_kind - DTRACEACT_AGGREGATION; 1778 size = rec->dtrd_offset - agg->dtag_base; 1779 fsize = size + rec->dtrd_size; 1780 1781 ASSERT(dbuf->dtb_tomax != NULL); 1782 data = dbuf->dtb_tomax + offset + agg->dtag_base; 1783 1784 if ((tomax = buf->dtb_tomax) == NULL) { 1785 dtrace_buffer_drop(buf); 1786 return; 1787 } 1788 1789 /* 1790 * The metastructure is always at the bottom of the buffer. 1791 */ 1792 agb = (dtrace_aggbuffer_t *)(tomax + buf->dtb_size - 1793 sizeof (dtrace_aggbuffer_t)); 1794 1795 if (buf->dtb_offset == 0) { 1796 /* 1797 * We just kludge up approximately 1/8th of the size to be 1798 * buckets. If this guess ends up being routinely 1799 * off-the-mark, we may need to dynamically readjust this 1800 * based on past performance. 1801 */ 1802 uintptr_t hashsize = (buf->dtb_size >> 3) / sizeof (uintptr_t); 1803 1804 if ((uintptr_t)agb - hashsize * sizeof (dtrace_aggkey_t *) < 1805 (uintptr_t)tomax || hashsize == 0) { 1806 /* 1807 * We've been given a ludicrously small buffer; 1808 * increment our drop count and leave. 1809 */ 1810 dtrace_buffer_drop(buf); 1811 return; 1812 } 1813 1814 /* 1815 * And now, a pathetic attempt to try to get a an odd (or 1816 * perchance, a prime) hash size for better hash distribution. 1817 */ 1818 if (hashsize > (DTRACE_AGGHASHSIZE_SLEW << 3)) 1819 hashsize -= DTRACE_AGGHASHSIZE_SLEW; 1820 1821 agb->dtagb_hashsize = hashsize; 1822 agb->dtagb_hash = (dtrace_aggkey_t **)((uintptr_t)agb - 1823 agb->dtagb_hashsize * sizeof (dtrace_aggkey_t *)); 1824 agb->dtagb_free = (uintptr_t)agb->dtagb_hash; 1825 1826 for (i = 0; i < agb->dtagb_hashsize; i++) 1827 agb->dtagb_hash[i] = NULL; 1828 } 1829 1830 ASSERT(agg->dtag_first != NULL); 1831 ASSERT(agg->dtag_first->dta_intuple); 1832 1833 /* 1834 * Calculate the hash value based on the key. Note that we _don't_ 1835 * include the aggid in the hashing (but we will store it as part of 1836 * the key). The hashing algorithm is Bob Jenkins' "One-at-a-time" 1837 * algorithm: a simple, quick algorithm that has no known funnels, and 1838 * gets good distribution in practice. The efficacy of the hashing 1839 * algorithm (and a comparison with other algorithms) may be found by 1840 * running the ::dtrace_aggstat MDB dcmd. 1841 */ 1842 for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) { 1843 i = act->dta_rec.dtrd_offset - agg->dtag_base; 1844 limit = i + act->dta_rec.dtrd_size; 1845 ASSERT(limit <= size); 1846 isstr = DTRACEACT_ISSTRING(act); 1847 1848 for (; i < limit; i++) { 1849 hashval += data[i]; 1850 hashval += (hashval << 10); 1851 hashval ^= (hashval >> 6); 1852 1853 if (isstr && data[i] == '\0') 1854 break; 1855 } 1856 } 1857 1858 hashval += (hashval << 3); 1859 hashval ^= (hashval >> 11); 1860 hashval += (hashval << 15); 1861 1862 /* 1863 * Yes, the divide here is expensive -- but it's generally the least 1864 * of the performance issues given the amount of data that we iterate 1865 * over to compute hash values, compare data, etc. 1866 */ 1867 ndx = hashval % agb->dtagb_hashsize; 1868 1869 for (key = agb->dtagb_hash[ndx]; key != NULL; key = key->dtak_next) { 1870 ASSERT((caddr_t)key >= tomax); 1871 ASSERT((caddr_t)key < tomax + buf->dtb_size); 1872 1873 if (hashval != key->dtak_hashval || key->dtak_size != size) 1874 continue; 1875 1876 kdata = key->dtak_data; 1877 ASSERT(kdata >= tomax && kdata < tomax + buf->dtb_size); 1878 1879 for (act = agg->dtag_first; act->dta_intuple; 1880 act = act->dta_next) { 1881 i = act->dta_rec.dtrd_offset - agg->dtag_base; 1882 limit = i + act->dta_rec.dtrd_size; 1883 ASSERT(limit <= size); 1884 isstr = DTRACEACT_ISSTRING(act); 1885 1886 for (; i < limit; i++) { 1887 if (kdata[i] != data[i]) 1888 goto next; 1889 1890 if (isstr && data[i] == '\0') 1891 break; 1892 } 1893 } 1894 1895 if (action != key->dtak_action) { 1896 /* 1897 * We are aggregating on the same value in the same 1898 * aggregation with two different aggregating actions. 1899 * (This should have been picked up in the compiler, 1900 * so we may be dealing with errant or devious DIF.) 1901 * This is an error condition; we indicate as much, 1902 * and return. 1903 */ 1904 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); 1905 return; 1906 } 1907 1908 /* 1909 * This is a hit: we need to apply the aggregator to 1910 * the value at this key. 1911 */ 1912 agg->dtag_aggregate((uint64_t *)(kdata + size), expr, arg); 1913 return; 1914 next: 1915 continue; 1916 } 1917 1918 /* 1919 * We didn't find it. We need to allocate some zero-filled space, 1920 * link it into the hash table appropriately, and apply the aggregator 1921 * to the (zero-filled) value. 1922 */ 1923 offs = buf->dtb_offset; 1924 while (offs & (align - 1)) 1925 offs += sizeof (uint32_t); 1926 1927 /* 1928 * If we don't have enough room to both allocate a new key _and_ 1929 * its associated data, increment the drop count and return. 1930 */ 1931 if ((uintptr_t)tomax + offs + fsize > 1932 agb->dtagb_free - sizeof (dtrace_aggkey_t)) { 1933 dtrace_buffer_drop(buf); 1934 return; 1935 } 1936 1937 /*CONSTCOND*/ 1938 ASSERT(!(sizeof (dtrace_aggkey_t) & (sizeof (uintptr_t) - 1))); 1939 key = (dtrace_aggkey_t *)(agb->dtagb_free - sizeof (dtrace_aggkey_t)); 1940 agb->dtagb_free -= sizeof (dtrace_aggkey_t); 1941 1942 key->dtak_data = kdata = tomax + offs; 1943 buf->dtb_offset = offs + fsize; 1944 1945 /* 1946 * Now copy the data across. 1947 */ 1948 *((dtrace_aggid_t *)kdata) = agg->dtag_id; 1949 1950 for (i = sizeof (dtrace_aggid_t); i < size; i++) 1951 kdata[i] = data[i]; 1952 1953 /* 1954 * Because strings are not zeroed out by default, we need to iterate 1955 * looking for actions that store strings, and we need to explicitly 1956 * pad these strings out with zeroes. 1957 */ 1958 for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) { 1959 int nul; 1960 1961 if (!DTRACEACT_ISSTRING(act)) 1962 continue; 1963 1964 i = act->dta_rec.dtrd_offset - agg->dtag_base; 1965 limit = i + act->dta_rec.dtrd_size; 1966 ASSERT(limit <= size); 1967 1968 for (nul = 0; i < limit; i++) { 1969 if (nul) { 1970 kdata[i] = '\0'; 1971 continue; 1972 } 1973 1974 if (data[i] != '\0') 1975 continue; 1976 1977 nul = 1; 1978 } 1979 } 1980 1981 for (i = size; i < fsize; i++) 1982 kdata[i] = 0; 1983 1984 key->dtak_hashval = hashval; 1985 key->dtak_size = size; 1986 key->dtak_action = action; 1987 key->dtak_next = agb->dtagb_hash[ndx]; 1988 agb->dtagb_hash[ndx] = key; 1989 1990 /* 1991 * Finally, apply the aggregator. 1992 */ 1993 *((uint64_t *)(key->dtak_data + size)) = agg->dtag_initial; 1994 agg->dtag_aggregate((uint64_t *)(key->dtak_data + size), expr, arg); 1995 } 1996 1997 /* 1998 * Given consumer state, this routine finds a speculation in the INACTIVE 1999 * state and transitions it into the ACTIVE state. If there is no speculation 2000 * in the INACTIVE state, 0 is returned. In this case, no error counter is 2001 * incremented -- it is up to the caller to take appropriate action. 2002 */ 2003 static int 2004 dtrace_speculation(dtrace_state_t *state) 2005 { 2006 int i = 0; 2007 dtrace_speculation_state_t current; 2008 uint32_t *stat = &state->dts_speculations_unavail, count; 2009 2010 while (i < state->dts_nspeculations) { 2011 dtrace_speculation_t *spec = &state->dts_speculations[i]; 2012 2013 current = spec->dtsp_state; 2014 2015 if (current != DTRACESPEC_INACTIVE) { 2016 if (current == DTRACESPEC_COMMITTINGMANY || 2017 current == DTRACESPEC_COMMITTING || 2018 current == DTRACESPEC_DISCARDING) 2019 stat = &state->dts_speculations_busy; 2020 i++; 2021 continue; 2022 } 2023 2024 if (dtrace_cas32((uint32_t *)&spec->dtsp_state, 2025 current, DTRACESPEC_ACTIVE) == current) 2026 return (i + 1); 2027 } 2028 2029 /* 2030 * We couldn't find a speculation. If we found as much as a single 2031 * busy speculation buffer, we'll attribute this failure as "busy" 2032 * instead of "unavail". 2033 */ 2034 do { 2035 count = *stat; 2036 } while (dtrace_cas32(stat, count, count + 1) != count); 2037 2038 return (0); 2039 } 2040 2041 /* 2042 * This routine commits an active speculation. If the specified speculation 2043 * is not in a valid state to perform a commit(), this routine will silently do 2044 * nothing. The state of the specified speculation is transitioned according 2045 * to the state transition diagram outlined in <sys/dtrace_impl.h> 2046 */ 2047 static void 2048 dtrace_speculation_commit(dtrace_state_t *state, processorid_t cpu, 2049 dtrace_specid_t which) 2050 { 2051 dtrace_speculation_t *spec; 2052 dtrace_buffer_t *src, *dest; 2053 uintptr_t daddr, saddr, dlimit; 2054 dtrace_speculation_state_t current, new; 2055 intptr_t offs; 2056 2057 if (which == 0) 2058 return; 2059 2060 if (which > state->dts_nspeculations) { 2061 cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP; 2062 return; 2063 } 2064 2065 spec = &state->dts_speculations[which - 1]; 2066 src = &spec->dtsp_buffer[cpu]; 2067 dest = &state->dts_buffer[cpu]; 2068 2069 do { 2070 current = spec->dtsp_state; 2071 2072 if (current == DTRACESPEC_COMMITTINGMANY) 2073 break; 2074 2075 switch (current) { 2076 case DTRACESPEC_INACTIVE: 2077 case DTRACESPEC_DISCARDING: 2078 return; 2079 2080 case DTRACESPEC_COMMITTING: 2081 /* 2082 * This is only possible if we are (a) commit()'ing 2083 * without having done a prior speculate() on this CPU 2084 * and (b) racing with another commit() on a different 2085 * CPU. There's nothing to do -- we just assert that 2086 * our offset is 0. 2087 */ 2088 ASSERT(src->dtb_offset == 0); 2089 return; 2090 2091 case DTRACESPEC_ACTIVE: 2092 new = DTRACESPEC_COMMITTING; 2093 break; 2094 2095 case DTRACESPEC_ACTIVEONE: 2096 /* 2097 * This speculation is active on one CPU. If our 2098 * buffer offset is non-zero, we know that the one CPU 2099 * must be us. Otherwise, we are committing on a 2100 * different CPU from the speculate(), and we must 2101 * rely on being asynchronously cleaned. 2102 */ 2103 if (src->dtb_offset != 0) { 2104 new = DTRACESPEC_COMMITTING; 2105 break; 2106 } 2107 /*FALLTHROUGH*/ 2108 2109 case DTRACESPEC_ACTIVEMANY: 2110 new = DTRACESPEC_COMMITTINGMANY; 2111 break; 2112 2113 default: 2114 ASSERT(0); 2115 } 2116 } while (dtrace_cas32((uint32_t *)&spec->dtsp_state, 2117 current, new) != current); 2118 2119 /* 2120 * We have set the state to indicate that we are committing this 2121 * speculation. Now reserve the necessary space in the destination 2122 * buffer. 2123 */ 2124 if ((offs = dtrace_buffer_reserve(dest, src->dtb_offset, 2125 sizeof (uint64_t), state, NULL)) < 0) { 2126 dtrace_buffer_drop(dest); 2127 goto out; 2128 } 2129 2130 /* 2131 * We have the space; copy the buffer across. (Note that this is a 2132 * highly subobtimal bcopy(); in the unlikely event that this becomes 2133 * a serious performance issue, a high-performance DTrace-specific 2134 * bcopy() should obviously be invented.) 2135 */ 2136 daddr = (uintptr_t)dest->dtb_tomax + offs; 2137 dlimit = daddr + src->dtb_offset; 2138 saddr = (uintptr_t)src->dtb_tomax; 2139 2140 /* 2141 * First, the aligned portion. 2142 */ 2143 while (dlimit - daddr >= sizeof (uint64_t)) { 2144 *((uint64_t *)daddr) = *((uint64_t *)saddr); 2145 2146 daddr += sizeof (uint64_t); 2147 saddr += sizeof (uint64_t); 2148 } 2149 2150 /* 2151 * Now any left-over bit... 2152 */ 2153 while (dlimit - daddr) 2154 *((uint8_t *)daddr++) = *((uint8_t *)saddr++); 2155 2156 /* 2157 * Finally, commit the reserved space in the destination buffer. 2158 */ 2159 dest->dtb_offset = offs + src->dtb_offset; 2160 2161 out: 2162 /* 2163 * If we're lucky enough to be the only active CPU on this speculation 2164 * buffer, we can just set the state back to DTRACESPEC_INACTIVE. 2165 */ 2166 if (current == DTRACESPEC_ACTIVE || 2167 (current == DTRACESPEC_ACTIVEONE && new == DTRACESPEC_COMMITTING)) { 2168 uint32_t rval = dtrace_cas32((uint32_t *)&spec->dtsp_state, 2169 DTRACESPEC_COMMITTING, DTRACESPEC_INACTIVE); 2170 2171 ASSERT(rval == DTRACESPEC_COMMITTING); 2172 } 2173 2174 src->dtb_offset = 0; 2175 src->dtb_xamot_drops += src->dtb_drops; 2176 src->dtb_drops = 0; 2177 } 2178 2179 /* 2180 * This routine discards an active speculation. If the specified speculation 2181 * is not in a valid state to perform a discard(), this routine will silently 2182 * do nothing. The state of the specified speculation is transitioned 2183 * according to the state transition diagram outlined in <sys/dtrace_impl.h> 2184 */ 2185 static void 2186 dtrace_speculation_discard(dtrace_state_t *state, processorid_t cpu, 2187 dtrace_specid_t which) 2188 { 2189 dtrace_speculation_t *spec; 2190 dtrace_speculation_state_t current, new; 2191 dtrace_buffer_t *buf; 2192 2193 if (which == 0) 2194 return; 2195 2196 if (which > state->dts_nspeculations) { 2197 cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP; 2198 return; 2199 } 2200 2201 spec = &state->dts_speculations[which - 1]; 2202 buf = &spec->dtsp_buffer[cpu]; 2203 2204 do { 2205 current = spec->dtsp_state; 2206 2207 switch (current) { 2208 case DTRACESPEC_INACTIVE: 2209 case DTRACESPEC_COMMITTINGMANY: 2210 case DTRACESPEC_COMMITTING: 2211 case DTRACESPEC_DISCARDING: 2212 return; 2213 2214 case DTRACESPEC_ACTIVE: 2215 case DTRACESPEC_ACTIVEMANY: 2216 new = DTRACESPEC_DISCARDING; 2217 break; 2218 2219 case DTRACESPEC_ACTIVEONE: 2220 if (buf->dtb_offset != 0) { 2221 new = DTRACESPEC_INACTIVE; 2222 } else { 2223 new = DTRACESPEC_DISCARDING; 2224 } 2225 break; 2226 2227 default: 2228 ASSERT(0); 2229 } 2230 } while (dtrace_cas32((uint32_t *)&spec->dtsp_state, 2231 current, new) != current); 2232 2233 buf->dtb_offset = 0; 2234 buf->dtb_drops = 0; 2235 } 2236 2237 /* 2238 * Note: not called from probe context. This function is called 2239 * asynchronously from cross call context to clean any speculations that are 2240 * in the COMMITTINGMANY or DISCARDING states. These speculations may not be 2241 * transitioned back to the INACTIVE state until all CPUs have cleaned the 2242 * speculation. 2243 */ 2244 static void 2245 dtrace_speculation_clean_here(dtrace_state_t *state) 2246 { 2247 dtrace_icookie_t cookie; 2248 processorid_t cpu = CPU->cpu_id; 2249 dtrace_buffer_t *dest = &state->dts_buffer[cpu]; 2250 dtrace_specid_t i; 2251 2252 cookie = dtrace_interrupt_disable(); 2253 2254 if (dest->dtb_tomax == NULL) { 2255 dtrace_interrupt_enable(cookie); 2256 return; 2257 } 2258 2259 for (i = 0; i < state->dts_nspeculations; i++) { 2260 dtrace_speculation_t *spec = &state->dts_speculations[i]; 2261 dtrace_buffer_t *src = &spec->dtsp_buffer[cpu]; 2262 2263 if (src->dtb_tomax == NULL) 2264 continue; 2265 2266 if (spec->dtsp_state == DTRACESPEC_DISCARDING) { 2267 src->dtb_offset = 0; 2268 continue; 2269 } 2270 2271 if (spec->dtsp_state != DTRACESPEC_COMMITTINGMANY) 2272 continue; 2273 2274 if (src->dtb_offset == 0) 2275 continue; 2276 2277 dtrace_speculation_commit(state, cpu, i + 1); 2278 } 2279 2280 dtrace_interrupt_enable(cookie); 2281 } 2282 2283 /* 2284 * Note: not called from probe context. This function is called 2285 * asynchronously (and at a regular interval) to clean any speculations that 2286 * are in the COMMITTINGMANY or DISCARDING states. If it discovers that there 2287 * is work to be done, it cross calls all CPUs to perform that work; 2288 * COMMITMANY and DISCARDING speculations may not be transitioned back to the 2289 * INACTIVE state until they have been cleaned by all CPUs. 2290 */ 2291 static void 2292 dtrace_speculation_clean(dtrace_state_t *state) 2293 { 2294 int work = 0, rv; 2295 dtrace_specid_t i; 2296 2297 for (i = 0; i < state->dts_nspeculations; i++) { 2298 dtrace_speculation_t *spec = &state->dts_speculations[i]; 2299 2300 ASSERT(!spec->dtsp_cleaning); 2301 2302 if (spec->dtsp_state != DTRACESPEC_DISCARDING && 2303 spec->dtsp_state != DTRACESPEC_COMMITTINGMANY) 2304 continue; 2305 2306 work++; 2307 spec->dtsp_cleaning = 1; 2308 } 2309 2310 if (!work) 2311 return; 2312 2313 dtrace_xcall(DTRACE_CPUALL, 2314 (dtrace_xcall_t)dtrace_speculation_clean_here, state); 2315 2316 /* 2317 * We now know that all CPUs have committed or discarded their 2318 * speculation buffers, as appropriate. We can now set the state 2319 * to inactive. 2320 */ 2321 for (i = 0; i < state->dts_nspeculations; i++) { 2322 dtrace_speculation_t *spec = &state->dts_speculations[i]; 2323 dtrace_speculation_state_t current, new; 2324 2325 if (!spec->dtsp_cleaning) 2326 continue; 2327 2328 current = spec->dtsp_state; 2329 ASSERT(current == DTRACESPEC_DISCARDING || 2330 current == DTRACESPEC_COMMITTINGMANY); 2331 2332 new = DTRACESPEC_INACTIVE; 2333 2334 rv = dtrace_cas32((uint32_t *)&spec->dtsp_state, current, new); 2335 ASSERT(rv == current); 2336 spec->dtsp_cleaning = 0; 2337 } 2338 } 2339 2340 /* 2341 * Called as part of a speculate() to get the speculative buffer associated 2342 * with a given speculation. Returns NULL if the specified speculation is not 2343 * in an ACTIVE state. If the speculation is in the ACTIVEONE state -- and 2344 * the active CPU is not the specified CPU -- the speculation will be 2345 * atomically transitioned into the ACTIVEMANY state. 2346 */ 2347 static dtrace_buffer_t * 2348 dtrace_speculation_buffer(dtrace_state_t *state, processorid_t cpuid, 2349 dtrace_specid_t which) 2350 { 2351 dtrace_speculation_t *spec; 2352 dtrace_speculation_state_t current, new; 2353 dtrace_buffer_t *buf; 2354 2355 if (which == 0) 2356 return (NULL); 2357 2358 if (which > state->dts_nspeculations) { 2359 cpu_core[cpuid].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP; 2360 return (NULL); 2361 } 2362 2363 spec = &state->dts_speculations[which - 1]; 2364 buf = &spec->dtsp_buffer[cpuid]; 2365 2366 do { 2367 current = spec->dtsp_state; 2368 2369 switch (current) { 2370 case DTRACESPEC_INACTIVE: 2371 case DTRACESPEC_COMMITTINGMANY: 2372 case DTRACESPEC_DISCARDING: 2373 return (NULL); 2374 2375 case DTRACESPEC_COMMITTING: 2376 ASSERT(buf->dtb_offset == 0); 2377 return (NULL); 2378 2379 case DTRACESPEC_ACTIVEONE: 2380 /* 2381 * This speculation is currently active on one CPU. 2382 * Check the offset in the buffer; if it's non-zero, 2383 * that CPU must be us (and we leave the state alone). 2384 * If it's zero, assume that we're starting on a new 2385 * CPU -- and change the state to indicate that the 2386 * speculation is active on more than one CPU. 2387 */ 2388 if (buf->dtb_offset != 0) 2389 return (buf); 2390 2391 new = DTRACESPEC_ACTIVEMANY; 2392 break; 2393 2394 case DTRACESPEC_ACTIVEMANY: 2395 return (buf); 2396 2397 case DTRACESPEC_ACTIVE: 2398 new = DTRACESPEC_ACTIVEONE; 2399 break; 2400 2401 default: 2402 ASSERT(0); 2403 } 2404 } while (dtrace_cas32((uint32_t *)&spec->dtsp_state, 2405 current, new) != current); 2406 2407 ASSERT(new == DTRACESPEC_ACTIVEONE || new == DTRACESPEC_ACTIVEMANY); 2408 return (buf); 2409 } 2410 2411 /* 2412 * Return a string. In the event that the user lacks the privilege to access 2413 * arbitrary kernel memory, we copy the string out to scratch memory so that we 2414 * don't fail access checking. 2415 * 2416 * dtrace_dif_variable() uses this routine as a helper for various 2417 * builtin values such as 'execname' and 'probefunc.' 2418 */ 2419 uintptr_t 2420 dtrace_dif_varstr(uintptr_t addr, dtrace_state_t *state, 2421 dtrace_mstate_t *mstate) 2422 { 2423 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 2424 uintptr_t ret; 2425 size_t strsz; 2426 2427 /* 2428 * The easy case: this probe is allowed to read all of memory, so 2429 * we can just return this as a vanilla pointer. 2430 */ 2431 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) 2432 return (addr); 2433 2434 /* 2435 * This is the tougher case: we copy the string in question from 2436 * kernel memory into scratch memory and return it that way: this 2437 * ensures that we won't trip up when access checking tests the 2438 * BYREF return value. 2439 */ 2440 strsz = dtrace_strlen((char *)addr, size) + 1; 2441 2442 if (mstate->dtms_scratch_ptr + strsz > 2443 mstate->dtms_scratch_base + mstate->dtms_scratch_size) { 2444 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 2445 return (NULL); 2446 } 2447 2448 dtrace_strcpy((const void *)addr, (void *)mstate->dtms_scratch_ptr, 2449 strsz); 2450 ret = mstate->dtms_scratch_ptr; 2451 mstate->dtms_scratch_ptr += strsz; 2452 return (ret); 2453 } 2454 2455 /* 2456 * This function implements the DIF emulator's variable lookups. The emulator 2457 * passes a reserved variable identifier and optional built-in array index. 2458 */ 2459 static uint64_t 2460 dtrace_dif_variable(dtrace_mstate_t *mstate, dtrace_state_t *state, uint64_t v, 2461 uint64_t ndx) 2462 { 2463 /* 2464 * If we're accessing one of the uncached arguments, we'll turn this 2465 * into a reference in the args array. 2466 */ 2467 if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9) { 2468 ndx = v - DIF_VAR_ARG0; 2469 v = DIF_VAR_ARGS; 2470 } 2471 2472 switch (v) { 2473 case DIF_VAR_ARGS: 2474 ASSERT(mstate->dtms_present & DTRACE_MSTATE_ARGS); 2475 if (ndx >= sizeof (mstate->dtms_arg) / 2476 sizeof (mstate->dtms_arg[0])) { 2477 int aframes = mstate->dtms_probe->dtpr_aframes + 2; 2478 dtrace_provider_t *pv; 2479 uint64_t val; 2480 2481 pv = mstate->dtms_probe->dtpr_provider; 2482 if (pv->dtpv_pops.dtps_getargval != NULL) 2483 val = pv->dtpv_pops.dtps_getargval(pv->dtpv_arg, 2484 mstate->dtms_probe->dtpr_id, 2485 mstate->dtms_probe->dtpr_arg, ndx, aframes); 2486 else 2487 val = dtrace_getarg(ndx, aframes); 2488 2489 /* 2490 * This is regrettably required to keep the compiler 2491 * from tail-optimizing the call to dtrace_getarg(). 2492 * The condition always evaluates to true, but the 2493 * compiler has no way of figuring that out a priori. 2494 * (None of this would be necessary if the compiler 2495 * could be relied upon to _always_ tail-optimize 2496 * the call to dtrace_getarg() -- but it can't.) 2497 */ 2498 if (mstate->dtms_probe != NULL) 2499 return (val); 2500 2501 ASSERT(0); 2502 } 2503 2504 return (mstate->dtms_arg[ndx]); 2505 2506 case DIF_VAR_UREGS: { 2507 klwp_t *lwp; 2508 2509 if (!dtrace_priv_proc(state)) 2510 return (0); 2511 2512 if ((lwp = curthread->t_lwp) == NULL) { 2513 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); 2514 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = NULL; 2515 return (0); 2516 } 2517 2518 return (dtrace_getreg(lwp->lwp_regs, ndx)); 2519 } 2520 2521 case DIF_VAR_CURTHREAD: 2522 if (!dtrace_priv_kernel(state)) 2523 return (0); 2524 return ((uint64_t)(uintptr_t)curthread); 2525 2526 case DIF_VAR_TIMESTAMP: 2527 if (!(mstate->dtms_present & DTRACE_MSTATE_TIMESTAMP)) { 2528 mstate->dtms_timestamp = dtrace_gethrtime(); 2529 mstate->dtms_present |= DTRACE_MSTATE_TIMESTAMP; 2530 } 2531 return (mstate->dtms_timestamp); 2532 2533 case DIF_VAR_VTIMESTAMP: 2534 ASSERT(dtrace_vtime_references != 0); 2535 return (curthread->t_dtrace_vtime); 2536 2537 case DIF_VAR_WALLTIMESTAMP: 2538 if (!(mstate->dtms_present & DTRACE_MSTATE_WALLTIMESTAMP)) { 2539 mstate->dtms_walltimestamp = dtrace_gethrestime(); 2540 mstate->dtms_present |= DTRACE_MSTATE_WALLTIMESTAMP; 2541 } 2542 return (mstate->dtms_walltimestamp); 2543 2544 case DIF_VAR_IPL: 2545 if (!dtrace_priv_kernel(state)) 2546 return (0); 2547 if (!(mstate->dtms_present & DTRACE_MSTATE_IPL)) { 2548 mstate->dtms_ipl = dtrace_getipl(); 2549 mstate->dtms_present |= DTRACE_MSTATE_IPL; 2550 } 2551 return (mstate->dtms_ipl); 2552 2553 case DIF_VAR_EPID: 2554 ASSERT(mstate->dtms_present & DTRACE_MSTATE_EPID); 2555 return (mstate->dtms_epid); 2556 2557 case DIF_VAR_ID: 2558 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 2559 return (mstate->dtms_probe->dtpr_id); 2560 2561 case DIF_VAR_STACKDEPTH: 2562 if (!dtrace_priv_kernel(state)) 2563 return (0); 2564 if (!(mstate->dtms_present & DTRACE_MSTATE_STACKDEPTH)) { 2565 int aframes = mstate->dtms_probe->dtpr_aframes + 2; 2566 2567 mstate->dtms_stackdepth = dtrace_getstackdepth(aframes); 2568 mstate->dtms_present |= DTRACE_MSTATE_STACKDEPTH; 2569 } 2570 return (mstate->dtms_stackdepth); 2571 2572 case DIF_VAR_USTACKDEPTH: 2573 if (!dtrace_priv_proc(state)) 2574 return (0); 2575 if (!(mstate->dtms_present & DTRACE_MSTATE_USTACKDEPTH)) { 2576 /* 2577 * See comment in DIF_VAR_PID. 2578 */ 2579 if (DTRACE_ANCHORED(mstate->dtms_probe) && 2580 CPU_ON_INTR(CPU)) { 2581 mstate->dtms_ustackdepth = 0; 2582 } else { 2583 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 2584 mstate->dtms_ustackdepth = 2585 dtrace_getustackdepth(); 2586 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 2587 } 2588 mstate->dtms_present |= DTRACE_MSTATE_USTACKDEPTH; 2589 } 2590 return (mstate->dtms_ustackdepth); 2591 2592 case DIF_VAR_CALLER: 2593 if (!dtrace_priv_kernel(state)) 2594 return (0); 2595 if (!(mstate->dtms_present & DTRACE_MSTATE_CALLER)) { 2596 int aframes = mstate->dtms_probe->dtpr_aframes + 2; 2597 2598 if (!DTRACE_ANCHORED(mstate->dtms_probe)) { 2599 /* 2600 * If this is an unanchored probe, we are 2601 * required to go through the slow path: 2602 * dtrace_caller() only guarantees correct 2603 * results for anchored probes. 2604 */ 2605 pc_t caller[2]; 2606 2607 dtrace_getpcstack(caller, 2, aframes, 2608 (uint32_t *)(uintptr_t)mstate->dtms_arg[0]); 2609 mstate->dtms_caller = caller[1]; 2610 } else if ((mstate->dtms_caller = 2611 dtrace_caller(aframes)) == -1) { 2612 /* 2613 * We have failed to do this the quick way; 2614 * we must resort to the slower approach of 2615 * calling dtrace_getpcstack(). 2616 */ 2617 pc_t caller; 2618 2619 dtrace_getpcstack(&caller, 1, aframes, NULL); 2620 mstate->dtms_caller = caller; 2621 } 2622 2623 mstate->dtms_present |= DTRACE_MSTATE_CALLER; 2624 } 2625 return (mstate->dtms_caller); 2626 2627 case DIF_VAR_UCALLER: 2628 if (!dtrace_priv_proc(state)) 2629 return (0); 2630 2631 if (!(mstate->dtms_present & DTRACE_MSTATE_UCALLER)) { 2632 uint64_t ustack[3]; 2633 2634 /* 2635 * dtrace_getupcstack() fills in the first uint64_t 2636 * with the current PID. The second uint64_t will 2637 * be the program counter at user-level. The third 2638 * uint64_t will contain the caller, which is what 2639 * we're after. 2640 */ 2641 ustack[2] = NULL; 2642 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 2643 dtrace_getupcstack(ustack, 3); 2644 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 2645 mstate->dtms_ucaller = ustack[2]; 2646 mstate->dtms_present |= DTRACE_MSTATE_UCALLER; 2647 } 2648 2649 return (mstate->dtms_ucaller); 2650 2651 case DIF_VAR_PROBEPROV: 2652 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 2653 return (dtrace_dif_varstr( 2654 (uintptr_t)mstate->dtms_probe->dtpr_provider->dtpv_name, 2655 state, mstate)); 2656 2657 case DIF_VAR_PROBEMOD: 2658 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 2659 return (dtrace_dif_varstr( 2660 (uintptr_t)mstate->dtms_probe->dtpr_mod, 2661 state, mstate)); 2662 2663 case DIF_VAR_PROBEFUNC: 2664 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 2665 return (dtrace_dif_varstr( 2666 (uintptr_t)mstate->dtms_probe->dtpr_func, 2667 state, mstate)); 2668 2669 case DIF_VAR_PROBENAME: 2670 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 2671 return (dtrace_dif_varstr( 2672 (uintptr_t)mstate->dtms_probe->dtpr_name, 2673 state, mstate)); 2674 2675 case DIF_VAR_PID: 2676 if (!dtrace_priv_proc(state)) 2677 return (0); 2678 2679 /* 2680 * Note that we are assuming that an unanchored probe is 2681 * always due to a high-level interrupt. (And we're assuming 2682 * that there is only a single high level interrupt.) 2683 */ 2684 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 2685 return (pid0.pid_id); 2686 2687 /* 2688 * It is always safe to dereference one's own t_procp pointer: 2689 * it always points to a valid, allocated proc structure. 2690 * Further, it is always safe to dereference the p_pidp member 2691 * of one's own proc structure. (These are truisms becuase 2692 * threads and processes don't clean up their own state -- 2693 * they leave that task to whomever reaps them.) 2694 */ 2695 return ((uint64_t)curthread->t_procp->p_pidp->pid_id); 2696 2697 case DIF_VAR_PPID: 2698 if (!dtrace_priv_proc(state)) 2699 return (0); 2700 2701 /* 2702 * See comment in DIF_VAR_PID. 2703 */ 2704 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 2705 return (pid0.pid_id); 2706 2707 /* 2708 * It is always safe to dereference one's own t_procp pointer: 2709 * it always points to a valid, allocated proc structure. 2710 * (This is true because threads don't clean up their own 2711 * state -- they leave that task to whomever reaps them.) 2712 */ 2713 return ((uint64_t)curthread->t_procp->p_ppid); 2714 2715 case DIF_VAR_TID: 2716 /* 2717 * See comment in DIF_VAR_PID. 2718 */ 2719 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 2720 return (0); 2721 2722 return ((uint64_t)curthread->t_tid); 2723 2724 case DIF_VAR_EXECNAME: 2725 if (!dtrace_priv_proc(state)) 2726 return (0); 2727 2728 /* 2729 * See comment in DIF_VAR_PID. 2730 */ 2731 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 2732 return ((uint64_t)(uintptr_t)p0.p_user.u_comm); 2733 2734 /* 2735 * It is always safe to dereference one's own t_procp pointer: 2736 * it always points to a valid, allocated proc structure. 2737 * (This is true because threads don't clean up their own 2738 * state -- they leave that task to whomever reaps them.) 2739 */ 2740 return (dtrace_dif_varstr( 2741 (uintptr_t)curthread->t_procp->p_user.u_comm, 2742 state, mstate)); 2743 2744 case DIF_VAR_ZONENAME: 2745 if (!dtrace_priv_proc(state)) 2746 return (0); 2747 2748 /* 2749 * See comment in DIF_VAR_PID. 2750 */ 2751 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 2752 return ((uint64_t)(uintptr_t)p0.p_zone->zone_name); 2753 2754 /* 2755 * It is always safe to dereference one's own t_procp pointer: 2756 * it always points to a valid, allocated proc structure. 2757 * (This is true because threads don't clean up their own 2758 * state -- they leave that task to whomever reaps them.) 2759 */ 2760 return (dtrace_dif_varstr( 2761 (uintptr_t)curthread->t_procp->p_zone->zone_name, 2762 state, mstate)); 2763 2764 case DIF_VAR_UID: 2765 if (!dtrace_priv_proc(state)) 2766 return (0); 2767 2768 /* 2769 * See comment in DIF_VAR_PID. 2770 */ 2771 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 2772 return ((uint64_t)p0.p_cred->cr_uid); 2773 2774 /* 2775 * It is always safe to dereference one's own t_procp pointer: 2776 * it always points to a valid, allocated proc structure. 2777 * (This is true because threads don't clean up their own 2778 * state -- they leave that task to whomever reaps them.) 2779 * 2780 * Additionally, it is safe to dereference one's own process 2781 * credential, since this is never NULL after process birth. 2782 */ 2783 return ((uint64_t)curthread->t_procp->p_cred->cr_uid); 2784 2785 case DIF_VAR_GID: 2786 if (!dtrace_priv_proc(state)) 2787 return (0); 2788 2789 /* 2790 * See comment in DIF_VAR_PID. 2791 */ 2792 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 2793 return ((uint64_t)p0.p_cred->cr_gid); 2794 2795 /* 2796 * It is always safe to dereference one's own t_procp pointer: 2797 * it always points to a valid, allocated proc structure. 2798 * (This is true because threads don't clean up their own 2799 * state -- they leave that task to whomever reaps them.) 2800 * 2801 * Additionally, it is safe to dereference one's own process 2802 * credential, since this is never NULL after process birth. 2803 */ 2804 return ((uint64_t)curthread->t_procp->p_cred->cr_gid); 2805 2806 case DIF_VAR_ERRNO: { 2807 klwp_t *lwp; 2808 if (!dtrace_priv_proc(state)) 2809 return (0); 2810 2811 /* 2812 * See comment in DIF_VAR_PID. 2813 */ 2814 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 2815 return (0); 2816 2817 /* 2818 * It is always safe to dereference one's own t_lwp pointer in 2819 * the event that this pointer is non-NULL. (This is true 2820 * because threads and lwps don't clean up their own state -- 2821 * they leave that task to whomever reaps them.) 2822 */ 2823 if ((lwp = curthread->t_lwp) == NULL) 2824 return (0); 2825 2826 return ((uint64_t)lwp->lwp_errno); 2827 } 2828 default: 2829 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); 2830 return (0); 2831 } 2832 } 2833 2834 /* 2835 * Emulate the execution of DTrace ID subroutines invoked by the call opcode. 2836 * Notice that we don't bother validating the proper number of arguments or 2837 * their types in the tuple stack. This isn't needed because all argument 2838 * interpretation is safe because of our load safety -- the worst that can 2839 * happen is that a bogus program can obtain bogus results. 2840 */ 2841 static void 2842 dtrace_dif_subr(uint_t subr, uint_t rd, uint64_t *regs, 2843 dtrace_key_t *tupregs, int nargs, 2844 dtrace_mstate_t *mstate, dtrace_state_t *state) 2845 { 2846 volatile uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 2847 volatile uintptr_t *illval = &cpu_core[CPU->cpu_id].cpuc_dtrace_illval; 2848 dtrace_vstate_t *vstate = &state->dts_vstate; 2849 2850 union { 2851 mutex_impl_t mi; 2852 uint64_t mx; 2853 } m; 2854 2855 union { 2856 krwlock_t ri; 2857 uintptr_t rw; 2858 } r; 2859 2860 switch (subr) { 2861 case DIF_SUBR_RAND: 2862 regs[rd] = (dtrace_gethrtime() * 2416 + 374441) % 1771875; 2863 break; 2864 2865 case DIF_SUBR_MUTEX_OWNED: 2866 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t), 2867 mstate, vstate)) { 2868 regs[rd] = NULL; 2869 break; 2870 } 2871 2872 m.mx = dtrace_load64(tupregs[0].dttk_value); 2873 if (MUTEX_TYPE_ADAPTIVE(&m.mi)) 2874 regs[rd] = MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER; 2875 else 2876 regs[rd] = LOCK_HELD(&m.mi.m_spin.m_spinlock); 2877 break; 2878 2879 case DIF_SUBR_MUTEX_OWNER: 2880 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t), 2881 mstate, vstate)) { 2882 regs[rd] = NULL; 2883 break; 2884 } 2885 2886 m.mx = dtrace_load64(tupregs[0].dttk_value); 2887 if (MUTEX_TYPE_ADAPTIVE(&m.mi) && 2888 MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER) 2889 regs[rd] = (uintptr_t)MUTEX_OWNER(&m.mi); 2890 else 2891 regs[rd] = 0; 2892 break; 2893 2894 case DIF_SUBR_MUTEX_TYPE_ADAPTIVE: 2895 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t), 2896 mstate, vstate)) { 2897 regs[rd] = NULL; 2898 break; 2899 } 2900 2901 m.mx = dtrace_load64(tupregs[0].dttk_value); 2902 regs[rd] = MUTEX_TYPE_ADAPTIVE(&m.mi); 2903 break; 2904 2905 case DIF_SUBR_MUTEX_TYPE_SPIN: 2906 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t), 2907 mstate, vstate)) { 2908 regs[rd] = NULL; 2909 break; 2910 } 2911 2912 m.mx = dtrace_load64(tupregs[0].dttk_value); 2913 regs[rd] = MUTEX_TYPE_SPIN(&m.mi); 2914 break; 2915 2916 case DIF_SUBR_RW_READ_HELD: { 2917 uintptr_t tmp; 2918 2919 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t), 2920 mstate, vstate)) { 2921 regs[rd] = NULL; 2922 break; 2923 } 2924 2925 r.rw = dtrace_loadptr(tupregs[0].dttk_value); 2926 regs[rd] = _RW_READ_HELD(&r.ri, tmp); 2927 break; 2928 } 2929 2930 case DIF_SUBR_RW_WRITE_HELD: 2931 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t), 2932 mstate, vstate)) { 2933 regs[rd] = NULL; 2934 break; 2935 } 2936 2937 r.rw = dtrace_loadptr(tupregs[0].dttk_value); 2938 regs[rd] = _RW_WRITE_HELD(&r.ri); 2939 break; 2940 2941 case DIF_SUBR_RW_ISWRITER: 2942 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t), 2943 mstate, vstate)) { 2944 regs[rd] = NULL; 2945 break; 2946 } 2947 2948 r.rw = dtrace_loadptr(tupregs[0].dttk_value); 2949 regs[rd] = _RW_ISWRITER(&r.ri); 2950 break; 2951 2952 case DIF_SUBR_BCOPY: { 2953 /* 2954 * We need to be sure that the destination is in the scratch 2955 * region -- no other region is allowed. 2956 */ 2957 uintptr_t src = tupregs[0].dttk_value; 2958 uintptr_t dest = tupregs[1].dttk_value; 2959 size_t size = tupregs[2].dttk_value; 2960 2961 if (!dtrace_inscratch(dest, size, mstate)) { 2962 *flags |= CPU_DTRACE_BADADDR; 2963 *illval = regs[rd]; 2964 break; 2965 } 2966 2967 if (!dtrace_canload(src, size, mstate, vstate)) { 2968 regs[rd] = NULL; 2969 break; 2970 } 2971 2972 dtrace_bcopy((void *)src, (void *)dest, size); 2973 break; 2974 } 2975 2976 case DIF_SUBR_ALLOCA: 2977 case DIF_SUBR_COPYIN: { 2978 uintptr_t dest = P2ROUNDUP(mstate->dtms_scratch_ptr, 8); 2979 uint64_t size = 2980 tupregs[subr == DIF_SUBR_ALLOCA ? 0 : 1].dttk_value; 2981 size_t scratch_size = (dest - mstate->dtms_scratch_ptr) + size; 2982 2983 /* 2984 * This action doesn't require any credential checks since 2985 * probes will not activate in user contexts to which the 2986 * enabling user does not have permissions. 2987 */ 2988 2989 /* 2990 * Rounding up the user allocation size could have overflowed 2991 * a large, bogus allocation (like -1ULL) to 0. 2992 */ 2993 if (scratch_size < size || 2994 !DTRACE_INSCRATCH(mstate, scratch_size)) { 2995 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 2996 regs[rd] = NULL; 2997 break; 2998 } 2999 3000 if (subr == DIF_SUBR_COPYIN) { 3001 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 3002 dtrace_copyin(tupregs[0].dttk_value, dest, size, flags); 3003 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 3004 } 3005 3006 mstate->dtms_scratch_ptr += scratch_size; 3007 regs[rd] = dest; 3008 break; 3009 } 3010 3011 case DIF_SUBR_COPYINTO: { 3012 uint64_t size = tupregs[1].dttk_value; 3013 uintptr_t dest = tupregs[2].dttk_value; 3014 3015 /* 3016 * This action doesn't require any credential checks since 3017 * probes will not activate in user contexts to which the 3018 * enabling user does not have permissions. 3019 */ 3020 if (!dtrace_inscratch(dest, size, mstate)) { 3021 *flags |= CPU_DTRACE_BADADDR; 3022 *illval = regs[rd]; 3023 break; 3024 } 3025 3026 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 3027 dtrace_copyin(tupregs[0].dttk_value, dest, size, flags); 3028 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 3029 break; 3030 } 3031 3032 case DIF_SUBR_COPYINSTR: { 3033 uintptr_t dest = mstate->dtms_scratch_ptr; 3034 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 3035 3036 if (nargs > 1 && tupregs[1].dttk_value < size) 3037 size = tupregs[1].dttk_value + 1; 3038 3039 /* 3040 * This action doesn't require any credential checks since 3041 * probes will not activate in user contexts to which the 3042 * enabling user does not have permissions. 3043 */ 3044 if (!DTRACE_INSCRATCH(mstate, size)) { 3045 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 3046 regs[rd] = NULL; 3047 break; 3048 } 3049 3050 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 3051 dtrace_copyinstr(tupregs[0].dttk_value, dest, size, flags); 3052 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 3053 3054 ((char *)dest)[size - 1] = '\0'; 3055 mstate->dtms_scratch_ptr += size; 3056 regs[rd] = dest; 3057 break; 3058 } 3059 3060 case DIF_SUBR_MSGSIZE: 3061 case DIF_SUBR_MSGDSIZE: { 3062 uintptr_t baddr = tupregs[0].dttk_value, daddr; 3063 uintptr_t wptr, rptr; 3064 size_t count = 0; 3065 int cont = 0; 3066 3067 while (baddr != NULL && !(*flags & CPU_DTRACE_FAULT)) { 3068 3069 if (!dtrace_canload(baddr, sizeof (mblk_t), mstate, 3070 vstate)) { 3071 regs[rd] = NULL; 3072 break; 3073 } 3074 3075 wptr = dtrace_loadptr(baddr + 3076 offsetof(mblk_t, b_wptr)); 3077 3078 rptr = dtrace_loadptr(baddr + 3079 offsetof(mblk_t, b_rptr)); 3080 3081 if (wptr < rptr) { 3082 *flags |= CPU_DTRACE_BADADDR; 3083 *illval = tupregs[0].dttk_value; 3084 break; 3085 } 3086 3087 daddr = dtrace_loadptr(baddr + 3088 offsetof(mblk_t, b_datap)); 3089 3090 baddr = dtrace_loadptr(baddr + 3091 offsetof(mblk_t, b_cont)); 3092 3093 /* 3094 * We want to prevent against denial-of-service here, 3095 * so we're only going to search the list for 3096 * dtrace_msgdsize_max mblks. 3097 */ 3098 if (cont++ > dtrace_msgdsize_max) { 3099 *flags |= CPU_DTRACE_ILLOP; 3100 break; 3101 } 3102 3103 if (subr == DIF_SUBR_MSGDSIZE) { 3104 if (dtrace_load8(daddr + 3105 offsetof(dblk_t, db_type)) != M_DATA) 3106 continue; 3107 } 3108 3109 count += wptr - rptr; 3110 } 3111 3112 if (!(*flags & CPU_DTRACE_FAULT)) 3113 regs[rd] = count; 3114 3115 break; 3116 } 3117 3118 case DIF_SUBR_PROGENYOF: { 3119 pid_t pid = tupregs[0].dttk_value; 3120 proc_t *p; 3121 int rval = 0; 3122 3123 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 3124 3125 for (p = curthread->t_procp; p != NULL; p = p->p_parent) { 3126 if (p->p_pidp->pid_id == pid) { 3127 rval = 1; 3128 break; 3129 } 3130 } 3131 3132 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 3133 3134 regs[rd] = rval; 3135 break; 3136 } 3137 3138 case DIF_SUBR_SPECULATION: 3139 regs[rd] = dtrace_speculation(state); 3140 break; 3141 3142 case DIF_SUBR_COPYOUT: { 3143 uintptr_t kaddr = tupregs[0].dttk_value; 3144 uintptr_t uaddr = tupregs[1].dttk_value; 3145 uint64_t size = tupregs[2].dttk_value; 3146 3147 if (!dtrace_destructive_disallow && 3148 dtrace_priv_proc_control(state) && 3149 !dtrace_istoxic(kaddr, size)) { 3150 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 3151 dtrace_copyout(kaddr, uaddr, size, flags); 3152 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 3153 } 3154 break; 3155 } 3156 3157 case DIF_SUBR_COPYOUTSTR: { 3158 uintptr_t kaddr = tupregs[0].dttk_value; 3159 uintptr_t uaddr = tupregs[1].dttk_value; 3160 uint64_t size = tupregs[2].dttk_value; 3161 3162 if (!dtrace_destructive_disallow && 3163 dtrace_priv_proc_control(state) && 3164 !dtrace_istoxic(kaddr, size)) { 3165 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 3166 dtrace_copyoutstr(kaddr, uaddr, size, flags); 3167 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 3168 } 3169 break; 3170 } 3171 3172 case DIF_SUBR_STRLEN: { 3173 size_t sz; 3174 uintptr_t addr = (uintptr_t)tupregs[0].dttk_value; 3175 sz = dtrace_strlen((char *)addr, 3176 state->dts_options[DTRACEOPT_STRSIZE]); 3177 3178 if (!dtrace_canload(addr, sz + 1, mstate, vstate)) { 3179 regs[rd] = NULL; 3180 break; 3181 } 3182 3183 regs[rd] = sz; 3184 3185 break; 3186 } 3187 3188 case DIF_SUBR_STRCHR: 3189 case DIF_SUBR_STRRCHR: { 3190 /* 3191 * We're going to iterate over the string looking for the 3192 * specified character. We will iterate until we have reached 3193 * the string length or we have found the character. If this 3194 * is DIF_SUBR_STRRCHR, we will look for the last occurrence 3195 * of the specified character instead of the first. 3196 */ 3197 uintptr_t saddr = tupregs[0].dttk_value; 3198 uintptr_t addr = tupregs[0].dttk_value; 3199 uintptr_t limit = addr + state->dts_options[DTRACEOPT_STRSIZE]; 3200 char c, target = (char)tupregs[1].dttk_value; 3201 3202 for (regs[rd] = NULL; addr < limit; addr++) { 3203 if ((c = dtrace_load8(addr)) == target) { 3204 regs[rd] = addr; 3205 3206 if (subr == DIF_SUBR_STRCHR) 3207 break; 3208 } 3209 3210 if (c == '\0') 3211 break; 3212 } 3213 3214 if (!dtrace_canload(saddr, addr - saddr, mstate, vstate)) { 3215 regs[rd] = NULL; 3216 break; 3217 } 3218 3219 break; 3220 } 3221 3222 case DIF_SUBR_STRSTR: 3223 case DIF_SUBR_INDEX: 3224 case DIF_SUBR_RINDEX: { 3225 /* 3226 * We're going to iterate over the string looking for the 3227 * specified string. We will iterate until we have reached 3228 * the string length or we have found the string. (Yes, this 3229 * is done in the most naive way possible -- but considering 3230 * that the string we're searching for is likely to be 3231 * relatively short, the complexity of Rabin-Karp or similar 3232 * hardly seems merited.) 3233 */ 3234 char *addr = (char *)(uintptr_t)tupregs[0].dttk_value; 3235 char *substr = (char *)(uintptr_t)tupregs[1].dttk_value; 3236 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 3237 size_t len = dtrace_strlen(addr, size); 3238 size_t sublen = dtrace_strlen(substr, size); 3239 char *limit = addr + len, *orig = addr; 3240 int notfound = subr == DIF_SUBR_STRSTR ? 0 : -1; 3241 int inc = 1; 3242 3243 regs[rd] = notfound; 3244 3245 if (!dtrace_canload((uintptr_t)addr, len + 1, mstate, vstate)) { 3246 regs[rd] = NULL; 3247 break; 3248 } 3249 3250 if (!dtrace_canload((uintptr_t)substr, sublen + 1, mstate, 3251 vstate)) { 3252 regs[rd] = NULL; 3253 break; 3254 } 3255 3256 /* 3257 * strstr() and index()/rindex() have similar semantics if 3258 * both strings are the empty string: strstr() returns a 3259 * pointer to the (empty) string, and index() and rindex() 3260 * both return index 0 (regardless of any position argument). 3261 */ 3262 if (sublen == 0 && len == 0) { 3263 if (subr == DIF_SUBR_STRSTR) 3264 regs[rd] = (uintptr_t)addr; 3265 else 3266 regs[rd] = 0; 3267 break; 3268 } 3269 3270 if (subr != DIF_SUBR_STRSTR) { 3271 if (subr == DIF_SUBR_RINDEX) { 3272 limit = orig - 1; 3273 addr += len; 3274 inc = -1; 3275 } 3276 3277 /* 3278 * Both index() and rindex() take an optional position 3279 * argument that denotes the starting position. 3280 */ 3281 if (nargs == 3) { 3282 int64_t pos = (int64_t)tupregs[2].dttk_value; 3283 3284 /* 3285 * If the position argument to index() is 3286 * negative, Perl implicitly clamps it at 3287 * zero. This semantic is a little surprising 3288 * given the special meaning of negative 3289 * positions to similar Perl functions like 3290 * substr(), but it appears to reflect a 3291 * notion that index() can start from a 3292 * negative index and increment its way up to 3293 * the string. Given this notion, Perl's 3294 * rindex() is at least self-consistent in 3295 * that it implicitly clamps positions greater 3296 * than the string length to be the string 3297 * length. Where Perl completely loses 3298 * coherence, however, is when the specified 3299 * substring is the empty string (""). In 3300 * this case, even if the position is 3301 * negative, rindex() returns 0 -- and even if 3302 * the position is greater than the length, 3303 * index() returns the string length. These 3304 * semantics violate the notion that index() 3305 * should never return a value less than the 3306 * specified position and that rindex() should 3307 * never return a value greater than the 3308 * specified position. (One assumes that 3309 * these semantics are artifacts of Perl's 3310 * implementation and not the results of 3311 * deliberate design -- it beggars belief that 3312 * even Larry Wall could desire such oddness.) 3313 * While in the abstract one would wish for 3314 * consistent position semantics across 3315 * substr(), index() and rindex() -- or at the 3316 * very least self-consistent position 3317 * semantics for index() and rindex() -- we 3318 * instead opt to keep with the extant Perl 3319 * semantics, in all their broken glory. (Do 3320 * we have more desire to maintain Perl's 3321 * semantics than Perl does? Probably.) 3322 */ 3323 if (subr == DIF_SUBR_RINDEX) { 3324 if (pos < 0) { 3325 if (sublen == 0) 3326 regs[rd] = 0; 3327 break; 3328 } 3329 3330 if (pos > len) 3331 pos = len; 3332 } else { 3333 if (pos < 0) 3334 pos = 0; 3335 3336 if (pos >= len) { 3337 if (sublen == 0) 3338 regs[rd] = len; 3339 break; 3340 } 3341 } 3342 3343 addr = orig + pos; 3344 } 3345 } 3346 3347 for (regs[rd] = notfound; addr != limit; addr += inc) { 3348 if (dtrace_strncmp(addr, substr, sublen) == 0) { 3349 if (subr != DIF_SUBR_STRSTR) { 3350 /* 3351 * As D index() and rindex() are 3352 * modeled on Perl (and not on awk), 3353 * we return a zero-based (and not a 3354 * one-based) index. (For you Perl 3355 * weenies: no, we're not going to add 3356 * $[ -- and shouldn't you be at a con 3357 * or something?) 3358 */ 3359 regs[rd] = (uintptr_t)(addr - orig); 3360 break; 3361 } 3362 3363 ASSERT(subr == DIF_SUBR_STRSTR); 3364 regs[rd] = (uintptr_t)addr; 3365 break; 3366 } 3367 } 3368 3369 break; 3370 } 3371 3372 case DIF_SUBR_STRTOK: { 3373 uintptr_t addr = tupregs[0].dttk_value; 3374 uintptr_t tokaddr = tupregs[1].dttk_value; 3375 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 3376 uintptr_t limit, toklimit = tokaddr + size; 3377 uint8_t c, tokmap[32]; /* 256 / 8 */ 3378 char *dest = (char *)mstate->dtms_scratch_ptr; 3379 int i; 3380 3381 /* 3382 * Check both the token buffer and (later) the input buffer, 3383 * since both could be non-scratch addresses. 3384 */ 3385 if (!dtrace_strcanload(tokaddr, size, mstate, vstate)) { 3386 regs[rd] = NULL; 3387 break; 3388 } 3389 3390 if (!DTRACE_INSCRATCH(mstate, size)) { 3391 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 3392 regs[rd] = NULL; 3393 break; 3394 } 3395 3396 if (addr == NULL) { 3397 /* 3398 * If the address specified is NULL, we use our saved 3399 * strtok pointer from the mstate. Note that this 3400 * means that the saved strtok pointer is _only_ 3401 * valid within multiple enablings of the same probe -- 3402 * it behaves like an implicit clause-local variable. 3403 */ 3404 addr = mstate->dtms_strtok; 3405 } else { 3406 /* 3407 * If the user-specified address is non-NULL we must 3408 * access check it. This is the only time we have 3409 * a chance to do so, since this address may reside 3410 * in the string table of this clause-- future calls 3411 * (when we fetch addr from mstate->dtms_strtok) 3412 * would fail this access check. 