xref: /titanic_44/usr/src/uts/common/dtrace/dtrace.c (revision 7c478bd95313f5f23a4c958a745db2134aa03244)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License, Version 1.0 only
6  * (the "License").  You may not use this file except in compliance
7  * with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or http://www.opensolaris.org/os/licensing.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 /*
23  * Copyright 2005 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 /*
30  * DTrace - Dynamic Tracing for Solaris
31  *
32  * This is the implementation of the Solaris Dynamic Tracing framework
33  * (DTrace).  The user-visible interface to DTrace is described at length in
34  * the "Solaris Dynamic Tracing Guide".  The interfaces between the libdtrace
35  * library, the in-kernel DTrace framework, and the DTrace providers are
36  * described in the block comments in the <sys/dtrace.h> header file.  The
37  * internal architecture of DTrace is described in the block comments in the
38  * <sys/dtrace_impl.h> header file.  The comments contained within the DTrace
39  * implementation very much assume mastery of all of these sources; if one has
40  * an unanswered question about the implementation, one should consult them
41  * first.
42  *
43  * The functions here are ordered roughly as follows:
44  *
45  *   - Probe context functions
46  *   - Probe hashing functions
47  *   - Non-probe context utility functions
48  *   - Matching functions
49  *   - Provider-to-Framework API functions
50  *   - Probe management functions
51  *   - DIF object functions
52  *   - Format functions
53  *   - Predicate functions
54  *   - ECB functions
55  *   - Buffer functions
56  *   - Enabling functions
57  *   - DOF functions
58  *   - Anonymous enabling functions
59  *   - Consumer state functions
60  *   - Helper functions
61  *   - Hook functions
62  *   - Driver cookbook functions
63  *
64  * Each group of functions begins with a block comment labelled the "DTrace
65  * [Group] Functions", allowing one to find each block by searching forward
66  * on capital-f functions.
67  */
68 #include <sys/errno.h>
69 #include <sys/stat.h>
70 #include <sys/modctl.h>
71 #include <sys/conf.h>
72 #include <sys/systm.h>
73 #include <sys/ddi.h>
74 #include <sys/sunddi.h>
75 #include <sys/cpuvar.h>
76 #include <sys/kmem.h>
77 #include <sys/strsubr.h>
78 #include <sys/sysmacros.h>
79 #include <sys/dtrace_impl.h>
80 #include <sys/atomic.h>
81 #include <sys/cmn_err.h>
82 #include <sys/mutex_impl.h>
83 #include <sys/rwlock_impl.h>
84 #include <sys/ctf_api.h>
85 #include <sys/panic.h>
86 #include <sys/priv_impl.h>
87 #include <sys/policy.h>
88 #include <sys/cred_impl.h>
89 #include <sys/procfs_isa.h>
90 #include <sys/taskq.h>
91 #include <sys/mkdev.h>
92 #include <sys/kdi.h>
93 #include <sys/zone.h>
94 
95 /*
96  * DTrace Tunable Variables
97  *
98  * The following variables may be tuned by adding a line to /etc/system that
99  * includes both the name of the DTrace module ("dtrace") and the name of the
100  * variable.  For example:
101  *
102  *   set dtrace:dtrace_destructive_disallow = 1
103  *
104  * In general, the only variables that one should be tuning this way are those
105  * that affect system-wide DTrace behavior, and for which the default behavior
106  * is undesirable.  Most of these variables are tunable on a per-consumer
107  * basis using DTrace options, and need not be tuned on a system-wide basis.
108  * When tuning these variables, avoid pathological values; while some attempt
109  * is made to verify the integrity of these variables, they are not considered
110  * part of the supported interface to DTrace, and they are therefore not
111  * checked comprehensively.  Further, these variables should not be tuned
112  * dynamically via "mdb -kw" or other means; they should only be tuned via
113  * /etc/system.
114  */
115 int		dtrace_destructive_disallow = 0;
116 dtrace_optval_t	dtrace_nonroot_maxsize = (16 * 1024 * 1024);
117 size_t		dtrace_difo_maxsize = (256 * 1024);
118 dtrace_optval_t	dtrace_dof_maxsize = (256 * 1024);
119 size_t		dtrace_global_maxsize = (16 * 1024);
120 size_t		dtrace_actions_max = (16 * 1024);
121 size_t		dtrace_retain_max = 1024;
122 dtrace_optval_t	dtrace_helper_actions_max = 32;
123 dtrace_optval_t	dtrace_helper_providers_max = 32;
124 dtrace_optval_t	dtrace_dstate_defsize = (1 * 1024 * 1024);
125 size_t		dtrace_strsize_default = 256;
126 dtrace_optval_t	dtrace_cleanrate_default = 9900990;		/* 101 hz */
127 dtrace_optval_t	dtrace_cleanrate_min = 200000;			/* 5000 hz */
128 dtrace_optval_t	dtrace_cleanrate_max = (uint64_t)60 * NANOSEC;	/* 1/minute */
129 dtrace_optval_t	dtrace_aggrate_default = NANOSEC;		/* 1 hz */
130 dtrace_optval_t	dtrace_statusrate_default = NANOSEC;		/* 1 hz */
131 dtrace_optval_t dtrace_statusrate_max = (hrtime_t)10 * NANOSEC;	 /* 6/minute */
132 dtrace_optval_t	dtrace_switchrate_default = NANOSEC;		/* 1 hz */
133 dtrace_optval_t	dtrace_nspec_default = 1;
134 dtrace_optval_t	dtrace_specsize_default = 32 * 1024;
135 dtrace_optval_t dtrace_stackframes_default = 20;
136 dtrace_optval_t dtrace_ustackframes_default = 20;
137 dtrace_optval_t dtrace_jstackframes_default = 50;
138 dtrace_optval_t dtrace_jstackstrsize_default = 512;
139 int		dtrace_msgdsize_max = 128;
140 hrtime_t	dtrace_chill_max = 500 * (NANOSEC / MILLISEC);	/* 500 ms */
141 hrtime_t	dtrace_chill_interval = NANOSEC;		/* 1000 ms */
142 int		dtrace_devdepth_max = 32;
143 int		dtrace_err_verbose;
144 hrtime_t	dtrace_deadman_interval = NANOSEC;
145 hrtime_t	dtrace_deadman_timeout = (hrtime_t)10 * NANOSEC;
146 hrtime_t	dtrace_deadman_user = (hrtime_t)30 * NANOSEC;
147 
148 /*
149  * DTrace External Variables
150  *
151  * As dtrace(7D) is a kernel module, any DTrace variables are obviously
152  * available to DTrace consumers via the backtick (`) syntax.  One of these,
153  * dtrace_zero, is made deliberately so:  it is provided as a source of
154  * well-known, zero-filled memory.  While this variable is not documented,
155  * it is used by some translators as an implementation detail.
156  */
157 const char	dtrace_zero[256] = { 0 };	/* zero-filled memory */
158 
159 /*
160  * DTrace Internal Variables
161  */
162 static dev_info_t	*dtrace_devi;		/* device info */
163 static vmem_t		*dtrace_arena;		/* probe ID arena */
164 static vmem_t		*dtrace_minor;		/* minor number arena */
165 static taskq_t		*dtrace_taskq;		/* task queue */
166 static dtrace_probe_t	**dtrace_probes;	/* array of all probes */
167 static int		dtrace_nprobes;		/* number of probes */
168 static dtrace_provider_t *dtrace_provider;	/* provider list */
169 static dtrace_meta_t	*dtrace_meta_pid;	/* user-land meta provider */
170 static int		dtrace_opens;		/* number of opens */
171 static void		*dtrace_softstate;	/* softstate pointer */
172 static dtrace_hash_t	*dtrace_bymod;		/* probes hashed by module */
173 static dtrace_hash_t	*dtrace_byfunc;		/* probes hashed by function */
174 static dtrace_hash_t	*dtrace_byname;		/* probes hashed by name */
175 static dtrace_toxrange_t *dtrace_toxrange;	/* toxic range array */
176 static int		dtrace_toxranges;	/* number of toxic ranges */
177 static int		dtrace_toxranges_max;	/* size of toxic range array */
178 static dtrace_anon_t	dtrace_anon;		/* anonymous enabling */
179 static kmem_cache_t	*dtrace_state_cache;	/* cache for dynamic state */
180 static uint64_t		dtrace_vtime_references; /* number of vtimestamp refs */
181 static kthread_t	*dtrace_panicked;	/* panicking thread */
182 static dtrace_ecb_t	*dtrace_ecb_create_cache; /* cached created ECB */
183 static int		dtrace_double_errors;	/* ERRORs inducing error */
184 static dtrace_genid_t	dtrace_probegen;	/* current probe generation */
185 static dtrace_helpers_t *dtrace_deferred_pid;	/* deferred helper list */
186 static dtrace_enabling_t *dtrace_retained;	/* list of retained enablings */
187 static dtrace_state_t	*dtrace_state;		/* temporary variable */
188 static int		dtrace_error;		/* temporary variable */
189 
190 /*
191  * DTrace Locking
192  * DTrace is protected by three (relatively coarse-grained) locks:
193  *
194  * (1) dtrace_lock is required to manipulate essentially any DTrace state,
195  *     including enabling state, probes, ECBs, consumer state, helper state,
196  *     etc.  Importantly, dtrace_lock is _not_ required when in probe context;
197  *     probe context is lock-free -- synchronization is handled via the
198  *     dtrace_sync() cross call mechanism.
199  *
200  * (2) dtrace_provider_lock is required when manipulating provider state, or
201  *     when provider state must be held constant.
202  *
203  * (3) dtrace_meta_lock is required when manipulating meta provider state, or
204  *     when meta provider state must be held constant.
205  *
206  * The lock ordering between these three locks is dtrace_meta_lock before
207  * dtrace_provider_lock before dtrace_lock.  (In particular, there are
208  * several places where dtrace_provider_lock is held by the framework as it
209  * calls into the providers -- which then call back into the framework,
210  * grabbing dtrace_lock.)
211  *
212  * There are two other locks in the mix:  mod_lock and cpu_lock.  cpu_lock
213  * continues its historical role as a coarse-grained lock; it is acquired
214  * before both dtrace_provider_lock and dtrace_lock.  mod_lock is slightly
215  * stranger:  it must be acquired _between_ dtrace_provider_lock and
216  * dtrace_lock.
217  */
218 static kmutex_t		dtrace_lock;		/* probe state lock */
219 static kmutex_t		dtrace_provider_lock;	/* provider state lock */
220 static kmutex_t		dtrace_meta_lock;	/* meta-provider state lock */
221 
222 /*
223  * DTrace Provider Variables
224  *
225  * These are the variables relating to DTrace as a provider (that is, the
226  * provider of the BEGIN, END, and ERROR probes).
227  */
228 static dtrace_pattr_t	dtrace_provider_attr = {
229 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
230 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
231 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
232 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
233 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
234 };
235 
236 static void
237 dtrace_nullop(void)
238 {}
239 
240 static dtrace_pops_t	dtrace_provider_ops = {
241 	(void (*)(void *, const dtrace_probedesc_t *))dtrace_nullop,
242 	(void (*)(void *, struct modctl *))dtrace_nullop,
243 	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
244 	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
245 	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
246 	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
247 	NULL,
248 	NULL,
249 	NULL,
250 	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop
251 };
252 
253 static dtrace_id_t	dtrace_probeid_begin;	/* special BEGIN probe */
254 static dtrace_id_t	dtrace_probeid_end;	/* special END probe */
255 dtrace_id_t		dtrace_probeid_error;	/* special ERROR probe */
256 
257 /*
258  * DTrace Helper Tracing Variables
259  */
260 uint32_t dtrace_helptrace_next = 0;
261 uint32_t dtrace_helptrace_nlocals;
262 char	*dtrace_helptrace_buffer;
263 int	dtrace_helptrace_bufsize = 512 * 1024;
264 
265 #ifdef DEBUG
266 int	dtrace_helptrace_enabled = 1;
267 #else
268 int	dtrace_helptrace_enabled = 0;
269 #endif
270 
271 /*
272  * DTrace Error Hashing
273  *
274  * On DEBUG kernels, DTrace will track the errors that has seen in a hash
275  * table.  This is very useful for checking coverage of tests that are
276  * expected to induce DIF or DOF processing errors, and may be useful for
277  * debugging problems in the DIF code generator or in DOF generation .  The
278  * error hash may be examined with the ::dtrace_errhash MDB dcmd.
279  */
280 #ifdef DEBUG
281 static dtrace_errhash_t	dtrace_errhash[DTRACE_ERRHASHSZ];
282 static const char *dtrace_errlast;
283 static kthread_t *dtrace_errthread;
284 static kmutex_t dtrace_errlock;
285 #endif
286 
287 /*
288  * DTrace Macros and Constants
289  *
290  * These are various macros that are useful in various spots in the
291  * implementation, along with a few random constants that have no meaning
292  * outside of the implementation.  There is no real structure to this cpp
293  * mishmash -- but is there ever?
294  */
295 #define	DTRACE_HASHSTR(hash, probe)	\
296 	dtrace_hash_str(*((char **)((uintptr_t)(probe) + (hash)->dth_stroffs)))
297 
298 #define	DTRACE_HASHNEXT(hash, probe)	\
299 	(dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_nextoffs)
300 
301 #define	DTRACE_HASHPREV(hash, probe)	\
302 	(dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_prevoffs)
303 
304 #define	DTRACE_HASHEQ(hash, lhs, rhs)	\
305 	(strcmp(*((char **)((uintptr_t)(lhs) + (hash)->dth_stroffs)), \
306 	    *((char **)((uintptr_t)(rhs) + (hash)->dth_stroffs))) == 0)
307 
308 #define	DTRACE_AGGHASHSIZE_SLEW		17
309 
310 /*
311  * The key for a thread-local variable consists of the lower 61 bits of the
312  * t_did, plus the 3 bits of the highest active interrupt above LOCK_LEVEL.
313  * We add DIF_VARIABLE_MAX to t_did to assure that the thread key is never
314  * equal to a variable identifier.  This is necessary (but not sufficient) to
315  * assure that global associative arrays never collide with thread-local
316  * variables.  To guarantee that they cannot collide, we must also define the
317  * order for keying dynamic variables.  That order is:
318  *
319  *   [ key0 ] ... [ keyn ] [ variable-key ] [ tls-key ]
320  *
321  * Because the variable-key and the tls-key are in orthogonal spaces, there is
322  * no way for a global variable key signature to match a thread-local key
323  * signature.
324  */
325 #define	DTRACE_TLS_THRKEY(where) { \
326 	uint_t intr = 0; \
327 	uint_t actv = CPU->cpu_intr_actv >> (LOCK_LEVEL + 1); \
328 	for (; actv; actv >>= 1) \
329 		intr++; \
330 	ASSERT(intr < (1 << 3)); \
331 	(where) = ((curthread->t_did + DIF_VARIABLE_MAX) & \
332 	    (((uint64_t)1 << 61) - 1)) | ((uint64_t)intr << 61); \
333 }
334 
335 #define	DTRACE_STORE(type, tomax, offset, what) \
336 	*((type *)((uintptr_t)(tomax) + (uintptr_t)offset)) = (type)(what);
337 
338 #ifndef __i386
339 #define	DTRACE_ALIGNCHECK(addr, size, flags)				\
340 	if (addr & (size - 1)) {					\
341 		*flags |= CPU_DTRACE_BADALIGN;				\
342 		cpu_core[CPU->cpu_id].cpuc_dtrace_illval = addr;	\
343 		return (0);						\
344 	}
345 #else
346 #define	DTRACE_ALIGNCHECK(addr, size, flags)
347 #endif
348 
349 #define	DTRACE_LOADFUNC(bits)						\
350 /*CSTYLED*/								\
351 uint##bits##_t								\
352 dtrace_load##bits(uintptr_t addr)					\
353 {									\
354 	size_t size = bits / NBBY;					\
355 	/*CSTYLED*/							\
356 	uint##bits##_t rval;						\
357 	int i;								\
358 	volatile uint16_t *flags = (volatile uint16_t *)		\
359 	    &cpu_core[CPU->cpu_id].cpuc_dtrace_flags;			\
360 									\
361 	DTRACE_ALIGNCHECK(addr, size, flags);				\
362 									\
363 	for (i = 0; i < dtrace_toxranges; i++) {			\
364 		if (addr >= dtrace_toxrange[i].dtt_limit)		\
365 			continue;					\
366 									\
367 		if (addr + size <= dtrace_toxrange[i].dtt_base)		\
368 			continue;					\
369 									\
370 		/*							\
371 		 * This address falls within a toxic region; return 0.	\
372 		 */							\
373 		*flags |= CPU_DTRACE_BADADDR;				\
374 		cpu_core[CPU->cpu_id].cpuc_dtrace_illval = addr;	\
375 		return (0);						\
376 	}								\
377 									\
378 	*flags |= CPU_DTRACE_NOFAULT;					\
379 	/*CSTYLED*/							\
380 	rval = *((volatile uint##bits##_t *)addr);			\
381 	*flags &= ~CPU_DTRACE_NOFAULT;					\
382 									\
383 	return (rval);							\
384 }
385 
386 #ifdef _LP64
387 #define	dtrace_loadptr	dtrace_load64
388 #else
389 #define	dtrace_loadptr	dtrace_load32
390 #endif
391 
392 #define	DTRACE_MATCH_NEXT	0
393 #define	DTRACE_MATCH_DONE	1
394 #define	DTRACE_ANCHORED(probe)	((probe)->dtpr_func[0] != '\0')
395 #define	DTRACE_STATE_ALIGN	64
396 
397 static dtrace_probe_t *dtrace_probe_lookup_id(dtrace_id_t id);
398 static void dtrace_enabling_provide(dtrace_provider_t *);
399 static int dtrace_enabling_match(dtrace_enabling_t *, int *);
400 static void dtrace_enabling_matchall(void);
401 static dtrace_state_t *dtrace_anon_grab(void);
402 static uint64_t dtrace_helper(int, dtrace_mstate_t *,
403     dtrace_state_t *, uint64_t, uint64_t);
404 static dtrace_helpers_t *dtrace_helpers_create(proc_t *);
405 static void dtrace_buffer_drop(dtrace_buffer_t *);
406 static intptr_t dtrace_buffer_reserve(dtrace_buffer_t *, size_t, size_t,
407     dtrace_state_t *, dtrace_mstate_t *);
408 static int dtrace_state_option(dtrace_state_t *, dtrace_optid_t,
409     dtrace_optval_t);
410 static int dtrace_ecb_create_enable(dtrace_probe_t *, void *);
411 
412 /*
413  * DTrace Probe Context Functions
414  *
415  * These functions are called from probe context.  Because probe context is
416  * any context in which C may be called, arbitrarily locks may be held,
417  * interrupts may be disabled, we may be in arbitrary dispatched state, etc.
418  * As a result, functions called from probe context may only call other DTrace
419  * support functions -- they may not interact at all with the system at large.
420  * (Note that the ASSERT macro is made probe-context safe by redefining it in
421  * terms of dtrace_assfail(), a probe-context safe function.) If arbitrary
422  * loads are to be performed from probe context, they _must_ be in terms of
423  * the safe dtrace_load*() variants.
424  *
425  * Some functions in this block are not actually called from probe context;
426  * for these functions, there will be a comment above the function reading
427  * "Note:  not called from probe context."
428  */
429 void
430 dtrace_panic(const char *format, ...)
431 {
432 	va_list alist;
433 
434 	va_start(alist, format);
435 	dtrace_vpanic(format, alist);
436 	va_end(alist);
437 }
438 
439 int
440 dtrace_assfail(const char *a, const char *f, int l)
441 {
442 	dtrace_panic("assertion failed: %s, file: %s, line: %d", a, f, l);
443 
444 	/*
445 	 * We just need something here that even the most clever compiler
446 	 * cannot optimize away.
447 	 */
448 	return (a[(uintptr_t)f]);
449 }
450 
451 /*
452  * Use the DTRACE_LOADFUNC macro to define functions for each of loading a
453  * uint8_t, a uint16_t, a uint32_t and a uint64_t.
454  */
455 DTRACE_LOADFUNC(8)
456 DTRACE_LOADFUNC(16)
457 DTRACE_LOADFUNC(32)
458 DTRACE_LOADFUNC(64)
459 
460 static int
461 dtrace_inscratch(uintptr_t dest, size_t size, dtrace_mstate_t *mstate)
462 {
463 	if (dest < mstate->dtms_scratch_base)
464 		return (0);
465 
466 	if (dest + size < dest)
467 		return (0);
468 
469 	if (dest + size > mstate->dtms_scratch_ptr)
470 		return (0);
471 
472 	return (1);
473 }
474 
475 static int
476 dtrace_canstore_statvar(uint64_t addr, size_t sz,
477     dtrace_statvar_t **svars, int nsvars)
478 {
479 	int i;
480 
481 	for (i = 0; i < nsvars; i++) {
482 		dtrace_statvar_t *svar = svars[i];
483 
484 		if (svar == NULL || svar->dtsv_size == 0)
485 			continue;
486 
487 		if (addr - svar->dtsv_data < svar->dtsv_size &&
488 		    addr + sz <= svar->dtsv_data + svar->dtsv_size)
489 			return (1);
490 	}
491 
492 	return (0);
493 }
494 
495 /*
496  * Check to see if the address is within a memory region to which a store may
497  * be issued.  This includes the DTrace scratch areas, and any DTrace variable
498  * region.  The caller of dtrace_canstore() is responsible for performing any
499  * alignment checks that are needed before stores are actually executed.
500  */
501 static int
502 dtrace_canstore(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
503     dtrace_vstate_t *vstate)
504 {
505 	uintptr_t a;
506 	size_t s;
507 
508 	/*
509 	 * First, check to see if the address is in scratch space...
510 	 */
511 	a = mstate->dtms_scratch_base;
512 	s = mstate->dtms_scratch_size;
513 
514 	if (addr - a < s && addr + sz <= a + s)
515 		return (1);
516 
517 	/*
518 	 * Now check to see if it's a dynamic variable.  This check will pick
519 	 * up both thread-local variables and any global dynamically-allocated
520 	 * variables.
521 	 */
522 	a = (uintptr_t)vstate->dtvs_dynvars.dtds_base;
523 	s = vstate->dtvs_dynvars.dtds_size;
524 	if (addr - a < s && addr + sz <= a + s)
525 		return (1);
526 
527 	/*
528 	 * Finally, check the static local and global variables.  These checks
529 	 * take the longest, so we perform them last.
530 	 */
531 	if (dtrace_canstore_statvar(addr, sz,
532 	    vstate->dtvs_locals, vstate->dtvs_nlocals))
533 		return (1);
534 
535 	if (dtrace_canstore_statvar(addr, sz,
536 	    vstate->dtvs_globals, vstate->dtvs_nglobals))
537 		return (1);
538 
539 	return (0);
540 }
541 
542 /*
543  * Compare two strings using safe loads.
544  */
545 static int
546 dtrace_strncmp(char *s1, char *s2, size_t limit)
547 {
548 	uint8_t c1, c2;
549 	volatile uint16_t *flags;
550 
551 	if (s1 == s2 || limit == 0)
552 		return (0);
553 
554 	flags = (volatile uint16_t *)&cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
555 
556 	do {
557 		if (s1 == NULL) {
558 			c1 = '\0';
559 		} else {
560 			c1 = dtrace_load8((uintptr_t)s1++);
561 		}
562 
563 		if (s2 == NULL) {
564 			c2 = '\0';
565 		} else {
566 			c2 = dtrace_load8((uintptr_t)s2++);
567 		}
568 
569 		if (c1 != c2)
570 			return (c1 - c2);
571 	} while (--limit && c1 != '\0' && !(*flags & CPU_DTRACE_FAULT));
572 
573 	return (0);
574 }
575 
576 /*
577  * Compute strlen(s) for a string using safe memory accesses.  The additional
578  * len parameter is used to specify a maximum length to ensure completion.
579  */
580 static size_t
581 dtrace_strlen(const char *s, size_t lim)
582 {
583 	uint_t len;
584 
585 	for (len = 0; len != lim; len++) {
586 		if (dtrace_load8((uintptr_t)s++) == '\0')
587 			break;
588 	}
589 
590 	return (len);
591 }
592 
593 /*
594  * Check if an address falls within a toxic region.
595  */
596 static int
597 dtrace_istoxic(uintptr_t kaddr, size_t size)
598 {
599 	uintptr_t taddr, tsize;
600 	int i;
601 
602 	for (i = 0; i < dtrace_toxranges; i++) {
603 		taddr = dtrace_toxrange[i].dtt_base;
604 		tsize = dtrace_toxrange[i].dtt_limit - taddr;
605 
606 		if (kaddr - taddr < tsize) {
607 			DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
608 			cpu_core[CPU->cpu_id].cpuc_dtrace_illval = kaddr;
609 			return (1);
610 		}
611 
612 		if (taddr - kaddr < size) {
613 			DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
614 			cpu_core[CPU->cpu_id].cpuc_dtrace_illval = taddr;
615 			return (1);
616 		}
617 	}
618 
619 	return (0);
620 }
621 
622 /*
623  * Copy src to dst using safe memory accesses.  The src is assumed to be unsafe
624  * memory specified by the DIF program.  The dst is assumed to be safe memory
625  * that we can store to directly because it is managed by DTrace.  As with
626  * standard bcopy, overlapping copies are handled properly.
627  */
628 static void
629 dtrace_bcopy(const void *src, void *dst, size_t len)
630 {
631 	if (len != 0) {
632 		uint8_t *s1 = dst;
633 		const uint8_t *s2 = src;
634 
635 		if (s1 <= s2) {
636 			do {
637 				*s1++ = dtrace_load8((uintptr_t)s2++);
638 			} while (--len != 0);
639 		} else {
640 			s2 += len;
641 			s1 += len;
642 
643 			do {
644 				*--s1 = dtrace_load8((uintptr_t)--s2);
645 			} while (--len != 0);
646 		}
647 	}
648 }
649 
650 /*
651  * Copy src to dst using safe memory accesses, up to either the specified
652  * length, or the point that a nul byte is encountered.  The src is assumed to
653  * be unsafe memory specified by the DIF program.  The dst is assumed to be
654  * safe memory that we can store to directly because it is managed by DTrace.
655  * Unlike dtrace_bcopy(), overlapping regions are not handled.
656  */
657 static void
658 dtrace_strcpy(const void *src, void *dst, size_t len)
659 {
660 	if (len != 0) {
661 		uint8_t *s1 = dst, c;
662 		const uint8_t *s2 = src;
663 
664 		do {
665 			*s1++ = c = dtrace_load8((uintptr_t)s2++);
666 		} while (--len != 0 && c != '\0');
667 	}
668 }
669 
670 /*
671  * Copy src to dst, deriving the size and type from the specified (BYREF)
672  * variable type.  The src is assumed to be unsafe memory specified by the DIF
673  * program.  The dst is assumed to be DTrace variable memory that is of the
674  * specified type; we assume that we can store to directly.
675  */
676 static void
677 dtrace_vcopy(void *src, void *dst, dtrace_diftype_t *type)
678 {
679 	ASSERT(type->dtdt_flags & DIF_TF_BYREF);
680 
681 	if (type->dtdt_kind == DIF_TYPE_STRING) {
682 		dtrace_strcpy(src, dst, type->dtdt_size);
683 	} else {
684 		dtrace_bcopy(src, dst, type->dtdt_size);
685 	}
686 }
687 
688 /*
689  * Compare s1 to s2 using safe memory accesses.  The s1 data is assumed to be
690  * unsafe memory specified by the DIF program.  The s2 data is assumed to be
691  * safe memory that we can access directly because it is managed by DTrace.
692  */
693 static int
694 dtrace_bcmp(const void *s1, const void *s2, size_t len)
695 {
696 	volatile uint16_t *flags;
697 
698 	flags = (volatile uint16_t *)&cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
699 
700 	if (s1 == s2)
701 		return (0);
702 
703 	if (s1 == NULL || s2 == NULL)
704 		return (1);
705 
706 	if (s1 != s2 && len != 0) {
707 		const uint8_t *ps1 = s1;
708 		const uint8_t *ps2 = s2;
709 
710 		do {
711 			if (dtrace_load8((uintptr_t)ps1++) != *ps2++)
712 				return (1);
713 		} while (--len != 0 && !(*flags & CPU_DTRACE_FAULT));
714 	}
715 	return (0);
716 }
717 
718 /*
719  * Zero the specified region using a simple byte-by-byte loop.  Note that this
720  * is for safe DTrace-managed memory only.
721  */
722 static void
723 dtrace_bzero(void *dst, size_t len)
724 {
725 	uchar_t *cp;
726 
727 	for (cp = dst; len != 0; len--)
728 		*cp++ = 0;
729 }
730 
731 /*
732  * This privilege checks should be used by actions and subroutines to
733  * verify the credentials of the process that enabled the invoking ECB.
734  */
735 static int
736 dtrace_priv_proc_common(dtrace_state_t *state)
737 {
738 	uid_t uid = state->dts_cred.dcr_uid;
739 	gid_t gid = state->dts_cred.dcr_gid;
740 	cred_t *cr;
741 	proc_t *proc;
742 
743 	if ((cr = CRED()) != NULL &&
744 	    uid == cr->cr_uid &&
745 	    uid == cr->cr_ruid &&
746 	    uid == cr->cr_suid &&
747 	    gid == cr->cr_gid &&
748 	    gid == cr->cr_rgid &&
749 	    gid == cr->cr_sgid &&
750 	    (proc = ttoproc(curthread)) != NULL &&
751 	    !(proc->p_flag & SNOCD))
752 		return (1);
753 
754 	cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
755 
756 	return (0);
757 }
758 
759 static int
760 dtrace_priv_proc_destructive(dtrace_state_t *state)
761 {
762 	if (state->dts_cred.dcr_action & DTRACE_CRA_PROC_DESTRUCTIVE)
763 		return (1);
764 
765 	return (dtrace_priv_proc_common(state));
766 }
767 
768 static int
769 dtrace_priv_proc_control(dtrace_state_t *state)
770 {
771 	if (state->dts_cred.dcr_action & DTRACE_CRA_PROC_CONTROL)
772 		return (1);
773 
774 	return (dtrace_priv_proc_common(state));
775 }
776 
777 static int
778 dtrace_priv_proc(dtrace_state_t *state)
779 {
780 	if (state->dts_cred.dcr_action & DTRACE_CRA_PROC)
781 		return (1);
782 
783 	cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
784 
785 	return (0);
786 }
787 
788 static int
789 dtrace_priv_kernel(dtrace_state_t *state)
790 {
791 	if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL)
792 		return (1);
793 
794 	cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV;
795 
796 	return (0);
797 }
798 
799 static int
800 dtrace_priv_kernel_destructive(dtrace_state_t *state)
801 {
802 	if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL_DESTRUCTIVE)
803 		return (1);
804 
805 	cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV;
806 
807 	return (0);
808 }
809 
810 /*
811  * Note:  not called from probe context.  This function is called
812  * asynchronously (and at a regular interval) from outside of probe context to
813  * clean the dirty dynamic variable lists on all CPUs.  Dynamic variable
814  * cleaning is explained in detail in <sys/dtrace_impl.h>.
815  */
816 void
817 dtrace_dynvar_clean(dtrace_dstate_t *dstate)
818 {
819 	dtrace_dynvar_t *dirty;
820 	dtrace_dstate_percpu_t *dcpu;
821 	int i, work = 0;
822 
823 	for (i = 0; i < NCPU; i++) {
824 		dcpu = &dstate->dtds_percpu[i];
825 
826 		ASSERT(dcpu->dtdsc_rinsing == NULL);
827 
828 		/*
829 		 * If the dirty list is NULL, there is no dirty work to do.
830 		 */
831 		if (dcpu->dtdsc_dirty == NULL)
832 			continue;
833 
834 		/*
835 		 * If the clean list is non-NULL, then we're not going to do
836 		 * any work for this CPU -- it means that there has not been
837 		 * a dtrace_dynvar() allocation on this CPU (or from this CPU)
838 		 * since the last time we cleaned house.
839 		 */
840 		if (dcpu->dtdsc_clean != NULL)
841 			continue;
842 
843 		work = 1;
844 
845 		/*
846 		 * Atomically move the dirty list aside.
847 		 */
848 		do {
849 			dirty = dcpu->dtdsc_dirty;
850 
851 			/*
852 			 * Before we zap the dirty list, set the rinsing list.
853 			 * (This allows for a potential assertion in
854 			 * dtrace_dynvar():  if a free dynamic variable appears
855 			 * on a hash chain, either the dirty list or the
856 			 * rinsing list for some CPU must be non-NULL.)
857 			 */
858 			dcpu->dtdsc_rinsing = dirty;
859 			dtrace_membar_producer();
860 		} while (dtrace_casptr(&dcpu->dtdsc_dirty,
861 		    dirty, NULL) != dirty);
862 	}
863 
864 	if (!work) {
865 		/*
866 		 * We have no work to do; we can simply return.
867 		 */
868 		return;
869 	}
870 
871 	dtrace_sync();
872 
873 	for (i = 0; i < NCPU; i++) {
874 		dcpu = &dstate->dtds_percpu[i];
875 
876 		if (dcpu->dtdsc_rinsing == NULL)
877 			continue;
878 
879 		/*
880 		 * We are now guaranteed that no hash chain contains a pointer
881 		 * into this dirty list; we can make it clean.
882 		 */
883 		ASSERT(dcpu->dtdsc_clean == NULL);
884 		dcpu->dtdsc_clean = dcpu->dtdsc_rinsing;
885 		dcpu->dtdsc_rinsing = NULL;
886 	}
887 
888 	/*
889 	 * Before we actually set the state to be DTRACE_DSTATE_CLEAN, make
890 	 * sure that all CPUs have seen all of the dtdsc_clean pointers.
891 	 * This prevents a race whereby a CPU incorrectly decides that
892 	 * the state should be something other than DTRACE_DSTATE_CLEAN
893 	 * after dtrace_dynvar_clean() has completed.
894 	 */
895 	dtrace_sync();
896 
897 	dstate->dtds_state = DTRACE_DSTATE_CLEAN;
898 }
899 
900 /*
901  * Depending on the value of the op parameter, this function looks-up,
902  * allocates or deallocates an arbitrarily-keyed dynamic variable.  If an
903  * allocation is requested, this function will return a pointer to a
904  * dtrace_dynvar_t corresponding to the allocated variable -- or NULL if no
905  * variable can be allocated.  If NULL is returned, the appropriate counter
906  * will be incremented.
907  */
908 dtrace_dynvar_t *
909 dtrace_dynvar(dtrace_dstate_t *dstate, uint_t nkeys,
910     dtrace_key_t *key, size_t dsize, dtrace_dynvar_op_t op)
911 {
912 	uint64_t hashval = 1;
913 	dtrace_dynhash_t *hash = dstate->dtds_hash;
914 	dtrace_dynvar_t *free, *new_free, *next, *dvar, *start, *prev = NULL;
915 	processorid_t me = CPU->cpu_id, cpu = me;
916 	dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[me];
917 	size_t bucket, ksize;
918 	size_t chunksize = dstate->dtds_chunksize;
919 	uintptr_t kdata, lock, nstate;
920 	uint_t i;
921 
922 	ASSERT(nkeys != 0);
923 
924 	/*
925 	 * Hash the key.  As with aggregations, we use Jenkins' "One-at-a-time"
926 	 * algorithm.  For the by-value portions, we perform the algorithm in
927 	 * 16-bit chunks (as opposed to 8-bit chunks).  This speeds things up a
928 	 * bit, and seems to have only a minute effect on distribution.  For
929 	 * the by-reference data, we perform "One-at-a-time" iterating (safely)
930 	 * over each referenced byte.  It's painful to do this, but it's much
931 	 * better than pathological hash distribution.  The efficacy of the
932 	 * hashing algorithm (and a comparison with other algorithms) may be
933 	 * found by running the ::dtrace_dynstat MDB dcmd.
934 	 */
935 	for (i = 0; i < nkeys; i++) {
936 		if (key[i].dttk_size == 0) {
937 			uint64_t val = key[i].dttk_value;
938 
939 			hashval += (val >> 48) & 0xffff;
940 			hashval += (hashval << 10);
941 			hashval ^= (hashval >> 6);
942 
943 			hashval += (val >> 32) & 0xffff;
944 			hashval += (hashval << 10);
945 			hashval ^= (hashval >> 6);
946 
947 			hashval += (val >> 16) & 0xffff;
948 			hashval += (hashval << 10);
949 			hashval ^= (hashval >> 6);
950 
951 			hashval += val & 0xffff;
952 			hashval += (hashval << 10);
953 			hashval ^= (hashval >> 6);
954 		} else {
955 			/*
956 			 * This is incredibly painful, but it beats the hell
957 			 * out of the alternative.
958 			 */
959 			uint64_t j, size = key[i].dttk_size;
960 			uintptr_t base = (uintptr_t)key[i].dttk_value;
961 
962 			for (j = 0; j < size; j++) {
963 				hashval += dtrace_load8(base + j);
964 				hashval += (hashval << 10);
965 				hashval ^= (hashval >> 6);
966 			}
967 		}
968 	}
969 
970 	hashval += (hashval << 3);
971 	hashval ^= (hashval >> 11);
972 	hashval += (hashval << 15);
973 
974 	/*
975 	 * There is a remote chance (ideally, 1 in 2^32) that our hashval
976 	 * comes out to be 0.  We rely on a zero hashval denoting a free
977 	 * element; if this actually happens, we set the hashval to 1.
978 	 */
979 	if (hashval == 0)
980 		hashval = 1;
981 
982 	/*
983 	 * Yes, it's painful to do a divide here.  If the cycle count becomes
984 	 * important here, tricks can be pulled to reduce it.  (However, it's
985 	 * critical that hash collisions be kept to an absolute minimum;
986 	 * they're much more painful than a divide.)  It's better to have a
987 	 * solution that generates few collisions and still keeps things
988 	 * relatively simple.
989 	 */
990 	bucket = hashval % dstate->dtds_hashsize;
991 
992 	if (op == DTRACE_DYNVAR_DEALLOC) {
993 		volatile uintptr_t *lockp = &hash[bucket].dtdh_lock;
994 
995 		for (;;) {
996 			while ((lock = *lockp) & 1)
997 				continue;
998 
999 			if (dtrace_casptr((void *)lockp,
1000 			    (void *)lock, (void *)(lock + 1)) == (void *)lock)
1001 				break;
1002 		}
1003 
1004 		dtrace_membar_producer();
1005 	}
1006 
1007 top:
1008 	prev = NULL;
1009 	lock = hash[bucket].dtdh_lock;
1010 
1011 	dtrace_membar_consumer();
1012 
1013 	start = hash[bucket].dtdh_chain;
1014 	ASSERT(start == NULL || start->dtdv_hashval != 0 ||
1015 	    op != DTRACE_DYNVAR_DEALLOC);
1016 
1017 	for (dvar = start; dvar != NULL; dvar = dvar->dtdv_next) {
1018 		dtrace_tuple_t *dtuple = &dvar->dtdv_tuple;
1019 		dtrace_key_t *dkey = &dtuple->dtt_key[0];
1020 
1021 		if (dvar->dtdv_hashval != hashval) {
1022 			if (dvar->dtdv_hashval == 0) {
1023 				/*
1024 				 * We've gone off the rails.  Somewhere
1025 				 * along the line, one of the members of this
1026 				 * hash chain was deleted.  We could assert
1027 				 * that either the dirty list or the rinsing
1028 				 * list is non-NULL.  (The dtrace_sync() in
1029 				 * dtrace_dynvar_clean() would validate this
1030 				 * assertion.)
1031 				 */
1032 				ASSERT(op != DTRACE_DYNVAR_DEALLOC);
1033 				goto top;
1034 			}
1035 
1036 			goto next;
1037 		}
1038 
1039 		if (dtuple->dtt_nkeys != nkeys)
1040 			goto next;
1041 
1042 		for (i = 0; i < nkeys; i++, dkey++) {
1043 			if (dkey->dttk_size != key[i].dttk_size)
1044 				goto next; /* size or type mismatch */
1045 
1046 			if (dkey->dttk_size != 0) {
1047 				if (dtrace_bcmp(
1048 				    (void *)(uintptr_t)key[i].dttk_value,
1049 				    (void *)(uintptr_t)dkey->dttk_value,
1050 				    dkey->dttk_size))
1051 					goto next;
1052 			} else {
1053 				if (dkey->dttk_value != key[i].dttk_value)
1054 					goto next;
1055 			}
1056 		}
1057 
1058 		if (op != DTRACE_DYNVAR_DEALLOC)
1059 			return (dvar);
1060 
1061 		ASSERT(dvar->dtdv_next == NULL ||
1062 		    dvar->dtdv_next->dtdv_hashval != 0);
1063 
1064 		if (prev != NULL) {
1065 			ASSERT(hash[bucket].dtdh_chain != dvar);
1066 			ASSERT(start != dvar);
1067 			ASSERT(prev->dtdv_next == dvar);
1068 			prev->dtdv_next = dvar->dtdv_next;
1069 		} else {
1070 			if (dtrace_casptr(&hash[bucket].dtdh_chain,
1071 			    start, dvar->dtdv_next) != start) {
1072 				/*
1073 				 * We have failed to atomically swing the
1074 				 * hash table head pointer, presumably because
1075 				 * of a conflicting allocation on another CPU.
1076 				 * We need to reread the hash chain and try
1077 				 * again.
1078 				 */
1079 				goto top;
1080 			}
1081 		}
1082 
1083 		dtrace_membar_producer();
1084 
1085 		/*
1086 		 * Now clear the hash value to indicate that it's free.
1087 		 */
1088 		ASSERT(hash[bucket].dtdh_chain != dvar);
1089 		dvar->dtdv_hashval = 0;
1090 
1091 		dtrace_membar_producer();
1092 
1093 		/*
1094 		 * Set the next pointer to point at the dirty list, and
1095 		 * atomically swing the dirty pointer to the newly freed dvar.
1096 		 */
1097 		do {
1098 			next = dcpu->dtdsc_dirty;
1099 			dvar->dtdv_next = next;
1100 		} while (dtrace_casptr(&dcpu->dtdsc_dirty, next, dvar) != next);
1101 
1102 		/*
1103 		 * Finally, unlock this hash bucket.
1104 		 */
1105 		ASSERT(hash[bucket].dtdh_lock == lock);
1106 		ASSERT(lock & 1);
1107 		hash[bucket].dtdh_lock++;
1108 
1109 		return (NULL);
1110 next:
1111 		prev = dvar;
1112 		continue;
1113 	}
1114 
1115 	if (op != DTRACE_DYNVAR_ALLOC) {
1116 		/*
1117 		 * If we are not to allocate a new variable, we want to
1118 		 * return NULL now.  Before we return, check that the value
1119 		 * of the lock word hasn't changed.  If it has, we may have
1120 		 * seen an inconsistent snapshot.
1121 		 */
1122 		if (op == DTRACE_DYNVAR_NOALLOC) {
1123 			if (hash[bucket].dtdh_lock != lock)
1124 				goto top;
1125 		} else {
1126 			ASSERT(op == DTRACE_DYNVAR_DEALLOC);
1127 			ASSERT(hash[bucket].dtdh_lock == lock);
1128 			ASSERT(lock & 1);
1129 			hash[bucket].dtdh_lock++;
1130 		}
1131 
1132 		return (NULL);
1133 	}
1134 
1135 	/*
1136 	 * We need to allocate a new dynamic variable.  The size we need is the
1137 	 * size of dtrace_dynvar plus the size of nkeys dtrace_key_t's plus the
1138 	 * size of any auxiliary key data (rounded up to 8-byte alignment) plus
1139 	 * the size of any referred-to data (dsize).  We then round the final
1140 	 * size up to the chunksize for allocation.
1141 	 */
1142 	for (ksize = 0, i = 0; i < nkeys; i++)
1143 		ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t));
1144 
1145 	/*
1146 	 * This should be pretty much impossible, but could happen if, say,
1147 	 * strange DIF specified the tuple.  Ideally, this should be an
1148 	 * assertion and not an error condition -- but that requires that the
1149 	 * chunksize calculation in dtrace_difo_chunksize() be absolutely
1150 	 * bullet-proof.  (That is, it must not be able to be fooled by
1151 	 * malicious DIF.)  Given the lack of backwards branches in DIF,
1152 	 * solving this would presumably not amount to solving the Halting
1153 	 * Problem -- but it still seems awfully hard.
1154 	 */
1155 	if (sizeof (dtrace_dynvar_t) + sizeof (dtrace_key_t) * (nkeys - 1) +
1156 	    ksize + dsize > chunksize) {
1157 		dcpu->dtdsc_drops++;
1158 		return (NULL);
1159 	}
1160 
1161 	nstate = DTRACE_DSTATE_EMPTY;
1162 
1163 	do {
1164 retry:
1165 		free = dcpu->dtdsc_free;
1166 
1167 		if (free == NULL) {
1168 			dtrace_dynvar_t *clean = dcpu->dtdsc_clean;
1169 			void *rval;
1170 
1171 			if (clean == NULL) {
1172 				/*
1173 				 * We're out of dynamic variable space on
1174 				 * this CPU.  Unless we have tried all CPUs,
1175 				 * we'll try to allocate from a different
1176 				 * CPU.
1177 				 */
1178 				switch (dstate->dtds_state) {
1179 				case DTRACE_DSTATE_CLEAN: {
1180 					void *sp = &dstate->dtds_state;
1181 
1182 					if (++cpu >= NCPU)
1183 						cpu = 0;
1184 
1185 					if (dcpu->dtdsc_dirty != NULL &&
1186 					    nstate == DTRACE_DSTATE_EMPTY)
1187 						nstate = DTRACE_DSTATE_DIRTY;
1188 
1189 					if (dcpu->dtdsc_rinsing != NULL)
1190 						nstate = DTRACE_DSTATE_RINSING;
1191 
1192 					dcpu = &dstate->dtds_percpu[cpu];
1193 
1194 					if (cpu != me)
1195 						goto retry;
1196 
1197 					(void) dtrace_cas32(sp,
1198 					    DTRACE_DSTATE_CLEAN, nstate);
1199 
1200 					/*
1201 					 * To increment the correct bean
1202 					 * counter, take another lap.
1203 					 */
1204 					goto retry;
1205 				}
1206 
1207 				case DTRACE_DSTATE_DIRTY:
1208 					dcpu->dtdsc_dirty_drops++;
1209 					break;
1210 
1211 				case DTRACE_DSTATE_RINSING:
1212 					dcpu->dtdsc_rinsing_drops++;
1213 					break;
1214 
1215 				case DTRACE_DSTATE_EMPTY:
1216 					dcpu->dtdsc_drops++;
1217 					break;
1218 				}
1219 
1220 				DTRACE_CPUFLAG_SET(CPU_DTRACE_DROP);
1221 				return (NULL);
1222 			}
1223 
1224 			/*
1225 			 * The clean list appears to be non-empty.  We want to
1226 			 * move the clean list to the free list; we start by
1227 			 * moving the clean pointer aside.
1228 			 */
1229 			if (dtrace_casptr(&dcpu->dtdsc_clean,
1230 			    clean, NULL) != clean) {
1231 				/*
1232 				 * We are in one of two situations:
1233 				 *
1234 				 *  (a)	The clean list was switched to the
1235 				 *	free list by another CPU.
1236 				 *
1237 				 *  (b)	The clean list was added to by the
1238 				 *	cleansing cyclic.
1239 				 *
1240 				 * In either of these situations, we can
1241 				 * just reattempt the free list allocation.
1242 				 */
1243 				goto retry;
1244 			}
1245 
1246 			ASSERT(clean->dtdv_hashval == 0);
1247 
1248 			/*
1249 			 * Now we'll move the clean list to the free list.
1250 			 * It's impossible for this to fail:  the only way
1251 			 * the free list can be updated is through this
1252 			 * code path, and only one CPU can own the clean list.
1253 			 * Thus, it would only be possible for this to fail if
1254 			 * this code were racing with dtrace_dynvar_clean().
1255 			 * (That is, if dtrace_dynvar_clean() updated the clean
1256 			 * list, and we ended up racing to update the free
1257 			 * list.)  This race is prevented by the dtrace_sync()
1258 			 * in dtrace_dynvar_clean() -- which flushes the
1259 			 * owners of the clean lists out before resetting
1260 			 * the clean lists.
1261 			 */
1262 			rval = dtrace_casptr(&dcpu->dtdsc_free, NULL, clean);
1263 			ASSERT(rval == NULL);
1264 			goto retry;
1265 		}
1266 
1267 		dvar = free;
1268 		new_free = dvar->dtdv_next;
1269 	} while (dtrace_casptr(&dcpu->dtdsc_free, free, new_free) != free);
1270 
1271 	/*
1272 	 * We have now allocated a new chunk.  We copy the tuple keys into the
1273 	 * tuple array and copy any referenced key data into the data space
1274 	 * following the tuple array.  As we do this, we relocate dttk_value
1275 	 * in the final tuple to point to the key data address in the chunk.
1276 	 */
1277 	kdata = (uintptr_t)&dvar->dtdv_tuple.dtt_key[nkeys];
1278 	dvar->dtdv_data = (void *)(kdata + ksize);
1279 	dvar->dtdv_tuple.dtt_nkeys = nkeys;
1280 
1281 	for (i = 0; i < nkeys; i++) {
1282 		dtrace_key_t *dkey = &dvar->dtdv_tuple.dtt_key[i];
1283 		size_t kesize = key[i].dttk_size;
1284 
1285 		if (kesize != 0) {
1286 			dtrace_bcopy(
1287 			    (const void *)(uintptr_t)key[i].dttk_value,
1288 			    (void *)kdata, kesize);
1289 			dkey->dttk_value = kdata;
1290 			kdata += P2ROUNDUP(kesize, sizeof (uint64_t));
1291 		} else {
1292 			dkey->dttk_value = key[i].dttk_value;
1293 		}
1294 
1295 		dkey->dttk_size = kesize;
1296 	}
1297 
1298 	ASSERT(dvar->dtdv_hashval == 0);
1299 	dvar->dtdv_hashval = hashval;
1300 	dvar->dtdv_next = start;
1301 
1302 	if (dtrace_casptr(&hash[bucket].dtdh_chain, start, dvar) == start)
1303 		return (dvar);
1304 
1305 	/*
1306 	 * The cas has failed.  Either another CPU is adding an element to
1307 	 * this hash chain, or another CPU is deleting an element from this
1308 	 * hash chain.  The simplest way to deal with both of these cases
1309 	 * (though not necessarily the most efficient) is to free our
1310 	 * allocated block and tail-call ourselves.  Note that the free is
1311 	 * to the dirty list and _not_ to the free list.  This is to prevent
1312 	 * races with allocators, above.
1313 	 */
1314 	dvar->dtdv_hashval = 0;
1315 
1316 	dtrace_membar_producer();
1317 
1318 	do {
1319 		free = dcpu->dtdsc_dirty;
1320 		dvar->dtdv_next = free;
1321 	} while (dtrace_casptr(&dcpu->dtdsc_dirty, free, dvar) != free);
1322 
1323 	return (dtrace_dynvar(dstate, nkeys, key, dsize, op));
1324 }
1325 
1326 static void
1327 dtrace_aggregate_min(uint64_t *oval, uint64_t nval)
1328 {
1329 	if (nval < *oval)
1330 		*oval = nval;
1331 }
1332 
1333 static void
1334 dtrace_aggregate_max(uint64_t *oval, uint64_t nval)
1335 {
1336 	if (nval > *oval)
1337 		*oval = nval;
1338 }
1339 
1340 static void
1341 dtrace_aggregate_quantize(uint64_t *quanta, uint64_t nval)
1342 {
1343 	int i, zero = DTRACE_QUANTIZE_ZEROBUCKET;
1344 	int64_t val = (int64_t)nval;
1345 
1346 	if (val < 0) {
1347 		for (i = 0; i < zero; i++) {
1348 			if (val <= DTRACE_QUANTIZE_BUCKETVAL(i)) {
1349 				quanta[i]++;
1350 				return;
1351 			}
1352 		}
1353 	} else {
1354 		for (i = zero + 1; i < DTRACE_QUANTIZE_NBUCKETS; i++) {
1355 			if (val < DTRACE_QUANTIZE_BUCKETVAL(i)) {
1356 				quanta[i - 1]++;
1357 				return;
1358 			}
1359 		}
1360 
1361 		quanta[DTRACE_QUANTIZE_NBUCKETS - 1]++;
1362 		return;
1363 	}
1364 
1365 	ASSERT(0);
1366 }
1367 
1368 static void
1369 dtrace_aggregate_lquantize(uint64_t *lquanta, uint64_t nval)
1370 {
1371 	uint64_t arg = *lquanta++;
1372 	int32_t base = DTRACE_LQUANTIZE_BASE(arg);
1373 	uint16_t step = DTRACE_LQUANTIZE_STEP(arg);
1374 	uint16_t levels = DTRACE_LQUANTIZE_LEVELS(arg);
1375 	int32_t val = (int32_t)nval, level;
1376 
1377 	ASSERT(step != 0);
1378 	ASSERT(levels != 0);
1379 
1380 	if (val < base) {
1381 		/*
1382 		 * This is an underflow.
1383 		 */
1384 		lquanta[0]++;
1385 		return;
1386 	}
1387 
1388 	level = (val - base) / step;
1389 
1390 	if (level < levels) {
1391 		lquanta[level + 1]++;
1392 		return;
1393 	}
1394 
1395 	/*
1396 	 * This is an overflow.
1397 	 */
1398 	lquanta[levels + 1]++;
1399 }
1400 
1401 static void
1402 dtrace_aggregate_avg(uint64_t *data, uint64_t nval)
1403 {
1404 	data[0]++;
1405 	data[1] += nval;
1406 }
1407 
1408 /*ARGSUSED*/
1409 static void
1410 dtrace_aggregate_count(uint64_t *oval, uint64_t nval)
1411 {
1412 	*oval = *oval + 1;
1413 }
1414 
1415 /*ARGSUSED*/
1416 static void
1417 dtrace_aggregate_sum(uint64_t *oval, uint64_t nval)
1418 {
1419 	*oval += nval;
1420 }
1421 
1422 /*
1423  * Aggregate given the tuple in the principal data buffer, and the aggregating
1424  * action denoted by the specified dtrace_aggregation_t.  The aggregation
1425  * buffer is specified as the buf parameter.  This routine does not return
1426  * failure; if there is no space in the aggregation buffer, the data will be
1427  * dropped, and a corresponding counter incremented.