3413 */ 3414 if (!dtrace_strcanload(addr, size, mstate, vstate)) { 3415 regs[rd] = NULL; 3416 break; 3417 } 3418 } 3419 3420 /* 3421 * First, zero the token map, and then process the token 3422 * string -- setting a bit in the map for every character 3423 * found in the token string. 3424 */ 3425 for (i = 0; i < sizeof (tokmap); i++) 3426 tokmap[i] = 0; 3427 3428 for (; tokaddr < toklimit; tokaddr++) { 3429 if ((c = dtrace_load8(tokaddr)) == '\0') 3430 break; 3431 3432 ASSERT((c >> 3) < sizeof (tokmap)); 3433 tokmap[c >> 3] |= (1 << (c & 0x7)); 3434 } 3435 3436 for (limit = addr + size; addr < limit; addr++) { 3437 /* 3438 * We're looking for a character that is _not_ contained 3439 * in the token string. 3440 */ 3441 if ((c = dtrace_load8(addr)) == '\0') 3442 break; 3443 3444 if (!(tokmap[c >> 3] & (1 << (c & 0x7)))) 3445 break; 3446 } 3447 3448 if (c == '\0') { 3449 /* 3450 * We reached the end of the string without finding 3451 * any character that was not in the token string. 3452 * We return NULL in this case, and we set the saved 3453 * address to NULL as well. 3454 */ 3455 regs[rd] = NULL; 3456 mstate->dtms_strtok = NULL; 3457 break; 3458 } 3459 3460 /* 3461 * From here on, we're copying into the destination string. 3462 */ 3463 for (i = 0; addr < limit && i < size - 1; addr++) { 3464 if ((c = dtrace_load8(addr)) == '\0') 3465 break; 3466 3467 if (tokmap[c >> 3] & (1 << (c & 0x7))) 3468 break; 3469 3470 ASSERT(i < size); 3471 dest[i++] = c; 3472 } 3473 3474 ASSERT(i < size); 3475 dest[i] = '\0'; 3476 regs[rd] = (uintptr_t)dest; 3477 mstate->dtms_scratch_ptr += size; 3478 mstate->dtms_strtok = addr; 3479 break; 3480 } 3481 3482 case DIF_SUBR_SUBSTR: { 3483 uintptr_t s = tupregs[0].dttk_value; 3484 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 3485 char *d = (char *)mstate->dtms_scratch_ptr; 3486 int64_t index = (int64_t)tupregs[1].dttk_value; 3487 int64_t remaining = (int64_t)tupregs[2].dttk_value; 3488 size_t len = dtrace_strlen((char *)s, size); 3489 int64_t i = 0; 3490 3491 if (!dtrace_canload(s, len + 1, mstate, vstate)) { 3492 regs[rd] = NULL; 3493 break; 3494 } 3495 3496 if (nargs <= 2) 3497 remaining = (int64_t)size; 3498 3499 if (!DTRACE_INSCRATCH(mstate, size)) { 3500 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 3501 regs[rd] = NULL; 3502 break; 3503 } 3504 3505 if (index < 0) { 3506 index += len; 3507 3508 if (index < 0 && index + remaining > 0) { 3509 remaining += index; 3510 index = 0; 3511 } 3512 } 3513 3514 if (index >= len || index < 0) 3515 index = len; 3516 3517 for (d[0] = '\0'; remaining > 0; remaining--) { 3518 if ((d[i++] = dtrace_load8(s++ + index)) == '\0') 3519 break; 3520 3521 if (i == size) { 3522 d[i - 1] = '\0'; 3523 break; 3524 } 3525 } 3526 3527 mstate->dtms_scratch_ptr += size; 3528 regs[rd] = (uintptr_t)d; 3529 break; 3530 } 3531 3532 case DIF_SUBR_GETMAJOR: 3533 #ifdef _LP64 3534 regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR64) & MAXMAJ64; 3535 #else 3536 regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR) & MAXMAJ; 3537 #endif 3538 break; 3539 3540 case DIF_SUBR_GETMINOR: 3541 #ifdef _LP64 3542 regs[rd] = tupregs[0].dttk_value & MAXMIN64; 3543 #else 3544 regs[rd] = tupregs[0].dttk_value & MAXMIN; 3545 #endif 3546 break; 3547 3548 case DIF_SUBR_DDI_PATHNAME: { 3549 /* 3550 * This one is a galactic mess. We are going to roughly 3551 * emulate ddi_pathname(), but it's made more complicated 3552 * by the fact that we (a) want to include the minor name and 3553 * (b) must proceed iteratively instead of recursively. 3554 */ 3555 uintptr_t dest = mstate->dtms_scratch_ptr; 3556 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 3557 char *start = (char *)dest, *end = start + size - 1; 3558 uintptr_t daddr = tupregs[0].dttk_value; 3559 int64_t minor = (int64_t)tupregs[1].dttk_value; 3560 char *s; 3561 int i, len, depth = 0; 3562 3563 /* 3564 * Due to all the pointer jumping we do and context we must 3565 * rely upon, we just mandate that the user must have kernel 3566 * read privileges to use this routine. 3567 */ 3568 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) == 0) { 3569 *flags |= CPU_DTRACE_KPRIV; 3570 *illval = daddr; 3571 regs[rd] = NULL; 3572 } 3573 3574 if (!DTRACE_INSCRATCH(mstate, size)) { 3575 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 3576 regs[rd] = NULL; 3577 break; 3578 } 3579 3580 *end = '\0'; 3581 3582 /* 3583 * We want to have a name for the minor. In order to do this, 3584 * we need to walk the minor list from the devinfo. We want 3585 * to be sure that we don't infinitely walk a circular list, 3586 * so we check for circularity by sending a scout pointer 3587 * ahead two elements for every element that we iterate over; 3588 * if the list is circular, these will ultimately point to the 3589 * same element. You may recognize this little trick as the 3590 * answer to a stupid interview question -- one that always 3591 * seems to be asked by those who had to have it laboriously 3592 * explained to them, and who can't even concisely describe 3593 * the conditions under which one would be forced to resort to 3594 * this technique. Needless to say, those conditions are 3595 * found here -- and probably only here. Is this is the only 3596 * use of this infamous trick in shipping, production code? 3597 * If it isn't, it probably should be... 3598 */ 3599 if (minor != -1) { 3600 uintptr_t maddr = dtrace_loadptr(daddr + 3601 offsetof(struct dev_info, devi_minor)); 3602 3603 uintptr_t next = offsetof(struct ddi_minor_data, next); 3604 uintptr_t name = offsetof(struct ddi_minor_data, 3605 d_minor) + offsetof(struct ddi_minor, name); 3606 uintptr_t dev = offsetof(struct ddi_minor_data, 3607 d_minor) + offsetof(struct ddi_minor, dev); 3608 uintptr_t scout; 3609 3610 if (maddr != NULL) 3611 scout = dtrace_loadptr(maddr + next); 3612 3613 while (maddr != NULL && !(*flags & CPU_DTRACE_FAULT)) { 3614 uint64_t m; 3615 #ifdef _LP64 3616 m = dtrace_load64(maddr + dev) & MAXMIN64; 3617 #else 3618 m = dtrace_load32(maddr + dev) & MAXMIN; 3619 #endif 3620 if (m != minor) { 3621 maddr = dtrace_loadptr(maddr + next); 3622 3623 if (scout == NULL) 3624 continue; 3625 3626 scout = dtrace_loadptr(scout + next); 3627 3628 if (scout == NULL) 3629 continue; 3630 3631 scout = dtrace_loadptr(scout + next); 3632 3633 if (scout == NULL) 3634 continue; 3635 3636 if (scout == maddr) { 3637 *flags |= CPU_DTRACE_ILLOP; 3638 break; 3639 } 3640 3641 continue; 3642 } 3643 3644 /* 3645 * We have the minor data. Now we need to 3646 * copy the minor's name into the end of the 3647 * pathname. 3648 */ 3649 s = (char *)dtrace_loadptr(maddr + name); 3650 len = dtrace_strlen(s, size); 3651 3652 if (*flags & CPU_DTRACE_FAULT) 3653 break; 3654 3655 if (len != 0) { 3656 if ((end -= (len + 1)) < start) 3657 break; 3658 3659 *end = ':'; 3660 } 3661 3662 for (i = 1; i <= len; i++) 3663 end[i] = dtrace_load8((uintptr_t)s++); 3664 break; 3665 } 3666 } 3667 3668 while (daddr != NULL && !(*flags & CPU_DTRACE_FAULT)) { 3669 ddi_node_state_t devi_state; 3670 3671 devi_state = dtrace_load32(daddr + 3672 offsetof(struct dev_info, devi_node_state)); 3673 3674 if (*flags & CPU_DTRACE_FAULT) 3675 break; 3676 3677 if (devi_state >= DS_INITIALIZED) { 3678 s = (char *)dtrace_loadptr(daddr + 3679 offsetof(struct dev_info, devi_addr)); 3680 len = dtrace_strlen(s, size); 3681 3682 if (*flags & CPU_DTRACE_FAULT) 3683 break; 3684 3685 if (len != 0) { 3686 if ((end -= (len + 1)) < start) 3687 break; 3688 3689 *end = '@'; 3690 } 3691 3692 for (i = 1; i <= len; i++) 3693 end[i] = dtrace_load8((uintptr_t)s++); 3694 } 3695 3696 /* 3697 * Now for the node name... 3698 */ 3699 s = (char *)dtrace_loadptr(daddr + 3700 offsetof(struct dev_info, devi_node_name)); 3701 3702 daddr = dtrace_loadptr(daddr + 3703 offsetof(struct dev_info, devi_parent)); 3704 3705 /* 3706 * If our parent is NULL (that is, if we're the root 3707 * node), we're going to use the special path 3708 * "devices". 3709 */ 3710 if (daddr == NULL) 3711 s = "devices"; 3712 3713 len = dtrace_strlen(s, size); 3714 if (*flags & CPU_DTRACE_FAULT) 3715 break; 3716 3717 if ((end -= (len + 1)) < start) 3718 break; 3719 3720 for (i = 1; i <= len; i++) 3721 end[i] = dtrace_load8((uintptr_t)s++); 3722 *end = '/'; 3723 3724 if (depth++ > dtrace_devdepth_max) { 3725 *flags |= CPU_DTRACE_ILLOP; 3726 break; 3727 } 3728 } 3729 3730 if (end < start) 3731 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 3732 3733 if (daddr == NULL) { 3734 regs[rd] = (uintptr_t)end; 3735 mstate->dtms_scratch_ptr += size; 3736 } 3737 3738 break; 3739 } 3740 3741 case DIF_SUBR_STRJOIN: { 3742 char *d = (char *)mstate->dtms_scratch_ptr; 3743 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 3744 uintptr_t s1 = tupregs[0].dttk_value; 3745 uintptr_t s2 = tupregs[1].dttk_value; 3746 int i = 0; 3747 3748 if (!dtrace_strcanload(s1, size, mstate, vstate) || 3749 !dtrace_strcanload(s2, size, mstate, vstate)) { 3750 regs[rd] = NULL; 3751 break; 3752 } 3753 3754 if (!DTRACE_INSCRATCH(mstate, size)) { 3755 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 3756 regs[rd] = NULL; 3757 break; 3758 } 3759 3760 for (;;) { 3761 if (i >= size) { 3762 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 3763 regs[rd] = NULL; 3764 break; 3765 } 3766 3767 if ((d[i++] = dtrace_load8(s1++)) == '\0') { 3768 i--; 3769 break; 3770 } 3771 } 3772 3773 for (;;) { 3774 if (i >= size) { 3775 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 3776 regs[rd] = NULL; 3777 break; 3778 } 3779 3780 if ((d[i++] = dtrace_load8(s2++)) == '\0') 3781 break; 3782 } 3783 3784 if (i < size) { 3785 mstate->dtms_scratch_ptr += i; 3786 regs[rd] = (uintptr_t)d; 3787 } 3788 3789 break; 3790 } 3791 3792 case DIF_SUBR_LLTOSTR: { 3793 int64_t i = (int64_t)tupregs[0].dttk_value; 3794 int64_t val = i < 0 ? i * -1 : i; 3795 uint64_t size = 22; /* enough room for 2^64 in decimal */ 3796 char *end = (char *)mstate->dtms_scratch_ptr + size - 1; 3797 3798 if (!DTRACE_INSCRATCH(mstate, size)) { 3799 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 3800 regs[rd] = NULL; 3801 break; 3802 } 3803 3804 for (*end-- = '\0'; val; val /= 10) 3805 *end-- = '0' + (val % 10); 3806 3807 if (i == 0) 3808 *end-- = '0'; 3809 3810 if (i < 0) 3811 *end-- = '-'; 3812 3813 regs[rd] = (uintptr_t)end + 1; 3814 mstate->dtms_scratch_ptr += size; 3815 break; 3816 } 3817 3818 case DIF_SUBR_HTONS: 3819 case DIF_SUBR_NTOHS: 3820 #ifdef _BIG_ENDIAN 3821 regs[rd] = (uint16_t)tupregs[0].dttk_value; 3822 #else 3823 regs[rd] = DT_BSWAP_16((uint16_t)tupregs[0].dttk_value); 3824 #endif 3825 break; 3826 3827 3828 case DIF_SUBR_HTONL: 3829 case DIF_SUBR_NTOHL: 3830 #ifdef _BIG_ENDIAN 3831 regs[rd] = (uint32_t)tupregs[0].dttk_value; 3832 #else 3833 regs[rd] = DT_BSWAP_32((uint32_t)tupregs[0].dttk_value); 3834 #endif 3835 break; 3836 3837 3838 case DIF_SUBR_HTONLL: 3839 case DIF_SUBR_NTOHLL: 3840 #ifdef _BIG_ENDIAN 3841 regs[rd] = (uint64_t)tupregs[0].dttk_value; 3842 #else 3843 regs[rd] = DT_BSWAP_64((uint64_t)tupregs[0].dttk_value); 3844 #endif 3845 break; 3846 3847 3848 case DIF_SUBR_DIRNAME: 3849 case DIF_SUBR_BASENAME: { 3850 char *dest = (char *)mstate->dtms_scratch_ptr; 3851 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 3852 uintptr_t src = tupregs[0].dttk_value; 3853 int i, j, len = dtrace_strlen((char *)src, size); 3854 int lastbase = -1, firstbase = -1, lastdir = -1; 3855 int start, end; 3856 3857 if (!dtrace_canload(src, len + 1, mstate, vstate)) { 3858 regs[rd] = NULL; 3859 break; 3860 } 3861 3862 if (!DTRACE_INSCRATCH(mstate, size)) { 3863 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 3864 regs[rd] = NULL; 3865 break; 3866 } 3867 3868 /* 3869 * The basename and dirname for a zero-length string is 3870 * defined to be "." 3871 */ 3872 if (len == 0) { 3873 len = 1; 3874 src = (uintptr_t)"."; 3875 } 3876 3877 /* 3878 * Start from the back of the string, moving back toward the 3879 * front until we see a character that isn't a slash. That 3880 * character is the last character in the basename. 3881 */ 3882 for (i = len - 1; i >= 0; i--) { 3883 if (dtrace_load8(src + i) != '/') 3884 break; 3885 } 3886 3887 if (i >= 0) 3888 lastbase = i; 3889 3890 /* 3891 * Starting from the last character in the basename, move 3892 * towards the front until we find a slash. The character 3893 * that we processed immediately before that is the first 3894 * character in the basename. 3895 */ 3896 for (; i >= 0; i--) { 3897 if (dtrace_load8(src + i) == '/') 3898 break; 3899 } 3900 3901 if (i >= 0) 3902 firstbase = i + 1; 3903 3904 /* 3905 * Now keep going until we find a non-slash character. That 3906 * character is the last character in the dirname. 3907 */ 3908 for (; i >= 0; i--) { 3909 if (dtrace_load8(src + i) != '/') 3910 break; 3911 } 3912 3913 if (i >= 0) 3914 lastdir = i; 3915 3916 ASSERT(!(lastbase == -1 && firstbase != -1)); 3917 ASSERT(!(firstbase == -1 && lastdir != -1)); 3918 3919 if (lastbase == -1) { 3920 /* 3921 * We didn't find a non-slash character. We know that 3922 * the length is non-zero, so the whole string must be 3923 * slashes. In either the dirname or the basename 3924 * case, we return '/'. 3925 */ 3926 ASSERT(firstbase == -1); 3927 firstbase = lastbase = lastdir = 0; 3928 } 3929 3930 if (firstbase == -1) { 3931 /* 3932 * The entire string consists only of a basename 3933 * component. If we're looking for dirname, we need 3934 * to change our string to be just "."; if we're 3935 * looking for a basename, we'll just set the first 3936 * character of the basename to be 0. 3937 */ 3938 if (subr == DIF_SUBR_DIRNAME) { 3939 ASSERT(lastdir == -1); 3940 src = (uintptr_t)"."; 3941 lastdir = 0; 3942 } else { 3943 firstbase = 0; 3944 } 3945 } 3946 3947 if (subr == DIF_SUBR_DIRNAME) { 3948 if (lastdir == -1) { 3949 /* 3950 * We know that we have a slash in the name -- 3951 * or lastdir would be set to 0, above. And 3952 * because lastdir is -1, we know that this 3953 * slash must be the first character. (That 3954 * is, the full string must be of the form 3955 * "/basename".) In this case, the last 3956 * character of the directory name is 0. 3957 */ 3958 lastdir = 0; 3959 } 3960 3961 start = 0; 3962 end = lastdir; 3963 } else { 3964 ASSERT(subr == DIF_SUBR_BASENAME); 3965 ASSERT(firstbase != -1 && lastbase != -1); 3966 start = firstbase; 3967 end = lastbase; 3968 } 3969 3970 for (i = start, j = 0; i <= end && j < size - 1; i++, j++) 3971 dest[j] = dtrace_load8(src + i); 3972 3973 dest[j] = '\0'; 3974 regs[rd] = (uintptr_t)dest; 3975 mstate->dtms_scratch_ptr += size; 3976 break; 3977 } 3978 3979 case DIF_SUBR_CLEANPATH: { 3980 char *dest = (char *)mstate->dtms_scratch_ptr, c; 3981 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 3982 uintptr_t src = tupregs[0].dttk_value; 3983 int i = 0, j = 0; 3984 3985 if (!dtrace_strcanload(src, size, mstate, vstate)) { 3986 regs[rd] = NULL; 3987 break; 3988 } 3989 3990 if (!DTRACE_INSCRATCH(mstate, size)) { 3991 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 3992 regs[rd] = NULL; 3993 break; 3994 } 3995 3996 /* 3997 * Move forward, loading each character. 3998 */ 3999 do { 4000 c = dtrace_load8(src + i++); 4001 next: 4002 if (j + 5 >= size) /* 5 = strlen("/..c\0") */ 4003 break; 4004 4005 if (c != '/') { 4006 dest[j++] = c; 4007 continue; 4008 } 4009 4010 c = dtrace_load8(src + i++); 4011 4012 if (c == '/') { 4013 /* 4014 * We have two slashes -- we can just advance 4015 * to the next character. 4016 */ 4017 goto next; 4018 } 4019 4020 if (c != '.') { 4021 /* 4022 * This is not "." and it's not ".." -- we can 4023 * just store the "/" and this character and 4024 * drive on. 4025 */ 4026 dest[j++] = '/'; 4027 dest[j++] = c; 4028 continue; 4029 } 4030 4031 c = dtrace_load8(src + i++); 4032 4033 if (c == '/') { 4034 /* 4035 * This is a "/./" component. We're not going 4036 * to store anything in the destination buffer; 4037 * we're just going to go to the next component. 4038 */ 4039 goto next; 4040 } 4041 4042 if (c != '.') { 4043 /* 4044 * This is not ".." -- we can just store the 4045 * "/." and this character and continue 4046 * processing. 4047 */ 4048 dest[j++] = '/'; 4049 dest[j++] = '.'; 4050 dest[j++] = c; 4051 continue; 4052 } 4053 4054 c = dtrace_load8(src + i++); 4055 4056 if (c != '/' && c != '\0') { 4057 /* 4058 * This is not ".." -- it's "..[mumble]". 4059 * We'll store the "/.." and this character 4060 * and continue processing. 4061 */ 4062 dest[j++] = '/'; 4063 dest[j++] = '.'; 4064 dest[j++] = '.'; 4065 dest[j++] = c; 4066 continue; 4067 } 4068 4069 /* 4070 * This is "/../" or "/..\0". We need to back up 4071 * our destination pointer until we find a "/". 4072 */ 4073 i--; 4074 while (j != 0 && dest[--j] != '/') 4075 continue; 4076 4077 if (c == '\0') 4078 dest[++j] = '/'; 4079 } while (c != '\0'); 4080 4081 dest[j] = '\0'; 4082 regs[rd] = (uintptr_t)dest; 4083 mstate->dtms_scratch_ptr += size; 4084 break; 4085 } 4086 4087 case DIF_SUBR_INET_NTOA: 4088 case DIF_SUBR_INET_NTOA6: 4089 case DIF_SUBR_INET_NTOP: { 4090 size_t size; 4091 int af, argi, i; 4092 char *base, *end; 4093 4094 if (subr == DIF_SUBR_INET_NTOP) { 4095 af = (int)tupregs[0].dttk_value; 4096 argi = 1; 4097 } else { 4098 af = subr == DIF_SUBR_INET_NTOA ? AF_INET: AF_INET6; 4099 argi = 0; 4100 } 4101 4102 if (af == AF_INET) { 4103 ipaddr_t ip4; 4104 uint8_t *ptr8, val; 4105 4106 /* 4107 * Safely load the IPv4 address. 4108 */ 4109 ip4 = dtrace_load32(tupregs[argi].dttk_value); 4110 4111 /* 4112 * Check an IPv4 string will fit in scratch. 4113 */ 4114 size = INET_ADDRSTRLEN; 4115 if (!DTRACE_INSCRATCH(mstate, size)) { 4116 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4117 regs[rd] = NULL; 4118 break; 4119 } 4120 base = (char *)mstate->dtms_scratch_ptr; 4121 end = (char *)mstate->dtms_scratch_ptr + size - 1; 4122 4123 /* 4124 * Stringify as a dotted decimal quad. 4125 */ 4126 *end-- = '\0'; 4127 ptr8 = (uint8_t *)&ip4; 4128 for (i = 3; i >= 0; i--) { 4129 val = ptr8[i]; 4130 4131 if (val == 0) { 4132 *end-- = '0'; 4133 } else { 4134 for (; val; val /= 10) { 4135 *end-- = '0' + (val % 10); 4136 } 4137 } 4138 4139 if (i > 0) 4140 *end-- = '.'; 4141 } 4142 ASSERT(end + 1 >= base); 4143 4144 } else if (af == AF_INET6) { 4145 struct in6_addr ip6; 4146 int firstzero, tryzero, numzero, v6end; 4147 uint16_t val; 4148 const char digits[] = "0123456789abcdef"; 4149 4150 /* 4151 * Stringify using RFC 1884 convention 2 - 16 bit 4152 * hexadecimal values with a zero-run compression. 4153 * Lower case hexadecimal digits are used. 4154 * eg, fe80::214:4fff:fe0b:76c8. 4155 * The IPv4 embedded form is returned for inet_ntop, 4156 * just the IPv4 string is returned for inet_ntoa6. 4157 */ 4158 4159 /* 4160 * Safely load the IPv6 address. 4161 */ 4162 dtrace_bcopy( 4163 (void *)(uintptr_t)tupregs[argi].dttk_value, 4164 (void *)(uintptr_t)&ip6, sizeof (struct in6_addr)); 4165 4166 /* 4167 * Check an IPv6 string will fit in scratch. 4168 */ 4169 size = INET6_ADDRSTRLEN; 4170 if (!DTRACE_INSCRATCH(mstate, size)) { 4171 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4172 regs[rd] = NULL; 4173 break; 4174 } 4175 base = (char *)mstate->dtms_scratch_ptr; 4176 end = (char *)mstate->dtms_scratch_ptr + size - 1; 4177 *end-- = '\0'; 4178 4179 /* 4180 * Find the longest run of 16 bit zero values 4181 * for the single allowed zero compression - "::". 4182 */ 4183 firstzero = -1; 4184 tryzero = -1; 4185 numzero = 1; 4186 for (i = 0; i < sizeof (struct in6_addr); i++) { 4187 if (ip6._S6_un._S6_u8[i] == 0 && 4188 tryzero == -1 && i % 2 == 0) { 4189 tryzero = i; 4190 continue; 4191 } 4192 4193 if (tryzero != -1 && 4194 (ip6._S6_un._S6_u8[i] != 0 || 4195 i == sizeof (struct in6_addr) - 1)) { 4196 4197 if (i - tryzero <= numzero) { 4198 tryzero = -1; 4199 continue; 4200 } 4201 4202 firstzero = tryzero; 4203 numzero = i - i % 2 - tryzero; 4204 tryzero = -1; 4205 4206 if (ip6._S6_un._S6_u8[i] == 0 && 4207 i == sizeof (struct in6_addr) - 1) 4208 numzero += 2; 4209 } 4210 } 4211 ASSERT(firstzero + numzero <= sizeof (struct in6_addr)); 4212 4213 /* 4214 * Check for an IPv4 embedded address. 4215 */ 4216 v6end = sizeof (struct in6_addr) - 2; 4217 if (IN6_IS_ADDR_V4MAPPED(&ip6) || 4218 IN6_IS_ADDR_V4COMPAT(&ip6)) { 4219 for (i = sizeof (struct in6_addr) - 1; 4220 i >= DTRACE_V4MAPPED_OFFSET; i--) { 4221 ASSERT(end >= base); 4222 4223 val = ip6._S6_un._S6_u8[i]; 4224 4225 if (val == 0) { 4226 *end-- = '0'; 4227 } else { 4228 for (; val; val /= 10) { 4229 *end-- = '0' + val % 10; 4230 } 4231 } 4232 4233 if (i > DTRACE_V4MAPPED_OFFSET) 4234 *end-- = '.'; 4235 } 4236 4237 if (subr == DIF_SUBR_INET_NTOA6) 4238 goto inetout; 4239 4240 /* 4241 * Set v6end to skip the IPv4 address that 4242 * we have already stringified. 4243 */ 4244 v6end = 10; 4245 } 4246 4247 /* 4248 * Build the IPv6 string by working through the 4249 * address in reverse. 4250 */ 4251 for (i = v6end; i >= 0; i -= 2) { 4252 ASSERT(end >= base); 4253 4254 if (i == firstzero + numzero - 2) { 4255 *end-- = ':'; 4256 *end-- = ':'; 4257 i -= numzero - 2; 4258 continue; 4259 } 4260 4261 if (i < 14 && i != firstzero - 2) 4262 *end-- = ':'; 4263 4264 val = (ip6._S6_un._S6_u8[i] << 8) + 4265 ip6._S6_un._S6_u8[i + 1]; 4266 4267 if (val == 0) { 4268 *end-- = '0'; 4269 } else { 4270 for (; val; val /= 16) { 4271 *end-- = digits[val % 16]; 4272 } 4273 } 4274 } 4275 ASSERT(end + 1 >= base); 4276 4277 } else { 4278 /* 4279 * The user didn't use AH_INET or AH_INET6. 4280 */ 4281 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); 4282 regs[rd] = NULL; 4283 break; 4284 } 4285 4286 inetout: regs[rd] = (uintptr_t)end + 1; 4287 mstate->dtms_scratch_ptr += size; 4288 break; 4289 } 4290 4291 } 4292 } 4293 4294 /* 4295 * Emulate the execution of DTrace IR instructions specified by the given 4296 * DIF object. This function is deliberately void of assertions as all of 4297 * the necessary checks are handled by a call to dtrace_difo_validate(). 4298 */ 4299 static uint64_t 4300 dtrace_dif_emulate(dtrace_difo_t *difo, dtrace_mstate_t *mstate, 4301 dtrace_vstate_t *vstate, dtrace_state_t *state) 4302 { 4303 const dif_instr_t *text = difo->dtdo_buf; 4304 const uint_t textlen = difo->dtdo_len; 4305 const char *strtab = difo->dtdo_strtab; 4306 const uint64_t *inttab = difo->dtdo_inttab; 4307 4308 uint64_t rval = 0; 4309 dtrace_statvar_t *svar; 4310 dtrace_dstate_t *dstate = &vstate->dtvs_dynvars; 4311 dtrace_difv_t *v; 4312 volatile uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 4313 volatile uintptr_t *illval = &cpu_core[CPU->cpu_id].cpuc_dtrace_illval; 4314 4315 dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */ 4316 uint64_t regs[DIF_DIR_NREGS]; 4317 uint64_t *tmp; 4318 4319 uint8_t cc_n = 0, cc_z = 0, cc_v = 0, cc_c = 0; 4320 int64_t cc_r; 4321 uint_t pc = 0, id, opc; 4322 uint8_t ttop = 0; 4323 dif_instr_t instr; 4324 uint_t r1, r2, rd; 4325 4326 /* 4327 * We stash the current DIF object into the machine state: we need it 4328 * for subsequent access checking. 4329 */ 4330 mstate->dtms_difo = difo; 4331 4332 regs[DIF_REG_R0] = 0; /* %r0 is fixed at zero */ 4333 4334 while (pc < textlen && !(*flags & CPU_DTRACE_FAULT)) { 4335 opc = pc; 4336 4337 instr = text[pc++]; 4338 r1 = DIF_INSTR_R1(instr); 4339 r2 = DIF_INSTR_R2(instr); 4340 rd = DIF_INSTR_RD(instr); 4341 4342 switch (DIF_INSTR_OP(instr)) { 4343 case DIF_OP_OR: 4344 regs[rd] = regs[r1] | regs[r2]; 4345 break; 4346 case DIF_OP_XOR: 4347 regs[rd] = regs[r1] ^ regs[r2]; 4348 break; 4349 case DIF_OP_AND: 4350 regs[rd] = regs[r1] & regs[r2]; 4351 break; 4352 case DIF_OP_SLL: 4353 regs[rd] = regs[r1] << regs[r2]; 4354 break; 4355 case DIF_OP_SRL: 4356 regs[rd] = regs[r1] >> regs[r2]; 4357 break; 4358 case DIF_OP_SUB: 4359 regs[rd] = regs[r1] - regs[r2]; 4360 break; 4361 case DIF_OP_ADD: 4362 regs[rd] = regs[r1] + regs[r2]; 4363 break; 4364 case DIF_OP_MUL: 4365 regs[rd] = regs[r1] * regs[r2]; 4366 break; 4367 case DIF_OP_SDIV: 4368 if (regs[r2] == 0) { 4369 regs[rd] = 0; 4370 *flags |= CPU_DTRACE_DIVZERO; 4371 } else { 4372 regs[rd] = (int64_t)regs[r1] / 4373 (int64_t)regs[r2]; 4374 } 4375 break; 4376 4377 case DIF_OP_UDIV: 4378 if (regs[r2] == 0) { 4379 regs[rd] = 0; 4380 *flags |= CPU_DTRACE_DIVZERO; 4381 } else { 4382 regs[rd] = regs[r1] / regs[r2]; 4383 } 4384 break; 4385 4386 case DIF_OP_SREM: 4387 if (regs[r2] == 0) { 4388 regs[rd] = 0; 4389 *flags |= CPU_DTRACE_DIVZERO; 4390 } else { 4391 regs[rd] = (int64_t)regs[r1] % 4392 (int64_t)regs[r2]; 4393 } 4394 break; 4395 4396 case DIF_OP_UREM: 4397 if (regs[r2] == 0) { 4398 regs[rd] = 0; 4399 *flags |= CPU_DTRACE_DIVZERO; 4400 } else { 4401 regs[rd] = regs[r1] % regs[r2]; 4402 } 4403 break; 4404 4405 case DIF_OP_NOT: 4406 regs[rd] = ~regs[r1]; 4407 break; 4408 case DIF_OP_MOV: 4409 regs[rd] = regs[r1]; 4410 break; 4411 case DIF_OP_CMP: 4412 cc_r = regs[r1] - regs[r2]; 4413 cc_n = cc_r < 0; 4414 cc_z = cc_r == 0; 4415 cc_v = 0; 4416 cc_c = regs[r1] < regs[r2]; 4417 break; 4418 case DIF_OP_TST: 4419 cc_n = cc_v = cc_c = 0; 4420 cc_z = regs[r1] == 0; 4421 break; 4422 case DIF_OP_BA: 4423 pc = DIF_INSTR_LABEL(instr); 4424 break; 4425 case DIF_OP_BE: 4426 if (cc_z) 4427 pc = DIF_INSTR_LABEL(instr); 4428 break; 4429 case DIF_OP_BNE: 4430 if (cc_z == 0) 4431 pc = DIF_INSTR_LABEL(instr); 4432 break; 4433 case DIF_OP_BG: 4434 if ((cc_z | (cc_n ^ cc_v)) == 0) 4435 pc = DIF_INSTR_LABEL(instr); 4436 break; 4437 case DIF_OP_BGU: 4438 if ((cc_c | cc_z) == 0) 4439 pc = DIF_INSTR_LABEL(instr); 4440 break; 4441 case DIF_OP_BGE: 4442 if ((cc_n ^ cc_v) == 0) 4443 pc = DIF_INSTR_LABEL(instr); 4444 break; 4445 case DIF_OP_BGEU: 4446 if (cc_c == 0) 4447 pc = DIF_INSTR_LABEL(instr); 4448 break; 4449 case DIF_OP_BL: 4450 if (cc_n ^ cc_v) 4451 pc = DIF_INSTR_LABEL(instr); 4452 break; 4453 case DIF_OP_BLU: 4454 if (cc_c) 4455 pc = DIF_INSTR_LABEL(instr); 4456 break; 4457 case DIF_OP_BLE: 4458 if (cc_z | (cc_n ^ cc_v)) 4459 pc = DIF_INSTR_LABEL(instr); 4460 break; 4461 case DIF_OP_BLEU: 4462 if (cc_c | cc_z) 4463 pc = DIF_INSTR_LABEL(instr); 4464 break; 4465 case DIF_OP_RLDSB: 4466 if (!dtrace_canstore(regs[r1], 1, mstate, vstate)) { 4467 *flags |= CPU_DTRACE_KPRIV; 4468 *illval = regs[r1]; 4469 break; 4470 } 4471 /*FALLTHROUGH*/ 4472 case DIF_OP_LDSB: 4473 regs[rd] = (int8_t)dtrace_load8(regs[r1]); 4474 break; 4475 case DIF_OP_RLDSH: 4476 if (!dtrace_canstore(regs[r1], 2, mstate, vstate)) { 4477 *flags |= CPU_DTRACE_KPRIV; 4478 *illval = regs[r1]; 4479 break; 4480 } 4481 /*FALLTHROUGH*/ 4482 case DIF_OP_LDSH: 4483 regs[rd] = (int16_t)dtrace_load16(regs[r1]); 4484 break; 4485 case DIF_OP_RLDSW: 4486 if (!dtrace_canstore(regs[r1], 4, mstate, vstate)) { 4487 *flags |= CPU_DTRACE_KPRIV; 4488 *illval = regs[r1]; 4489 break; 4490 } 4491 /*FALLTHROUGH*/ 4492 case DIF_OP_LDSW: 4493 regs[rd] = (int32_t)dtrace_load32(regs[r1]); 4494 break; 4495 case DIF_OP_RLDUB: 4496 if (!dtrace_canstore(regs[r1], 1, mstate, vstate)) { 4497 *flags |= CPU_DTRACE_KPRIV; 4498 *illval = regs[r1]; 4499 break; 4500 } 4501 /*FALLTHROUGH*/ 4502 case DIF_OP_LDUB: 4503 regs[rd] = dtrace_load8(regs[r1]); 4504 break; 4505 case DIF_OP_RLDUH: 4506 if (!dtrace_canstore(regs[r1], 2, mstate, vstate)) { 4507 *flags |= CPU_DTRACE_KPRIV; 4508 *illval = regs[r1]; 4509 break; 4510 } 4511 /*FALLTHROUGH*/ 4512 case DIF_OP_LDUH: 4513 regs[rd] = dtrace_load16(regs[r1]); 4514 break; 4515 case DIF_OP_RLDUW: 4516 if (!dtrace_canstore(regs[r1], 4, mstate, vstate)) { 4517 *flags |= CPU_DTRACE_KPRIV; 4518 *illval = regs[r1]; 4519 break; 4520 } 4521 /*FALLTHROUGH*/ 4522 case DIF_OP_LDUW: 4523 regs[rd] = dtrace_load32(regs[r1]); 4524 break; 4525 case DIF_OP_RLDX: 4526 if (!dtrace_canstore(regs[r1], 8, mstate, vstate)) { 4527 *flags |= CPU_DTRACE_KPRIV; 4528 *illval = regs[r1]; 4529 break; 4530 } 4531 /*FALLTHROUGH*/ 4532 case DIF_OP_LDX: 4533 regs[rd] = dtrace_load64(regs[r1]); 4534 break; 4535 case DIF_OP_ULDSB: 4536 regs[rd] = (int8_t) 4537 dtrace_fuword8((void *)(uintptr_t)regs[r1]); 4538 break; 4539 case DIF_OP_ULDSH: 4540 regs[rd] = (int16_t) 4541 dtrace_fuword16((void *)(uintptr_t)regs[r1]); 4542 break; 4543 case DIF_OP_ULDSW: 4544 regs[rd] = (int32_t) 4545 dtrace_fuword32((void *)(uintptr_t)regs[r1]); 4546 break; 4547 case DIF_OP_ULDUB: 4548 regs[rd] = 4549 dtrace_fuword8((void *)(uintptr_t)regs[r1]); 4550 break; 4551 case DIF_OP_ULDUH: 4552 regs[rd] = 4553 dtrace_fuword16((void *)(uintptr_t)regs[r1]); 4554 break; 4555 case DIF_OP_ULDUW: 4556 regs[rd] = 4557 dtrace_fuword32((void *)(uintptr_t)regs[r1]); 4558 break; 4559 case DIF_OP_ULDX: 4560 regs[rd] = 4561 dtrace_fuword64((void *)(uintptr_t)regs[r1]); 4562 break; 4563 case DIF_OP_RET: 4564 rval = regs[rd]; 4565 pc = textlen; 4566 break; 4567 case DIF_OP_NOP: 4568 break; 4569 case DIF_OP_SETX: 4570 regs[rd] = inttab[DIF_INSTR_INTEGER(instr)]; 4571 break; 4572 case DIF_OP_SETS: 4573 regs[rd] = (uint64_t)(uintptr_t) 4574 (strtab + DIF_INSTR_STRING(instr)); 4575 break; 4576 case DIF_OP_SCMP: { 4577 size_t sz = state->dts_options[DTRACEOPT_STRSIZE]; 4578 uintptr_t s1 = regs[r1]; 4579 uintptr_t s2 = regs[r2]; 4580 4581 if (s1 != NULL && 4582 !dtrace_strcanload(s1, sz, mstate, vstate)) 4583 break; 4584 if (s2 != NULL && 4585 !dtrace_strcanload(s2, sz, mstate, vstate)) 4586 break; 4587 4588 cc_r = dtrace_strncmp((char *)s1, (char *)s2, sz); 4589 4590 cc_n = cc_r < 0; 4591 cc_z = cc_r == 0; 4592 cc_v = cc_c = 0; 4593 break; 4594 } 4595 case DIF_OP_LDGA: 4596 regs[rd] = dtrace_dif_variable(mstate, state, 4597 r1, regs[r2]); 4598 break; 4599 case DIF_OP_LDGS: 4600 id = DIF_INSTR_VAR(instr); 4601 4602 if (id >= DIF_VAR_OTHER_UBASE) { 4603 uintptr_t a; 4604 4605 id -= DIF_VAR_OTHER_UBASE; 4606 svar = vstate->dtvs_globals[id]; 4607 ASSERT(svar != NULL); 4608 v = &svar->dtsv_var; 4609 4610 if (!(v->dtdv_type.dtdt_flags & DIF_TF_BYREF)) { 4611 regs[rd] = svar->dtsv_data; 4612 break; 4613 } 4614 4615 a = (uintptr_t)svar->dtsv_data; 4616 4617 if (*(uint8_t *)a == UINT8_MAX) { 4618 /* 4619 * If the 0th byte is set to UINT8_MAX 4620 * then this is to be treated as a 4621 * reference to a NULL variable. 4622 */ 4623 regs[rd] = NULL; 4624 } else { 4625 regs[rd] = a + sizeof (uint64_t); 4626 } 4627 4628 break; 4629 } 4630 4631 regs[rd] = dtrace_dif_variable(mstate, state, id, 0); 4632 break; 4633 4634 case DIF_OP_STGS: 4635 id = DIF_INSTR_VAR(instr); 4636 4637 ASSERT(id >= DIF_VAR_OTHER_UBASE); 4638 id -= DIF_VAR_OTHER_UBASE; 4639 4640 svar = vstate->dtvs_globals[id]; 4641 ASSERT(svar != NULL); 4642 v = &svar->dtsv_var; 4643 4644 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 4645 uintptr_t a = (uintptr_t)svar->dtsv_data; 4646 4647 ASSERT(a != NULL); 4648 ASSERT(svar->dtsv_size != 0); 4649 4650 if (regs[rd] == NULL) { 4651 *(uint8_t *)a = UINT8_MAX; 4652 break; 4653 } else { 4654 *(uint8_t *)a = 0; 4655 a += sizeof (uint64_t); 4656 } 4657 if (!dtrace_vcanload( 4658 (void *)(uintptr_t)regs[rd], &v->dtdv_type, 4659 mstate, vstate)) 4660 break; 4661 4662 dtrace_vcopy((void *)(uintptr_t)regs[rd], 4663 (void *)a, &v->dtdv_type); 4664 break; 4665 } 4666 4667 svar->dtsv_data = regs[rd]; 4668 break; 4669 4670 case DIF_OP_LDTA: 4671 /* 4672 * There are no DTrace built-in thread-local arrays at 4673 * present. This opcode is saved for future work. 4674 */ 4675 *flags |= CPU_DTRACE_ILLOP; 4676 regs[rd] = 0; 4677 break; 4678 4679 case DIF_OP_LDLS: 4680 id = DIF_INSTR_VAR(instr); 4681 4682 if (id < DIF_VAR_OTHER_UBASE) { 4683 /* 4684 * For now, this has no meaning. 4685 */ 4686 regs[rd] = 0; 4687 break; 4688 } 4689 4690 id -= DIF_VAR_OTHER_UBASE; 4691 4692 ASSERT(id < vstate->dtvs_nlocals); 4693 ASSERT(vstate->dtvs_locals != NULL); 4694 4695 svar = vstate->dtvs_locals[id]; 4696 ASSERT(svar != NULL); 4697 v = &svar->dtsv_var; 4698 4699 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 4700 uintptr_t a = (uintptr_t)svar->dtsv_data; 4701 size_t sz = v->dtdv_type.dtdt_size; 4702 4703 sz += sizeof (uint64_t); 4704 ASSERT(svar->dtsv_size == NCPU * sz); 4705 a += CPU->cpu_id * sz; 4706 4707 if (*(uint8_t *)a == UINT8_MAX) { 4708 /* 4709 * If the 0th byte is set to UINT8_MAX 4710 * then this is to be treated as a 4711 * reference to a NULL variable. 4712 */ 4713 regs[rd] = NULL; 4714 } else { 4715 regs[rd] = a + sizeof (uint64_t); 4716 } 4717 4718 break; 4719 } 4720 4721 ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t)); 4722 tmp = (uint64_t *)(uintptr_t)svar->dtsv_data; 4723 regs[rd] = tmp[CPU->cpu_id]; 4724 break; 4725 4726 case DIF_OP_STLS: 4727 id = DIF_INSTR_VAR(instr); 4728 4729 ASSERT(id >= DIF_VAR_OTHER_UBASE); 4730 id -= DIF_VAR_OTHER_UBASE; 4731 ASSERT(id < vstate->dtvs_nlocals); 4732 4733 ASSERT(vstate->dtvs_locals != NULL); 4734 svar = vstate->dtvs_locals[id]; 4735 ASSERT(svar != NULL); 4736 v = &svar->dtsv_var; 4737 4738 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 4739 uintptr_t a = (uintptr_t)svar->dtsv_data; 4740 size_t sz = v->dtdv_type.dtdt_size; 4741 4742 sz += sizeof (uint64_t); 4743 ASSERT(svar->dtsv_size == NCPU * sz); 4744 a += CPU->cpu_id * sz; 4745 4746 if (regs[rd] == NULL) { 4747 *(uint8_t *)a = UINT8_MAX; 4748 break; 4749 } else { 4750 *(uint8_t *)a = 0; 4751 a += sizeof (uint64_t); 4752 } 4753 4754 if (!dtrace_vcanload( 4755 (void *)(uintptr_t)regs[rd], &v->dtdv_type, 4756 mstate, vstate)) 4757 break; 4758 4759 dtrace_vcopy((void *)(uintptr_t)regs[rd], 4760 (void *)a, &v->dtdv_type); 4761 break; 4762 } 4763 4764 ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t)); 4765 tmp = (uint64_t *)(uintptr_t)svar->dtsv_data; 4766 tmp[CPU->cpu_id] = regs[rd]; 4767 break; 4768 4769 case DIF_OP_LDTS: { 4770 dtrace_dynvar_t *dvar; 4771 dtrace_key_t *key; 4772 4773 id = DIF_INSTR_VAR(instr); 4774 ASSERT(id >= DIF_VAR_OTHER_UBASE); 4775 id -= DIF_VAR_OTHER_UBASE; 4776 v = &vstate->dtvs_tlocals[id]; 4777 4778 key = &tupregs[DIF_DTR_NREGS]; 4779 key[0].dttk_value = (uint64_t)id; 4780 key[0].dttk_size = 0; 4781 DTRACE_TLS_THRKEY(key[1].dttk_value); 4782 key[1].dttk_size = 0; 4783 4784 dvar = dtrace_dynvar(dstate, 2, key, 4785 sizeof (uint64_t), DTRACE_DYNVAR_NOALLOC, 4786 mstate, vstate); 4787 4788 if (dvar == NULL) { 4789 regs[rd] = 0; 4790 break; 4791 } 4792 4793 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 4794 regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data; 4795 } else { 4796 regs[rd] = *((uint64_t *)dvar->dtdv_data); 4797 } 4798 4799 break; 4800 } 4801 4802 case DIF_OP_STTS: { 4803 dtrace_dynvar_t *dvar; 4804 dtrace_key_t *key; 4805 4806 id = DIF_INSTR_VAR(instr); 4807 ASSERT(id >= DIF_VAR_OTHER_UBASE); 4808 id -= DIF_VAR_OTHER_UBASE; 4809 4810 key = &tupregs[DIF_DTR_NREGS]; 4811 key[0].dttk_value = (uint64_t)id; 4812 key[0].dttk_size = 0; 4813 DTRACE_TLS_THRKEY(key[1].dttk_value); 4814 key[1].dttk_size = 0; 4815 v = &vstate->dtvs_tlocals[id]; 4816 4817 dvar = dtrace_dynvar(dstate, 2, key, 4818 v->dtdv_type.dtdt_size > sizeof (uint64_t) ? 4819 v->dtdv_type.dtdt_size : sizeof (uint64_t), 4820 regs[rd] ? DTRACE_DYNVAR_ALLOC : 4821 DTRACE_DYNVAR_DEALLOC, mstate, vstate); 4822 4823 /* 4824 * Given that we're storing to thread-local data, 4825 * we need to flush our predicate cache. 4826 */ 4827 curthread->t_predcache = NULL; 4828 4829 if (dvar == NULL) 4830 break; 4831 4832 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 4833 if (!dtrace_vcanload( 4834 (void *)(uintptr_t)regs[rd], 4835 &v->dtdv_type, mstate, vstate)) 4836 break; 4837 4838 dtrace_vcopy((void *)(uintptr_t)regs[rd], 4839 dvar->dtdv_data, &v->dtdv_type); 4840 } else { 4841 *((uint64_t *)dvar->dtdv_data) = regs[rd]; 4842 } 4843 4844 break; 4845 } 4846 4847 case DIF_OP_SRA: 4848 regs[rd] = (int64_t)regs[r1] >> regs[r2]; 4849 break; 4850 4851 case DIF_OP_CALL: 4852 dtrace_dif_subr(DIF_INSTR_SUBR(instr), rd, 4853 regs, tupregs, ttop, mstate, state); 4854 break; 4855 4856 case DIF_OP_PUSHTR: 4857 if (ttop == DIF_DTR_NREGS) { 4858 *flags |= CPU_DTRACE_TUPOFLOW; 4859 break; 4860 } 4861 4862 if (r1 == DIF_TYPE_STRING) { 4863 /* 4864 * If this is a string type and the size is 0, 4865 * we'll use the system-wide default string 4866 * size. Note that we are _not_ looking at 4867 * the value of the DTRACEOPT_STRSIZE option; 4868 * had this been set, we would expect to have 4869 * a non-zero size value in the "pushtr". 4870 */ 4871 tupregs[ttop].dttk_size = 4872 dtrace_strlen((char *)(uintptr_t)regs[rd], 4873 regs[r2] ? regs[r2] : 4874 dtrace_strsize_default) + 1; 4875 } else { 4876 tupregs[ttop].dttk_size = regs[r2]; 4877 } 4878 4879 tupregs[ttop++].dttk_value = regs[rd]; 4880 break; 4881 4882 case DIF_OP_PUSHTV: 4883 if (ttop == DIF_DTR_NREGS) { 4884 *flags |= CPU_DTRACE_TUPOFLOW; 4885 break; 4886 } 4887 4888 tupregs[ttop].dttk_value = regs[rd]; 4889 tupregs[ttop++].dttk_size = 0; 4890 break; 4891 4892 case DIF_OP_POPTS: 4893 if (ttop != 0) 4894 ttop--; 4895 break; 4896 4897 case DIF_OP_FLUSHTS: 4898 ttop = 0; 4899 break; 4900 4901 case DIF_OP_LDGAA: 4902 case DIF_OP_LDTAA: { 4903 dtrace_dynvar_t *dvar; 4904 dtrace_key_t *key = tupregs; 4905 uint_t nkeys = ttop; 4906 4907 id = DIF_INSTR_VAR(instr); 4908 ASSERT(id >= DIF_VAR_OTHER_UBASE); 4909 id -= DIF_VAR_OTHER_UBASE; 4910 4911 key[nkeys].dttk_value = (uint64_t)id; 4912 key[nkeys++].dttk_size = 0; 4913 4914 if (DIF_INSTR_OP(instr) == DIF_OP_LDTAA) { 4915 DTRACE_TLS_THRKEY(key[nkeys].dttk_value); 4916 key[nkeys++].dttk_size = 0; 4917 v = &vstate->dtvs_tlocals[id]; 4918 } else { 4919 v = &vstate->dtvs_globals[id]->dtsv_var; 4920 } 4921 4922 dvar = dtrace_dynvar(dstate, nkeys, key, 4923 v->dtdv_type.dtdt_size > sizeof (uint64_t) ? 4924 v->dtdv_type.dtdt_size : sizeof (uint64_t), 4925 DTRACE_DYNVAR_NOALLOC, mstate, vstate); 4926 4927 if (dvar == NULL) { 4928 regs[rd] = 0; 4929 break; 4930 } 4931 4932 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 4933 regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data; 4934 } else { 4935 regs[rd] = *((uint64_t *)dvar->dtdv_data); 4936 } 4937 4938 break; 4939 } 4940 4941 case DIF_OP_STGAA: 4942 case DIF_OP_STTAA: { 4943 dtrace_dynvar_t *dvar; 4944 dtrace_key_t *key = tupregs; 4945 uint_t nkeys = ttop; 4946 4947 id = DIF_INSTR_VAR(instr); 4948 ASSERT(id >= DIF_VAR_OTHER_UBASE); 4949 id -= DIF_VAR_OTHER_UBASE; 4950 4951 key[nkeys].dttk_value = (uint64_t)id; 4952 key[nkeys++].dttk_size = 0; 4953 4954 if (DIF_INSTR_OP(instr) == DIF_OP_STTAA) { 4955 DTRACE_TLS_THRKEY(key[nkeys].dttk_value); 4956 key[nkeys++].dttk_size = 0; 4957 v = &vstate->dtvs_tlocals[id]; 4958 } else { 4959 v = &vstate->dtvs_globals[id]->dtsv_var; 4960 } 4961 4962 dvar = dtrace_dynvar(dstate, nkeys, key, 4963 v->dtdv_type.dtdt_size > sizeof (uint64_t) ? 4964 v->dtdv_type.dtdt_size : sizeof (uint64_t), 4965 regs[rd] ? DTRACE_DYNVAR_ALLOC : 4966 DTRACE_DYNVAR_DEALLOC, mstate, vstate); 4967 4968 if (dvar == NULL) 4969 break; 4970 4971 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 4972 if (!dtrace_vcanload( 4973 (void *)(uintptr_t)regs[rd], &v->dtdv_type, 4974 mstate, vstate)) 4975 break; 4976 4977 dtrace_vcopy((void *)(uintptr_t)regs[rd], 4978 dvar->dtdv_data, &v->dtdv_type); 4979 } else { 4980 *((uint64_t *)dvar->dtdv_data) = regs[rd]; 4981 } 4982 4983 break; 4984 } 4985 4986 case DIF_OP_ALLOCS: { 4987 uintptr_t ptr = P2ROUNDUP(mstate->dtms_scratch_ptr, 8); 4988 size_t size = ptr - mstate->dtms_scratch_ptr + regs[r1]; 4989 4990 /* 4991 * Rounding up the user allocation size could have 4992 * overflowed large, bogus allocations (like -1ULL) to 4993 * 0. 4994 */ 4995 if (size < regs[r1] || 4996 !DTRACE_INSCRATCH(mstate, size)) { 4997 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4998 regs[rd] = NULL; 4999 break; 5000 } 5001 5002 dtrace_bzero((void *) mstate->dtms_scratch_ptr, size); 5003 mstate->dtms_scratch_ptr += size; 5004 regs[rd] = ptr; 5005 break; 5006 } 5007 5008 case DIF_OP_COPYS: 5009 if (!dtrace_canstore(regs[rd], regs[r2], 5010 mstate, vstate)) { 5011 *flags |= CPU_DTRACE_BADADDR; 5012 *illval = regs[rd]; 5013 break; 5014 } 5015 5016 if (!dtrace_canload(regs[r1], regs[r2], mstate, vstate)) 5017 break; 5018 5019 dtrace_bcopy((void *)(uintptr_t)regs[r1], 5020 (void *)(uintptr_t)regs[rd], (size_t)regs[r2]); 5021 break; 5022 5023 case DIF_OP_STB: 5024 if (!dtrace_canstore(regs[rd], 1, mstate, vstate)) { 5025 *flags |= CPU_DTRACE_BADADDR; 5026 *illval = regs[rd]; 5027 break; 5028 } 5029 *((uint8_t *)(uintptr_t)regs[rd]) = (uint8_t)regs[r1]; 5030 break; 5031 5032 case DIF_OP_STH: 5033 if (!dtrace_canstore(regs[rd], 2, mstate, vstate)) { 5034 *flags |= CPU_DTRACE_BADADDR; 5035 *illval = regs[rd]; 5036 break; 5037 } 5038 if (regs[rd] & 1) { 5039 *flags |= CPU_DTRACE_BADALIGN; 5040 *illval = regs[rd]; 5041 break; 5042 } 5043 *((uint16_t *)(uintptr_t)regs[rd]) = (uint16_t)regs[r1]; 5044 break; 5045 5046 case DIF_OP_STW: 5047 if (!dtrace_canstore(regs[rd], 4, mstate, vstate)) { 5048 *flags |= CPU_DTRACE_BADADDR; 5049 *illval = regs[rd]; 5050 break; 5051 } 5052 if (regs[rd] & 3) { 5053 *flags |= CPU_DTRACE_BADALIGN; 5054 *illval = regs[rd]; 5055 break; 5056 } 5057 *((uint32_t *)(uintptr_t)regs[rd]) = (uint32_t)regs[r1]; 5058 break; 5059 5060 case DIF_OP_STX: 5061 if (!dtrace_canstore(regs[rd], 8, mstate, vstate)) { 5062 *flags |= CPU_DTRACE_BADADDR; 5063 *illval = regs[rd]; 5064 break; 5065 } 5066 if (regs[rd] & 7) { 5067 *flags |= CPU_DTRACE_BADALIGN; 5068 *illval = regs[rd]; 5069 break; 5070 } 5071 *((uint64_t *)(uintptr_t)regs[rd]) = regs[r1]; 5072 break; 5073 } 5074 } 5075 5076 if (!(*flags & CPU_DTRACE_FAULT)) 5077 return (rval); 5078 5079 mstate->dtms_fltoffs = opc * sizeof (dif_instr_t); 5080 mstate->dtms_present |= DTRACE_MSTATE_FLTOFFS; 5081 5082 return (0); 5083 } 5084 5085 static void 5086 dtrace_action_breakpoint(dtrace_ecb_t *ecb) 5087 { 5088 dtrace_probe_t *probe = ecb->dte_probe; 5089 dtrace_provider_t *prov = probe->dtpr_provider; 5090 char c[DTRACE_FULLNAMELEN + 80], *str; 5091 char *msg = "dtrace: breakpoint action at probe "; 5092 char *ecbmsg = " (ecb "; 5093 uintptr_t mask = (0xf << (sizeof (uintptr_t) * NBBY / 4)); 5094 uintptr_t val = (uintptr_t)ecb; 5095 int shift = (sizeof (uintptr_t) * NBBY) - 4, i = 0; 5096 5097 if (dtrace_destructive_disallow) 5098 return; 5099 5100 /* 5101 * It's impossible to be taking action on the NULL probe. 5102 */ 5103 ASSERT(probe != NULL); 5104 5105 /* 5106 * This is a poor man's (destitute man's?) sprintf(): we want to 5107 * print the provider name, module name, function name and name of 5108 * the probe, along with the hex address of the ECB with the breakpoint 5109 * action -- all of which we must place in the character buffer by 5110 * hand. 5111 */ 5112 while (*msg != '\0') 5113 c[i++] = *msg++; 5114 5115 for (str = prov->dtpv_name; *str != '\0'; str++) 5116 c[i++] = *str; 5117 c[i++] = ':'; 5118 5119 for (str = probe->dtpr_mod; *str != '\0'; str++) 5120 c[i++] = *str; 5121 c[i++] = ':'; 5122 5123 for (str = probe->dtpr_func; *str != '\0'; str++) 5124 c[i++] = *str; 5125 c[i++] = ':'; 5126 5127 for (str = probe->dtpr_name; *str != '\0'; str++) 5128 c[i++] = *str; 5129 5130 while (*ecbmsg != '\0') 5131 c[i++] = *ecbmsg++; 5132 5133 while (shift >= 0) { 5134 mask = (uintptr_t)0xf << shift; 5135 5136 if (val >= ((uintptr_t)1 << shift)) 5137 c[i++] = "0123456789abcdef"[(val & mask) >> shift]; 5138 shift -= 4; 5139 } 5140 5141 c[i++] = ')'; 5142 c[i] = '\0'; 5143 5144 debug_enter(c); 5145 } 5146 5147 static void 5148 dtrace_action_panic(dtrace_ecb_t *ecb) 5149 { 5150 dtrace_probe_t *probe = ecb->dte_probe; 5151 5152 /* 5153 * It's impossible to be taking action on the NULL probe. 5154 */ 5155 ASSERT(probe != NULL); 5156 5157 if (dtrace_destructive_disallow) 5158 return; 5159 5160 if (dtrace_panicked != NULL) 5161 return; 5162 5163 if (dtrace_casptr(&dtrace_panicked, NULL, curthread) != NULL) 5164 return; 5165 5166 /* 5167 * We won the right to panic. (We want to be sure that only one 5168 * thread calls panic() from dtrace_probe(), and that panic() is 5169 * called exactly once.) 5170 */ 5171 dtrace_panic("dtrace: panic action at probe %s:%s:%s:%s (ecb %p)", 5172 probe->dtpr_provider->dtpv_name, probe->dtpr_mod, 5173 probe->dtpr_func, probe->dtpr_name, (void *)ecb); 5174 } 5175 5176 static void 5177 dtrace_action_raise(uint64_t sig) 5178 { 5179 if (dtrace_destructive_disallow) 5180 return; 5181 5182 if (sig >= NSIG) { 5183 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); 5184 return; 5185 } 5186 5187 /* 5188 * raise() has a queue depth of 1 -- we ignore all subsequent 5189 * invocations of the raise() action. 5190 */ 5191 if (curthread->t_dtrace_sig == 0) 5192 curthread->t_dtrace_sig = (uint8_t)sig; 5193 5194 curthread->t_sig_check = 1; 5195 aston(curthread); 5196 } 5197 5198 static void 5199 dtrace_action_stop(void) 5200 { 5201 if (dtrace_destructive_disallow) 5202 return; 5203 5204 if (!curthread->t_dtrace_stop) { 5205 curthread->t_dtrace_stop = 1; 5206 curthread->t_sig_check = 1; 5207 aston(curthread); 5208 } 5209 } 5210 5211 static void 5212 dtrace_action_chill(dtrace_mstate_t *mstate, hrtime_t val) 5213 { 5214 hrtime_t now; 5215 volatile uint16_t *flags; 5216 cpu_t *cpu = CPU; 5217 5218 if (dtrace_destructive_disallow) 5219 return; 5220 5221 flags = (volatile uint16_t *)&cpu_core[cpu->cpu_id].cpuc_dtrace_flags; 5222 5223 now = dtrace_gethrtime(); 5224 5225 if (now - cpu->cpu_dtrace_chillmark > dtrace_chill_interval) { 5226 /* 5227 * We need to advance the mark to the current time. 5228 */ 5229 cpu->cpu_dtrace_chillmark = now; 5230 cpu->cpu_dtrace_chilled = 0; 5231 } 5232 5233 /* 5234 * Now check to see if the requested chill time would take us over 5235 * the maximum amount of time allowed in the chill interval. (Or 5236 * worse, if the calculation itself induces overflow.) 5237 */ 5238 if (cpu->cpu_dtrace_chilled + val > dtrace_chill_max || 5239 cpu->cpu_dtrace_chilled + val < cpu->cpu_dtrace_chilled) { 5240 *flags |= CPU_DTRACE_ILLOP; 5241 return; 5242 } 5243 5244 while (dtrace_gethrtime() - now < val) 5245 continue; 5246 5247 /* 5248 * Normally, we assure that the value of the variable "timestamp" does 5249 * not change within an ECB. The presence of chill() represents an 5250 * exception to this rule, however. 5251 */ 5252 mstate->dtms_present &= ~DTRACE_MSTATE_TIMESTAMP; 5253 cpu->cpu_dtrace_chilled += val; 5254 } 5255 5256 static void 5257 dtrace_action_ustack(dtrace_mstate_t *mstate, dtrace_state_t *state, 5258 uint64_t *buf, uint64_t arg) 5259 { 5260 int nframes = DTRACE_USTACK_NFRAMES(arg); 5261 int strsize = DTRACE_USTACK_STRSIZE(arg); 5262 uint64_t *pcs = &buf[1], *fps; 5263 char *str = (char *)&pcs[nframes]; 5264 int size, offs = 0, i, j; 5265 uintptr_t old = mstate->dtms_scratch_ptr, saved; 5266 uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 5267 char *sym; 5268 5269 /* 5270 * Should be taking a faster path if string space has not been 5271 * allocated. 5272 */ 5273 ASSERT(strsize != 0); 5274 5275 /* 5276 * We will first allocate some temporary space for the frame pointers. 5277 */ 5278 fps = (uint64_t *)P2ROUNDUP(mstate->dtms_scratch_ptr, 8); 5279 size = (uintptr_t)fps - mstate->dtms_scratch_ptr + 5280 (nframes * sizeof (uint64_t)); 5281 5282 if (!DTRACE_INSCRATCH(mstate, size)) { 5283 /* 5284 * Not enough room for our frame pointers -- need to indicate 5285 * that we ran out of scratch space. 5286 */ 5287 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5288 return; 5289 } 5290 5291 mstate->dtms_scratch_ptr += size; 5292 saved = mstate->dtms_scratch_ptr; 5293 5294 /* 5295 * Now get a stack with both program counters and frame pointers. 5296 */ 5297 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 5298 dtrace_getufpstack(buf, fps, nframes + 1); 5299 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 5300 5301 /* 5302 * If that faulted, we're cooked. 5303 */ 5304 if (*flags & CPU_DTRACE_FAULT) 5305 goto out; 5306 5307 /* 5308 * Now we want to walk up the stack, calling the USTACK helper. For 5309 * each iteration, we restore the scratch pointer. 5310 */ 5311 for (i = 0; i < nframes; i++) { 5312 mstate->dtms_scratch_ptr = saved; 5313 5314 if (offs >= strsize) 5315 break; 5316 5317 sym = (char *)(uintptr_t)dtrace_helper( 5318 DTRACE_HELPER_ACTION_USTACK, 5319 mstate, state, pcs[i], fps[i]); 5320 5321 /* 5322 * If we faulted while running the helper, we're going to 5323 * clear the fault and null out the corresponding string. 5324 */ 5325 if (*flags & CPU_DTRACE_FAULT) { 5326 *flags &= ~CPU_DTRACE_FAULT; 5327 str[offs++] = '\0'; 5328 continue; 5329 } 5330 5331 if (sym == NULL) { 5332 str[offs++] = '\0'; 5333 continue; 5334 } 5335 5336 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 5337 5338 /* 5339 * Now copy in the string that the helper returned to us. 5340 */ 5341 for (j = 0; offs + j < strsize; j++) { 5342 if ((str[offs + j] = sym[j]) == '\0') 5343 break; 5344 } 5345 5346 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 5347 5348 offs += j + 1; 5349 } 5350 5351 if (offs >= strsize) { 5352 /* 5353 * If we didn't have room for all of the strings, we don't 5354 * abort processing -- this needn't be a fatal error -- but we 5355 * still want to increment a counter (dts_stkstroverflows) to 5356 * allow this condition to be warned about. (If this is from 5357 * a jstack() action, it is easily tuned via jstackstrsize.) 