1428  */
1429 static void
1430 dtrace_aggregate(dtrace_aggregation_t *agg, dtrace_buffer_t *dbuf,
1431     intptr_t offset, dtrace_buffer_t *buf, uint64_t arg)
1432 {
1433 	dtrace_recdesc_t *rec = &agg->dtag_action.dta_rec;
1434 	uint32_t i, ndx, size, fsize;
1435 	uint32_t align = sizeof (uint64_t) - 1;
1436 	dtrace_aggbuffer_t *agb;
1437 	dtrace_aggkey_t *key;
1438 	uint32_t hashval = 0;
1439 	caddr_t tomax, data, kdata;
1440 	dtrace_actkind_t action;
1441 	uintptr_t offs;
1442 
1443 	if (buf == NULL)
1444 		return;
1445 
1446 	action = agg->dtag_action.dta_kind - DTRACEACT_AGGREGATION;
1447 	size = rec->dtrd_offset - agg->dtag_base;
1448 	fsize = size + rec->dtrd_size;
1449 
1450 	ASSERT(dbuf->dtb_tomax != NULL);
1451 	data = dbuf->dtb_tomax + offset + agg->dtag_base;
1452 
1453 	if ((tomax = buf->dtb_tomax) == NULL) {
1454 		dtrace_buffer_drop(buf);
1455 		return;
1456 	}
1457 
1458 	/*
1459 	 * The metastructure is always at the bottom of the buffer.
1460 	 */
1461 	agb = (dtrace_aggbuffer_t *)(tomax + buf->dtb_size -
1462 	    sizeof (dtrace_aggbuffer_t));
1463 
1464 	if (buf->dtb_offset == 0) {
1465 		/*
1466 		 * We just kludge up approximately 1/8th of the size to be
1467 		 * buckets.  If this guess ends up being routinely
1468 		 * off-the-mark, we may need to dynamically readjust this
1469 		 * based on past performance.
1470 		 */
1471 		uintptr_t hashsize = (buf->dtb_size >> 3) / sizeof (uintptr_t);
1472 
1473 		if ((uintptr_t)agb - hashsize * sizeof (dtrace_aggkey_t *) <
1474 		    (uintptr_t)tomax || hashsize == 0) {
1475 			/*
1476 			 * We've been given a ludicrously small buffer;
1477 			 * increment our drop count and leave.
1478 			 */
1479 			dtrace_buffer_drop(buf);
1480 			return;
1481 		}
1482 
1483 		/*
1484 		 * And now, a pathetic attempt to try to get a an odd (or
1485 		 * perchance, a prime) hash size for better hash distribution.
1486 		 */
1487 		if (hashsize > (DTRACE_AGGHASHSIZE_SLEW << 3))
1488 			hashsize -= DTRACE_AGGHASHSIZE_SLEW;
1489 
1490 		agb->dtagb_hashsize = hashsize;
1491 		agb->dtagb_hash = (dtrace_aggkey_t **)((uintptr_t)agb -
1492 		    agb->dtagb_hashsize * sizeof (dtrace_aggkey_t *));
1493 		agb->dtagb_free = (uintptr_t)agb->dtagb_hash;
1494 
1495 		for (i = 0; i < agb->dtagb_hashsize; i++)
1496 			agb->dtagb_hash[i] = NULL;
1497 	}
1498 
1499 	/*
1500 	 * Calculate the hash value based on the key.  Note that we _don't_
1501 	 * include the aggid in the hashing (but we will store it as part of
1502 	 * the key).  The hashing algorithm is Bob Jenkins' "One-at-a-time"
1503 	 * algorithm: a simple, quick algorithm that has no known funnels, and
1504 	 * gets good distribution in practice.  The efficacy of the hashing
1505 	 * algorithm (and a comparison with other algorithms) may be found by
1506 	 * running the ::dtrace_aggstat MDB dcmd.
1507 	 */
1508 	for (i = sizeof (dtrace_aggid_t); i < size; i++) {
1509 		hashval += data[i];
1510 		hashval += (hashval << 10);
1511 		hashval ^= (hashval >> 6);
1512 	}
1513 
1514 	hashval += (hashval << 3);
1515 	hashval ^= (hashval >> 11);
1516 	hashval += (hashval << 15);
1517 
1518 	/*
1519 	 * Yes, the divide here is expensive.  If the cycle count here becomes
1520 	 * prohibitive, we can do tricks to eliminate it.
1521 	 */
1522 	ndx = hashval % agb->dtagb_hashsize;
1523 
1524 	for (key = agb->dtagb_hash[ndx]; key != NULL; key = key->dtak_next) {
1525 		ASSERT((caddr_t)key >= tomax);
1526 		ASSERT((caddr_t)key < tomax + buf->dtb_size);
1527 
1528 		if (hashval != key->dtak_hashval || key->dtak_size != size)
1529 			continue;
1530 
1531 		kdata = key->dtak_data;
1532 		ASSERT(kdata >= tomax && kdata < tomax + buf->dtb_size);
1533 
1534 		for (i = sizeof (dtrace_aggid_t); i < size; i++) {
1535 			if (kdata[i] != data[i])
1536 				goto next;
1537 		}
1538 
1539 		if (action != key->dtak_action) {
1540 			/*
1541 			 * We are aggregating on the same value in the same
1542 			 * aggregation with two different aggregating actions.
1543 			 * (This should have been picked up in the compiler,
1544 			 * so we may be dealing with errant or devious DIF.)
1545 			 * This is an error condition; we indicate as much,
1546 			 * and return.
1547 			 */
1548 			DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
1549 			return;
1550 		}
1551 
1552 		/*
1553 		 * This is a hit:  we need to apply the aggregator to
1554 		 * the value at this key.
1555 		 */
1556 		agg->dtag_aggregate((uint64_t *)(kdata + size), arg);
1557 		return;
1558 next:
1559 		continue;
1560 	}
1561 
1562 	/*
1563 	 * We didn't find it.  We need to allocate some zero-filled space,
1564 	 * link it into the hash table appropriately, and apply the aggregator
1565 	 * to the (zero-filled) value.
1566 	 */
1567 	offs = buf->dtb_offset;
1568 	while (offs & (align - 1))
1569 		offs += sizeof (uint32_t);
1570 
1571 	/*
1572 	 * If we don't have enough room to both allocate a new key _and_
1573 	 * its associated data, increment the drop count and return.
1574 	 */
1575 	if ((uintptr_t)tomax + offs + fsize >
1576 	    agb->dtagb_free - sizeof (dtrace_aggkey_t)) {
1577 		dtrace_buffer_drop(buf);
1578 		return;
1579 	}
1580 
1581 	/*CONSTCOND*/
1582 	ASSERT(!(sizeof (dtrace_aggkey_t) & (sizeof (uintptr_t) - 1)));
1583 	key = (dtrace_aggkey_t *)(agb->dtagb_free - sizeof (dtrace_aggkey_t));
1584 	agb->dtagb_free -= sizeof (dtrace_aggkey_t);
1585 
1586 	key->dtak_data = kdata = tomax + offs;
1587 	buf->dtb_offset = offs + fsize;
1588 
1589 	/*
1590 	 * Now copy the data across.
1591 	 */
1592 	*((dtrace_aggid_t *)kdata) = agg->dtag_id;
1593 
1594 	for (i = sizeof (dtrace_aggid_t); i < size; i++)
1595 		kdata[i] = data[i];
1596 
1597 	for (i = size; i < fsize; i++)
1598 		kdata[i] = 0;
1599 
1600 	key->dtak_hashval = hashval;
1601 	key->dtak_size = size;
1602 	key->dtak_action = action;
1603 	key->dtak_next = agb->dtagb_hash[ndx];
1604 	agb->dtagb_hash[ndx] = key;
1605 
1606 	/*
1607 	 * Finally, apply the aggregator.
1608 	 */
1609 	*((uint64_t *)(key->dtak_data + size)) = agg->dtag_initial;
1610 	agg->dtag_aggregate((uint64_t *)(key->dtak_data + size), arg);
1611 }
1612 
1613 /*
1614  * Given consumer state, this routine finds a speculation in the INACTIVE
1615  * state and transitions it into the ACTIVE state.  If there is no speculation
1616  * in the INACTIVE state, 0 is returned.  In this case, no error counter is
1617  * incremented -- it is up to the caller to take appropriate action.
1618  */
1619 static int
1620 dtrace_speculation(dtrace_state_t *state)
1621 {
1622 	int i = 0;
1623 	dtrace_speculation_state_t current;
1624 	uint32_t *stat = &state->dts_speculations_unavail, count;
1625 
1626 	while (i < state->dts_nspeculations) {
1627 		dtrace_speculation_t *spec = &state->dts_speculations[i];
1628 
1629 		current = spec->dtsp_state;
1630 
1631 		if (current != DTRACESPEC_INACTIVE) {
1632 			if (current == DTRACESPEC_COMMITTINGMANY ||
1633 			    current == DTRACESPEC_COMMITTING ||
1634 			    current == DTRACESPEC_DISCARDING)
1635 				stat = &state->dts_speculations_busy;
1636 			i++;
1637 			continue;
1638 		}
1639 
1640 		if (dtrace_cas32((uint32_t *)&spec->dtsp_state,
1641 		    current, DTRACESPEC_ACTIVE) == current)
1642 			return (i + 1);
1643 	}
1644 
1645 	/*
1646 	 * We couldn't find a speculation.  If we found as much as a single
1647 	 * busy speculation buffer, we'll attribute this failure as "busy"
1648 	 * instead of "unavail".
1649 	 */
1650 	do {
1651 		count = *stat;
1652 	} while (dtrace_cas32(stat, count, count + 1) != count);
1653 
1654 	return (0);
1655 }
1656 
1657 /*
1658  * This routine commits an active speculation.  If the specified speculation
1659  * is not in a valid state to perform a commit(), this routine will silently do
1660  * nothing.  The state of the specified speculation is transitioned according
1661  * to the state transition diagram outlined in <sys/dtrace_impl.h>
1662  */
1663 static void
1664 dtrace_speculation_commit(dtrace_state_t *state, processorid_t cpu,
1665     dtrace_specid_t which)
1666 {
1667 	dtrace_speculation_t *spec;
1668 	dtrace_buffer_t *src, *dest;
1669 	uintptr_t daddr, saddr, dlimit;
1670 	dtrace_speculation_state_t current, new;
1671 	intptr_t offs;
1672 
1673 	if (which == 0)
1674 		return;
1675 
1676 	if (which > state->dts_nspeculations) {
1677 		cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
1678 		return;
1679 	}
1680 
1681 	spec = &state->dts_speculations[which - 1];
1682 	src = &spec->dtsp_buffer[cpu];
1683 	dest = &state->dts_buffer[cpu];
1684 
1685 	do {
1686 		current = spec->dtsp_state;
1687 
1688 		if (current == DTRACESPEC_COMMITTINGMANY)
1689 			break;
1690 
1691 		switch (current) {
1692 		case DTRACESPEC_INACTIVE:
1693 		case DTRACESPEC_DISCARDING:
1694 			return;
1695 
1696 		case DTRACESPEC_COMMITTING:
1697 			/*
1698 			 * This is only possible if we are (a) commit()'ing
1699 			 * without having done a prior speculate() on this CPU
1700 			 * and (b) racing with another commit() on a different
1701 			 * CPU.  There's nothing to do -- we just assert that
1702 			 * our offset is 0.
1703 			 */
1704 			ASSERT(src->dtb_offset == 0);
1705 			return;
1706 
1707 		case DTRACESPEC_ACTIVE:
1708 			new = DTRACESPEC_COMMITTING;
1709 			break;
1710 
1711 		case DTRACESPEC_ACTIVEONE:
1712 			/*
1713 			 * This speculation is active on one CPU.  If our
1714 			 * buffer offset is non-zero, we know that the one CPU
1715 			 * must be us.  Otherwise, we are committing on a
1716 			 * different CPU from the speculate(), and we must
1717 			 * rely on being asynchronously cleaned.
1718 			 */
1719 			if (src->dtb_offset != 0) {
1720 				new = DTRACESPEC_COMMITTING;
1721 				break;
1722 			}
1723 			/*FALLTHROUGH*/
1724 
1725 		case DTRACESPEC_ACTIVEMANY:
1726 			new = DTRACESPEC_COMMITTINGMANY;
1727 			break;
1728 
1729 		default:
1730 			ASSERT(0);
1731 		}
1732 	} while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
1733 	    current, new) != current);
1734 
1735 	/*
1736 	 * We have set the state to indicate that we are committing this
1737 	 * speculation.  Now reserve the necessary space in the destination
1738 	 * buffer.
1739 	 */
1740 	if ((offs = dtrace_buffer_reserve(dest, src->dtb_offset,
1741 	    sizeof (uint64_t), state, NULL)) < 0) {
1742 		dtrace_buffer_drop(dest);
1743 		goto out;
1744 	}
1745 
1746 	/*
1747 	 * We have the space; copy the buffer across.  (Note that this is a
1748 	 * highly subobtimal bcopy(); in the unlikely event that this becomes
1749 	 * a serious performance issue, a high-performance DTrace-specific
1750 	 * bcopy() should obviously be invented.)
1751 	 */
1752 	daddr = (uintptr_t)dest->dtb_tomax + offs;
1753 	dlimit = daddr + src->dtb_offset;
1754 	saddr = (uintptr_t)src->dtb_tomax;
1755 
1756 	/*
1757 	 * First, the aligned portion.
1758 	 */
1759 	while (dlimit - daddr >= sizeof (uint64_t)) {
1760 		*((uint64_t *)daddr) = *((uint64_t *)saddr);
1761 
1762 		daddr += sizeof (uint64_t);
1763 		saddr += sizeof (uint64_t);
1764 	}
1765 
1766 	/*
1767 	 * Now any left-over bit...
1768 	 */
1769 	while (dlimit - daddr)
1770 		*((uint8_t *)daddr++) = *((uint8_t *)saddr++);
1771 
1772 	/*
1773 	 * Finally, commit the reserved space in the destination buffer.
1774 	 */
1775 	dest->dtb_offset = offs + src->dtb_offset;
1776 
1777 out:
1778 	/*
1779 	 * If we're lucky enough to be the only active CPU on this speculation
1780 	 * buffer, we can just set the state back to DTRACESPEC_INACTIVE.
1781 	 */
1782 	if (current == DTRACESPEC_ACTIVE ||
1783 	    (current == DTRACESPEC_ACTIVEONE && new == DTRACESPEC_COMMITTING)) {
1784 		uint32_t rval = dtrace_cas32((uint32_t *)&spec->dtsp_state,
1785 		    DTRACESPEC_COMMITTING, DTRACESPEC_INACTIVE);
1786 
1787 		ASSERT(rval == DTRACESPEC_COMMITTING);
1788 	}
1789 
1790 	src->dtb_offset = 0;
1791 	src->dtb_xamot_drops += src->dtb_drops;
1792 	src->dtb_drops = 0;
1793 }
1794 
1795 /*
1796  * This routine discards an active speculation.  If the specified speculation
1797  * is not in a valid state to perform a discard(), this routine will silently
1798  * do nothing.  The state of the specified speculation is transitioned
1799  * according to the state transition diagram outlined in <sys/dtrace_impl.h>
1800  */
1801 static void
1802 dtrace_speculation_discard(dtrace_state_t *state, processorid_t cpu,
1803     dtrace_specid_t which)
1804 {
1805 	dtrace_speculation_t *spec;
1806 	dtrace_speculation_state_t current, new;
1807 	dtrace_buffer_t *buf;
1808 
1809 	if (which == 0)
1810 		return;
1811 
1812 	if (which > state->dts_nspeculations) {
1813 		cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
1814 		return;
1815 	}
1816 
1817 	spec = &state->dts_speculations[which - 1];
1818 	buf = &spec->dtsp_buffer[cpu];
1819 
1820 	do {
1821 		current = spec->dtsp_state;
1822 
1823 		switch (current) {
1824 		case DTRACESPEC_INACTIVE:
1825 		case DTRACESPEC_COMMITTINGMANY:
1826 		case DTRACESPEC_COMMITTING:
1827 		case DTRACESPEC_DISCARDING:
1828 			return;
1829 
1830 		case DTRACESPEC_ACTIVE:
1831 		case DTRACESPEC_ACTIVEMANY:
1832 			new = DTRACESPEC_DISCARDING;
1833 			break;
1834 
1835 		case DTRACESPEC_ACTIVEONE:
1836 			if (buf->dtb_offset != 0) {
1837 				new = DTRACESPEC_INACTIVE;
1838 			} else {
1839 				new = DTRACESPEC_DISCARDING;
1840 			}
1841 			break;
1842 
1843 		default:
1844 			ASSERT(0);
1845 		}
1846 	} while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
1847 	    current, new) != current);
1848 
1849 	buf->dtb_offset = 0;
1850 	buf->dtb_drops = 0;
1851 }
1852 
1853 /*
1854  * Note:  not called from probe context.  This function is called
1855  * asynchronously from cross call context to clean any speculations that are
1856  * in the COMMITTINGMANY or DISCARDING states.  These speculations may not be
1857  * transitioned back to the INACTIVE state until all CPUs have cleaned the
1858  * speculation.
1859  */
1860 static void
1861 dtrace_speculation_clean_here(dtrace_state_t *state)
1862 {
1863 	dtrace_icookie_t cookie;
1864 	processorid_t cpu = CPU->cpu_id;
1865 	dtrace_buffer_t *dest = &state->dts_buffer[cpu];
1866 	dtrace_specid_t i;
1867 
1868 	cookie = dtrace_interrupt_disable();
1869 
1870 	if (dest->dtb_tomax == NULL) {
1871 		dtrace_interrupt_enable(cookie);
1872 		return;
1873 	}
1874 
1875 	for (i = 0; i < state->dts_nspeculations; i++) {
1876 		dtrace_speculation_t *spec = &state->dts_speculations[i];
1877 		dtrace_buffer_t *src = &spec->dtsp_buffer[cpu];
1878 
1879 		if (src->dtb_tomax == NULL)
1880 			continue;
1881 
1882 		if (spec->dtsp_state == DTRACESPEC_DISCARDING) {
1883 			src->dtb_offset = 0;
1884 			continue;
1885 		}
1886 
1887 		if (spec->dtsp_state != DTRACESPEC_COMMITTINGMANY)
1888 			continue;
1889 
1890 		if (src->dtb_offset == 0)
1891 			continue;
1892 
1893 		dtrace_speculation_commit(state, cpu, i + 1);
1894 	}
1895 
1896 	dtrace_interrupt_enable(cookie);
1897 }
1898 
1899 /*
1900  * Note:  not called from probe context.  This function is called
1901  * asynchronously (and at a regular interval) to clean any speculations that
1902  * are in the COMMITTINGMANY or DISCARDING states.  If it discovers that there
1903  * is work to be done, it cross calls all CPUs to perform that work;
1904  * COMMITMANY and DISCARDING speculations may not be transitioned back to the
1905  * INACTIVE state until they have been cleaned by all CPUs.
1906  */
1907 static void
1908 dtrace_speculation_clean(dtrace_state_t *state)
1909 {
1910 	int work = 0, rv;
1911 	dtrace_specid_t i;
1912 
1913 	for (i = 0; i < state->dts_nspeculations; i++) {
1914 		dtrace_speculation_t *spec = &state->dts_speculations[i];
1915 
1916 		ASSERT(!spec->dtsp_cleaning);
1917 
1918 		if (spec->dtsp_state != DTRACESPEC_DISCARDING &&
1919 		    spec->dtsp_state != DTRACESPEC_COMMITTINGMANY)
1920 			continue;
1921 
1922 		work++;
1923 		spec->dtsp_cleaning = 1;
1924 	}
1925 
1926 	if (!work)
1927 		return;
1928 
1929 	dtrace_xcall(DTRACE_CPUALL,
1930 	    (dtrace_xcall_t)dtrace_speculation_clean_here, state);
1931 
1932 	/*
1933 	 * We now know that all CPUs have committed or discarded their
1934 	 * speculation buffers, as appropriate.  We can now set the state
1935 	 * to inactive.
1936 	 */
1937 	for (i = 0; i < state->dts_nspeculations; i++) {
1938 		dtrace_speculation_t *spec = &state->dts_speculations[i];
1939 		dtrace_speculation_state_t current, new;
1940 
1941 		if (!spec->dtsp_cleaning)
1942 			continue;
1943 
1944 		current = spec->dtsp_state;
1945 		ASSERT(current == DTRACESPEC_DISCARDING ||
1946 		    current == DTRACESPEC_COMMITTINGMANY);
1947 
1948 		new = DTRACESPEC_INACTIVE;
1949 
1950 		rv = dtrace_cas32((uint32_t *)&spec->dtsp_state, current, new);
1951 		ASSERT(rv == current);
1952 		spec->dtsp_cleaning = 0;
1953 	}
1954 }
1955 
1956 /*
1957  * Called as part of a speculate() to get the speculative buffer associated
1958  * with a given speculation.  Returns NULL if the specified speculation is not
1959  * in an ACTIVE state.  If the speculation is in the ACTIVEONE state -- and
1960  * the active CPU is not the specified CPU -- the speculation will be
1961  * atomically transitioned into the ACTIVEMANY state.
1962  */
1963 static dtrace_buffer_t *
1964 dtrace_speculation_buffer(dtrace_state_t *state, processorid_t cpuid,
1965     dtrace_specid_t which)
1966 {
1967 	dtrace_speculation_t *spec;
1968 	dtrace_speculation_state_t current, new;
1969 	dtrace_buffer_t *buf;
1970 
1971 	if (which == 0)
1972 		return (NULL);
1973 
1974 	if (which > state->dts_nspeculations) {
1975 		cpu_core[cpuid].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
1976 		return (NULL);
1977 	}
1978 
1979 	spec = &state->dts_speculations[which - 1];
1980 	buf = &spec->dtsp_buffer[cpuid];
1981 
1982 	do {
1983 		current = spec->dtsp_state;
1984 
1985 		switch (current) {
1986 		case DTRACESPEC_INACTIVE:
1987 		case DTRACESPEC_COMMITTINGMANY:
1988 		case DTRACESPEC_DISCARDING:
1989 			return (NULL);
1990 
1991 		case DTRACESPEC_COMMITTING:
1992 			ASSERT(buf->dtb_offset == 0);
1993 			return (NULL);
1994 
1995 		case DTRACESPEC_ACTIVEONE:
1996 			/*
1997 			 * This speculation is currently active on one CPU.
1998 			 * Check the offset in the buffer; if it's non-zero,
1999 			 * that CPU must be us (and we leave the state alone).
2000 			 * If it's zero, assume that we're starting on a new
2001 			 * CPU -- and change the state to indicate that the
2002 			 * speculation is active on more than one CPU.
2003 			 */
2004 			if (buf->dtb_offset != 0)
2005 				return (buf);
2006 
2007 			new = DTRACESPEC_ACTIVEMANY;
2008 			break;
2009 
2010 		case DTRACESPEC_ACTIVEMANY:
2011 			return (buf);
2012 
2013 		case DTRACESPEC_ACTIVE:
2014 			new = DTRACESPEC_ACTIVEONE;
2015 			break;
2016 
2017 		default:
2018 			ASSERT(0);
2019 		}
2020 	} while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2021 	    current, new) != current);
2022 
2023 	ASSERT(new == DTRACESPEC_ACTIVEONE || new == DTRACESPEC_ACTIVEMANY);
2024 	return (buf);
2025 }
2026 
2027 /*
2028  * This function implements the DIF emulator's variable lookups.  The emulator
2029  * passes a reserved variable identifier and optional built-in array index.
2030  */
2031 static uint64_t
2032 dtrace_dif_variable(dtrace_mstate_t *mstate, dtrace_state_t *state, uint64_t v,
2033     uint64_t i)
2034 {
2035 	/*
2036 	 * If we're accessing one of the uncached arguments, we'll turn this
2037 	 * into a reference in the args array.
2038 	 */
2039 	if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9) {
2040 		i = v - DIF_VAR_ARG0;
2041 		v = DIF_VAR_ARGS;
2042 	}
2043 
2044 	switch (v) {
2045 	case DIF_VAR_ARGS:
2046 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_ARGS);
2047 		if (i >= sizeof (mstate->dtms_arg) /
2048 		    sizeof (mstate->dtms_arg[0])) {
2049 			int aframes = mstate->dtms_probe->dtpr_aframes + 2;
2050 			dtrace_provider_t *pv;
2051 			uint64_t val;
2052 
2053 			pv = mstate->dtms_probe->dtpr_provider;
2054 			if (pv->dtpv_pops.dtps_getargval != NULL)
2055 				val = pv->dtpv_pops.dtps_getargval(pv->dtpv_arg,
2056 				    mstate->dtms_probe->dtpr_id,
2057 				    mstate->dtms_probe->dtpr_arg, i, aframes);
2058 			else
2059 				val = dtrace_getarg(i, aframes);
2060 
2061 			/*
2062 			 * This is regrettably required to keep the compiler
2063 			 * from tail-optimizing the call to dtrace_getarg().
2064 			 * The condition always evaluates to true, but the
2065 			 * compiler has no way of figuring that out a priori.
2066 			 * (None of this would be necessary if the compiler
2067 			 * could be relied upon to _always_ tail-optimize
2068 			 * the call to dtrace_getarg() -- but it can't.)
2069 			 */
2070 			if (mstate->dtms_probe != NULL)
2071 				return (val);
2072 
2073 			ASSERT(0);
2074 		}
2075 
2076 		return (mstate->dtms_arg[i]);
2077 
2078 	case DIF_VAR_UREGS: {
2079 		klwp_t *lwp;
2080 
2081 		if (!dtrace_priv_proc(state))
2082 			return (0);
2083 
2084 		if ((lwp = curthread->t_lwp) == NULL) {
2085 			DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
2086 			cpu_core[CPU->cpu_id].cpuc_dtrace_illval = NULL;
2087 			return (0);
2088 		}
2089 
2090 		return (dtrace_getreg(lwp->lwp_regs, i));
2091 	}
2092 
2093 	case DIF_VAR_CURTHREAD:
2094 		if (!dtrace_priv_kernel(state))
2095 			return (0);
2096 		return ((uint64_t)(uintptr_t)curthread);
2097 
2098 	case DIF_VAR_TIMESTAMP:
2099 		if (!(mstate->dtms_present & DTRACE_MSTATE_TIMESTAMP)) {
2100 			mstate->dtms_timestamp = dtrace_gethrtime();
2101 			mstate->dtms_present |= DTRACE_MSTATE_TIMESTAMP;
2102 		}
2103 		return (mstate->dtms_timestamp);
2104 
2105 	case DIF_VAR_VTIMESTAMP:
2106 		ASSERT(dtrace_vtime_references != 0);
2107 		return (curthread->t_dtrace_vtime);
2108 
2109 	case DIF_VAR_WALLTIMESTAMP:
2110 		if (!(mstate->dtms_present & DTRACE_MSTATE_WALLTIMESTAMP)) {
2111 			mstate->dtms_walltimestamp = dtrace_gethrestime();
2112 			mstate->dtms_present |= DTRACE_MSTATE_WALLTIMESTAMP;
2113 		}
2114 		return (mstate->dtms_walltimestamp);
2115 
2116 	case DIF_VAR_IPL:
2117 		if (!dtrace_priv_kernel(state))
2118 			return (0);
2119 		if (!(mstate->dtms_present & DTRACE_MSTATE_IPL)) {
2120 			mstate->dtms_ipl = dtrace_getipl();
2121 			mstate->dtms_present |= DTRACE_MSTATE_IPL;
2122 		}
2123 		return (mstate->dtms_ipl);
2124 
2125 	case DIF_VAR_EPID:
2126 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_EPID);
2127 		return (mstate->dtms_epid);
2128 
2129 	case DIF_VAR_ID:
2130 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
2131 		return (mstate->dtms_probe->dtpr_id);
2132 
2133 	case DIF_VAR_STACKDEPTH:
2134 		if (!dtrace_priv_kernel(state))
2135 			return (0);
2136 		if (!(mstate->dtms_present & DTRACE_MSTATE_STACKDEPTH)) {
2137 			int aframes = mstate->dtms_probe->dtpr_aframes + 2;
2138 
2139 			mstate->dtms_stackdepth = dtrace_getstackdepth(aframes);
2140 			mstate->dtms_present |= DTRACE_MSTATE_STACKDEPTH;
2141 		}
2142 		return (mstate->dtms_stackdepth);
2143 
2144 	case DIF_VAR_CALLER:
2145 		if (!dtrace_priv_kernel(state))
2146 			return (0);
2147 		if (!(mstate->dtms_present & DTRACE_MSTATE_CALLER)) {
2148 			int aframes = mstate->dtms_probe->dtpr_aframes + 2;
2149 
2150 			if (!DTRACE_ANCHORED(mstate->dtms_probe)) {
2151 				/*
2152 				 * If this is an unanchored probe, we are
2153 				 * required to go through the slow path:
2154 				 * dtrace_caller() only guarantees correct
2155 				 * results for anchored probes.
2156 				 */
2157 				pc_t caller[2];
2158 
2159 				dtrace_getpcstack(caller, 2, aframes,
2160 				    (uint32_t *)mstate->dtms_arg[0]);
2161 				mstate->dtms_caller = caller[1];
2162 			} else if ((mstate->dtms_caller =
2163 			    dtrace_caller(aframes)) == -1) {
2164 				/*
2165 				 * We have failed to do this the quick way;
2166 				 * we must resort to the slower approach of
2167 				 * calling dtrace_getpcstack().
2168 				 */
2169 				pc_t caller;
2170 
2171 				dtrace_getpcstack(&caller, 1, aframes, NULL);
2172 				mstate->dtms_caller = caller;
2173 			}
2174 
2175 			mstate->dtms_present |= DTRACE_MSTATE_CALLER;
2176 		}
2177 		return (mstate->dtms_caller);
2178 
2179 	case DIF_VAR_PROBEPROV:
2180 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
2181 		return ((uint64_t)(uintptr_t)
2182 		    mstate->dtms_probe->dtpr_provider->dtpv_name);
2183 
2184 	case DIF_VAR_PROBEMOD:
2185 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
2186 		return ((uint64_t)(uintptr_t)
2187 		    mstate->dtms_probe->dtpr_mod);
2188 
2189 	case DIF_VAR_PROBEFUNC:
2190 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
2191 		return ((uint64_t)(uintptr_t)
2192 		    mstate->dtms_probe->dtpr_func);
2193 
2194 	case DIF_VAR_PROBENAME:
2195 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
2196 		return ((uint64_t)(uintptr_t)
2197 		    mstate->dtms_probe->dtpr_name);
2198 
2199 	case DIF_VAR_PID:
2200 		if (!dtrace_priv_proc(state))
2201 			return (0);
2202 
2203 		/*
2204 		 * Note that we are assuming that an unanchored probe is
2205 		 * always due to a high-level interrupt.  (And we're assuming
2206 		 * that there is only a single high level interrupt.)
2207 		 */
2208 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
2209 			return (pid0.pid_id);
2210 
2211 		/*
2212 		 * It is always safe to dereference one's own t_procp pointer:
2213 		 * it always points to a valid, allocated proc structure.
2214 		 * Further, it is always safe to dereference the p_pidp member
2215 		 * of one's own proc structure.  (These are truisms becuase
2216 		 * threads and processes don't clean up their own state --
2217 		 * they leave that task to whomever reaps them.)
2218 		 */
2219 		return ((uint64_t)curthread->t_procp->p_pidp->pid_id);
2220 
2221 	case DIF_VAR_TID:
2222 		/*
2223 		 * See comment in DIF_VAR_PID.
2224 		 */
2225 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
2226 			return (0);
2227 
2228 		return ((uint64_t)curthread->t_tid);
2229 
2230 	case DIF_VAR_EXECNAME:
2231 		if (!dtrace_priv_proc(state))
2232 			return (0);
2233 
2234 		/*
2235 		 * See comment in DIF_VAR_PID.
2236 		 */
2237 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
2238 			return ((uint64_t)(uintptr_t)p0.p_user.u_comm);
2239 
2240 		/*
2241 		 * It is always safe to dereference one's own t_procp pointer:
2242 		 * it always points to a valid, allocated proc structure.
2243 		 * (This is true because threads don't clean up their own
2244 		 * state -- they leave that task to whomever reaps them.)
2245 		 */
2246 		return ((uint64_t)(uintptr_t)
2247 		    curthread->t_procp->p_user.u_comm);
2248 
2249 	case DIF_VAR_ZONENAME:
2250 		if (!dtrace_priv_proc(state))
2251 			return (0);
2252 
2253 		/*
2254 		 * See comment in DIF_VAR_PID.
2255 		 */
2256 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
2257 			return ((uint64_t)(uintptr_t)p0.p_zone->zone_name);
2258 
2259 		/*
2260 		 * It is always safe to dereference one's own t_procp pointer:
2261 		 * it always points to a valid, allocated proc structure.
2262 		 * (This is true because threads don't clean up their own
2263 		 * state -- they leave that task to whomever reaps them.)
2264 		 */
2265 		return ((uint64_t)(uintptr_t)
2266 		    curthread->t_procp->p_zone->zone_name);
2267 
2268 	default:
2269 		DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
2270 		return (0);
2271 	}
2272 }
2273 
2274 /*
2275  * Emulate the execution of DTrace ID subroutines invoked by the call opcode.
2276  * Notice that we don't bother validating the proper number of arguments or
2277  * their types in the tuple stack.  This isn't needed because all argument
2278  * interpretation is safe because of our load safety -- the worst that can
2279  * happen is that a bogus program can obtain bogus results.
2280  */
2281 static void
2282 dtrace_dif_subr(uint_t subr, uint_t rd, uint64_t *regs,
2283     dtrace_key_t *tupregs, int nargs,
2284     dtrace_mstate_t *mstate, dtrace_state_t *state)
2285 {
2286 	volatile uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
2287 	volatile uintptr_t *illval = &cpu_core[CPU->cpu_id].cpuc_dtrace_illval;
2288 
2289 	union {
2290 		mutex_impl_t mi;
2291 		uint64_t mx;
2292 	} m;
2293 
2294 	union {
2295 		krwlock_t ri;
2296 		uintptr_t rw;
2297 	} r;
2298 
2299 	switch (subr) {
2300 	case DIF_SUBR_RAND:
2301 		regs[rd] = (dtrace_gethrtime() * 2416 + 374441) % 1771875;
2302 		break;
2303 
2304 	case DIF_SUBR_MUTEX_OWNED:
2305 		m.mx = dtrace_load64(tupregs[0].dttk_value);
2306 		if (MUTEX_TYPE_ADAPTIVE(&m.mi))
2307 			regs[rd] = MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER;
2308 		else
2309 			regs[rd] = LOCK_HELD(&m.mi.m_spin.m_spinlock);
2310 		break;
2311 
2312 	case DIF_SUBR_MUTEX_OWNER:
2313 		m.mx = dtrace_load64(tupregs[0].dttk_value);
2314 		if (MUTEX_TYPE_ADAPTIVE(&m.mi) &&
2315 		    MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER)
2316 			regs[rd] = (uintptr_t)MUTEX_OWNER(&m.mi);
2317 		else
2318 			regs[rd] = 0;
2319 		break;
2320 
2321 	case DIF_SUBR_MUTEX_TYPE_ADAPTIVE:
2322 		m.mx = dtrace_load64(tupregs[0].dttk_value);
2323 		regs[rd] = MUTEX_TYPE_ADAPTIVE(&m.mi);
2324 		break;
2325 
2326 	case DIF_SUBR_MUTEX_TYPE_SPIN:
2327 		m.mx = dtrace_load64(tupregs[0].dttk_value);
2328 		regs[rd] = MUTEX_TYPE_SPIN(&m.mi);
2329 		break;
2330 
2331 	case DIF_SUBR_RW_READ_HELD: {
2332 		uintptr_t tmp;
2333 
2334 		r.rw = dtrace_loadptr(tupregs[0].dttk_value);
2335 		regs[rd] = _RW_READ_HELD(&r.ri, tmp);
2336 		break;
2337 	}
2338 
2339 	case DIF_SUBR_RW_WRITE_HELD:
2340 		r.rw = dtrace_loadptr(tupregs[0].dttk_value);
2341 		regs[rd] = _RW_WRITE_HELD(&r.ri);
2342 		break;
2343 
2344 	case DIF_SUBR_RW_ISWRITER:
2345 		r.rw = dtrace_loadptr(tupregs[0].dttk_value);
2346 		regs[rd] = _RW_ISWRITER(&r.ri);
2347 		break;
2348 
2349 	case DIF_SUBR_BCOPY: {
2350 		/*
2351 		 * We need to be sure that the destination is in the scratch
2352 		 * region -- no other region is allowed.
2353 		 */
2354 		uintptr_t src = tupregs[0].dttk_value;
2355 		uintptr_t dest = tupregs[1].dttk_value;
2356 		size_t size = tupregs[2].dttk_value;
2357 
2358 		if (!dtrace_inscratch(dest, size, mstate)) {
2359 			*flags |= CPU_DTRACE_BADADDR;
2360 			*illval = regs[rd];
2361 			break;
2362 		}
2363 
2364 		dtrace_bcopy((void *)src, (void *)dest, size);
2365 		break;
2366 	}
2367 
2368 	case DIF_SUBR_ALLOCA:
2369 	case DIF_SUBR_COPYIN: {
2370 		uintptr_t dest = P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
2371 		uint64_t size =
2372 		    tupregs[subr == DIF_SUBR_ALLOCA ? 0 : 1].dttk_value;
2373 		size_t scratch_size = (dest - mstate->dtms_scratch_ptr) + size;
2374 
2375 		/*
2376 		 * This action doesn't require any credential checks since
2377 		 * probes will not activate in user contexts to which the
2378 		 * enabling user does not have permissions.
2379 		 */
2380 		if (mstate->dtms_scratch_ptr + scratch_size >
2381 		    mstate->dtms_scratch_base + mstate->dtms_scratch_size) {
2382 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
2383 			regs[rd] = NULL;
2384 			break;
2385 		}
2386 
2387 		if (subr == DIF_SUBR_COPYIN) {
2388 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
2389 			dtrace_copyin(tupregs[0].dttk_value, dest, size);
2390 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
2391 		}
2392 
2393 		mstate->dtms_scratch_ptr += scratch_size;
2394 		regs[rd] = dest;
2395 		break;
2396 	}
2397 
2398 	case DIF_SUBR_COPYINTO: {
2399 		uint64_t size = tupregs[1].dttk_value;
2400 		uintptr_t dest = tupregs[2].dttk_value;
2401 
2402 		/*
2403 		 * This action doesn't require any credential checks since
2404 		 * probes will not activate in user contexts to which the
2405 		 * enabling user does not have permissions.
2406 		 */
2407 		if (!dtrace_inscratch(dest, size, mstate)) {
2408 			*flags |= CPU_DTRACE_BADADDR;
2409 			*illval = regs[rd];
2410 			break;
2411 		}
2412 
2413 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
2414 		dtrace_copyin(tupregs[0].dttk_value, dest, size);
2415 		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
2416 		break;
2417 	}
2418 
2419 	case DIF_SUBR_COPYINSTR: {
2420 		uintptr_t dest = mstate->dtms_scratch_ptr;
2421 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
2422 
2423 		if (nargs > 1 && tupregs[1].dttk_value < size)
2424 			size = tupregs[1].dttk_value + 1;
2425 
2426 		/*
2427 		 * This action doesn't require any credential checks since
2428 		 * probes will not activate in user contexts to which the
2429 		 * enabling user does not have permissions.
2430 		 */
2431 		if (mstate->dtms_scratch_ptr + size >
2432 		    mstate->dtms_scratch_base + mstate->dtms_scratch_size) {
2433 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
2434 			regs[rd] = NULL;
2435 			break;
2436 		}
2437 
2438 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
2439 		dtrace_copyinstr(tupregs[0].dttk_value, dest, size);
2440 		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
2441 
2442 		((char *)dest)[size - 1] = '\0';
2443 		mstate->dtms_scratch_ptr += size;
2444 		regs[rd] = dest;
2445 		break;
2446 	}
2447 
2448 	case DIF_SUBR_MSGSIZE:
2449 	case DIF_SUBR_MSGDSIZE: {
2450 		uintptr_t baddr = tupregs[0].dttk_value, daddr;
2451 		uintptr_t wptr, rptr;
2452 		size_t count = 0;
2453 		int cont = 0;
2454 
2455 		while (baddr != NULL && !(*flags & CPU_DTRACE_FAULT)) {
2456 			wptr = dtrace_loadptr(baddr +
2457 			    offsetof(mblk_t, b_wptr));
2458 
2459 			rptr = dtrace_loadptr(baddr +
2460 			    offsetof(mblk_t, b_rptr));
2461 
2462 			if (wptr < rptr) {
2463 				*flags |= CPU_DTRACE_BADADDR;
2464 				*illval = tupregs[0].dttk_value;
2465 				break;
2466 			}
2467 
2468 			daddr = dtrace_loadptr(baddr +
2469 			    offsetof(mblk_t, b_datap));
2470 
2471 			baddr = dtrace_loadptr(baddr +
2472 			    offsetof(mblk_t, b_cont));
2473 
2474 			/*
2475 			 * We want to prevent against denial-of-service here,
2476 			 * so we're only going to search the list for
2477 			 * dtrace_msgdsize_max mblks.
2478 			 */
2479 			if (cont++ > dtrace_msgdsize_max) {
2480 				*flags |= CPU_DTRACE_ILLOP;
2481 				break;
2482 			}
2483 
2484 			if (subr == DIF_SUBR_MSGDSIZE) {
2485 				if (dtrace_load8(daddr +
2486 				    offsetof(dblk_t, db_type)) != M_DATA)
2487 					continue;
2488 			}
2489 
2490 			count += wptr - rptr;
2491 		}
2492 
2493 		if (!(*flags & CPU_DTRACE_FAULT))
2494 			regs[rd] = count;
2495 
2496 		break;
2497 	}
2498 
2499 	case DIF_SUBR_PROGENYOF: {
2500 		pid_t pid = tupregs[0].dttk_value;
2501 		proc_t *p;
2502 		int rval = 0;
2503 
2504 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
2505 
2506 		for (p = curthread->t_procp; p != NULL; p = p->p_parent) {
2507 			if (p->p_pidp->pid_id == pid) {
2508 				rval = 1;
2509 				break;
2510 			}
2511 		}
2512 
2513 		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
2514 
2515 		regs[rd] = rval;
2516 		break;
2517 	}
2518 
2519 	case DIF_SUBR_SPECULATION:
2520 		regs[rd] = dtrace_speculation(state);
2521 		break;
2522 
2523 	case DIF_SUBR_COPYOUT: {
2524 		uintptr_t kaddr = tupregs[0].dttk_value;
2525 		uintptr_t uaddr = tupregs[1].dttk_value;
2526 		uint64_t size = tupregs[2].dttk_value;
2527 
2528 		if (!dtrace_destructive_disallow &&
2529 		    dtrace_priv_proc_control(state) &&
2530 		    !dtrace_istoxic(kaddr, size)) {
2531 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
2532 			dtrace_copyout(kaddr, uaddr, size);
2533 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
2534 		}
2535 		break;
2536 	}
2537 
2538 	case DIF_SUBR_COPYOUTSTR: {
2539 		uintptr_t kaddr = tupregs[0].dttk_value;
2540 		uintptr_t uaddr = tupregs[1].dttk_value;
2541 		uint64_t size = tupregs[2].dttk_value;
2542 
2543 		if (!dtrace_destructive_disallow &&
2544 		    dtrace_priv_proc_control(state) &&
2545 		    !dtrace_istoxic(kaddr, size)) {
2546 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
2547 			dtrace_copyoutstr(kaddr, uaddr, size);
2548 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
2549 		}
2550 		break;
2551 	}
2552 
2553 	case DIF_SUBR_STRLEN:
2554 		regs[rd] = dtrace_strlen((char *)(uintptr_t)
2555 		    tupregs[0].dttk_value,
2556 		    state->dts_options[DTRACEOPT_STRSIZE]);
2557 		break;
2558 
2559 	case DIF_SUBR_STRCHR:
2560 	case DIF_SUBR_STRRCHR: {
2561 		/*
2562 		 * We're going to iterate over the string looking for the
2563 		 * specified character.  We will iterate until we have reached
2564 		 * the string length or we have found the character.  If this
2565 		 * is DIF_SUBR_STRRCHR, we will look for the last occurrence
2566 		 * of the specified character instead of the first.
2567 		 */
2568 		uintptr_t addr = tupregs[0].dttk_value;
2569 		uintptr_t limit = addr + state->dts_options[DTRACEOPT_STRSIZE];
2570 		char c, target = (char)tupregs[1].dttk_value;
2571 
2572 		for (regs[rd] = NULL; addr < limit; addr++) {
2573 			if ((c = dtrace_load8(addr)) == target) {
2574 				regs[rd] = addr;
2575 
2576 				if (subr == DIF_SUBR_STRCHR)
2577 					break;
2578 			}
2579 
2580 			if (c == '\0')
2581 				break;
2582 		}
2583 
2584 		break;
2585 	}
2586 
2587 	case DIF_SUBR_STRSTR:
2588 	case DIF_SUBR_INDEX:
2589 	case DIF_SUBR_RINDEX: {
2590 		/*
2591 		 * We're going to iterate over the string looking for the
2592 		 * specified string.  We will iterate until we have reached
2593 		 * the string length or we have found the string.  (Yes, this
2594 		 * is done in the most naive way possible -- but considering
2595 		 * that the string we're searching for is likely to be
2596 		 * relatively short, the complexity of Rabin-Karp or similar
2597 		 * hardly seems merited.)
2598 		 */
2599 		char *addr = (char *)tupregs[0].dttk_value;
2600 		char *substr = (char *)tupregs[1].dttk_value;
2601 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
2602 		size_t len = dtrace_strlen(addr, size);
2603 		size_t sublen = dtrace_strlen(substr, size);
2604 		char *limit = addr + len, *orig = addr;
2605 		int notfound = subr == DIF_SUBR_STRSTR ? 0 : -1;
2606 		int inc = 1;
2607 
2608 		regs[rd] = notfound;
2609 
2610 		/*
2611 		 * strstr() and index()/rindex() have similar semantics if
2612 		 * both strings are the empty string: strstr() returns a
2613 		 * pointer to the (empty) string, and index() and rindex()
2614 		 * both return index 0 (regardless of any position argument).
2615 		 */
2616 		if (sublen == 0 && len == 0) {
2617 			if (subr == DIF_SUBR_STRSTR)
2618 				regs[rd] = (uintptr_t)addr;
2619 			else
2620 				regs[rd] = 0;
2621 			break;
2622 		}
2623 
2624 		if (subr != DIF_SUBR_STRSTR) {
2625 			if (subr == DIF_SUBR_RINDEX) {
2626 				limit = orig - 1;
2627 				addr += len;
2628 				inc = -1;
2629 			}
2630 
2631 			/*
2632 			 * Both index() and rindex() take an optional position
2633 			 * argument that denotes the starting position.
2634 			 */
2635 			if (nargs == 3) {
2636 				int64_t pos = (int64_t)tupregs[2].dttk_value;
2637 
2638 				/*
2639 				 * If the position argument to index() is
2640 				 * negative, Perl implicitly clamps it at
2641 				 * zero.  This semantic is a little surprising
2642 				 * given the special meaning of negative
2643 				 * positions to similar Perl functions like
2644 				 * substr(), but it appears to reflect a
2645 				 * notion that index() can start from a
2646 				 * negative index and increment its way up to
2647 				 * the string.  Given this notion, Perl's
2648 				 * rindex() is at least self-consistent in
2649 				 * that it implicitly clamps positions greater
2650 				 * than the string length to be the string
2651 				 * length.  Where Perl completely loses
2652 				 * coherence, however, is when the specified
2653 				 * substring is the empty string ("").  In
2654 				 * this case, even if the position is
2655 				 * negative, rindex() returns 0 -- and even if
2656 				 * the position is greater than the length,
2657 				 * index() returns the string length.  These
2658 				 * semantics violate the notion that index()
2659 				 * should never return a value less than the
2660 				 * specified position and that rindex() should
2661 				 * never return a value greater than the
2662 				 * specified position.  (One assumes that
2663 				 * these semantics are artifacts of Perl's
2664 				 * implementation and not the results of
2665 				 * deliberate design -- it beggars belief that
2666 				 * even Larry Wall could desire such oddness.)
2667 				 * While in the abstract one would wish for
2668 				 * consistent position semantics across
2669 				 * substr(), index() and rindex() -- or at the
2670 				 * very least self-consitent position
2671 				 * semantics for index() and rindex() -- we
2672 				 * instead opt to keep with the extant Perl
2673 				 * semantics, in all their broken glory.  (Do
2674 				 * we have more desire to maintain Perl's
2675 				 * semantics than Perl does?  Probably.)
2676 				 */
2677 				if (subr == DIF_SUBR_RINDEX) {
2678 					if (pos < 0) {
2679 						if (sublen == 0)
2680 							regs[rd] = 0;
2681 						break;
2682 					}
2683 
2684 					if (pos > len)
2685 						pos = len;
2686 				} else {
2687 					if (pos < 0)
2688 						pos = 0;
2689 
2690 					if (pos >= len) {
2691 						if (sublen == 0)
2692 							regs[rd] = len;
2693 						break;
2694 					}
2695 				}
2696 
2697 				addr = orig + pos;
2698 			}
2699 		}
2700 
2701 		for (regs[rd] = notfound; addr != limit; addr += inc) {
2702 			if (dtrace_strncmp(addr, substr, sublen) == 0) {
2703 				if (subr != DIF_SUBR_STRSTR) {
2704 					/*
2705 					 * As D index() and rindex() are
2706 					 * modeled on Perl (and not on awk),
2707 					 * we return a zero-based (and not a
2708 					 * one-based) index.  (For you Perl
2709 					 * weenies: no, we're not going to add
2710 					 * $[ -- and shouldn't you be at a con
2711 					 * or something?)
2712 					 */
2713 					regs[rd] = (uintptr_t)(addr - orig);
2714 					break;
2715 				}
2716 
2717 				ASSERT(subr == DIF_SUBR_STRSTR);
2718 				regs[rd] = (uintptr_t)addr;
2719 				break;
2720 			}
2721 		}
2722 
2723 		break;
2724 	}
2725 
2726 	case DIF_SUBR_STRTOK: {
2727 		uintptr_t addr = tupregs[0].dttk_value;
2728 		uintptr_t tokaddr = tupregs[1].dttk_value;
2729 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
2730 		uintptr_t limit, toklimit = tokaddr + size;
2731 		uint8_t c, tokmap[32];	 /* 256 / 8 */
2732 		char *dest = (char *)mstate->dtms_scratch_ptr;
2733 		int i;
2734 
2735 		if (mstate->dtms_scratch_ptr + size >
2736 		    mstate->dtms_scratch_base + mstate->dtms_scratch_size) {
2737 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
2738 			regs[rd] = NULL;
2739 			break;
2740 		}
2741 
2742 		if (addr == NULL) {
2743 			/*
2744 			 * If the address specified is NULL, we use our saved
2745 			 * strtok pointer from the mstate.  Note that this
2746 			 * means that the saved strtok pointer is _only_
2747 			 * valid within multiple enablings of the same probe --
2748 			 * it behaves like an implicit clause-local variable.
2749 			 */
2750 			addr = mstate->dtms_strtok;
2751 		}
2752 
2753 		/*
2754 		 * First, zero the token map, and then process the token
2755 		 * string -- setting a bit in the map for every character
2756 		 * found in the token string.
2757 		 */
2758 		for (i = 0; i < sizeof (tokmap); i++)
2759 			tokmap[i] = 0;
2760 
2761 		for (; tokaddr < toklimit; tokaddr++) {
2762 			if ((c = dtrace_load8(tokaddr)) == '\0')
2763 				break;
2764 
2765 			ASSERT((c >> 3) < sizeof (tokmap));
2766 			tokmap[c >> 3] |= (1 << (c & 0x7));
2767 		}
2768 
2769 		for (limit = addr + size; addr < limit; addr++) {
2770 			/*
2771 			 * We're looking for a character that is _not_ contained
2772 			 * in the token string.
2773 			 */
2774 			if ((c = dtrace_load8(addr)) == '\0')
2775 				break;
2776 
2777 			if (!(tokmap[c >> 3] & (1 << (c & 0x7))))
2778 				break;
2779 		}
2780 
2781 		if (c == '\0') {
2782 			/*
2783 			 * We reached the end of the string without finding
2784 			 * any character that was not in the token string.
2785 			 * We return NULL in this case, and we set the saved
2786 			 * address to NULL as well.
2787 			 */
2788 			regs[rd] = NULL;
2789 			mstate->dtms_strtok = NULL;
2790 			break;
2791 		}
2792 
2793 		/*
2794 		 * From here on, we're copying into the destination string.