5358 */ 5359 dtrace_error(&state->dts_stkstroverflows); 5360 } 5361 5362 while (offs < strsize) 5363 str[offs++] = '\0'; 5364 5365 out: 5366 mstate->dtms_scratch_ptr = old; 5367 } 5368 5369 /* 5370 * If you're looking for the epicenter of DTrace, you just found it. This 5371 * is the function called by the provider to fire a probe -- from which all 5372 * subsequent probe-context DTrace activity emanates. 5373 */ 5374 void 5375 dtrace_probe(dtrace_id_t id, uintptr_t arg0, uintptr_t arg1, 5376 uintptr_t arg2, uintptr_t arg3, uintptr_t arg4) 5377 { 5378 processorid_t cpuid; 5379 dtrace_icookie_t cookie; 5380 dtrace_probe_t *probe; 5381 dtrace_mstate_t mstate; 5382 dtrace_ecb_t *ecb; 5383 dtrace_action_t *act; 5384 intptr_t offs; 5385 size_t size; 5386 int vtime, onintr; 5387 volatile uint16_t *flags; 5388 hrtime_t now; 5389 5390 /* 5391 * Kick out immediately if this CPU is still being born (in which case 5392 * curthread will be set to -1) or the current thread can't allow 5393 * probes in its current context. 5394 */ 5395 if (((uintptr_t)curthread & 1) || (curthread->t_flag & T_DONTDTRACE)) 5396 return; 5397 5398 cookie = dtrace_interrupt_disable(); 5399 probe = dtrace_probes[id - 1]; 5400 cpuid = CPU->cpu_id; 5401 onintr = CPU_ON_INTR(CPU); 5402 5403 if (!onintr && probe->dtpr_predcache != DTRACE_CACHEIDNONE && 5404 probe->dtpr_predcache == curthread->t_predcache) { 5405 /* 5406 * We have hit in the predicate cache; we know that 5407 * this predicate would evaluate to be false. 5408 */ 5409 dtrace_interrupt_enable(cookie); 5410 return; 5411 } 5412 5413 if (panic_quiesce) { 5414 /* 5415 * We don't trace anything if we're panicking. 5416 */ 5417 dtrace_interrupt_enable(cookie); 5418 return; 5419 } 5420 5421 now = dtrace_gethrtime(); 5422 vtime = dtrace_vtime_references != 0; 5423 5424 if (vtime && curthread->t_dtrace_start) 5425 curthread->t_dtrace_vtime += now - curthread->t_dtrace_start; 5426 5427 mstate.dtms_difo = NULL; 5428 mstate.dtms_probe = probe; 5429 mstate.dtms_strtok = NULL; 5430 mstate.dtms_arg[0] = arg0; 5431 mstate.dtms_arg[1] = arg1; 5432 mstate.dtms_arg[2] = arg2; 5433 mstate.dtms_arg[3] = arg3; 5434 mstate.dtms_arg[4] = arg4; 5435 5436 flags = (volatile uint16_t *)&cpu_core[cpuid].cpuc_dtrace_flags; 5437 5438 for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) { 5439 dtrace_predicate_t *pred = ecb->dte_predicate; 5440 dtrace_state_t *state = ecb->dte_state; 5441 dtrace_buffer_t *buf = &state->dts_buffer[cpuid]; 5442 dtrace_buffer_t *aggbuf = &state->dts_aggbuffer[cpuid]; 5443 dtrace_vstate_t *vstate = &state->dts_vstate; 5444 dtrace_provider_t *prov = probe->dtpr_provider; 5445 int committed = 0; 5446 caddr_t tomax; 5447 5448 /* 5449 * A little subtlety with the following (seemingly innocuous) 5450 * declaration of the automatic 'val': by looking at the 5451 * code, you might think that it could be declared in the 5452 * action processing loop, below. (That is, it's only used in 5453 * the action processing loop.) However, it must be declared 5454 * out of that scope because in the case of DIF expression 5455 * arguments to aggregating actions, one iteration of the 5456 * action loop will use the last iteration's value. 5457 */ 5458 #ifdef lint 5459 uint64_t val = 0; 5460 #else 5461 uint64_t val; 5462 #endif 5463 5464 mstate.dtms_present = DTRACE_MSTATE_ARGS | DTRACE_MSTATE_PROBE; 5465 *flags &= ~CPU_DTRACE_ERROR; 5466 5467 if (prov == dtrace_provider) { 5468 /* 5469 * If dtrace itself is the provider of this probe, 5470 * we're only going to continue processing the ECB if 5471 * arg0 (the dtrace_state_t) is equal to the ECB's 5472 * creating state. (This prevents disjoint consumers 5473 * from seeing one another's metaprobes.) 5474 */ 5475 if (arg0 != (uint64_t)(uintptr_t)state) 5476 continue; 5477 } 5478 5479 if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE) { 5480 /* 5481 * We're not currently active. If our provider isn't 5482 * the dtrace pseudo provider, we're not interested. 5483 */ 5484 if (prov != dtrace_provider) 5485 continue; 5486 5487 /* 5488 * Now we must further check if we are in the BEGIN 5489 * probe. If we are, we will only continue processing 5490 * if we're still in WARMUP -- if one BEGIN enabling 5491 * has invoked the exit() action, we don't want to 5492 * evaluate subsequent BEGIN enablings. 5493 */ 5494 if (probe->dtpr_id == dtrace_probeid_begin && 5495 state->dts_activity != DTRACE_ACTIVITY_WARMUP) { 5496 ASSERT(state->dts_activity == 5497 DTRACE_ACTIVITY_DRAINING); 5498 continue; 5499 } 5500 } 5501 5502 if (ecb->dte_cond) { 5503 /* 5504 * If the dte_cond bits indicate that this 5505 * consumer is only allowed to see user-mode firings 5506 * of this probe, call the provider's dtps_usermode() 5507 * entry point to check that the probe was fired 5508 * while in a user context. Skip this ECB if that's 5509 * not the case. 5510 */ 5511 if ((ecb->dte_cond & DTRACE_COND_USERMODE) && 5512 prov->dtpv_pops.dtps_usermode(prov->dtpv_arg, 5513 probe->dtpr_id, probe->dtpr_arg) == 0) 5514 continue; 5515 5516 /* 5517 * This is more subtle than it looks. We have to be 5518 * absolutely certain that CRED() isn't going to 5519 * change out from under us so it's only legit to 5520 * examine that structure if we're in constrained 5521 * situations. Currently, the only times we'll this 5522 * check is if a non-super-user has enabled the 5523 * profile or syscall providers -- providers that 5524 * allow visibility of all processes. For the 5525 * profile case, the check above will ensure that 5526 * we're examining a user context. 5527 */ 5528 if (ecb->dte_cond & DTRACE_COND_OWNER) { 5529 cred_t *cr; 5530 cred_t *s_cr = 5531 ecb->dte_state->dts_cred.dcr_cred; 5532 proc_t *proc; 5533 5534 ASSERT(s_cr != NULL); 5535 5536 if ((cr = CRED()) == NULL || 5537 s_cr->cr_uid != cr->cr_uid || 5538 s_cr->cr_uid != cr->cr_ruid || 5539 s_cr->cr_uid != cr->cr_suid || 5540 s_cr->cr_gid != cr->cr_gid || 5541 s_cr->cr_gid != cr->cr_rgid || 5542 s_cr->cr_gid != cr->cr_sgid || 5543 (proc = ttoproc(curthread)) == NULL || 5544 (proc->p_flag & SNOCD)) 5545 continue; 5546 } 5547 5548 if (ecb->dte_cond & DTRACE_COND_ZONEOWNER) { 5549 cred_t *cr; 5550 cred_t *s_cr = 5551 ecb->dte_state->dts_cred.dcr_cred; 5552 5553 ASSERT(s_cr != NULL); 5554 5555 if ((cr = CRED()) == NULL || 5556 s_cr->cr_zone->zone_id != 5557 cr->cr_zone->zone_id) 5558 continue; 5559 } 5560 } 5561 5562 if (now - state->dts_alive > dtrace_deadman_timeout) { 5563 /* 5564 * We seem to be dead. Unless we (a) have kernel 5565 * destructive permissions (b) have expicitly enabled 5566 * destructive actions and (c) destructive actions have 5567 * not been disabled, we're going to transition into 5568 * the KILLED state, from which no further processing 5569 * on this state will be performed. 5570 */ 5571 if (!dtrace_priv_kernel_destructive(state) || 5572 !state->dts_cred.dcr_destructive || 5573 dtrace_destructive_disallow) { 5574 void *activity = &state->dts_activity; 5575 dtrace_activity_t current; 5576 5577 do { 5578 current = state->dts_activity; 5579 } while (dtrace_cas32(activity, current, 5580 DTRACE_ACTIVITY_KILLED) != current); 5581 5582 continue; 5583 } 5584 } 5585 5586 if ((offs = dtrace_buffer_reserve(buf, ecb->dte_needed, 5587 ecb->dte_alignment, state, &mstate)) < 0) 5588 continue; 5589 5590 tomax = buf->dtb_tomax; 5591 ASSERT(tomax != NULL); 5592 5593 if (ecb->dte_size != 0) 5594 DTRACE_STORE(uint32_t, tomax, offs, ecb->dte_epid); 5595 5596 mstate.dtms_epid = ecb->dte_epid; 5597 mstate.dtms_present |= DTRACE_MSTATE_EPID; 5598 5599 if (state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) 5600 mstate.dtms_access = DTRACE_ACCESS_KERNEL; 5601 else 5602 mstate.dtms_access = 0; 5603 5604 if (pred != NULL) { 5605 dtrace_difo_t *dp = pred->dtp_difo; 5606 int rval; 5607 5608 rval = dtrace_dif_emulate(dp, &mstate, vstate, state); 5609 5610 if (!(*flags & CPU_DTRACE_ERROR) && !rval) { 5611 dtrace_cacheid_t cid = probe->dtpr_predcache; 5612 5613 if (cid != DTRACE_CACHEIDNONE && !onintr) { 5614 /* 5615 * Update the predicate cache... 5616 */ 5617 ASSERT(cid == pred->dtp_cacheid); 5618 curthread->t_predcache = cid; 5619 } 5620 5621 continue; 5622 } 5623 } 5624 5625 for (act = ecb->dte_action; !(*flags & CPU_DTRACE_ERROR) && 5626 act != NULL; act = act->dta_next) { 5627 size_t valoffs; 5628 dtrace_difo_t *dp; 5629 dtrace_recdesc_t *rec = &act->dta_rec; 5630 5631 size = rec->dtrd_size; 5632 valoffs = offs + rec->dtrd_offset; 5633 5634 if (DTRACEACT_ISAGG(act->dta_kind)) { 5635 uint64_t v = 0xbad; 5636 dtrace_aggregation_t *agg; 5637 5638 agg = (dtrace_aggregation_t *)act; 5639 5640 if ((dp = act->dta_difo) != NULL) 5641 v = dtrace_dif_emulate(dp, 5642 &mstate, vstate, state); 5643 5644 if (*flags & CPU_DTRACE_ERROR) 5645 continue; 5646 5647 /* 5648 * Note that we always pass the expression 5649 * value from the previous iteration of the 5650 * action loop. This value will only be used 5651 * if there is an expression argument to the 5652 * aggregating action, denoted by the 5653 * dtag_hasarg field. 5654 */ 5655 dtrace_aggregate(agg, buf, 5656 offs, aggbuf, v, val); 5657 continue; 5658 } 5659 5660 switch (act->dta_kind) { 5661 case DTRACEACT_STOP: 5662 if (dtrace_priv_proc_destructive(state)) 5663 dtrace_action_stop(); 5664 continue; 5665 5666 case DTRACEACT_BREAKPOINT: 5667 if (dtrace_priv_kernel_destructive(state)) 5668 dtrace_action_breakpoint(ecb); 5669 continue; 5670 5671 case DTRACEACT_PANIC: 5672 if (dtrace_priv_kernel_destructive(state)) 5673 dtrace_action_panic(ecb); 5674 continue; 5675 5676 case DTRACEACT_STACK: 5677 if (!dtrace_priv_kernel(state)) 5678 continue; 5679 5680 dtrace_getpcstack((pc_t *)(tomax + valoffs), 5681 size / sizeof (pc_t), probe->dtpr_aframes, 5682 DTRACE_ANCHORED(probe) ? NULL : 5683 (uint32_t *)arg0); 5684 5685 continue; 5686 5687 case DTRACEACT_JSTACK: 5688 case DTRACEACT_USTACK: 5689 if (!dtrace_priv_proc(state)) 5690 continue; 5691 5692 /* 5693 * See comment in DIF_VAR_PID. 5694 */ 5695 if (DTRACE_ANCHORED(mstate.dtms_probe) && 5696 CPU_ON_INTR(CPU)) { 5697 int depth = DTRACE_USTACK_NFRAMES( 5698 rec->dtrd_arg) + 1; 5699 5700 dtrace_bzero((void *)(tomax + valoffs), 5701 DTRACE_USTACK_STRSIZE(rec->dtrd_arg) 5702 + depth * sizeof (uint64_t)); 5703 5704 continue; 5705 } 5706 5707 if (DTRACE_USTACK_STRSIZE(rec->dtrd_arg) != 0 && 5708 curproc->p_dtrace_helpers != NULL) { 5709 /* 5710 * This is the slow path -- we have 5711 * allocated string space, and we're 5712 * getting the stack of a process that 5713 * has helpers. Call into a separate 5714 * routine to perform this processing. 5715 */ 5716 dtrace_action_ustack(&mstate, state, 5717 (uint64_t *)(tomax + valoffs), 5718 rec->dtrd_arg); 5719 continue; 5720 } 5721 5722 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 5723 dtrace_getupcstack((uint64_t *) 5724 (tomax + valoffs), 5725 DTRACE_USTACK_NFRAMES(rec->dtrd_arg) + 1); 5726 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 5727 continue; 5728 5729 default: 5730 break; 5731 } 5732 5733 dp = act->dta_difo; 5734 ASSERT(dp != NULL); 5735 5736 val = dtrace_dif_emulate(dp, &mstate, vstate, state); 5737 5738 if (*flags & CPU_DTRACE_ERROR) 5739 continue; 5740 5741 switch (act->dta_kind) { 5742 case DTRACEACT_SPECULATE: 5743 ASSERT(buf == &state->dts_buffer[cpuid]); 5744 buf = dtrace_speculation_buffer(state, 5745 cpuid, val); 5746 5747 if (buf == NULL) { 5748 *flags |= CPU_DTRACE_DROP; 5749 continue; 5750 } 5751 5752 offs = dtrace_buffer_reserve(buf, 5753 ecb->dte_needed, ecb->dte_alignment, 5754 state, NULL); 5755 5756 if (offs < 0) { 5757 *flags |= CPU_DTRACE_DROP; 5758 continue; 5759 } 5760 5761 tomax = buf->dtb_tomax; 5762 ASSERT(tomax != NULL); 5763 5764 if (ecb->dte_size != 0) 5765 DTRACE_STORE(uint32_t, tomax, offs, 5766 ecb->dte_epid); 5767 continue; 5768 5769 case DTRACEACT_CHILL: 5770 if (dtrace_priv_kernel_destructive(state)) 5771 dtrace_action_chill(&mstate, val); 5772 continue; 5773 5774 case DTRACEACT_RAISE: 5775 if (dtrace_priv_proc_destructive(state)) 5776 dtrace_action_raise(val); 5777 continue; 5778 5779 case DTRACEACT_COMMIT: 5780 ASSERT(!committed); 5781 5782 /* 5783 * We need to commit our buffer state. 5784 */ 5785 if (ecb->dte_size) 5786 buf->dtb_offset = offs + ecb->dte_size; 5787 buf = &state->dts_buffer[cpuid]; 5788 dtrace_speculation_commit(state, cpuid, val); 5789 committed = 1; 5790 continue; 5791 5792 case DTRACEACT_DISCARD: 5793 dtrace_speculation_discard(state, cpuid, val); 5794 continue; 5795 5796 case DTRACEACT_DIFEXPR: 5797 case DTRACEACT_LIBACT: 5798 case DTRACEACT_PRINTF: 5799 case DTRACEACT_PRINTA: 5800 case DTRACEACT_SYSTEM: 5801 case DTRACEACT_FREOPEN: 5802 break; 5803 5804 case DTRACEACT_SYM: 5805 case DTRACEACT_MOD: 5806 if (!dtrace_priv_kernel(state)) 5807 continue; 5808 break; 5809 5810 case DTRACEACT_USYM: 5811 case DTRACEACT_UMOD: 5812 case DTRACEACT_UADDR: { 5813 struct pid *pid = curthread->t_procp->p_pidp; 5814 5815 if (!dtrace_priv_proc(state)) 5816 continue; 5817 5818 DTRACE_STORE(uint64_t, tomax, 5819 valoffs, (uint64_t)pid->pid_id); 5820 DTRACE_STORE(uint64_t, tomax, 5821 valoffs + sizeof (uint64_t), val); 5822 5823 continue; 5824 } 5825 5826 case DTRACEACT_EXIT: { 5827 /* 5828 * For the exit action, we are going to attempt 5829 * to atomically set our activity to be 5830 * draining. If this fails (either because 5831 * another CPU has beat us to the exit action, 5832 * or because our current activity is something 5833 * other than ACTIVE or WARMUP), we will 5834 * continue. This assures that the exit action 5835 * can be successfully recorded at most once 5836 * when we're in the ACTIVE state. If we're 5837 * encountering the exit() action while in 5838 * COOLDOWN, however, we want to honor the new 5839 * status code. (We know that we're the only 5840 * thread in COOLDOWN, so there is no race.) 5841 */ 5842 void *activity = &state->dts_activity; 5843 dtrace_activity_t current = state->dts_activity; 5844 5845 if (current == DTRACE_ACTIVITY_COOLDOWN) 5846 break; 5847 5848 if (current != DTRACE_ACTIVITY_WARMUP) 5849 current = DTRACE_ACTIVITY_ACTIVE; 5850 5851 if (dtrace_cas32(activity, current, 5852 DTRACE_ACTIVITY_DRAINING) != current) { 5853 *flags |= CPU_DTRACE_DROP; 5854 continue; 5855 } 5856 5857 break; 5858 } 5859 5860 default: 5861 ASSERT(0); 5862 } 5863 5864 if (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF) { 5865 uintptr_t end = valoffs + size; 5866 5867 if (!dtrace_vcanload((void *)(uintptr_t)val, 5868 &dp->dtdo_rtype, &mstate, vstate)) 5869 continue; 5870 5871 /* 5872 * If this is a string, we're going to only 5873 * load until we find the zero byte -- after 5874 * which we'll store zero bytes. 5875 */ 5876 if (dp->dtdo_rtype.dtdt_kind == 5877 DIF_TYPE_STRING) { 5878 char c = '\0' + 1; 5879 int intuple = act->dta_intuple; 5880 size_t s; 5881 5882 for (s = 0; s < size; s++) { 5883 if (c != '\0') 5884 c = dtrace_load8(val++); 5885 5886 DTRACE_STORE(uint8_t, tomax, 5887 valoffs++, c); 5888 5889 if (c == '\0' && intuple) 5890 break; 5891 } 5892 5893 continue; 5894 } 5895 5896 while (valoffs < end) { 5897 DTRACE_STORE(uint8_t, tomax, valoffs++, 5898 dtrace_load8(val++)); 5899 } 5900 5901 continue; 5902 } 5903 5904 switch (size) { 5905 case 0: 5906 break; 5907 5908 case sizeof (uint8_t): 5909 DTRACE_STORE(uint8_t, tomax, valoffs, val); 5910 break; 5911 case sizeof (uint16_t): 5912 DTRACE_STORE(uint16_t, tomax, valoffs, val); 5913 break; 5914 case sizeof (uint32_t): 5915 DTRACE_STORE(uint32_t, tomax, valoffs, val); 5916 break; 5917 case sizeof (uint64_t): 5918 DTRACE_STORE(uint64_t, tomax, valoffs, val); 5919 break; 5920 default: 5921 /* 5922 * Any other size should have been returned by 5923 * reference, not by value. 5924 */ 5925 ASSERT(0); 5926 break; 5927 } 5928 } 5929 5930 if (*flags & CPU_DTRACE_DROP) 5931 continue; 5932 5933 if (*flags & CPU_DTRACE_FAULT) { 5934 int ndx; 5935 dtrace_action_t *err; 5936 5937 buf->dtb_errors++; 5938 5939 if (probe->dtpr_id == dtrace_probeid_error) { 5940 /* 5941 * There's nothing we can do -- we had an 5942 * error on the error probe. We bump an 5943 * error counter to at least indicate that 5944 * this condition happened. 5945 */ 5946 dtrace_error(&state->dts_dblerrors); 5947 continue; 5948 } 5949 5950 if (vtime) { 5951 /* 5952 * Before recursing on dtrace_probe(), we 5953 * need to explicitly clear out our start 5954 * time to prevent it from being accumulated 5955 * into t_dtrace_vtime. 5956 */ 5957 curthread->t_dtrace_start = 0; 5958 } 5959 5960 /* 5961 * Iterate over the actions to figure out which action 5962 * we were processing when we experienced the error. 5963 * Note that act points _past_ the faulting action; if 5964 * act is ecb->dte_action, the fault was in the 5965 * predicate, if it's ecb->dte_action->dta_next it's 5966 * in action #1, and so on. 5967 */ 5968 for (err = ecb->dte_action, ndx = 0; 5969 err != act; err = err->dta_next, ndx++) 5970 continue; 5971 5972 dtrace_probe_error(state, ecb->dte_epid, ndx, 5973 (mstate.dtms_present & DTRACE_MSTATE_FLTOFFS) ? 5974 mstate.dtms_fltoffs : -1, DTRACE_FLAGS2FLT(*flags), 5975 cpu_core[cpuid].cpuc_dtrace_illval); 5976 5977 continue; 5978 } 5979 5980 if (!committed) 5981 buf->dtb_offset = offs + ecb->dte_size; 5982 } 5983 5984 if (vtime) 5985 curthread->t_dtrace_start = dtrace_gethrtime(); 5986 5987 dtrace_interrupt_enable(cookie); 5988 } 5989 5990 /* 5991 * DTrace Probe Hashing Functions 5992 * 5993 * The functions in this section (and indeed, the functions in remaining 5994 * sections) are not _called_ from probe context. (Any exceptions to this are 5995 * marked with a "Note:".) Rather, they are called from elsewhere in the 5996 * DTrace framework to look-up probes in, add probes to and remove probes from 5997 * the DTrace probe hashes. (Each probe is hashed by each element of the 5998 * probe tuple -- allowing for fast lookups, regardless of what was 5999 * specified.) 6000 */ 6001 static uint_t 6002 dtrace_hash_str(char *p) 6003 { 6004 unsigned int g; 6005 uint_t hval = 0; 6006 6007 while (*p) { 6008 hval = (hval << 4) + *p++; 6009 if ((g = (hval & 0xf0000000)) != 0) 6010 hval ^= g >> 24; 6011 hval &= ~g; 6012 } 6013 return (hval); 6014 } 6015 6016 static dtrace_hash_t * 6017 dtrace_hash_create(uintptr_t stroffs, uintptr_t nextoffs, uintptr_t prevoffs) 6018 { 6019 dtrace_hash_t *hash = kmem_zalloc(sizeof (dtrace_hash_t), KM_SLEEP); 6020 6021 hash->dth_stroffs = stroffs; 6022 hash->dth_nextoffs = nextoffs; 6023 hash->dth_prevoffs = prevoffs; 6024 6025 hash->dth_size = 1; 6026 hash->dth_mask = hash->dth_size - 1; 6027 6028 hash->dth_tab = kmem_zalloc(hash->dth_size * 6029 sizeof (dtrace_hashbucket_t *), KM_SLEEP); 6030 6031 return (hash); 6032 } 6033 6034 static void 6035 dtrace_hash_destroy(dtrace_hash_t *hash) 6036 { 6037 #ifdef DEBUG 6038 int i; 6039 6040 for (i = 0; i < hash->dth_size; i++) 6041 ASSERT(hash->dth_tab[i] == NULL); 6042 #endif 6043 6044 kmem_free(hash->dth_tab, 6045 hash->dth_size * sizeof (dtrace_hashbucket_t *)); 6046 kmem_free(hash, sizeof (dtrace_hash_t)); 6047 } 6048 6049 static void 6050 dtrace_hash_resize(dtrace_hash_t *hash) 6051 { 6052 int size = hash->dth_size, i, ndx; 6053 int new_size = hash->dth_size << 1; 6054 int new_mask = new_size - 1; 6055 dtrace_hashbucket_t **new_tab, *bucket, *next; 6056 6057 ASSERT((new_size & new_mask) == 0); 6058 6059 new_tab = kmem_zalloc(new_size * sizeof (void *), KM_SLEEP); 6060 6061 for (i = 0; i < size; i++) { 6062 for (bucket = hash->dth_tab[i]; bucket != NULL; bucket = next) { 6063 dtrace_probe_t *probe = bucket->dthb_chain; 6064 6065 ASSERT(probe != NULL); 6066 ndx = DTRACE_HASHSTR(hash, probe) & new_mask; 6067 6068 next = bucket->dthb_next; 6069 bucket->dthb_next = new_tab[ndx]; 6070 new_tab[ndx] = bucket; 6071 } 6072 } 6073 6074 kmem_free(hash->dth_tab, hash->dth_size * sizeof (void *)); 6075 hash->dth_tab = new_tab; 6076 hash->dth_size = new_size; 6077 hash->dth_mask = new_mask; 6078 } 6079 6080 static void 6081 dtrace_hash_add(dtrace_hash_t *hash, dtrace_probe_t *new) 6082 { 6083 int hashval = DTRACE_HASHSTR(hash, new); 6084 int ndx = hashval & hash->dth_mask; 6085 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx]; 6086 dtrace_probe_t **nextp, **prevp; 6087 6088 for (; bucket != NULL; bucket = bucket->dthb_next) { 6089 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, new)) 6090 goto add; 6091 } 6092 6093 if ((hash->dth_nbuckets >> 1) > hash->dth_size) { 6094 dtrace_hash_resize(hash); 6095 dtrace_hash_add(hash, new); 6096 return; 6097 } 6098 6099 bucket = kmem_zalloc(sizeof (dtrace_hashbucket_t), KM_SLEEP); 6100 bucket->dthb_next = hash->dth_tab[ndx]; 6101 hash->dth_tab[ndx] = bucket; 6102 hash->dth_nbuckets++; 6103 6104 add: 6105 nextp = DTRACE_HASHNEXT(hash, new); 6106 ASSERT(*nextp == NULL && *(DTRACE_HASHPREV(hash, new)) == NULL); 6107 *nextp = bucket->dthb_chain; 6108 6109 if (bucket->dthb_chain != NULL) { 6110 prevp = DTRACE_HASHPREV(hash, bucket->dthb_chain); 6111 ASSERT(*prevp == NULL); 6112 *prevp = new; 6113 } 6114 6115 bucket->dthb_chain = new; 6116 bucket->dthb_len++; 6117 } 6118 6119 static dtrace_probe_t * 6120 dtrace_hash_lookup(dtrace_hash_t *hash, dtrace_probe_t *template) 6121 { 6122 int hashval = DTRACE_HASHSTR(hash, template); 6123 int ndx = hashval & hash->dth_mask; 6124 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx]; 6125 6126 for (; bucket != NULL; bucket = bucket->dthb_next) { 6127 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template)) 6128 return (bucket->dthb_chain); 6129 } 6130 6131 return (NULL); 6132 } 6133 6134 static int 6135 dtrace_hash_collisions(dtrace_hash_t *hash, dtrace_probe_t *template) 6136 { 6137 int hashval = DTRACE_HASHSTR(hash, template); 6138 int ndx = hashval & hash->dth_mask; 6139 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx]; 6140 6141 for (; bucket != NULL; bucket = bucket->dthb_next) { 6142 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template)) 6143 return (bucket->dthb_len); 6144 } 6145 6146 return (NULL); 6147 } 6148 6149 static void 6150 dtrace_hash_remove(dtrace_hash_t *hash, dtrace_probe_t *probe) 6151 { 6152 int ndx = DTRACE_HASHSTR(hash, probe) & hash->dth_mask; 6153 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx]; 6154 6155 dtrace_probe_t **prevp = DTRACE_HASHPREV(hash, probe); 6156 dtrace_probe_t **nextp = DTRACE_HASHNEXT(hash, probe); 6157 6158 /* 6159 * Find the bucket that we're removing this probe from. 6160 */ 6161 for (; bucket != NULL; bucket = bucket->dthb_next) { 6162 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, probe)) 6163 break; 6164 } 6165 6166 ASSERT(bucket != NULL); 6167 6168 if (*prevp == NULL) { 6169 if (*nextp == NULL) { 6170 /* 6171 * The removed probe was the only probe on this 6172 * bucket; we need to remove the bucket. 6173 */ 6174 dtrace_hashbucket_t *b = hash->dth_tab[ndx]; 6175 6176 ASSERT(bucket->dthb_chain == probe); 6177 ASSERT(b != NULL); 6178 6179 if (b == bucket) { 6180 hash->dth_tab[ndx] = bucket->dthb_next; 6181 } else { 6182 while (b->dthb_next != bucket) 6183 b = b->dthb_next; 6184 b->dthb_next = bucket->dthb_next; 6185 } 6186 6187 ASSERT(hash->dth_nbuckets > 0); 6188 hash->dth_nbuckets--; 6189 kmem_free(bucket, sizeof (dtrace_hashbucket_t)); 6190 return; 6191 } 6192 6193 bucket->dthb_chain = *nextp; 6194 } else { 6195 *(DTRACE_HASHNEXT(hash, *prevp)) = *nextp; 6196 } 6197 6198 if (*nextp != NULL) 6199 *(DTRACE_HASHPREV(hash, *nextp)) = *prevp; 6200 } 6201 6202 /* 6203 * DTrace Utility Functions 6204 * 6205 * These are random utility functions that are _not_ called from probe context. 6206 */ 6207 static int 6208 dtrace_badattr(const dtrace_attribute_t *a) 6209 { 6210 return (a->dtat_name > DTRACE_STABILITY_MAX || 6211 a->dtat_data > DTRACE_STABILITY_MAX || 6212 a->dtat_class > DTRACE_CLASS_MAX); 6213 } 6214 6215 /* 6216 * Return a duplicate copy of a string. If the specified string is NULL, 6217 * this function returns a zero-length string. 6218 */ 6219 static char * 6220 dtrace_strdup(const char *str) 6221 { 6222 char *new = kmem_zalloc((str != NULL ? strlen(str) : 0) + 1, KM_SLEEP); 6223 6224 if (str != NULL) 6225 (void) strcpy(new, str); 6226 6227 return (new); 6228 } 6229 6230 #define DTRACE_ISALPHA(c) \ 6231 (((c) >= 'a' && (c) <= 'z') || ((c) >= 'A' && (c) <= 'Z')) 6232 6233 static int 6234 dtrace_badname(const char *s) 6235 { 6236 char c; 6237 6238 if (s == NULL || (c = *s++) == '\0') 6239 return (0); 6240 6241 if (!DTRACE_ISALPHA(c) && c != '-' && c != '_' && c != '.') 6242 return (1); 6243 6244 while ((c = *s++) != '\0') { 6245 if (!DTRACE_ISALPHA(c) && (c < '0' || c > '9') && 6246 c != '-' && c != '_' && c != '.' && c != '`') 6247 return (1); 6248 } 6249 6250 return (0); 6251 } 6252 6253 static void 6254 dtrace_cred2priv(cred_t *cr, uint32_t *privp, uid_t *uidp, zoneid_t *zoneidp) 6255 { 6256 uint32_t priv; 6257 6258 if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) { 6259 /* 6260 * For DTRACE_PRIV_ALL, the uid and zoneid don't matter. 6261 */ 6262 priv = DTRACE_PRIV_ALL; 6263 } else { 6264 *uidp = crgetuid(cr); 6265 *zoneidp = crgetzoneid(cr); 6266 6267 priv = 0; 6268 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE)) 6269 priv |= DTRACE_PRIV_KERNEL | DTRACE_PRIV_USER; 6270 else if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE)) 6271 priv |= DTRACE_PRIV_USER; 6272 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) 6273 priv |= DTRACE_PRIV_PROC; 6274 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) 6275 priv |= DTRACE_PRIV_OWNER; 6276 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) 6277 priv |= DTRACE_PRIV_ZONEOWNER; 6278 } 6279 6280 *privp = priv; 6281 } 6282 6283 #ifdef DTRACE_ERRDEBUG 6284 static void 6285 dtrace_errdebug(const char *str) 6286 { 6287 int hval = dtrace_hash_str((char *)str) % DTRACE_ERRHASHSZ; 6288 int occupied = 0; 6289 6290 mutex_enter(&dtrace_errlock); 6291 dtrace_errlast = str; 6292 dtrace_errthread = curthread; 6293 6294 while (occupied++ < DTRACE_ERRHASHSZ) { 6295 if (dtrace_errhash[hval].dter_msg == str) { 6296 dtrace_errhash[hval].dter_count++; 6297 goto out; 6298 } 6299 6300 if (dtrace_errhash[hval].dter_msg != NULL) { 6301 hval = (hval + 1) % DTRACE_ERRHASHSZ; 6302 continue; 6303 } 6304 6305 dtrace_errhash[hval].dter_msg = str; 6306 dtrace_errhash[hval].dter_count = 1; 6307 goto out; 6308 } 6309 6310 panic("dtrace: undersized error hash"); 6311 out: 6312 mutex_exit(&dtrace_errlock); 6313 } 6314 #endif 6315 6316 /* 6317 * DTrace Matching Functions 6318 * 6319 * These functions are used to match groups of probes, given some elements of 6320 * a probe tuple, or some globbed expressions for elements of a probe tuple. 6321 */ 6322 static int 6323 dtrace_match_priv(const dtrace_probe_t *prp, uint32_t priv, uid_t uid, 6324 zoneid_t zoneid) 6325 { 6326 if (priv != DTRACE_PRIV_ALL) { 6327 uint32_t ppriv = prp->dtpr_provider->dtpv_priv.dtpp_flags; 6328 uint32_t match = priv & ppriv; 6329 6330 /* 6331 * No PRIV_DTRACE_* privileges... 6332 */ 6333 if ((priv & (DTRACE_PRIV_PROC | DTRACE_PRIV_USER | 6334 DTRACE_PRIV_KERNEL)) == 0) 6335 return (0); 6336 6337 /* 6338 * No matching bits, but there were bits to match... 6339 */ 6340 if (match == 0 && ppriv != 0) 6341 return (0); 6342 6343 /* 6344 * Need to have permissions to the process, but don't... 6345 */ 6346 if (((ppriv & ~match) & DTRACE_PRIV_OWNER) != 0 && 6347 uid != prp->dtpr_provider->dtpv_priv.dtpp_uid) { 6348 return (0); 6349 } 6350 6351 /* 6352 * Need to be in the same zone unless we possess the 6353 * privilege to examine all zones. 6354 */ 6355 if (((ppriv & ~match) & DTRACE_PRIV_ZONEOWNER) != 0 && 6356 zoneid != prp->dtpr_provider->dtpv_priv.dtpp_zoneid) { 6357 return (0); 6358 } 6359 } 6360 6361 return (1); 6362 } 6363 6364 /* 6365 * dtrace_match_probe compares a dtrace_probe_t to a pre-compiled key, which 6366 * consists of input pattern strings and an ops-vector to evaluate them. 6367 * This function returns >0 for match, 0 for no match, and <0 for error. 6368 */ 6369 static int 6370 dtrace_match_probe(const dtrace_probe_t *prp, const dtrace_probekey_t *pkp, 6371 uint32_t priv, uid_t uid, zoneid_t zoneid) 6372 { 6373 dtrace_provider_t *pvp = prp->dtpr_provider; 6374 int rv; 6375 6376 if (pvp->dtpv_defunct) 6377 return (0); 6378 6379 if ((rv = pkp->dtpk_pmatch(pvp->dtpv_name, pkp->dtpk_prov, 0)) <= 0) 6380 return (rv); 6381 6382 if ((rv = pkp->dtpk_mmatch(prp->dtpr_mod, pkp->dtpk_mod, 0)) <= 0) 6383 return (rv); 6384 6385 if ((rv = pkp->dtpk_fmatch(prp->dtpr_func, pkp->dtpk_func, 0)) <= 0) 6386 return (rv); 6387 6388 if ((rv = pkp->dtpk_nmatch(prp->dtpr_name, pkp->dtpk_name, 0)) <= 0) 6389 return (rv); 6390 6391 if (dtrace_match_priv(prp, priv, uid, zoneid) == 0) 6392 return (0); 6393 6394 return (rv); 6395 } 6396 6397 /* 6398 * dtrace_match_glob() is a safe kernel implementation of the gmatch(3GEN) 6399 * interface for matching a glob pattern 'p' to an input string 's'. Unlike 6400 * libc's version, the kernel version only applies to 8-bit ASCII strings. 6401 * In addition, all of the recursion cases except for '*' matching have been 6402 * unwound. For '*', we still implement recursive evaluation, but a depth 6403 * counter is maintained and matching is aborted if we recurse too deep. 6404 * The function returns 0 if no match, >0 if match, and <0 if recursion error. 6405 */ 6406 static int 6407 dtrace_match_glob(const char *s, const char *p, int depth) 6408 { 6409 const char *olds; 6410 char s1, c; 6411 int gs; 6412 6413 if (depth > DTRACE_PROBEKEY_MAXDEPTH) 6414 return (-1); 6415 6416 if (s == NULL) 6417 s = ""; /* treat NULL as empty string */ 6418 6419 top: 6420 olds = s; 6421 s1 = *s++; 6422 6423 if (p == NULL) 6424 return (0); 6425 6426 if ((c = *p++) == '\0') 6427 return (s1 == '\0'); 6428 6429 switch (c) { 6430 case '[': { 6431 int ok = 0, notflag = 0; 6432 char lc = '\0'; 6433 6434 if (s1 == '\0') 6435 return (0); 6436 6437 if (*p == '!') { 6438 notflag = 1; 6439 p++; 6440 } 6441 6442 if ((c = *p++) == '\0') 6443 return (0); 6444 6445 do { 6446 if (c == '-' && lc != '\0' && *p != ']') { 6447 if ((c = *p++) == '\0') 6448 return (0); 6449 if (c == '\\' && (c = *p++) == '\0') 6450 return (0); 6451 6452 if (notflag) { 6453 if (s1 < lc || s1 > c) 6454 ok++; 6455 else 6456 return (0); 6457 } else if (lc <= s1 && s1 <= c) 6458 ok++; 6459 6460 } else if (c == '\\' && (c = *p++) == '\0') 6461 return (0); 6462 6463 lc = c; /* save left-hand 'c' for next iteration */ 6464 6465 if (notflag) { 6466 if (s1 != c) 6467 ok++; 6468 else 6469 return (0); 6470 } else if (s1 == c) 6471 ok++; 6472 6473 if ((c = *p++) == '\0') 6474 return (0); 6475 6476 } while (c != ']'); 6477 6478 if (ok) 6479 goto top; 6480 6481 return (0); 6482 } 6483 6484 case '\\': 6485 if ((c = *p++) == '\0') 6486 return (0); 6487 /*FALLTHRU*/ 6488 6489 default: 6490 if (c != s1) 6491 return (0); 6492 /*FALLTHRU*/ 6493 6494 case '?': 6495 if (s1 != '\0') 6496 goto top; 6497 return (0); 6498 6499 case '*': 6500 while (*p == '*') 6501 p++; /* consecutive *'s are identical to a single one */ 6502 6503 if (*p == '\0') 6504 return (1); 6505 6506 for (s = olds; *s != '\0'; s++) { 6507 if ((gs = dtrace_match_glob(s, p, depth + 1)) != 0) 6508 return (gs); 6509 } 6510 6511 return (0); 6512 } 6513 } 6514 6515 /*ARGSUSED*/ 6516 static int 6517 dtrace_match_string(const char *s, const char *p, int depth) 6518 { 6519 return (s != NULL && strcmp(s, p) == 0); 6520 } 6521 6522 /*ARGSUSED*/ 6523 static int 6524 dtrace_match_nul(const char *s, const char *p, int depth) 6525 { 6526 return (1); /* always match the empty pattern */ 6527 } 6528 6529 /*ARGSUSED*/ 6530 static int 6531 dtrace_match_nonzero(const char *s, const char *p, int depth) 6532 { 6533 return (s != NULL && s[0] != '\0'); 6534 } 6535 6536 static int 6537 dtrace_match(const dtrace_probekey_t *pkp, uint32_t priv, uid_t uid, 6538 zoneid_t zoneid, int (*matched)(dtrace_probe_t *, void *), void *arg) 6539 { 6540 dtrace_probe_t template, *probe; 6541 dtrace_hash_t *hash = NULL; 6542 int len, best = INT_MAX, nmatched = 0; 6543 dtrace_id_t i; 6544 6545 ASSERT(MUTEX_HELD(&dtrace_lock)); 6546 6547 /* 6548 * If the probe ID is specified in the key, just lookup by ID and 6549 * invoke the match callback once if a matching probe is found. 6550 */ 6551 if (pkp->dtpk_id != DTRACE_IDNONE) { 6552 if ((probe = dtrace_probe_lookup_id(pkp->dtpk_id)) != NULL && 6553 dtrace_match_probe(probe, pkp, priv, uid, zoneid) > 0) { 6554 (void) (*matched)(probe, arg); 6555 nmatched++; 6556 } 6557 return (nmatched); 6558 } 6559 6560 template.dtpr_mod = (char *)pkp->dtpk_mod; 6561 template.dtpr_func = (char *)pkp->dtpk_func; 6562 template.dtpr_name = (char *)pkp->dtpk_name; 6563 6564 /* 6565 * We want to find the most distinct of the module name, function 6566 * name, and name. So for each one that is not a glob pattern or 6567 * empty string, we perform a lookup in the corresponding hash and 6568 * use the hash table with the fewest collisions to do our search. 6569 */ 6570 if (pkp->dtpk_mmatch == &dtrace_match_string && 6571 (len = dtrace_hash_collisions(dtrace_bymod, &template)) < best) { 6572 best = len; 6573 hash = dtrace_bymod; 6574 } 6575 6576 if (pkp->dtpk_fmatch == &dtrace_match_string && 6577 (len = dtrace_hash_collisions(dtrace_byfunc, &template)) < best) { 6578 best = len; 6579 hash = dtrace_byfunc; 6580 } 6581 6582 if (pkp->dtpk_nmatch == &dtrace_match_string && 6583 (len = dtrace_hash_collisions(dtrace_byname, &template)) < best) { 6584 best = len; 6585 hash = dtrace_byname; 6586 } 6587 6588 /* 6589 * If we did not select a hash table, iterate over every probe and 6590 * invoke our callback for each one that matches our input probe key. 6591 */ 6592 if (hash == NULL) { 6593 for (i = 0; i < dtrace_nprobes; i++) { 6594 if ((probe = dtrace_probes[i]) == NULL || 6595 dtrace_match_probe(probe, pkp, priv, uid, 6596 zoneid) <= 0) 6597 continue; 6598 6599 nmatched++; 6600 6601 if ((*matched)(probe, arg) != DTRACE_MATCH_NEXT) 6602 break; 6603 } 6604 6605 return (nmatched); 6606 } 6607 6608 /* 6609 * If we selected a hash table, iterate over each probe of the same key 6610 * name and invoke the callback for every probe that matches the other 6611 * attributes of our input probe key. 6612 */ 6613 for (probe = dtrace_hash_lookup(hash, &template); probe != NULL; 6614 probe = *(DTRACE_HASHNEXT(hash, probe))) { 6615 6616 if (dtrace_match_probe(probe, pkp, priv, uid, zoneid) <= 0) 6617 continue; 6618 6619 nmatched++; 6620 6621 if ((*matched)(probe, arg) != DTRACE_MATCH_NEXT) 6622 break; 6623 } 6624 6625 return (nmatched); 6626 } 6627 6628 /* 6629 * Return the function pointer dtrace_probecmp() should use to compare the 6630 * specified pattern with a string. For NULL or empty patterns, we select 6631 * dtrace_match_nul(). For glob pattern strings, we use dtrace_match_glob(). 6632 * For non-empty non-glob strings, we use dtrace_match_string(). 6633 */ 6634 static dtrace_probekey_f * 6635 dtrace_probekey_func(const char *p) 6636 { 6637 char c; 6638 6639 if (p == NULL || *p == '\0') 6640 return (&dtrace_match_nul); 6641 6642 while ((c = *p++) != '\0') { 6643 if (c == '[' || c == '?' || c == '*' || c == '\\') 6644 return (&dtrace_match_glob); 6645 } 6646 6647 return (&dtrace_match_string); 6648 } 6649 6650 /* 6651 * Build a probe comparison key for use with dtrace_match_probe() from the 6652 * given probe description. By convention, a null key only matches anchored 6653 * probes: if each field is the empty string, reset dtpk_fmatch to 6654 * dtrace_match_nonzero(). 6655 */ 6656 static void 6657 dtrace_probekey(const dtrace_probedesc_t *pdp, dtrace_probekey_t *pkp) 6658 { 6659 pkp->dtpk_prov = pdp->dtpd_provider; 6660 pkp->dtpk_pmatch = dtrace_probekey_func(pdp->dtpd_provider); 6661 6662 pkp->dtpk_mod = pdp->dtpd_mod; 6663 pkp->dtpk_mmatch = dtrace_probekey_func(pdp->dtpd_mod); 6664 6665 pkp->dtpk_func = pdp->dtpd_func; 6666 pkp->dtpk_fmatch = dtrace_probekey_func(pdp->dtpd_func); 6667 6668 pkp->dtpk_name = pdp->dtpd_name; 6669 pkp->dtpk_nmatch = dtrace_probekey_func(pdp->dtpd_name); 6670 6671 pkp->dtpk_id = pdp->dtpd_id; 6672 6673 if (pkp->dtpk_id == DTRACE_IDNONE && 6674 pkp->dtpk_pmatch == &dtrace_match_nul && 6675 pkp->dtpk_mmatch == &dtrace_match_nul && 6676 pkp->dtpk_fmatch == &dtrace_match_nul && 6677 pkp->dtpk_nmatch == &dtrace_match_nul) 6678 pkp->dtpk_fmatch = &dtrace_match_nonzero; 6679 } 6680 6681 /* 6682 * DTrace Provider-to-Framework API Functions 6683 * 6684 * These functions implement much of the Provider-to-Framework API, as 6685 * described in <sys/dtrace.h>. The parts of the API not in this section are 6686 * the functions in the API for probe management (found below), and 6687 * dtrace_probe() itself (found above). 6688 */ 6689 6690 /* 6691 * Register the calling provider with the DTrace framework. This should 6692 * generally be called by DTrace providers in their attach(9E) entry point. 6693 */ 6694 int 6695 dtrace_register(const char *name, const dtrace_pattr_t *pap, uint32_t priv, 6696 cred_t *cr, const dtrace_pops_t *pops, void *arg, dtrace_provider_id_t *idp) 6697 { 6698 dtrace_provider_t *provider; 6699 6700 if (name == NULL || pap == NULL || pops == NULL || idp == NULL) { 6701 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 6702 "arguments", name ? name : "<NULL>"); 6703 return (EINVAL); 6704 } 6705 6706 if (name[0] == '\0' || dtrace_badname(name)) { 6707 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 6708 "provider name", name); 6709 return (EINVAL); 6710 } 6711 6712 if ((pops->dtps_provide == NULL && pops->dtps_provide_module == NULL) || 6713 pops->dtps_enable == NULL || pops->dtps_disable == NULL || 6714 pops->dtps_destroy == NULL || 6715 ((pops->dtps_resume == NULL) != (pops->dtps_suspend == NULL))) { 6716 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 6717 "provider ops", name); 6718 return (EINVAL); 6719 } 6720 6721 if (dtrace_badattr(&pap->dtpa_provider) || 6722 dtrace_badattr(&pap->dtpa_mod) || 6723 dtrace_badattr(&pap->dtpa_func) || 6724 dtrace_badattr(&pap->dtpa_name) || 6725 dtrace_badattr(&pap->dtpa_args)) { 6726 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 6727 "provider attributes", name); 6728 return (EINVAL); 6729 } 6730 6731 if (priv & ~DTRACE_PRIV_ALL) { 6732 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 6733 "privilege attributes", name); 6734 return (EINVAL); 6735 } 6736 6737 if ((priv & DTRACE_PRIV_KERNEL) && 6738 (priv & (DTRACE_PRIV_USER | DTRACE_PRIV_OWNER)) && 6739 pops->dtps_usermode == NULL) { 6740 cmn_err(CE_WARN, "failed to register provider '%s': need " 6741 "dtps_usermode() op for given privilege attributes", name); 6742 return (EINVAL); 6743 } 6744 6745 provider = kmem_zalloc(sizeof (dtrace_provider_t), KM_SLEEP); 6746 provider->dtpv_name = kmem_alloc(strlen(name) + 1, KM_SLEEP); 6747 (void) strcpy(provider->dtpv_name, name); 6748 6749 provider->dtpv_attr = *pap; 6750 provider->dtpv_priv.dtpp_flags = priv; 6751 if (cr != NULL) { 6752 provider->dtpv_priv.dtpp_uid = crgetuid(cr); 6753 provider->dtpv_priv.dtpp_zoneid = crgetzoneid(cr); 6754 } 6755 provider->dtpv_pops = *pops; 6756 6757 if (pops->dtps_provide == NULL) { 6758 ASSERT(pops->dtps_provide_module != NULL); 6759 provider->dtpv_pops.dtps_provide = 6760 (void (*)(void *, const dtrace_probedesc_t *))dtrace_nullop; 6761 } 6762 6763 if (pops->dtps_provide_module == NULL) { 6764 ASSERT(pops->dtps_provide != NULL); 6765 provider->dtpv_pops.dtps_provide_module = 6766 (void (*)(void *, struct modctl *))dtrace_nullop; 6767 } 6768 6769 if (pops->dtps_suspend == NULL) { 6770 ASSERT(pops->dtps_resume == NULL); 6771 provider->dtpv_pops.dtps_suspend = 6772 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop; 6773 provider->dtpv_pops.dtps_resume = 6774 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop; 6775 } 6776 6777 provider->dtpv_arg = arg; 6778 *idp = (dtrace_provider_id_t)provider; 6779 6780 if (pops == &dtrace_provider_ops) { 6781 ASSERT(MUTEX_HELD(&dtrace_provider_lock)); 6782 ASSERT(MUTEX_HELD(&dtrace_lock)); 6783 ASSERT(dtrace_anon.dta_enabling == NULL); 6784 6785 /* 6786 * We make sure that the DTrace provider is at the head of 6787 * the provider chain. 6788 */ 6789 provider->dtpv_next = dtrace_provider; 6790 dtrace_provider = provider; 6791 return (0); 6792 } 6793 6794 mutex_enter(&dtrace_provider_lock); 6795 mutex_enter(&dtrace_lock); 6796 6797 /* 6798 * If there is at least one provider registered, we'll add this 6799 * provider after the first provider. 6800 */ 6801 if (dtrace_provider != NULL) { 6802 provider->dtpv_next = dtrace_provider->dtpv_next; 6803 dtrace_provider->dtpv_next = provider; 6804 } else { 6805 dtrace_provider = provider; 6806 } 6807 6808 if (dtrace_retained != NULL) { 6809 dtrace_enabling_provide(provider); 6810 6811 /* 6812 * Now we need to call dtrace_enabling_matchall() -- which 6813 * will acquire cpu_lock and dtrace_lock. We therefore need 6814 * to drop all of our locks before calling into it... 6815 */ 6816 mutex_exit(&dtrace_lock); 6817 mutex_exit(&dtrace_provider_lock); 6818 dtrace_enabling_matchall(); 6819 6820 return (0); 6821 } 6822 6823 mutex_exit(&dtrace_lock); 6824 mutex_exit(&dtrace_provider_lock); 6825 6826 return (0); 6827 } 6828 6829 /* 6830 * Unregister the specified provider from the DTrace framework. This should 6831 * generally be called by DTrace providers in their detach(9E) entry point. 6832 */ 6833 int 6834 dtrace_unregister(dtrace_provider_id_t id) 6835 { 6836 dtrace_provider_t *old = (dtrace_provider_t *)id; 6837 dtrace_provider_t *prev = NULL; 6838 int i, self = 0; 6839 dtrace_probe_t *probe, *first = NULL; 6840 6841 if (old->dtpv_pops.dtps_enable == 6842 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop) { 6843 /* 6844 * If DTrace itself is the provider, we're called with locks 6845 * already held. 6846 */ 6847 ASSERT(old == dtrace_provider); 6848 ASSERT(dtrace_devi != NULL); 6849 ASSERT(MUTEX_HELD(&dtrace_provider_lock)); 6850 ASSERT(MUTEX_HELD(&dtrace_lock)); 6851 self = 1; 6852 6853 if (dtrace_provider->dtpv_next != NULL) { 6854 /* 6855 * There's another provider here; return failure. 6856 */ 6857 return (EBUSY); 6858 } 6859 } else { 6860 mutex_enter(&dtrace_provider_lock); 6861 mutex_enter(&mod_lock); 6862 mutex_enter(&dtrace_lock); 6863 } 6864 6865 /* 6866 * If anyone has /dev/dtrace open, or if there are anonymous enabled 6867 * probes, we refuse to let providers slither away, unless this 6868 * provider has already been explicitly invalidated. 6869 */ 6870 if (!old->dtpv_defunct && 6871 (dtrace_opens || (dtrace_anon.dta_state != NULL && 6872 dtrace_anon.dta_state->dts_necbs > 0))) { 6873 if (!self) { 6874 mutex_exit(&dtrace_lock); 6875 mutex_exit(&mod_lock); 6876 mutex_exit(&dtrace_provider_lock); 6877 } 6878 return (EBUSY); 6879 } 6880 6881 /* 6882 * Attempt to destroy the probes associated with this provider. 6883 */ 6884 for (i = 0; i < dtrace_nprobes; i++) { 6885 if ((probe = dtrace_probes[i]) == NULL) 6886 continue; 6887 6888 if (probe->dtpr_provider != old) 6889 continue; 6890 6891 if (probe->dtpr_ecb == NULL) 6892 continue; 6893 6894 /* 6895 * We have at least one ECB; we can't remove this provider. 6896 */ 6897 if (!self) { 6898 mutex_exit(&dtrace_lock); 6899 mutex_exit(&mod_lock); 6900 mutex_exit(&dtrace_provider_lock); 6901 } 6902 return (EBUSY); 6903 } 6904 6905 /* 6906 * All of the probes for this provider are disabled; we can safely 6907 * remove all of them from their hash chains and from the probe array. 6908 */ 6909 for (i = 0; i < dtrace_nprobes; i++) { 6910 if ((probe = dtrace_probes[i]) == NULL) 6911 continue; 6912 6913 if (probe->dtpr_provider != old) 6914 continue; 6915 6916 dtrace_probes[i] = NULL; 6917 6918 dtrace_hash_remove(dtrace_bymod, probe); 6919 dtrace_hash_remove(dtrace_byfunc, probe); 6920 dtrace_hash_remove(dtrace_byname, probe); 6921 6922 if (first == NULL) { 6923 first = probe; 6924 probe->dtpr_nextmod = NULL; 6925 } else { 6926 probe->dtpr_nextmod = first; 6927 first = probe; 6928 } 6929 } 6930 6931 /* 6932 * The provider's probes have been removed from the hash chains and 6933 * from the probe array. Now issue a dtrace_sync() to be sure that 6934 * everyone has cleared out from any probe array processing. 6935 */ 6936 dtrace_sync(); 6937 6938 for (probe = first; probe != NULL; probe = first) { 6939 first = probe->dtpr_nextmod; 6940 6941 old->dtpv_pops.dtps_destroy(old->dtpv_arg, probe->dtpr_id, 6942 probe->dtpr_arg); 6943 kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1); 6944 kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1); 6945 kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1); 6946 vmem_free(dtrace_arena, (void *)(uintptr_t)(probe->dtpr_id), 1); 6947 kmem_free(probe, sizeof (dtrace_probe_t)); 6948 } 6949 6950 if ((prev = dtrace_provider) == old) { 6951 ASSERT(self || dtrace_devi == NULL); 6952 ASSERT(old->dtpv_next == NULL || dtrace_devi == NULL); 6953 dtrace_provider = old->dtpv_next; 6954 } else { 6955 while (prev != NULL && prev->dtpv_next != old) 6956 prev = prev->dtpv_next; 6957 6958 if (prev == NULL) { 6959 panic("attempt to unregister non-existent " 6960 "dtrace provider %p\n", (void *)id); 6961 } 6962 6963 prev->dtpv_next = old->dtpv_next; 6964 } 6965 6966 if (!self) { 6967 mutex_exit(&dtrace_lock); 6968 mutex_exit(&mod_lock); 6969 mutex_exit(&dtrace_provider_lock); 6970 } 6971 6972 kmem_free(old->dtpv_name, strlen(old->dtpv_name) + 1); 6973 kmem_free(old, sizeof (dtrace_provider_t)); 6974 6975 return (0); 6976 } 6977 6978 /* 6979 * Invalidate the specified provider. All subsequent probe lookups for the 6980 * specified provider will fail, but its probes will not be removed. 6981 */ 6982 void 6983 dtrace_invalidate(dtrace_provider_id_t id) 6984 { 6985 dtrace_provider_t *pvp = (dtrace_provider_t *)id; 6986 6987 ASSERT(pvp->dtpv_pops.dtps_enable != 6988 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop); 6989 6990 mutex_enter(&dtrace_provider_lock); 6991 mutex_enter(&dtrace_lock); 6992 6993 pvp->dtpv_defunct = 1; 6994 6995 mutex_exit(&dtrace_lock); 6996 mutex_exit(&dtrace_provider_lock); 6997 } 6998 6999 /* 7000 * Indicate whether or not DTrace has attached. 7001 */ 7002 int 7003 dtrace_attached(void) 7004 { 7005 /* 7006 * dtrace_provider will be non-NULL iff the DTrace driver has 7007 * attached. (It's non-NULL because DTrace is always itself a 7008 * provider.) 7009 */ 7010 return (dtrace_provider != NULL); 7011 } 7012 7013 /* 7014 * Remove all the unenabled probes for the given provider. This function is 7015 * not unlike dtrace_unregister(), except that it doesn't remove the provider 7016 * -- just as many of its associated probes as it can. 7017 */ 7018 int 7019 dtrace_condense(dtrace_provider_id_t id) 7020 { 7021 dtrace_provider_t *prov = (dtrace_provider_t *)id; 7022 int i; 7023 dtrace_probe_t *probe; 7024 7025 /* 7026 * Make sure this isn't the dtrace provider itself. 7027 */ 7028 ASSERT(prov->dtpv_pops.dtps_enable != 7029 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop); 7030 7031 mutex_enter(&dtrace_provider_lock); 7032 mutex_enter(&dtrace_lock); 7033 7034 /* 7035 * Attempt to destroy the probes associated with this provider. 7036 */ 7037 for (i = 0; i < dtrace_nprobes; i++) { 7038 if ((probe = dtrace_probes[i]) == NULL) 7039 continue; 7040 7041 if (probe->dtpr_provider != prov) 7042 continue; 7043 7044 if (probe->dtpr_ecb != NULL) 7045 continue; 7046 7047 dtrace_probes[i] = NULL; 7048 7049 dtrace_hash_remove(dtrace_bymod, probe); 7050 dtrace_hash_remove(dtrace_byfunc, probe); 7051 dtrace_hash_remove(dtrace_byname, probe); 7052 7053 prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, i + 1, 7054 probe->dtpr_arg); 7055 kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1); 7056 kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1); 7057 kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1); 7058 kmem_free(probe, sizeof (dtrace_probe_t)); 7059 vmem_free(dtrace_arena, (void *)((uintptr_t)i + 1), 1); 7060 } 7061 7062 mutex_exit(&dtrace_lock); 7063 mutex_exit(&dtrace_provider_lock); 7064 7065 return (0); 7066 } 7067 7068 /* 7069 * DTrace Probe Management Functions 7070 * 7071 * The functions in this section perform the DTrace probe management, 7072 * including functions to create probes, look-up probes, and call into the 7073 * providers to request that probes be provided. Some of these functions are 7074 * in the Provider-to-Framework API; these functions can be identified by the 7075 * fact that they are not declared "static". 7076 */ 7077 7078 /* 7079 * Create a probe with the specified module name, function name, and name. 7080 */ 7081 dtrace_id_t 7082 dtrace_probe_create(dtrace_provider_id_t prov, const char *mod, 7083 const char *func, const char *name, int aframes, void *arg) 7084 { 7085 dtrace_probe_t *probe, **probes; 7086 dtrace_provider_t *provider = (dtrace_provider_t *)prov; 7087 dtrace_id_t id; 7088 7089 if (provider == dtrace_provider) { 7090 ASSERT(MUTEX_HELD(&dtrace_lock)); 7091 } else { 7092 mutex_enter(&dtrace_lock); 7093 } 7094 7095 id = (dtrace_id_t)(uintptr_t)vmem_alloc(dtrace_arena, 1, 7096 VM_BESTFIT | VM_SLEEP); 7097 probe = kmem_zalloc(sizeof (dtrace_probe_t), KM_SLEEP); 7098 7099 probe->dtpr_id = id; 7100 probe->dtpr_gen = dtrace_probegen++; 7101 probe->dtpr_mod = dtrace_strdup(mod); 7102 probe->dtpr_func = dtrace_strdup(func); 7103 probe->dtpr_name = dtrace_strdup(name); 7104 probe->dtpr_arg = arg; 7105 probe->dtpr_aframes = aframes; 7106 probe->dtpr_provider = provider; 7107 7108 dtrace_hash_add(dtrace_bymod, probe); 7109 dtrace_hash_add(dtrace_byfunc, probe); 7110 dtrace_hash_add(dtrace_byname, probe); 7111 7112 if (id - 1 >= dtrace_nprobes) { 7113 size_t osize = dtrace_nprobes * sizeof (dtrace_probe_t *); 7114 size_t nsize = osize << 1; 7115 7116 if (nsize == 0) { 7117 ASSERT(osize == 0); 7118 ASSERT(dtrace_probes == NULL); 7119 nsize = sizeof (dtrace_probe_t *); 7120 } 7121 7122 probes = kmem_zalloc(nsize, KM_SLEEP); 7123 7124 if (dtrace_probes == NULL) { 7125 ASSERT(osize == 0); 7126 dtrace_probes = probes; 7127 dtrace_nprobes = 1; 7128 } else { 7129 dtrace_probe_t **oprobes = dtrace_probes; 7130 7131 bcopy(oprobes, probes, osize); 7132 dtrace_membar_producer(); 7133 dtrace_probes = probes; 7134 7135 dtrace_sync(); 7136 7137 /* 7138 * All CPUs are now seeing the new probes array; we can 7139 * safely free the old array. 7140 */ 7141 kmem_free(oprobes, osize); 7142 dtrace_nprobes <<= 1; 7143 } 7144 7145 ASSERT(id - 1 < dtrace_nprobes); 7146 } 7147 7148 ASSERT(dtrace_probes[id - 1] == NULL); 7149 dtrace_probes[id - 1] = probe; 7150 7151 if (provider != dtrace_provider) 7152 mutex_exit(&dtrace_lock); 7153 7154 return (id); 7155 } 7156 7157 static dtrace_probe_t * 7158 dtrace_probe_lookup_id(dtrace_id_t id) 7159 { 7160 ASSERT(MUTEX_HELD(&dtrace_lock)); 7161 7162 if (id == 0 || id > dtrace_nprobes) 7163 return (NULL); 7164 7165 return (dtrace_probes[id - 1]); 7166 } 7167 7168 static int 7169 dtrace_probe_lookup_match(dtrace_probe_t *probe, void *arg) 7170 { 7171 *((dtrace_id_t *)arg) = probe->dtpr_id; 7172 7173 return (DTRACE_MATCH_DONE); 7174 } 7175 7176 /* 7177 * Look up a probe based on provider and one or more of module name, function 7178 * name and probe name. 7179 */ 7180 dtrace_id_t 7181 dtrace_probe_lookup(dtrace_provider_id_t prid, const char *mod, 7182 const char *func, const char *name) 7183 { 7184 dtrace_probekey_t pkey; 7185 dtrace_id_t id; 7186 int match; 7187 7188 pkey.dtpk_prov = ((dtrace_provider_t *)prid)->dtpv_name; 7189 pkey.dtpk_pmatch = &dtrace_match_string; 7190 pkey.dtpk_mod = mod; 7191 pkey.dtpk_mmatch = mod ? &dtrace_match_string : &dtrace_match_nul; 7192 pkey.dtpk_func = func; 7193 pkey.dtpk_fmatch = func ? &dtrace_match_string : &dtrace_match_nul; 7194 pkey.dtpk_name = name; 7195 pkey.dtpk_nmatch = name ? &dtrace_match_string : &dtrace_match_nul; 7196 pkey.dtpk_id = DTRACE_IDNONE; 7197 7198 mutex_enter(&dtrace_lock); 7199 match = dtrace_match(&pkey, DTRACE_PRIV_ALL, 0, 0, 7200 dtrace_probe_lookup_match, &id); 7201 mutex_exit(&dtrace_lock); 7202 7203 ASSERT(match == 1 || match == 0); 7204 return (match ? id : 0); 7205 } 7206 7207 /* 7208 * Returns the probe argument associated with the specified probe. 7209 */ 7210 void * 7211 dtrace_probe_arg(dtrace_provider_id_t id, dtrace_id_t pid) 7212 { 7213 dtrace_probe_t *probe; 7214 void *rval = NULL; 7215 7216 mutex_enter(&dtrace_lock); 7217 7218 if ((probe = dtrace_probe_lookup_id(pid)) != NULL && 7219 probe->dtpr_provider == (dtrace_provider_t *)id) 7220 rval = probe->dtpr_arg; 7221 7222 mutex_exit(&dtrace_lock); 7223 7224 return (rval); 7225 } 7226 7227 /* 7228 * Copy a probe into a probe description. 7229 */ 7230 static void 7231 dtrace_probe_description(const dtrace_probe_t *prp, dtrace_probedesc_t *pdp) 7232 { 7233 bzero(pdp, sizeof (dtrace_probedesc_t)); 7234 pdp->dtpd_id = prp->dtpr_id; 7235 7236 (void) strncpy(pdp->dtpd_provider, 7237 prp->dtpr_provider->dtpv_name, DTRACE_PROVNAMELEN - 1); 7238 7239 (void) strncpy(pdp->dtpd_mod, prp->dtpr_mod, DTRACE_MODNAMELEN - 1); 7240 (void) strncpy(pdp->dtpd_func, prp->dtpr_func, DTRACE_FUNCNAMELEN - 1); 7241 (void) strncpy(pdp->dtpd_name, prp->dtpr_name, DTRACE_NAMELEN - 1); 7242 } 7243 7244 /* 7245 * Called to indicate that a probe -- or probes -- should be provided by a 7246 * specfied provider. If the specified description is NULL, the provider will 7247 * be told to provide all of its probes. (This is done whenever a new 7248 * consumer comes along, or whenever a retained enabling is to be matched.) If 7249 * the specified description is non-NULL, the provider is given the 7250 * opportunity to dynamically provide the specified probe, allowing providers 7251 * to support the creation of probes on-the-fly. (So-called _autocreated_ 7252 * probes.) If the provider is NULL, the operations will be applied to all 7253 * providers; if the provider is non-NULL the operations will only be applied 7254 * to the specified provider. The dtrace_provider_lock must be held, and the 7255 * dtrace_lock must _not_ be held -- the provider's dtps_provide() operation 7256 * will need to grab the dtrace_lock when it reenters the framework through 7257 * dtrace_probe_lookup(), dtrace_probe_create(), etc. 7258 */ 7259 static void 7260 dtrace_probe_provide(dtrace_probedesc_t *desc, dtrace_provider_t *prv) 7261 { 7262 struct modctl *ctl; 7263 int all = 0; 7264 7265 ASSERT(MUTEX_HELD(&dtrace_provider_lock)); 7266 7267 if (prv == NULL) { 7268 all = 1; 7269 prv = dtrace_provider; 7270 } 7271 7272 do { 7273 /* 7274 * First, call the blanket provide operation. 7275 */ 7276 prv->dtpv_pops.dtps_provide(prv->dtpv_arg, desc); 7277 7278 /* 7279 * Now call the per-module provide operation. We will grab 7280 * mod_lock to prevent the list from being modified. Note 7281 * that this also prevents the mod_busy bits from changing. 7282 * (mod_busy can only be changed with mod_lock held.) 7283 */ 7284 mutex_enter(&mod_lock); 7285 7286 ctl = &modules; 7287 do { 7288 if (ctl->mod_busy || ctl->mod_mp == NULL) 7289 continue; 7290 7291 prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl); 7292 7293 } while ((ctl = ctl->mod_next) != &modules); 7294 7295 mutex_exit(&mod_lock); 7296 } while (all && (prv = prv->dtpv_next) != NULL); 7297 } 7298 7299 /* 7300 * Iterate over each probe, and call the Framework-to-Provider API function 7301 * denoted by offs. 7302 */ 7303 static void 7304 dtrace_probe_foreach(uintptr_t offs) 7305 { 7306 dtrace_provider_t *prov; 7307 void (*func)(void *, dtrace_id_t, void *); 7308 dtrace_probe_t *probe; 7309 dtrace_icookie_t cookie; 7310 int i; 7311 7312 /* 7313 * We disable interrupts to walk through the probe array. This is 7314 * safe -- the dtrace_sync() in dtrace_unregister() assures that we 7315 * won't see stale data. 7316 */ 7317 cookie = dtrace_interrupt_disable(); 7318 7319 for (i = 0; i < dtrace_nprobes; i++) { 7320 if ((probe = dtrace_probes[i]) == NULL) 7321 continue; 7322 7323 if (probe->dtpr_ecb == NULL) { 7324 /* 7325 * This probe isn't enabled -- don't call the function. 7326 */ 7327 continue; 7328 } 7329 7330 prov = probe->dtpr_provider; 7331 func = *((void(**)(void *, dtrace_id_t, void *)) 7332 ((uintptr_t)&prov->dtpv_pops + offs)); 7333 7334 func(prov->dtpv_arg, i + 1, probe->dtpr_arg); 7335 } 7336 7337 dtrace_interrupt_enable(cookie); 7338 } 7339 7340 static int 7341 dtrace_probe_enable(const dtrace_probedesc_t *desc, dtrace_enabling_t *enab) 7342 { 7343 dtrace_probekey_t pkey; 7344 uint32_t priv; 7345 uid_t uid; 7346 zoneid_t zoneid; 7347 7348 ASSERT(MUTEX_HELD(&dtrace_lock)); 7349 dtrace_ecb_create_cache = NULL; 7350 7351 if (desc == NULL) { 7352 /* 7353 * If we're passed a NULL description, we're being asked to 7354 * create an ECB with a NULL probe. 7355 */ 7356 (void) dtrace_ecb_create_enable(NULL, enab); 7357 return (0); 7358 } 7359 7360 dtrace_probekey(desc, &pkey); 7361 dtrace_cred2priv(enab->dten_vstate->dtvs_state->dts_cred.dcr_cred, 7362 &priv, &uid, &zoneid); 7363 7364 return (dtrace_match(&pkey, priv, uid, zoneid, dtrace_ecb_create_enable, 7365 enab)); 7366 } 7367 7368 /* 7369 * DTrace Helper Provider Functions 7370 */ 7371 static void 7372 dtrace_dofattr2attr(dtrace_attribute_t *attr, const dof_attr_t dofattr) 7373 { 7374 attr->dtat_name = DOF_ATTR_NAME(dofattr); 7375 attr->dtat_data = DOF_ATTR_DATA(dofattr); 7376 attr->dtat_class = DOF_ATTR_CLASS(dofattr); 7377 } 7378 7379 static void 7380 dtrace_dofprov2hprov(dtrace_helper_provdesc_t *hprov, 7381 const dof_provider_t *dofprov, char *strtab) 7382 { 7383 hprov->dthpv_provname = strtab + dofprov->dofpv_name; 7384 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_provider, 7385 dofprov->dofpv_provattr); 7386 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_mod, 7387 dofprov->dofpv_modattr); 7388 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_func, 7389 dofprov->dofpv_funcattr); 7390 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_name, 7391 dofprov->dofpv_nameattr); 7392 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_args, 7393 dofprov->dofpv_argsattr); 7394 } 7395 7396 static void 7397 dtrace_helper_provide_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid) 7398 { 7399 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof; 7400 dof_hdr_t *dof = (dof_hdr_t *)daddr; 7401 dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec; 7402 dof_provider_t *provider; 7403 dof_probe_t *probe; 7404 uint32_t *off, *enoff; 7405 uint8_t *arg; 7406 char *strtab; 7407 uint_t i, nprobes; 7408 dtrace_helper_provdesc_t dhpv; 7409 dtrace_helper_probedesc_t dhpb; 7410 dtrace_meta_t *meta = dtrace_meta_pid; 7411 dtrace_mops_t *mops = &meta->dtm_mops; 7412 void *parg; 7413 7414 provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset); 7415 str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 7416 provider->dofpv_strtab * dof->dofh_secsize); 7417 prb_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 7418 provider->dofpv_probes * dof->dofh_secsize); 7419 arg_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 7420 provider->dofpv_prargs * dof->dofh_secsize); 7421 off_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 7422 provider->dofpv_proffs * dof->dofh_secsize); 7423 7424 strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset); 7425 off = (uint32_t *)(uintptr_t)(daddr + off_sec->dofs_offset); 7426 arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset); 7427 enoff = NULL; 7428 7429 /* 7430 * See dtrace_helper_provider_validate(). 7431 */ 7432 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 && 7433 provider->dofpv_prenoffs != DOF_SECT_NONE) { 7434 enoff_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 7435 provider->dofpv_prenoffs * dof->dofh_secsize); 7436 enoff = (uint32_t *)(uintptr_t)(daddr + enoff_sec->dofs_offset); 7437 } 7438 7439 nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize; 7440 7441 /* 7442 * Create the provider. 7443 */ 7444 dtrace_dofprov2hprov(&dhpv, provider, strtab); 7445 7446 if ((parg = mops->dtms_provide_pid(meta->dtm_arg, &dhpv, pid)) == NULL) 7447 return; 7448 7449 meta->dtm_count++; 7450 7451 /* 7452 * Create the probes. 7453 */ 7454 for (i = 0; i < nprobes; i++) { 7455 probe = (dof_probe_t *)(uintptr_t)(daddr + 7456 prb_sec->dofs_offset + i * prb_sec->dofs_entsize); 7457 7458 dhpb.dthpb_mod = dhp->dofhp_mod; 7459 dhpb.dthpb_func = strtab + probe->dofpr_func; 7460 dhpb.dthpb_name = strtab + probe->dofpr_name; 7461 dhpb.dthpb_base = probe->dofpr_addr; 7462 dhpb.dthpb_offs = off + probe->dofpr_offidx; 7463 dhpb.dthpb_noffs = probe->dofpr_noffs; 7464 if (enoff != NULL) { 7465 dhpb.dthpb_enoffs = enoff + probe->dofpr_enoffidx; 7466 dhpb.dthpb_nenoffs = probe->dofpr_nenoffs; 7467 } else { 7468 dhpb.dthpb_enoffs = NULL; 7469 dhpb.dthpb_nenoffs = 0; 7470 } 7471 dhpb.dthpb_args = arg + probe->dofpr_argidx; 7472 dhpb.dthpb_nargc = probe->dofpr_nargc; 7473 dhpb.dthpb_xargc = probe->dofpr_xargc; 7474 dhpb.dthpb_ntypes = strtab + probe->dofpr_nargv; 7475 dhpb.dthpb_xtypes = strtab + probe->dofpr_xargv; 7476 7477 mops->dtms_create_probe(meta->dtm_arg, parg, &dhpb); 7478 } 7479 } 7480 7481 static void 7482 dtrace_helper_provide(dof_helper_t *dhp, pid_t pid) 7483 { 7484 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof; 7485 dof_hdr_t *dof = (dof_hdr_t *)daddr; 7486 int i; 7487 7488 ASSERT(MUTEX_HELD(&dtrace_meta_lock)); 7489 7490 for (i = 0; i < dof->dofh_secnum; i++) { 7491 dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr + 7492 dof->dofh_secoff + i * dof->dofh_secsize); 7493 7494 if (sec->dofs_type != DOF_SECT_PROVIDER) 7495 continue; 7496 7497 dtrace_helper_provide_one(dhp, sec, pid); 7498 } 7499 7500 /* 7501 * We may have just created probes, so we must now rematch against 7502 * any retained enablings. Note that this call will acquire both 7503 * cpu_lock and dtrace_lock; the fact that we are holding 7504 * dtrace_meta_lock now is what defines the ordering with respect to 7505 * these three locks. 7506 */ 7507 dtrace_enabling_matchall(); 7508 } 7509 7510 static void 7511 dtrace_helper_provider_remove_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid) 7512 { 7513 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof; 7514 dof_hdr_t *dof = (dof_hdr_t *)daddr; 7515 dof_sec_t *str_sec; 7516 dof_provider_t *provider; 7517 char *strtab; 7518 dtrace_helper_provdesc_t dhpv; 7519 dtrace_meta_t *meta = dtrace_meta_pid; 7520 dtrace_mops_t *mops = &meta->dtm_mops; 7521 7522 provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset); 7523 str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 7524 provider->dofpv_strtab * dof->dofh_secsize); 7525 7526 strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset); 7527 7528 /* 7529 * Create the provider. 7530 */ 7531 dtrace_dofprov2hprov(&dhpv, provider, strtab); 7532 7533 mops->dtms_remove_pid(meta->dtm_arg, &dhpv, pid); 7534 7535 meta->dtm_count--; 7536 } 7537 7538 static void 7539 dtrace_helper_provider_remove(dof_helper_t *dhp, pid_t pid) 7540 { 7541 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof; 7542 dof_hdr_t *dof = (dof_hdr_t *)daddr; 7543 int i; 7544 7545 ASSERT(MUTEX_HELD(&dtrace_meta_lock)); 7546 7547 for (i = 0; i < dof->dofh_secnum; i++) { 7548 dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr + 7549 dof->dofh_secoff + i * dof->dofh_secsize); 7550 7551 if (sec->dofs_type != DOF_SECT_PROVIDER) 7552 continue; 7553 7554 dtrace_helper_provider_remove_one(dhp, sec, pid); 7555 } 7556 } 7557 7558 /* 7559 * DTrace Meta Provider-to-Framework API Functions 7560 * 7561 * These functions implement the Meta Provider-to-Framework API, as described 7562 * in <sys/dtrace.h>. 7563 */ 7564 int 7565 dtrace_meta_register(const char *name, const dtrace_mops_t *mops, void *arg, 7566 dtrace_meta_provider_id_t *idp) 7567 { 7568 dtrace_meta_t *meta; 7569 dtrace_helpers_t *help, *next; 7570 int i; 7571 7572 *idp = DTRACE_METAPROVNONE; 7573 7574 /* 7575 * We strictly don't need the name, but we hold onto it for 7576 * debuggability. All hail error queues! 7577 */ 7578 if (name == NULL) { 7579 cmn_err(CE_WARN, "failed to register meta-provider: " 7580 "invalid name"); 7581 return (EINVAL); 7582 } 7583 7584 if (mops == NULL || 7585 mops->dtms_create_probe == NULL || 7586 mops->dtms_provide_pid == NULL || 7587 mops->dtms_remove_pid == NULL) { 7588 cmn_err(CE_WARN, "failed to register meta-register %s: " 7589 "invalid ops", name); 7590 return (EINVAL); 7591 } 7592 7593 meta = kmem_zalloc(sizeof (dtrace_meta_t), KM_SLEEP); 7594 meta->dtm_mops = *mops; 7595 meta->dtm_name = kmem_alloc(strlen(name) + 1, KM_SLEEP); 7596 (void) strcpy(meta->dtm_name, name); 7597 meta->dtm_arg = arg; 7598 7599 mutex_enter(&dtrace_meta_lock); 7600 mutex_enter(&dtrace_lock); 7601 7602 if (dtrace_meta_pid != NULL) { 7603 mutex_exit(&dtrace_lock); 7604 mutex_exit(&dtrace_meta_lock); 7605 cmn_err(CE_WARN, "failed to register meta-register %s: " 7606 "user-land meta-provider exists", name); 7607 kmem_free(meta->dtm_name, strlen(meta->dtm_name) + 1); 7608 kmem_free(meta, sizeof (dtrace_meta_t)); 7609 return (EINVAL); 7610 } 7611 7612 dtrace_meta_pid = meta; 7613 *idp = (dtrace_meta_provider_id_t)meta; 7614 7615 /* 7616 * If there are providers and probes ready to go, pass them 7617 * off to the new meta provider now. 7618 */ 7619 7620 help = dtrace_deferred_pid; 7621 dtrace_deferred_pid = NULL; 7622 7623 mutex_exit(&dtrace_lock); 7624 7625 while (help != NULL) { 7626 for (i = 0; i < help->dthps_nprovs; i++) { 7627 dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov, 7628 help->dthps_pid); 7629 } 7630 7631 next = help->dthps_next; 7632 help->dthps_next = NULL; 7633 help->dthps_prev = NULL; 7634 help->dthps_deferred = 0; 7635 help = next; 7636 } 7637 7638 mutex_exit(&dtrace_meta_lock); 7639 7640 return (0); 7641 } 7642 7643 int 7644 dtrace_meta_unregister(dtrace_meta_provider_id_t id) 7645 { 7646 dtrace_meta_t **pp, *old = (dtrace_meta_t *)id; 7647 7648 mutex_enter(&dtrace_meta_lock); 7649 mutex_enter(&dtrace_lock); 7650 7651 if (old == dtrace_meta_pid) { 7652 pp = &dtrace_meta_pid; 7653 } else { 7654 panic("attempt to unregister non-existent " 7655 "dtrace meta-provider %p\n", (void *)old); 7656 } 7657 7658 if (old->dtm_count != 0) { 7659 mutex_exit(&dtrace_lock); 7660 mutex_exit(&dtrace_meta_lock); 7661 return (EBUSY); 7662 } 7663 7664 *pp = NULL; 7665 7666 mutex_exit(&dtrace_lock); 7667 mutex_exit(&dtrace_meta_lock); 7668 7669 kmem_free(old->dtm_name, strlen(old->dtm_name) + 1); 7670 kmem_free(old, sizeof (dtrace_meta_t)); 7671 7672 return (0); 7673 } 7674 7675 7676 /* 7677 * DTrace DIF Object Functions 7678 */ 7679 static int 7680 dtrace_difo_err(uint_t pc, const char *format, ...) 7681 { 7682 if (dtrace_err_verbose) { 7683 va_list alist; 7684 7685 (void) uprintf("dtrace DIF object error: [%u]: ", pc); 7686 va_start(alist, format); 7687 (void) vuprintf(format, alist); 7688 va_end(alist); 7689 } 7690 7691 #ifdef DTRACE_ERRDEBUG 7692 dtrace_errdebug(format); 7693 #endif 7694 return (1); 7695 } 7696 7697 /* 7698 * Validate a DTrace DIF object by checking the IR instructions. The following 7699 * rules are currently enforced by dtrace_difo_validate(): 7700 * 7701 * 1. Each instruction must have a valid opcode 7702 * 2. Each register, string, variable, or subroutine reference must be valid 7703 * 3. No instruction can modify register %r0 (must be zero) 7704 * 4. All instruction reserved bits must be set to zero 7705 * 5. The last instruction must be a "ret" instruction 7706 * 6. All branch targets must reference a valid instruction _after_ the branch 7707 */ 7708 static int 7709 dtrace_difo_validate(dtrace_difo_t *dp, dtrace_vstate_t *vstate, uint_t nregs, 7710 cred_t *cr) 7711 { 7712 int err = 0, i; 7713 int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err; 7714 int kcheckload; 7715 uint_t pc; 7716 7717 kcheckload = cr == NULL || 7718 (vstate->dtvs_state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) == 0; 7719 7720 dp->dtdo_destructive = 0; 7721 7722 for (pc = 0; pc < dp->dtdo_len && err == 0; pc++) { 7723 dif_instr_t instr = dp->dtdo_buf[pc]; 7724 7725 uint_t r1 = DIF_INSTR_R1(instr); 7726 uint_t r2 = DIF_INSTR_R2(instr); 7727 uint_t rd = DIF_INSTR_RD(instr); 7728 uint_t rs = DIF_INSTR_RS(instr); 7729 uint_t label = DIF_INSTR_LABEL(instr); 7730 uint_t v = DIF_INSTR_VAR(instr); 7731 uint_t subr = DIF_INSTR_SUBR(instr); 7732 uint_t type = DIF_INSTR_TYPE(instr); 7733 uint_t op = DIF_INSTR_OP(instr); 7734 7735 switch (op) { 7736 case DIF_OP_OR: 7737 case DIF_OP_XOR: 7738 case DIF_OP_AND: 7739 case DIF_OP_SLL: 7740 case DIF_OP_SRL: 7741 case DIF_OP_SRA: 7742 case DIF_OP_SUB: 7743 case DIF_OP_ADD: 7744 case DIF_OP_MUL: 7745 case DIF_OP_SDIV: 7746 case DIF_OP_UDIV: 7747 case DIF_OP_SREM: 7748 case DIF_OP_UREM: 7749 case DIF_OP_COPYS: 7750 if (r1 >= nregs) 7751 err += efunc(pc, "invalid register %u\n", r1); 7752 if (r2 >= nregs) 7753 err += efunc(pc, "invalid register %u\n", r2); 7754 if (rd >= nregs) 7755 err += efunc(pc, "invalid register %u\n", rd); 7756 if (rd == 0) 7757 err += efunc(pc, "cannot write to %r0\n"); 7758 break; 7759 case DIF_OP_NOT: 7760 case DIF_OP_MOV: 7761 case DIF_OP_ALLOCS: 7762 if (r1 >= nregs) 7763 err += efunc(pc, "invalid register %u\n", r1); 7764 if (r2 != 0) 7765 err += efunc(pc, "non-zero reserved bits\n"); 7766 if (rd >= nregs) 7767 err += efunc(pc, "invalid register %u\n", rd); 7768 if (rd == 0) 7769 err += efunc(pc, "cannot write to %r0\n"); 7770 break; 7771 case DIF_OP_LDSB: 7772 case DIF_OP_LDSH: 7773 case DIF_OP_LDSW: 7774 case DIF_OP_LDUB: 7775 case DIF_OP_LDUH: 7776 case DIF_OP_LDUW: 7777 case DIF_OP_LDX: 7778 if (r1 >= nregs) 7779 err += efunc(pc, "invalid register %u\n", r1); 7780 if (r2 != 0) 7781 err += efunc(pc, "non-zero reserved bits\n"); 7782 if (rd >= nregs) 7783 err += efunc(pc, "invalid register %u\n", rd); 7784 if (rd == 0) 7785 err += efunc(pc, "cannot write to %r0\n"); 7786 if (kcheckload) 7787 dp->dtdo_buf[pc] = DIF_INSTR_LOAD(op + 7788 DIF_OP_RLDSB - DIF_OP_LDSB, r1, rd); 7789 break; 7790 case DIF_OP_RLDSB: 7791 case DIF_OP_RLDSH: 7792 case DIF_OP_RLDSW: 7793 case DIF_OP_RLDUB: 7794 case DIF_OP_RLDUH: 7795 case DIF_OP_RLDUW: 7796 case DIF_OP_RLDX: 7797 if (r1 >= nregs) 7798 err += efunc(pc, "invalid register %u\n", r1); 7799 if (r2 != 0) 7800 err += efunc(pc, "non-zero reserved bits\n"); 7801 if (rd >= nregs) 7802 err += efunc(pc, "invalid register %u\n", rd); 7803 if (rd == 0) 7804 err += efunc(pc, "cannot write to %r0\n"); 7805 break; 7806 case DIF_OP_ULDSB: 7807 case DIF_OP_ULDSH: 7808 case DIF_OP_ULDSW: 7809 case DIF_OP_ULDUB: 7810 case DIF_OP_ULDUH: 7811 case DIF_OP_ULDUW: 7812 case DIF_OP_ULDX: 7813 if (r1 >= nregs) 7814 err += efunc(pc, "invalid register %u\n", r1); 7815 if (r2 != 0) 7816 err += efunc(pc, "non-zero reserved bits\n"); 7817 if (rd >= nregs) 7818 err += efunc(pc, "invalid register %u\n", rd); 7819 if (rd == 0) 7820 err += efunc(pc, "cannot write to %r0\n"); 7821 break; 7822 case DIF_OP_STB: 7823 case DIF_OP_STH: 7824 case DIF_OP_STW: 7825 case DIF_OP_STX: 7826 if (r1 >= nregs) 7827 err += efunc(pc, "invalid register %u\n", r1); 7828 if (r2 != 0) 7829 err += efunc(pc, "non-zero reserved bits\n"); 7830 if (rd >= nregs) 7831 err += efunc(pc, "invalid register %u\n", rd); 7832 if (rd == 0) 7833 err += efunc(pc, "cannot write to 0 address\n"); 7834 break; 7835 case DIF_OP_CMP: 7836 case DIF_OP_SCMP: 7837 if (r1 >= nregs) 7838 err += efunc(pc, "invalid register %u\n", r1); 7839 if (r2 >= nregs) 7840 err += efunc(pc, "invalid register %u\n", r2); 7841 if (rd != 0) 7842 err += efunc(pc, "non-zero reserved bits\n"); 7843 break; 7844 case DIF_OP_TST: 7845 if (r1 >= nregs) 7846 err += efunc(pc, "invalid register %u\n", r1); 7847 if (r2 != 0 || rd != 0) 7848 err += efunc(pc, "non-zero reserved bits\n"); 7849 break; 7850 case DIF_OP_BA: 7851 case DIF_OP_BE: 7852 case DIF_OP_BNE: 7853 case DIF_OP_BG: 7854 case DIF_OP_BGU: 7855 case DIF_OP_BGE: 7856 case DIF_OP_BGEU: 7857 case DIF_OP_BL: 7858 case DIF_OP_BLU: 7859 case DIF_OP_BLE: 7860 case DIF_OP_BLEU: 7861 if (label >= dp->dtdo_len) { 7862 err += efunc(pc, "invalid branch target %u\n", 7863 label); 7864 } 7865 if (label <= pc) { 7866 err += efunc(pc, "backward branch to %u\n", 7867 label); 7868 } 7869 break; 7870 case DIF_OP_RET: 7871 if (r1 != 0 || r2 != 0) 7872 err += efunc(pc, "non-zero reserved bits\n"); 7873 if (rd >= nregs) 7874 err += efunc(pc, "invalid register %u\n", rd); 7875 break; 7876 case DIF_OP_NOP: 7877 case DIF_OP_POPTS: 7878 case DIF_OP_FLUSHTS: 7879 if (r1 != 0 || r2 != 0 || rd != 0) 7880 err += efunc(pc, "non-zero reserved bits\n"); 7881 break; 7882 case DIF_OP_SETX: 7883 if (DIF_INSTR_INTEGER(instr) >= dp->dtdo_intlen) { 7884 err += efunc(pc, "invalid integer ref %u\n", 7885 DIF_INSTR_INTEGER(instr)); 7886 } 7887 if (rd >= nregs) 7888 err += efunc(pc, "invalid register %u\n", rd); 7889 if (rd == 0) 7890 err += efunc(pc, "cannot write to %r0\n"); 7891 break; 7892 case DIF_OP_SETS: 7893 if (DIF_INSTR_STRING(instr) >= dp->dtdo_strlen) { 7894 err += efunc(pc, "invalid string ref %u\n", 7895 DIF_INSTR_STRING(instr)); 7896 } 7897 if (rd >= nregs) 7898 err += efunc(pc, "invalid register %u\n", rd); 7899 if (rd == 0) 7900 err += efunc(pc, "cannot write to %r0\n"); 7901 break; 7902 case DIF_OP_LDGA: 7903 case DIF_OP_LDTA: 7904 if (r1 > DIF_VAR_ARRAY_MAX) 7905 err += efunc(pc, "invalid array %u\n", r1); 7906 if (r2 >= nregs) 7907 err += efunc(pc, "invalid register %u\n", r2); 7908 if (rd >= nregs) 7909 err += efunc(pc, "invalid register %u\n", rd); 7910 if (rd == 0) 7911 err += efunc(pc, "cannot write to %r0\n"); 7912 break; 7913 case DIF_OP_LDGS: 7914 case DIF_OP_LDTS: 7915 case DIF_OP_LDLS: 7916 case DIF_OP_LDGAA: 7917 case DIF_OP_LDTAA: 7918 if (v < DIF_VAR_OTHER_MIN || v > DIF_VAR_OTHER_MAX) 7919 err += efunc(pc, "invalid variable %u\n", v); 7920 if (rd >= nregs) 7921 err += efunc(pc, "invalid register %u\n", rd); 7922 if (rd == 0) 7923 err += efunc(pc, "cannot write to %r0\n"); 7924 break; 7925 case DIF_OP_STGS: 7926 case DIF_OP_STTS: 7927 case DIF_OP_STLS: 7928 case DIF_OP_STGAA: 7929 case DIF_OP_STTAA: 7930 if (v < DIF_VAR_OTHER_UBASE || v > DIF_VAR_OTHER_MAX) 7931 err += efunc(pc, "invalid variable %u\n", v); 7932 if (rs >= nregs) 7933 err += efunc(pc, "invalid register %u\n", rd); 7934 break; 7935 case DIF_OP_CALL: 7936 if (subr > DIF_SUBR_MAX) 7937 err += efunc(pc, "invalid subr %u\n", subr); 7938 if (rd >= nregs) 7939 err += efunc(pc, "invalid register %u\n", rd); 7940 if (rd == 0) 7941 err += efunc(pc, "cannot write to %r0\n"); 7942 7943 if (subr == DIF_SUBR_COPYOUT || 7944 subr == DIF_SUBR_COPYOUTSTR) { 7945 dp->dtdo_destructive = 1; 7946 } 7947 break; 7948 case DIF_OP_PUSHTR: 7949 if (type != DIF_TYPE_STRING && type != DIF_TYPE_CTF) 7950 err += efunc(pc, "invalid ref type %u\n", type); 7951 if (r2 >= nregs) 7952 err += efunc(pc, "invalid register %u\n", r2); 7953 if (rs >= nregs) 7954 err += efunc(pc, "invalid register %u\n", rs); 7955 break; 7956 case DIF_OP_PUSHTV: 7957 if (type != DIF_TYPE_CTF) 7958 err += efunc(pc, "invalid val type %u\n", type); 7959 if (r2 >= nregs) 7960 err += efunc(pc, "invalid register %u\n", r2); 7961 if (rs >= nregs) 7962 err += efunc(pc, "invalid register %u\n", rs); 7963 break; 7964 default: 7965 err += efunc(pc, "invalid opcode %u\n", 7966 DIF_INSTR_OP(instr)); 7967 } 7968 } 7969 7970 if (dp->dtdo_len != 0 && 7971 DIF_INSTR_OP(dp->dtdo_buf[dp->dtdo_len - 1]) != DIF_OP_RET) { 7972 err += efunc(dp->dtdo_len - 1, 7973 "expected 'ret' as last DIF instruction\n"); 7974 } 7975 7976 if (!(dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) { 7977 /* 7978 * If we're not returning by reference, the size must be either 7979 * 0 or the size of one of the base types. 7980 */ 7981 switch (dp->dtdo_rtype.dtdt_size) { 7982 case 0: 7983 case sizeof (uint8_t): 7984 case sizeof (uint16_t): 7985 case sizeof (uint32_t): 7986 case sizeof (uint64_t): 7987 break; 7988 7989 default: 7990 err += efunc(dp->dtdo_len - 1, "bad return size"); 7991 } 7992 } 7993 7994 for (i = 0; i < dp->dtdo_varlen && err == 0; i++) { 7995 dtrace_difv_t *v = &dp->dtdo_vartab[i], *existing = NULL; 7996 dtrace_diftype_t *vt, *et; 7997 uint_t id, ndx; 7998 7999 if (v->dtdv_scope != DIFV_SCOPE_GLOBAL && 8000 v->dtdv_scope != DIFV_SCOPE_THREAD && 8001 v->dtdv_scope != DIFV_SCOPE_LOCAL) { 8002 err += efunc(i, "unrecognized variable scope %d\n", 8003 v->dtdv_scope); 8004 break; 8005 } 8006 8007 if (v->dtdv_kind != DIFV_KIND_ARRAY && 8008 v->dtdv_kind != DIFV_KIND_SCALAR) { 8009 err += efunc(i, "unrecognized variable type %d\n", 8010 v->dtdv_kind); 8011 break; 8012 } 8013 8014 if ((id = v->dtdv_id) > DIF_VARIABLE_MAX) { 8015 err += efunc(i, "%d exceeds variable id limit\n", id); 8016 break; 8017 } 8018 8019 if (id < DIF_VAR_OTHER_UBASE) 8020 continue; 8021 8022 /* 8023 * For user-defined variables, we need to check that this 8024 * definition is identical to any previous definition that we 8025 * encountered. 8026 */ 8027 ndx = id - DIF_VAR_OTHER_UBASE; 8028 8029 switch (v->dtdv_scope) { 8030 case DIFV_SCOPE_GLOBAL: 8031 if (ndx < vstate->dtvs_nglobals) { 8032 dtrace_statvar_t *svar; 8033 8034 if ((svar = vstate->dtvs_globals[ndx]) != NULL) 8035 existing = &svar->dtsv_var; 8036 } 8037 8038 break; 8039 8040 case DIFV_SCOPE_THREAD: 8041 if (ndx < vstate->dtvs_ntlocals) 8042 existing = &vstate->dtvs_tlocals[ndx]; 8043 break; 8044 8045 case DIFV_SCOPE_LOCAL: 8046 if (ndx < vstate->dtvs_nlocals) { 8047 dtrace_statvar_t *svar; 8048 8049 if ((svar = vstate->dtvs_locals[ndx]) != NULL) 8050 existing = &svar->dtsv_var; 8051 } 8052 8053 break; 8054 } 8055 8056 vt = &v->dtdv_type; 8057 8058 if (vt->dtdt_flags & DIF_TF_BYREF) { 8059 if (vt->dtdt_size == 0) { 8060 err += efunc(i, "zero-sized variable\n"); 8061 break; 8062 } 8063 8064 if (v->dtdv_scope == DIFV_SCOPE_GLOBAL && 8065 vt->dtdt_size > dtrace_global_maxsize) { 8066 err += efunc(i, "oversized by-ref global\n"); 8067 break; 8068 } 8069 } 8070 8071 if (existing == NULL || existing->dtdv_id == 0) 8072 continue; 8073 8074 ASSERT(existing->dtdv_id == v->dtdv_id); 8075 ASSERT(existing->dtdv_scope == v->dtdv_scope); 8076 8077 if (existing->dtdv_kind != v->dtdv_kind) 8078 err += efunc(i, "%d changed variable kind\n", id); 8079 8080 et = &existing->dtdv_type; 8081 8082 if (vt->dtdt_flags != et->dtdt_flags) { 8083 err += efunc(i, "%d changed variable type flags\n", id); 8084 break; 8085 } 8086 8087 if (vt->dtdt_size != 0 && vt->dtdt_size != et->dtdt_size) { 8088 err += efunc(i, "%d changed variable type size\n", id); 8089 break; 8090 } 8091 } 8092 8093 return (err); 8094 } 8095 8096 /* 8097 * Validate a DTrace DIF object that it is to be used as a helper. Helpers 8098 * are much more constrained than normal DIFOs. Specifically, they may 8099 * not: 8100 * 8101 * 1. Make calls to subroutines other than copyin(), copyinstr() or 8102 * miscellaneous string routines 8103 * 2. Access DTrace variables other than the args[] array, and the 8104 * curthread, pid, ppid, tid, execname, zonename, uid and gid variables. 8105 * 3. Have thread-local variables. 8106 * 4. Have dynamic variables. 8107 */ 8108 static int 8109 dtrace_difo_validate_helper(dtrace_difo_t *dp) 8110 { 8111 int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err; 8112 int err = 0; 8113 uint_t pc; 8114 8115 for (pc = 0; pc < dp->dtdo_len; pc++) { 8116 dif_instr_t instr = dp->dtdo_buf[pc]; 8117 8118 uint_t v = DIF_INSTR_VAR(instr); 8119 uint_t subr = DIF_INSTR_SUBR(instr); 8120 uint_t op = DIF_INSTR_OP(instr); 8121 8122 switch (op) { 8123 case DIF_OP_OR: 8124 case DIF_OP_XOR: 8125 case DIF_OP_AND: 8126 case DIF_OP_SLL: 8127 case DIF_OP_SRL: 8128 case DIF_OP_SRA: 8129 case DIF_OP_SUB: 8130 case DIF_OP_ADD: 8131 case DIF_OP_MUL: 8132 case DIF_OP_SDIV: 8133 case DIF_OP_UDIV: 8134 case DIF_OP_SREM: 8135 case DIF_OP_UREM: 8136 case DIF_OP_COPYS: 8137 case DIF_OP_NOT: 8138 case DIF_OP_MOV: 8139 case DIF_OP_RLDSB: 8140 case DIF_OP_RLDSH: 8141 case DIF_OP_RLDSW: 8142 case DIF_OP_RLDUB: 8143 case DIF_OP_RLDUH: 8144 case DIF_OP_RLDUW: 8145 case DIF_OP_RLDX: 8146 case DIF_OP_ULDSB: 8147 case DIF_OP_ULDSH: 8148 case DIF_OP_ULDSW: 8149 case DIF_OP_ULDUB: 8150 case DIF_OP_ULDUH: 8151 case DIF_OP_ULDUW: 8152 case DIF_OP_ULDX: 8153 case DIF_OP_STB: 8154 case DIF_OP_STH: 8155 case DIF_OP_STW: 8156 case DIF_OP_STX: 8157 case DIF_OP_ALLOCS: 8158 case DIF_OP_CMP: 8159 case DIF_OP_SCMP: 8160 case DIF_OP_TST: 8161 case DIF_OP_BA: 8162 case DIF_OP_BE: 8163 case DIF_OP_BNE: 8164 case DIF_OP_BG: 8165 case DIF_OP_BGU: 8166 case DIF_OP_BGE: 8167 case DIF_OP_BGEU: 8168 case DIF_OP_BL: 8169 case DIF_OP_BLU: 8170 case DIF_OP_BLE: 8171 case DIF_OP_BLEU: 8172 case DIF_OP_RET: 8173 case DIF_OP_NOP: 8174 case DIF_OP_POPTS: 8175 case DIF_OP_FLUSHTS: 8176 case DIF_OP_SETX: 8177 case DIF_OP_SETS: 8178 case DIF_OP_LDGA: 8179 case DIF_OP_LDLS: 8180 case DIF_OP_STGS: 8181 case DIF_OP_STLS: 8182 case DIF_OP_PUSHTR: 8183 case DIF_OP_PUSHTV: 8184 break; 8185 8186 case DIF_OP_LDGS: 8187 if (v >= DIF_VAR_OTHER_UBASE) 8188 break; 8189 8190 if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9) 8191 break; 8192 8193 if (v == DIF_VAR_CURTHREAD || v == DIF_VAR_PID || 8194 v == DIF_VAR_PPID || v == DIF_VAR_TID || 8195 v == DIF_VAR_EXECNAME || v == DIF_VAR_ZONENAME || 8196 v == DIF_VAR_UID || v == DIF_VAR_GID) 8197 break; 8198 8199 err += efunc(pc, "illegal variable %u\n", v); 8200 break; 8201 8202 case DIF_OP_LDTA: 8203 case DIF_OP_LDTS: 8204 case DIF_OP_LDGAA: 8205 case DIF_OP_LDTAA: 8206 err += efunc(pc, "illegal dynamic variable load\n"); 8207 break; 8208 8209 case DIF_OP_STTS: 8210 case DIF_OP_STGAA: 8211 case DIF_OP_STTAA: 8212 err += efunc(pc, "illegal dynamic variable store\n"); 8213 break; 8214 8215 case DIF_OP_CALL: 8216 if (subr == DIF_SUBR_ALLOCA || 8217 subr == DIF_SUBR_BCOPY || 8218 subr == DIF_SUBR_COPYIN || 8219 subr == DIF_SUBR_COPYINTO || 8220 subr == DIF_SUBR_COPYINSTR || 8221 subr == DIF_SUBR_INDEX || 8222 subr == DIF_SUBR_INET_NTOA || 8223 subr == DIF_SUBR_INET_NTOA6 || 8224 subr == DIF_SUBR_INET_NTOP || 8225 subr == DIF_SUBR_LLTOSTR || 8226 subr == DIF_SUBR_RINDEX || 8227 subr == DIF_SUBR_STRCHR || 8228 subr == DIF_SUBR_STRJOIN || 8229 subr == DIF_SUBR_STRRCHR || 8230 subr == DIF_SUBR_STRSTR || 8231 subr == DIF_SUBR_HTONS || 8232 subr == DIF_SUBR_HTONL || 8233 subr == DIF_SUBR_HTONLL || 8234 subr == DIF_SUBR_NTOHS || 8235 subr == DIF_SUBR_NTOHL || 8236 subr == DIF_SUBR_NTOHLL) 8237 break; 8238 8239 err += efunc(pc, "invalid subr %u\n", subr); 8240 break; 8241 8242 default: 8243 err += efunc(pc, "invalid opcode %u\n", 8244 DIF_INSTR_OP(instr)); 8245 } 8246 } 8247 8248 return (err); 8249 } 8250 8251 /* 8252 * Returns 1 if the expression in the DIF object can be cached on a per-thread 8253 * basis; 0 if not. 8254 */ 8255 static int 8256 dtrace_difo_cacheable(dtrace_difo_t *dp) 8257 { 8258 int i; 8259 8260 if (dp == NULL) 8261 return (0); 8262 8263 for (i = 0; i < dp->dtdo_varlen; i++) { 8264 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 8265 8266 if (v->dtdv_scope != DIFV_SCOPE_GLOBAL) 8267 continue; 8268 8269 switch (v->dtdv_id) { 8270 case DIF_VAR_CURTHREAD: 8271 case DIF_VAR_PID: 8272 case DIF_VAR_TID: 8273 case DIF_VAR_EXECNAME: 8274 case DIF_VAR_ZONENAME: 8275 break; 8276 8277 default: 8278 return (0); 8279 } 8280 } 8281 8282 /* 8283 * This DIF object may be cacheable. Now we need to look for any 8284 * array loading instructions, any memory loading instructions, or 8285 * any stores to thread-local variables. 8286 */ 8287 for (i = 0; i < dp->dtdo_len; i++) { 8288 uint_t op = DIF_INSTR_OP(dp->dtdo_buf[i]); 8289 8290 if ((op >= DIF_OP_LDSB && op <= DIF_OP_LDX) || 8291 (op >= DIF_OP_ULDSB && op <= DIF_OP_ULDX) || 8292 (op >= DIF_OP_RLDSB && op <= DIF_OP_RLDX) || 8293 op == DIF_OP_LDGA || op == DIF_OP_STTS) 8294 return (0); 8295 } 8296 8297 return (1); 8298 } 8299 8300 static void 8301 dtrace_difo_hold(dtrace_difo_t *dp) 8302 { 8303 int i; 8304 8305 ASSERT(MUTEX_HELD(&dtrace_lock)); 8306 8307 dp->dtdo_refcnt++; 8308 ASSERT(dp->dtdo_refcnt != 0); 8309 8310 /* 8311 * We need to check this DIF object for references to the variable 8312 * DIF_VAR_VTIMESTAMP. 8313 */ 8314 for (i = 0; i < dp->dtdo_varlen; i++) { 8315 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 8316 8317 if (v->dtdv_id != DIF_VAR_VTIMESTAMP) 8318 continue; 8319 8320 if (dtrace_vtime_references++ == 0) 8321 dtrace_vtime_enable(); 8322 } 8323 } 8324 8325 /* 8326 * This routine calculates the dynamic variable chunksize for a given DIF 8327 * object. The calculation is not fool-proof, and can probably be tricked by 8328 * malicious DIF -- but it works for all compiler-generated DIF. Because this 8329 * calculation is likely imperfect, dtrace_dynvar() is able to gracefully fail 8330 * if a dynamic variable size exceeds the chunksize. 8331 */ 8332 static void 8333 dtrace_difo_chunksize(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 8334 { 8335 uint64_t sval; 8336 dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */ 8337 const dif_instr_t *text = dp->dtdo_buf; 8338 uint_t pc, srd = 0; 8339 uint_t ttop = 0; 8340 size_t size, ksize; 8341 uint_t id, i; 8342 8343 for (pc = 0; pc < dp->dtdo_len; pc++) { 8344 dif_instr_t instr = text[pc]; 8345 uint_t op = DIF_INSTR_OP(instr); 8346 uint_t rd = DIF_INSTR_RD(instr); 8347 uint_t r1 = DIF_INSTR_R1(instr); 8348 uint_t nkeys = 0; 8349 uchar_t scope; 8350 8351 dtrace_key_t *key = tupregs; 8352 8353 switch (op) { 8354 case DIF_OP_SETX: 8355 sval = dp->dtdo_inttab[DIF_INSTR_INTEGER(instr)]; 8356 srd = rd; 8357 continue; 8358 8359 case DIF_OP_STTS: 8360 key = &tupregs[DIF_DTR_NREGS]; 8361 key[0].dttk_size = 0; 8362 key[1].dttk_size = 0; 8363 nkeys = 2; 8364 scope = DIFV_SCOPE_THREAD; 8365 break; 8366 8367 case DIF_OP_STGAA: 8368 case DIF_OP_STTAA: 8369 nkeys = ttop; 8370 8371 if (DIF_INSTR_OP(instr) == DIF_OP_STTAA) 8372 key[nkeys++].dttk_size = 0; 8373 8374 key[nkeys++].dttk_size = 0; 8375 8376 if (op == DIF_OP_STTAA) { 8377 scope = DIFV_SCOPE_THREAD; 8378 } else { 8379 scope = DIFV_SCOPE_GLOBAL; 8380 } 8381 8382 break; 8383 8384 case DIF_OP_PUSHTR: 8385 if (ttop == DIF_DTR_NREGS) 8386 return; 8387 8388 if ((srd == 0 || sval == 0) && r1 == DIF_TYPE_STRING) { 8389 /* 8390 * If the register for the size of the "pushtr" 8391 * is %r0 (or the value is 0) and the type is 8392 * a string, we'll use the system-wide default 8393 * string size. 8394 */ 8395 tupregs[ttop++].dttk_size = 8396 dtrace_strsize_default; 8397 } else { 8398 if (srd == 0) 8399 return; 8400 8401 tupregs[ttop++].dttk_size = sval; 8402 } 8403 8404 break; 8405 8406 case DIF_OP_PUSHTV: 8407 if (ttop == DIF_DTR_NREGS) 8408 return; 8409 8410 tupregs[ttop++].dttk_size = 0; 8411 break; 8412 8413 case DIF_OP_FLUSHTS: 8414 ttop = 0; 8415 break; 8416 8417 case DIF_OP_POPTS: 8418 if (ttop != 0) 8419 ttop--; 8420 break; 8421 } 8422 8423 sval = 0; 8424 srd = 0; 8425 8426 if (nkeys == 0) 8427 continue; 8428 8429 /* 8430 * We have a dynamic variable allocation; calculate its size. 8431 */ 8432 for (ksize = 0, i = 0; i < nkeys; i++) 8433 ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t)); 8434 8435 size = sizeof (dtrace_dynvar_t); 8436 size += sizeof (dtrace_key_t) * (nkeys - 1); 8437 size += ksize; 8438 8439 /* 8440 * Now we need to determine the size of the stored data. 8441 */ 8442 id = DIF_INSTR_VAR(instr); 8443 8444 for (i = 0; i < dp->dtdo_varlen; i++) { 8445 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 8446 8447 if (v->dtdv_id == id && v->dtdv_scope == scope) { 8448 size += v->dtdv_type.dtdt_size; 8449 break; 8450 } 8451 } 8452 8453 if (i == dp->dtdo_varlen) 8454 return; 8455 8456 /* 8457 * We have the size. If this is larger than the chunk size 8458 * for our dynamic variable state, reset the chunk size. 8459 */ 8460 size = P2ROUNDUP(size, sizeof (uint64_t)); 8461 8462 if (size > vstate->dtvs_dynvars.dtds_chunksize) 8463 vstate->dtvs_dynvars.dtds_chunksize = size; 8464 } 8465 } 8466 8467 static void 8468 dtrace_difo_init(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 8469 { 8470 int i, oldsvars, osz, nsz, otlocals, ntlocals; 8471 uint_t id; 8472 8473 ASSERT(MUTEX_HELD(&dtrace_lock)); 8474 ASSERT(dp->dtdo_buf != NULL && dp->dtdo_len != 0); 8475 8476 for (i = 0; i < dp->dtdo_varlen; i++) { 8477 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 8478 dtrace_statvar_t *svar, ***svarp; 8479 size_t dsize = 0; 8480 uint8_t scope = v->dtdv_scope; 8481 int *np; 8482 8483 if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE) 8484 continue; 8485 8486 id -= DIF_VAR_OTHER_UBASE; 8487 8488 switch (scope) { 8489 case DIFV_SCOPE_THREAD: 8490 while (id >= (otlocals = vstate->dtvs_ntlocals)) { 8491 dtrace_difv_t *tlocals; 8492 8493 if ((ntlocals = (otlocals << 1)) == 0) 8494 ntlocals = 1; 8495 8496 osz = otlocals * sizeof (dtrace_difv_t); 8497 nsz = ntlocals * sizeof (dtrace_difv_t); 8498 8499 tlocals = kmem_zalloc(nsz, KM_SLEEP); 8500 8501 if (osz != 0) { 8502 bcopy(vstate->dtvs_tlocals, 8503 tlocals, osz); 8504 kmem_free(vstate->dtvs_tlocals, osz); 8505 } 8506 8507 vstate->dtvs_tlocals = tlocals; 8508 vstate->dtvs_ntlocals = ntlocals; 8509 } 8510 8511 vstate->dtvs_tlocals[id] = *v; 8512 continue; 8513 8514 case DIFV_SCOPE_LOCAL: 8515 np = &vstate->dtvs_nlocals; 8516 svarp = &vstate->dtvs_locals; 8517 8518 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) 8519 dsize = NCPU * (v->dtdv_type.dtdt_size + 8520 sizeof (uint64_t)); 8521 else 8522 dsize = NCPU * sizeof (uint64_t); 8523 8524 break; 8525 8526 case DIFV_SCOPE_GLOBAL: 8527 np = &vstate->dtvs_nglobals; 8528 svarp = &vstate->dtvs_globals; 8529 8530 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) 8531 dsize = v->dtdv_type.dtdt_size + 8532 sizeof (uint64_t); 8533 8534 break; 8535 8536 default: 8537 ASSERT(0); 8538 } 8539 8540 while (id >= (oldsvars = *np)) { 8541 dtrace_statvar_t **statics; 8542 int newsvars, oldsize, newsize; 8543 8544 if ((newsvars = (oldsvars << 1)) == 0) 8545 newsvars = 1; 8546 8547 oldsize = oldsvars * sizeof (dtrace_statvar_t *); 8548 newsize = newsvars * sizeof (dtrace_statvar_t *); 8549 8550 statics = kmem_zalloc(newsize, KM_SLEEP); 8551 8552 if (oldsize != 0) { 8553 bcopy(*svarp, statics, oldsize); 8554 kmem_free(*svarp, oldsize); 8555 } 8556 8557 *svarp = statics; 8558 *np = newsvars; 8559 } 8560 8561 if ((svar = (*svarp)[id]) == NULL) { 8562 svar = kmem_zalloc(sizeof (dtrace_statvar_t), KM_SLEEP); 8563 svar->dtsv_var = *v; 8564 8565 if ((svar->dtsv_size = dsize) != 0) { 8566 svar->dtsv_data = (uint64_t)(uintptr_t) 8567 kmem_zalloc(dsize, KM_SLEEP); 8568 } 8569 8570 (*svarp)[id] = svar; 8571 } 8572 8573 svar->dtsv_refcnt++; 8574 } 8575 8576 dtrace_difo_chunksize(dp, vstate); 8577 dtrace_difo_hold(dp); 8578 } 8579 8580 static dtrace_difo_t * 8581 dtrace_difo_duplicate(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 8582 { 8583 dtrace_difo_t *new; 8584 size_t sz; 8585 8586 ASSERT(dp->dtdo_buf != NULL); 8587 ASSERT(dp->dtdo_refcnt != 0); 8588 8589 new = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP); 8590 8591 ASSERT(dp->dtdo_buf != NULL); 8592 sz = dp->dtdo_len * sizeof (dif_instr_t); 8593 new->dtdo_buf = kmem_alloc(sz, KM_SLEEP); 8594 bcopy(dp->dtdo_buf, new->dtdo_buf, sz); 8595 new->dtdo_len = dp->dtdo_len; 8596 8597 if (dp->dtdo_strtab != NULL) { 8598 ASSERT(dp->dtdo_strlen != 0); 8599 new->dtdo_strtab = kmem_alloc(dp->dtdo_strlen, KM_SLEEP); 8600 bcopy(dp->dtdo_strtab, new->dtdo_strtab, dp->dtdo_strlen); 8601 new->dtdo_strlen = dp->dtdo_strlen; 8602 } 8603 8604 if (dp->dtdo_inttab != NULL) { 8605 ASSERT(dp->dtdo_intlen != 0); 8606 sz = dp->dtdo_intlen * sizeof (uint64_t); 8607 new->dtdo_inttab = kmem_alloc(sz, KM_SLEEP); 8608 bcopy(dp->dtdo_inttab, new->dtdo_inttab, sz); 8609 new->dtdo_intlen = dp->dtdo_intlen; 8610 } 8611 8612 if (dp->dtdo_vartab != NULL) { 8613 ASSERT(dp->dtdo_varlen != 0); 8614 sz = dp->dtdo_varlen * sizeof (dtrace_difv_t); 8615 new->dtdo_vartab = kmem_alloc(sz, KM_SLEEP); 8616 bcopy(dp->dtdo_vartab, new->dtdo_vartab, sz); 8617 new->dtdo_varlen = dp->dtdo_varlen; 8618 } 8619 8620 dtrace_difo_init(new, vstate); 8621 return (new); 8622 } 8623 8624 static void 8625 dtrace_difo_destroy(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 8626 { 8627 int i; 8628 8629 ASSERT(dp->dtdo_refcnt == 0); 8630 8631 for (i = 0; i < dp->dtdo_varlen; i++) { 8632 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 8633 dtrace_statvar_t *svar, **svarp; 8634 uint_t id; 8635 uint8_t scope = v->dtdv_scope; 8636 int *np; 8637 8638 switch (scope) { 8639 case DIFV_SCOPE_THREAD: 8640 continue; 8641 8642 case DIFV_SCOPE_LOCAL: 8643 np = &vstate->dtvs_nlocals; 8644 svarp = vstate->dtvs_locals; 8645 break; 8646 8647 case DIFV_SCOPE_GLOBAL: 8648 np = &vstate->dtvs_nglobals; 8649 svarp = vstate->dtvs_globals; 8650 break; 8651 8652 default: 8653 ASSERT(0); 8654 } 8655 8656 if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE) 8657 continue; 8658 8659 id -= DIF_VAR_OTHER_UBASE; 8660 ASSERT(id < *np); 8661 8662 svar = svarp[id]; 8663 ASSERT(svar != NULL); 8664 ASSERT(svar->dtsv_refcnt > 0); 8665 8666 if (--svar->dtsv_refcnt > 0) 8667 continue; 8668 8669 if (svar->dtsv_size != 0) { 8670 ASSERT(svar->dtsv_data != NULL); 8671 kmem_free((void *)(uintptr_t)svar->dtsv_data, 8672 svar->dtsv_size); 8673 } 8674 8675 kmem_free(svar, sizeof (dtrace_statvar_t)); 8676 svarp[id] = NULL; 8677 } 8678 8679 kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t)); 8680 kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t)); 8681 kmem_free(dp->dtdo_strtab, dp->dtdo_strlen); 8682 kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t)); 8683 8684 kmem_free(dp, sizeof (dtrace_difo_t)); 8685 } 8686 8687 static void 8688 dtrace_difo_release(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 8689 { 8690 int i; 8691 8692 ASSERT(MUTEX_HELD(&dtrace_lock)); 8693 ASSERT(dp->dtdo_refcnt != 0); 8694 8695 for (i = 0; i < dp->dtdo_varlen; i++) { 8696 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 8697 8698 if (v->dtdv_id != DIF_VAR_VTIMESTAMP) 8699 continue; 8700 8701 ASSERT(dtrace_vtime_references > 0); 8702 if (--dtrace_vtime_references == 0) 8703 dtrace_vtime_disable(); 8704 } 8705 8706 if (--dp->dtdo_refcnt == 0) 8707 dtrace_difo_destroy(dp, vstate); 8708 } 8709 8710 /* 8711 * DTrace Format Functions 8712 */ 8713 static uint16_t 8714 dtrace_format_add(dtrace_state_t *state, char *str) 8715 { 8716 char *fmt, **new; 8717 uint16_t ndx, len = strlen(str) + 1; 8718 8719 fmt = kmem_zalloc(len, KM_SLEEP); 8720 bcopy(str, fmt, len); 8721 8722 for (ndx = 0; ndx < state->dts_nformats; ndx++) { 8723 if (state->dts_formats[ndx] == NULL) { 8724 state->dts_formats[ndx] = fmt; 8725 return (ndx + 1); 8726 } 8727 } 8728 8729 if (state->dts_nformats == USHRT_MAX) { 8730 /* 8731 * This is only likely if a denial-of-service attack is being 8732 * attempted. As such, it's okay to fail silently here. 8733 */ 8734 kmem_free(fmt, len); 8735 return (0); 8736 } 8737 8738 /* 8739 * For simplicity, we always resize the formats array to be exactly the 8740 * number of formats. 