2795 		 */
2796 		for (i = 0; addr < limit && i < size - 1; addr++) {
2797 			if ((c = dtrace_load8(addr)) == '\0')
2798 				break;
2799 
2800 			if (tokmap[c >> 3] & (1 << (c & 0x7)))
2801 				break;
2802 
2803 			ASSERT(i < size);
2804 			dest[i++] = c;
2805 		}
2806 
2807 		ASSERT(i < size);
2808 		dest[i] = '\0';
2809 		regs[rd] = (uintptr_t)dest;
2810 		mstate->dtms_scratch_ptr += size;
2811 		mstate->dtms_strtok = addr;
2812 		break;
2813 	}
2814 
2815 	case DIF_SUBR_SUBSTR: {
2816 		uintptr_t s = tupregs[0].dttk_value;
2817 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
2818 		char *d = (char *)mstate->dtms_scratch_ptr;
2819 		int64_t index = (int64_t)tupregs[1].dttk_value;
2820 		int64_t remaining = (int64_t)tupregs[2].dttk_value;
2821 		size_t len = dtrace_strlen((char *)s, size);
2822 		int64_t i = 0;
2823 
2824 		if (nargs <= 2)
2825 			remaining = (int64_t)size;
2826 
2827 		if (mstate->dtms_scratch_ptr + size >
2828 		    mstate->dtms_scratch_base + mstate->dtms_scratch_size) {
2829 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
2830 			regs[rd] = NULL;
2831 			break;
2832 		}
2833 
2834 		if (index < 0) {
2835 			index += len;
2836 
2837 			if (index < 0 && index + remaining > 0) {
2838 				remaining += index;
2839 				index = 0;
2840 			}
2841 		}
2842 
2843 		if (index >= len || index < 0)
2844 			index = len;
2845 
2846 		for (d[0] = '\0'; remaining > 0; remaining--) {
2847 			if ((d[i++] = dtrace_load8(s++ + index)) == '\0')
2848 				break;
2849 
2850 			if (i == size) {
2851 				d[i - 1] = '\0';
2852 				break;
2853 			}
2854 		}
2855 
2856 		mstate->dtms_scratch_ptr += size;
2857 		regs[rd] = (uintptr_t)d;
2858 		break;
2859 	}
2860 
2861 	case DIF_SUBR_GETMAJOR:
2862 #ifdef _LP64
2863 		regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR64) & MAXMAJ64;
2864 #else
2865 		regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR) & MAXMAJ;
2866 #endif
2867 		break;
2868 
2869 	case DIF_SUBR_GETMINOR:
2870 #ifdef _LP64
2871 		regs[rd] = tupregs[0].dttk_value & MAXMIN64;
2872 #else
2873 		regs[rd] = tupregs[0].dttk_value & MAXMIN;
2874 #endif
2875 		break;
2876 
2877 	case DIF_SUBR_DDI_PATHNAME: {
2878 		/*
2879 		 * This one is a galactic mess.  We are going to roughly
2880 		 * emulate ddi_pathname(), but it's made more complicated
2881 		 * by the fact that we (a) want to include the minor name and
2882 		 * (b) must proceed iteratively instead of recursively.
2883 		 */
2884 		uintptr_t dest = mstate->dtms_scratch_ptr;
2885 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
2886 		char *start = (char *)dest, *end = start + size - 1;
2887 		uintptr_t daddr = tupregs[0].dttk_value;
2888 		int64_t minor = (int64_t)tupregs[1].dttk_value;
2889 		char *s;
2890 		int i, len, depth = 0;
2891 
2892 		if (size == 0 || mstate->dtms_scratch_ptr + size >
2893 		    mstate->dtms_scratch_base + mstate->dtms_scratch_size) {
2894 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
2895 			regs[rd] = NULL;
2896 			break;
2897 		}
2898 
2899 		*end = '\0';
2900 
2901 		/*
2902 		 * We want to have a name for the minor.  In order to do this,
2903 		 * we need to walk the minor list from the devinfo.  We want
2904 		 * to be sure that we don't infinitely walk a circular list,
2905 		 * so we check for circularity by sending a scout pointer
2906 		 * ahead two elements for every element that we iterate over;
2907 		 * if the list is circular, these will ultimately point to the
2908 		 * same element.  You may recognize this little trick as the
2909 		 * answer to a stupid interview question -- one that always
2910 		 * seems to be asked by those who had to have it laboriously
2911 		 * explained to them, and who can't even concisely describe
2912 		 * the conditions under which one would be forced to resort to
2913 		 * this technique.  Needless to say, those conditions are
2914 		 * found here -- and probably only here.  Is this is the only
2915 		 * use of this infamous trick in shipping, production code?
2916 		 * If it isn't, it probably should be...
2917 		 */
2918 		if (minor != -1) {
2919 			uintptr_t maddr = dtrace_loadptr(daddr +
2920 			    offsetof(struct dev_info, devi_minor));
2921 
2922 			uintptr_t next = offsetof(struct ddi_minor_data, next);
2923 			uintptr_t name = offsetof(struct ddi_minor_data,
2924 			    d_minor) + offsetof(struct ddi_minor, name);
2925 			uintptr_t dev = offsetof(struct ddi_minor_data,
2926 			    d_minor) + offsetof(struct ddi_minor, dev);
2927 			uintptr_t scout;
2928 
2929 			if (maddr != NULL)
2930 				scout = dtrace_loadptr(maddr + next);
2931 
2932 			while (maddr != NULL && !(*flags & CPU_DTRACE_FAULT)) {
2933 				uint64_t m;
2934 #ifdef _LP64
2935 				m = dtrace_load64(maddr + dev) & MAXMIN64;
2936 #else
2937 				m = dtrace_load32(maddr + dev) & MAXMIN;
2938 #endif
2939 				if (m != minor) {
2940 					maddr = dtrace_loadptr(maddr + next);
2941 
2942 					if (scout == NULL)
2943 						continue;
2944 
2945 					scout = dtrace_loadptr(scout + next);
2946 
2947 					if (scout == NULL)
2948 						continue;
2949 
2950 					scout = dtrace_loadptr(scout + next);
2951 
2952 					if (scout == NULL)
2953 						continue;
2954 
2955 					if (scout == maddr) {
2956 						*flags |= CPU_DTRACE_ILLOP;
2957 						break;
2958 					}
2959 
2960 					continue;
2961 				}
2962 
2963 				/*
2964 				 * We have the minor data.  Now we need to
2965 				 * copy the minor's name into the end of the
2966 				 * pathname.
2967 				 */
2968 				s = (char *)dtrace_loadptr(maddr + name);
2969 				len = dtrace_strlen(s, size);
2970 
2971 				if (*flags & CPU_DTRACE_FAULT)
2972 					break;
2973 
2974 				if (len != 0) {
2975 					if ((end -= (len + 1)) < start)
2976 						break;
2977 
2978 					*end = ':';
2979 				}
2980 
2981 				for (i = 1; i <= len; i++)
2982 					end[i] = dtrace_load8((uintptr_t)s++);
2983 				break;
2984 			}
2985 		}
2986 
2987 		while (daddr != NULL && !(*flags & CPU_DTRACE_FAULT)) {
2988 			ddi_node_state_t devi_state;
2989 
2990 			devi_state = dtrace_load32(daddr +
2991 			    offsetof(struct dev_info, devi_node_state));
2992 
2993 			if (*flags & CPU_DTRACE_FAULT)
2994 				break;
2995 
2996 			if (devi_state >= DS_INITIALIZED) {
2997 				s = (char *)dtrace_loadptr(daddr +
2998 				    offsetof(struct dev_info, devi_addr));
2999 				len = dtrace_strlen(s, size);
3000 
3001 				if (*flags & CPU_DTRACE_FAULT)
3002 					break;
3003 
3004 				if (len != 0) {
3005 					if ((end -= (len + 1)) < start)
3006 						break;
3007 
3008 					*end = '@';
3009 				}
3010 
3011 				for (i = 1; i <= len; i++)
3012 					end[i] = dtrace_load8((uintptr_t)s++);
3013 			}
3014 
3015 			/*
3016 			 * Now for the node name...
3017 			 */
3018 			s = (char *)dtrace_loadptr(daddr +
3019 			    offsetof(struct dev_info, devi_node_name));
3020 
3021 			daddr = dtrace_loadptr(daddr +
3022 			    offsetof(struct dev_info, devi_parent));
3023 
3024 			/*
3025 			 * If our parent is NULL (that is, if we're the root
3026 			 * node), we're going to use the special path
3027 			 * "devices".
3028 			 */
3029 			if (daddr == NULL)
3030 				s = "devices";
3031 
3032 			len = dtrace_strlen(s, size);
3033 			if (*flags & CPU_DTRACE_FAULT)
3034 				break;
3035 
3036 			if ((end -= (len + 1)) < start)
3037 				break;
3038 
3039 			for (i = 1; i <= len; i++)
3040 				end[i] = dtrace_load8((uintptr_t)s++);
3041 			*end = '/';
3042 
3043 			if (depth++ > dtrace_devdepth_max) {
3044 				*flags |= CPU_DTRACE_ILLOP;
3045 				break;
3046 			}
3047 		}
3048 
3049 		if (end < start)
3050 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3051 
3052 		if (daddr == NULL) {
3053 			regs[rd] = (uintptr_t)end;
3054 			mstate->dtms_scratch_ptr += size;
3055 		}
3056 
3057 		break;
3058 	}
3059 
3060 	case DIF_SUBR_STRJOIN: {
3061 		char *d = (char *)mstate->dtms_scratch_ptr;
3062 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3063 		uintptr_t s1 = tupregs[0].dttk_value;
3064 		uintptr_t s2 = tupregs[1].dttk_value;
3065 		int i = 0;
3066 
3067 		if (mstate->dtms_scratch_ptr + size >
3068 		    mstate->dtms_scratch_base + mstate->dtms_scratch_size) {
3069 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3070 			regs[rd] = NULL;
3071 			break;
3072 		}
3073 
3074 		for (;;) {
3075 			if (i >= size) {
3076 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3077 				regs[rd] = NULL;
3078 				break;
3079 			}
3080 
3081 			if ((d[i++] = dtrace_load8(s1++)) == '\0') {
3082 				i--;
3083 				break;
3084 			}
3085 		}
3086 
3087 		for (;;) {
3088 			if (i >= size) {
3089 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3090 				regs[rd] = NULL;
3091 				break;
3092 			}
3093 
3094 			if ((d[i++] = dtrace_load8(s2++)) == '\0')
3095 				break;
3096 		}
3097 
3098 		if (i < size) {
3099 			mstate->dtms_scratch_ptr += i;
3100 			regs[rd] = (uintptr_t)d;
3101 		}
3102 
3103 		break;
3104 	}
3105 
3106 	case DIF_SUBR_LLTOSTR: {
3107 		int64_t i = (int64_t)tupregs[0].dttk_value;
3108 		int64_t val = i < 0 ? i * -1 : i;
3109 		uint64_t size = 22;	/* enough room for 2^64 in decimal */
3110 		char *end = (char *)mstate->dtms_scratch_ptr + size - 1;
3111 
3112 		if (mstate->dtms_scratch_ptr + size >
3113 		    mstate->dtms_scratch_base + mstate->dtms_scratch_size) {
3114 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3115 			regs[rd] = NULL;
3116 			break;
3117 		}
3118 
3119 		for (*end-- = '\0'; val; val /= 10)
3120 			*end-- = '0' + (val % 10);
3121 
3122 		if (i == 0)
3123 			*end-- = '0';
3124 
3125 		if (i < 0)
3126 			*end-- = '-';
3127 
3128 		regs[rd] = (uintptr_t)end + 1;
3129 		mstate->dtms_scratch_ptr += size;
3130 		break;
3131 	}
3132 
3133 	case DIF_SUBR_DIRNAME:
3134 	case DIF_SUBR_BASENAME: {
3135 		char *dest = (char *)mstate->dtms_scratch_ptr;
3136 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3137 		uintptr_t src = tupregs[0].dttk_value;
3138 		int i, j, len = dtrace_strlen((char *)src, size);
3139 		int lastbase = -1, firstbase = -1, lastdir = -1;
3140 		int start, end;
3141 
3142 		if (mstate->dtms_scratch_ptr + size >
3143 		    mstate->dtms_scratch_base + mstate->dtms_scratch_size) {
3144 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3145 			regs[rd] = NULL;
3146 			break;
3147 		}
3148 
3149 		/*
3150 		 * The basename and dirname for a zero-length string is
3151 		 * defined to be "."
3152 		 */
3153 		if (len == 0) {
3154 			len = 1;
3155 			src = (uintptr_t)".";
3156 		}
3157 
3158 		/*
3159 		 * Start from the back of the string, moving back toward the
3160 		 * front until we see a character that isn't a slash.  That
3161 		 * character is the last character in the basename.
3162 		 */
3163 		for (i = len - 1; i >= 0; i--) {
3164 			if (dtrace_load8(src + i) != '/')
3165 				break;
3166 		}
3167 
3168 		if (i >= 0)
3169 			lastbase = i;
3170 
3171 		/*
3172 		 * Starting from the last character in the basename, move
3173 		 * towards the front until we find a slash.  The character
3174 		 * that we processed immediately before that is the first
3175 		 * character in the basename.
3176 		 */
3177 		for (; i >= 0; i--) {
3178 			if (dtrace_load8(src + i) == '/')
3179 				break;
3180 		}
3181 
3182 		if (i >= 0)
3183 			firstbase = i + 1;
3184 
3185 		/*
3186 		 * Now keep going until we find a non-slash character.  That
3187 		 * character is the last character in the dirname.
3188 		 */
3189 		for (; i >= 0; i--) {
3190 			if (dtrace_load8(src + i) != '/')
3191 				break;
3192 		}
3193 
3194 		if (i >= 0)
3195 			lastdir = i;
3196 
3197 		ASSERT(!(lastbase == -1 && firstbase != -1));
3198 		ASSERT(!(firstbase == -1 && lastdir != -1));
3199 
3200 		if (lastbase == -1) {
3201 			/*
3202 			 * We didn't find a non-slash character.  We know that
3203 			 * the length is non-zero, so the whole string must be
3204 			 * slashes.  In either the dirname or the basename
3205 			 * case, we return '/'.
3206 			 */
3207 			ASSERT(firstbase == -1);
3208 			firstbase = lastbase = lastdir = 0;
3209 		}
3210 
3211 		if (firstbase == -1) {
3212 			/*
3213 			 * The entire string consists only of a basename
3214 			 * component.  If we're looking for dirname, we need
3215 			 * to change our string to be just "."; if we're
3216 			 * looking for a basename, we'll just set the first
3217 			 * character of the basename to be 0.
3218 			 */
3219 			if (subr == DIF_SUBR_DIRNAME) {
3220 				ASSERT(lastdir == -1);
3221 				src = (uintptr_t)".";
3222 				lastdir = 0;
3223 			} else {
3224 				firstbase = 0;
3225 			}
3226 		}
3227 
3228 		if (subr == DIF_SUBR_DIRNAME) {
3229 			if (lastdir == -1) {
3230 				/*
3231 				 * We know that we have a slash in the name --
3232 				 * or lastdir would be set to 0, above.  And
3233 				 * because lastdir is -1, we know that this
3234 				 * slash must be the first character.  (That
3235 				 * is, the full string must be of the form
3236 				 * "/basename".)  In this case, the last
3237 				 * character of the directory name is 0.
3238 				 */
3239 				lastdir = 0;
3240 			}
3241 
3242 			start = 0;
3243 			end = lastdir;
3244 		} else {
3245 			ASSERT(subr == DIF_SUBR_BASENAME);
3246 			ASSERT(firstbase != -1 && lastbase != -1);
3247 			start = firstbase;
3248 			end = lastbase;
3249 		}
3250 
3251 		for (i = start, j = 0; i <= end && j < size - 1; i++, j++)
3252 			dest[j] = dtrace_load8(src + i);
3253 
3254 		dest[j] = '\0';
3255 		regs[rd] = (uintptr_t)dest;
3256 		mstate->dtms_scratch_ptr += size;
3257 		break;
3258 	}
3259 
3260 	case DIF_SUBR_CLEANPATH: {
3261 		char *dest = (char *)mstate->dtms_scratch_ptr, c;
3262 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3263 		uintptr_t src = tupregs[0].dttk_value;
3264 		int i = 0, j = 0;
3265 
3266 		if (mstate->dtms_scratch_ptr + size >
3267 		    mstate->dtms_scratch_base + mstate->dtms_scratch_size) {
3268 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3269 			regs[rd] = NULL;
3270 			break;
3271 		}
3272 
3273 		/*
3274 		 * Move forward, loading each character.
3275 		 */
3276 		do {
3277 			c = dtrace_load8(src + i++);
3278 next:
3279 			if (j + 5 >= size)	/* 5 = strlen("/..c\0") */
3280 				break;
3281 
3282 			if (c != '/') {
3283 				dest[j++] = c;
3284 				continue;
3285 			}
3286 
3287 			c = dtrace_load8(src + i++);
3288 
3289 			if (c == '/') {
3290 				/*
3291 				 * We have two slashes -- we can just advance
3292 				 * to the next character.
3293 				 */
3294 				goto next;
3295 			}
3296 
3297 			if (c != '.') {
3298 				/*
3299 				 * This is not "." and it's not ".." -- we can
3300 				 * just store the "/" and this character and
3301 				 * drive on.
3302 				 */
3303 				dest[j++] = '/';
3304 				dest[j++] = c;
3305 				continue;
3306 			}
3307 
3308 			c = dtrace_load8(src + i++);
3309 
3310 			if (c == '/') {
3311 				/*
3312 				 * This is a "/./" component.  We're not going
3313 				 * to store anything in the destination buffer;
3314 				 * we're just going to go to the next component.
3315 				 */
3316 				goto next;
3317 			}
3318 
3319 			if (c != '.') {
3320 				/*
3321 				 * This is not ".." -- we can just store the
3322 				 * "/." and this character and continue
3323 				 * processing.
3324 				 */
3325 				dest[j++] = '/';
3326 				dest[j++] = '.';
3327 				dest[j++] = c;
3328 				continue;
3329 			}
3330 
3331 			c = dtrace_load8(src + i++);
3332 
3333 			if (c != '/' && c != '\0') {
3334 				/*
3335 				 * This is not ".." -- it's "..[mumble]".
3336 				 * We'll store the "/.." and this character
3337 				 * and continue processing.
3338 				 */
3339 				dest[j++] = '/';
3340 				dest[j++] = '.';
3341 				dest[j++] = '.';
3342 				dest[j++] = c;
3343 				continue;
3344 			}
3345 
3346 			/*
3347 			 * This is "/../" or "/..\0".  We need to back up
3348 			 * our destination pointer until we find a "/".
3349 			 */
3350 			i--;
3351 			while (j != 0 && dest[--j] != '/')
3352 				continue;
3353 
3354 			if (c == '\0')
3355 				dest[++j] = '/';
3356 		} while (c != '\0');
3357 
3358 		dest[j] = '\0';
3359 		regs[rd] = (uintptr_t)dest;
3360 		mstate->dtms_scratch_ptr += size;
3361 		break;
3362 	}
3363 	}
3364 }
3365 
3366 /*
3367  * Emulate the execution of DTrace IR instructions specified by the given
3368  * DIF object.  This function is deliberately void of assertions as all of
3369  * the necessary checks are handled by a call to dtrace_difo_validate().
3370  */
3371 static uint64_t
3372 dtrace_dif_emulate(dtrace_difo_t *difo, dtrace_mstate_t *mstate,
3373     dtrace_vstate_t *vstate, dtrace_state_t *state)
3374 {
3375 	const dif_instr_t *text = difo->dtdo_buf;
3376 	const uint_t textlen = difo->dtdo_len;
3377 	const char *strtab = difo->dtdo_strtab;
3378 	const uint64_t *inttab = difo->dtdo_inttab;
3379 
3380 	uint64_t rval = 0;
3381 	dtrace_statvar_t *svar;
3382 	dtrace_dstate_t *dstate = &vstate->dtvs_dynvars;
3383 	dtrace_difv_t *v;
3384 	volatile uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
3385 	volatile uintptr_t *illval = &cpu_core[CPU->cpu_id].cpuc_dtrace_illval;
3386 
3387 	dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */
3388 	uint64_t regs[DIF_DIR_NREGS];
3389 
3390 	uint8_t cc_n = 0, cc_z = 0, cc_v = 0, cc_c = 0;
3391 	int64_t cc_r;
3392 	uint_t pc = 0, id, opc;
3393 	uint8_t ttop = 0;
3394 	dif_instr_t instr;
3395 	uint_t r1, r2, rd;
3396 
3397 	regs[DIF_REG_R0] = 0; 		/* %r0 is fixed at zero */
3398 
3399 	while (pc < textlen && !(*flags & CPU_DTRACE_FAULT)) {
3400 		opc = pc;
3401 
3402 		instr = text[pc++];
3403 		r1 = DIF_INSTR_R1(instr);
3404 		r2 = DIF_INSTR_R2(instr);
3405 		rd = DIF_INSTR_RD(instr);
3406 
3407 		switch (DIF_INSTR_OP(instr)) {
3408 		case DIF_OP_OR:
3409 			regs[rd] = regs[r1] | regs[r2];
3410 			break;
3411 		case DIF_OP_XOR:
3412 			regs[rd] = regs[r1] ^ regs[r2];
3413 			break;
3414 		case DIF_OP_AND:
3415 			regs[rd] = regs[r1] & regs[r2];
3416 			break;
3417 		case DIF_OP_SLL:
3418 			regs[rd] = regs[r1] << regs[r2];
3419 			break;
3420 		case DIF_OP_SRL:
3421 			regs[rd] = regs[r1] >> regs[r2];
3422 			break;
3423 		case DIF_OP_SUB:
3424 			regs[rd] = regs[r1] - regs[r2];
3425 			break;
3426 		case DIF_OP_ADD:
3427 			regs[rd] = regs[r1] + regs[r2];
3428 			break;
3429 		case DIF_OP_MUL:
3430 			regs[rd] = regs[r1] * regs[r2];
3431 			break;
3432 		case DIF_OP_SDIV:
3433 			if (regs[r2] == 0) {
3434 				regs[rd] = 0;
3435 				*flags |= CPU_DTRACE_DIVZERO;
3436 			} else {
3437 				regs[rd] = (int64_t)regs[r1] /
3438 				    (int64_t)regs[r2];
3439 			}
3440 			break;
3441 
3442 		case DIF_OP_UDIV:
3443 			if (regs[r2] == 0) {
3444 				regs[rd] = 0;
3445 				*flags |= CPU_DTRACE_DIVZERO;
3446 			} else {
3447 				regs[rd] = regs[r1] / regs[r2];
3448 			}
3449 			break;
3450 
3451 		case DIF_OP_SREM:
3452 			if (regs[r2] == 0) {
3453 				regs[rd] = 0;
3454 				*flags |= CPU_DTRACE_DIVZERO;
3455 			} else {
3456 				regs[rd] = (int64_t)regs[r1] %
3457 				    (int64_t)regs[r2];
3458 			}
3459 			break;
3460 
3461 		case DIF_OP_UREM:
3462 			if (regs[r2] == 0) {
3463 				regs[rd] = 0;
3464 				*flags |= CPU_DTRACE_DIVZERO;
3465 			} else {
3466 				regs[rd] = regs[r1] % regs[r2];
3467 			}
3468 			break;
3469 
3470 		case DIF_OP_NOT:
3471 			regs[rd] = ~regs[r1];
3472 			break;
3473 		case DIF_OP_MOV:
3474 			regs[rd] = regs[r1];
3475 			break;
3476 		case DIF_OP_CMP:
3477 			cc_r = regs[r1] - regs[r2];
3478 			cc_n = cc_r < 0;
3479 			cc_z = cc_r == 0;
3480 			cc_v = 0;
3481 			cc_c = regs[r1] < regs[r2];
3482 			break;
3483 		case DIF_OP_TST:
3484 			cc_n = cc_v = cc_c = 0;
3485 			cc_z = regs[r1] == 0;
3486 			break;
3487 		case DIF_OP_BA:
3488 			pc = DIF_INSTR_LABEL(instr);
3489 			break;
3490 		case DIF_OP_BE:
3491 			if (cc_z)
3492 				pc = DIF_INSTR_LABEL(instr);
3493 			break;
3494 		case DIF_OP_BNE:
3495 			if (cc_z == 0)
3496 				pc = DIF_INSTR_LABEL(instr);
3497 			break;
3498 		case DIF_OP_BG:
3499 			if ((cc_z | (cc_n ^ cc_v)) == 0)
3500 				pc = DIF_INSTR_LABEL(instr);
3501 			break;
3502 		case DIF_OP_BGU:
3503 			if ((cc_c | cc_z) == 0)
3504 				pc = DIF_INSTR_LABEL(instr);
3505 			break;
3506 		case DIF_OP_BGE:
3507 			if ((cc_n ^ cc_v) == 0)
3508 				pc = DIF_INSTR_LABEL(instr);
3509 			break;
3510 		case DIF_OP_BGEU:
3511 			if (cc_c == 0)
3512 				pc = DIF_INSTR_LABEL(instr);
3513 			break;
3514 		case DIF_OP_BL:
3515 			if (cc_n ^ cc_v)
3516 				pc = DIF_INSTR_LABEL(instr);
3517 			break;
3518 		case DIF_OP_BLU:
3519 			if (cc_c)
3520 				pc = DIF_INSTR_LABEL(instr);
3521 			break;
3522 		case DIF_OP_BLE:
3523 			if (cc_z | (cc_n ^ cc_v))
3524 				pc = DIF_INSTR_LABEL(instr);
3525 			break;
3526 		case DIF_OP_BLEU:
3527 			if (cc_c | cc_z)
3528 				pc = DIF_INSTR_LABEL(instr);
3529 			break;
3530 		case DIF_OP_RLDSB:
3531 			if (!dtrace_canstore(regs[r1], 1, mstate, vstate)) {
3532 				*flags |= CPU_DTRACE_KPRIV;
3533 				*illval = regs[r1];
3534 				break;
3535 			}
3536 			/*FALLTHROUGH*/
3537 		case DIF_OP_LDSB:
3538 			regs[rd] = (int8_t)dtrace_load8(regs[r1]);
3539 			break;
3540 		case DIF_OP_RLDSH:
3541 			if (!dtrace_canstore(regs[r1], 2, mstate, vstate)) {
3542 				*flags |= CPU_DTRACE_KPRIV;
3543 				*illval = regs[r1];
3544 				break;
3545 			}
3546 			/*FALLTHROUGH*/
3547 		case DIF_OP_LDSH:
3548 			regs[rd] = (int16_t)dtrace_load16(regs[r1]);
3549 			break;
3550 		case DIF_OP_RLDSW:
3551 			if (!dtrace_canstore(regs[r1], 4, mstate, vstate)) {
3552 				*flags |= CPU_DTRACE_KPRIV;
3553 				*illval = regs[r1];
3554 				break;
3555 			}
3556 			/*FALLTHROUGH*/
3557 		case DIF_OP_LDSW:
3558 			regs[rd] = (int32_t)dtrace_load32(regs[r1]);
3559 			break;
3560 		case DIF_OP_RLDUB:
3561 			if (!dtrace_canstore(regs[r1], 1, mstate, vstate)) {
3562 				*flags |= CPU_DTRACE_KPRIV;
3563 				*illval = regs[r1];
3564 				break;
3565 			}
3566 			/*FALLTHROUGH*/
3567 		case DIF_OP_LDUB:
3568 			regs[rd] = dtrace_load8(regs[r1]);
3569 			break;
3570 		case DIF_OP_RLDUH:
3571 			if (!dtrace_canstore(regs[r1], 2, mstate, vstate)) {
3572 				*flags |= CPU_DTRACE_KPRIV;
3573 				*illval = regs[r1];
3574 				break;
3575 			}
3576 			/*FALLTHROUGH*/
3577 		case DIF_OP_LDUH:
3578 			regs[rd] = dtrace_load16(regs[r1]);
3579 			break;
3580 		case DIF_OP_RLDUW:
3581 			if (!dtrace_canstore(regs[r1], 4, mstate, vstate)) {
3582 				*flags |= CPU_DTRACE_KPRIV;
3583 				*illval = regs[r1];
3584 				break;
3585 			}
3586 			/*FALLTHROUGH*/
3587 		case DIF_OP_LDUW:
3588 			regs[rd] = dtrace_load32(regs[r1]);
3589 			break;
3590 		case DIF_OP_RLDX:
3591 			if (!dtrace_canstore(regs[r1], 8, mstate, vstate)) {
3592 				*flags |= CPU_DTRACE_KPRIV;
3593 				*illval = regs[r1];
3594 				break;
3595 			}
3596 			/*FALLTHROUGH*/
3597 		case DIF_OP_LDX:
3598 			regs[rd] = dtrace_load64(regs[r1]);
3599 			break;
3600 		case DIF_OP_ULDSB:
3601 			regs[rd] = (int8_t)
3602 			    dtrace_fuword8((void *)(uintptr_t)regs[r1]);
3603 			break;
3604 		case DIF_OP_ULDSH:
3605 			regs[rd] = (int16_t)
3606 			    dtrace_fuword16((void *)(uintptr_t)regs[r1]);
3607 			break;
3608 		case DIF_OP_ULDSW:
3609 			regs[rd] = (int32_t)
3610 			    dtrace_fuword32((void *)(uintptr_t)regs[r1]);
3611 			break;
3612 		case DIF_OP_ULDUB:
3613 			regs[rd] =
3614 			    dtrace_fuword8((void *)(uintptr_t)regs[r1]);
3615 			break;
3616 		case DIF_OP_ULDUH:
3617 			regs[rd] =
3618 			    dtrace_fuword16((void *)(uintptr_t)regs[r1]);
3619 			break;
3620 		case DIF_OP_ULDUW:
3621 			regs[rd] =
3622 			    dtrace_fuword32((void *)(uintptr_t)regs[r1]);
3623 			break;
3624 		case DIF_OP_ULDX:
3625 			regs[rd] =
3626 			    dtrace_fuword64((void *)(uintptr_t)regs[r1]);
3627 			break;
3628 		case DIF_OP_RET:
3629 			rval = regs[rd];
3630 			break;
3631 		case DIF_OP_NOP:
3632 			break;
3633 		case DIF_OP_SETX:
3634 			regs[rd] = inttab[DIF_INSTR_INTEGER(instr)];
3635 			break;
3636 		case DIF_OP_SETS:
3637 			regs[rd] = (uint64_t)(uintptr_t)
3638 			    (strtab + DIF_INSTR_STRING(instr));
3639 			break;
3640 		case DIF_OP_SCMP:
3641 			cc_r = dtrace_strncmp((char *)(uintptr_t)regs[r1],
3642 			    (char *)(uintptr_t)regs[r2],
3643 			    state->dts_options[DTRACEOPT_STRSIZE]);
3644 
3645 			cc_n = cc_r < 0;
3646 			cc_z = cc_r == 0;
3647 			cc_v = cc_c = 0;
3648 			break;
3649 		case DIF_OP_LDGA:
3650 			regs[rd] = dtrace_dif_variable(mstate, state,
3651 			    r1, regs[r2]);
3652 			break;
3653 		case DIF_OP_LDGS:
3654 			id = DIF_INSTR_VAR(instr);
3655 
3656 			if (id >= DIF_VAR_OTHER_UBASE) {
3657 				uintptr_t a;
3658 
3659 				id -= DIF_VAR_OTHER_UBASE;
3660 				svar = vstate->dtvs_globals[id];
3661 				ASSERT(svar != NULL);
3662 				v = &svar->dtsv_var;
3663 
3664 				if (!(v->dtdv_type.dtdt_flags & DIF_TF_BYREF)) {
3665 					regs[rd] = svar->dtsv_data;
3666 					break;
3667 				}
3668 
3669 				a = (uintptr_t)svar->dtsv_data;
3670 
3671 				if (*(uint8_t *)a == UINT8_MAX) {
3672 					/*
3673 					 * If the 0th byte is set to UINT8_MAX
3674 					 * then this is to be treated as a
3675 					 * reference to a NULL variable.