8741 */ 8742 ndx = state->dts_nformats++; 8743 new = kmem_alloc((ndx + 1) * sizeof (char *), KM_SLEEP); 8744 8745 if (state->dts_formats != NULL) { 8746 ASSERT(ndx != 0); 8747 bcopy(state->dts_formats, new, ndx * sizeof (char *)); 8748 kmem_free(state->dts_formats, ndx * sizeof (char *)); 8749 } 8750 8751 state->dts_formats = new; 8752 state->dts_formats[ndx] = fmt; 8753 8754 return (ndx + 1); 8755 } 8756 8757 static void 8758 dtrace_format_remove(dtrace_state_t *state, uint16_t format) 8759 { 8760 char *fmt; 8761 8762 ASSERT(state->dts_formats != NULL); 8763 ASSERT(format <= state->dts_nformats); 8764 ASSERT(state->dts_formats[format - 1] != NULL); 8765 8766 fmt = state->dts_formats[format - 1]; 8767 kmem_free(fmt, strlen(fmt) + 1); 8768 state->dts_formats[format - 1] = NULL; 8769 } 8770 8771 static void 8772 dtrace_format_destroy(dtrace_state_t *state) 8773 { 8774 int i; 8775 8776 if (state->dts_nformats == 0) { 8777 ASSERT(state->dts_formats == NULL); 8778 return; 8779 } 8780 8781 ASSERT(state->dts_formats != NULL); 8782 8783 for (i = 0; i < state->dts_nformats; i++) { 8784 char *fmt = state->dts_formats[i]; 8785 8786 if (fmt == NULL) 8787 continue; 8788 8789 kmem_free(fmt, strlen(fmt) + 1); 8790 } 8791 8792 kmem_free(state->dts_formats, state->dts_nformats * sizeof (char *)); 8793 state->dts_nformats = 0; 8794 state->dts_formats = NULL; 8795 } 8796 8797 /* 8798 * DTrace Predicate Functions 8799 */ 8800 static dtrace_predicate_t * 8801 dtrace_predicate_create(dtrace_difo_t *dp) 8802 { 8803 dtrace_predicate_t *pred; 8804 8805 ASSERT(MUTEX_HELD(&dtrace_lock)); 8806 ASSERT(dp->dtdo_refcnt != 0); 8807 8808 pred = kmem_zalloc(sizeof (dtrace_predicate_t), KM_SLEEP); 8809 pred->dtp_difo = dp; 8810 pred->dtp_refcnt = 1; 8811 8812 if (!dtrace_difo_cacheable(dp)) 8813 return (pred); 8814 8815 if (dtrace_predcache_id == DTRACE_CACHEIDNONE) { 8816 /* 8817 * This is only theoretically possible -- we have had 2^32 8818 * cacheable predicates on this machine. We cannot allow any 8819 * more predicates to become cacheable: as unlikely as it is, 8820 * there may be a thread caching a (now stale) predicate cache 8821 * ID. (N.B.: the temptation is being successfully resisted to 8822 * have this cmn_err() "Holy shit -- we executed this code!") 8823 */ 8824 return (pred); 8825 } 8826 8827 pred->dtp_cacheid = dtrace_predcache_id++; 8828 8829 return (pred); 8830 } 8831 8832 static void 8833 dtrace_predicate_hold(dtrace_predicate_t *pred) 8834 { 8835 ASSERT(MUTEX_HELD(&dtrace_lock)); 8836 ASSERT(pred->dtp_difo != NULL && pred->dtp_difo->dtdo_refcnt != 0); 8837 ASSERT(pred->dtp_refcnt > 0); 8838 8839 pred->dtp_refcnt++; 8840 } 8841 8842 static void 8843 dtrace_predicate_release(dtrace_predicate_t *pred, dtrace_vstate_t *vstate) 8844 { 8845 dtrace_difo_t *dp = pred->dtp_difo; 8846 8847 ASSERT(MUTEX_HELD(&dtrace_lock)); 8848 ASSERT(dp != NULL && dp->dtdo_refcnt != 0); 8849 ASSERT(pred->dtp_refcnt > 0); 8850 8851 if (--pred->dtp_refcnt == 0) { 8852 dtrace_difo_release(pred->dtp_difo, vstate); 8853 kmem_free(pred, sizeof (dtrace_predicate_t)); 8854 } 8855 } 8856 8857 /* 8858 * DTrace Action Description Functions 8859 */ 8860 static dtrace_actdesc_t * 8861 dtrace_actdesc_create(dtrace_actkind_t kind, uint32_t ntuple, 8862 uint64_t uarg, uint64_t arg) 8863 { 8864 dtrace_actdesc_t *act; 8865 8866 ASSERT(!DTRACEACT_ISPRINTFLIKE(kind) || (arg != NULL && 8867 arg >= KERNELBASE) || (arg == NULL && kind == DTRACEACT_PRINTA)); 8868 8869 act = kmem_zalloc(sizeof (dtrace_actdesc_t), KM_SLEEP); 8870 act->dtad_kind = kind; 8871 act->dtad_ntuple = ntuple; 8872 act->dtad_uarg = uarg; 8873 act->dtad_arg = arg; 8874 act->dtad_refcnt = 1; 8875 8876 return (act); 8877 } 8878 8879 static void 8880 dtrace_actdesc_hold(dtrace_actdesc_t *act) 8881 { 8882 ASSERT(act->dtad_refcnt >= 1); 8883 act->dtad_refcnt++; 8884 } 8885 8886 static void 8887 dtrace_actdesc_release(dtrace_actdesc_t *act, dtrace_vstate_t *vstate) 8888 { 8889 dtrace_actkind_t kind = act->dtad_kind; 8890 dtrace_difo_t *dp; 8891 8892 ASSERT(act->dtad_refcnt >= 1); 8893 8894 if (--act->dtad_refcnt != 0) 8895 return; 8896 8897 if ((dp = act->dtad_difo) != NULL) 8898 dtrace_difo_release(dp, vstate); 8899 8900 if (DTRACEACT_ISPRINTFLIKE(kind)) { 8901 char *str = (char *)(uintptr_t)act->dtad_arg; 8902 8903 ASSERT((str != NULL && (uintptr_t)str >= KERNELBASE) || 8904 (str == NULL && act->dtad_kind == DTRACEACT_PRINTA)); 8905 8906 if (str != NULL) 8907 kmem_free(str, strlen(str) + 1); 8908 } 8909 8910 kmem_free(act, sizeof (dtrace_actdesc_t)); 8911 } 8912 8913 /* 8914 * DTrace ECB Functions 8915 */ 8916 static dtrace_ecb_t * 8917 dtrace_ecb_add(dtrace_state_t *state, dtrace_probe_t *probe) 8918 { 8919 dtrace_ecb_t *ecb; 8920 dtrace_epid_t epid; 8921 8922 ASSERT(MUTEX_HELD(&dtrace_lock)); 8923 8924 ecb = kmem_zalloc(sizeof (dtrace_ecb_t), KM_SLEEP); 8925 ecb->dte_predicate = NULL; 8926 ecb->dte_probe = probe; 8927 8928 /* 8929 * The default size is the size of the default action: recording 8930 * the epid. 8931 */ 8932 ecb->dte_size = ecb->dte_needed = sizeof (dtrace_epid_t); 8933 ecb->dte_alignment = sizeof (dtrace_epid_t); 8934 8935 epid = state->dts_epid++; 8936 8937 if (epid - 1 >= state->dts_necbs) { 8938 dtrace_ecb_t **oecbs = state->dts_ecbs, **ecbs; 8939 int necbs = state->dts_necbs << 1; 8940 8941 ASSERT(epid == state->dts_necbs + 1); 8942 8943 if (necbs == 0) { 8944 ASSERT(oecbs == NULL); 8945 necbs = 1; 8946 } 8947 8948 ecbs = kmem_zalloc(necbs * sizeof (*ecbs), KM_SLEEP); 8949 8950 if (oecbs != NULL) 8951 bcopy(oecbs, ecbs, state->dts_necbs * sizeof (*ecbs)); 8952 8953 dtrace_membar_producer(); 8954 state->dts_ecbs = ecbs; 8955 8956 if (oecbs != NULL) { 8957 /* 8958 * If this state is active, we must dtrace_sync() 8959 * before we can free the old dts_ecbs array: we're 8960 * coming in hot, and there may be active ring 8961 * buffer processing (which indexes into the dts_ecbs 8962 * array) on another CPU. 8963 */ 8964 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) 8965 dtrace_sync(); 8966 8967 kmem_free(oecbs, state->dts_necbs * sizeof (*ecbs)); 8968 } 8969 8970 dtrace_membar_producer(); 8971 state->dts_necbs = necbs; 8972 } 8973 8974 ecb->dte_state = state; 8975 8976 ASSERT(state->dts_ecbs[epid - 1] == NULL); 8977 dtrace_membar_producer(); 8978 state->dts_ecbs[(ecb->dte_epid = epid) - 1] = ecb; 8979 8980 return (ecb); 8981 } 8982 8983 static void 8984 dtrace_ecb_enable(dtrace_ecb_t *ecb) 8985 { 8986 dtrace_probe_t *probe = ecb->dte_probe; 8987 8988 ASSERT(MUTEX_HELD(&cpu_lock)); 8989 ASSERT(MUTEX_HELD(&dtrace_lock)); 8990 ASSERT(ecb->dte_next == NULL); 8991 8992 if (probe == NULL) { 8993 /* 8994 * This is the NULL probe -- there's nothing to do. 8995 */ 8996 return; 8997 } 8998 8999 if (probe->dtpr_ecb == NULL) { 9000 dtrace_provider_t *prov = probe->dtpr_provider; 9001 9002 /* 9003 * We're the first ECB on this probe. 9004 */ 9005 probe->dtpr_ecb = probe->dtpr_ecb_last = ecb; 9006 9007 if (ecb->dte_predicate != NULL) 9008 probe->dtpr_predcache = ecb->dte_predicate->dtp_cacheid; 9009 9010 prov->dtpv_pops.dtps_enable(prov->dtpv_arg, 9011 probe->dtpr_id, probe->dtpr_arg); 9012 } else { 9013 /* 9014 * This probe is already active. Swing the last pointer to 9015 * point to the new ECB, and issue a dtrace_sync() to assure 9016 * that all CPUs have seen the change. 9017 */ 9018 ASSERT(probe->dtpr_ecb_last != NULL); 9019 probe->dtpr_ecb_last->dte_next = ecb; 9020 probe->dtpr_ecb_last = ecb; 9021 probe->dtpr_predcache = 0; 9022 9023 dtrace_sync(); 9024 } 9025 } 9026 9027 static void 9028 dtrace_ecb_resize(dtrace_ecb_t *ecb) 9029 { 9030 uint32_t maxalign = sizeof (dtrace_epid_t); 9031 uint32_t align = sizeof (uint8_t), offs, diff; 9032 dtrace_action_t *act; 9033 int wastuple = 0; 9034 uint32_t aggbase = UINT32_MAX; 9035 dtrace_state_t *state = ecb->dte_state; 9036 9037 /* 9038 * If we record anything, we always record the epid. (And we always 9039 * record it first.) 9040 */ 9041 offs = sizeof (dtrace_epid_t); 9042 ecb->dte_size = ecb->dte_needed = sizeof (dtrace_epid_t); 9043 9044 for (act = ecb->dte_action; act != NULL; act = act->dta_next) { 9045 dtrace_recdesc_t *rec = &act->dta_rec; 9046 9047 if ((align = rec->dtrd_alignment) > maxalign) 9048 maxalign = align; 9049 9050 if (!wastuple && act->dta_intuple) { 9051 /* 9052 * This is the first record in a tuple. Align the 9053 * offset to be at offset 4 in an 8-byte aligned 9054 * block. 9055 */ 9056 diff = offs + sizeof (dtrace_aggid_t); 9057 9058 if (diff = (diff & (sizeof (uint64_t) - 1))) 9059 offs += sizeof (uint64_t) - diff; 9060 9061 aggbase = offs - sizeof (dtrace_aggid_t); 9062 ASSERT(!(aggbase & (sizeof (uint64_t) - 1))); 9063 } 9064 9065 /*LINTED*/ 9066 if (rec->dtrd_size != 0 && (diff = (offs & (align - 1)))) { 9067 /* 9068 * The current offset is not properly aligned; align it. 9069 */ 9070 offs += align - diff; 9071 } 9072 9073 rec->dtrd_offset = offs; 9074 9075 if (offs + rec->dtrd_size > ecb->dte_needed) { 9076 ecb->dte_needed = offs + rec->dtrd_size; 9077 9078 if (ecb->dte_needed > state->dts_needed) 9079 state->dts_needed = ecb->dte_needed; 9080 } 9081 9082 if (DTRACEACT_ISAGG(act->dta_kind)) { 9083 dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act; 9084 dtrace_action_t *first = agg->dtag_first, *prev; 9085 9086 ASSERT(rec->dtrd_size != 0 && first != NULL); 9087 ASSERT(wastuple); 9088 ASSERT(aggbase != UINT32_MAX); 9089 9090 agg->dtag_base = aggbase; 9091 9092 while ((prev = first->dta_prev) != NULL && 9093 DTRACEACT_ISAGG(prev->dta_kind)) { 9094 agg = (dtrace_aggregation_t *)prev; 9095 first = agg->dtag_first; 9096 } 9097 9098 if (prev != NULL) { 9099 offs = prev->dta_rec.dtrd_offset + 9100 prev->dta_rec.dtrd_size; 9101 } else { 9102 offs = sizeof (dtrace_epid_t); 9103 } 9104 wastuple = 0; 9105 } else { 9106 if (!act->dta_intuple) 9107 ecb->dte_size = offs + rec->dtrd_size; 9108 9109 offs += rec->dtrd_size; 9110 } 9111 9112 wastuple = act->dta_intuple; 9113 } 9114 9115 if ((act = ecb->dte_action) != NULL && 9116 !(act->dta_kind == DTRACEACT_SPECULATE && act->dta_next == NULL) && 9117 ecb->dte_size == sizeof (dtrace_epid_t)) { 9118 /* 9119 * If the size is still sizeof (dtrace_epid_t), then all 9120 * actions store no data; set the size to 0. 9121 */ 9122 ecb->dte_alignment = maxalign; 9123 ecb->dte_size = 0; 9124 9125 /* 9126 * If the needed space is still sizeof (dtrace_epid_t), then 9127 * all actions need no additional space; set the needed 9128 * size to 0. 9129 */ 9130 if (ecb->dte_needed == sizeof (dtrace_epid_t)) 9131 ecb->dte_needed = 0; 9132 9133 return; 9134 } 9135 9136 /* 9137 * Set our alignment, and make sure that the dte_size and dte_needed 9138 * are aligned to the size of an EPID. 9139 */ 9140 ecb->dte_alignment = maxalign; 9141 ecb->dte_size = (ecb->dte_size + (sizeof (dtrace_epid_t) - 1)) & 9142 ~(sizeof (dtrace_epid_t) - 1); 9143 ecb->dte_needed = (ecb->dte_needed + (sizeof (dtrace_epid_t) - 1)) & 9144 ~(sizeof (dtrace_epid_t) - 1); 9145 ASSERT(ecb->dte_size <= ecb->dte_needed); 9146 } 9147 9148 static dtrace_action_t * 9149 dtrace_ecb_aggregation_create(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc) 9150 { 9151 dtrace_aggregation_t *agg; 9152 size_t size = sizeof (uint64_t); 9153 int ntuple = desc->dtad_ntuple; 9154 dtrace_action_t *act; 9155 dtrace_recdesc_t *frec; 9156 dtrace_aggid_t aggid; 9157 dtrace_state_t *state = ecb->dte_state; 9158 9159 agg = kmem_zalloc(sizeof (dtrace_aggregation_t), KM_SLEEP); 9160 agg->dtag_ecb = ecb; 9161 9162 ASSERT(DTRACEACT_ISAGG(desc->dtad_kind)); 9163 9164 switch (desc->dtad_kind) { 9165 case DTRACEAGG_MIN: 9166 agg->dtag_initial = UINT64_MAX; 9167 agg->dtag_aggregate = dtrace_aggregate_min; 9168 break; 9169 9170 case DTRACEAGG_MAX: 9171 agg->dtag_aggregate = dtrace_aggregate_max; 9172 break; 9173 9174 case DTRACEAGG_COUNT: 9175 agg->dtag_aggregate = dtrace_aggregate_count; 9176 break; 9177 9178 case DTRACEAGG_QUANTIZE: 9179 agg->dtag_aggregate = dtrace_aggregate_quantize; 9180 size = (((sizeof (uint64_t) * NBBY) - 1) * 2 + 1) * 9181 sizeof (uint64_t); 9182 break; 9183 9184 case DTRACEAGG_LQUANTIZE: { 9185 uint16_t step = DTRACE_LQUANTIZE_STEP(desc->dtad_arg); 9186 uint16_t levels = DTRACE_LQUANTIZE_LEVELS(desc->dtad_arg); 9187 9188 agg->dtag_initial = desc->dtad_arg; 9189 agg->dtag_aggregate = dtrace_aggregate_lquantize; 9190 9191 if (step == 0 || levels == 0) 9192 goto err; 9193 9194 size = levels * sizeof (uint64_t) + 3 * sizeof (uint64_t); 9195 break; 9196 } 9197 9198 case DTRACEAGG_AVG: 9199 agg->dtag_aggregate = dtrace_aggregate_avg; 9200 size = sizeof (uint64_t) * 2; 9201 break; 9202 9203 case DTRACEAGG_SUM: 9204 agg->dtag_aggregate = dtrace_aggregate_sum; 9205 break; 9206 9207 default: 9208 goto err; 9209 } 9210 9211 agg->dtag_action.dta_rec.dtrd_size = size; 9212 9213 if (ntuple == 0) 9214 goto err; 9215 9216 /* 9217 * We must make sure that we have enough actions for the n-tuple. 9218 */ 9219 for (act = ecb->dte_action_last; act != NULL; act = act->dta_prev) { 9220 if (DTRACEACT_ISAGG(act->dta_kind)) 9221 break; 9222 9223 if (--ntuple == 0) { 9224 /* 9225 * This is the action with which our n-tuple begins. 9226 */ 9227 agg->dtag_first = act; 9228 goto success; 9229 } 9230 } 9231 9232 /* 9233 * This n-tuple is short by ntuple elements. Return failure. 9234 */ 9235 ASSERT(ntuple != 0); 9236 err: 9237 kmem_free(agg, sizeof (dtrace_aggregation_t)); 9238 return (NULL); 9239 9240 success: 9241 /* 9242 * If the last action in the tuple has a size of zero, it's actually 9243 * an expression argument for the aggregating action. 9244 */ 9245 ASSERT(ecb->dte_action_last != NULL); 9246 act = ecb->dte_action_last; 9247 9248 if (act->dta_kind == DTRACEACT_DIFEXPR) { 9249 ASSERT(act->dta_difo != NULL); 9250 9251 if (act->dta_difo->dtdo_rtype.dtdt_size == 0) 9252 agg->dtag_hasarg = 1; 9253 } 9254 9255 /* 9256 * We need to allocate an id for this aggregation. 9257 */ 9258 aggid = (dtrace_aggid_t)(uintptr_t)vmem_alloc(state->dts_aggid_arena, 1, 9259 VM_BESTFIT | VM_SLEEP); 9260 9261 if (aggid - 1 >= state->dts_naggregations) { 9262 dtrace_aggregation_t **oaggs = state->dts_aggregations; 9263 dtrace_aggregation_t **aggs; 9264 int naggs = state->dts_naggregations << 1; 9265 int onaggs = state->dts_naggregations; 9266 9267 ASSERT(aggid == state->dts_naggregations + 1); 9268 9269 if (naggs == 0) { 9270 ASSERT(oaggs == NULL); 9271 naggs = 1; 9272 } 9273 9274 aggs = kmem_zalloc(naggs * sizeof (*aggs), KM_SLEEP); 9275 9276 if (oaggs != NULL) { 9277 bcopy(oaggs, aggs, onaggs * sizeof (*aggs)); 9278 kmem_free(oaggs, onaggs * sizeof (*aggs)); 9279 } 9280 9281 state->dts_aggregations = aggs; 9282 state->dts_naggregations = naggs; 9283 } 9284 9285 ASSERT(state->dts_aggregations[aggid - 1] == NULL); 9286 state->dts_aggregations[(agg->dtag_id = aggid) - 1] = agg; 9287 9288 frec = &agg->dtag_first->dta_rec; 9289 if (frec->dtrd_alignment < sizeof (dtrace_aggid_t)) 9290 frec->dtrd_alignment = sizeof (dtrace_aggid_t); 9291 9292 for (act = agg->dtag_first; act != NULL; act = act->dta_next) { 9293 ASSERT(!act->dta_intuple); 9294 act->dta_intuple = 1; 9295 } 9296 9297 return (&agg->dtag_action); 9298 } 9299 9300 static void 9301 dtrace_ecb_aggregation_destroy(dtrace_ecb_t *ecb, dtrace_action_t *act) 9302 { 9303 dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act; 9304 dtrace_state_t *state = ecb->dte_state; 9305 dtrace_aggid_t aggid = agg->dtag_id; 9306 9307 ASSERT(DTRACEACT_ISAGG(act->dta_kind)); 9308 vmem_free(state->dts_aggid_arena, (void *)(uintptr_t)aggid, 1); 9309 9310 ASSERT(state->dts_aggregations[aggid - 1] == agg); 9311 state->dts_aggregations[aggid - 1] = NULL; 9312 9313 kmem_free(agg, sizeof (dtrace_aggregation_t)); 9314 } 9315 9316 static int 9317 dtrace_ecb_action_add(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc) 9318 { 9319 dtrace_action_t *action, *last; 9320 dtrace_difo_t *dp = desc->dtad_difo; 9321 uint32_t size = 0, align = sizeof (uint8_t), mask; 9322 uint16_t format = 0; 9323 dtrace_recdesc_t *rec; 9324 dtrace_state_t *state = ecb->dte_state; 9325 dtrace_optval_t *opt = state->dts_options, nframes, strsize; 9326 uint64_t arg = desc->dtad_arg; 9327 9328 ASSERT(MUTEX_HELD(&dtrace_lock)); 9329 ASSERT(ecb->dte_action == NULL || ecb->dte_action->dta_refcnt == 1); 9330 9331 if (DTRACEACT_ISAGG(desc->dtad_kind)) { 9332 /* 9333 * If this is an aggregating action, there must be neither 9334 * a speculate nor a commit on the action chain. 9335 */ 9336 dtrace_action_t *act; 9337 9338 for (act = ecb->dte_action; act != NULL; act = act->dta_next) { 9339 if (act->dta_kind == DTRACEACT_COMMIT) 9340 return (EINVAL); 9341 9342 if (act->dta_kind == DTRACEACT_SPECULATE) 9343 return (EINVAL); 9344 } 9345 9346 action = dtrace_ecb_aggregation_create(ecb, desc); 9347 9348 if (action == NULL) 9349 return (EINVAL); 9350 } else { 9351 if (DTRACEACT_ISDESTRUCTIVE(desc->dtad_kind) || 9352 (desc->dtad_kind == DTRACEACT_DIFEXPR && 9353 dp != NULL && dp->dtdo_destructive)) { 9354 state->dts_destructive = 1; 9355 } 9356 9357 switch (desc->dtad_kind) { 9358 case DTRACEACT_PRINTF: 9359 case DTRACEACT_PRINTA: 9360 case DTRACEACT_SYSTEM: 9361 case DTRACEACT_FREOPEN: 9362 /* 9363 * We know that our arg is a string -- turn it into a 9364 * format. 9365 */ 9366 if (arg == NULL) { 9367 ASSERT(desc->dtad_kind == DTRACEACT_PRINTA); 9368 format = 0; 9369 } else { 9370 ASSERT(arg != NULL); 9371 ASSERT(arg > KERNELBASE); 9372 format = dtrace_format_add(state, 9373 (char *)(uintptr_t)arg); 9374 } 9375 9376 /*FALLTHROUGH*/ 9377 case DTRACEACT_LIBACT: 9378 case DTRACEACT_DIFEXPR: 9379 if (dp == NULL) 9380 return (EINVAL); 9381 9382 if ((size = dp->dtdo_rtype.dtdt_size) != 0) 9383 break; 9384 9385 if (dp->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) { 9386 if (!(dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) 9387 return (EINVAL); 9388 9389 size = opt[DTRACEOPT_STRSIZE]; 9390 } 9391 9392 break; 9393 9394 case DTRACEACT_STACK: 9395 if ((nframes = arg) == 0) { 9396 nframes = opt[DTRACEOPT_STACKFRAMES]; 9397 ASSERT(nframes > 0); 9398 arg = nframes; 9399 } 9400 9401 size = nframes * sizeof (pc_t); 9402 break; 9403 9404 case DTRACEACT_JSTACK: 9405 if ((strsize = DTRACE_USTACK_STRSIZE(arg)) == 0) 9406 strsize = opt[DTRACEOPT_JSTACKSTRSIZE]; 9407 9408 if ((nframes = DTRACE_USTACK_NFRAMES(arg)) == 0) 9409 nframes = opt[DTRACEOPT_JSTACKFRAMES]; 9410 9411 arg = DTRACE_USTACK_ARG(nframes, strsize); 9412 9413 /*FALLTHROUGH*/ 9414 case DTRACEACT_USTACK: 9415 if (desc->dtad_kind != DTRACEACT_JSTACK && 9416 (nframes = DTRACE_USTACK_NFRAMES(arg)) == 0) { 9417 strsize = DTRACE_USTACK_STRSIZE(arg); 9418 nframes = opt[DTRACEOPT_USTACKFRAMES]; 9419 ASSERT(nframes > 0); 9420 arg = DTRACE_USTACK_ARG(nframes, strsize); 9421 } 9422 9423 /* 9424 * Save a slot for the pid. 9425 */ 9426 size = (nframes + 1) * sizeof (uint64_t); 9427 size += DTRACE_USTACK_STRSIZE(arg); 9428 size = P2ROUNDUP(size, (uint32_t)(sizeof (uintptr_t))); 9429 9430 break; 9431 9432 case DTRACEACT_SYM: 9433 case DTRACEACT_MOD: 9434 if (dp == NULL || ((size = dp->dtdo_rtype.dtdt_size) != 9435 sizeof (uint64_t)) || 9436 (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) 9437 return (EINVAL); 9438 break; 9439 9440 case DTRACEACT_USYM: 9441 case DTRACEACT_UMOD: 9442 case DTRACEACT_UADDR: 9443 if (dp == NULL || 9444 (dp->dtdo_rtype.dtdt_size != sizeof (uint64_t)) || 9445 (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) 9446 return (EINVAL); 9447 9448 /* 9449 * We have a slot for the pid, plus a slot for the 9450 * argument. To keep things simple (aligned with 9451 * bitness-neutral sizing), we store each as a 64-bit 9452 * quantity. 9453 */ 9454 size = 2 * sizeof (uint64_t); 9455 break; 9456 9457 case DTRACEACT_STOP: 9458 case DTRACEACT_BREAKPOINT: 9459 case DTRACEACT_PANIC: 9460 break; 9461 9462 case DTRACEACT_CHILL: 9463 case DTRACEACT_DISCARD: 9464 case DTRACEACT_RAISE: 9465 if (dp == NULL) 9466 return (EINVAL); 9467 break; 9468 9469 case DTRACEACT_EXIT: 9470 if (dp == NULL || 9471 (size = dp->dtdo_rtype.dtdt_size) != sizeof (int) || 9472 (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) 9473 return (EINVAL); 9474 break; 9475 9476 case DTRACEACT_SPECULATE: 9477 if (ecb->dte_size > sizeof (dtrace_epid_t)) 9478 return (EINVAL); 9479 9480 if (dp == NULL) 9481 return (EINVAL); 9482 9483 state->dts_speculates = 1; 9484 break; 9485 9486 case DTRACEACT_COMMIT: { 9487 dtrace_action_t *act = ecb->dte_action; 9488 9489 for (; act != NULL; act = act->dta_next) { 9490 if (act->dta_kind == DTRACEACT_COMMIT) 9491 return (EINVAL); 9492 } 9493 9494 if (dp == NULL) 9495 return (EINVAL); 9496 break; 9497 } 9498 9499 default: 9500 return (EINVAL); 9501 } 9502 9503 if (size != 0 || desc->dtad_kind == DTRACEACT_SPECULATE) { 9504 /* 9505 * If this is a data-storing action or a speculate, 9506 * we must be sure that there isn't a commit on the 9507 * action chain. 9508 */ 9509 dtrace_action_t *act = ecb->dte_action; 9510 9511 for (; act != NULL; act = act->dta_next) { 9512 if (act->dta_kind == DTRACEACT_COMMIT) 9513 return (EINVAL); 9514 } 9515 } 9516 9517 action = kmem_zalloc(sizeof (dtrace_action_t), KM_SLEEP); 9518 action->dta_rec.dtrd_size = size; 9519 } 9520 9521 action->dta_refcnt = 1; 9522 rec = &action->dta_rec; 9523 size = rec->dtrd_size; 9524 9525 for (mask = sizeof (uint64_t) - 1; size != 0 && mask > 0; mask >>= 1) { 9526 if (!(size & mask)) { 9527 align = mask + 1; 9528 break; 9529 } 9530 } 9531 9532 action->dta_kind = desc->dtad_kind; 9533 9534 if ((action->dta_difo = dp) != NULL) 9535 dtrace_difo_hold(dp); 9536 9537 rec->dtrd_action = action->dta_kind; 9538 rec->dtrd_arg = arg; 9539 rec->dtrd_uarg = desc->dtad_uarg; 9540 rec->dtrd_alignment = (uint16_t)align; 9541 rec->dtrd_format = format; 9542 9543 if ((last = ecb->dte_action_last) != NULL) { 9544 ASSERT(ecb->dte_action != NULL); 9545 action->dta_prev = last; 9546 last->dta_next = action; 9547 } else { 9548 ASSERT(ecb->dte_action == NULL); 9549 ecb->dte_action = action; 9550 } 9551 9552 ecb->dte_action_last = action; 9553 9554 return (0); 9555 } 9556 9557 static void 9558 dtrace_ecb_action_remove(dtrace_ecb_t *ecb) 9559 { 9560 dtrace_action_t *act = ecb->dte_action, *next; 9561 dtrace_vstate_t *vstate = &ecb->dte_state->dts_vstate; 9562 dtrace_difo_t *dp; 9563 uint16_t format; 9564 9565 if (act != NULL && act->dta_refcnt > 1) { 9566 ASSERT(act->dta_next == NULL || act->dta_next->dta_refcnt == 1); 9567 act->dta_refcnt--; 9568 } else { 9569 for (; act != NULL; act = next) { 9570 next = act->dta_next; 9571 ASSERT(next != NULL || act == ecb->dte_action_last); 9572 ASSERT(act->dta_refcnt == 1); 9573 9574 if ((format = act->dta_rec.dtrd_format) != 0) 9575 dtrace_format_remove(ecb->dte_state, format); 9576 9577 if ((dp = act->dta_difo) != NULL) 9578 dtrace_difo_release(dp, vstate); 9579 9580 if (DTRACEACT_ISAGG(act->dta_kind)) { 9581 dtrace_ecb_aggregation_destroy(ecb, act); 9582 } else { 9583 kmem_free(act, sizeof (dtrace_action_t)); 9584 } 9585 } 9586 } 9587 9588 ecb->dte_action = NULL; 9589 ecb->dte_action_last = NULL; 9590 ecb->dte_size = sizeof (dtrace_epid_t); 9591 } 9592 9593 static void 9594 dtrace_ecb_disable(dtrace_ecb_t *ecb) 9595 { 9596 /* 9597 * We disable the ECB by removing it from its probe. 9598 */ 9599 dtrace_ecb_t *pecb, *prev = NULL; 9600 dtrace_probe_t *probe = ecb->dte_probe; 9601 9602 ASSERT(MUTEX_HELD(&dtrace_lock)); 9603 9604 if (probe == NULL) { 9605 /* 9606 * This is the NULL probe; there is nothing to disable. 9607 */ 9608 return; 9609 } 9610 9611 for (pecb = probe->dtpr_ecb; pecb != NULL; pecb = pecb->dte_next) { 9612 if (pecb == ecb) 9613 break; 9614 prev = pecb; 9615 } 9616 9617 ASSERT(pecb != NULL); 9618 9619 if (prev == NULL) { 9620 probe->dtpr_ecb = ecb->dte_next; 9621 } else { 9622 prev->dte_next = ecb->dte_next; 9623 } 9624 9625 if (ecb == probe->dtpr_ecb_last) { 9626 ASSERT(ecb->dte_next == NULL); 9627 probe->dtpr_ecb_last = prev; 9628 } 9629 9630 /* 9631 * The ECB has been disconnected from the probe; now sync to assure 9632 * that all CPUs have seen the change before returning. 9633 */ 9634 dtrace_sync(); 9635 9636 if (probe->dtpr_ecb == NULL) { 9637 /* 9638 * That was the last ECB on the probe; clear the predicate 9639 * cache ID for the probe, disable it and sync one more time 9640 * to assure that we'll never hit it again. 9641 */ 9642 dtrace_provider_t *prov = probe->dtpr_provider; 9643 9644 ASSERT(ecb->dte_next == NULL); 9645 ASSERT(probe->dtpr_ecb_last == NULL); 9646 probe->dtpr_predcache = DTRACE_CACHEIDNONE; 9647 prov->dtpv_pops.dtps_disable(prov->dtpv_arg, 9648 probe->dtpr_id, probe->dtpr_arg); 9649 dtrace_sync(); 9650 } else { 9651 /* 9652 * There is at least one ECB remaining on the probe. If there 9653 * is _exactly_ one, set the probe's predicate cache ID to be 9654 * the predicate cache ID of the remaining ECB. 9655 */ 9656 ASSERT(probe->dtpr_ecb_last != NULL); 9657 ASSERT(probe->dtpr_predcache == DTRACE_CACHEIDNONE); 9658 9659 if (probe->dtpr_ecb == probe->dtpr_ecb_last) { 9660 dtrace_predicate_t *p = probe->dtpr_ecb->dte_predicate; 9661 9662 ASSERT(probe->dtpr_ecb->dte_next == NULL); 9663 9664 if (p != NULL) 9665 probe->dtpr_predcache = p->dtp_cacheid; 9666 } 9667 9668 ecb->dte_next = NULL; 9669 } 9670 } 9671 9672 static void 9673 dtrace_ecb_destroy(dtrace_ecb_t *ecb) 9674 { 9675 dtrace_state_t *state = ecb->dte_state; 9676 dtrace_vstate_t *vstate = &state->dts_vstate; 9677 dtrace_predicate_t *pred; 9678 dtrace_epid_t epid = ecb->dte_epid; 9679 9680 ASSERT(MUTEX_HELD(&dtrace_lock)); 9681 ASSERT(ecb->dte_next == NULL); 9682 ASSERT(ecb->dte_probe == NULL || ecb->dte_probe->dtpr_ecb != ecb); 9683 9684 if ((pred = ecb->dte_predicate) != NULL) 9685 dtrace_predicate_release(pred, vstate); 9686 9687 dtrace_ecb_action_remove(ecb); 9688 9689 ASSERT(state->dts_ecbs[epid - 1] == ecb); 9690 state->dts_ecbs[epid - 1] = NULL; 9691 9692 kmem_free(ecb, sizeof (dtrace_ecb_t)); 9693 } 9694 9695 static dtrace_ecb_t * 9696 dtrace_ecb_create(dtrace_state_t *state, dtrace_probe_t *probe, 9697 dtrace_enabling_t *enab) 9698 { 9699 dtrace_ecb_t *ecb; 9700 dtrace_predicate_t *pred; 9701 dtrace_actdesc_t *act; 9702 dtrace_provider_t *prov; 9703 dtrace_ecbdesc_t *desc = enab->dten_current; 9704 9705 ASSERT(MUTEX_HELD(&dtrace_lock)); 9706 ASSERT(state != NULL); 9707 9708 ecb = dtrace_ecb_add(state, probe); 9709 ecb->dte_uarg = desc->dted_uarg; 9710 9711 if ((pred = desc->dted_pred.dtpdd_predicate) != NULL) { 9712 dtrace_predicate_hold(pred); 9713 ecb->dte_predicate = pred; 9714 } 9715 9716 if (probe != NULL) { 9717 /* 9718 * If the provider shows more leg than the consumer is old 9719 * enough to see, we need to enable the appropriate implicit 9720 * predicate bits to prevent the ecb from activating at 9721 * revealing times. 9722 * 9723 * Providers specifying DTRACE_PRIV_USER at register time 9724 * are stating that they need the /proc-style privilege 9725 * model to be enforced, and this is what DTRACE_COND_OWNER 9726 * and DTRACE_COND_ZONEOWNER will then do at probe time. 9727 */ 9728 prov = probe->dtpr_provider; 9729 if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLPROC) && 9730 (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER)) 9731 ecb->dte_cond |= DTRACE_COND_OWNER; 9732 9733 if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLZONE) && 9734 (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER)) 9735 ecb->dte_cond |= DTRACE_COND_ZONEOWNER; 9736 9737 /* 9738 * If the provider shows us kernel innards and the user 9739 * is lacking sufficient privilege, enable the 9740 * DTRACE_COND_USERMODE implicit predicate. 9741 */ 9742 if (!(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) && 9743 (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_KERNEL)) 9744 ecb->dte_cond |= DTRACE_COND_USERMODE; 9745 } 9746 9747 if (dtrace_ecb_create_cache != NULL) { 9748 /* 9749 * If we have a cached ecb, we'll use its action list instead 9750 * of creating our own (saving both time and space). 9751 */ 9752 dtrace_ecb_t *cached = dtrace_ecb_create_cache; 9753 dtrace_action_t *act = cached->dte_action; 9754 9755 if (act != NULL) { 9756 ASSERT(act->dta_refcnt > 0); 9757 act->dta_refcnt++; 9758 ecb->dte_action = act; 9759 ecb->dte_action_last = cached->dte_action_last; 9760 ecb->dte_needed = cached->dte_needed; 9761 ecb->dte_size = cached->dte_size; 9762 ecb->dte_alignment = cached->dte_alignment; 9763 } 9764 9765 return (ecb); 9766 } 9767 9768 for (act = desc->dted_action; act != NULL; act = act->dtad_next) { 9769 if ((enab->dten_error = dtrace_ecb_action_add(ecb, act)) != 0) { 9770 dtrace_ecb_destroy(ecb); 9771 return (NULL); 9772 } 9773 } 9774 9775 dtrace_ecb_resize(ecb); 9776 9777 return (dtrace_ecb_create_cache = ecb); 9778 } 9779 9780 static int 9781 dtrace_ecb_create_enable(dtrace_probe_t *probe, void *arg) 9782 { 9783 dtrace_ecb_t *ecb; 9784 dtrace_enabling_t *enab = arg; 9785 dtrace_state_t *state = enab->dten_vstate->dtvs_state; 9786 9787 ASSERT(state != NULL); 9788 9789 if (probe != NULL && probe->dtpr_gen < enab->dten_probegen) { 9790 /* 9791 * This probe was created in a generation for which this 9792 * enabling has previously created ECBs; we don't want to 9793 * enable it again, so just kick out. 9794 */ 9795 return (DTRACE_MATCH_NEXT); 9796 } 9797 9798 if ((ecb = dtrace_ecb_create(state, probe, enab)) == NULL) 9799 return (DTRACE_MATCH_DONE); 9800 9801 dtrace_ecb_enable(ecb); 9802 return (DTRACE_MATCH_NEXT); 9803 } 9804 9805 static dtrace_ecb_t * 9806 dtrace_epid2ecb(dtrace_state_t *state, dtrace_epid_t id) 9807 { 9808 dtrace_ecb_t *ecb; 9809 9810 ASSERT(MUTEX_HELD(&dtrace_lock)); 9811 9812 if (id == 0 || id > state->dts_necbs) 9813 return (NULL); 9814 9815 ASSERT(state->dts_necbs > 0 && state->dts_ecbs != NULL); 9816 ASSERT((ecb = state->dts_ecbs[id - 1]) == NULL || ecb->dte_epid == id); 9817 9818 return (state->dts_ecbs[id - 1]); 9819 } 9820 9821 static dtrace_aggregation_t * 9822 dtrace_aggid2agg(dtrace_state_t *state, dtrace_aggid_t id) 9823 { 9824 dtrace_aggregation_t *agg; 9825 9826 ASSERT(MUTEX_HELD(&dtrace_lock)); 9827 9828 if (id == 0 || id > state->dts_naggregations) 9829 return (NULL); 9830 9831 ASSERT(state->dts_naggregations > 0 && state->dts_aggregations != NULL); 9832 ASSERT((agg = state->dts_aggregations[id - 1]) == NULL || 9833 agg->dtag_id == id); 9834 9835 return (state->dts_aggregations[id - 1]); 9836 } 9837 9838 /* 9839 * DTrace Buffer Functions 9840 * 9841 * The following functions manipulate DTrace buffers. Most of these functions 9842 * are called in the context of establishing or processing consumer state; 9843 * exceptions are explicitly noted. 9844 */ 9845 9846 /* 9847 * Note: called from cross call context. This function switches the two 9848 * buffers on a given CPU. The atomicity of this operation is assured by 9849 * disabling interrupts while the actual switch takes place; the disabling of 9850 * interrupts serializes the execution with any execution of dtrace_probe() on 9851 * the same CPU. 9852 */ 9853 static void 9854 dtrace_buffer_switch(dtrace_buffer_t *buf) 9855 { 9856 caddr_t tomax = buf->dtb_tomax; 9857 caddr_t xamot = buf->dtb_xamot; 9858 dtrace_icookie_t cookie; 9859 9860 ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH)); 9861 ASSERT(!(buf->dtb_flags & DTRACEBUF_RING)); 9862 9863 cookie = dtrace_interrupt_disable(); 9864 buf->dtb_tomax = xamot; 9865 buf->dtb_xamot = tomax; 9866 buf->dtb_xamot_drops = buf->dtb_drops; 9867 buf->dtb_xamot_offset = buf->dtb_offset; 9868 buf->dtb_xamot_errors = buf->dtb_errors; 9869 buf->dtb_xamot_flags = buf->dtb_flags; 9870 buf->dtb_offset = 0; 9871 buf->dtb_drops = 0; 9872 buf->dtb_errors = 0; 9873 buf->dtb_flags &= ~(DTRACEBUF_ERROR | DTRACEBUF_DROPPED); 9874 dtrace_interrupt_enable(cookie); 9875 } 9876 9877 /* 9878 * Note: called from cross call context. This function activates a buffer 9879 * on a CPU. As with dtrace_buffer_switch(), the atomicity of the operation 9880 * is guaranteed by the disabling of interrupts. 9881 */ 9882 static void 9883 dtrace_buffer_activate(dtrace_state_t *state) 9884 { 9885 dtrace_buffer_t *buf; 9886 dtrace_icookie_t cookie = dtrace_interrupt_disable(); 9887 9888 buf = &state->dts_buffer[CPU->cpu_id]; 9889 9890 if (buf->dtb_tomax != NULL) { 9891 /* 9892 * We might like to assert that the buffer is marked inactive, 9893 * but this isn't necessarily true: the buffer for the CPU 9894 * that processes the BEGIN probe has its buffer activated 9895 * manually. In this case, we take the (harmless) action 9896 * re-clearing the bit INACTIVE bit. 9897 */ 9898 buf->dtb_flags &= ~DTRACEBUF_INACTIVE; 9899 } 9900 9901 dtrace_interrupt_enable(cookie); 9902 } 9903 9904 static int 9905 dtrace_buffer_alloc(dtrace_buffer_t *bufs, size_t size, int flags, 9906 processorid_t cpu) 9907 { 9908 cpu_t *cp; 9909 dtrace_buffer_t *buf; 9910 9911 ASSERT(MUTEX_HELD(&cpu_lock)); 9912 ASSERT(MUTEX_HELD(&dtrace_lock)); 9913 9914 if (size > dtrace_nonroot_maxsize && 9915 !PRIV_POLICY_CHOICE(CRED(), PRIV_ALL, B_FALSE)) 9916 return (EFBIG); 9917 9918 cp = cpu_list; 9919 9920 do { 9921 if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id) 9922 continue; 9923 9924 buf = &bufs[cp->cpu_id]; 9925 9926 /* 9927 * If there is already a buffer allocated for this CPU, it 9928 * is only possible that this is a DR event. In this case, 9929 * the buffer size must match our specified size. 9930 */ 9931 if (buf->dtb_tomax != NULL) { 9932 ASSERT(buf->dtb_size == size); 9933 continue; 9934 } 9935 9936 ASSERT(buf->dtb_xamot == NULL); 9937 9938 if ((buf->dtb_tomax = kmem_zalloc(size, KM_NOSLEEP)) == NULL) 9939 goto err; 9940 9941 buf->dtb_size = size; 9942 buf->dtb_flags = flags; 9943 buf->dtb_offset = 0; 9944 buf->dtb_drops = 0; 9945 9946 if (flags & DTRACEBUF_NOSWITCH) 9947 continue; 9948 9949 if ((buf->dtb_xamot = kmem_zalloc(size, KM_NOSLEEP)) == NULL) 9950 goto err; 9951 } while ((cp = cp->cpu_next) != cpu_list); 9952 9953 return (0); 9954 9955 err: 9956 cp = cpu_list; 9957 9958 do { 9959 if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id) 9960 continue; 9961 9962 buf = &bufs[cp->cpu_id]; 9963 9964 if (buf->dtb_xamot != NULL) { 9965 ASSERT(buf->dtb_tomax != NULL); 9966 ASSERT(buf->dtb_size == size); 9967 kmem_free(buf->dtb_xamot, size); 9968 } 9969 9970 if (buf->dtb_tomax != NULL) { 9971 ASSERT(buf->dtb_size == size); 9972 kmem_free(buf->dtb_tomax, size); 9973 } 9974 9975 buf->dtb_tomax = NULL; 9976 buf->dtb_xamot = NULL; 9977 buf->dtb_size = 0; 9978 } while ((cp = cp->cpu_next) != cpu_list); 9979 9980 return (ENOMEM); 9981 } 9982 9983 /* 9984 * Note: called from probe context. This function just increments the drop 9985 * count on a buffer. It has been made a function to allow for the 9986 * possibility of understanding the source of mysterious drop counts. (A 9987 * problem for which one may be particularly disappointed that DTrace cannot 9988 * be used to understand DTrace.) 9989 */ 9990 static void 9991 dtrace_buffer_drop(dtrace_buffer_t *buf) 9992 { 9993 buf->dtb_drops++; 9994 } 9995 9996 /* 9997 * Note: called from probe context. This function is called to reserve space 9998 * in a buffer. If mstate is non-NULL, sets the scratch base and size in the 9999 * mstate. Returns the new offset in the buffer, or a negative value if an 10000 * error has occurred. 10001 */ 10002 static intptr_t 10003 dtrace_buffer_reserve(dtrace_buffer_t *buf, size_t needed, size_t align, 10004 dtrace_state_t *state, dtrace_mstate_t *mstate) 10005 { 10006 intptr_t offs = buf->dtb_offset, soffs; 10007 intptr_t woffs; 10008 caddr_t tomax; 10009 size_t total; 10010 10011 if (buf->dtb_flags & DTRACEBUF_INACTIVE) 10012 return (-1); 10013 10014 if ((tomax = buf->dtb_tomax) == NULL) { 10015 dtrace_buffer_drop(buf); 10016 return (-1); 10017 } 10018 10019 if (!(buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL))) { 10020 while (offs & (align - 1)) { 10021 /* 10022 * Assert that our alignment is off by a number which 10023 * is itself sizeof (uint32_t) aligned. 10024 */ 10025 ASSERT(!((align - (offs & (align - 1))) & 10026 (sizeof (uint32_t) - 1))); 10027 DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE); 10028 offs += sizeof (uint32_t); 10029 } 10030 10031 if ((soffs = offs + needed) > buf->dtb_size) { 10032 dtrace_buffer_drop(buf); 10033 return (-1); 10034 } 10035 10036 if (mstate == NULL) 10037 return (offs); 10038 10039 mstate->dtms_scratch_base = (uintptr_t)tomax + soffs; 10040 mstate->dtms_scratch_size = buf->dtb_size - soffs; 10041 mstate->dtms_scratch_ptr = mstate->dtms_scratch_base; 10042 10043 return (offs); 10044 } 10045 10046 if (buf->dtb_flags & DTRACEBUF_FILL) { 10047 if (state->dts_activity != DTRACE_ACTIVITY_COOLDOWN && 10048 (buf->dtb_flags & DTRACEBUF_FULL)) 10049 return (-1); 10050 goto out; 10051 } 10052 10053 total = needed + (offs & (align - 1)); 10054 10055 /* 10056 * For a ring buffer, life is quite a bit more complicated. Before 10057 * we can store any padding, we need to adjust our wrapping offset. 10058 * (If we've never before wrapped or we're not about to, no adjustment 10059 * is required.) 10060 */ 10061 if ((buf->dtb_flags & DTRACEBUF_WRAPPED) || 10062 offs + total > buf->dtb_size) { 10063 woffs = buf->dtb_xamot_offset; 10064 10065 if (offs + total > buf->dtb_size) { 10066 /* 10067 * We can't fit in the end of the buffer. First, a 10068 * sanity check that we can fit in the buffer at all. 10069 */ 10070 if (total > buf->dtb_size) { 10071 dtrace_buffer_drop(buf); 10072 return (-1); 10073 } 10074 10075 /* 10076 * We're going to be storing at the top of the buffer, 10077 * so now we need to deal with the wrapped offset. We 10078 * only reset our wrapped offset to 0 if it is 10079 * currently greater than the current offset. If it 10080 * is less than the current offset, it is because a 10081 * previous allocation induced a wrap -- but the 10082 * allocation didn't subsequently take the space due 10083 * to an error or false predicate evaluation. In this 10084 * case, we'll just leave the wrapped offset alone: if 10085 * the wrapped offset hasn't been advanced far enough 10086 * for this allocation, it will be adjusted in the 10087 * lower loop. 10088 */ 10089 if (buf->dtb_flags & DTRACEBUF_WRAPPED) { 10090 if (woffs >= offs) 10091 woffs = 0; 10092 } else { 10093 woffs = 0; 10094 } 10095 10096 /* 10097 * Now we know that we're going to be storing to the 10098 * top of the buffer and that there is room for us 10099 * there. We need to clear the buffer from the current 10100 * offset to the end (there may be old gunk there). 10101 */ 10102 while (offs < buf->dtb_size) 10103 tomax[offs++] = 0; 10104 10105 /* 10106 * We need to set our offset to zero. And because we 10107 * are wrapping, we need to set the bit indicating as 10108 * much. We can also adjust our needed space back 10109 * down to the space required by the ECB -- we know 10110 * that the top of the buffer is aligned. 10111 */ 10112 offs = 0; 10113 total = needed; 10114 buf->dtb_flags |= DTRACEBUF_WRAPPED; 10115 } else { 10116 /* 10117 * There is room for us in the buffer, so we simply 10118 * need to check the wrapped offset. 10119 */ 10120 if (woffs < offs) { 10121 /* 10122 * The wrapped offset is less than the offset. 10123 * This can happen if we allocated buffer space 10124 * that induced a wrap, but then we didn't 10125 * subsequently take the space due to an error 10126 * or false predicate evaluation. This is 10127 * okay; we know that _this_ allocation isn't 10128 * going to induce a wrap. We still can't 10129 * reset the wrapped offset to be zero, 10130 * however: the space may have been trashed in 10131 * the previous failed probe attempt. But at 10132 * least the wrapped offset doesn't need to 10133 * be adjusted at all... 10134 */ 10135 goto out; 10136 } 10137 } 10138 10139 while (offs + total > woffs) { 10140 dtrace_epid_t epid = *(uint32_t *)(tomax + woffs); 10141 size_t size; 10142 10143 if (epid == DTRACE_EPIDNONE) { 10144 size = sizeof (uint32_t); 10145 } else { 10146 ASSERT(epid <= state->dts_necbs); 10147 ASSERT(state->dts_ecbs[epid - 1] != NULL); 10148 10149 size = state->dts_ecbs[epid - 1]->dte_size; 10150 } 10151 10152 ASSERT(woffs + size <= buf->dtb_size); 10153 ASSERT(size != 0); 10154 10155 if (woffs + size == buf->dtb_size) { 10156 /* 10157 * We've reached the end of the buffer; we want 10158 * to set the wrapped offset to 0 and break 10159 * out. However, if the offs is 0, then we're 10160 * in a strange edge-condition: the amount of 10161 * space that we want to reserve plus the size 10162 * of the record that we're overwriting is 10163 * greater than the size of the buffer. This 10164 * is problematic because if we reserve the 10165 * space but subsequently don't consume it (due 10166 * to a failed predicate or error) the wrapped 10167 * offset will be 0 -- yet the EPID at offset 0 10168 * will not be committed. This situation is 10169 * relatively easy to deal with: if we're in 10170 * this case, the buffer is indistinguishable 10171 * from one that hasn't wrapped; we need only 10172 * finish the job by clearing the wrapped bit, 10173 * explicitly setting the offset to be 0, and 10174 * zero'ing out the old data in the buffer. 10175 */ 10176 if (offs == 0) { 10177 buf->dtb_flags &= ~DTRACEBUF_WRAPPED; 10178 buf->dtb_offset = 0; 10179 woffs = total; 10180 10181 while (woffs < buf->dtb_size) 10182 tomax[woffs++] = 0; 10183 } 10184 10185 woffs = 0; 10186 break; 10187 } 10188 10189 woffs += size; 10190 } 10191 10192 /* 10193 * We have a wrapped offset. It may be that the wrapped offset 10194 * has become zero -- that's okay. 10195 */ 10196 buf->dtb_xamot_offset = woffs; 10197 } 10198 10199 out: 10200 /* 10201 * Now we can plow the buffer with any necessary padding. 10202 */ 10203 while (offs & (align - 1)) { 10204 /* 10205 * Assert that our alignment is off by a number which 10206 * is itself sizeof (uint32_t) aligned. 10207 */ 10208 ASSERT(!((align - (offs & (align - 1))) & 10209 (sizeof (uint32_t) - 1))); 10210 DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE); 10211 offs += sizeof (uint32_t); 10212 } 10213 10214 if (buf->dtb_flags & DTRACEBUF_FILL) { 10215 if (offs + needed > buf->dtb_size - state->dts_reserve) { 10216 buf->dtb_flags |= DTRACEBUF_FULL; 10217 return (-1); 10218 } 10219 } 10220 10221 if (mstate == NULL) 10222 return (offs); 10223 10224 /* 10225 * For ring buffers and fill buffers, the scratch space is always 10226 * the inactive buffer. 10227 */ 10228 mstate->dtms_scratch_base = (uintptr_t)buf->dtb_xamot; 10229 mstate->dtms_scratch_size = buf->dtb_size; 10230 mstate->dtms_scratch_ptr = mstate->dtms_scratch_base; 10231 10232 return (offs); 10233 } 10234 10235 static void 10236 dtrace_buffer_polish(dtrace_buffer_t *buf) 10237 { 10238 ASSERT(buf->dtb_flags & DTRACEBUF_RING); 10239 ASSERT(MUTEX_HELD(&dtrace_lock)); 10240 10241 if (!(buf->dtb_flags & DTRACEBUF_WRAPPED)) 10242 return; 10243 10244 /* 10245 * We need to polish the ring buffer. There are three cases: 10246 * 10247 * - The first (and presumably most common) is that there is no gap 10248 * between the buffer offset and the wrapped offset. In this case, 10249 * there is nothing in the buffer that isn't valid data; we can 10250 * mark the buffer as polished and return. 10251 * 10252 * - The second (less common than the first but still more common 10253 * than the third) is that there is a gap between the buffer offset 10254 * and the wrapped offset, and the wrapped offset is larger than the 10255 * buffer offset. This can happen because of an alignment issue, or 10256 * can happen because of a call to dtrace_buffer_reserve() that 10257 * didn't subsequently consume the buffer space. In this case, 10258 * we need to zero the data from the buffer offset to the wrapped 10259 * offset. 10260 * 10261 * - The third (and least common) is that there is a gap between the 10262 * buffer offset and the wrapped offset, but the wrapped offset is 10263 * _less_ than the buffer offset. This can only happen because a 10264 * call to dtrace_buffer_reserve() induced a wrap, but the space 10265 * was not subsequently consumed. In this case, we need to zero the 10266 * space from the offset to the end of the buffer _and_ from the 10267 * top of the buffer to the wrapped offset. 10268 */ 10269 if (buf->dtb_offset < buf->dtb_xamot_offset) { 10270 bzero(buf->dtb_tomax + buf->dtb_offset, 10271 buf->dtb_xamot_offset - buf->dtb_offset); 10272 } 10273 10274 if (buf->dtb_offset > buf->dtb_xamot_offset) { 10275 bzero(buf->dtb_tomax + buf->dtb_offset, 10276 buf->dtb_size - buf->dtb_offset); 10277 bzero(buf->dtb_tomax, buf->dtb_xamot_offset); 10278 } 10279 } 10280 10281 static void 10282 dtrace_buffer_free(dtrace_buffer_t *bufs) 10283 { 10284 int i; 10285 10286 for (i = 0; i < NCPU; i++) { 10287 dtrace_buffer_t *buf = &bufs[i]; 10288 10289 if (buf->dtb_tomax == NULL) { 10290 ASSERT(buf->dtb_xamot == NULL); 10291 ASSERT(buf->dtb_size == 0); 10292 continue; 10293 } 10294 10295 if (buf->dtb_xamot != NULL) { 10296 ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH)); 10297 kmem_free(buf->dtb_xamot, buf->dtb_size); 10298 } 10299 10300 kmem_free(buf->dtb_tomax, buf->dtb_size); 10301 buf->dtb_size = 0; 10302 buf->dtb_tomax = NULL; 10303 buf->dtb_xamot = NULL; 10304 } 10305 } 10306 10307 /* 10308 * DTrace Enabling Functions 10309 */ 10310 static dtrace_enabling_t * 10311 dtrace_enabling_create(dtrace_vstate_t *vstate) 10312 { 10313 dtrace_enabling_t *enab; 10314 10315 enab = kmem_zalloc(sizeof (dtrace_enabling_t), KM_SLEEP); 10316 enab->dten_vstate = vstate; 10317 10318 return (enab); 10319 } 10320 10321 static void 10322 dtrace_enabling_add(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb) 10323 { 10324 dtrace_ecbdesc_t **ndesc; 10325 size_t osize, nsize; 10326 10327 /* 10328 * We can't add to enablings after we've enabled them, or after we've 10329 * retained them. 10330 */ 10331 ASSERT(enab->dten_probegen == 0); 10332 ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL); 10333 10334 if (enab->dten_ndesc < enab->dten_maxdesc) { 10335 enab->dten_desc[enab->dten_ndesc++] = ecb; 10336 return; 10337 } 10338 10339 osize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *); 10340 10341 if (enab->dten_maxdesc == 0) { 10342 enab->dten_maxdesc = 1; 10343 } else { 10344 enab->dten_maxdesc <<= 1; 10345 } 10346 10347 ASSERT(enab->dten_ndesc < enab->dten_maxdesc); 10348 10349 nsize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *); 10350 ndesc = kmem_zalloc(nsize, KM_SLEEP); 10351 bcopy(enab->dten_desc, ndesc, osize); 10352 kmem_free(enab->dten_desc, osize); 10353 10354 enab->dten_desc = ndesc; 10355 enab->dten_desc[enab->dten_ndesc++] = ecb; 10356 } 10357 10358 static void 10359 dtrace_enabling_addlike(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb, 10360 dtrace_probedesc_t *pd) 10361 { 10362 dtrace_ecbdesc_t *new; 10363 dtrace_predicate_t *pred; 10364 dtrace_actdesc_t *act; 10365 10366 /* 10367 * We're going to create a new ECB description that matches the 10368 * specified ECB in every way, but has the specified probe description. 10369 */ 10370 new = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP); 10371 10372 if ((pred = ecb->dted_pred.dtpdd_predicate) != NULL) 10373 dtrace_predicate_hold(pred); 10374 10375 for (act = ecb->dted_action; act != NULL; act = act->dtad_next) 10376 dtrace_actdesc_hold(act); 10377 10378 new->dted_action = ecb->dted_action; 10379 new->dted_pred = ecb->dted_pred; 10380 new->dted_probe = *pd; 10381 new->dted_uarg = ecb->dted_uarg; 10382 10383 dtrace_enabling_add(enab, new); 10384 } 10385 10386 static void 10387 dtrace_enabling_dump(dtrace_enabling_t *enab) 10388 { 10389 int i; 10390 10391 for (i = 0; i < enab->dten_ndesc; i++) { 10392 dtrace_probedesc_t *desc = &enab->dten_desc[i]->dted_probe; 10393 10394 cmn_err(CE_NOTE, "enabling probe %d (%s:%s:%s:%s)", i, 10395 desc->dtpd_provider, desc->dtpd_mod, 10396 desc->dtpd_func, desc->dtpd_name); 10397 } 10398 } 10399 10400 static void 10401 dtrace_enabling_destroy(dtrace_enabling_t *enab) 10402 { 10403 int i; 10404 dtrace_ecbdesc_t *ep; 10405 dtrace_vstate_t *vstate = enab->dten_vstate; 10406 10407 ASSERT(MUTEX_HELD(&dtrace_lock)); 10408 10409 for (i = 0; i < enab->dten_ndesc; i++) { 10410 dtrace_actdesc_t *act, *next; 10411 dtrace_predicate_t *pred; 10412 10413 ep = enab->dten_desc[i]; 10414 10415 if ((pred = ep->dted_pred.dtpdd_predicate) != NULL) 10416 dtrace_predicate_release(pred, vstate); 10417 10418 for (act = ep->dted_action; act != NULL; act = next) { 10419 next = act->dtad_next; 10420 dtrace_actdesc_release(act, vstate); 10421 } 10422 10423 kmem_free(ep, sizeof (dtrace_ecbdesc_t)); 10424 } 10425 10426 kmem_free(enab->dten_desc, 10427 enab->dten_maxdesc * sizeof (dtrace_enabling_t *)); 10428 10429 /* 10430 * If this was a retained enabling, decrement the dts_nretained count 10431 * and take it off of the dtrace_retained list. 10432 */ 10433 if (enab->dten_prev != NULL || enab->dten_next != NULL || 10434 dtrace_retained == enab) { 10435 ASSERT(enab->dten_vstate->dtvs_state != NULL); 10436 ASSERT(enab->dten_vstate->dtvs_state->dts_nretained > 0); 10437 enab->dten_vstate->dtvs_state->dts_nretained--; 10438 } 10439 10440 if (enab->dten_prev == NULL) { 10441 if (dtrace_retained == enab) { 10442 dtrace_retained = enab->dten_next; 10443 10444 if (dtrace_retained != NULL) 10445 dtrace_retained->dten_prev = NULL; 10446 } 10447 } else { 10448 ASSERT(enab != dtrace_retained); 10449 ASSERT(dtrace_retained != NULL); 10450 enab->dten_prev->dten_next = enab->dten_next; 10451 } 10452 10453 if (enab->dten_next != NULL) { 10454 ASSERT(dtrace_retained != NULL); 10455 enab->dten_next->dten_prev = enab->dten_prev; 10456 } 10457 10458 kmem_free(enab, sizeof (dtrace_enabling_t)); 10459 } 10460 10461 static int 10462 dtrace_enabling_retain(dtrace_enabling_t *enab) 10463 { 10464 dtrace_state_t *state; 10465 10466 ASSERT(MUTEX_HELD(&dtrace_lock)); 10467 ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL); 10468 ASSERT(enab->dten_vstate != NULL); 10469 10470 state = enab->dten_vstate->dtvs_state; 10471 ASSERT(state != NULL); 10472 10473 /* 10474 * We only allow each state to retain dtrace_retain_max enablings. 10475 */ 10476 if (state->dts_nretained >= dtrace_retain_max) 10477 return (ENOSPC); 10478 10479 state->dts_nretained++; 10480 10481 if (dtrace_retained == NULL) { 10482 dtrace_retained = enab; 10483 return (0); 10484 } 10485 10486 enab->dten_next = dtrace_retained; 10487 dtrace_retained->dten_prev = enab; 10488 dtrace_retained = enab; 10489 10490 return (0); 10491 } 10492 10493 static int 10494 dtrace_enabling_replicate(dtrace_state_t *state, dtrace_probedesc_t *match, 10495 dtrace_probedesc_t *create) 10496 { 10497 dtrace_enabling_t *new, *enab; 10498 int found = 0, err = ENOENT; 10499 10500 ASSERT(MUTEX_HELD(&dtrace_lock)); 10501 ASSERT(strlen(match->dtpd_provider) < DTRACE_PROVNAMELEN); 10502 ASSERT(strlen(match->dtpd_mod) < DTRACE_MODNAMELEN); 10503 ASSERT(strlen(match->dtpd_func) < DTRACE_FUNCNAMELEN); 10504 ASSERT(strlen(match->dtpd_name) < DTRACE_NAMELEN); 10505 10506 new = dtrace_enabling_create(&state->dts_vstate); 10507 10508 /* 10509 * Iterate over all retained enablings, looking for enablings that 10510 * match the specified state. 10511 */ 10512 for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) { 10513 int i; 10514 10515 /* 10516 * dtvs_state can only be NULL for helper enablings -- and 10517 * helper enablings can't be retained. 10518 */ 10519 ASSERT(enab->dten_vstate->dtvs_state != NULL); 10520 10521 if (enab->dten_vstate->dtvs_state != state) 10522 continue; 10523 10524 /* 10525 * Now iterate over each probe description; we're looking for 10526 * an exact match to the specified probe description. 10527 */ 10528 for (i = 0; i < enab->dten_ndesc; i++) { 10529 dtrace_ecbdesc_t *ep = enab->dten_desc[i]; 10530 dtrace_probedesc_t *pd = &ep->dted_probe; 10531 10532 if (strcmp(pd->dtpd_provider, match->dtpd_provider)) 10533 continue; 10534 10535 if (strcmp(pd->dtpd_mod, match->dtpd_mod)) 10536 continue; 10537 10538 if (strcmp(pd->dtpd_func, match->dtpd_func)) 10539 continue; 10540 10541 if (strcmp(pd->dtpd_name, match->dtpd_name)) 10542 continue; 10543 10544 /* 10545 * We have a winning probe! Add it to our growing 10546 * enabling. 10547 */ 10548 found = 1; 10549 dtrace_enabling_addlike(new, ep, create); 10550 } 10551 } 10552 10553 if (!found || (err = dtrace_enabling_retain(new)) != 0) { 10554 dtrace_enabling_destroy(new); 10555 return (err); 10556 } 10557 10558 return (0); 10559 } 10560 10561 static void 10562 dtrace_enabling_retract(dtrace_state_t *state) 10563 { 10564 dtrace_enabling_t *enab, *next; 10565 10566 ASSERT(MUTEX_HELD(&dtrace_lock)); 10567 10568 /* 10569 * Iterate over all retained enablings, destroy the enablings retained 10570 * for the specified state. 10571 */ 10572 for (enab = dtrace_retained; enab != NULL; enab = next) { 10573 next = enab->dten_next; 10574 10575 /* 10576 * dtvs_state can only be NULL for helper enablings -- and 10577 * helper enablings can't be retained. 10578 */ 10579 ASSERT(enab->dten_vstate->dtvs_state != NULL); 10580 10581 if (enab->dten_vstate->dtvs_state == state) { 10582 ASSERT(state->dts_nretained > 0); 10583 dtrace_enabling_destroy(enab); 10584 } 10585 } 10586 10587 ASSERT(state->dts_nretained == 0); 10588 } 10589 10590 static int 10591 dtrace_enabling_match(dtrace_enabling_t *enab, int *nmatched) 10592 { 10593 int i = 0; 10594 int matched = 0; 10595 10596 ASSERT(MUTEX_HELD(&cpu_lock)); 10597 ASSERT(MUTEX_HELD(&dtrace_lock)); 10598 10599 for (i = 0; i < enab->dten_ndesc; i++) { 10600 dtrace_ecbdesc_t *ep = enab->dten_desc[i]; 10601 10602 enab->dten_current = ep; 10603 enab->dten_error = 0; 10604 10605 matched += dtrace_probe_enable(&ep->dted_probe, enab); 10606 10607 if (enab->dten_error != 0) { 10608 /* 10609 * If we get an error half-way through enabling the 10610 * probes, we kick out -- perhaps with some number of 10611 * them enabled. Leaving enabled probes enabled may 10612 * be slightly confusing for user-level, but we expect 10613 * that no one will attempt to actually drive on in 10614 * the face of such errors. If this is an anonymous 10615 * enabling (indicated with a NULL nmatched pointer), 10616 * we cmn_err() a message. We aren't expecting to 10617 * get such an error -- such as it can exist at all, 10618 * it would be a result of corrupted DOF in the driver 10619 * properties. 10620 */ 10621 if (nmatched == NULL) { 10622 cmn_err(CE_WARN, "dtrace_enabling_match() " 10623 "error on %p: %d", (void *)ep, 10624 enab->dten_error); 10625 } 10626 10627 return (enab->dten_error); 10628 } 10629 } 10630 10631 enab->dten_probegen = dtrace_probegen; 10632 if (nmatched != NULL) 10633 *nmatched = matched; 10634 10635 return (0); 10636 } 10637 10638 static void 10639 dtrace_enabling_matchall(void) 10640 { 10641 dtrace_enabling_t *enab; 10642 10643 mutex_enter(&cpu_lock); 10644 mutex_enter(&dtrace_lock); 10645 10646 /* 10647 * Because we can be called after dtrace_detach() has been called, we 10648 * cannot assert that there are retained enablings. We can safely 10649 * load from dtrace_retained, however: the taskq_destroy() at the 10650 * end of dtrace_detach() will block pending our completion. 10651 */ 10652 for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) 10653 (void) dtrace_enabling_match(enab, NULL); 10654 10655 mutex_exit(&dtrace_lock); 10656 mutex_exit(&cpu_lock); 10657 } 10658 10659 static int 10660 dtrace_enabling_matchstate(dtrace_state_t *state, int *nmatched) 10661 { 10662 dtrace_enabling_t *enab; 10663 int matched, total = 0, err; 10664 10665 ASSERT(MUTEX_HELD(&cpu_lock)); 10666 ASSERT(MUTEX_HELD(&dtrace_lock)); 10667 10668 for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) { 10669 ASSERT(enab->dten_vstate->dtvs_state != NULL); 10670 10671 if (enab->dten_vstate->dtvs_state != state) 10672 continue; 10673 10674 if ((err = dtrace_enabling_match(enab, &matched)) != 0) 10675 return (err); 10676 10677 total += matched; 10678 } 10679 10680 if (nmatched != NULL) 10681 *nmatched = total; 10682 10683 return (0); 10684 } 10685 10686 /* 10687 * If an enabling is to be enabled without having matched probes (that is, if 10688 * dtrace_state_go() is to be called on the underlying dtrace_state_t), the 10689 * enabling must be _primed_ by creating an ECB for every ECB description. 10690 * This must be done to assure that we know the number of speculations, the 10691 * number of aggregations, the minimum buffer size needed, etc. before we 10692 * transition out of DTRACE_ACTIVITY_INACTIVE. To do this without actually 10693 * enabling any probes, we create ECBs for every ECB decription, but with a 10694 * NULL probe -- which is exactly what this function does. 10695 */ 10696 static void 10697 dtrace_enabling_prime(dtrace_state_t *state) 10698 { 10699 dtrace_enabling_t *enab; 10700 int i; 10701 10702 for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) { 10703 ASSERT(enab->dten_vstate->dtvs_state != NULL); 10704 10705 if (enab->dten_vstate->dtvs_state != state) 10706 continue; 10707 10708 /* 10709 * We don't want to prime an enabling more than once, lest 10710 * we allow a malicious user to induce resource exhaustion. 10711 * (The ECBs that result from priming an enabling aren't 10712 * leaked -- but they also aren't deallocated until the 10713 * consumer state is destroyed.) 10714 */ 10715 if (enab->dten_primed) 10716 continue; 10717 10718 for (i = 0; i < enab->dten_ndesc; i++) { 10719 enab->dten_current = enab->dten_desc[i]; 10720 (void) dtrace_probe_enable(NULL, enab); 10721 } 10722 10723 enab->dten_primed = 1; 10724 } 10725 } 10726 10727 /* 10728 * Called to indicate that probes should be provided due to retained 10729 * enablings. This is implemented in terms of dtrace_probe_provide(), but it 10730 * must take an initial lap through the enabling calling the dtps_provide() 10731 * entry point explicitly to allow for autocreated probes. 10732 */ 10733 static void 10734 dtrace_enabling_provide(dtrace_provider_t *prv) 10735 { 10736 int i, all = 0; 10737 dtrace_probedesc_t desc; 10738 10739 ASSERT(MUTEX_HELD(&dtrace_lock)); 10740 ASSERT(MUTEX_HELD(&dtrace_provider_lock)); 10741 10742 if (prv == NULL) { 10743 all = 1; 10744 prv = dtrace_provider; 10745 } 10746 10747 do { 10748 dtrace_enabling_t *enab = dtrace_retained; 10749 void *parg = prv->dtpv_arg; 10750 10751 for (; enab != NULL; enab = enab->dten_next) { 10752 for (i = 0; i < enab->dten_ndesc; i++) { 10753 desc = enab->dten_desc[i]->dted_probe; 10754 mutex_exit(&dtrace_lock); 10755 prv->dtpv_pops.dtps_provide(parg, &desc); 10756 mutex_enter(&dtrace_lock); 10757 } 10758 } 10759 } while (all && (prv = prv->dtpv_next) != NULL); 10760 10761 mutex_exit(&dtrace_lock); 10762 dtrace_probe_provide(NULL, all ? NULL : prv); 10763 mutex_enter(&dtrace_lock); 10764 } 10765 10766 /* 10767 * DTrace DOF Functions 10768 */ 10769 /*ARGSUSED*/ 10770 static void 10771 dtrace_dof_error(dof_hdr_t *dof, const char *str) 10772 { 10773 if (dtrace_err_verbose) 10774 cmn_err(CE_WARN, "failed to process DOF: %s", str); 10775 10776 #ifdef DTRACE_ERRDEBUG 10777 dtrace_errdebug(str); 10778 #endif 10779 } 10780 10781 /* 10782 * Create DOF out of a currently enabled state. Right now, we only create 10783 * DOF containing the run-time options -- but this could be expanded to create 10784 * complete DOF representing the enabled state. 10785 */ 10786 static dof_hdr_t * 10787 dtrace_dof_create(dtrace_state_t *state) 10788 { 10789 dof_hdr_t *dof; 10790 dof_sec_t *sec; 10791 dof_optdesc_t *opt; 10792 int i, len = sizeof (dof_hdr_t) + 10793 roundup(sizeof (dof_sec_t), sizeof (uint64_t)) + 10794 sizeof (dof_optdesc_t) * DTRACEOPT_MAX; 10795 10796 ASSERT(MUTEX_HELD(&dtrace_lock)); 10797 10798 dof = kmem_zalloc(len, KM_SLEEP); 10799 dof->dofh_ident[DOF_ID_MAG0] = DOF_MAG_MAG0; 10800 dof->dofh_ident[DOF_ID_MAG1] = DOF_MAG_MAG1; 10801 dof->dofh_ident[DOF_ID_MAG2] = DOF_MAG_MAG2; 10802 dof->dofh_ident[DOF_ID_MAG3] = DOF_MAG_MAG3; 10803 10804 dof->dofh_ident[DOF_ID_MODEL] = DOF_MODEL_NATIVE; 10805 dof->dofh_ident[DOF_ID_ENCODING] = DOF_ENCODE_NATIVE; 10806 dof->dofh_ident[DOF_ID_VERSION] = DOF_VERSION; 10807 dof->dofh_ident[DOF_ID_DIFVERS] = DIF_VERSION; 10808 dof->dofh_ident[DOF_ID_DIFIREG] = DIF_DIR_NREGS; 10809 dof->dofh_ident[DOF_ID_DIFTREG] = DIF_DTR_NREGS; 10810 10811 dof->dofh_flags = 0; 10812 dof->dofh_hdrsize = sizeof (dof_hdr_t); 10813 dof->dofh_secsize = sizeof (dof_sec_t); 10814 dof->dofh_secnum = 1; /* only DOF_SECT_OPTDESC */ 10815 dof->dofh_secoff = sizeof (dof_hdr_t); 10816 dof->dofh_loadsz = len; 10817 dof->dofh_filesz = len; 10818 dof->dofh_pad = 0; 10819 10820 /* 10821 * Fill in the option section header... 10822 */ 10823 sec = (dof_sec_t *)((uintptr_t)dof + sizeof (dof_hdr_t)); 10824 sec->dofs_type = DOF_SECT_OPTDESC; 10825 sec->dofs_align = sizeof (uint64_t); 10826 sec->dofs_flags = DOF_SECF_LOAD; 10827 sec->dofs_entsize = sizeof (dof_optdesc_t); 10828 10829 opt = (dof_optdesc_t *)((uintptr_t)sec + 10830 roundup(sizeof (dof_sec_t), sizeof (uint64_t))); 10831 10832 sec->dofs_offset = (uintptr_t)opt - (uintptr_t)dof; 10833 sec->dofs_size = sizeof (dof_optdesc_t) * DTRACEOPT_MAX; 10834 10835 for (i = 0; i < DTRACEOPT_MAX; i++) { 10836 opt[i].dofo_option = i; 10837 opt[i].dofo_strtab = DOF_SECIDX_NONE; 10838 opt[i].dofo_value = state->dts_options[i]; 10839 } 10840 10841 return (dof); 10842 } 10843 10844 static dof_hdr_t * 10845 dtrace_dof_copyin(uintptr_t uarg, int *errp) 10846 { 10847 dof_hdr_t hdr, *dof; 10848 10849 ASSERT(!MUTEX_HELD(&dtrace_lock)); 10850 10851 /* 10852 * First, we're going to copyin() the sizeof (dof_hdr_t). 10853 */ 10854 if (copyin((void *)uarg, &hdr, sizeof (hdr)) != 0) { 10855 dtrace_dof_error(NULL, "failed to copyin DOF header"); 10856 *errp = EFAULT; 10857 return (NULL); 10858 } 10859 10860 /* 10861 * Now we'll allocate the entire DOF and copy it in -- provided 10862 * that the length isn't outrageous. 10863 */ 10864 if (hdr.dofh_loadsz >= dtrace_dof_maxsize) { 10865 dtrace_dof_error(&hdr, "load size exceeds maximum"); 10866 *errp = E2BIG; 10867 return (NULL); 10868 } 10869 10870 if (hdr.dofh_loadsz < sizeof (hdr)) { 10871 dtrace_dof_error(&hdr, "invalid load size"); 10872 *errp = EINVAL; 10873 return (NULL); 10874 } 10875 10876 dof = kmem_alloc(hdr.dofh_loadsz, KM_SLEEP); 10877 10878 if (copyin((void *)uarg, dof, hdr.dofh_loadsz) != 0) { 10879 kmem_free(dof, hdr.dofh_loadsz); 10880 *errp = EFAULT; 10881 return (NULL); 10882 } 10883 10884 return (dof); 10885 } 10886 10887 static dof_hdr_t * 10888 dtrace_dof_property(const char *name) 10889 { 10890 uchar_t *buf; 10891 uint64_t loadsz; 10892 unsigned int len, i; 10893 dof_hdr_t *dof; 10894 10895 /* 10896 * Unfortunately, array of values in .conf files are always (and 10897 * only) interpreted to be integer arrays. We must read our DOF 10898 * as an integer array, and then squeeze it into a byte array. 10899 */ 10900 if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dtrace_devi, 0, 10901 (char *)name, (int **)&buf, &len) != DDI_PROP_SUCCESS) 10902 return (NULL); 10903 10904 for (i = 0; i < len; i++) 10905 buf[i] = (uchar_t)(((int *)buf)[i]); 10906 10907 if (len < sizeof (dof_hdr_t)) { 10908 ddi_prop_free(buf); 10909 dtrace_dof_error(NULL, "truncated header"); 10910 return (NULL); 10911 } 10912 10913 if (len < (loadsz = ((dof_hdr_t *)buf)->dofh_loadsz)) { 10914 ddi_prop_free(buf); 10915 dtrace_dof_error(NULL, "truncated DOF"); 10916 return (NULL); 10917 } 10918 10919 if (loadsz >= dtrace_dof_maxsize) { 10920 ddi_prop_free(buf); 10921 dtrace_dof_error(NULL, "oversized DOF"); 10922 return (NULL); 10923 } 10924 10925 dof = kmem_alloc(loadsz, KM_SLEEP); 10926 bcopy(buf, dof, loadsz); 10927 ddi_prop_free(buf); 10928 10929 return (dof); 10930 } 10931 10932 static void 10933 dtrace_dof_destroy(dof_hdr_t *dof) 10934 { 10935 kmem_free(dof, dof->dofh_loadsz); 10936 } 10937 10938 /* 10939 * Return the dof_sec_t pointer corresponding to a given section index. If the 10940 * index is not valid, dtrace_dof_error() is called and NULL is returned. If 10941 * a type other than DOF_SECT_NONE is specified, the header is checked against 10942 * this type and NULL is returned if the types do not match. 10943 */ 10944 static dof_sec_t * 10945 dtrace_dof_sect(dof_hdr_t *dof, uint32_t type, dof_secidx_t i) 10946 { 10947 dof_sec_t *sec = (dof_sec_t *)(uintptr_t) 10948 ((uintptr_t)dof + dof->dofh_secoff + i * dof->dofh_secsize); 10949 10950 if (i >= dof->dofh_secnum) { 10951 dtrace_dof_error(dof, "referenced section index is invalid"); 10952 return (NULL); 10953 } 10954 10955 if (!(sec->dofs_flags & DOF_SECF_LOAD)) { 10956 dtrace_dof_error(dof, "referenced section is not loadable"); 10957 return (NULL); 10958 } 10959 10960 if (type != DOF_SECT_NONE && type != sec->dofs_type) { 10961 dtrace_dof_error(dof, "referenced section is the wrong type"); 10962 return (NULL); 10963 } 10964 10965 return (sec); 10966 } 10967 10968 static dtrace_probedesc_t * 10969 dtrace_dof_probedesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_probedesc_t *desc) 10970 { 10971 dof_probedesc_t *probe; 10972 dof_sec_t *strtab; 10973 uintptr_t daddr = (uintptr_t)dof; 10974 uintptr_t str; 10975 size_t size; 10976 10977 if (sec->dofs_type != DOF_SECT_PROBEDESC) { 10978 dtrace_dof_error(dof, "invalid probe section"); 10979 return (NULL); 10980 } 10981 10982 if (sec->dofs_align != sizeof (dof_secidx_t)) { 10983 dtrace_dof_error(dof, "bad alignment in probe description"); 10984 return (NULL); 10985 } 10986 10987 if (sec->dofs_offset + sizeof (dof_probedesc_t) > dof->dofh_loadsz) { 10988 dtrace_dof_error(dof, "truncated probe description"); 10989 return (NULL); 10990 } 10991 10992 probe = (dof_probedesc_t *)(uintptr_t)(daddr + sec->dofs_offset); 10993 strtab = dtrace_dof_sect(dof, DOF_SECT_STRTAB, probe->dofp_strtab); 10994 10995 if (strtab == NULL) 10996 return (NULL); 10997 10998 str = daddr + strtab->dofs_offset; 10999 size = strtab->dofs_size; 11000 11001 if (probe->dofp_provider >= strtab->dofs_size) { 11002 dtrace_dof_error(dof, "corrupt probe provider"); 11003 return (NULL); 11004 } 11005 11006 (void) strncpy(desc->dtpd_provider, 11007 (char *)(str + probe->dofp_provider), 11008 MIN(DTRACE_PROVNAMELEN - 1, size - probe->dofp_provider)); 11009 11010 if (probe->dofp_mod >= strtab->dofs_size) { 11011 dtrace_dof_error(dof, "corrupt probe module"); 11012 return (NULL); 11013 } 11014 11015 (void) strncpy(desc->dtpd_mod, (char *)(str + probe->dofp_mod), 11016 MIN(DTRACE_MODNAMELEN - 1, size - probe->dofp_mod)); 11017 11018 if (probe->dofp_func >= strtab->dofs_size) { 11019 dtrace_dof_error(dof, "corrupt probe function"); 11020 return (NULL); 11021 } 11022 11023 (void) strncpy(desc->dtpd_func, (char *)(str + probe->dofp_func), 11024 MIN(DTRACE_FUNCNAMELEN - 1, size - probe->dofp_func)); 11025 11026 if (probe->dofp_name >= strtab->dofs_size) { 11027 dtrace_dof_error(dof, "corrupt probe name"); 11028 return (NULL); 11029 } 11030 11031 (void) strncpy(desc->dtpd_name, (char *)(str + probe->dofp_name), 11032 MIN(DTRACE_NAMELEN - 1, size - probe->dofp_name)); 11033 11034 return (desc); 11035 } 11036 11037 static dtrace_difo_t * 11038 dtrace_dof_difo(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate, 11039 cred_t *cr) 11040 { 11041 dtrace_difo_t *dp; 11042 size_t ttl = 0; 11043 dof_difohdr_t *dofd; 11044 uintptr_t daddr = (uintptr_t)dof; 11045 size_t max = dtrace_difo_maxsize; 11046 int i, l, n; 11047 11048 static const struct { 11049 int section; 11050 int bufoffs; 11051 int lenoffs; 11052 int entsize; 11053 int align; 11054 const char *msg; 11055 } difo[] = { 11056 { DOF_SECT_DIF, offsetof(dtrace_difo_t, dtdo_buf), 11057 offsetof(dtrace_difo_t, dtdo_len), sizeof (dif_instr_t), 11058 sizeof (dif_instr_t), "multiple DIF sections" }, 11059 11060 { DOF_SECT_INTTAB, offsetof(dtrace_difo_t, dtdo_inttab), 11061 offsetof(dtrace_difo_t, dtdo_intlen), sizeof (uint64_t), 11062 sizeof (uint64_t), "multiple integer tables" }, 11063 11064 { DOF_SECT_STRTAB, offsetof(dtrace_difo_t, dtdo_strtab), 11065 offsetof(dtrace_difo_t, dtdo_strlen), 0, 11066 sizeof (char), "multiple string tables" }, 11067 11068 { DOF_SECT_VARTAB, offsetof(dtrace_difo_t, dtdo_vartab), 11069 offsetof(dtrace_difo_t, dtdo_varlen), sizeof (dtrace_difv_t), 11070 sizeof (uint_t), "multiple variable tables" }, 11071 11072 { DOF_SECT_NONE, 0, 0, 0, NULL } 11073 }; 11074 11075 if (sec->dofs_type != DOF_SECT_DIFOHDR) { 11076 dtrace_dof_error(dof, "invalid DIFO header section"); 11077 return (NULL); 11078 } 11079 11080 if (sec->dofs_align != sizeof (dof_secidx_t)) { 11081 dtrace_dof_error(dof, "bad alignment in DIFO header"); 11082 return (NULL); 11083 } 11084 11085 if (sec->dofs_size < sizeof (dof_difohdr_t) || 11086 sec->dofs_size % sizeof (dof_secidx_t)) { 11087 dtrace_dof_error(dof, "bad size in DIFO header"); 11088 return (NULL); 11089 } 11090 11091 dofd = (dof_difohdr_t *)(uintptr_t)(daddr + sec->dofs_offset); 11092 n = (sec->dofs_size - sizeof (*dofd)) / sizeof (dof_secidx_t) + 1; 11093 11094 dp = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP); 11095 dp->dtdo_rtype = dofd->dofd_rtype; 11096 11097 for (l = 0; l < n; l++) { 11098 dof_sec_t *subsec; 11099 void **bufp; 11100 uint32_t *lenp; 11101 11102 if ((subsec = dtrace_dof_sect(dof, DOF_SECT_NONE, 11103 dofd->dofd_links[l])) == NULL) 11104 goto err; /* invalid section link */ 11105 11106 if (ttl + subsec->dofs_size > max) { 11107 dtrace_dof_error(dof, "exceeds maximum size"); 11108 goto err; 11109 } 11110 11111 ttl += subsec->dofs_size; 11112 11113 for (i = 0; difo[i].section != DOF_SECT_NONE; i++) { 11114 if (subsec->dofs_type != difo[i].section) 11115 continue; 11116 11117 if (!(subsec->dofs_flags & DOF_SECF_LOAD)) { 11118 dtrace_dof_error(dof, "section not loaded"); 11119 goto err; 11120 } 11121 11122 if (subsec->dofs_align != difo[i].align) { 11123 dtrace_dof_error(dof, "bad alignment"); 11124 goto err; 11125 } 11126 11127 bufp = (void **)((uintptr_t)dp + difo[i].bufoffs); 11128 lenp = (uint32_t *)((uintptr_t)dp + difo[i].lenoffs); 11129 11130 if (*bufp != NULL) { 11131 dtrace_dof_error(dof, difo[i].msg); 11132 goto err; 11133 } 11134 11135 if (difo[i].entsize != subsec->dofs_entsize) { 11136 dtrace_dof_error(dof, "entry size mismatch"); 11137 goto err; 11138 } 11139 11140 if (subsec->dofs_entsize != 0 && 11141 (subsec->dofs_size % subsec->dofs_entsize) != 0) { 11142 dtrace_dof_error(dof, "corrupt entry size"); 11143 goto err; 11144 } 11145 11146 *lenp = subsec->dofs_size; 11147 *bufp = kmem_alloc(subsec->dofs_size, KM_SLEEP); 11148 bcopy((char *)(uintptr_t)(daddr + subsec->dofs_offset), 11149 *bufp, subsec->dofs_size); 11150 11151 if (subsec->dofs_entsize != 0) 11152 *lenp /= subsec->dofs_entsize; 11153 11154 break; 11155 } 11156 11157 /* 11158 * If we encounter a loadable DIFO sub-section that is not 11159 * known to us, assume this is a broken program and fail. 11160 */ 11161 if (difo[i].section == DOF_SECT_NONE && 11162 (subsec->dofs_flags & DOF_SECF_LOAD)) { 11163 dtrace_dof_error(dof, "unrecognized DIFO subsection"); 11164 goto err; 11165 } 11166 } 11167 11168 if (dp->dtdo_buf == NULL) { 11169 /* 11170 * We can't have a DIF object without DIF text. 11171 */ 11172 dtrace_dof_error(dof, "missing DIF text"); 11173 goto err; 11174 } 11175 11176 /* 11177 * Before we validate the DIF object, run through the variable table 11178 * looking for the strings -- if any of their size are under, we'll set 11179 * their size to be the system-wide default string size. Note that 11180 * this should _not_ happen if the "strsize" option has been set -- 11181 * in this case, the compiler should have set the size to reflect the 11182 * setting of the option. 11183 */ 11184 for (i = 0; i < dp->dtdo_varlen; i++) { 11185 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 11186 dtrace_diftype_t *t = &v->dtdv_type; 11187 11188 if (v->dtdv_id < DIF_VAR_OTHER_UBASE) 11189 continue; 11190 11191 if (t->dtdt_kind == DIF_TYPE_STRING && t->dtdt_size == 0) 11192 t->dtdt_size = dtrace_strsize_default; 11193 } 11194 11195 if (dtrace_difo_validate(dp, vstate, DIF_DIR_NREGS, cr) != 0) 11196 goto err; 11197 11198 dtrace_difo_init(dp, vstate); 11199 return (dp); 11200 11201 err: 11202 kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t)); 11203 kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t)); 11204 kmem_free(dp->dtdo_strtab, dp->dtdo_strlen); 11205 kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t)); 11206 11207 kmem_free(dp, sizeof (dtrace_difo_t)); 11208 return (NULL); 11209 } 11210 11211 static dtrace_predicate_t * 11212 dtrace_dof_predicate(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate, 11213 cred_t *cr) 11214 { 11215 dtrace_difo_t *dp; 11216 11217 if ((dp = dtrace_dof_difo(dof, sec, vstate, cr)) == NULL) 11218 return (NULL); 11219 11220 return (dtrace_predicate_create(dp)); 11221 } 11222 11223 static dtrace_actdesc_t * 11224 dtrace_dof_actdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate, 11225 cred_t *cr) 11226 { 11227 dtrace_actdesc_t *act, *first = NULL, *last = NULL, *next; 11228 dof_actdesc_t *desc; 11229 dof_sec_t *difosec; 11230 size_t offs; 11231 uintptr_t daddr = (uintptr_t)dof; 11232 uint64_t arg; 11233 dtrace_actkind_t kind; 11234 11235 if (sec->dofs_type != DOF_SECT_ACTDESC) { 11236 dtrace_dof_error(dof, "invalid action section"); 11237 return (NULL); 11238 } 11239 11240 if (sec->dofs_offset + sizeof (dof_actdesc_t) > dof->dofh_loadsz) { 11241 dtrace_dof_error(dof, "truncated action description"); 11242 return (NULL); 11243 } 11244 11245 if (sec->dofs_align != sizeof (uint64_t)) { 11246 dtrace_dof_error(dof, "bad alignment in action description"); 11247 return (NULL); 11248 } 11249 11250 if (sec->dofs_size < sec->dofs_entsize) { 11251 dtrace_dof_error(dof, "section entry size exceeds total size"); 11252 return (NULL); 11253 } 11254 11255 if (sec->dofs_entsize != sizeof (dof_actdesc_t)) { 11256 dtrace_dof_error(dof, "bad entry size in action description"); 11257 return (NULL); 11258 } 11259 11260 if (sec->dofs_size / sec->dofs_entsize > dtrace_actions_max) { 11261 dtrace_dof_error(dof, "actions exceed dtrace_actions_max"); 11262 return (NULL); 11263 } 11264 11265 for (offs = 0; offs < sec->dofs_size; offs += sec->dofs_entsize) { 11266 desc = (dof_actdesc_t *)(daddr + 11267 (uintptr_t)sec->dofs_offset + offs); 11268 kind = (dtrace_actkind_t)desc->dofa_kind; 11269 11270 if (DTRACEACT_ISPRINTFLIKE(kind) && 11271 (kind != DTRACEACT_PRINTA || 11272 desc->dofa_strtab != DOF_SECIDX_NONE)) { 11273 dof_sec_t *strtab; 11274 char *str, *fmt; 11275 uint64_t i; 11276 11277 /* 11278 * printf()-like actions must have a format string. 11279 */ 11280 if ((strtab = dtrace_dof_sect(dof, 11281 DOF_SECT_STRTAB, desc->dofa_strtab)) == NULL) 11282 goto err; 11283 11284 str = (char *)((uintptr_t)dof + 11285 (uintptr_t)strtab->dofs_offset); 11286 11287 for (i = desc->dofa_arg; i < strtab->dofs_size; i++) { 11288 if (str[i] == '\0') 11289 break; 11290 } 11291 11292 if (i >= strtab->dofs_size) { 11293 dtrace_dof_error(dof, "bogus format string"); 11294 goto err; 11295 } 11296 11297 if (i == desc->dofa_arg) { 11298 dtrace_dof_error(dof, "empty format string"); 11299 goto err; 11300 } 11301 11302 i -= desc->dofa_arg; 11303 fmt = kmem_alloc(i + 1, KM_SLEEP); 11304 bcopy(&str[desc->dofa_arg], fmt, i + 1); 11305 arg = (uint64_t)(uintptr_t)fmt; 11306 } else { 11307 if (kind == DTRACEACT_PRINTA) { 11308 ASSERT(desc->dofa_strtab == DOF_SECIDX_NONE); 11309 arg = 0; 11310 } else { 11311 arg = desc->dofa_arg; 11312 } 11313 } 11314 11315 act = dtrace_actdesc_create(kind, desc->dofa_ntuple, 11316 desc->dofa_uarg, arg); 11317 11318 if (last != NULL) { 11319 last->dtad_next = act; 11320 } else { 11321 first = act; 11322 } 11323 11324 last = act; 11325 11326 if (desc->dofa_difo == DOF_SECIDX_NONE) 11327 continue; 11328 11329 if ((difosec = dtrace_dof_sect(dof, 11330 DOF_SECT_DIFOHDR, desc->dofa_difo)) == NULL) 11331 goto err; 11332 11333 act->dtad_difo = dtrace_dof_difo(dof, difosec, vstate, cr); 11334 11335 if (act->dtad_difo == NULL) 11336 goto err; 11337 } 11338 11339 ASSERT(first != NULL); 11340 return (first); 11341 11342 err: 11343 for (act = first; act != NULL; act = next) { 11344 next = act->dtad_next; 11345 dtrace_actdesc_release(act, vstate); 11346 } 11347 11348 return (NULL); 11349 } 11350 11351 static dtrace_ecbdesc_t * 11352 dtrace_dof_ecbdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate, 11353 cred_t *cr) 11354 { 11355 dtrace_ecbdesc_t *ep; 11356 dof_ecbdesc_t *ecb; 11357 dtrace_probedesc_t *desc; 11358 dtrace_predicate_t *pred = NULL; 11359 11360 if (sec->dofs_size < sizeof (dof_ecbdesc_t)) { 11361 dtrace_dof_error(dof, "truncated ECB description"); 11362 return (NULL); 11363 } 11364 11365 if (sec->dofs_align != sizeof (uint64_t)) { 11366 dtrace_dof_error(dof, "bad alignment in ECB description"); 11367 return (NULL); 11368 } 11369 11370 ecb = (dof_ecbdesc_t *)((uintptr_t)dof + (uintptr_t)sec->dofs_offset); 11371 sec = dtrace_dof_sect(dof, DOF_SECT_PROBEDESC, ecb->dofe_probes); 11372 11373 if (sec == NULL) 11374 return (NULL); 11375 11376 ep = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP); 11377 ep->dted_uarg = ecb->dofe_uarg; 11378 desc = &ep->dted_probe; 11379 11380 if (dtrace_dof_probedesc(dof, sec, desc) == NULL) 11381 goto err; 11382 11383 if (ecb->dofe_pred != DOF_SECIDX_NONE) { 11384 if ((sec = dtrace_dof_sect(dof, 11385 DOF_SECT_DIFOHDR, ecb->dofe_pred)) == NULL) 11386 goto err; 11387 11388 if ((pred = dtrace_dof_predicate(dof, sec, vstate, cr)) == NULL) 11389 goto err; 11390 11391 ep->dted_pred.dtpdd_predicate = pred; 11392 } 11393 11394 if (ecb->dofe_actions != DOF_SECIDX_NONE) { 11395 if ((sec = dtrace_dof_sect(dof, 11396 DOF_SECT_ACTDESC, ecb->dofe_actions)) == NULL) 11397 goto err; 11398 11399 ep->dted_action = dtrace_dof_actdesc(dof, sec, vstate, cr); 11400 11401 if (ep->dted_action == NULL) 11402 goto err; 11403 } 11404 11405 return (ep); 11406 11407 err: 11408 if (pred != NULL) 11409 dtrace_predicate_release(pred, vstate); 11410 kmem_free(ep, sizeof (dtrace_ecbdesc_t)); 11411 return (NULL); 11412 } 11413 11414 /* 11415 * Apply the relocations from the specified 'sec' (a DOF_SECT_URELHDR) to the 11416 * specified DOF. At present, this amounts to simply adding 'ubase' to the 11417 * site of any user SETX relocations to account for load object base address. 11418 * In the future, if we need other relocations, this function can be extended. 11419 */ 11420 static int 11421 dtrace_dof_relocate(dof_hdr_t *dof, dof_sec_t *sec, uint64_t ubase) 11422 { 11423 uintptr_t daddr = (uintptr_t)dof; 11424 dof_relohdr_t *dofr = 11425 (dof_relohdr_t *)(uintptr_t)(daddr + sec->dofs_offset); 11426 dof_sec_t *ss, *rs, *ts; 11427 dof_relodesc_t *r; 11428 uint_t i, n; 11429 11430 if (sec->dofs_size < sizeof (dof_relohdr_t) || 11431 sec->dofs_align != sizeof (dof_secidx_t)) { 11432 dtrace_dof_error(dof, "invalid relocation header"); 11433 return (-1); 11434 } 11435 11436 ss = dtrace_dof_sect(dof, DOF_SECT_STRTAB, dofr->dofr_strtab); 11437 rs = dtrace_dof_sect(dof, DOF_SECT_RELTAB, dofr->dofr_relsec); 11438 ts = dtrace_dof_sect(dof, DOF_SECT_NONE, dofr->dofr_tgtsec); 11439 11440 if (ss == NULL || rs == NULL || ts == NULL) 11441 return (-1); /* dtrace_dof_error() has been called already */ 11442 11443 if (rs->dofs_entsize < sizeof (dof_relodesc_t) || 11444 rs->dofs_align != sizeof (uint64_t)) { 11445 dtrace_dof_error(dof, "invalid relocation section"); 11446 return (-1); 11447 } 11448 11449 r = (dof_relodesc_t *)(uintptr_t)(daddr + rs->dofs_offset); 11450 n = rs->dofs_size / rs->dofs_entsize; 11451 11452 for (i = 0; i < n; i++) { 11453 uintptr_t taddr = daddr + ts->dofs_offset + r->dofr_offset; 11454 11455 switch (r->dofr_type) { 11456 case DOF_RELO_NONE: 11457 break; 11458 case DOF_RELO_SETX: 11459 if (r->dofr_offset >= ts->dofs_size || r->dofr_offset + 11460 sizeof (uint64_t) > ts->dofs_size) { 11461 dtrace_dof_error(dof, "bad relocation offset"); 11462 return (-1); 11463 } 11464 11465 if (!IS_P2ALIGNED(taddr, sizeof (uint64_t))) { 11466 dtrace_dof_error(dof, "misaligned setx relo"); 11467 return (-1); 11468 } 11469 11470 *(uint64_t *)taddr += ubase; 11471 break; 11472 default: 11473 dtrace_dof_error(dof, "invalid relocation type"); 11474 return (-1); 11475 } 11476 11477 r = (dof_relodesc_t *)((uintptr_t)r + rs->dofs_entsize); 11478 } 11479 11480 return (0); 11481 } 11482 11483 /* 11484 * The dof_hdr_t passed to dtrace_dof_slurp() should be a partially validated 11485 * header: it should be at the front of a memory region that is at least 11486 * sizeof (dof_hdr_t) in size -- and then at least dof_hdr.dofh_loadsz in 11487 * size. It need not be validated in any other way. 11488 */ 11489 static int 11490 dtrace_dof_slurp(dof_hdr_t *dof, dtrace_vstate_t *vstate, cred_t *cr, 11491 dtrace_enabling_t **enabp, uint64_t ubase, int noprobes) 11492 { 11493 uint64_t len = dof->dofh_loadsz, seclen; 11494 uintptr_t daddr = (uintptr_t)dof; 11495 dtrace_ecbdesc_t *ep; 11496 dtrace_enabling_t *enab; 11497 uint_t i; 11498 11499 ASSERT(MUTEX_HELD(&dtrace_lock)); 11500 ASSERT(dof->dofh_loadsz >= sizeof (dof_hdr_t)); 11501 11502 /* 11503 * Check the DOF header identification bytes. In addition to checking 11504 * valid settings, we also verify that unused bits/bytes are zeroed so 11505 * we can use them later without fear of regressing existing binaries. 11506 */ 11507 if (bcmp(&dof->dofh_ident[DOF_ID_MAG0], 11508 DOF_MAG_STRING, DOF_MAG_STRLEN) != 0) { 11509 dtrace_dof_error(dof, "DOF magic string mismatch"); 11510 return (-1); 11511 } 11512 11513 if (dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_ILP32 && 11514 dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_LP64) { 11515 dtrace_dof_error(dof, "DOF has invalid data model"); 11516 return (-1); 11517 } 11518 11519 if (dof->dofh_ident[DOF_ID_ENCODING] != DOF_ENCODE_NATIVE) { 11520 dtrace_dof_error(dof, "DOF encoding mismatch"); 11521 return (-1); 11522 } 11523 11524 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 && 11525 dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_2) { 11526 dtrace_dof_error(dof, "DOF version mismatch"); 11527 return (-1); 11528 } 11529 11530 if (dof->dofh_ident[DOF_ID_DIFVERS] != DIF_VERSION_2) { 11531 dtrace_dof_error(dof, "DOF uses unsupported instruction set"); 11532 return (-1); 11533 } 11534 11535 if (dof->dofh_ident[DOF_ID_DIFIREG] > DIF_DIR_NREGS) { 11536 dtrace_dof_error(dof, "DOF uses too many integer registers"); 11537 return (-1); 11538 } 11539 11540 if (dof->dofh_ident[DOF_ID_DIFTREG] > DIF_DTR_NREGS) { 11541 dtrace_dof_error(dof, "DOF uses too many tuple registers"); 11542 return (-1); 11543 } 11544 11545 for (i = DOF_ID_PAD; i < DOF_ID_SIZE; i++) { 11546 if (dof->dofh_ident[i] != 0) { 11547 dtrace_dof_error(dof, "DOF has invalid ident byte set"); 11548 return (-1); 11549 } 11550 } 11551 11552 if (dof->dofh_flags & ~DOF_FL_VALID) { 11553 dtrace_dof_error(dof, "DOF has invalid flag bits set"); 11554 return (-1); 11555 } 11556 11557 if (dof->dofh_secsize == 0) { 11558 dtrace_dof_error(dof, "zero section header size"); 11559 return (-1); 11560 } 11561 11562 /* 11563 * Check that the section headers don't exceed the amount of DOF 11564 * data. Note that we cast the section size and number of sections 11565 * to uint64_t's to prevent possible overflow in the multiplication. 11566 */ 11567 seclen = (uint64_t)dof->dofh_secnum * (uint64_t)dof->dofh_secsize; 11568 11569 if (dof->dofh_secoff > len || seclen > len || 11570 dof->dofh_secoff + seclen > len) { 11571 dtrace_dof_error(dof, "truncated section headers"); 11572 return (-1); 11573 } 11574 11575 if (!IS_P2ALIGNED(dof->dofh_secoff, sizeof (uint64_t))) { 11576 dtrace_dof_error(dof, "misaligned section headers"); 11577 return (-1); 11578 } 11579 11580 if (!IS_P2ALIGNED(dof->dofh_secsize, sizeof (uint64_t))) { 11581 dtrace_dof_error(dof, "misaligned section size"); 11582 return (-1); 11583 } 11584 11585 /* 11586 * Take an initial pass through the section headers to be sure that 11587 * the headers don't have stray offsets. If the 'noprobes' flag is 11588 * set, do not permit sections relating to providers, probes, or args. 11589 */ 11590 for (i = 0; i < dof->dofh_secnum; i++) { 11591 dof_sec_t *sec = (dof_sec_t *)(daddr + 11592 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize); 11593 11594 if (noprobes) { 11595 switch (sec->dofs_type) { 11596 case DOF_SECT_PROVIDER: 11597 case DOF_SECT_PROBES: 11598 case DOF_SECT_PRARGS: 11599 case DOF_SECT_PROFFS: 11600 dtrace_dof_error(dof, "illegal sections " 11601 "for enabling"); 11602 return (-1); 11603 } 11604 } 11605 11606 if (!(sec->dofs_flags & DOF_SECF_LOAD)) 11607 continue; /* just ignore non-loadable sections */ 11608 11609 if (sec->dofs_align & (sec->dofs_align - 1)) { 11610 dtrace_dof_error(dof, "bad section alignment"); 11611 return (-1); 11612 } 11613 11614 if (sec->dofs_offset & (sec->dofs_align - 1)) { 11615 dtrace_dof_error(dof, "misaligned section"); 11616 return (-1); 11617 } 11618 11619 if (sec->dofs_offset > len || sec->dofs_size > len || 11620 sec->dofs_offset + sec->dofs_size > len) { 11621 dtrace_dof_error(dof, "corrupt section header"); 11622 return (-1); 11623 } 11624 11625 if (sec->dofs_type == DOF_SECT_STRTAB && *((char *)daddr + 11626 sec->dofs_offset + sec->dofs_size - 1) != '\0') { 11627 dtrace_dof_error(dof, "non-terminating string table"); 11628 return (-1); 11629 } 11630 } 11631 11632 /* 11633 * Take a second pass through the sections and locate and perform any 11634 * relocations that are present. We do this after the first pass to 11635 * be sure that all sections have had their headers validated. 11636 */ 11637 for (i = 0; i < dof->dofh_secnum; i++) { 11638 dof_sec_t *sec = (dof_sec_t *)(daddr + 11639 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize); 11640 11641 if (!(sec->dofs_flags & DOF_SECF_LOAD)) 11642 continue; /* skip sections that are not loadable */ 11643 11644 switch (sec->dofs_type) { 11645 case DOF_SECT_URELHDR: 11646 if (dtrace_dof_relocate(dof, sec, ubase) != 0) 11647 return (-1); 11648 break; 11649 } 11650 } 11651 11652 if ((enab = *enabp) == NULL) 11653 enab = *enabp = dtrace_enabling_create(vstate); 11654 11655 for (i = 0; i < dof->dofh_secnum; i++) { 11656 dof_sec_t *sec = (dof_sec_t *)(daddr + 11657 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize); 11658 11659 if (sec->dofs_type != DOF_SECT_ECBDESC) 11660 continue; 11661 11662 if ((ep = dtrace_dof_ecbdesc(dof, sec, vstate, cr)) == NULL) { 11663 dtrace_enabling_destroy(enab); 11664 *enabp = NULL; 11665 return (-1); 11666 } 11667 11668 dtrace_enabling_add(enab, ep); 11669 } 11670 11671 return (0); 11672 } 11673 11674 /* 11675 * Process DOF for any options. This routine assumes that the DOF has been 11676 * at least processed by dtrace_dof_slurp(). 11677 */ 11678 static int 11679 dtrace_dof_options(dof_hdr_t *dof, dtrace_state_t *state) 11680 { 11681 int i, rval; 11682 uint32_t entsize; 11683 size_t offs; 11684 dof_optdesc_t *desc; 11685 11686 for (i = 0; i < dof->dofh_secnum; i++) { 11687 dof_sec_t *sec = (dof_sec_t *)((uintptr_t)dof + 11688 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize); 11689 11690 if (sec->dofs_type != DOF_SECT_OPTDESC) 11691 continue; 11692 11693 if (sec->dofs_align != sizeof (uint64_t)) { 11694 dtrace_dof_error(dof, "bad alignment in " 11695 "option description"); 11696 return (EINVAL); 11697 } 11698 11699 if ((entsize = sec->dofs_entsize) == 0) { 11700 dtrace_dof_error(dof, "zeroed option entry size"); 11701 return (EINVAL); 11702 } 11703 11704 if (entsize < sizeof (dof_optdesc_t)) { 11705 dtrace_dof_error(dof, "bad option entry size"); 11706 return (EINVAL); 11707 } 11708 11709 for (offs = 0; offs < sec->dofs_size; offs += entsize) { 11710 desc = (dof_optdesc_t *)((uintptr_t)dof + 11711 (uintptr_t)sec->dofs_offset + offs); 11712 11713 if (desc->dofo_strtab != DOF_SECIDX_NONE) { 11714 dtrace_dof_error(dof, "non-zero option string"); 11715 return (EINVAL); 11716 } 11717 11718 if (desc->dofo_value == DTRACEOPT_UNSET) { 11719 dtrace_dof_error(dof, "unset option"); 11720 return (EINVAL); 11721 } 11722 11723 if ((rval = dtrace_state_option(state, 11724 desc->dofo_option, desc->dofo_value)) != 0) { 11725 dtrace_dof_error(dof, "rejected option"); 11726 return (rval); 11727 } 11728 } 11729 } 11730 11731 return (0); 11732 } 11733 11734 /* 11735 * DTrace Consumer State Functions 11736 */ 11737 int 11738 dtrace_dstate_init(dtrace_dstate_t *dstate, size_t size) 11739 { 11740 size_t hashsize, maxper, min, chunksize = dstate->dtds_chunksize; 11741 void *base; 11742 uintptr_t limit; 11743 dtrace_dynvar_t *dvar, *next, *start; 11744 int i; 11745 11746 ASSERT(MUTEX_HELD(&dtrace_lock)); 11747 ASSERT(dstate->dtds_base == NULL && dstate->dtds_percpu == NULL); 11748 11749 bzero(dstate, sizeof (dtrace_dstate_t)); 11750 11751 if ((dstate->dtds_chunksize = chunksize) == 0) 11752 dstate->dtds_chunksize = DTRACE_DYNVAR_CHUNKSIZE; 11753 11754 if (size < (min = dstate->dtds_chunksize + sizeof (dtrace_dynhash_t))) 11755 size = min; 11756 11757 if ((base = kmem_zalloc(size, KM_NOSLEEP)) == NULL) 11758 return (ENOMEM); 11759 11760 dstate->dtds_size = size; 11761 dstate->dtds_base = base; 11762 dstate->dtds_percpu = kmem_cache_alloc(dtrace_state_cache, KM_SLEEP); 11763 bzero(dstate->dtds_percpu, NCPU * sizeof (dtrace_dstate_percpu_t)); 11764 11765 hashsize = size / (dstate->dtds_chunksize + sizeof (dtrace_dynhash_t)); 11766 11767 if (hashsize != 1 && (hashsize & 1)) 11768 hashsize--; 11769 11770 dstate->dtds_hashsize = hashsize; 11771 dstate->dtds_hash = dstate->dtds_base; 11772 11773 /* 11774 * Set all of our hash buckets to point to the single sink, and (if 11775 * it hasn't already been set), set the sink's hash value to be the 11776 * sink sentinel value. The sink is needed for dynamic variable 11777 * lookups to know that they have iterated over an entire, valid hash 11778 * chain. 11779 */ 11780 for (i = 0; i < hashsize; i++) 11781 dstate->dtds_hash[i].dtdh_chain = &dtrace_dynhash_sink; 11782 11783 if (dtrace_dynhash_sink.dtdv_hashval != DTRACE_DYNHASH_SINK) 11784 dtrace_dynhash_sink.dtdv_hashval = DTRACE_DYNHASH_SINK; 11785 11786 /* 11787 * Determine number of active CPUs. Divide free list evenly among 11788 * active CPUs. 11789 */ 11790 start = (dtrace_dynvar_t *) 11791 ((uintptr_t)base + hashsize * sizeof (dtrace_dynhash_t)); 11792 limit = (uintptr_t)base + size; 11793 11794 maxper = (limit - (uintptr_t)start) / NCPU; 11795 maxper = (maxper / dstate->dtds_chunksize) * dstate->dtds_chunksize; 11796 11797 for (i = 0; i < NCPU; i++) { 11798 dstate->dtds_percpu[i].dtdsc_free = dvar = start; 11799 11800 /* 11801 * If we don't even have enough chunks to make it once through 11802 * NCPUs, we're just going to allocate everything to the first 11803 * CPU. And if we're on the last CPU, we're going to allocate 11804 * whatever is left over. In either case, we set the limit to 11805 * be the limit of the dynamic variable space. 11806 */ 11807 if (maxper == 0 || i == NCPU - 1) { 11808 limit = (uintptr_t)base + size; 11809 start = NULL; 11810 } else { 11811 limit = (uintptr_t)start + maxper; 11812 start = (dtrace_dynvar_t *)limit; 11813 } 11814 11815 ASSERT(limit <= (uintptr_t)base + size); 11816 11817 for (;;) { 11818 next = (dtrace_dynvar_t *)((uintptr_t)dvar + 11819 dstate->dtds_chunksize); 11820 11821 if ((uintptr_t)next + dstate->dtds_chunksize >= limit) 11822 break; 11823 11824 dvar->dtdv_next = next; 11825 dvar = next; 11826 } 11827 11828 if (maxper == 0) 11829 break; 11830 } 11831 11832 return (0); 11833 } 11834 11835 void 11836 dtrace_dstate_fini(dtrace_dstate_t *dstate) 11837 { 11838 ASSERT(MUTEX_HELD(&cpu_lock)); 11839 11840 if (dstate->dtds_base == NULL) 11841 return; 11842 11843 kmem_free(dstate->dtds_base, dstate->dtds_size); 11844 kmem_cache_free(dtrace_state_cache, dstate->dtds_percpu); 11845 } 11846 11847 static void 11848 dtrace_vstate_fini(dtrace_vstate_t *vstate) 11849 { 11850 /* 11851 * Logical XOR, where are you? 11852 */ 11853 ASSERT((vstate->dtvs_nglobals == 0) ^ (vstate->dtvs_globals != NULL)); 11854 11855 if (vstate->dtvs_nglobals > 0) { 11856 kmem_free(vstate->dtvs_globals, vstate->dtvs_nglobals * 11857 sizeof (dtrace_statvar_t *)); 11858 } 11859 11860 if (vstate->dtvs_ntlocals > 0) { 11861 kmem_free(vstate->dtvs_tlocals, vstate->dtvs_ntlocals * 11862 sizeof (dtrace_difv_t)); 11863 } 11864 11865 ASSERT((vstate->dtvs_nlocals == 0) ^ (vstate->dtvs_locals != NULL)); 11866 11867 if (vstate->dtvs_nlocals > 0) { 11868 kmem_free(vstate->dtvs_locals, vstate->dtvs_nlocals * 11869 sizeof (dtrace_statvar_t *)); 11870 } 11871 } 11872 11873 static void 11874 dtrace_state_clean(dtrace_state_t *state) 11875 { 11876 if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE) 11877 return; 11878 11879 dtrace_dynvar_clean(&state->dts_vstate.dtvs_dynvars); 11880 dtrace_speculation_clean(state); 11881 } 11882 11883 static void 11884 dtrace_state_deadman(dtrace_state_t *state) 11885 { 11886 hrtime_t now; 11887 11888 dtrace_sync(); 11889 11890 now = dtrace_gethrtime(); 11891 11892 if (state != dtrace_anon.dta_state && 11893 now - state->dts_laststatus >= dtrace_deadman_user) 11894 return; 11895 11896 /* 11897 * We must be sure that dts_alive never appears to be less than the 11898 * value upon entry to dtrace_state_deadman(), and because we lack a 11899 * dtrace_cas64(), we cannot store to it atomically. We thus instead 11900 * store INT64_MAX to it, followed by a memory barrier, followed by 11901 * the new value. This assures that dts_alive never appears to be 11902 * less than its true value, regardless of the order in which the 11903 * stores to the underlying storage are issued. 11904 */ 11905 state->dts_alive = INT64_MAX; 11906 dtrace_membar_producer(); 11907 state->dts_alive = now; 11908 } 11909 11910 dtrace_state_t * 11911 dtrace_state_create(dev_t *devp, cred_t *cr) 11912 { 11913 minor_t minor; 11914 major_t major; 11915 char c[30]; 11916 dtrace_state_t *state; 11917 dtrace_optval_t *opt; 11918 int bufsize = NCPU * sizeof (dtrace_buffer_t), i; 11919 11920 ASSERT(MUTEX_HELD(&dtrace_lock)); 11921 ASSERT(MUTEX_HELD(&cpu_lock)); 11922 11923 minor = (minor_t)(uintptr_t)vmem_alloc(dtrace_minor, 1, 11924 VM_BESTFIT | VM_SLEEP); 11925 11926 if (ddi_soft_state_zalloc(dtrace_softstate, minor) != DDI_SUCCESS) { 11927 vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1); 11928 return (NULL); 11929 } 11930 11931 state = ddi_get_soft_state(dtrace_softstate, minor); 11932 state->dts_epid = DTRACE_EPIDNONE + 1; 11933 11934 (void) snprintf(c, sizeof (c), "dtrace_aggid_%d", minor); 11935 state->dts_aggid_arena = vmem_create(c, (void *)1, UINT32_MAX, 1, 11936 NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER); 11937 11938 if (devp != NULL) { 11939 major = getemajor(*devp); 11940 } else { 11941 major = ddi_driver_major(dtrace_devi); 11942 } 11943 11944 state->dts_dev = makedevice(major, minor); 11945 11946 if (devp != NULL) 11947 *devp = state->dts_dev; 11948 11949 /* 11950 * We allocate NCPU buffers. On the one hand, this can be quite 11951 * a bit of memory per instance (nearly 36K on a Starcat). On the 11952 * other hand, it saves an additional memory reference in the probe 11953 * path. 11954 */ 11955 state->dts_buffer = kmem_zalloc(bufsize, KM_SLEEP); 11956 state->dts_aggbuffer = kmem_zalloc(bufsize, KM_SLEEP); 11957 state->dts_cleaner = CYCLIC_NONE; 11958 state->dts_deadman = CYCLIC_NONE; 11959 state->dts_vstate.dtvs_state = state; 11960 11961 for (i = 0; i < DTRACEOPT_MAX; i++) 11962 state->dts_options[i] = DTRACEOPT_UNSET; 11963 11964 /* 11965 * Set the default options. 11966 */ 11967 opt = state->dts_options; 11968 opt[DTRACEOPT_BUFPOLICY] = DTRACEOPT_BUFPOLICY_SWITCH; 11969 opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_AUTO; 11970 opt[DTRACEOPT_NSPEC] = dtrace_nspec_default; 11971 opt[DTRACEOPT_SPECSIZE] = dtrace_specsize_default; 11972 opt[DTRACEOPT_CPU] = (dtrace_optval_t)DTRACE_CPUALL; 11973 opt[DTRACEOPT_STRSIZE] = dtrace_strsize_default; 11974 opt[DTRACEOPT_STACKFRAMES] = dtrace_stackframes_default; 11975 opt[DTRACEOPT_USTACKFRAMES] = dtrace_ustackframes_default; 11976 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_default; 11977 opt[DTRACEOPT_AGGRATE] = dtrace_aggrate_default; 11978 opt[DTRACEOPT_SWITCHRATE] = dtrace_switchrate_default; 11979 opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_default; 11980 opt[DTRACEOPT_JSTACKFRAMES] = dtrace_jstackframes_default; 11981 opt[DTRACEOPT_JSTACKSTRSIZE] = dtrace_jstackstrsize_default; 11982 11983 state->dts_activity = DTRACE_ACTIVITY_INACTIVE; 11984 11985 /* 11986 * Depending on the user credentials, we set flag bits which alter probe 11987 * visibility or the amount of destructiveness allowed. In the case of 11988 * actual anonymous tracing, or the possession of all privileges, all of 11989 * the normal checks are bypassed. 11990 */ 11991 if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) { 11992 state->dts_cred.dcr_visible = DTRACE_CRV_ALL; 11993 state->dts_cred.dcr_action = DTRACE_CRA_ALL; 11994 } else { 11995 /* 11996 * Set up the credentials for this instantiation. We take a 11997 * hold on the credential to prevent it from disappearing on 11998 * us; this in turn prevents the zone_t referenced by this 11999 * credential from disappearing. This means that we can 12000 * examine the credential and the zone from probe context. 12001 */ 12002 crhold(cr); 12003 state->dts_cred.dcr_cred = cr; 12004 12005 /* 12006 * CRA_PROC means "we have *some* privilege for dtrace" and 12007 * unlocks the use of variables like pid, zonename, etc. 12008 */ 12009 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE) || 12010 PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) { 12011 state->dts_cred.dcr_action |= DTRACE_CRA_PROC; 12012 } 12013 12014 /* 12015 * dtrace_user allows use of syscall and profile providers. 12016 * If the user also has proc_owner and/or proc_zone, we 12017 * extend the scope to include additional visibility and 12018 * destructive power. 12019 */ 12020 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE)) { 12021 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) { 12022 state->dts_cred.dcr_visible |= 12023 DTRACE_CRV_ALLPROC; 12024 12025 state->dts_cred.dcr_action |= 12026 DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER; 12027 } 12028 12029 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) { 12030 state->dts_cred.dcr_visible |= 12031 DTRACE_CRV_ALLZONE; 12032 12033 state->dts_cred.dcr_action |= 12034 DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE; 12035 } 12036 12037 /* 12038 * If we have all privs in whatever zone this is, 12039 * we can do destructive things to processes which 12040 * have altered credentials. 12041 */ 12042 if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE), 12043 cr->cr_zone->zone_privset)) { 12044 state->dts_cred.dcr_action |= 12045 DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG; 12046 } 12047 } 12048 12049 /* 12050 * Holding the dtrace_kernel privilege also implies that 12051 * the user has the dtrace_user privilege from a visibility 12052 * perspective. But without further privileges, some 12053 * destructive actions are not available. 12054 */ 12055 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE)) { 12056 /* 12057 * Make all probes in all zones visible. However, 12058 * this doesn't mean that all actions become available 12059 * to all zones. 12060 */ 12061 state->dts_cred.dcr_visible |= DTRACE_CRV_KERNEL | 12062 DTRACE_CRV_ALLPROC | DTRACE_CRV_ALLZONE; 12063 12064 state->dts_cred.dcr_action |= DTRACE_CRA_KERNEL | 12065 DTRACE_CRA_PROC; 12066 /* 12067 * Holding proc_owner means that destructive actions 12068 * for *this* zone are allowed. 