3676 					 */
3677 					regs[rd] = NULL;
3678 				} else {
3679 					regs[rd] = a + sizeof (uint64_t);
3680 				}
3681 
3682 				break;
3683 			}
3684 
3685 			regs[rd] = dtrace_dif_variable(mstate, state, id, 0);
3686 			break;
3687 
3688 		case DIF_OP_STGS:
3689 			id = DIF_INSTR_VAR(instr);
3690 
3691 			ASSERT(id >= DIF_VAR_OTHER_UBASE);
3692 			id -= DIF_VAR_OTHER_UBASE;
3693 
3694 			svar = vstate->dtvs_globals[id];
3695 			ASSERT(svar != NULL);
3696 			v = &svar->dtsv_var;
3697 
3698 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
3699 				uintptr_t a = (uintptr_t)svar->dtsv_data;
3700 
3701 				ASSERT(a != NULL);
3702 				ASSERT(svar->dtsv_size != 0);
3703 
3704 				if (regs[rd] == NULL) {
3705 					*(uint8_t *)a = UINT8_MAX;
3706 					break;
3707 				} else {
3708 					*(uint8_t *)a = 0;
3709 					a += sizeof (uint64_t);
3710 				}
3711 
3712 				dtrace_vcopy((void *)(uintptr_t)regs[rd],
3713 				    (void *)a, &v->dtdv_type);
3714 				break;
3715 			}
3716 
3717 			svar->dtsv_data = regs[rd];
3718 			break;
3719 
3720 		case DIF_OP_LDTA:
3721 			/*
3722 			 * There are no DTrace built-in thread-local arrays at
3723 			 * present.  This opcode is saved for future work.
3724 			 */
3725 			*flags |= CPU_DTRACE_ILLOP;
3726 			regs[rd] = 0;
3727 			break;
3728 
3729 		case DIF_OP_LDLS:
3730 			id = DIF_INSTR_VAR(instr);
3731 
3732 			if (id < DIF_VAR_OTHER_UBASE) {
3733 				/*
3734 				 * For now, this has no meaning.
3735 				 */
3736 				regs[rd] = 0;
3737 				break;
3738 			}
3739 
3740 			id -= DIF_VAR_OTHER_UBASE;
3741 
3742 			ASSERT(id < vstate->dtvs_nlocals);
3743 			ASSERT(vstate->dtvs_locals != NULL);
3744 
3745 			svar = vstate->dtvs_locals[id];
3746 			ASSERT(svar != NULL);
3747 			v = &svar->dtsv_var;
3748 
3749 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
3750 				uintptr_t a = (uintptr_t)svar->dtsv_data;
3751 				size_t sz = v->dtdv_type.dtdt_size;
3752 
3753 				sz += sizeof (uint64_t);
3754 				ASSERT(svar->dtsv_size == NCPU * sz);
3755 				a += CPU->cpu_id * sz;
3756 
3757 				if (*(uint8_t *)a == UINT8_MAX) {
3758 					/*
3759 					 * If the 0th byte is set to UINT8_MAX
3760 					 * then this is to be treated as a
3761 					 * reference to a NULL variable.
3762 					 */
3763 					regs[rd] = NULL;
3764 				} else {
3765 					regs[rd] = a + sizeof (uint64_t);
3766 				}
3767 
3768 				break;
3769 			}
3770 
3771 			ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t));
3772 			regs[rd] = ((uint64_t *)svar->dtsv_data)[CPU->cpu_id];
3773 			break;
3774 
3775 		case DIF_OP_STLS:
3776 			id = DIF_INSTR_VAR(instr);
3777 
3778 			ASSERT(id >= DIF_VAR_OTHER_UBASE);
3779 			id -= DIF_VAR_OTHER_UBASE;
3780 			ASSERT(id < vstate->dtvs_nlocals);
3781 
3782 			ASSERT(vstate->dtvs_locals != NULL);
3783 			svar = vstate->dtvs_locals[id];
3784 			ASSERT(svar != NULL);
3785 			v = &svar->dtsv_var;
3786 
3787 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
3788 				uintptr_t a = (uintptr_t)svar->dtsv_data;
3789 				size_t sz = v->dtdv_type.dtdt_size;
3790 
3791 				sz += sizeof (uint64_t);
3792 				ASSERT(svar->dtsv_size == NCPU * sz);
3793 				a += CPU->cpu_id * sz;
3794 
3795 				if (regs[rd] == NULL) {
3796 					*(uint8_t *)a = UINT8_MAX;
3797 					break;
3798 				} else {
3799 					*(uint8_t *)a = 0;
3800 					a += sizeof (uint64_t);
3801 				}
3802 
3803 				dtrace_vcopy((void *)(uintptr_t)regs[rd],
3804 				    (void *)a, &v->dtdv_type);
3805 				break;
3806 			}
3807 
3808 			ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t));
3809 			((uint64_t *)svar->dtsv_data)[CPU->cpu_id] = regs[rd];
3810 			break;
3811 
3812 		case DIF_OP_LDTS: {
3813 			dtrace_dynvar_t *dvar;
3814 			dtrace_key_t *key;
3815 
3816 			id = DIF_INSTR_VAR(instr);
3817 			ASSERT(id >= DIF_VAR_OTHER_UBASE);
3818 			id -= DIF_VAR_OTHER_UBASE;
3819 			v = &vstate->dtvs_tlocals[id];
3820 
3821 			key = &tupregs[DIF_DTR_NREGS];
3822 			key[0].dttk_value = (uint64_t)id;
3823 			key[0].dttk_size = 0;
3824 			DTRACE_TLS_THRKEY(key[1].dttk_value);
3825 			key[1].dttk_size = 0;
3826 
3827 			dvar = dtrace_dynvar(dstate, 2, key,
3828 			    sizeof (uint64_t), DTRACE_DYNVAR_NOALLOC);
3829 
3830 			if (dvar == NULL) {
3831 				regs[rd] = 0;
3832 				break;
3833 			}
3834 
3835 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
3836 				regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data;
3837 			} else {
3838 				regs[rd] = *((uint64_t *)dvar->dtdv_data);
3839 			}
3840 
3841 			break;
3842 		}
3843 
3844 		case DIF_OP_STTS: {
3845 			dtrace_dynvar_t *dvar;
3846 			dtrace_key_t *key;
3847 
3848 			id = DIF_INSTR_VAR(instr);
3849 			ASSERT(id >= DIF_VAR_OTHER_UBASE);
3850 			id -= DIF_VAR_OTHER_UBASE;
3851 
3852 			key = &tupregs[DIF_DTR_NREGS];
3853 			key[0].dttk_value = (uint64_t)id;
3854 			key[0].dttk_size = 0;
3855 			DTRACE_TLS_THRKEY(key[1].dttk_value);
3856 			key[1].dttk_size = 0;
3857 			v = &vstate->dtvs_tlocals[id];
3858 
3859 			dvar = dtrace_dynvar(dstate, 2, key,
3860 			    v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
3861 			    v->dtdv_type.dtdt_size : sizeof (uint64_t),
3862 			    regs[rd] ? DTRACE_DYNVAR_ALLOC :
3863 			    DTRACE_DYNVAR_DEALLOC);
3864 
3865 			/*
3866 			 * Given that we're storing to thread-local data,
3867 			 * we need to flush our predicate cache.
3868 			 */
3869 			curthread->t_predcache = NULL;
3870 
3871 			if (dvar == NULL)
3872 				break;
3873 
3874 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
3875 				dtrace_vcopy((void *)(uintptr_t)regs[rd],
3876 				    dvar->dtdv_data, &v->dtdv_type);
3877 			} else {
3878 				*((uint64_t *)dvar->dtdv_data) = regs[rd];
3879 			}
3880 
3881 			break;
3882 		}
3883 
3884 		case DIF_OP_SRA:
3885 			regs[rd] = (int64_t)regs[r1] >> regs[r2];
3886 			break;
3887 
3888 		case DIF_OP_CALL:
3889 			dtrace_dif_subr(DIF_INSTR_SUBR(instr), rd,
3890 			    regs, tupregs, ttop, mstate, state);
3891 			break;
3892 
3893 		case DIF_OP_PUSHTR:
3894 			if (ttop == DIF_DTR_NREGS) {
3895 				*flags |= CPU_DTRACE_TUPOFLOW;
3896 				break;
3897 			}
3898 
3899 			if (r1 == DIF_TYPE_STRING) {
3900 				/*
3901 				 * If this is a string type and the size is 0,
3902 				 * we'll use the system-wide default string
3903 				 * size.  Note that we are _not_ looking at
3904 				 * the value of the DTRACEOPT_STRSIZE option;
3905 				 * had this been set, we would expect to have
3906 				 * a non-zero size value in the "pushtr".
3907 				 */
3908 				tupregs[ttop].dttk_size =
3909 				    dtrace_strlen((char *)(uintptr_t)regs[rd],
3910 				    regs[r2] ? regs[r2] :
3911 				    dtrace_strsize_default) + 1;
3912 			} else {
3913 				tupregs[ttop].dttk_size = regs[r2];
3914 			}
3915 
3916 			tupregs[ttop++].dttk_value = regs[rd];
3917 			break;
3918 
3919 		case DIF_OP_PUSHTV:
3920 			if (ttop == DIF_DTR_NREGS) {
3921 				*flags |= CPU_DTRACE_TUPOFLOW;
3922 				break;
3923 			}
3924 
3925 			tupregs[ttop].dttk_value = regs[rd];
3926 			tupregs[ttop++].dttk_size = 0;
3927 			break;
3928 
3929 		case DIF_OP_POPTS:
3930 			if (ttop != 0)
3931 				ttop--;
3932 			break;
3933 
3934 		case DIF_OP_FLUSHTS:
3935 			ttop = 0;
3936 			break;
3937 
3938 		case DIF_OP_LDGAA:
3939 		case DIF_OP_LDTAA: {
3940 			dtrace_dynvar_t *dvar;
3941 			dtrace_key_t *key = tupregs;
3942 			uint_t nkeys = ttop;
3943 
3944 			id = DIF_INSTR_VAR(instr);
3945 			ASSERT(id >= DIF_VAR_OTHER_UBASE);
3946 			id -= DIF_VAR_OTHER_UBASE;
3947 
3948 			key[nkeys].dttk_value = (uint64_t)id;
3949 			key[nkeys++].dttk_size = 0;
3950 
3951 			if (DIF_INSTR_OP(instr) == DIF_OP_LDTAA) {
3952 				DTRACE_TLS_THRKEY(key[nkeys].dttk_value);
3953 				key[nkeys++].dttk_size = 0;
3954 				v = &vstate->dtvs_tlocals[id];
3955 			} else {
3956 				v = &vstate->dtvs_globals[id]->dtsv_var;
3957 			}
3958 
3959 			dvar = dtrace_dynvar(dstate, nkeys, key,
3960 			    v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
3961 			    v->dtdv_type.dtdt_size : sizeof (uint64_t),
3962 			    DTRACE_DYNVAR_NOALLOC);
3963 
3964 			if (dvar == NULL) {
3965 				regs[rd] = 0;
3966 				break;
3967 			}
3968 
3969 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
3970 				regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data;
3971 			} else {
3972 				regs[rd] = *((uint64_t *)dvar->dtdv_data);
3973 			}
3974 
3975 			break;
3976 		}
3977 
3978 		case DIF_OP_STGAA:
3979 		case DIF_OP_STTAA: {
3980 			dtrace_dynvar_t *dvar;
3981 			dtrace_key_t *key = tupregs;
3982 			uint_t nkeys = ttop;
3983 
3984 			id = DIF_INSTR_VAR(instr);
3985 			ASSERT(id >= DIF_VAR_OTHER_UBASE);
3986 			id -= DIF_VAR_OTHER_UBASE;
3987 
3988 			key[nkeys].dttk_value = (uint64_t)id;
3989 			key[nkeys++].dttk_size = 0;
3990 
3991 			if (DIF_INSTR_OP(instr) == DIF_OP_STTAA) {
3992 				DTRACE_TLS_THRKEY(key[nkeys].dttk_value);
3993 				key[nkeys++].dttk_size = 0;
3994 				v = &vstate->dtvs_tlocals[id];
3995 			} else {
3996 				v = &vstate->dtvs_globals[id]->dtsv_var;
3997 			}
3998 
3999 			dvar = dtrace_dynvar(dstate, nkeys, key,
4000 			    v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
4001 			    v->dtdv_type.dtdt_size : sizeof (uint64_t),
4002 			    regs[rd] ? DTRACE_DYNVAR_ALLOC :
4003 			    DTRACE_DYNVAR_DEALLOC);
4004 
4005 			if (dvar == NULL)
4006 				break;
4007 
4008 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
4009 				dtrace_vcopy((void *)(uintptr_t)regs[rd],
4010 				    dvar->dtdv_data, &v->dtdv_type);
4011 			} else {
4012 				*((uint64_t *)dvar->dtdv_data) = regs[rd];
4013 			}
4014 
4015 			break;
4016 		}
4017 
4018 		case DIF_OP_ALLOCS: {
4019 			uintptr_t ptr = P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
4020 			size_t size = ptr - mstate->dtms_scratch_ptr + regs[r1];
4021 
4022 			if (mstate->dtms_scratch_ptr + size >
4023 			    mstate->dtms_scratch_base +
4024 			    mstate->dtms_scratch_size) {
4025 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4026 				regs[rd] = NULL;
4027 			} else {
4028 				dtrace_bzero((void *)
4029 				    mstate->dtms_scratch_ptr, size);
4030 				mstate->dtms_scratch_ptr += size;
4031 				regs[rd] = ptr;
4032 			}
4033 			break;
4034 		}
4035 
4036 		case DIF_OP_COPYS:
4037 			if (!dtrace_canstore(regs[rd], regs[r2],
4038 			    mstate, vstate)) {
4039 				*flags |= CPU_DTRACE_BADADDR;
4040 				*illval = regs[rd];
4041 				break;
4042 			}
4043 
4044 			dtrace_bcopy((void *)(uintptr_t)regs[r1],
4045 			    (void *)(uintptr_t)regs[rd], (size_t)regs[r2]);
4046 			break;
4047 
4048 		case DIF_OP_STB:
4049 			if (!dtrace_canstore(regs[rd], 1, mstate, vstate)) {
4050 				*flags |= CPU_DTRACE_BADADDR;
4051 				*illval = regs[rd];
4052 				break;
4053 			}
4054 			*((uint8_t *)(uintptr_t)regs[rd]) = (uint8_t)regs[r1];
4055 			break;
4056 
4057 		case DIF_OP_STH:
4058 			if (!dtrace_canstore(regs[rd], 2, mstate, vstate)) {
4059 				*flags |= CPU_DTRACE_BADADDR;
4060 				*illval = regs[rd];
4061 				break;
4062 			}
4063 			if (regs[rd] & 1) {
4064 				*flags |= CPU_DTRACE_BADALIGN;
4065 				*illval = regs[rd];
4066 				break;
4067 			}
4068 			*((uint16_t *)(uintptr_t)regs[rd]) = (uint16_t)regs[r1];
4069 			break;
4070 
4071 		case DIF_OP_STW:
4072 			if (!dtrace_canstore(regs[rd], 4, mstate, vstate)) {
4073 				*flags |= CPU_DTRACE_BADADDR;
4074 				*illval = regs[rd];
4075 				break;
4076 			}
4077 			if (regs[rd] & 3) {
4078 				*flags |= CPU_DTRACE_BADALIGN;
4079 				*illval = regs[rd];
4080 				break;
4081 			}
4082 			*((uint32_t *)(uintptr_t)regs[rd]) = (uint32_t)regs[r1];
4083 			break;
4084 
4085 		case DIF_OP_STX:
4086 			if (!dtrace_canstore(regs[rd], 8, mstate, vstate)) {
4087 				*flags |= CPU_DTRACE_BADADDR;
4088 				*illval = regs[rd];
4089 				break;
4090 			}
4091 			if (regs[rd] & 7) {
4092 				*flags |= CPU_DTRACE_BADALIGN;
4093 				*illval = regs[rd];
4094 				break;
4095 			}
4096 			*((uint64_t *)(uintptr_t)regs[rd]) = regs[r1];
4097 			break;
4098 		}
4099 	}
4100 
4101 	if (!(*flags & CPU_DTRACE_FAULT))
4102 		return (rval);
4103 
4104 	mstate->dtms_fltoffs = opc * sizeof (dif_instr_t);
4105 	mstate->dtms_present |= DTRACE_MSTATE_FLTOFFS;
4106 
4107 	return (0);
4108 }
4109 
4110 static void
4111 dtrace_action_breakpoint(dtrace_ecb_t *ecb)
4112 {
4113 	dtrace_probe_t *probe = ecb->dte_probe;
4114 	dtrace_provider_t *prov = probe->dtpr_provider;
4115 	char c[DTRACE_FULLNAMELEN + 80], *str;
4116 	char *msg = "dtrace: breakpoint action at probe ";
4117 	char *ecbmsg = " (ecb ";
4118 	uintptr_t mask = (0xf << (sizeof (uintptr_t) * NBBY / 4));
4119 	uintptr_t val = (uintptr_t)ecb;
4120 	int shift = (sizeof (uintptr_t) * NBBY) - 4, i = 0;
4121 
4122 	if (dtrace_destructive_disallow)
4123 		return;
4124 
4125 	/*
4126 	 * It's impossible to be taking action on the NULL probe.
4127 	 */
4128 	ASSERT(probe != NULL);
4129 
4130 	/*
4131 	 * This is a poor man's (destitute man's?) sprintf():  we want to
4132 	 * print the provider name, module name, function name and name of
4133 	 * the probe, along with the hex address of the ECB with the breakpoint
4134 	 * action -- all of which we must place in the character buffer by
4135 	 * hand.
4136 	 */
4137 	while (*msg != '\0')
4138 		c[i++] = *msg++;
4139 
4140 	for (str = prov->dtpv_name; *str != '\0'; str++)
4141 		c[i++] = *str;
4142 	c[i++] = ':';
4143 
4144 	for (str = probe->dtpr_mod; *str != '\0'; str++)
4145 		c[i++] = *str;
4146 	c[i++] = ':';
4147 
4148 	for (str = probe->dtpr_func; *str != '\0'; str++)
4149 		c[i++] = *str;
4150 	c[i++] = ':';
4151 
4152 	for (str = probe->dtpr_name; *str != '\0'; str++)
4153 		c[i++] = *str;
4154 
4155 	while (*ecbmsg != '\0')
4156 		c[i++] = *ecbmsg++;
4157 
4158 	while (shift >= 0) {
4159 		mask = (uintptr_t)0xf << shift;
4160 
4161 		if (val >= ((uintptr_t)1 << shift))
4162 			c[i++] = "0123456789abcdef"[(val & mask) >> shift];
4163 		shift -= 4;
4164 	}
4165 
4166 	c[i++] = ')';
4167 	c[i] = '\0';
4168 
4169 	debug_enter(c);
4170 }
4171 
4172 static void
4173 dtrace_action_panic(dtrace_ecb_t *ecb)
4174 {
4175 	dtrace_probe_t *probe = ecb->dte_probe;
4176 
4177 	/*
4178 	 * It's impossible to be taking action on the NULL probe.
4179 	 */
4180 	ASSERT(probe != NULL);
4181 
4182 	if (dtrace_destructive_disallow)
4183 		return;
4184 
4185 	if (dtrace_panicked != NULL)
4186 		return;
4187 
4188 	if (dtrace_casptr(&dtrace_panicked, NULL, curthread) != NULL)
4189 		return;
4190 
4191 	/*
4192 	 * We won the right to panic.  (We want to be sure that only one
4193 	 * thread calls panic() from dtrace_probe(), and that panic() is
4194 	 * called exactly once.)
4195 	 */
4196 	dtrace_panic("dtrace: panic action at probe %s:%s:%s:%s (ecb %p)",
4197 	    probe->dtpr_provider->dtpv_name, probe->dtpr_mod,
4198 	    probe->dtpr_func, probe->dtpr_name, (void *)ecb);
4199 }
4200 
4201 static void
4202 dtrace_action_raise(uint64_t sig)
4203 {
4204 	if (dtrace_destructive_disallow)
4205 		return;
4206 
4207 	if (sig >= NSIG) {
4208 		DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
4209 		return;
4210 	}
4211 
4212 	/*
4213 	 * raise() has a queue depth of 1 -- we ignore all subsequent
4214 	 * invocations of the raise() action.
4215 	 */
4216 	if (curthread->t_dtrace_sig == 0)
4217 		curthread->t_dtrace_sig = (uint8_t)sig;
4218 
4219 	curthread->t_sig_check = 1;
4220 	aston(curthread);
4221 }
4222 
4223 static void
4224 dtrace_action_stop(void)
4225 {
4226 	if (dtrace_destructive_disallow)
4227 		return;
4228 
4229 	if (!curthread->t_dtrace_stop) {
4230 		curthread->t_dtrace_stop = 1;
4231 		curthread->t_sig_check = 1;
4232 		aston(curthread);
4233 	}
4234 }
4235 
4236 static void
4237 dtrace_action_chill(dtrace_mstate_t *mstate, hrtime_t val)
4238 {
4239 	hrtime_t now;
4240 	volatile uint16_t *flags;
4241 	cpu_t *cpu = CPU;
4242 
4243 	if (dtrace_destructive_disallow)
4244 		return;
4245 
4246 	flags = (volatile uint16_t *)&cpu_core[cpu->cpu_id].cpuc_dtrace_flags;
4247 
4248 	now = dtrace_gethrtime();
4249 
4250 	if (now - cpu->cpu_dtrace_chillmark > dtrace_chill_interval) {
4251 		/*
4252 		 * We need to advance the mark to the current time.
4253 		 */
4254 		cpu->cpu_dtrace_chillmark = now;
4255 		cpu->cpu_dtrace_chilled = 0;
4256 	}
4257 
4258 	/*
4259 	 * Now check to see if the requested chill time would take us over
4260 	 * the maximum amount of time allowed in the chill interval.  (Or
4261 	 * worse, if the calculation itself induces overflow.)
4262 	 */
4263 	if (cpu->cpu_dtrace_chilled + val > dtrace_chill_max ||
4264 	    cpu->cpu_dtrace_chilled + val < cpu->cpu_dtrace_chilled) {
4265 		*flags |= CPU_DTRACE_ILLOP;
4266 		return;
4267 	}
4268 
4269 	while (dtrace_gethrtime() - now < val)
4270 		continue;
4271 
4272 	/*
4273 	 * Normally, we assure that the value of the variable "timestamp" does
4274 	 * not change within an ECB.  The presence of chill() represents an
4275 	 * exception to this rule, however.
4276 	 */
4277 	mstate->dtms_present &= ~DTRACE_MSTATE_TIMESTAMP;
4278 	cpu->cpu_dtrace_chilled += val;
4279 }
4280 
4281 static void
4282 dtrace_action_ustack(dtrace_mstate_t *mstate, dtrace_state_t *state,
4283     uint64_t *buf, uint64_t arg)
4284 {
4285 	int nframes = DTRACE_USTACK_NFRAMES(arg);
4286 	int strsize = DTRACE_USTACK_STRSIZE(arg);
4287 	uint64_t *pcs = &buf[1], *fps;
4288 	char *str = (char *)&pcs[nframes];
4289 	int size, offs = 0, i, j;
4290 	uintptr_t old = mstate->dtms_scratch_ptr, saved;
4291 	uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
4292 	char *sym;
4293 
4294 	/*
4295 	 * Should be taking a faster path if string space has not been
4296 	 * allocated.
4297 	 */
4298 	ASSERT(strsize != 0);
4299 
4300 	/*
4301 	 * We will first allocate some temporary space for the frame pointers.
4302 	 */
4303 	fps = (uint64_t *)P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
4304 	size = (uintptr_t)fps - mstate->dtms_scratch_ptr +
4305 	    (nframes * sizeof (uint64_t));
4306 
4307 	if (mstate->dtms_scratch_ptr + size >
4308 	    mstate->dtms_scratch_base + mstate->dtms_scratch_size) {
4309 		/*
4310 		 * Not enough room for our frame pointers -- need to indicate
4311 		 * that we ran out of scratch space.
4312 		 */
4313 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4314 		return;
4315 	}
4316 
4317 	mstate->dtms_scratch_ptr += size;
4318 	saved = mstate->dtms_scratch_ptr;
4319 
4320 	/*
4321 	 * Now get a stack with both program counters and frame pointers.
4322 	 */
4323 	DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4324 	dtrace_getufpstack(buf, fps, nframes + 1);
4325 	DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4326 
4327 	/*
4328 	 * If that faulted, we're cooked.
4329 	 */
4330 	if (*flags & CPU_DTRACE_FAULT)
4331 		goto out;
4332 
4333 	/*
4334 	 * Now we want to walk up the stack, calling the USTACK helper.  For
4335 	 * each iteration, we restore the scratch pointer.
4336 	 */
4337 	for (i = 0; i < nframes; i++) {
4338 		mstate->dtms_scratch_ptr = saved;
4339 
4340 		if (offs >= strsize)
4341 			break;
4342 
4343 		sym = (char *)(uintptr_t)dtrace_helper(
4344 		    DTRACE_HELPER_ACTION_USTACK,
4345 		    mstate, state, pcs[i], fps[i]);
4346 
4347 		/*
4348 		 * If we faulted while running the helper, we're going to
4349 		 * clear the fault and null out the corresponding string.
4350 		 */
4351 		if (*flags & CPU_DTRACE_FAULT) {
4352 			*flags &= ~CPU_DTRACE_FAULT;
4353 			str[offs++] = '\0';
4354 			continue;
4355 		}
4356 
4357 		if (sym == NULL) {
4358 			str[offs++] = '\0';
4359 			continue;
4360 		}
4361 
4362 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4363 
4364 		/*
4365 		 * Now copy in the string that the helper returned to us.
4366 		 */
4367 		for (j = 0; offs + j < strsize; j++) {
4368 			if ((str[offs + j] = sym[j]) == '\0')
4369 				break;
4370 		}
4371 
4372 		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4373 
4374 		/*
4375 		 * If we didn't have room for all of the last string, break
4376 		 * out -- the loop at the end will take clear of zeroing the
4377 		 * remainder of the string table.
4378 		 */
4379 		if (offs + j >= strsize)
4380 			break;
4381 
4382 		offs += j + 1;
4383 	}
4384 
4385 	while (offs < strsize)
4386 		str[offs++] = '\0';
4387 
4388 out:
4389 	mstate->dtms_scratch_ptr = old;
4390 }
4391 
4392 /*
4393  * If you're looking for the epicenter of DTrace, you just found it.  This
4394  * is the function called by the provider to fire a probe -- from which all
4395  * subsequent probe-context DTrace activity emanates.
4396  */
4397 void
4398 dtrace_probe(dtrace_id_t id, uintptr_t arg0, uintptr_t arg1,
4399     uintptr_t arg2, uintptr_t arg3, uintptr_t arg4)
4400 {
4401 	processorid_t cpuid;
4402 	dtrace_icookie_t cookie;
4403 	dtrace_probe_t *probe;
4404 	dtrace_mstate_t mstate;
4405 	dtrace_ecb_t *ecb;
4406 	dtrace_action_t *act;
4407 	intptr_t offs;
4408 	size_t size;
4409 	int vtime, onintr;
4410 	volatile uint16_t *flags;
4411 	hrtime_t now;
4412 
4413 	/*
4414 	 * Kick out immediately if this CPU is still being born (in which case
4415 	 * curthread will be set to -1)
4416 	 */
4417 	if ((uintptr_t)curthread & 1)
4418 		return;
4419 
4420 	cookie = dtrace_interrupt_disable();
4421 	probe = dtrace_probes[id - 1];
4422 	cpuid = CPU->cpu_id;
4423 	onintr = CPU_ON_INTR(CPU);
4424 
4425 	if (!onintr && probe->dtpr_predcache != DTRACE_CACHEIDNONE &&
4426 	    probe->dtpr_predcache == curthread->t_predcache) {
4427 		/*
4428 		 * We have hit in the predicate cache; we know that
4429 		 * this predicate would evaluate to be false.
4430 		 */
4431 		dtrace_interrupt_enable(cookie);
4432 		return;
4433 	}
4434 
4435 	if (panic_quiesce) {
4436 		/*
4437 		 * We don't trace anything if we're panicking.
4438 		 */
4439 		dtrace_interrupt_enable(cookie);
4440 		return;
4441 	}
4442 
4443 	now = dtrace_gethrtime();
4444 	vtime = dtrace_vtime_references != 0;
4445 
4446 	if (vtime && curthread->t_dtrace_start)
4447 		curthread->t_dtrace_vtime += now - curthread->t_dtrace_start;
4448 
4449 	mstate.dtms_probe = probe;
4450 	mstate.dtms_arg[0] = arg0;
4451 	mstate.dtms_arg[1] = arg1;
4452 	mstate.dtms_arg[2] = arg2;
4453 	mstate.dtms_arg[3] = arg3;
4454 	mstate.dtms_arg[4] = arg4;
4455 
4456 	flags = (volatile uint16_t *)&cpu_core[cpuid].cpuc_dtrace_flags;
4457 
4458 	for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) {
4459 		dtrace_predicate_t *pred = ecb->dte_predicate;
4460 		dtrace_state_t *state = ecb->dte_state;
4461 		dtrace_buffer_t *buf = &state->dts_buffer[cpuid];
4462 		dtrace_buffer_t *aggbuf = &state->dts_aggbuffer[cpuid];
4463 		dtrace_vstate_t *vstate = &state->dts_vstate;
4464 		dtrace_provider_t *prov = probe->dtpr_provider;
4465 		int committed = 0;
4466 		caddr_t tomax;
4467 
4468 		mstate.dtms_present = DTRACE_MSTATE_ARGS | DTRACE_MSTATE_PROBE;
4469 		*flags &= ~CPU_DTRACE_ERROR;
4470 
4471 		if (prov == dtrace_provider) {
4472 			/*
4473 			 * If dtrace itself is the provider of this probe,
4474 			 * we're only going to continue processing the ECB if
4475 			 * arg0 (the dtrace_state_t) is equal to the ECB's
4476 			 * creating state.  (This prevents disjoint consumers
4477 			 * from seeing one another's metaprobes.)
4478 			 */
4479 			if (arg0 != (uint64_t)(uintptr_t)state)
4480 				continue;
4481 		}
4482 
4483 		if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE) {
4484 			/*
4485 			 * We're not currently active.  If our provider isn't
4486 			 * the dtrace pseudo provider, we're not interested.
4487 			 */
4488 			if (prov != dtrace_provider)
4489 				continue;
4490 
4491 			/*
4492 			 * Now we must further check if we are in the BEGIN
4493 			 * probe.  If we are, we will only continue processing
4494 			 * if we're still in WARMUP -- if one BEGIN enabling
4495 			 * has invoked the exit() action, we don't want to
4496 			 * evaluate subsequent BEGIN enablings.
4497 			 */
4498 			if (probe->dtpr_id == dtrace_probeid_begin &&
4499 			    state->dts_activity != DTRACE_ACTIVITY_WARMUP) {
4500 				ASSERT(state->dts_activity ==
4501 				    DTRACE_ACTIVITY_DRAINING);
4502 				continue;
4503 			}
4504 		}
4505 
4506 		if (ecb->dte_cond) {
4507 			/*
4508 			 * If the dte_cond bits indicate that this
4509 			 * consumer is only allowed to see user-mode firings
4510 			 * of this probe, call the provider's dtps_usermode()
4511 			 * entry point to check that the probe was fired
4512 			 * while in a user context. Skip this ECB if that's
4513 			 * not the case.
4514 			 */
4515 			if ((ecb->dte_cond & DTRACE_COND_USERMODE) &&
4516 			    prov->dtpv_pops.dtps_usermode(prov->dtpv_arg,
4517 			    probe->dtpr_id, probe->dtpr_arg) == 0)
4518 				continue;
4519 
4520 			/*
4521 			 * This is more subtle than it looks. We have to be
4522 			 * absolutely certain that CRED() isn't going to
4523 			 * change out from under us so it's only legit to
4524 			 * examine that structure if we're in constrained
4525 			 * situations. Currently, the only times we'll this
4526 			 * check is if a non-super-user has enabled the
4527 			 * profile or syscall providers -- providers that
4528 			 * allow visibility of all processes. For the
4529 			 * profile case, the check above will ensure that
4530 			 * we're examining a user context.
4531 			 */
4532 			if (ecb->dte_cond & DTRACE_COND_OWNER) {
4533 				uid_t uid = ecb->dte_state->dts_cred.dcr_uid;
4534 				gid_t gid = ecb->dte_state->dts_cred.dcr_gid;
4535 				cred_t *cr;
4536 				proc_t *proc;
4537 
4538 				if ((cr = CRED()) == NULL ||
4539 				    uid != cr->cr_uid ||
4540 				    uid != cr->cr_ruid ||
4541 				    uid != cr->cr_suid ||
4542 				    gid != cr->cr_gid ||
4543 				    gid != cr->cr_rgid ||
4544 				    gid != cr->cr_sgid ||
4545 				    (proc = ttoproc(curthread)) == NULL ||
4546 				    (proc->p_flag & SNOCD))
4547 					continue;
4548 
4549 			}
4550 		}
4551 
4552 		if (now - state->dts_alive > dtrace_deadman_timeout) {
4553 			/*
4554 			 * We seem to be dead.  Unless we (a) have kernel
4555 			 * destructive permissions (b) have expicitly enabled
4556 			 * destructive actions and (c) destructive actions have
4557 			 * not been disabled, we're going to transition into
4558 			 * the KILLED state, from which no further processing
4559 			 * on this state will be performed.
4560 			 */
4561 			if (!dtrace_priv_kernel_destructive(state) ||
4562 			    !state->dts_cred.dcr_destructive ||
4563 			    dtrace_destructive_disallow) {
4564 				void *activity = &state->dts_activity;
4565 				dtrace_activity_t current;
4566 
4567 				do {
4568 					current = state->dts_activity;
4569 				} while (dtrace_cas32(activity, current,
4570 				    DTRACE_ACTIVITY_KILLED) != current);
4571 
4572 				continue;
4573 			}
4574 		}
4575 
4576 		if ((offs = dtrace_buffer_reserve(buf, ecb->dte_needed,
4577 		    ecb->dte_alignment, state, &mstate)) < 0)
4578 			continue;
4579 
4580 		tomax = buf->dtb_tomax;
4581 		ASSERT(tomax != NULL);
4582 
4583 		if (ecb->dte_size != 0)
4584 			DTRACE_STORE(uint32_t, tomax, offs, ecb->dte_epid);
4585 
4586 		mstate.dtms_epid = ecb->dte_epid;
4587 		mstate.dtms_present |= DTRACE_MSTATE_EPID;
4588 
4589 		if (pred != NULL) {
4590 			dtrace_difo_t *dp = pred->dtp_difo;
4591 			int rval;
4592 
4593 			rval = dtrace_dif_emulate(dp, &mstate, vstate, state);
4594 
4595 			if (!(*flags & CPU_DTRACE_ERROR) && !rval) {
4596 				dtrace_cacheid_t cid = probe->dtpr_predcache;
4597 
4598 				if (cid != DTRACE_CACHEIDNONE && !onintr) {
4599 					/*
4600 					 * Update the predicate cache...
4601 					 */
4602 					ASSERT(cid == pred->dtp_cacheid);
4603 					curthread->t_predcache = cid;
4604 				}
4605 
4606 				continue;
4607 			}
4608 		}
4609 
4610 		for (act = ecb->dte_action; !(*flags & CPU_DTRACE_ERROR) &&
4611 		    act != NULL; act = act->dta_next) {
4612 			uint64_t val;
4613 			size_t valoffs;
4614 			dtrace_difo_t *dp;
4615 			dtrace_recdesc_t *rec = &act->dta_rec;
4616 
4617 			size = rec->dtrd_size;
4618 			valoffs = offs + rec->dtrd_offset;
4619 
4620 			if (DTRACEACT_ISAGG(act->dta_kind)) {
4621 				uint64_t v = 0xbad;
4622 				dtrace_aggregation_t *agg;
4623 
4624 				agg = (dtrace_aggregation_t *)act;
4625 
4626 				if ((dp = act->dta_difo) != NULL)
4627 					v = dtrace_dif_emulate(dp,
4628 					    &mstate, vstate, state);
4629 
4630 				if (*flags & CPU_DTRACE_ERROR)
4631 					continue;
4632 
4633 				dtrace_aggregate(agg, buf, offs, aggbuf, v);
4634 				continue;
4635 			}
4636 
4637 			switch (act->dta_kind) {
4638 			case DTRACEACT_STOP:
4639 				if (dtrace_priv_proc_destructive(state))
4640 					dtrace_action_stop();
4641 				continue;
4642 
4643 			case DTRACEACT_BREAKPOINT:
4644 				if (dtrace_priv_kernel_destructive(state))
4645 					dtrace_action_breakpoint(ecb);
4646 				continue;
4647 
4648 			case DTRACEACT_PANIC:
4649 				if (dtrace_priv_kernel_destructive(state))
4650 					dtrace_action_panic(ecb);
4651 				continue;
4652 
4653 			case DTRACEACT_STACK:
4654 				if (!dtrace_priv_kernel(state))
4655 					continue;
4656 
4657 				dtrace_getpcstack((pc_t *)(tomax + valoffs),
4658 				    size / sizeof (pc_t), probe->dtpr_aframes,
4659 				    DTRACE_ANCHORED(probe) ? NULL :
4660 				    (uint32_t *)arg0);
4661 
4662 				continue;
4663 
4664 			case DTRACEACT_JSTACK:
4665 			case DTRACEACT_USTACK:
4666 				if (!dtrace_priv_proc(state))
4667 					continue;
4668 
4669 				if (DTRACE_USTACK_STRSIZE(rec->dtrd_arg) != 0 &&
4670 				    curproc->p_dtrace_helpers != NULL) {
4671 					/*
4672 					 * This is the slow path -- we have
4673 					 * allocated string space, and we're
4674 					 * getting the stack of a process that
4675 					 * has helpers.  Call into a separate
4676 					 * routine to perform this processing.
4677 					 */
4678 					dtrace_action_ustack(&mstate, state,
4679 					    (uint64_t *)(tomax + valoffs),
4680 					    rec->dtrd_arg);
4681 					continue;
4682 				}
4683 
4684 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4685 				dtrace_getupcstack((uint64_t *)
4686 				    (tomax + valoffs),
4687 				    DTRACE_USTACK_NFRAMES(rec->dtrd_arg) + 1);
4688 				DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4689 				continue;
4690 
4691 			default:
4692 				break;
4693 			}
4694 
4695 			dp = act->dta_difo;
4696 			ASSERT(dp != NULL);
4697 
4698 			val = dtrace_dif_emulate(dp, &mstate, vstate, state);
4699 
4700 			if (*flags & CPU_DTRACE_ERROR)
4701 				continue;
4702 
4703 			switch (act->dta_kind) {
4704 			case DTRACEACT_SPECULATE:
4705 				ASSERT(buf == &state->dts_buffer[cpuid]);
4706 				buf = dtrace_speculation_buffer(state,
4707 				    cpuid, val);
4708 
4709 				if (buf == NULL) {
4710 					*flags |= CPU_DTRACE_DROP;
4711 					continue;
4712 				}
4713 
4714 				offs = dtrace_buffer_reserve(buf,
4715 				    ecb->dte_needed, ecb->dte_alignment,
4716 				    state, NULL);
4717 
4718 				if (offs < 0) {
4719 					*flags |= CPU_DTRACE_DROP;
4720 					continue;
4721 				}
4722 
4723 				tomax = buf->dtb_tomax;
4724 				ASSERT(tomax != NULL);
4725 
4726 				if (ecb->dte_size != 0)
4727 					DTRACE_STORE(uint32_t, tomax, offs,
4728 					    ecb->dte_epid);
4729 				continue;
4730 
4731 			case DTRACEACT_CHILL:
4732 				if (dtrace_priv_kernel_destructive(state))
4733 					dtrace_action_chill(&mstate, val);
4734 				continue;
4735 
4736 			case DTRACEACT_RAISE:
4737 				if (dtrace_priv_proc_destructive(state))
4738 					dtrace_action_raise(val);
4739 				continue;
4740 
4741 			case DTRACEACT_COMMIT:
4742 				ASSERT(!committed);
4743 
4744 				/*
4745 				 * We need to commit our buffer state.
4746 				 */
4747 				if (ecb->dte_size)
4748 					buf->dtb_offset = offs + ecb->dte_size;
4749 				buf = &state->dts_buffer[cpuid];
4750 				dtrace_speculation_commit(state, cpuid, val);
4751 				committed = 1;
4752 				continue;
4753 
4754 			case DTRACEACT_DISCARD:
4755 				dtrace_speculation_discard(state, cpuid, val);
4756 				continue;
4757 
4758 			case DTRACEACT_DIFEXPR:
4759 			case DTRACEACT_LIBACT:
4760 			case DTRACEACT_PRINTF:
4761 			case DTRACEACT_PRINTA:
4762 			case DTRACEACT_SYSTEM:
4763 			case DTRACEACT_FREOPEN:
4764 				break;
4765 
4766 			case DTRACEACT_EXIT: {
4767 				/*
4768 				 * For the exit action, we are going to attempt
4769 				 * to atomically set our activity to be
4770 				 * draining.  If this fails (either because
4771 				 * another CPU has beat us to the exit action,
4772 				 * or because our current activity is something
4773 				 * other than ACTIVE or WARMUP), we will
4774 				 * continue.  This assures that the exit action
4775 				 * can be successfully recorded at most once
4776 				 * when we're in the ACTIVE state.  If we're
4777 				 * encountering the exit() action while in
4778 				 * COOLDOWN, however, we want to honor the new
4779 				 * status code.  (We know that we're the only
4780 				 * thread in COOLDOWN, so there is no race.)
4781 				 */
4782 				void *activity = &state->dts_activity;
4783 				dtrace_activity_t current = state->dts_activity;
4784 
4785 				if (current == DTRACE_ACTIVITY_COOLDOWN)
4786 					break;
4787 
4788 				if (current != DTRACE_ACTIVITY_WARMUP)
4789 					current = DTRACE_ACTIVITY_ACTIVE;
4790 
4791 				if (dtrace_cas32(activity, current,
4792 				    DTRACE_ACTIVITY_DRAINING) != current) {
4793 					*flags |= CPU_DTRACE_DROP;
4794 					continue;
4795 				}
4796 
4797 				break;
4798 			}
4799 
4800 			default:
4801 				ASSERT(0);
4802 			}
4803 
4804 			if (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF) {
4805 				uintptr_t end = valoffs + size;
4806 
4807 				/*
4808 				 * If this is a string, we're going to only
4809 				 * load until we find the zero byte -- after
4810 				 * which we'll store zero bytes.
4811 				 */
4812 				if (dp->dtdo_rtype.dtdt_kind ==
4813 				    DIF_TYPE_STRING) {
4814 					char c = '\0' + 1;
4815 					size_t s;
4816 
4817 					for (s = 0; s < size; s++) {
4818 						if (c != '\0')
4819 							c = dtrace_load8(val++);
4820 
4821 						DTRACE_STORE(uint8_t, tomax,
4822 						    valoffs++, c);
4823 					}
4824 
4825 					continue;
4826 				}
4827 
4828 				while (valoffs < end) {
4829 					DTRACE_STORE(uint8_t, tomax, valoffs++,
4830 					    dtrace_load8(val++));
4831 				}
4832 
4833 				continue;
4834 			}
4835 
4836 			switch (size) {
4837 			case 0:
4838 				break;
4839 
4840 			case sizeof (uint8_t):
4841 				DTRACE_STORE(uint8_t, tomax, valoffs, val);
4842 				break;
4843 			case sizeof (uint16_t):
4844 				DTRACE_STORE(uint16_t, tomax, valoffs, val);
4845 				break;
4846 			case sizeof (uint32_t):
4847 				DTRACE_STORE(uint32_t, tomax, valoffs, val);
4848 				break;
4849 			case sizeof (uint64_t):
4850 				DTRACE_STORE(uint64_t, tomax, valoffs, val);
4851 				break;
4852 			default:
4853 				/*
4854 				 * Any other size should have been returned by
4855 				 * reference, not by value.
4856 				 */
4857 				ASSERT(0);
4858 				break;
4859 			}
4860 		}
4861 
4862 		if (*flags & CPU_DTRACE_DROP)
4863 			continue;
4864 
4865 		if (*flags & CPU_DTRACE_FAULT) {
4866 			int ndx;
4867 			dtrace_action_t *err;
4868 
4869 			buf->dtb_errors++;
4870 
4871 			if (probe->dtpr_id == dtrace_probeid_error) {
4872 				/*
4873 				 * There's nothing we can do -- we had an
4874 				 * error on the error probe.
4875 				 */
4876 				dtrace_double_errors++;
4877 				continue;
4878 			}
4879 
4880 			if (vtime) {
4881 				/*
4882 				 * Before recursing on dtrace_probe(), we
4883 				 * need to explicitly clear out our start
4884 				 * time to prevent it from being accumulated
4885 				 * into t_dtrace_vtime.
4886 				 */
4887 				curthread->t_dtrace_start = 0;
4888 			}
4889 
4890 			/*
4891 			 * Iterate over the actions to figure out which action
4892 			 * we were processing when we experienced the error.
4893 			 * Note that act points _past_ the faulting action; if
4894 			 * act is ecb->dte_action, the fault was in the
4895 			 * predicate, if it's ecb->dte_action->dta_next it's
4896 			 * in action #1, and so on.
4897 			 */
4898 			for (err = ecb->dte_action, ndx = 0;
4899 			    err != act; err = err->dta_next, ndx++)
4900 				continue;
4901 
4902 			dtrace_probe_error(state, ecb->dte_epid, ndx,
4903 			    (mstate.dtms_present & DTRACE_MSTATE_FLTOFFS) ?
4904 			    mstate.dtms_fltoffs : -1,
4905 			    (*flags & CPU_DTRACE_BADADDR) ? DTRACEFLT_BADADDR :
4906 			    (*flags & CPU_DTRACE_ILLOP) ? DTRACEFLT_ILLOP :
4907 			    (*flags & CPU_DTRACE_DIVZERO) ? DTRACEFLT_DIVZERO :
4908 			    (*flags & CPU_DTRACE_KPRIV) ? DTRACEFLT_KPRIV :
4909 			    (*flags & CPU_DTRACE_UPRIV) ? DTRACEFLT_UPRIV :
4910 			    (*flags & CPU_DTRACE_TUPOFLOW) ?
4911 			    DTRACEFLT_TUPOFLOW :
4912 			    (*flags & CPU_DTRACE_BADALIGN) ?
4913 			    DTRACEFLT_BADALIGN :
4914 			    (*flags & CPU_DTRACE_NOSCRATCH) ?
4915 			    DTRACEFLT_NOSCRATCH : DTRACEFLT_UNKNOWN,
4916 			    cpu_core[cpuid].cpuc_dtrace_illval);
4917 
4918 			continue;
4919 		}
4920 
4921 		if (!committed)
4922 			buf->dtb_offset = offs + ecb->dte_size;
4923 	}
4924 
4925 	if (vtime)
4926 		curthread->t_dtrace_start = dtrace_gethrtime();
4927 
4928 	dtrace_interrupt_enable(cookie);
4929 }
4930 
4931 /*
4932  * DTrace Probe Hashing Functions
4933  *
4934  * The functions in this section (and indeed, the functions in remaining
4935  * sections) are not _called_ from probe context.  (Any exceptions to this are
4936  * marked with a "Note:".)  Rather, they are called from elsewhere in the
4937  * DTrace framework to look-up probes in, add probes to and remove probes from
4938  * the DTrace probe hashes.  (Each probe is hashed by each element of the
4939  * probe tuple -- allowing for fast lookups, regardless of what was
4940  * specified.)