12069 */ 12070 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) 12071 state->dts_cred.dcr_action |= 12072 DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER; 12073 12074 /* 12075 * Holding proc_zone means that destructive actions 12076 * for this user/group ID in all zones is allowed. 12077 */ 12078 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) 12079 state->dts_cred.dcr_action |= 12080 DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE; 12081 12082 /* 12083 * If we have all privs in whatever zone this is, 12084 * we can do destructive things to processes which 12085 * have altered credentials. 12086 */ 12087 if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE), 12088 cr->cr_zone->zone_privset)) { 12089 state->dts_cred.dcr_action |= 12090 DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG; 12091 } 12092 } 12093 12094 /* 12095 * Holding the dtrace_proc privilege gives control over fasttrap 12096 * and pid providers. We need to grant wider destructive 12097 * privileges in the event that the user has proc_owner and/or 12098 * proc_zone. 12099 */ 12100 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) { 12101 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) 12102 state->dts_cred.dcr_action |= 12103 DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER; 12104 12105 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) 12106 state->dts_cred.dcr_action |= 12107 DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE; 12108 } 12109 } 12110 12111 return (state); 12112 } 12113 12114 static int 12115 dtrace_state_buffer(dtrace_state_t *state, dtrace_buffer_t *buf, int which) 12116 { 12117 dtrace_optval_t *opt = state->dts_options, size; 12118 processorid_t cpu; 12119 int flags = 0, rval; 12120 12121 ASSERT(MUTEX_HELD(&dtrace_lock)); 12122 ASSERT(MUTEX_HELD(&cpu_lock)); 12123 ASSERT(which < DTRACEOPT_MAX); 12124 ASSERT(state->dts_activity == DTRACE_ACTIVITY_INACTIVE || 12125 (state == dtrace_anon.dta_state && 12126 state->dts_activity == DTRACE_ACTIVITY_ACTIVE)); 12127 12128 if (opt[which] == DTRACEOPT_UNSET || opt[which] == 0) 12129 return (0); 12130 12131 if (opt[DTRACEOPT_CPU] != DTRACEOPT_UNSET) 12132 cpu = opt[DTRACEOPT_CPU]; 12133 12134 if (which == DTRACEOPT_SPECSIZE) 12135 flags |= DTRACEBUF_NOSWITCH; 12136 12137 if (which == DTRACEOPT_BUFSIZE) { 12138 if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_RING) 12139 flags |= DTRACEBUF_RING; 12140 12141 if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_FILL) 12142 flags |= DTRACEBUF_FILL; 12143 12144 if (state != dtrace_anon.dta_state || 12145 state->dts_activity != DTRACE_ACTIVITY_ACTIVE) 12146 flags |= DTRACEBUF_INACTIVE; 12147 } 12148 12149 for (size = opt[which]; size >= sizeof (uint64_t); size >>= 1) { 12150 /* 12151 * The size must be 8-byte aligned. If the size is not 8-byte 12152 * aligned, drop it down by the difference. 12153 */ 12154 if (size & (sizeof (uint64_t) - 1)) 12155 size -= size & (sizeof (uint64_t) - 1); 12156 12157 if (size < state->dts_reserve) { 12158 /* 12159 * Buffers always must be large enough to accommodate 12160 * their prereserved space. We return E2BIG instead 12161 * of ENOMEM in this case to allow for user-level 12162 * software to differentiate the cases. 12163 */ 12164 return (E2BIG); 12165 } 12166 12167 rval = dtrace_buffer_alloc(buf, size, flags, cpu); 12168 12169 if (rval != ENOMEM) { 12170 opt[which] = size; 12171 return (rval); 12172 } 12173 12174 if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL) 12175 return (rval); 12176 } 12177 12178 return (ENOMEM); 12179 } 12180 12181 static int 12182 dtrace_state_buffers(dtrace_state_t *state) 12183 { 12184 dtrace_speculation_t *spec = state->dts_speculations; 12185 int rval, i; 12186 12187 if ((rval = dtrace_state_buffer(state, state->dts_buffer, 12188 DTRACEOPT_BUFSIZE)) != 0) 12189 return (rval); 12190 12191 if ((rval = dtrace_state_buffer(state, state->dts_aggbuffer, 12192 DTRACEOPT_AGGSIZE)) != 0) 12193 return (rval); 12194 12195 for (i = 0; i < state->dts_nspeculations; i++) { 12196 if ((rval = dtrace_state_buffer(state, 12197 spec[i].dtsp_buffer, DTRACEOPT_SPECSIZE)) != 0) 12198 return (rval); 12199 } 12200 12201 return (0); 12202 } 12203 12204 static void 12205 dtrace_state_prereserve(dtrace_state_t *state) 12206 { 12207 dtrace_ecb_t *ecb; 12208 dtrace_probe_t *probe; 12209 12210 state->dts_reserve = 0; 12211 12212 if (state->dts_options[DTRACEOPT_BUFPOLICY] != DTRACEOPT_BUFPOLICY_FILL) 12213 return; 12214 12215 /* 12216 * If our buffer policy is a "fill" buffer policy, we need to set the 12217 * prereserved space to be the space required by the END probes. 12218 */ 12219 probe = dtrace_probes[dtrace_probeid_end - 1]; 12220 ASSERT(probe != NULL); 12221 12222 for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) { 12223 if (ecb->dte_state != state) 12224 continue; 12225 12226 state->dts_reserve += ecb->dte_needed + ecb->dte_alignment; 12227 } 12228 } 12229 12230 static int 12231 dtrace_state_go(dtrace_state_t *state, processorid_t *cpu) 12232 { 12233 dtrace_optval_t *opt = state->dts_options, sz, nspec; 12234 dtrace_speculation_t *spec; 12235 dtrace_buffer_t *buf; 12236 cyc_handler_t hdlr; 12237 cyc_time_t when; 12238 int rval = 0, i, bufsize = NCPU * sizeof (dtrace_buffer_t); 12239 dtrace_icookie_t cookie; 12240 12241 mutex_enter(&cpu_lock); 12242 mutex_enter(&dtrace_lock); 12243 12244 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) { 12245 rval = EBUSY; 12246 goto out; 12247 } 12248 12249 /* 12250 * Before we can perform any checks, we must prime all of the 12251 * retained enablings that correspond to this state. 12252 */ 12253 dtrace_enabling_prime(state); 12254 12255 if (state->dts_destructive && !state->dts_cred.dcr_destructive) { 12256 rval = EACCES; 12257 goto out; 12258 } 12259 12260 dtrace_state_prereserve(state); 12261 12262 /* 12263 * Now we want to do is try to allocate our speculations. 12264 * We do not automatically resize the number of speculations; if 12265 * this fails, we will fail the operation. 12266 */ 12267 nspec = opt[DTRACEOPT_NSPEC]; 12268 ASSERT(nspec != DTRACEOPT_UNSET); 12269 12270 if (nspec > INT_MAX) { 12271 rval = ENOMEM; 12272 goto out; 12273 } 12274 12275 spec = kmem_zalloc(nspec * sizeof (dtrace_speculation_t), KM_NOSLEEP); 12276 12277 if (spec == NULL) { 12278 rval = ENOMEM; 12279 goto out; 12280 } 12281 12282 state->dts_speculations = spec; 12283 state->dts_nspeculations = (int)nspec; 12284 12285 for (i = 0; i < nspec; i++) { 12286 if ((buf = kmem_zalloc(bufsize, KM_NOSLEEP)) == NULL) { 12287 rval = ENOMEM; 12288 goto err; 12289 } 12290 12291 spec[i].dtsp_buffer = buf; 12292 } 12293 12294 if (opt[DTRACEOPT_GRABANON] != DTRACEOPT_UNSET) { 12295 if (dtrace_anon.dta_state == NULL) { 12296 rval = ENOENT; 12297 goto out; 12298 } 12299 12300 if (state->dts_necbs != 0) { 12301 rval = EALREADY; 12302 goto out; 12303 } 12304 12305 state->dts_anon = dtrace_anon_grab(); 12306 ASSERT(state->dts_anon != NULL); 12307 state = state->dts_anon; 12308 12309 /* 12310 * We want "grabanon" to be set in the grabbed state, so we'll 12311 * copy that option value from the grabbing state into the 12312 * grabbed state. 12313 */ 12314 state->dts_options[DTRACEOPT_GRABANON] = 12315 opt[DTRACEOPT_GRABANON]; 12316 12317 *cpu = dtrace_anon.dta_beganon; 12318 12319 /* 12320 * If the anonymous state is active (as it almost certainly 12321 * is if the anonymous enabling ultimately matched anything), 12322 * we don't allow any further option processing -- but we 12323 * don't return failure. 12324 */ 12325 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) 12326 goto out; 12327 } 12328 12329 if (opt[DTRACEOPT_AGGSIZE] != DTRACEOPT_UNSET && 12330 opt[DTRACEOPT_AGGSIZE] != 0) { 12331 if (state->dts_aggregations == NULL) { 12332 /* 12333 * We're not going to create an aggregation buffer 12334 * because we don't have any ECBs that contain 12335 * aggregations -- set this option to 0. 12336 */ 12337 opt[DTRACEOPT_AGGSIZE] = 0; 12338 } else { 12339 /* 12340 * If we have an aggregation buffer, we must also have 12341 * a buffer to use as scratch. 12342 */ 12343 if (opt[DTRACEOPT_BUFSIZE] == DTRACEOPT_UNSET || 12344 opt[DTRACEOPT_BUFSIZE] < state->dts_needed) { 12345 opt[DTRACEOPT_BUFSIZE] = state->dts_needed; 12346 } 12347 } 12348 } 12349 12350 if (opt[DTRACEOPT_SPECSIZE] != DTRACEOPT_UNSET && 12351 opt[DTRACEOPT_SPECSIZE] != 0) { 12352 if (!state->dts_speculates) { 12353 /* 12354 * We're not going to create speculation buffers 12355 * because we don't have any ECBs that actually 12356 * speculate -- set the speculation size to 0. 12357 */ 12358 opt[DTRACEOPT_SPECSIZE] = 0; 12359 } 12360 } 12361 12362 /* 12363 * The bare minimum size for any buffer that we're actually going to 12364 * do anything to is sizeof (uint64_t). 12365 */ 12366 sz = sizeof (uint64_t); 12367 12368 if ((state->dts_needed != 0 && opt[DTRACEOPT_BUFSIZE] < sz) || 12369 (state->dts_speculates && opt[DTRACEOPT_SPECSIZE] < sz) || 12370 (state->dts_aggregations != NULL && opt[DTRACEOPT_AGGSIZE] < sz)) { 12371 /* 12372 * A buffer size has been explicitly set to 0 (or to a size 12373 * that will be adjusted to 0) and we need the space -- we 12374 * need to return failure. We return ENOSPC to differentiate 12375 * it from failing to allocate a buffer due to failure to meet 12376 * the reserve (for which we return E2BIG). 12377 */ 12378 rval = ENOSPC; 12379 goto out; 12380 } 12381 12382 if ((rval = dtrace_state_buffers(state)) != 0) 12383 goto err; 12384 12385 if ((sz = opt[DTRACEOPT_DYNVARSIZE]) == DTRACEOPT_UNSET) 12386 sz = dtrace_dstate_defsize; 12387 12388 do { 12389 rval = dtrace_dstate_init(&state->dts_vstate.dtvs_dynvars, sz); 12390 12391 if (rval == 0) 12392 break; 12393 12394 if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL) 12395 goto err; 12396 } while (sz >>= 1); 12397 12398 opt[DTRACEOPT_DYNVARSIZE] = sz; 12399 12400 if (rval != 0) 12401 goto err; 12402 12403 if (opt[DTRACEOPT_STATUSRATE] > dtrace_statusrate_max) 12404 opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_max; 12405 12406 if (opt[DTRACEOPT_CLEANRATE] == 0) 12407 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max; 12408 12409 if (opt[DTRACEOPT_CLEANRATE] < dtrace_cleanrate_min) 12410 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_min; 12411 12412 if (opt[DTRACEOPT_CLEANRATE] > dtrace_cleanrate_max) 12413 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max; 12414 12415 hdlr.cyh_func = (cyc_func_t)dtrace_state_clean; 12416 hdlr.cyh_arg = state; 12417 hdlr.cyh_level = CY_LOW_LEVEL; 12418 12419 when.cyt_when = 0; 12420 when.cyt_interval = opt[DTRACEOPT_CLEANRATE]; 12421 12422 state->dts_cleaner = cyclic_add(&hdlr, &when); 12423 12424 hdlr.cyh_func = (cyc_func_t)dtrace_state_deadman; 12425 hdlr.cyh_arg = state; 12426 hdlr.cyh_level = CY_LOW_LEVEL; 12427 12428 when.cyt_when = 0; 12429 when.cyt_interval = dtrace_deadman_interval; 12430 12431 state->dts_alive = state->dts_laststatus = dtrace_gethrtime(); 12432 state->dts_deadman = cyclic_add(&hdlr, &when); 12433 12434 state->dts_activity = DTRACE_ACTIVITY_WARMUP; 12435 12436 /* 12437 * Now it's time to actually fire the BEGIN probe. We need to disable 12438 * interrupts here both to record the CPU on which we fired the BEGIN 12439 * probe (the data from this CPU will be processed first at user 12440 * level) and to manually activate the buffer for this CPU. 12441 */ 12442 cookie = dtrace_interrupt_disable(); 12443 *cpu = CPU->cpu_id; 12444 ASSERT(state->dts_buffer[*cpu].dtb_flags & DTRACEBUF_INACTIVE); 12445 state->dts_buffer[*cpu].dtb_flags &= ~DTRACEBUF_INACTIVE; 12446 12447 dtrace_probe(dtrace_probeid_begin, 12448 (uint64_t)(uintptr_t)state, 0, 0, 0, 0); 12449 dtrace_interrupt_enable(cookie); 12450 /* 12451 * We may have had an exit action from a BEGIN probe; only change our 12452 * state to ACTIVE if we're still in WARMUP. 12453 */ 12454 ASSERT(state->dts_activity == DTRACE_ACTIVITY_WARMUP || 12455 state->dts_activity == DTRACE_ACTIVITY_DRAINING); 12456 12457 if (state->dts_activity == DTRACE_ACTIVITY_WARMUP) 12458 state->dts_activity = DTRACE_ACTIVITY_ACTIVE; 12459 12460 /* 12461 * Regardless of whether or not now we're in ACTIVE or DRAINING, we 12462 * want each CPU to transition its principal buffer out of the 12463 * INACTIVE state. Doing this assures that no CPU will suddenly begin 12464 * processing an ECB halfway down a probe's ECB chain; all CPUs will 12465 * atomically transition from processing none of a state's ECBs to 12466 * processing all of them. 12467 */ 12468 dtrace_xcall(DTRACE_CPUALL, 12469 (dtrace_xcall_t)dtrace_buffer_activate, state); 12470 goto out; 12471 12472 err: 12473 dtrace_buffer_free(state->dts_buffer); 12474 dtrace_buffer_free(state->dts_aggbuffer); 12475 12476 if ((nspec = state->dts_nspeculations) == 0) { 12477 ASSERT(state->dts_speculations == NULL); 12478 goto out; 12479 } 12480 12481 spec = state->dts_speculations; 12482 ASSERT(spec != NULL); 12483 12484 for (i = 0; i < state->dts_nspeculations; i++) { 12485 if ((buf = spec[i].dtsp_buffer) == NULL) 12486 break; 12487 12488 dtrace_buffer_free(buf); 12489 kmem_free(buf, bufsize); 12490 } 12491 12492 kmem_free(spec, nspec * sizeof (dtrace_speculation_t)); 12493 state->dts_nspeculations = 0; 12494 state->dts_speculations = NULL; 12495 12496 out: 12497 mutex_exit(&dtrace_lock); 12498 mutex_exit(&cpu_lock); 12499 12500 return (rval); 12501 } 12502 12503 static int 12504 dtrace_state_stop(dtrace_state_t *state, processorid_t *cpu) 12505 { 12506 dtrace_icookie_t cookie; 12507 12508 ASSERT(MUTEX_HELD(&dtrace_lock)); 12509 12510 if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE && 12511 state->dts_activity != DTRACE_ACTIVITY_DRAINING) 12512 return (EINVAL); 12513 12514 /* 12515 * We'll set the activity to DTRACE_ACTIVITY_DRAINING, and issue a sync 12516 * to be sure that every CPU has seen it. See below for the details 12517 * on why this is done. 12518 */ 12519 state->dts_activity = DTRACE_ACTIVITY_DRAINING; 12520 dtrace_sync(); 12521 12522 /* 12523 * By this point, it is impossible for any CPU to be still processing 12524 * with DTRACE_ACTIVITY_ACTIVE. We can thus set our activity to 12525 * DTRACE_ACTIVITY_COOLDOWN and know that we're not racing with any 12526 * other CPU in dtrace_buffer_reserve(). This allows dtrace_probe() 12527 * and callees to know that the activity is DTRACE_ACTIVITY_COOLDOWN 12528 * iff we're in the END probe. 12529 */ 12530 state->dts_activity = DTRACE_ACTIVITY_COOLDOWN; 12531 dtrace_sync(); 12532 ASSERT(state->dts_activity == DTRACE_ACTIVITY_COOLDOWN); 12533 12534 /* 12535 * Finally, we can release the reserve and call the END probe. We 12536 * disable interrupts across calling the END probe to allow us to 12537 * return the CPU on which we actually called the END probe. This 12538 * allows user-land to be sure that this CPU's principal buffer is 12539 * processed last. 12540 */ 12541 state->dts_reserve = 0; 12542 12543 cookie = dtrace_interrupt_disable(); 12544 *cpu = CPU->cpu_id; 12545 dtrace_probe(dtrace_probeid_end, 12546 (uint64_t)(uintptr_t)state, 0, 0, 0, 0); 12547 dtrace_interrupt_enable(cookie); 12548 12549 state->dts_activity = DTRACE_ACTIVITY_STOPPED; 12550 dtrace_sync(); 12551 12552 return (0); 12553 } 12554 12555 static int 12556 dtrace_state_option(dtrace_state_t *state, dtrace_optid_t option, 12557 dtrace_optval_t val) 12558 { 12559 ASSERT(MUTEX_HELD(&dtrace_lock)); 12560 12561 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) 12562 return (EBUSY); 12563 12564 if (option >= DTRACEOPT_MAX) 12565 return (EINVAL); 12566 12567 if (option != DTRACEOPT_CPU && val < 0) 12568 return (EINVAL); 12569 12570 switch (option) { 12571 case DTRACEOPT_DESTRUCTIVE: 12572 if (dtrace_destructive_disallow) 12573 return (EACCES); 12574 12575 state->dts_cred.dcr_destructive = 1; 12576 break; 12577 12578 case DTRACEOPT_BUFSIZE: 12579 case DTRACEOPT_DYNVARSIZE: 12580 case DTRACEOPT_AGGSIZE: 12581 case DTRACEOPT_SPECSIZE: 12582 case DTRACEOPT_STRSIZE: 12583 if (val < 0) 12584 return (EINVAL); 12585 12586 if (val >= LONG_MAX) { 12587 /* 12588 * If this is an otherwise negative value, set it to 12589 * the highest multiple of 128m less than LONG_MAX. 12590 * Technically, we're adjusting the size without 12591 * regard to the buffer resizing policy, but in fact, 12592 * this has no effect -- if we set the buffer size to 12593 * ~LONG_MAX and the buffer policy is ultimately set to 12594 * be "manual", the buffer allocation is guaranteed to 12595 * fail, if only because the allocation requires two 12596 * buffers. (We set the the size to the highest 12597 * multiple of 128m because it ensures that the size 12598 * will remain a multiple of a megabyte when 12599 * repeatedly halved -- all the way down to 15m.) 12600 */ 12601 val = LONG_MAX - (1 << 27) + 1; 12602 } 12603 } 12604 12605 state->dts_options[option] = val; 12606 12607 return (0); 12608 } 12609 12610 static void 12611 dtrace_state_destroy(dtrace_state_t *state) 12612 { 12613 dtrace_ecb_t *ecb; 12614 dtrace_vstate_t *vstate = &state->dts_vstate; 12615 minor_t minor = getminor(state->dts_dev); 12616 int i, bufsize = NCPU * sizeof (dtrace_buffer_t); 12617 dtrace_speculation_t *spec = state->dts_speculations; 12618 int nspec = state->dts_nspeculations; 12619 uint32_t match; 12620 12621 ASSERT(MUTEX_HELD(&dtrace_lock)); 12622 ASSERT(MUTEX_HELD(&cpu_lock)); 12623 12624 /* 12625 * First, retract any retained enablings for this state. 12626 */ 12627 dtrace_enabling_retract(state); 12628 ASSERT(state->dts_nretained == 0); 12629 12630 if (state->dts_activity == DTRACE_ACTIVITY_ACTIVE || 12631 state->dts_activity == DTRACE_ACTIVITY_DRAINING) { 12632 /* 12633 * We have managed to come into dtrace_state_destroy() on a 12634 * hot enabling -- almost certainly because of a disorderly 12635 * shutdown of a consumer. (That is, a consumer that is 12636 * exiting without having called dtrace_stop().) In this case, 12637 * we're going to set our activity to be KILLED, and then 12638 * issue a sync to be sure that everyone is out of probe 12639 * context before we start blowing away ECBs. 12640 */ 12641 state->dts_activity = DTRACE_ACTIVITY_KILLED; 12642 dtrace_sync(); 12643 } 12644 12645 /* 12646 * Release the credential hold we took in dtrace_state_create(). 12647 */ 12648 if (state->dts_cred.dcr_cred != NULL) 12649 crfree(state->dts_cred.dcr_cred); 12650 12651 /* 12652 * Now we can safely disable and destroy any enabled probes. Because 12653 * any DTRACE_PRIV_KERNEL probes may actually be slowing our progress 12654 * (especially if they're all enabled), we take two passes through the 12655 * ECBs: in the first, we disable just DTRACE_PRIV_KERNEL probes, and 12656 * in the second we disable whatever is left over. 12657 */ 12658 for (match = DTRACE_PRIV_KERNEL; ; match = 0) { 12659 for (i = 0; i < state->dts_necbs; i++) { 12660 if ((ecb = state->dts_ecbs[i]) == NULL) 12661 continue; 12662 12663 if (match && ecb->dte_probe != NULL) { 12664 dtrace_probe_t *probe = ecb->dte_probe; 12665 dtrace_provider_t *prov = probe->dtpr_provider; 12666 12667 if (!(prov->dtpv_priv.dtpp_flags & match)) 12668 continue; 12669 } 12670 12671 dtrace_ecb_disable(ecb); 12672 dtrace_ecb_destroy(ecb); 12673 } 12674 12675 if (!match) 12676 break; 12677 } 12678 12679 /* 12680 * Before we free the buffers, perform one more sync to assure that 12681 * every CPU is out of probe context. 12682 */ 12683 dtrace_sync(); 12684 12685 dtrace_buffer_free(state->dts_buffer); 12686 dtrace_buffer_free(state->dts_aggbuffer); 12687 12688 for (i = 0; i < nspec; i++) 12689 dtrace_buffer_free(spec[i].dtsp_buffer); 12690 12691 if (state->dts_cleaner != CYCLIC_NONE) 12692 cyclic_remove(state->dts_cleaner); 12693 12694 if (state->dts_deadman != CYCLIC_NONE) 12695 cyclic_remove(state->dts_deadman); 12696 12697 dtrace_dstate_fini(&vstate->dtvs_dynvars); 12698 dtrace_vstate_fini(vstate); 12699 kmem_free(state->dts_ecbs, state->dts_necbs * sizeof (dtrace_ecb_t *)); 12700 12701 if (state->dts_aggregations != NULL) { 12702 #ifdef DEBUG 12703 for (i = 0; i < state->dts_naggregations; i++) 12704 ASSERT(state->dts_aggregations[i] == NULL); 12705 #endif 12706 ASSERT(state->dts_naggregations > 0); 12707 kmem_free(state->dts_aggregations, 12708 state->dts_naggregations * sizeof (dtrace_aggregation_t *)); 12709 } 12710 12711 kmem_free(state->dts_buffer, bufsize); 12712 kmem_free(state->dts_aggbuffer, bufsize); 12713 12714 for (i = 0; i < nspec; i++) 12715 kmem_free(spec[i].dtsp_buffer, bufsize); 12716 12717 kmem_free(spec, nspec * sizeof (dtrace_speculation_t)); 12718 12719 dtrace_format_destroy(state); 12720 12721 vmem_destroy(state->dts_aggid_arena); 12722 ddi_soft_state_free(dtrace_softstate, minor); 12723 vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1); 12724 } 12725 12726 /* 12727 * DTrace Anonymous Enabling Functions 12728 */ 12729 static dtrace_state_t * 12730 dtrace_anon_grab(void) 12731 { 12732 dtrace_state_t *state; 12733 12734 ASSERT(MUTEX_HELD(&dtrace_lock)); 12735 12736 if ((state = dtrace_anon.dta_state) == NULL) { 12737 ASSERT(dtrace_anon.dta_enabling == NULL); 12738 return (NULL); 12739 } 12740 12741 ASSERT(dtrace_anon.dta_enabling != NULL); 12742 ASSERT(dtrace_retained != NULL); 12743 12744 dtrace_enabling_destroy(dtrace_anon.dta_enabling); 12745 dtrace_anon.dta_enabling = NULL; 12746 dtrace_anon.dta_state = NULL; 12747 12748 return (state); 12749 } 12750 12751 static void 12752 dtrace_anon_property(void) 12753 { 12754 int i, rv; 12755 dtrace_state_t *state; 12756 dof_hdr_t *dof; 12757 char c[32]; /* enough for "dof-data-" + digits */ 12758 12759 ASSERT(MUTEX_HELD(&dtrace_lock)); 12760 ASSERT(MUTEX_HELD(&cpu_lock)); 12761 12762 for (i = 0; ; i++) { 12763 (void) snprintf(c, sizeof (c), "dof-data-%d", i); 12764 12765 dtrace_err_verbose = 1; 12766 12767 if ((dof = dtrace_dof_property(c)) == NULL) { 12768 dtrace_err_verbose = 0; 12769 break; 12770 } 12771 12772 /* 12773 * We want to create anonymous state, so we need to transition 12774 * the kernel debugger to indicate that DTrace is active. If 12775 * this fails (e.g. because the debugger has modified text in 12776 * some way), we won't continue with the processing. 12777 */ 12778 if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) { 12779 cmn_err(CE_NOTE, "kernel debugger active; anonymous " 12780 "enabling ignored."); 12781 dtrace_dof_destroy(dof); 12782 break; 12783 } 12784 12785 /* 12786 * If we haven't allocated an anonymous state, we'll do so now. 12787 */ 12788 if ((state = dtrace_anon.dta_state) == NULL) { 12789 state = dtrace_state_create(NULL, NULL); 12790 dtrace_anon.dta_state = state; 12791 12792 if (state == NULL) { 12793 /* 12794 * This basically shouldn't happen: the only 12795 * failure mode from dtrace_state_create() is a 12796 * failure of ddi_soft_state_zalloc() that 12797 * itself should never happen. Still, the 12798 * interface allows for a failure mode, and 12799 * we want to fail as gracefully as possible: 12800 * we'll emit an error message and cease 12801 * processing anonymous state in this case. 12802 */ 12803 cmn_err(CE_WARN, "failed to create " 12804 "anonymous state"); 12805 dtrace_dof_destroy(dof); 12806 break; 12807 } 12808 } 12809 12810 rv = dtrace_dof_slurp(dof, &state->dts_vstate, CRED(), 12811 &dtrace_anon.dta_enabling, 0, B_TRUE); 12812 12813 if (rv == 0) 12814 rv = dtrace_dof_options(dof, state); 12815 12816 dtrace_err_verbose = 0; 12817 dtrace_dof_destroy(dof); 12818 12819 if (rv != 0) { 12820 /* 12821 * This is malformed DOF; chuck any anonymous state 12822 * that we created. 12823 */ 12824 ASSERT(dtrace_anon.dta_enabling == NULL); 12825 dtrace_state_destroy(state); 12826 dtrace_anon.dta_state = NULL; 12827 break; 12828 } 12829 12830 ASSERT(dtrace_anon.dta_enabling != NULL); 12831 } 12832 12833 if (dtrace_anon.dta_enabling != NULL) { 12834 int rval; 12835 12836 /* 12837 * dtrace_enabling_retain() can only fail because we are 12838 * trying to retain more enablings than are allowed -- but 12839 * we only have one anonymous enabling, and we are guaranteed 12840 * to be allowed at least one retained enabling; we assert 12841 * that dtrace_enabling_retain() returns success. 12842 */ 12843 rval = dtrace_enabling_retain(dtrace_anon.dta_enabling); 12844 ASSERT(rval == 0); 12845 12846 dtrace_enabling_dump(dtrace_anon.dta_enabling); 12847 } 12848 } 12849 12850 /* 12851 * DTrace Helper Functions 12852 */ 12853 static void 12854 dtrace_helper_trace(dtrace_helper_action_t *helper, 12855 dtrace_mstate_t *mstate, dtrace_vstate_t *vstate, int where) 12856 { 12857 uint32_t size, next, nnext, i; 12858 dtrace_helptrace_t *ent; 12859 uint16_t flags = cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 12860 12861 if (!dtrace_helptrace_enabled) 12862 return; 12863 12864 ASSERT(vstate->dtvs_nlocals <= dtrace_helptrace_nlocals); 12865 12866 /* 12867 * What would a tracing framework be without its own tracing 12868 * framework? (Well, a hell of a lot simpler, for starters...) 12869 */ 12870 size = sizeof (dtrace_helptrace_t) + dtrace_helptrace_nlocals * 12871 sizeof (uint64_t) - sizeof (uint64_t); 12872 12873 /* 12874 * Iterate until we can allocate a slot in the trace buffer. 12875 */ 12876 do { 12877 next = dtrace_helptrace_next; 12878 12879 if (next + size < dtrace_helptrace_bufsize) { 12880 nnext = next + size; 12881 } else { 12882 nnext = size; 12883 } 12884 } while (dtrace_cas32(&dtrace_helptrace_next, next, nnext) != next); 12885 12886 /* 12887 * We have our slot; fill it in. 12888 */ 12889 if (nnext == size) 12890 next = 0; 12891 12892 ent = (dtrace_helptrace_t *)&dtrace_helptrace_buffer[next]; 12893 ent->dtht_helper = helper; 12894 ent->dtht_where = where; 12895 ent->dtht_nlocals = vstate->dtvs_nlocals; 12896 12897 ent->dtht_fltoffs = (mstate->dtms_present & DTRACE_MSTATE_FLTOFFS) ? 12898 mstate->dtms_fltoffs : -1; 12899 ent->dtht_fault = DTRACE_FLAGS2FLT(flags); 12900 ent->dtht_illval = cpu_core[CPU->cpu_id].cpuc_dtrace_illval; 12901 12902 for (i = 0; i < vstate->dtvs_nlocals; i++) { 12903 dtrace_statvar_t *svar; 12904 12905 if ((svar = vstate->dtvs_locals[i]) == NULL) 12906 continue; 12907 12908 ASSERT(svar->dtsv_size >= NCPU * sizeof (uint64_t)); 12909 ent->dtht_locals[i] = 12910 ((uint64_t *)(uintptr_t)svar->dtsv_data)[CPU->cpu_id]; 12911 } 12912 } 12913 12914 static uint64_t 12915 dtrace_helper(int which, dtrace_mstate_t *mstate, 12916 dtrace_state_t *state, uint64_t arg0, uint64_t arg1) 12917 { 12918 uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 12919 uint64_t sarg0 = mstate->dtms_arg[0]; 12920 uint64_t sarg1 = mstate->dtms_arg[1]; 12921 uint64_t rval; 12922 dtrace_helpers_t *helpers = curproc->p_dtrace_helpers; 12923 dtrace_helper_action_t *helper; 12924 dtrace_vstate_t *vstate; 12925 dtrace_difo_t *pred; 12926 int i, trace = dtrace_helptrace_enabled; 12927 12928 ASSERT(which >= 0 && which < DTRACE_NHELPER_ACTIONS); 12929 12930 if (helpers == NULL) 12931 return (0); 12932 12933 if ((helper = helpers->dthps_actions[which]) == NULL) 12934 return (0); 12935 12936 vstate = &helpers->dthps_vstate; 12937 mstate->dtms_arg[0] = arg0; 12938 mstate->dtms_arg[1] = arg1; 12939 12940 /* 12941 * Now iterate over each helper. If its predicate evaluates to 'true', 12942 * we'll call the corresponding actions. Note that the below calls 12943 * to dtrace_dif_emulate() may set faults in machine state. This is 12944 * okay: our caller (the outer dtrace_dif_emulate()) will simply plow 12945 * the stored DIF offset with its own (which is the desired behavior). 12946 * Also, note the calls to dtrace_dif_emulate() may allocate scratch 12947 * from machine state; this is okay, too. 12948 */ 12949 for (; helper != NULL; helper = helper->dtha_next) { 12950 if ((pred = helper->dtha_predicate) != NULL) { 12951 if (trace) 12952 dtrace_helper_trace(helper, mstate, vstate, 0); 12953 12954 if (!dtrace_dif_emulate(pred, mstate, vstate, state)) 12955 goto next; 12956 12957 if (*flags & CPU_DTRACE_FAULT) 12958 goto err; 12959 } 12960 12961 for (i = 0; i < helper->dtha_nactions; i++) { 12962 if (trace) 12963 dtrace_helper_trace(helper, 12964 mstate, vstate, i + 1); 12965 12966 rval = dtrace_dif_emulate(helper->dtha_actions[i], 12967 mstate, vstate, state); 12968 12969 if (*flags & CPU_DTRACE_FAULT) 12970 goto err; 12971 } 12972 12973 next: 12974 if (trace) 12975 dtrace_helper_trace(helper, mstate, vstate, 12976 DTRACE_HELPTRACE_NEXT); 12977 } 12978 12979 if (trace) 12980 dtrace_helper_trace(helper, mstate, vstate, 12981 DTRACE_HELPTRACE_DONE); 12982 12983 /* 12984 * Restore the arg0 that we saved upon entry. 12985 */ 12986 mstate->dtms_arg[0] = sarg0; 12987 mstate->dtms_arg[1] = sarg1; 12988 12989 return (rval); 12990 12991 err: 12992 if (trace) 12993 dtrace_helper_trace(helper, mstate, vstate, 12994 DTRACE_HELPTRACE_ERR); 12995 12996 /* 12997 * Restore the arg0 that we saved upon entry. 12998 */ 12999 mstate->dtms_arg[0] = sarg0; 13000 mstate->dtms_arg[1] = sarg1; 13001 13002 return (NULL); 13003 } 13004 13005 static void 13006 dtrace_helper_action_destroy(dtrace_helper_action_t *helper, 13007 dtrace_vstate_t *vstate) 13008 { 13009 int i; 13010 13011 if (helper->dtha_predicate != NULL) 13012 dtrace_difo_release(helper->dtha_predicate, vstate); 13013 13014 for (i = 0; i < helper->dtha_nactions; i++) { 13015 ASSERT(helper->dtha_actions[i] != NULL); 13016 dtrace_difo_release(helper->dtha_actions[i], vstate); 13017 } 13018 13019 kmem_free(helper->dtha_actions, 13020 helper->dtha_nactions * sizeof (dtrace_difo_t *)); 13021 kmem_free(helper, sizeof (dtrace_helper_action_t)); 13022 } 13023 13024 static int 13025 dtrace_helper_destroygen(int gen) 13026 { 13027 proc_t *p = curproc; 13028 dtrace_helpers_t *help = p->p_dtrace_helpers; 13029 dtrace_vstate_t *vstate; 13030 int i; 13031 13032 ASSERT(MUTEX_HELD(&dtrace_lock)); 13033 13034 if (help == NULL || gen > help->dthps_generation) 13035 return (EINVAL); 13036 13037 vstate = &help->dthps_vstate; 13038 13039 for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) { 13040 dtrace_helper_action_t *last = NULL, *h, *next; 13041 13042 for (h = help->dthps_actions[i]; h != NULL; h = next) { 13043 next = h->dtha_next; 13044 13045 if (h->dtha_generation == gen) { 13046 if (last != NULL) { 13047 last->dtha_next = next; 13048 } else { 13049 help->dthps_actions[i] = next; 13050 } 13051 13052 dtrace_helper_action_destroy(h, vstate); 13053 } else { 13054 last = h; 13055 } 13056 } 13057 } 13058 13059 /* 13060 * Interate until we've cleared out all helper providers with the 13061 * given generation number. 13062 */ 13063 for (;;) { 13064 dtrace_helper_provider_t *prov; 13065 13066 /* 13067 * Look for a helper provider with the right generation. We 13068 * have to start back at the beginning of the list each time 13069 * because we drop dtrace_lock. It's unlikely that we'll make 13070 * more than two passes. 13071 */ 13072 for (i = 0; i < help->dthps_nprovs; i++) { 13073 prov = help->dthps_provs[i]; 13074 13075 if (prov->dthp_generation == gen) 13076 break; 13077 } 13078 13079 /* 13080 * If there were no matches, we're done. 13081 */ 13082 if (i == help->dthps_nprovs) 13083 break; 13084 13085 /* 13086 * Move the last helper provider into this slot. 13087 */ 13088 help->dthps_nprovs--; 13089 help->dthps_provs[i] = help->dthps_provs[help->dthps_nprovs]; 13090 help->dthps_provs[help->dthps_nprovs] = NULL; 13091 13092 mutex_exit(&dtrace_lock); 13093 13094 /* 13095 * If we have a meta provider, remove this helper provider. 13096 */ 13097 mutex_enter(&dtrace_meta_lock); 13098 if (dtrace_meta_pid != NULL) { 13099 ASSERT(dtrace_deferred_pid == NULL); 13100 dtrace_helper_provider_remove(&prov->dthp_prov, 13101 p->p_pid); 13102 } 13103 mutex_exit(&dtrace_meta_lock); 13104 13105 dtrace_helper_provider_destroy(prov); 13106 13107 mutex_enter(&dtrace_lock); 13108 } 13109 13110 return (0); 13111 } 13112 13113 static int 13114 dtrace_helper_validate(dtrace_helper_action_t *helper) 13115 { 13116 int err = 0, i; 13117 dtrace_difo_t *dp; 13118 13119 if ((dp = helper->dtha_predicate) != NULL) 13120 err += dtrace_difo_validate_helper(dp); 13121 13122 for (i = 0; i < helper->dtha_nactions; i++) 13123 err += dtrace_difo_validate_helper(helper->dtha_actions[i]); 13124 13125 return (err == 0); 13126 } 13127 13128 static int 13129 dtrace_helper_action_add(int which, dtrace_ecbdesc_t *ep) 13130 { 13131 dtrace_helpers_t *help; 13132 dtrace_helper_action_t *helper, *last; 13133 dtrace_actdesc_t *act; 13134 dtrace_vstate_t *vstate; 13135 dtrace_predicate_t *pred; 13136 int count = 0, nactions = 0, i; 13137 13138 if (which < 0 || which >= DTRACE_NHELPER_ACTIONS) 13139 return (EINVAL); 13140 13141 help = curproc->p_dtrace_helpers; 13142 last = help->dthps_actions[which]; 13143 vstate = &help->dthps_vstate; 13144 13145 for (count = 0; last != NULL; last = last->dtha_next) { 13146 count++; 13147 if (last->dtha_next == NULL) 13148 break; 13149 } 13150 13151 /* 13152 * If we already have dtrace_helper_actions_max helper actions for this 13153 * helper action type, we'll refuse to add a new one. 13154 */ 13155 if (count >= dtrace_helper_actions_max) 13156 return (ENOSPC); 13157 13158 helper = kmem_zalloc(sizeof (dtrace_helper_action_t), KM_SLEEP); 13159 helper->dtha_generation = help->dthps_generation; 13160 13161 if ((pred = ep->dted_pred.dtpdd_predicate) != NULL) { 13162 ASSERT(pred->dtp_difo != NULL); 13163 dtrace_difo_hold(pred->dtp_difo); 13164 helper->dtha_predicate = pred->dtp_difo; 13165 } 13166 13167 for (act = ep->dted_action; act != NULL; act = act->dtad_next) { 13168 if (act->dtad_kind != DTRACEACT_DIFEXPR) 13169 goto err; 13170 13171 if (act->dtad_difo == NULL) 13172 goto err; 13173 13174 nactions++; 13175 } 13176 13177 helper->dtha_actions = kmem_zalloc(sizeof (dtrace_difo_t *) * 13178 (helper->dtha_nactions = nactions), KM_SLEEP); 13179 13180 for (act = ep->dted_action, i = 0; act != NULL; act = act->dtad_next) { 13181 dtrace_difo_hold(act->dtad_difo); 13182 helper->dtha_actions[i++] = act->dtad_difo; 13183 } 13184 13185 if (!dtrace_helper_validate(helper)) 13186 goto err; 13187 13188 if (last == NULL) { 13189 help->dthps_actions[which] = helper; 13190 } else { 13191 last->dtha_next = helper; 13192 } 13193 13194 if (vstate->dtvs_nlocals > dtrace_helptrace_nlocals) { 13195 dtrace_helptrace_nlocals = vstate->dtvs_nlocals; 13196 dtrace_helptrace_next = 0; 13197 } 13198 13199 return (0); 13200 err: 13201 dtrace_helper_action_destroy(helper, vstate); 13202 return (EINVAL); 13203 } 13204 13205 static void 13206 dtrace_helper_provider_register(proc_t *p, dtrace_helpers_t *help, 13207 dof_helper_t *dofhp) 13208 { 13209 ASSERT(MUTEX_NOT_HELD(&dtrace_lock)); 13210 13211 mutex_enter(&dtrace_meta_lock); 13212 mutex_enter(&dtrace_lock); 13213 13214 if (!dtrace_attached() || dtrace_meta_pid == NULL) { 13215 /* 13216 * If the dtrace module is loaded but not attached, or if 13217 * there aren't isn't a meta provider registered to deal with 13218 * these provider descriptions, we need to postpone creating 13219 * the actual providers until later. 13220 */ 13221 13222 if (help->dthps_next == NULL && help->dthps_prev == NULL && 13223 dtrace_deferred_pid != help) { 13224 help->dthps_deferred = 1; 13225 help->dthps_pid = p->p_pid; 13226 help->dthps_next = dtrace_deferred_pid; 13227 help->dthps_prev = NULL; 13228 if (dtrace_deferred_pid != NULL) 13229 dtrace_deferred_pid->dthps_prev = help; 13230 dtrace_deferred_pid = help; 13231 } 13232 13233 mutex_exit(&dtrace_lock); 13234 13235 } else if (dofhp != NULL) { 13236 /* 13237 * If the dtrace module is loaded and we have a particular 13238 * helper provider description, pass that off to the 13239 * meta provider. 13240 */ 13241 13242 mutex_exit(&dtrace_lock); 13243 13244 dtrace_helper_provide(dofhp, p->p_pid); 13245 13246 } else { 13247 /* 13248 * Otherwise, just pass all the helper provider descriptions 13249 * off to the meta provider. 13250 */ 13251 13252 int i; 13253 mutex_exit(&dtrace_lock); 13254 13255 for (i = 0; i < help->dthps_nprovs; i++) { 13256 dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov, 13257 p->p_pid); 13258 } 13259 } 13260 13261 mutex_exit(&dtrace_meta_lock); 13262 } 13263 13264 static int 13265 dtrace_helper_provider_add(dof_helper_t *dofhp, int gen) 13266 { 13267 dtrace_helpers_t *help; 13268 dtrace_helper_provider_t *hprov, **tmp_provs; 13269 uint_t tmp_maxprovs, i; 13270 13271 ASSERT(MUTEX_HELD(&dtrace_lock)); 13272 13273 help = curproc->p_dtrace_helpers; 13274 ASSERT(help != NULL); 13275 13276 /* 13277 * If we already have dtrace_helper_providers_max helper providers, 13278 * we're refuse to add a new one. 13279 */ 13280 if (help->dthps_nprovs >= dtrace_helper_providers_max) 13281 return (ENOSPC); 13282 13283 /* 13284 * Check to make sure this isn't a duplicate. 13285 */ 13286 for (i = 0; i < help->dthps_nprovs; i++) { 13287 if (dofhp->dofhp_addr == 13288 help->dthps_provs[i]->dthp_prov.dofhp_addr) 13289 return (EALREADY); 13290 } 13291 13292 hprov = kmem_zalloc(sizeof (dtrace_helper_provider_t), KM_SLEEP); 13293 hprov->dthp_prov = *dofhp; 13294 hprov->dthp_ref = 1; 13295 hprov->dthp_generation = gen; 13296 13297 /* 13298 * Allocate a bigger table for helper providers if it's already full. 13299 */ 13300 if (help->dthps_maxprovs == help->dthps_nprovs) { 13301 tmp_maxprovs = help->dthps_maxprovs; 13302 tmp_provs = help->dthps_provs; 13303 13304 if (help->dthps_maxprovs == 0) 13305 help->dthps_maxprovs = 2; 13306 else 13307 help->dthps_maxprovs *= 2; 13308 if (help->dthps_maxprovs > dtrace_helper_providers_max) 13309 help->dthps_maxprovs = dtrace_helper_providers_max; 13310 13311 ASSERT(tmp_maxprovs < help->dthps_maxprovs); 13312 13313 help->dthps_provs = kmem_zalloc(help->dthps_maxprovs * 13314 sizeof (dtrace_helper_provider_t *), KM_SLEEP); 13315 13316 if (tmp_provs != NULL) { 13317 bcopy(tmp_provs, help->dthps_provs, tmp_maxprovs * 13318 sizeof (dtrace_helper_provider_t *)); 13319 kmem_free(tmp_provs, tmp_maxprovs * 13320 sizeof (dtrace_helper_provider_t *)); 13321 } 13322 } 13323 13324 help->dthps_provs[help->dthps_nprovs] = hprov; 13325 help->dthps_nprovs++; 13326 13327 return (0); 13328 } 13329 13330 static void 13331 dtrace_helper_provider_destroy(dtrace_helper_provider_t *hprov) 13332 { 13333 mutex_enter(&dtrace_lock); 13334 13335 if (--hprov->dthp_ref == 0) { 13336 dof_hdr_t *dof; 13337 mutex_exit(&dtrace_lock); 13338 dof = (dof_hdr_t *)(uintptr_t)hprov->dthp_prov.dofhp_dof; 13339 dtrace_dof_destroy(dof); 13340 kmem_free(hprov, sizeof (dtrace_helper_provider_t)); 13341 } else { 13342 mutex_exit(&dtrace_lock); 13343 } 13344 } 13345 13346 static int 13347 dtrace_helper_provider_validate(dof_hdr_t *dof, dof_sec_t *sec) 13348 { 13349 uintptr_t daddr = (uintptr_t)dof; 13350 dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec; 13351 dof_provider_t *provider; 13352 dof_probe_t *probe; 13353 uint8_t *arg; 13354 char *strtab, *typestr; 13355 dof_stridx_t typeidx; 13356 size_t typesz; 13357 uint_t nprobes, j, k; 13358 13359 ASSERT(sec->dofs_type == DOF_SECT_PROVIDER); 13360 13361 if (sec->dofs_offset & (sizeof (uint_t) - 1)) { 13362 dtrace_dof_error(dof, "misaligned section offset"); 13363 return (-1); 13364 } 13365 13366 /* 13367 * The section needs to be large enough to contain the DOF provider 13368 * structure appropriate for the given version. 13369 */ 13370 if (sec->dofs_size < 13371 ((dof->dofh_ident[DOF_ID_VERSION] == DOF_VERSION_1) ? 13372 offsetof(dof_provider_t, dofpv_prenoffs) : 13373 sizeof (dof_provider_t))) { 13374 dtrace_dof_error(dof, "provider section too small"); 13375 return (-1); 13376 } 13377 13378 provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset); 13379 str_sec = dtrace_dof_sect(dof, DOF_SECT_STRTAB, provider->dofpv_strtab); 13380 prb_sec = dtrace_dof_sect(dof, DOF_SECT_PROBES, provider->dofpv_probes); 13381 arg_sec = dtrace_dof_sect(dof, DOF_SECT_PRARGS, provider->dofpv_prargs); 13382 off_sec = dtrace_dof_sect(dof, DOF_SECT_PROFFS, provider->dofpv_proffs); 13383 13384 if (str_sec == NULL || prb_sec == NULL || 13385 arg_sec == NULL || off_sec == NULL) 13386 return (-1); 13387 13388 enoff_sec = NULL; 13389 13390 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 && 13391 provider->dofpv_prenoffs != DOF_SECT_NONE && 13392 (enoff_sec = dtrace_dof_sect(dof, DOF_SECT_PRENOFFS, 13393 provider->dofpv_prenoffs)) == NULL) 13394 return (-1); 13395 13396 strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset); 13397 13398 if (provider->dofpv_name >= str_sec->dofs_size || 13399 strlen(strtab + provider->dofpv_name) >= DTRACE_PROVNAMELEN) { 13400 dtrace_dof_error(dof, "invalid provider name"); 13401 return (-1); 13402 } 13403 13404 if (prb_sec->dofs_entsize == 0 || 13405 prb_sec->dofs_entsize > prb_sec->dofs_size) { 13406 dtrace_dof_error(dof, "invalid entry size"); 13407 return (-1); 13408 } 13409 13410 if (prb_sec->dofs_entsize & (sizeof (uintptr_t) - 1)) { 13411 dtrace_dof_error(dof, "misaligned entry size"); 13412 return (-1); 13413 } 13414 13415 if (off_sec->dofs_entsize != sizeof (uint32_t)) { 13416 dtrace_dof_error(dof, "invalid entry size"); 13417 return (-1); 13418 } 13419 13420 if (off_sec->dofs_offset & (sizeof (uint32_t) - 1)) { 13421 dtrace_dof_error(dof, "misaligned section offset"); 13422 return (-1); 13423 } 13424 13425 if (arg_sec->dofs_entsize != sizeof (uint8_t)) { 13426 dtrace_dof_error(dof, "invalid entry size"); 13427 return (-1); 13428 } 13429 13430 arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset); 13431 13432 nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize; 13433 13434 /* 13435 * Take a pass through the probes to check for errors. 13436 */ 13437 for (j = 0; j < nprobes; j++) { 13438 probe = (dof_probe_t *)(uintptr_t)(daddr + 13439 prb_sec->dofs_offset + j * prb_sec->dofs_entsize); 13440 13441 if (probe->dofpr_func >= str_sec->dofs_size) { 13442 dtrace_dof_error(dof, "invalid function name"); 13443 return (-1); 13444 } 13445 13446 if (strlen(strtab + probe->dofpr_func) >= DTRACE_FUNCNAMELEN) { 13447 dtrace_dof_error(dof, "function name too long"); 13448 return (-1); 13449 } 13450 13451 if (probe->dofpr_name >= str_sec->dofs_size || 13452 strlen(strtab + probe->dofpr_name) >= DTRACE_NAMELEN) { 13453 dtrace_dof_error(dof, "invalid probe name"); 13454 return (-1); 13455 } 13456 13457 /* 13458 * The offset count must not wrap the index, and the offsets 13459 * must also not overflow the section's data. 13460 */ 13461 if (probe->dofpr_offidx + probe->dofpr_noffs < 13462 probe->dofpr_offidx || 13463 (probe->dofpr_offidx + probe->dofpr_noffs) * 13464 off_sec->dofs_entsize > off_sec->dofs_size) { 13465 dtrace_dof_error(dof, "invalid probe offset"); 13466 return (-1); 13467 } 13468 13469 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1) { 13470 /* 13471 * If there's no is-enabled offset section, make sure 13472 * there aren't any is-enabled offsets. Otherwise 13473 * perform the same checks as for probe offsets 13474 * (immediately above). 13475 */ 13476 if (enoff_sec == NULL) { 13477 if (probe->dofpr_enoffidx != 0 || 13478 probe->dofpr_nenoffs != 0) { 13479 dtrace_dof_error(dof, "is-enabled " 13480 "offsets with null section"); 13481 return (-1); 13482 } 13483 } else if (probe->dofpr_enoffidx + 13484 probe->dofpr_nenoffs < probe->dofpr_enoffidx || 13485 (probe->dofpr_enoffidx + probe->dofpr_nenoffs) * 13486 enoff_sec->dofs_entsize > enoff_sec->dofs_size) { 13487 dtrace_dof_error(dof, "invalid is-enabled " 13488 "offset"); 13489 return (-1); 13490 } 13491 13492 if (probe->dofpr_noffs + probe->dofpr_nenoffs == 0) { 13493 dtrace_dof_error(dof, "zero probe and " 13494 "is-enabled offsets"); 13495 return (-1); 13496 } 13497 } else if (probe->dofpr_noffs == 0) { 13498 dtrace_dof_error(dof, "zero probe offsets"); 13499 return (-1); 13500 } 13501 13502 if (probe->dofpr_argidx + probe->dofpr_xargc < 13503 probe->dofpr_argidx || 13504 (probe->dofpr_argidx + probe->dofpr_xargc) * 13505 arg_sec->dofs_entsize > arg_sec->dofs_size) { 13506 dtrace_dof_error(dof, "invalid args"); 13507 return (-1); 13508 } 13509 13510 typeidx = probe->dofpr_nargv; 13511 typestr = strtab + probe->dofpr_nargv; 13512 for (k = 0; k < probe->dofpr_nargc; k++) { 13513 if (typeidx >= str_sec->dofs_size) { 13514 dtrace_dof_error(dof, "bad " 13515 "native argument type"); 13516 return (-1); 13517 } 13518 13519 typesz = strlen(typestr) + 1; 13520 if (typesz > DTRACE_ARGTYPELEN) { 13521 dtrace_dof_error(dof, "native " 13522 "argument type too long"); 13523 return (-1); 13524 } 13525 typeidx += typesz; 13526 typestr += typesz; 13527 } 13528 13529 typeidx = probe->dofpr_xargv; 13530 typestr = strtab + probe->dofpr_xargv; 13531 for (k = 0; k < probe->dofpr_xargc; k++) { 13532 if (arg[probe->dofpr_argidx + k] > probe->dofpr_nargc) { 13533 dtrace_dof_error(dof, "bad " 13534 "native argument index"); 13535 return (-1); 13536 } 13537 13538 if (typeidx >= str_sec->dofs_size) { 13539 dtrace_dof_error(dof, "bad " 13540 "translated argument type"); 13541 return (-1); 13542 } 13543 13544 typesz = strlen(typestr) + 1; 13545 if (typesz > DTRACE_ARGTYPELEN) { 13546 dtrace_dof_error(dof, "translated argument " 13547 "type too long"); 13548 return (-1); 13549 } 13550 13551 typeidx += typesz; 13552 typestr += typesz; 13553 } 13554 } 13555 13556 return (0); 13557 } 13558 13559 static int 13560 dtrace_helper_slurp(dof_hdr_t *dof, dof_helper_t *dhp) 13561 { 13562 dtrace_helpers_t *help; 13563 dtrace_vstate_t *vstate; 13564 dtrace_enabling_t *enab = NULL; 13565 int i, gen, rv, nhelpers = 0, nprovs = 0, destroy = 1; 13566 uintptr_t daddr = (uintptr_t)dof; 13567 13568 ASSERT(MUTEX_HELD(&dtrace_lock)); 13569 13570 if ((help = curproc->p_dtrace_helpers) == NULL) 13571 help = dtrace_helpers_create(curproc); 13572 13573 vstate = &help->dthps_vstate; 13574 13575 if ((rv = dtrace_dof_slurp(dof, vstate, NULL, &enab, 13576 dhp != NULL ? dhp->dofhp_addr : 0, B_FALSE)) != 0) { 13577 dtrace_dof_destroy(dof); 13578 return (rv); 13579 } 13580 13581 /* 13582 * Look for helper providers and validate their descriptions. 13583 */ 13584 if (dhp != NULL) { 13585 for (i = 0; i < dof->dofh_secnum; i++) { 13586 dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr + 13587 dof->dofh_secoff + i * dof->dofh_secsize); 13588 13589 if (sec->dofs_type != DOF_SECT_PROVIDER) 13590 continue; 13591 13592 if (dtrace_helper_provider_validate(dof, sec) != 0) { 13593 dtrace_enabling_destroy(enab); 13594 dtrace_dof_destroy(dof); 13595 return (-1); 13596 } 13597 13598 nprovs++; 13599 } 13600 } 13601 13602 /* 13603 * Now we need to walk through the ECB descriptions in the enabling. 13604 */ 13605 for (i = 0; i < enab->dten_ndesc; i++) { 13606 dtrace_ecbdesc_t *ep = enab->dten_desc[i]; 13607 dtrace_probedesc_t *desc = &ep->dted_probe; 13608 13609 if (strcmp(desc->dtpd_provider, "dtrace") != 0) 13610 continue; 13611 13612 if (strcmp(desc->dtpd_mod, "helper") != 0) 13613 continue; 13614 13615 if (strcmp(desc->dtpd_func, "ustack") != 0) 13616 continue; 13617 13618 if ((rv = dtrace_helper_action_add(DTRACE_HELPER_ACTION_USTACK, 13619 ep)) != 0) { 13620 /* 13621 * Adding this helper action failed -- we are now going 13622 * to rip out the entire generation and return failure. 13623 */ 13624 (void) dtrace_helper_destroygen(help->dthps_generation); 13625 dtrace_enabling_destroy(enab); 13626 dtrace_dof_destroy(dof); 13627 return (-1); 13628 } 13629 13630 nhelpers++; 13631 } 13632 13633 if (nhelpers < enab->dten_ndesc) 13634 dtrace_dof_error(dof, "unmatched helpers"); 13635 13636 gen = help->dthps_generation++; 13637 dtrace_enabling_destroy(enab); 13638 13639 if (dhp != NULL && nprovs > 0) { 13640 dhp->dofhp_dof = (uint64_t)(uintptr_t)dof; 13641 if (dtrace_helper_provider_add(dhp, gen) == 0) { 13642 mutex_exit(&dtrace_lock); 13643 dtrace_helper_provider_register(curproc, help, dhp); 13644 mutex_enter(&dtrace_lock); 13645 13646 destroy = 0; 13647 } 13648 } 13649 13650 if (destroy) 13651 dtrace_dof_destroy(dof); 13652 13653 return (gen); 13654 } 13655 13656 static dtrace_helpers_t * 13657 dtrace_helpers_create(proc_t *p) 13658 { 13659 dtrace_helpers_t *help; 13660 13661 ASSERT(MUTEX_HELD(&dtrace_lock)); 13662 ASSERT(p->p_dtrace_helpers == NULL); 13663 13664 help = kmem_zalloc(sizeof (dtrace_helpers_t), KM_SLEEP); 13665 help->dthps_actions = kmem_zalloc(sizeof (dtrace_helper_action_t *) * 13666 DTRACE_NHELPER_ACTIONS, KM_SLEEP); 13667 13668 p->p_dtrace_helpers = help; 13669 dtrace_helpers++; 13670 13671 return (help); 13672 } 13673 13674 static void 13675 dtrace_helpers_destroy(void) 13676 { 13677 dtrace_helpers_t *help; 13678 dtrace_vstate_t *vstate; 13679 proc_t *p = curproc; 13680 int i; 13681 13682 mutex_enter(&dtrace_lock); 13683 13684 ASSERT(p->p_dtrace_helpers != NULL); 13685 ASSERT(dtrace_helpers > 0); 13686 13687 help = p->p_dtrace_helpers; 13688 vstate = &help->dthps_vstate; 13689 13690 /* 13691 * We're now going to lose the help from this process. 13692 */ 13693 p->p_dtrace_helpers = NULL; 13694 dtrace_sync(); 13695 13696 /* 13697 * Destory the helper actions. 13698 */ 13699 for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) { 13700 dtrace_helper_action_t *h, *next; 13701 13702 for (h = help->dthps_actions[i]; h != NULL; h = next) { 13703 next = h->dtha_next; 13704 dtrace_helper_action_destroy(h, vstate); 13705 h = next; 13706 } 13707 } 13708 13709 mutex_exit(&dtrace_lock); 13710 13711 /* 13712 * Destroy the helper providers. 13713 */ 13714 if (help->dthps_maxprovs > 0) { 13715 mutex_enter(&dtrace_meta_lock); 13716 if (dtrace_meta_pid != NULL) { 13717 ASSERT(dtrace_deferred_pid == NULL); 13718 13719 for (i = 0; i < help->dthps_nprovs; i++) { 13720 dtrace_helper_provider_remove( 13721 &help->dthps_provs[i]->dthp_prov, p->p_pid); 13722 } 13723 } else { 13724 mutex_enter(&dtrace_lock); 13725 ASSERT(help->dthps_deferred == 0 || 13726 help->dthps_next != NULL || 13727 help->dthps_prev != NULL || 13728 help == dtrace_deferred_pid); 13729 13730 /* 13731 * Remove the helper from the deferred list. 13732 */ 13733 if (help->dthps_next != NULL) 13734 help->dthps_next->dthps_prev = help->dthps_prev; 13735 if (help->dthps_prev != NULL) 13736 help->dthps_prev->dthps_next = help->dthps_next; 13737 if (dtrace_deferred_pid == help) { 13738 dtrace_deferred_pid = help->dthps_next; 13739 ASSERT(help->dthps_prev == NULL); 13740 } 13741 13742 mutex_exit(&dtrace_lock); 13743 } 13744 13745 mutex_exit(&dtrace_meta_lock); 13746 13747 for (i = 0; i < help->dthps_nprovs; i++) { 13748 dtrace_helper_provider_destroy(help->dthps_provs[i]); 13749 } 13750 13751 kmem_free(help->dthps_provs, help->dthps_maxprovs * 13752 sizeof (dtrace_helper_provider_t *)); 13753 } 13754 13755 mutex_enter(&dtrace_lock); 13756 13757 dtrace_vstate_fini(&help->dthps_vstate); 13758 kmem_free(help->dthps_actions, 13759 sizeof (dtrace_helper_action_t *) * DTRACE_NHELPER_ACTIONS); 13760 kmem_free(help, sizeof (dtrace_helpers_t)); 13761 13762 --dtrace_helpers; 13763 mutex_exit(&dtrace_lock); 13764 } 13765 13766 static void 13767 dtrace_helpers_duplicate(proc_t *from, proc_t *to) 13768 { 13769 dtrace_helpers_t *help, *newhelp; 13770 dtrace_helper_action_t *helper, *new, *last; 13771 dtrace_difo_t *dp; 13772 dtrace_vstate_t *vstate; 13773 int i, j, sz, hasprovs = 0; 13774 13775 mutex_enter(&dtrace_lock); 13776 ASSERT(from->p_dtrace_helpers != NULL); 13777 ASSERT(dtrace_helpers > 0); 13778 13779 help = from->p_dtrace_helpers; 13780 newhelp = dtrace_helpers_create(to); 13781 ASSERT(to->p_dtrace_helpers != NULL); 13782 13783 newhelp->dthps_generation = help->dthps_generation; 13784 vstate = &newhelp->dthps_vstate; 13785 13786 /* 13787 * Duplicate the helper actions. 13788 */ 13789 for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) { 13790 if ((helper = help->dthps_actions[i]) == NULL) 13791 continue; 13792 13793 for (last = NULL; helper != NULL; helper = helper->dtha_next) { 13794 new = kmem_zalloc(sizeof (dtrace_helper_action_t), 13795 KM_SLEEP); 13796 new->dtha_generation = helper->dtha_generation; 13797 13798 if ((dp = helper->dtha_predicate) != NULL) { 13799 dp = dtrace_difo_duplicate(dp, vstate); 13800 new->dtha_predicate = dp; 13801 } 13802 13803 new->dtha_nactions = helper->dtha_nactions; 13804 sz = sizeof (dtrace_difo_t *) * new->dtha_nactions; 13805 new->dtha_actions = kmem_alloc(sz, KM_SLEEP); 13806 13807 for (j = 0; j < new->dtha_nactions; j++) { 13808 dtrace_difo_t *dp = helper->dtha_actions[j]; 13809 13810 ASSERT(dp != NULL); 13811 dp = dtrace_difo_duplicate(dp, vstate); 13812 new->dtha_actions[j] = dp; 13813 } 13814 13815 if (last != NULL) { 13816 last->dtha_next = new; 13817 } else { 13818 newhelp->dthps_actions[i] = new; 13819 } 13820 13821 last = new; 13822 } 13823 } 13824 13825 /* 13826 * Duplicate the helper providers and register them with the 13827 * DTrace framework. 13828 */ 13829 if (help->dthps_nprovs > 0) { 13830 newhelp->dthps_nprovs = help->dthps_nprovs; 13831 newhelp->dthps_maxprovs = help->dthps_nprovs; 13832 newhelp->dthps_provs = kmem_alloc(newhelp->dthps_nprovs * 13833 sizeof (dtrace_helper_provider_t *), KM_SLEEP); 13834 for (i = 0; i < newhelp->dthps_nprovs; i++) { 13835 newhelp->dthps_provs[i] = help->dthps_provs[i]; 13836 newhelp->dthps_provs[i]->dthp_ref++; 13837 } 13838 13839 hasprovs = 1; 13840 } 13841 13842 mutex_exit(&dtrace_lock); 13843 13844 if (hasprovs) 13845 dtrace_helper_provider_register(to, newhelp, NULL); 13846 } 13847 13848 /* 13849 * DTrace Hook Functions 13850 */ 13851 static void 13852 dtrace_module_loaded(struct modctl *ctl) 13853 { 13854 dtrace_provider_t *prv; 13855 13856 mutex_enter(&dtrace_provider_lock); 13857 mutex_enter(&mod_lock); 13858 13859 ASSERT(ctl->mod_busy); 13860 13861 /* 13862 * We're going to call each providers per-module provide operation 13863 * specifying only this module. 13864 */ 13865 for (prv = dtrace_provider; prv != NULL; prv = prv->dtpv_next) 13866 prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl); 13867 13868 mutex_exit(&mod_lock); 13869 mutex_exit(&dtrace_provider_lock); 13870 13871 /* 13872 * If we have any retained enablings, we need to match against them. 13873 * Enabling probes requires that cpu_lock be held, and we cannot hold 13874 * cpu_lock here -- it is legal for cpu_lock to be held when loading a 13875 * module. (In particular, this happens when loading scheduling 13876 * classes.) So if we have any retained enablings, we need to dispatch 13877 * our task queue to do the match for us. 13878 */ 13879 mutex_enter(&dtrace_lock); 13880 13881 if (dtrace_retained == NULL) { 13882 mutex_exit(&dtrace_lock); 13883 return; 13884 } 13885 13886 (void) taskq_dispatch(dtrace_taskq, 13887 (task_func_t *)dtrace_enabling_matchall, NULL, TQ_SLEEP); 13888 13889 mutex_exit(&dtrace_lock); 13890 13891 /* 13892 * And now, for a little heuristic sleaze: in general, we want to 13893 * match modules as soon as they load. However, we cannot guarantee 13894 * this, because it would lead us to the lock ordering violation 13895 * outlined above. The common case, of course, is that cpu_lock is 13896 * _not_ held -- so we delay here for a clock tick, hoping that that's 13897 * long enough for the task queue to do its work. If it's not, it's 13898 * not a serious problem -- it just means that the module that we 13899 * just loaded may not be immediately instrumentable. 13900 */ 13901 delay(1); 13902 } 13903 13904 static void 13905 dtrace_module_unloaded(struct modctl *ctl) 13906 { 13907 dtrace_probe_t template, *probe, *first, *next; 13908 dtrace_provider_t *prov; 13909 13910 template.dtpr_mod = ctl->mod_modname; 13911 13912 mutex_enter(&dtrace_provider_lock); 13913 mutex_enter(&mod_lock); 13914 mutex_enter(&dtrace_lock); 13915 13916 if (dtrace_bymod == NULL) { 13917 /* 13918 * The DTrace module is loaded (obviously) but not attached; 13919 * we don't have any work to do. 13920 */ 13921 mutex_exit(&dtrace_provider_lock); 13922 mutex_exit(&mod_lock); 13923 mutex_exit(&dtrace_lock); 13924 return; 13925 } 13926 13927 for (probe = first = dtrace_hash_lookup(dtrace_bymod, &template); 13928 probe != NULL; probe = probe->dtpr_nextmod) { 13929 if (probe->dtpr_ecb != NULL) { 13930 mutex_exit(&dtrace_provider_lock); 13931 mutex_exit(&mod_lock); 13932 mutex_exit(&dtrace_lock); 13933 13934 /* 13935 * This shouldn't _actually_ be possible -- we're 13936 * unloading a module that has an enabled probe in it. 13937 * (It's normally up to the provider to make sure that 13938 * this can't happen.) However, because dtps_enable() 13939 * doesn't have a failure mode, there can be an 13940 * enable/unload race. Upshot: we don't want to 13941 * assert, but we're not going to disable the 13942 * probe, either. 13943 */ 13944 if (dtrace_err_verbose) { 13945 cmn_err(CE_WARN, "unloaded module '%s' had " 13946 "enabled probes", ctl->mod_modname); 13947 } 13948 13949 return; 13950 } 13951 } 13952 13953 probe = first; 13954 13955 for (first = NULL; probe != NULL; probe = next) { 13956 ASSERT(dtrace_probes[probe->dtpr_id - 1] == probe); 13957 13958 dtrace_probes[probe->dtpr_id - 1] = NULL; 13959 13960 next = probe->dtpr_nextmod; 13961 dtrace_hash_remove(dtrace_bymod, probe); 13962 dtrace_hash_remove(dtrace_byfunc, probe); 13963 dtrace_hash_remove(dtrace_byname, probe); 13964 13965 if (first == NULL) { 13966 first = probe; 13967 probe->dtpr_nextmod = NULL; 13968 } else { 13969 probe->dtpr_nextmod = first; 13970 first = probe; 13971 } 13972 } 13973 13974 /* 13975 * We've removed all of the module's probes from the hash chains and 13976 * from the probe array. Now issue a dtrace_sync() to be sure that 13977 * everyone has cleared out from any probe array processing. 13978 */ 13979 dtrace_sync(); 13980 13981 for (probe = first; probe != NULL; probe = first) { 13982 first = probe->dtpr_nextmod; 13983 prov = probe->dtpr_provider; 13984 prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, probe->dtpr_id, 13985 probe->dtpr_arg); 13986 kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1); 13987 kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1); 13988 kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1); 13989 vmem_free(dtrace_arena, (void *)(uintptr_t)probe->dtpr_id, 1); 13990 kmem_free(probe, sizeof (dtrace_probe_t)); 13991 } 13992 13993 mutex_exit(&dtrace_lock); 13994 mutex_exit(&mod_lock); 13995 mutex_exit(&dtrace_provider_lock); 13996 } 13997 13998 void 13999 dtrace_suspend(void) 14000 { 14001 dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_suspend)); 14002 } 14003 14004 void 14005 dtrace_resume(void) 14006 { 14007 dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_resume)); 14008 } 14009 14010 static int 14011 dtrace_cpu_setup(cpu_setup_t what, processorid_t cpu) 14012 { 14013 ASSERT(MUTEX_HELD(&cpu_lock)); 14014 mutex_enter(&dtrace_lock); 14015 14016 switch (what) { 14017 case CPU_CONFIG: { 14018 dtrace_state_t *state; 14019 dtrace_optval_t *opt, rs, c; 14020 14021 /* 14022 * For now, we only allocate a new buffer for anonymous state. 14023 */ 14024 if ((state = dtrace_anon.dta_state) == NULL) 14025 break; 14026 14027 if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE) 14028 break; 14029 14030 opt = state->dts_options; 14031 c = opt[DTRACEOPT_CPU]; 14032 14033 if (c != DTRACE_CPUALL && c != DTRACEOPT_UNSET && c != cpu) 14034 break; 14035 14036 /* 14037 * Regardless of what the actual policy is, we're going to 14038 * temporarily set our resize policy to be manual. We're 14039 * also going to temporarily set our CPU option to denote 14040 * the newly configured CPU. 14041 */ 14042 rs = opt[DTRACEOPT_BUFRESIZE]; 14043 opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_MANUAL; 14044 opt[DTRACEOPT_CPU] = (dtrace_optval_t)cpu; 14045 14046 (void) dtrace_state_buffers(state); 14047 14048 opt[DTRACEOPT_BUFRESIZE] = rs; 14049 opt[DTRACEOPT_CPU] = c; 14050 14051 break; 14052 } 14053 14054 case CPU_UNCONFIG: 14055 /* 14056 * We don't free the buffer in the CPU_UNCONFIG case. (The 14057 * buffer will be freed when the consumer exits.) 14058 */ 14059 break; 14060 14061 default: 14062 break; 14063 } 14064 14065 mutex_exit(&dtrace_lock); 14066 return (0); 14067 } 14068 14069 static void 14070 dtrace_cpu_setup_initial(processorid_t cpu) 14071 { 14072 (void) dtrace_cpu_setup(CPU_CONFIG, cpu); 14073 } 14074 14075 static void 14076 dtrace_toxrange_add(uintptr_t base, uintptr_t limit) 14077 { 14078 if (dtrace_toxranges >= dtrace_toxranges_max) { 14079 int osize, nsize; 14080 dtrace_toxrange_t *range; 14081 14082 osize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t); 14083 14084 if (osize == 0) { 14085 ASSERT(dtrace_toxrange == NULL); 14086 ASSERT(dtrace_toxranges_max == 0); 14087 dtrace_toxranges_max = 1; 14088 } else { 14089 dtrace_toxranges_max <<= 1; 14090 } 14091 14092 nsize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t); 14093 range = kmem_zalloc(nsize, KM_SLEEP); 14094 14095 if (dtrace_toxrange != NULL) { 14096 ASSERT(osize != 0); 14097 bcopy(dtrace_toxrange, range, osize); 14098 kmem_free(dtrace_toxrange, osize); 14099 } 14100 14101 dtrace_toxrange = range; 14102 } 14103 14104 ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_base == NULL); 14105 ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_limit == NULL); 14106 14107 dtrace_toxrange[dtrace_toxranges].dtt_base = base; 14108 dtrace_toxrange[dtrace_toxranges].dtt_limit = limit; 14109 dtrace_toxranges++; 14110 } 14111 14112 /* 14113 * DTrace Driver Cookbook Functions 14114 */ 14115 /*ARGSUSED*/ 14116 static int 14117 dtrace_attach(dev_info_t *devi, ddi_attach_cmd_t cmd) 14118 { 14119 dtrace_provider_id_t id; 14120 dtrace_state_t *state = NULL; 14121 dtrace_enabling_t *enab; 14122 14123 mutex_enter(&cpu_lock); 14124 mutex_enter(&dtrace_provider_lock); 14125 mutex_enter(&dtrace_lock); 14126 14127 if (ddi_soft_state_init(&dtrace_softstate, 14128 sizeof (dtrace_state_t), 0) != 0) { 14129 cmn_err(CE_NOTE, "/dev/dtrace failed to initialize soft state"); 14130 mutex_exit(&cpu_lock); 14131 mutex_exit(&dtrace_provider_lock); 14132 mutex_exit(&dtrace_lock); 14133 return (DDI_FAILURE); 14134 } 14135 14136 if (ddi_create_minor_node(devi, DTRACEMNR_DTRACE, S_IFCHR, 14137 DTRACEMNRN_DTRACE, DDI_PSEUDO, NULL) == DDI_FAILURE || 14138 ddi_create_minor_node(devi, DTRACEMNR_HELPER, S_IFCHR, 14139 DTRACEMNRN_HELPER, DDI_PSEUDO, NULL) == DDI_FAILURE) { 14140 cmn_err(CE_NOTE, "/dev/dtrace couldn't create minor nodes"); 14141 ddi_remove_minor_node(devi, NULL); 14142 ddi_soft_state_fini(&dtrace_softstate); 14143 mutex_exit(&cpu_lock); 14144 mutex_exit(&dtrace_provider_lock); 14145 mutex_exit(&dtrace_lock); 14146 return (DDI_FAILURE); 14147 } 14148 14149 ddi_report_dev(devi); 14150 dtrace_devi = devi; 14151 14152 dtrace_modload = dtrace_module_loaded; 14153 dtrace_modunload = dtrace_module_unloaded; 14154 dtrace_cpu_init = dtrace_cpu_setup_initial; 14155 dtrace_helpers_cleanup = dtrace_helpers_destroy; 14156 dtrace_helpers_fork = dtrace_helpers_duplicate; 14157 dtrace_cpustart_init = dtrace_suspend; 14158 dtrace_cpustart_fini = dtrace_resume; 14159 dtrace_debugger_init = dtrace_suspend; 14160 dtrace_debugger_fini = dtrace_resume; 14161 14162 register_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL); 14163 14164 ASSERT(MUTEX_HELD(&cpu_lock)); 14165 14166 dtrace_arena = vmem_create("dtrace", (void *)1, UINT32_MAX, 1, 14167 NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER); 14168 dtrace_minor = vmem_create("dtrace_minor", (void *)DTRACEMNRN_CLONE, 14169 UINT32_MAX - DTRACEMNRN_CLONE, 1, NULL, NULL, NULL, 0, 14170 VM_SLEEP | VMC_IDENTIFIER); 14171 dtrace_taskq = taskq_create("dtrace_taskq", 1, maxclsyspri, 14172 1, INT_MAX, 0); 14173 14174 dtrace_state_cache = kmem_cache_create("dtrace_state_cache", 14175 sizeof (dtrace_dstate_percpu_t) * NCPU, DTRACE_STATE_ALIGN, 14176 NULL, NULL, NULL, NULL, NULL, 0); 14177 14178 ASSERT(MUTEX_HELD(&cpu_lock)); 14179 dtrace_bymod = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_mod), 14180 offsetof(dtrace_probe_t, dtpr_nextmod), 14181 offsetof(dtrace_probe_t, dtpr_prevmod)); 14182 14183 dtrace_byfunc = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_func), 14184 offsetof(dtrace_probe_t, dtpr_nextfunc), 14185 offsetof(dtrace_probe_t, dtpr_prevfunc)); 14186 14187 dtrace_byname = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_name), 14188 offsetof(dtrace_probe_t, dtpr_nextname), 14189 offsetof(dtrace_probe_t, dtpr_prevname)); 14190 14191 if (dtrace_retain_max < 1) { 14192 cmn_err(CE_WARN, "illegal value (%lu) for dtrace_retain_max; " 14193 "setting to 1", dtrace_retain_max); 14194 dtrace_retain_max = 1; 14195 } 14196 14197 /* 14198 * Now discover our toxic ranges. 14199 */ 14200 dtrace_toxic_ranges(dtrace_toxrange_add); 14201 14202 /* 14203 * Before we register ourselves as a provider to our own framework, 14204 * we would like to assert that dtrace_provider is NULL -- but that's 14205 * not true if we were loaded as a dependency of a DTrace provider. 14206 * Once we've registered, we can assert that dtrace_provider is our 14207 * pseudo provider. 14208 */ 14209 (void) dtrace_register("dtrace", &dtrace_provider_attr, 14210 DTRACE_PRIV_NONE, 0, &dtrace_provider_ops, NULL, &id); 14211 14212 ASSERT(dtrace_provider != NULL); 14213 ASSERT((dtrace_provider_id_t)dtrace_provider == id); 14214 14215 dtrace_probeid_begin = dtrace_probe_create((dtrace_provider_id_t) 14216 dtrace_provider, NULL, NULL, "BEGIN", 0, NULL); 14217 dtrace_probeid_end = dtrace_probe_create((dtrace_provider_id_t) 14218 dtrace_provider, NULL, NULL, "END", 0, NULL); 14219 dtrace_probeid_error = dtrace_probe_create((dtrace_provider_id_t) 14220 dtrace_provider, NULL, NULL, "ERROR", 1, NULL); 14221 14222 dtrace_anon_property(); 14223 mutex_exit(&cpu_lock); 14224 14225 /* 14226 * If DTrace helper tracing is enabled, we need to allocate the 14227 * trace buffer and initialize the values. 14228 */ 14229 if (dtrace_helptrace_enabled) { 14230 ASSERT(dtrace_helptrace_buffer == NULL); 14231 dtrace_helptrace_buffer = 14232 kmem_zalloc(dtrace_helptrace_bufsize, KM_SLEEP); 14233 dtrace_helptrace_next = 0; 14234 } 14235 14236 /* 14237 * If there are already providers, we must ask them to provide their 14238 * probes, and then match any anonymous enabling against them. Note 14239 * that there should be no other retained enablings at this time: 14240 * the only retained enablings at this time should be the anonymous 14241 * enabling. 14242 */ 14243 if (dtrace_anon.dta_enabling != NULL) { 14244 ASSERT(dtrace_retained == dtrace_anon.dta_enabling); 14245 14246 dtrace_enabling_provide(NULL); 14247 state = dtrace_anon.dta_state; 14248 14249 /* 14250 * We couldn't hold cpu_lock across the above call to 14251 * dtrace_enabling_provide(), but we must hold it to actually 14252 * enable the probes. We have to drop all of our locks, pick 14253 * up cpu_lock, and regain our locks before matching the 14254 * retained anonymous enabling. 14255 */ 14256 mutex_exit(&dtrace_lock); 14257 mutex_exit(&dtrace_provider_lock); 14258 14259 mutex_enter(&cpu_lock); 14260 mutex_enter(&dtrace_provider_lock); 14261 mutex_enter(&dtrace_lock); 14262 14263 if ((enab = dtrace_anon.dta_enabling) != NULL) 14264 (void) dtrace_enabling_match(enab, NULL); 14265 14266 mutex_exit(&cpu_lock); 14267 } 14268 14269 mutex_exit(&dtrace_lock); 14270 mutex_exit(&dtrace_provider_lock); 14271 14272 if (state != NULL) { 14273 /* 14274 * If we created any anonymous state, set it going now. 14275 */ 14276 (void) dtrace_state_go(state, &dtrace_anon.dta_beganon); 14277 } 14278 14279 return (DDI_SUCCESS); 14280 } 14281 14282 /*ARGSUSED*/ 14283 static int 14284 dtrace_open(dev_t *devp, int flag, int otyp, cred_t *cred_p) 14285 { 14286 dtrace_state_t *state; 14287 uint32_t priv; 14288 uid_t uid; 14289 zoneid_t zoneid; 14290 14291 if (getminor(*devp) == DTRACEMNRN_HELPER) 14292 return (0); 14293 14294 /* 14295 * If this wasn't an open with the "helper" minor, then it must be 14296 * the "dtrace" minor. 14297 */ 14298 ASSERT(getminor(*devp) == DTRACEMNRN_DTRACE); 14299 14300 /* 14301 * If no DTRACE_PRIV_* bits are set in the credential, then the 14302 * caller lacks sufficient permission to do anything with DTrace. 14303 */ 14304 dtrace_cred2priv(cred_p, &priv, &uid, &zoneid); 14305 if (priv == DTRACE_PRIV_NONE) 14306 return (EACCES); 14307 14308 /* 14309 * Ask all providers to provide all their probes. 14310 */ 14311 mutex_enter(&dtrace_provider_lock); 14312 dtrace_probe_provide(NULL, NULL); 14313 mutex_exit(&dtrace_provider_lock); 14314 14315 mutex_enter(&cpu_lock); 14316 mutex_enter(&dtrace_lock); 14317 dtrace_opens++; 14318 dtrace_membar_producer(); 14319 14320 /* 14321 * If the kernel debugger is active (that is, if the kernel debugger 14322 * modified text in some way), we won't allow the open. 14323 */ 14324 if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) { 14325 dtrace_opens--; 14326 mutex_exit(&cpu_lock); 14327 mutex_exit(&dtrace_lock); 14328 return (EBUSY); 14329 } 14330 14331 state = dtrace_state_create(devp, cred_p); 14332 mutex_exit(&cpu_lock); 14333 14334 if (state == NULL) { 14335 if (--dtrace_opens == 0) 14336 (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE); 14337 mutex_exit(&dtrace_lock); 14338 return (EAGAIN); 14339 } 14340 14341 mutex_exit(&dtrace_lock); 14342 14343 return (0); 14344 } 14345 14346 /*ARGSUSED*/ 14347 static int 14348 dtrace_close(dev_t dev, int flag, int otyp, cred_t *cred_p) 14349 { 14350 minor_t minor = getminor(dev); 14351 dtrace_state_t *state; 14352 14353 if (minor == DTRACEMNRN_HELPER) 14354 return (0); 14355 14356 state = ddi_get_soft_state(dtrace_softstate, minor); 14357 14358 mutex_enter(&cpu_lock); 14359 mutex_enter(&dtrace_lock); 14360 14361 if (state->dts_anon) { 14362 /* 14363 * There is anonymous state. Destroy that first. 14364 */ 14365 ASSERT(dtrace_anon.dta_state == NULL); 14366 dtrace_state_destroy(state->dts_anon); 14367 } 14368 14369 dtrace_state_destroy(state); 14370 ASSERT(dtrace_opens > 0); 14371 if (--dtrace_opens == 0) 14372 (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE); 14373 14374 mutex_exit(&dtrace_lock); 14375 mutex_exit(&cpu_lock); 14376 14377 return (0); 14378 } 14379 14380 /*ARGSUSED*/ 14381 static int 14382 dtrace_ioctl_helper(int cmd, intptr_t arg, int *rv) 14383 { 14384 int rval; 14385 dof_helper_t help, *dhp = NULL; 14386 14387 switch (cmd) { 14388 case DTRACEHIOC_ADDDOF: 14389 if (copyin((void *)arg, &help, sizeof (help)) != 0) { 14390 dtrace_dof_error(NULL, "failed to copyin DOF helper"); 14391 return (EFAULT); 14392 } 14393 14394 dhp = &help; 14395 arg = (intptr_t)help.dofhp_dof; 14396 /*FALLTHROUGH*/ 14397 14398 case DTRACEHIOC_ADD: { 14399 dof_hdr_t *dof = dtrace_dof_copyin(arg, &rval); 14400 14401 if (dof == NULL) 14402 return (rval); 14403 14404 mutex_enter(&dtrace_lock); 14405 14406 /* 14407 * dtrace_helper_slurp() takes responsibility for the dof -- 14408 * it may free it now or it may save it and free it later. 14409 */ 14410 if ((rval = dtrace_helper_slurp(dof, dhp)) != -1) { 14411 *rv = rval; 14412 rval = 0; 14413 } else { 14414 rval = EINVAL; 14415 } 14416 14417 mutex_exit(&dtrace_lock); 14418 return (rval); 14419 } 14420 14421 case DTRACEHIOC_REMOVE: { 14422 mutex_enter(&dtrace_lock); 14423 rval = dtrace_helper_destroygen(arg); 14424 mutex_exit(&dtrace_lock); 14425 14426 return (rval); 14427 } 14428 14429 default: 14430 break; 14431 } 14432 14433 return (ENOTTY); 14434 } 14435 14436 /*ARGSUSED*/ 14437 static int 14438 dtrace_ioctl(dev_t dev, int cmd, intptr_t arg, int md, cred_t *cr, int *rv) 14439 { 14440 minor_t minor = getminor(dev); 14441 dtrace_state_t *state; 14442 int rval; 14443 14444 if (minor == DTRACEMNRN_HELPER) 14445 return (dtrace_ioctl_helper(cmd, arg, rv)); 14446 14447 state = ddi_get_soft_state(dtrace_softstate, minor); 14448 14449 if (state->dts_anon) { 14450 ASSERT(dtrace_anon.dta_state == NULL); 14451 state = state->dts_anon; 14452 } 14453 14454 switch (cmd) { 14455 case DTRACEIOC_PROVIDER: { 14456 dtrace_providerdesc_t pvd; 14457 dtrace_provider_t *pvp; 14458 14459 if (copyin((void *)arg, &pvd, sizeof (pvd)) != 0) 14460 return (EFAULT); 14461 14462 pvd.dtvd_name[DTRACE_PROVNAMELEN - 1] = '\0'; 14463 mutex_enter(&dtrace_provider_lock); 14464 14465 for (pvp = dtrace_provider; pvp != NULL; pvp = pvp->dtpv_next) { 14466 if (strcmp(pvp->dtpv_name, pvd.dtvd_name) == 0) 14467 break; 14468 } 14469 14470 mutex_exit(&dtrace_provider_lock); 14471 14472 if (pvp == NULL) 14473 return (ESRCH); 14474 14475 bcopy(&pvp->dtpv_priv, &pvd.dtvd_priv, sizeof (dtrace_ppriv_t)); 14476 bcopy(&pvp->dtpv_attr, &pvd.dtvd_attr, sizeof (dtrace_pattr_t)); 14477 if (copyout(&pvd, (void *)arg, sizeof (pvd)) != 0) 14478 return (EFAULT); 14479 14480 return (0); 14481 } 14482 14483 case DTRACEIOC_EPROBE: { 14484 dtrace_eprobedesc_t epdesc; 14485 dtrace_ecb_t *ecb; 14486 dtrace_action_t *act; 14487 void *buf; 14488 size_t size; 14489 uintptr_t dest; 14490 int nrecs; 14491 14492 if (copyin((void *)arg, &epdesc, sizeof (epdesc)) != 0) 14493 return (EFAULT); 14494 14495 mutex_enter(&dtrace_lock); 14496 14497 if ((ecb = dtrace_epid2ecb(state, epdesc.dtepd_epid)) == NULL) { 14498 mutex_exit(&dtrace_lock); 14499 return (EINVAL); 14500 } 14501 14502 if (ecb->dte_probe == NULL) { 14503 mutex_exit(&dtrace_lock); 14504 return (EINVAL); 14505 } 14506 14507 epdesc.dtepd_probeid = ecb->dte_probe->dtpr_id; 14508 epdesc.dtepd_uarg = ecb->dte_uarg; 14509 epdesc.dtepd_size = ecb->dte_size; 14510 14511 nrecs = epdesc.dtepd_nrecs; 14512 epdesc.dtepd_nrecs = 0; 14513 for (act = ecb->dte_action; act != NULL; act = act->dta_next) { 14514 if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple) 14515 continue; 14516 14517 epdesc.dtepd_nrecs++; 14518 } 14519 14520 /* 14521 * Now that we have the size, we need to allocate a temporary 14522 * buffer in which to store the complete description. We need 14523 * the temporary buffer to be able to drop dtrace_lock() 14524 * across the copyout(), below. 14525 */ 14526 size = sizeof (dtrace_eprobedesc_t) + 14527 (epdesc.dtepd_nrecs * sizeof (dtrace_recdesc_t)); 14528 14529 buf = kmem_alloc(size, KM_SLEEP); 14530 dest = (uintptr_t)buf; 14531 14532 bcopy(&epdesc, (void *)dest, sizeof (epdesc)); 14533 dest += offsetof(dtrace_eprobedesc_t, dtepd_rec[0]); 14534 14535 for (act = ecb->dte_action; act != NULL; act = act->dta_next) { 14536 if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple) 14537 continue; 14538 14539 if (nrecs-- == 0) 14540 break; 14541 14542 bcopy(&act->dta_rec, (void *)dest, 14543 sizeof (dtrace_recdesc_t)); 14544 dest += sizeof (dtrace_recdesc_t); 14545 } 14546 14547 mutex_exit(&dtrace_lock); 14548 14549 if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) { 14550 kmem_free(buf, size); 14551 return (EFAULT); 14552 } 14553 14554 kmem_free(buf, size); 14555 return (0); 14556 } 14557 14558 case DTRACEIOC_AGGDESC: { 14559 dtrace_aggdesc_t aggdesc; 14560 dtrace_action_t *act; 14561 dtrace_aggregation_t *agg; 14562 int nrecs; 14563 uint32_t offs; 14564 dtrace_recdesc_t *lrec; 14565 void *buf; 14566 size_t size; 14567 uintptr_t dest; 14568 14569 if (copyin((void *)arg, &aggdesc, sizeof (aggdesc)) != 0) 14570 return (EFAULT); 14571 14572 mutex_enter(&dtrace_lock); 14573 14574 if ((agg = dtrace_aggid2agg(state, aggdesc.dtagd_id)) == NULL) { 14575 mutex_exit(&dtrace_lock); 14576 return (EINVAL); 14577 } 14578 14579 aggdesc.dtagd_epid = agg->dtag_ecb->dte_epid; 14580 14581 nrecs = aggdesc.dtagd_nrecs; 14582 aggdesc.dtagd_nrecs = 0; 14583 14584 offs = agg->dtag_base; 14585 lrec = &agg->dtag_action.dta_rec; 14586 aggdesc.dtagd_size = lrec->dtrd_offset + lrec->dtrd_size - offs; 14587 14588 for (act = agg->dtag_first; ; act = act->dta_next) { 14589 ASSERT(act->dta_intuple || 14590 DTRACEACT_ISAGG(act->dta_kind)); 14591 14592 /* 14593 * If this action has a record size of zero, it 14594 * denotes an argument to the aggregating action. 14595 * Because the presence of this record doesn't (or 14596 * shouldn't) affect the way the data is interpreted, 14597 * we don't copy it out to save user-level the 14598 * confusion of dealing with a zero-length record. 14599 */ 14600 if (act->dta_rec.dtrd_size == 0) { 14601 ASSERT(agg->dtag_hasarg); 14602 continue; 14603 } 14604 14605 aggdesc.dtagd_nrecs++; 14606 14607 if (act == &agg->dtag_action) 14608 break; 14609 } 14610 14611 /* 14612 * Now that we have the size, we need to allocate a temporary 14613 * buffer in which to store the complete description. We need 14614 * the temporary buffer to be able to drop dtrace_lock() 14615 * across the copyout(), below. 14616 */ 14617 size = sizeof (dtrace_aggdesc_t) + 14618 (aggdesc.dtagd_nrecs * sizeof (dtrace_recdesc_t)); 14619 14620 buf = kmem_alloc(size, KM_SLEEP); 14621 dest = (uintptr_t)buf; 14622 14623 bcopy(&aggdesc, (void *)dest, sizeof (aggdesc)); 14624 dest += offsetof(dtrace_aggdesc_t, dtagd_rec[0]); 14625 14626 for (act = agg->dtag_first; ; act = act->dta_next) { 14627 dtrace_recdesc_t rec = act->dta_rec; 14628 14629 /* 14630 * See the comment in the above loop for why we pass 14631 * over zero-length records. 14632 */ 14633 if (rec.dtrd_size == 0) { 14634 ASSERT(agg->dtag_hasarg); 14635 continue; 14636 } 14637 14638 if (nrecs-- == 0) 14639 break; 14640 14641 rec.dtrd_offset -= offs; 14642 bcopy(&rec, (void *)dest, sizeof (rec)); 14643 dest += sizeof (dtrace_recdesc_t); 14644 14645 if (act == &agg->dtag_action) 14646 break; 14647 } 14648 14649 mutex_exit(&dtrace_lock); 14650 14651 if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) { 14652 kmem_free(buf, size); 14653 return (EFAULT); 14654 } 14655 14656 kmem_free(buf, size); 14657 return (0); 14658 } 14659 14660 case DTRACEIOC_ENABLE: { 14661 dof_hdr_t *dof; 14662 dtrace_enabling_t *enab = NULL; 14663 dtrace_vstate_t *vstate; 14664 int err = 0; 14665 14666 *rv = 0; 14667 14668 /* 14669 * If a NULL argument has been passed, we take this as our 14670 * cue to reevaluate our enablings. 14671 */ 14672 if (arg == NULL) { 14673 mutex_enter(&cpu_lock); 14674 mutex_enter(&dtrace_lock); 14675 err = dtrace_enabling_matchstate(state, rv); 14676 mutex_exit(&dtrace_lock); 14677 mutex_exit(&cpu_lock); 14678 14679 return (err); 14680 } 14681 14682 if ((dof = dtrace_dof_copyin(arg, &rval)) == NULL) 14683 return (rval); 14684 14685 mutex_enter(&cpu_lock); 14686 mutex_enter(&dtrace_lock); 14687 vstate = &state->dts_vstate; 14688 14689 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) { 14690 mutex_exit(&dtrace_lock); 14691 mutex_exit(&cpu_lock); 14692 dtrace_dof_destroy(dof); 14693 return (EBUSY); 14694 } 14695 14696 if (dtrace_dof_slurp(dof, vstate, cr, &enab, 0, B_TRUE) != 0) { 14697 mutex_exit(&dtrace_lock); 14698 mutex_exit(&cpu_lock); 14699 dtrace_dof_destroy(dof); 14700 return (EINVAL); 14701 } 14702 14703 if ((rval = dtrace_dof_options(dof, state)) != 0) { 14704 dtrace_enabling_destroy(enab); 14705 mutex_exit(&dtrace_lock); 14706 mutex_exit(&cpu_lock); 14707 dtrace_dof_destroy(dof); 14708 return (rval); 14709 } 14710 14711 if ((err = dtrace_enabling_match(enab, rv)) == 0) { 14712 err = dtrace_enabling_retain(enab); 14713 } else { 14714 dtrace_enabling_destroy(enab); 14715 } 14716 14717 mutex_exit(&cpu_lock); 14718 mutex_exit(&dtrace_lock); 14719 dtrace_dof_destroy(dof); 14720 14721 return (err); 14722 } 14723 14724 case DTRACEIOC_REPLICATE: { 14725 dtrace_repldesc_t desc; 14726 dtrace_probedesc_t *match = &desc.dtrpd_match; 14727 dtrace_probedesc_t *create = &desc.dtrpd_create; 14728 int err; 14729 14730 if (copyin((void *)arg, &desc, sizeof (desc)) != 0) 14731 return (EFAULT); 14732 14733 match->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0'; 14734 match->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0'; 14735 match->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0'; 14736 match->dtpd_name[DTRACE_NAMELEN - 1] = '\0'; 14737 14738 create->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0'; 14739 create->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0'; 14740 create->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0'; 14741 create->dtpd_name[DTRACE_NAMELEN - 1] = '\0'; 14742 14743 mutex_enter(&dtrace_lock); 14744 err = dtrace_enabling_replicate(state, match, create); 14745 mutex_exit(&dtrace_lock); 14746 14747 return (err); 14748 } 14749 14750 case DTRACEIOC_PROBEMATCH: 14751 case DTRACEIOC_PROBES: { 14752 dtrace_probe_t *probe = NULL; 14753 dtrace_probedesc_t desc; 14754 dtrace_probekey_t pkey; 14755 dtrace_id_t i; 14756 int m = 0; 14757 uint32_t priv; 14758 uid_t uid; 14759 zoneid_t zoneid; 14760 14761 if (copyin((void *)arg, &desc, sizeof (desc)) != 0) 14762 return (EFAULT); 14763 14764 desc.dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0'; 14765 desc.dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0'; 14766 desc.dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0'; 14767 desc.dtpd_name[DTRACE_NAMELEN - 1] = '\0'; 14768 14769 /* 14770 * Before we attempt to match this probe, we want to give 14771 * all providers the opportunity to provide it. 14772 */ 14773 if (desc.dtpd_id == DTRACE_IDNONE) { 14774 mutex_enter(&dtrace_provider_lock); 14775 dtrace_probe_provide(&desc, NULL); 14776 mutex_exit(&dtrace_provider_lock); 14777 desc.dtpd_id++; 14778 } 14779 14780 if (cmd == DTRACEIOC_PROBEMATCH) { 14781 dtrace_probekey(&desc, &pkey); 14782 pkey.dtpk_id = DTRACE_IDNONE; 14783 } 14784 14785 dtrace_cred2priv(cr, &priv, &uid, &zoneid); 14786 14787 mutex_enter(&dtrace_lock); 14788 14789 if (cmd == DTRACEIOC_PROBEMATCH) { 14790 for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) { 14791 if ((probe = dtrace_probes[i - 1]) != NULL && 14792 (m = dtrace_match_probe(probe, &pkey, 14793 priv, uid, zoneid)) != 0) 14794 break; 14795 } 14796 14797 if (m < 0) { 14798 mutex_exit(&dtrace_lock); 14799 return (EINVAL); 14800 } 14801 14802 } else { 14803 for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) { 14804 if ((probe = dtrace_probes[i - 1]) != NULL && 14805 dtrace_match_priv(probe, priv, uid, zoneid)) 14806 break; 14807 } 14808 } 14809 14810 if (probe == NULL) { 14811 mutex_exit(&dtrace_lock); 14812 return (ESRCH); 14813 } 14814 14815 dtrace_probe_description(probe, &desc); 14816 mutex_exit(&dtrace_lock); 14817 14818 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0) 14819 return (EFAULT); 14820 14821 return (0); 14822 } 14823 14824 case DTRACEIOC_PROBEARG: { 14825 dtrace_argdesc_t desc; 14826 dtrace_probe_t *probe; 14827 dtrace_provider_t *prov; 14828 14829 if (copyin((void *)arg, &desc, sizeof (desc)) != 0) 14830 return (EFAULT); 14831 14832 if (desc.dtargd_id == DTRACE_IDNONE) 14833 return (EINVAL); 14834 14835 if (desc.dtargd_ndx == DTRACE_ARGNONE) 14836 return (EINVAL); 14837 14838 mutex_enter(&dtrace_provider_lock); 14839 mutex_enter(&mod_lock); 14840 mutex_enter(&dtrace_lock); 14841 14842 if (desc.dtargd_id > dtrace_nprobes) { 14843 mutex_exit(&dtrace_lock); 14844 mutex_exit(&mod_lock); 14845 mutex_exit(&dtrace_provider_lock); 14846 return (EINVAL); 14847 } 14848 14849 if ((probe = dtrace_probes[desc.dtargd_id - 1]) == NULL) { 14850 mutex_exit(&dtrace_lock); 14851 mutex_exit(&mod_lock); 14852 mutex_exit(&dtrace_provider_lock); 14853 return (EINVAL); 14854 } 14855 14856 mutex_exit(&dtrace_lock); 14857 14858 prov = probe->dtpr_provider; 14859 14860 if (prov->dtpv_pops.dtps_getargdesc == NULL) { 14861 /* 14862 * There isn't any typed information for this probe. 14863 * Set the argument number to DTRACE_ARGNONE. 14864 */ 14865 desc.dtargd_ndx = DTRACE_ARGNONE; 14866 } else { 14867 desc.dtargd_native[0] = '\0'; 14868 desc.dtargd_xlate[0] = '\0'; 14869 desc.dtargd_mapping = desc.dtargd_ndx; 14870 14871 prov->dtpv_pops.dtps_getargdesc(prov->dtpv_arg, 14872 probe->dtpr_id, probe->dtpr_arg, &desc); 14873 } 14874 14875 mutex_exit(&mod_lock); 14876 mutex_exit(&dtrace_provider_lock); 14877 14878 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0) 14879 return (EFAULT); 14880 14881 return (0); 14882 } 14883 14884 case DTRACEIOC_GO: { 14885 processorid_t cpuid; 14886 rval = dtrace_state_go(state, &cpuid); 14887 14888 if (rval != 0) 14889 return (rval); 14890 14891 if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0) 14892 return (EFAULT); 14893 14894 return (0); 14895 } 14896 14897 case DTRACEIOC_STOP: { 14898 processorid_t cpuid; 14899 14900 mutex_enter(&dtrace_lock); 14901 rval = dtrace_state_stop(state, &cpuid); 14902 mutex_exit(&dtrace_lock); 14903 14904 if (rval != 0) 14905 return (rval); 14906 14907 if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0) 14908 return (EFAULT); 14909 14910 return (0); 14911 } 14912 14913 case DTRACEIOC_DOFGET: { 14914 dof_hdr_t hdr, *dof; 14915 uint64_t len; 14916 14917 if (copyin((void *)arg, &hdr, sizeof (hdr)) != 0) 14918 return (EFAULT); 14919 14920 mutex_enter(&dtrace_lock); 14921 dof = dtrace_dof_create(state); 14922 mutex_exit(&dtrace_lock); 14923 14924 len = MIN(hdr.dofh_loadsz, dof->dofh_loadsz); 14925 rval = copyout(dof, (void *)arg, len); 14926 dtrace_dof_destroy(dof); 14927 14928 return (rval == 0 ? 0 : EFAULT); 14929 } 14930 14931 case DTRACEIOC_AGGSNAP: 14932 case DTRACEIOC_BUFSNAP: { 14933 dtrace_bufdesc_t desc; 14934 caddr_t cached; 14935 dtrace_buffer_t *buf; 14936 14937 if (copyin((void *)arg, &desc, sizeof (desc)) != 0) 14938 return (EFAULT); 14939 14940 if (desc.dtbd_cpu < 0 || desc.dtbd_cpu >= NCPU) 14941 return (EINVAL); 14942 14943 mutex_enter(&dtrace_lock); 14944 14945 if (cmd == DTRACEIOC_BUFSNAP) { 14946 buf = &state->dts_buffer[desc.dtbd_cpu]; 14947 } else { 14948 buf = &state->dts_aggbuffer[desc.dtbd_cpu]; 14949 } 14950 14951 if (buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL)) { 14952 size_t sz = buf->dtb_offset; 14953 14954 if (state->dts_activity != DTRACE_ACTIVITY_STOPPED) { 14955 mutex_exit(&dtrace_lock); 14956 return (EBUSY); 14957 } 14958 14959 /* 14960 * If this buffer has already been consumed, we're 14961 * going to indicate that there's nothing left here 14962 * to consume. 14963 */ 14964 if (buf->dtb_flags & DTRACEBUF_CONSUMED) { 14965 mutex_exit(&dtrace_lock); 14966 14967 desc.dtbd_size = 0; 14968 desc.dtbd_drops = 0; 14969 desc.dtbd_errors = 0; 14970 desc.dtbd_oldest = 0; 14971 sz = sizeof (desc); 14972 14973 if (copyout(&desc, (void *)arg, sz) != 0) 14974 return (EFAULT); 14975 14976 return (0); 14977 } 14978 14979 /* 14980 * If this is a ring buffer that has wrapped, we want 14981 * to copy the whole thing out. 14982 */ 14983 if (buf->dtb_flags & DTRACEBUF_WRAPPED) { 14984 dtrace_buffer_polish(buf); 14985 sz = buf->dtb_size; 14986 } 14987 14988 if (copyout(buf->dtb_tomax, desc.dtbd_data, sz) != 0) { 14989 mutex_exit(&dtrace_lock); 14990 return (EFAULT); 14991 } 14992 14993 desc.dtbd_size = sz; 14994 desc.dtbd_drops = buf->dtb_drops; 14995 desc.dtbd_errors = buf->dtb_errors; 14996 desc.dtbd_oldest = buf->dtb_xamot_offset; 14997 14998 mutex_exit(&dtrace_lock); 14999 15000 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0) 15001 return (EFAULT); 15002 15003 buf->dtb_flags |= DTRACEBUF_CONSUMED; 15004 15005 return (0); 15006 } 15007 15008 if (buf->dtb_tomax == NULL) { 15009 ASSERT(buf->dtb_xamot == NULL); 15010 mutex_exit(&dtrace_lock); 15011 return (ENOENT); 15012 } 15013 15014 cached = buf->dtb_tomax; 15015 ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH)); 15016 15017 dtrace_xcall(desc.dtbd_cpu, 15018 (dtrace_xcall_t)dtrace_buffer_switch, buf); 15019 15020 state->dts_errors += buf->dtb_xamot_errors; 15021 15022 /* 15023 * If the buffers did not actually switch, then the cross call 15024 * did not take place -- presumably because the given CPU is 15025 * not in the ready set. If this is the case, we'll return 15026 * ENOENT. 15027 */ 15028 if (buf->dtb_tomax == cached) { 15029 ASSERT(buf->dtb_xamot != cached); 15030 mutex_exit(&dtrace_lock); 15031 return (ENOENT); 15032 } 15033 15034 ASSERT(cached == buf->dtb_xamot); 15035 15036 /* 15037 * We have our snapshot; now copy it out. 15038 */ 15039 if (copyout(buf->dtb_xamot, desc.dtbd_data, 15040 buf->dtb_xamot_offset) != 0) { 15041 mutex_exit(&dtrace_lock); 15042 return (EFAULT); 15043 } 15044 15045 desc.dtbd_size = buf->dtb_xamot_offset; 15046 desc.dtbd_drops = buf->dtb_xamot_drops; 15047 desc.dtbd_errors = buf->dtb_xamot_errors; 15048 desc.dtbd_oldest = 0; 15049 15050 mutex_exit(&dtrace_lock); 15051 15052 /* 15053 * Finally, copy out the buffer description. 15054 */ 15055 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0) 15056 return (EFAULT); 15057 15058 return (0); 15059 } 15060 15061 case DTRACEIOC_CONF: { 15062 dtrace_conf_t conf; 15063 15064 bzero(&conf, sizeof (conf)); 15065 conf.dtc_difversion = DIF_VERSION; 15066 conf.dtc_difintregs = DIF_DIR_NREGS; 15067 conf.dtc_diftupregs = DIF_DTR_NREGS; 15068 conf.dtc_ctfmodel = CTF_MODEL_NATIVE; 15069 15070 if (copyout(&conf, (void *)arg, sizeof (conf)) != 0) 15071 return (EFAULT); 15072 15073 return (0); 15074 } 15075 15076 case DTRACEIOC_STATUS: { 15077 dtrace_status_t stat; 15078 dtrace_dstate_t *dstate; 15079 int i, j; 15080 uint64_t nerrs; 15081 15082 /* 15083 * See the comment in dtrace_state_deadman() for the reason 15084 * for setting dts_laststatus to INT64_MAX before setting 15085 * it to the correct value. 15086 */ 15087 state->dts_laststatus = INT64_MAX; 15088 dtrace_membar_producer(); 15089 state->dts_laststatus = dtrace_gethrtime(); 15090 15091 bzero(&stat, sizeof (stat)); 15092 15093 mutex_enter(&dtrace_lock); 15094 15095 if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE) { 15096 mutex_exit(&dtrace_lock); 15097 return (ENOENT); 15098 } 15099 15100 if (state->dts_activity == DTRACE_ACTIVITY_DRAINING) 15101 stat.dtst_exiting = 1; 15102 15103 nerrs = state->dts_errors; 15104 dstate = &state->dts_vstate.dtvs_dynvars; 15105 15106 for (i = 0; i < NCPU; i++) { 15107 dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[i]; 15108 15109 stat.dtst_dyndrops += dcpu->dtdsc_drops; 15110 stat.dtst_dyndrops_dirty += dcpu->dtdsc_dirty_drops; 15111 stat.dtst_dyndrops_rinsing += dcpu->dtdsc_rinsing_drops; 15112 15113 if (state->dts_buffer[i].dtb_flags & DTRACEBUF_FULL) 15114 stat.dtst_filled++; 15115 15116 nerrs += state->dts_buffer[i].dtb_errors; 15117 15118 for (j = 0; j < state->dts_nspeculations; j++) { 15119 dtrace_speculation_t *spec; 15120 dtrace_buffer_t *buf; 15121 15122 spec = &state->dts_speculations[j]; 15123 buf = &spec->dtsp_buffer[i]; 15124 stat.dtst_specdrops += buf->dtb_xamot_drops; 15125 } 15126 } 15127 15128 stat.dtst_specdrops_busy = state->dts_speculations_busy; 15129 stat.dtst_specdrops_unavail = state->dts_speculations_unavail; 15130 stat.dtst_stkstroverflows = state->dts_stkstroverflows; 15131 stat.dtst_dblerrors = state->dts_dblerrors; 15132 stat.dtst_killed = 15133 (state->dts_activity == DTRACE_ACTIVITY_KILLED); 15134 stat.dtst_errors = nerrs; 15135 15136 mutex_exit(&dtrace_lock); 15137 15138 if (copyout(&stat, (void *)arg, sizeof (stat)) != 0) 15139 return (EFAULT); 15140 15141 return (0); 15142 } 15143 15144 case DTRACEIOC_FORMAT: { 15145 dtrace_fmtdesc_t fmt; 15146 char *str; 15147 int len; 15148 15149 if (copyin((void *)arg, &fmt, sizeof (fmt)) != 0) 15150 return (EFAULT); 15151 15152 mutex_enter(&dtrace_lock); 15153 15154 if (fmt.dtfd_format == 0 || 15155 fmt.dtfd_format > state->dts_nformats) { 15156 mutex_exit(&dtrace_lock); 15157 return (EINVAL); 15158 } 15159 15160 /* 15161 * Format strings are allocated contiguously and they are 15162 * never freed; if a format index is less than the number 15163 * of formats, we can assert that the format map is non-NULL 15164 * and that the format for the specified index is non-NULL. 15165 */ 15166 ASSERT(state->dts_formats != NULL); 15167 str = state->dts_formats[fmt.dtfd_format - 1]; 15168 ASSERT(str != NULL); 15169 15170 len = strlen(str) + 1; 15171 15172 if (len > fmt.dtfd_length) { 15173 fmt.dtfd_length = len; 15174 15175 if (copyout(&fmt, (void *)arg, sizeof (fmt)) != 0) { 15176 mutex_exit(&dtrace_lock); 15177 return (EINVAL); 15178 } 15179 } else { 15180 if (copyout(str, fmt.dtfd_string, len) != 0) { 15181 mutex_exit(&dtrace_lock); 15182 return (EINVAL); 15183 } 15184 } 15185 15186 mutex_exit(&dtrace_lock); 15187 return (0); 15188 } 15189 15190 default: 15191 break; 15192 } 15193 15194 return (ENOTTY); 15195 } 15196 15197 /*ARGSUSED*/ 15198 static int 15199 dtrace_detach(dev_info_t *dip, ddi_detach_cmd_t cmd) 15200 { 15201 dtrace_state_t *state; 15202 15203 switch (cmd) { 15204 case DDI_DETACH: 15205 break; 15206 15207 case DDI_SUSPEND: 15208 return (DDI_SUCCESS); 15209 15210 default: 15211 return (DDI_FAILURE); 15212 } 15213 15214 mutex_enter(&cpu_lock); 15215 mutex_enter(&dtrace_provider_lock); 15216 mutex_enter(&dtrace_lock); 15217 15218 ASSERT(dtrace_opens == 0); 15219 15220 if (dtrace_helpers > 0) { 15221 mutex_exit(&dtrace_provider_lock); 15222 mutex_exit(&dtrace_lock); 15223 mutex_exit(&cpu_lock); 15224 return (DDI_FAILURE); 15225 } 15226 15227 if (dtrace_unregister((dtrace_provider_id_t)dtrace_provider) != 0) { 15228 mutex_exit(&dtrace_provider_lock); 15229 mutex_exit(&dtrace_lock); 15230 mutex_exit(&cpu_lock); 15231 return (DDI_FAILURE); 15232 } 15233 15234 dtrace_provider = NULL; 15235 15236 if ((state = dtrace_anon_grab()) != NULL) { 15237 /* 15238 * If there were ECBs on this state, the provider should 15239 * have not been allowed to detach; assert that there is 15240 * none. 15241 */ 15242 ASSERT(state->dts_necbs == 0); 15243 dtrace_state_destroy(state); 15244 15245 /* 15246 * If we're being detached with anonymous state, we need to 15247 * indicate to the kernel debugger that DTrace is now inactive. 15248 */ 15249 (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE); 15250 } 15251 15252 bzero(&dtrace_anon, sizeof (dtrace_anon_t)); 15253 unregister_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL); 15254 dtrace_cpu_init = NULL; 15255 dtrace_helpers_cleanup = NULL; 15256 dtrace_helpers_fork = NULL; 15257 dtrace_cpustart_init = NULL; 15258 dtrace_cpustart_fini = NULL; 15259 dtrace_debugger_init = NULL; 15260 dtrace_debugger_fini = NULL; 15261 dtrace_modload = NULL; 15262 dtrace_modunload = NULL; 15263 15264 mutex_exit(&cpu_lock); 15265 15266 if (dtrace_helptrace_enabled) { 15267 kmem_free(dtrace_helptrace_buffer, dtrace_helptrace_bufsize); 15268 dtrace_helptrace_buffer = NULL; 15269 } 15270 15271 kmem_free(dtrace_probes, dtrace_nprobes * sizeof (dtrace_probe_t *)); 15272 dtrace_probes = NULL; 15273 dtrace_nprobes = 0; 15274 15275 dtrace_hash_destroy(dtrace_bymod); 15276 dtrace_hash_destroy(dtrace_byfunc); 15277 dtrace_hash_destroy(dtrace_byname); 15278 dtrace_bymod = NULL; 15279 dtrace_byfunc = NULL; 15280 dtrace_byname = NULL; 15281 15282 kmem_cache_destroy(dtrace_state_cache); 15283 vmem_destroy(dtrace_minor); 15284 vmem_destroy(dtrace_arena); 15285 15286 if (dtrace_toxrange != NULL) { 15287 kmem_free(dtrace_toxrange, 15288 dtrace_toxranges_max * sizeof (dtrace_toxrange_t)); 15289 dtrace_toxrange = NULL; 15290 dtrace_toxranges = 0; 15291 dtrace_toxranges_max = 0; 15292 } 15293 15294 ddi_remove_minor_node(dtrace_devi, NULL); 15295 dtrace_devi = NULL; 15296 15297 ddi_soft_state_fini(&dtrace_softstate); 15298 15299 ASSERT(dtrace_vtime_references == 0); 15300 ASSERT(dtrace_opens == 0); 15301 ASSERT(dtrace_retained == NULL); 15302 15303 mutex_exit(&dtrace_lock); 15304 mutex_exit(&dtrace_provider_lock); 15305 15306 /* 15307 * We don't destroy the task queue until after we have dropped our 15308 * locks (taskq_destroy() may block on running tasks). To prevent 15309 * attempting to do work after we have effectively detached but before 15310 * the task queue has been destroyed, all tasks dispatched via the 15311 * task queue must check that DTrace is still attached before 15312 * performing any operation. 15313 */ 15314 taskq_destroy(dtrace_taskq); 15315 dtrace_taskq = NULL; 15316 15317 return (DDI_SUCCESS); 15318 } 15319 15320 /*ARGSUSED*/ 15321 static int 15322 dtrace_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result) 15323 { 15324 int error; 15325 15326 switch (infocmd) { 15327 case DDI_INFO_DEVT2DEVINFO: 15328 *result = (void *)dtrace_devi; 15329 error = DDI_SUCCESS; 15330 break; 15331 case DDI_INFO_DEVT2INSTANCE: 15332 *result = (void *)0; 15333 error = DDI_SUCCESS; 15334 break; 15335 default: 15336 error = DDI_FAILURE; 15337 } 15338 return (error); 15339 } 15340 15341 static struct cb_ops dtrace_cb_ops = { 15342 dtrace_open, /* open */ 15343 dtrace_close, /* close */ 15344 nulldev, /* strategy */ 15345 nulldev, /* print */ 15346 nodev, /* dump */ 15347 nodev, /* read */ 15348 nodev, /* write */ 15349 dtrace_ioctl, /* ioctl */ 15350 nodev, /* devmap */ 15351 nodev, /* mmap */ 15352 nodev, /* segmap */ 15353 nochpoll, /* poll */ 15354 ddi_prop_op, /* cb_prop_op */ 15355 0, /* streamtab */ 15356 D_NEW | D_MP /* Driver compatibility flag */ 15357 }; 15358 15359 static struct dev_ops dtrace_ops = { 15360 DEVO_REV, /* devo_rev */ 15361 0, /* refcnt */ 15362 dtrace_info, /* get_dev_info */ 15363 nulldev, /* identify */ 15364 nulldev, /* probe */ 15365 dtrace_attach, /* attach */ 15366 dtrace_detach, /* detach */ 15367 nodev, /* reset */ 15368 &dtrace_cb_ops, /* driver operations */ 15369 NULL, /* bus operations */ 15370 nodev /* dev power */ 15371 }; 15372 15373 static struct modldrv modldrv = { 15374 &mod_driverops, /* module type (this is a pseudo driver) */ 15375 "Dynamic Tracing", /* name of module */ 15376 &dtrace_ops, /* driver ops */ 15377 }; 15378 15379 static struct modlinkage modlinkage = { 15380 MODREV_1, 15381 (void *)&modldrv, 15382 NULL 15383 }; 15384 15385 int 15386 _init(void) 15387 { 15388 return (mod_install(&modlinkage)); 15389 } 15390 15391 int 15392 _info(struct modinfo *modinfop) 15393 { 15394 return (mod_info(&modlinkage, modinfop)); 15395 } 15396 15397 int 15398 _fini(void) 15399 { 15400 return (mod_remove(&modlinkage)); 15401 } 15402