4941  */
4942 static uint_t
4943 dtrace_hash_str(char *p)
4944 {
4945 	unsigned int g;
4946 	uint_t hval = 0;
4947 
4948 	while (*p) {
4949 		hval = (hval << 4) + *p++;
4950 		if ((g = (hval & 0xf0000000)) != 0)
4951 			hval ^= g >> 24;
4952 		hval &= ~g;
4953 	}
4954 	return (hval);
4955 }
4956 
4957 static dtrace_hash_t *
4958 dtrace_hash_create(uintptr_t stroffs, uintptr_t nextoffs, uintptr_t prevoffs)
4959 {
4960 	dtrace_hash_t *hash = kmem_zalloc(sizeof (dtrace_hash_t), KM_SLEEP);
4961 
4962 	hash->dth_stroffs = stroffs;
4963 	hash->dth_nextoffs = nextoffs;
4964 	hash->dth_prevoffs = prevoffs;
4965 
4966 	hash->dth_size = 1;
4967 	hash->dth_mask = hash->dth_size - 1;
4968 
4969 	hash->dth_tab = kmem_zalloc(hash->dth_size *
4970 	    sizeof (dtrace_hashbucket_t *), KM_SLEEP);
4971 
4972 	return (hash);
4973 }
4974 
4975 static void
4976 dtrace_hash_destroy(dtrace_hash_t *hash)
4977 {
4978 #ifdef DEBUG
4979 	int i;
4980 
4981 	for (i = 0; i < hash->dth_size; i++)
4982 		ASSERT(hash->dth_tab[i] == NULL);
4983 #endif
4984 
4985 	kmem_free(hash->dth_tab,
4986 	    hash->dth_size * sizeof (dtrace_hashbucket_t *));
4987 	kmem_free(hash, sizeof (dtrace_hash_t));
4988 }
4989 
4990 static void
4991 dtrace_hash_resize(dtrace_hash_t *hash)
4992 {
4993 	int size = hash->dth_size, i, ndx;
4994 	int new_size = hash->dth_size << 1;
4995 	int new_mask = new_size - 1;
4996 	dtrace_hashbucket_t **new_tab, *bucket, *next;
4997 
4998 	ASSERT((new_size & new_mask) == 0);
4999 
5000 	new_tab = kmem_zalloc(new_size * sizeof (void *), KM_SLEEP);
5001 
5002 	for (i = 0; i < size; i++) {
5003 		for (bucket = hash->dth_tab[i]; bucket != NULL; bucket = next) {
5004 			dtrace_probe_t *probe = bucket->dthb_chain;
5005 
5006 			ASSERT(probe != NULL);
5007 			ndx = DTRACE_HASHSTR(hash, probe) & new_mask;
5008 
5009 			next = bucket->dthb_next;
5010 			bucket->dthb_next = new_tab[ndx];
5011 			new_tab[ndx] = bucket;
5012 		}
5013 	}
5014 
5015 	kmem_free(hash->dth_tab, hash->dth_size * sizeof (void *));
5016 	hash->dth_tab = new_tab;
5017 	hash->dth_size = new_size;
5018 	hash->dth_mask = new_mask;
5019 }
5020 
5021 static void
5022 dtrace_hash_add(dtrace_hash_t *hash, dtrace_probe_t *new)
5023 {
5024 	int hashval = DTRACE_HASHSTR(hash, new);
5025 	int ndx = hashval & hash->dth_mask;
5026 	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
5027 	dtrace_probe_t **nextp, **prevp;
5028 
5029 	for (; bucket != NULL; bucket = bucket->dthb_next) {
5030 		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, new))
5031 			goto add;
5032 	}
5033 
5034 	if ((hash->dth_nbuckets >> 1) > hash->dth_size) {
5035 		dtrace_hash_resize(hash);
5036 		dtrace_hash_add(hash, new);
5037 		return;
5038 	}
5039 
5040 	bucket = kmem_zalloc(sizeof (dtrace_hashbucket_t), KM_SLEEP);
5041 	bucket->dthb_next = hash->dth_tab[ndx];
5042 	hash->dth_tab[ndx] = bucket;
5043 	hash->dth_nbuckets++;
5044 
5045 add:
5046 	nextp = DTRACE_HASHNEXT(hash, new);
5047 	ASSERT(*nextp == NULL && *(DTRACE_HASHPREV(hash, new)) == NULL);
5048 	*nextp = bucket->dthb_chain;
5049 
5050 	if (bucket->dthb_chain != NULL) {
5051 		prevp = DTRACE_HASHPREV(hash, bucket->dthb_chain);
5052 		ASSERT(*prevp == NULL);
5053 		*prevp = new;
5054 	}
5055 
5056 	bucket->dthb_chain = new;
5057 	bucket->dthb_len++;
5058 }
5059 
5060 static dtrace_probe_t *
5061 dtrace_hash_lookup(dtrace_hash_t *hash, dtrace_probe_t *template)
5062 {
5063 	int hashval = DTRACE_HASHSTR(hash, template);
5064 	int ndx = hashval & hash->dth_mask;
5065 	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
5066 
5067 	for (; bucket != NULL; bucket = bucket->dthb_next) {
5068 		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template))
5069 			return (bucket->dthb_chain);
5070 	}
5071 
5072 	return (NULL);
5073 }
5074 
5075 static int
5076 dtrace_hash_collisions(dtrace_hash_t *hash, dtrace_probe_t *template)
5077 {
5078 	int hashval = DTRACE_HASHSTR(hash, template);
5079 	int ndx = hashval & hash->dth_mask;
5080 	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
5081 
5082 	for (; bucket != NULL; bucket = bucket->dthb_next) {
5083 		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template))
5084 			return (bucket->dthb_len);
5085 	}
5086 
5087 	return (NULL);
5088 }
5089 
5090 static void
5091 dtrace_hash_remove(dtrace_hash_t *hash, dtrace_probe_t *probe)
5092 {
5093 	int ndx = DTRACE_HASHSTR(hash, probe) & hash->dth_mask;
5094 	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
5095 
5096 	dtrace_probe_t **prevp = DTRACE_HASHPREV(hash, probe);
5097 	dtrace_probe_t **nextp = DTRACE_HASHNEXT(hash, probe);
5098 
5099 	/*
5100 	 * Find the bucket that we're removing this probe from.
5101 	 */
5102 	for (; bucket != NULL; bucket = bucket->dthb_next) {
5103 		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, probe))
5104 			break;
5105 	}
5106 
5107 	ASSERT(bucket != NULL);
5108 
5109 	if (*prevp == NULL) {
5110 		if (*nextp == NULL) {
5111 			/*
5112 			 * The removed probe was the only probe on this
5113 			 * bucket; we need to remove the bucket.
5114 			 */
5115 			dtrace_hashbucket_t *b = hash->dth_tab[ndx];
5116 
5117 			ASSERT(bucket->dthb_chain == probe);
5118 			ASSERT(b != NULL);
5119 
5120 			if (b == bucket) {
5121 				hash->dth_tab[ndx] = bucket->dthb_next;
5122 			} else {
5123 				while (b->dthb_next != bucket)
5124 					b = b->dthb_next;
5125 				b->dthb_next = bucket->dthb_next;
5126 			}
5127 
5128 			ASSERT(hash->dth_nbuckets > 0);
5129 			hash->dth_nbuckets--;
5130 			kmem_free(bucket, sizeof (dtrace_hashbucket_t));
5131 			return;
5132 		}
5133 
5134 		bucket->dthb_chain = *nextp;
5135 	} else {
5136 		*(DTRACE_HASHNEXT(hash, *prevp)) = *nextp;
5137 	}
5138 
5139 	if (*nextp != NULL)
5140 		*(DTRACE_HASHPREV(hash, *nextp)) = *prevp;
5141 }
5142 
5143 /*
5144  * DTrace Utility Functions
5145  *
5146  * These are random utility functions that are _not_ called from probe context.
5147  */
5148 static int
5149 dtrace_badattr(const dtrace_attribute_t *a)
5150 {
5151 	return (a->dtat_name > DTRACE_STABILITY_MAX ||
5152 	    a->dtat_data > DTRACE_STABILITY_MAX ||
5153 	    a->dtat_class > DTRACE_CLASS_MAX);
5154 }
5155 
5156 /*
5157  * Return a duplicate copy of a string.  If the specified string is NULL,
5158  * this function returns a zero-length string.
5159  */
5160 static char *
5161 dtrace_strdup(const char *str)
5162 {
5163 	char *new = kmem_zalloc((str != NULL ? strlen(str) : 0) + 1, KM_SLEEP);
5164 
5165 	if (str != NULL)
5166 		(void) strcpy(new, str);
5167 
5168 	return (new);
5169 }
5170 
5171 #define	DTRACE_ISALPHA(c)	\
5172 	(((c) >= 'a' && (c) <= 'z') || ((c) >= 'A' && (c) <= 'Z'))
5173 
5174 static int
5175 dtrace_badname(const char *s)
5176 {
5177 	char c;
5178 
5179 	if (s == NULL || (c = *s++) == '\0')
5180 		return (0);
5181 
5182 	if (!DTRACE_ISALPHA(c) && c != '-' && c != '_' && c != '.')
5183 		return (1);
5184 
5185 	while ((c = *s++) != '\0') {
5186 		if (!DTRACE_ISALPHA(c) && (c < '0' || c > '9') &&
5187 		    c != '-' && c != '_' && c != '.' && c != '`')
5188 			return (1);
5189 	}
5190 
5191 	return (0);
5192 }
5193 
5194 static void
5195 dtrace_cred2priv(cred_t *cr, uint32_t *privp, uid_t *uidp)
5196 {
5197 	uint32_t priv;
5198 
5199 	*uidp = crgetuid(cr);
5200 	if (PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) {
5201 		priv = DTRACE_PRIV_ALL;
5202 	} else {
5203 		priv = 0;
5204 		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE))
5205 			priv |= DTRACE_PRIV_KERNEL | DTRACE_PRIV_USER;
5206 		else if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE))
5207 			priv |= DTRACE_PRIV_USER;
5208 		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE))
5209 			priv |= DTRACE_PRIV_PROC;
5210 		if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
5211 			priv |= DTRACE_PRIV_OWNER;
5212 	}
5213 
5214 	*privp = priv;
5215 }
5216 
5217 #ifdef DTRACE_ERRDEBUG
5218 static void
5219 dtrace_errdebug(const char *str)
5220 {
5221 	int hval = dtrace_hash_str((char *)str) % DTRACE_ERRHASHSZ;
5222 	int occupied = 0;
5223 
5224 	mutex_enter(&dtrace_errlock);
5225 	dtrace_errlast = str;
5226 	dtrace_errthread = curthread;
5227 
5228 	while (occupied++ < DTRACE_ERRHASHSZ) {
5229 		if (dtrace_errhash[hval].dter_msg == str) {
5230 			dtrace_errhash[hval].dter_count++;
5231 			goto out;
5232 		}
5233 
5234 		if (dtrace_errhash[hval].dter_msg != NULL) {
5235 			hval = (hval + 1) % DTRACE_ERRHASHSZ;
5236 			continue;
5237 		}
5238 
5239 		dtrace_errhash[hval].dter_msg = str;
5240 		dtrace_errhash[hval].dter_count = 1;
5241 		goto out;
5242 	}
5243 
5244 	panic("dtrace: undersized error hash");
5245 out:
5246 	mutex_exit(&dtrace_errlock);
5247 }
5248 #endif
5249 
5250 /*
5251  * DTrace Matching Functions
5252  *
5253  * These functions are used to match groups of probes, given some elements of
5254  * a probe tuple, or some globbed expressions for elements of a probe tuple.
5255  */
5256 static int
5257 dtrace_match_priv(const dtrace_probe_t *prp, uint32_t priv, uid_t uid)
5258 {
5259 	if (priv != DTRACE_PRIV_ALL) {
5260 		uint32_t ppriv = prp->dtpr_provider->dtpv_priv.dtpp_flags;
5261 		uint32_t match = priv & ppriv;
5262 
5263 		/*
5264 		 * No PRIV_DTRACE_* privileges...
5265 		 */
5266 		if ((priv & (DTRACE_PRIV_PROC | DTRACE_PRIV_USER |
5267 		    DTRACE_PRIV_KERNEL)) == 0)
5268 			return (0);
5269 
5270 		/*
5271 		 * No matching bits, but there were bits to match...
5272 		 */
5273 		if (match == 0 && ppriv != 0)
5274 			return (0);
5275 
5276 		/*
5277 		 * Need to have permissions to the process, but don't...
5278 		 */
5279 		if (((ppriv & ~match) & DTRACE_PRIV_OWNER) != 0 &&
5280 		    uid != prp->dtpr_provider->dtpv_priv.dtpp_uid)
5281 			return (0);
5282 	}
5283 
5284 	return (1);
5285 }
5286 
5287 /*
5288  * dtrace_match_probe compares a dtrace_probe_t to a pre-compiled key, which
5289  * consists of input pattern strings and an ops-vector to evaluate them.
5290  * This function returns >0 for match, 0 for no match, and <0 for error.
5291  */
5292 static int
5293 dtrace_match_probe(const dtrace_probe_t *prp, const dtrace_probekey_t *pkp,
5294     uint32_t priv, uid_t uid)
5295 {
5296 	dtrace_provider_t *pvp = prp->dtpr_provider;
5297 	int rv;
5298 
5299 	if (pvp->dtpv_defunct)
5300 		return (0);
5301 
5302 	if ((rv = pkp->dtpk_pmatch(pvp->dtpv_name, pkp->dtpk_prov, 0)) <= 0)
5303 		return (rv);
5304 
5305 	if ((rv = pkp->dtpk_mmatch(prp->dtpr_mod, pkp->dtpk_mod, 0)) <= 0)
5306 		return (rv);
5307 
5308 	if ((rv = pkp->dtpk_fmatch(prp->dtpr_func, pkp->dtpk_func, 0)) <= 0)
5309 		return (rv);
5310 
5311 	if ((rv = pkp->dtpk_nmatch(prp->dtpr_name, pkp->dtpk_name, 0)) <= 0)
5312 		return (rv);
5313 
5314 	if (dtrace_match_priv(prp, priv, uid) == 0)
5315 		return (0);
5316 
5317 	return (rv);
5318 }
5319 
5320 /*
5321  * dtrace_match_glob() is a safe kernel implementation of the gmatch(3GEN)
5322  * interface for matching a glob pattern 'p' to an input string 's'.  Unlike
5323  * libc's version, the kernel version only applies to 8-bit ASCII strings.
5324  * In addition, all of the recursion cases except for '*' matching have been
5325  * unwound.  For '*', we still implement recursive evaluation, but a depth
5326  * counter is maintained and matching is aborted if we recurse too deep.
5327  * The function returns 0 if no match, >0 if match, and <0 if recursion error.
5328  */
5329 static int
5330 dtrace_match_glob(const char *s, const char *p, int depth)
5331 {
5332 	const char *olds;
5333 	char s1, c;
5334 	int gs;
5335 
5336 	if (depth > DTRACE_PROBEKEY_MAXDEPTH)
5337 		return (-1);
5338 
5339 	if (s == NULL)
5340 		s = ""; /* treat NULL as empty string */
5341 
5342 top:
5343 	olds = s;
5344 	s1 = *s++;
5345 
5346 	if (p == NULL)
5347 		return (0);
5348 
5349 	if ((c = *p++) == '\0')
5350 		return (s1 == '\0');
5351 
5352 	switch (c) {
5353 	case '[': {
5354 		int ok = 0, notflag = 0;
5355 		char lc = '\0';
5356 
5357 		if (s1 == '\0')
5358 			return (0);
5359 
5360 		if (*p == '!') {
5361 			notflag = 1;
5362 			p++;
5363 		}
5364 
5365 		if ((c = *p++) == '\0')
5366 			return (0);
5367 
5368 		do {
5369 			if (c == '-' && lc != '\0' && *p != ']') {
5370 				if ((c = *p++) == '\0')
5371 					return (0);
5372 				if (c == '\\' && (c = *p++) == '\0')
5373 					return (0);
5374 
5375 				if (notflag) {
5376 					if (s1 < lc || s1 > c)
5377 						ok++;
5378 					else
5379 						return (0);
5380 				} else if (lc <= s1 && s1 <= c)
5381 					ok++;
5382 
5383 			} else if (c == '\\' && (c = *p++) == '\0')
5384 				return (0);
5385 
5386 			lc = c; /* save left-hand 'c' for next iteration */
5387 
5388 			if (notflag) {
5389 				if (s1 != c)
5390 					ok++;
5391 				else
5392 					return (0);
5393 			} else if (s1 == c)
5394 				ok++;
5395 
5396 			if ((c = *p++) == '\0')
5397 				return (0);
5398 
5399 		} while (c != ']');
5400 
5401 		if (ok)
5402 			goto top;
5403 
5404 		return (0);
5405 	}
5406 
5407 	case '\\':
5408 		if ((c = *p++) == '\0')
5409 			return (0);
5410 		/*FALLTHRU*/
5411 
5412 	default:
5413 		if (c != s1)
5414 			return (0);
5415 		/*FALLTHRU*/
5416 
5417 	case '?':
5418 		if (s1 != '\0')
5419 			goto top;
5420 		return (0);
5421 
5422 	case '*':
5423 		while (*p == '*')
5424 			p++; /* consecutive *'s are identical to a single one */
5425 
5426 		if (*p == '\0')
5427 			return (1);
5428 
5429 		for (s = olds; *s != '\0'; s++) {
5430 			if ((gs = dtrace_match_glob(s, p, depth + 1)) != 0)
5431 				return (gs);
5432 		}
5433 
5434 		return (0);
5435 	}
5436 }
5437 
5438 /*ARGSUSED*/
5439 static int
5440 dtrace_match_string(const char *s, const char *p, int depth)
5441 {
5442 	return (s != NULL && strcmp(s, p) == 0);
5443 }
5444 
5445 /*ARGSUSED*/
5446 static int
5447 dtrace_match_nul(const char *s, const char *p, int depth)
5448 {
5449 	return (1); /* always match the empty pattern */
5450 }
5451 
5452 /*ARGSUSED*/
5453 static int
5454 dtrace_match_nonzero(const char *s, const char *p, int depth)
5455 {
5456 	return (s != NULL && s[0] != '\0');
5457 }
5458 
5459 static int
5460 dtrace_match(const dtrace_probekey_t *pkp, uint32_t priv, uid_t uid,
5461     int (*matched)(dtrace_probe_t *, void *), void *arg)
5462 {
5463 	dtrace_probe_t template, *probe;
5464 	dtrace_hash_t *hash = NULL;
5465 	int len, best = INT_MAX, nmatched = 0;
5466 	dtrace_id_t i;
5467 
5468 	ASSERT(MUTEX_HELD(&dtrace_lock));
5469 
5470 	/*
5471 	 * If the probe ID is specified in the key, just lookup by ID and
5472 	 * invoke the match callback once if a matching probe is found.
5473 	 */
5474 	if (pkp->dtpk_id != DTRACE_IDNONE) {
5475 		if ((probe = dtrace_probe_lookup_id(pkp->dtpk_id)) != NULL &&
5476 		    dtrace_match_probe(probe, pkp, priv, uid) > 0) {
5477 			(void) (*matched)(probe, arg);
5478 			nmatched++;
5479 		}
5480 		return (nmatched);
5481 	}
5482 
5483 	template.dtpr_mod = (char *)pkp->dtpk_mod;
5484 	template.dtpr_func = (char *)pkp->dtpk_func;
5485 	template.dtpr_name = (char *)pkp->dtpk_name;
5486 
5487 	/*
5488 	 * We want to find the most distinct of the module name, function
5489 	 * name, and name.  So for each one that is not a glob pattern or
5490 	 * empty string, we perform a lookup in the corresponding hash and
5491 	 * use the hash table with the fewest collisions to do our search.
5492 	 */
5493 	if (pkp->dtpk_mmatch == &dtrace_match_string &&
5494 	    (len = dtrace_hash_collisions(dtrace_bymod, &template)) < best) {
5495 		best = len;
5496 		hash = dtrace_bymod;
5497 	}
5498 
5499 	if (pkp->dtpk_fmatch == &dtrace_match_string &&
5500 	    (len = dtrace_hash_collisions(dtrace_byfunc, &template)) < best) {
5501 		best = len;
5502 		hash = dtrace_byfunc;
5503 	}
5504 
5505 	if (pkp->dtpk_nmatch == &dtrace_match_string &&
5506 	    (len = dtrace_hash_collisions(dtrace_byname, &template)) < best) {
5507 		best = len;
5508 		hash = dtrace_byname;
5509 	}
5510 
5511 	/*
5512 	 * If we did not select a hash table, iterate over every probe and
5513 	 * invoke our callback for each one that matches our input probe key.
5514 	 */
5515 	if (hash == NULL) {
5516 		for (i = 0; i < dtrace_nprobes; i++) {
5517 			if ((probe = dtrace_probes[i]) == NULL ||
5518 			    dtrace_match_probe(probe, pkp, priv, uid) <= 0)
5519 				continue;
5520 
5521 			nmatched++;
5522 
5523 			if ((*matched)(probe, arg) != DTRACE_MATCH_NEXT)
5524 				break;
5525 		}
5526 
5527 		return (nmatched);
5528 	}
5529 
5530 	/*
5531 	 * If we selected a hash table, iterate over each probe of the same key
5532 	 * name and invoke the callback for every probe that matches the other
5533 	 * attributes of our input probe key.
5534 	 */
5535 	for (probe = dtrace_hash_lookup(hash, &template); probe != NULL;
5536 	    probe = *(DTRACE_HASHNEXT(hash, probe))) {
5537 
5538 		if (dtrace_match_probe(probe, pkp, priv, uid) <= 0)
5539 			continue;
5540 
5541 		nmatched++;
5542 
5543 		if ((*matched)(probe, arg) != DTRACE_MATCH_NEXT)
5544 			break;
5545 	}
5546 
5547 	return (nmatched);
5548 }
5549 
5550 /*
5551  * Return the function pointer dtrace_probecmp() should use to compare the
5552  * specified pattern with a string.  For NULL or empty patterns, we select
5553  * dtrace_match_nul().  For glob pattern strings, we use dtrace_match_glob().
5554  * For non-empty non-glob strings, we use dtrace_match_string().
5555  */
5556 static dtrace_probekey_f *
5557 dtrace_probekey_func(const char *p)
5558 {
5559 	char c;
5560 
5561 	if (p == NULL || *p == '\0')
5562 		return (&dtrace_match_nul);
5563 
5564 	while ((c = *p++) != '\0') {
5565 		if (c == '[' || c == '?' || c == '*' || c == '\\')
5566 			return (&dtrace_match_glob);
5567 	}
5568 
5569 	return (&dtrace_match_string);
5570 }
5571 
5572 /*
5573  * Build a probe comparison key for use with dtrace_match_probe() from the
5574  * given probe description.  By convention, a null key only matches anchored
5575  * probes: if each field is the empty string, reset dtpk_fmatch to
5576  * dtrace_match_nonzero().
5577  */
5578 static void
5579 dtrace_probekey(const dtrace_probedesc_t *pdp, dtrace_probekey_t *pkp)
5580 {
5581 	pkp->dtpk_prov = pdp->dtpd_provider;
5582 	pkp->dtpk_pmatch = dtrace_probekey_func(pdp->dtpd_provider);
5583 
5584 	pkp->dtpk_mod = pdp->dtpd_mod;
5585 	pkp->dtpk_mmatch = dtrace_probekey_func(pdp->dtpd_mod);
5586 
5587 	pkp->dtpk_func = pdp->dtpd_func;
5588 	pkp->dtpk_fmatch = dtrace_probekey_func(pdp->dtpd_func);
5589 
5590 	pkp->dtpk_name = pdp->dtpd_name;
5591 	pkp->dtpk_nmatch = dtrace_probekey_func(pdp->dtpd_name);
5592 
5593 	pkp->dtpk_id = pdp->dtpd_id;
5594 
5595 	if (pkp->dtpk_id == DTRACE_IDNONE &&
5596 	    pkp->dtpk_pmatch == &dtrace_match_nul &&
5597 	    pkp->dtpk_mmatch == &dtrace_match_nul &&
5598 	    pkp->dtpk_fmatch == &dtrace_match_nul &&
5599 	    pkp->dtpk_nmatch == &dtrace_match_nul)
5600 		pkp->dtpk_fmatch = &dtrace_match_nonzero;
5601 }
5602 
5603 /*
5604  * DTrace Provider-to-Framework API Functions
5605  *
5606  * These functions implement much of the Provider-to-Framework API, as
5607  * described in <sys/dtrace.h>.  The parts of the API not in this section are
5608  * the functions in the API for probe management (found below), and
5609  * dtrace_probe() itself (found above).
5610  */
5611 
5612 /*
5613  * Register the calling provider with the DTrace framework.  This should
5614  * generally be called by DTrace providers in their attach(9E) entry point.
5615  */
5616 int
5617 dtrace_register(const char *name, const dtrace_pattr_t *pap, uint32_t priv,
5618     uid_t uid, const dtrace_pops_t *pops, void *arg, dtrace_provider_id_t *idp)
5619 {
5620 	dtrace_provider_t *provider;
5621 
5622 	if (name == NULL || pap == NULL || pops == NULL || idp == NULL) {
5623 		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
5624 		    "arguments", name ? name : "<NULL>");
5625 		return (EINVAL);
5626 	}
5627 
5628 	if (name[0] == '\0' || dtrace_badname(name)) {
5629 		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
5630 		    "provider name", name);
5631 		return (EINVAL);
5632 	}
5633 
5634 	if ((pops->dtps_provide == NULL && pops->dtps_provide_module == NULL) ||
5635 	    pops->dtps_enable == NULL || pops->dtps_disable == NULL ||
5636 	    pops->dtps_destroy == NULL ||
5637 	    ((pops->dtps_resume == NULL) != (pops->dtps_suspend == NULL))) {
5638 		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
5639 		    "provider ops", name);
5640 		return (EINVAL);
5641 	}
5642 
5643 	if (dtrace_badattr(&pap->dtpa_provider) ||
5644 	    dtrace_badattr(&pap->dtpa_mod) ||
5645 	    dtrace_badattr(&pap->dtpa_func) ||
5646 	    dtrace_badattr(&pap->dtpa_name) ||
5647 	    dtrace_badattr(&pap->dtpa_args)) {
5648 		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
5649 		    "provider attributes", name);
5650 		return (EINVAL);
5651 	}
5652 
5653 	if (priv & ~DTRACE_PRIV_ALL) {
5654 		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
5655 		    "privilege attributes", name);
5656 		return (EINVAL);
5657 	}
5658 
5659 	if ((priv & DTRACE_PRIV_KERNEL) &&
5660 	    (priv & (DTRACE_PRIV_USER | DTRACE_PRIV_OWNER)) &&
5661 	    pops->dtps_usermode == NULL) {
5662 		cmn_err(CE_WARN, "failed to register provider '%s': need "
5663 		    "dtps_usermode() op for given privilege attributes", name);
5664 		return (EINVAL);
5665 	}
5666 
5667 	provider = kmem_zalloc(sizeof (dtrace_provider_t), KM_SLEEP);
5668 	provider->dtpv_name = kmem_alloc(strlen(name) + 1, KM_SLEEP);
5669 	(void) strcpy(provider->dtpv_name, name);
5670 
5671 	provider->dtpv_attr = *pap;
5672 	provider->dtpv_priv.dtpp_flags = priv;
5673 	provider->dtpv_priv.dtpp_uid = uid;
5674 	provider->dtpv_pops = *pops;
5675 
5676 	if (pops->dtps_provide == NULL) {
5677 		ASSERT(pops->dtps_provide_module != NULL);
5678 		provider->dtpv_pops.dtps_provide =
5679 		    (void (*)(void *, const dtrace_probedesc_t *))dtrace_nullop;
5680 	}
5681 
5682 	if (pops->dtps_provide_module == NULL) {
5683 		ASSERT(pops->dtps_provide != NULL);
5684 		provider->dtpv_pops.dtps_provide_module =
5685 		    (void (*)(void *, struct modctl *))dtrace_nullop;
5686 	}
5687 
5688 	if (pops->dtps_suspend == NULL) {
5689 		ASSERT(pops->dtps_resume == NULL);
5690 		provider->dtpv_pops.dtps_suspend =
5691 		    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop;
5692 		provider->dtpv_pops.dtps_resume =
5693 		    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop;
5694 	}
5695 
5696 	provider->dtpv_arg = arg;
5697 	*idp = (dtrace_provider_id_t)provider;
5698 
5699 	if (pops == &dtrace_provider_ops) {
5700 		ASSERT(MUTEX_HELD(&dtrace_provider_lock));
5701 		ASSERT(MUTEX_HELD(&dtrace_lock));
5702 		ASSERT(dtrace_anon.dta_enabling == NULL);
5703 
5704 		/*
5705 		 * We make sure that the DTrace provider is at the head of
5706 		 * the provider chain.
5707 		 */
5708 		provider->dtpv_next = dtrace_provider;
5709 		dtrace_provider = provider;
5710 		return (0);
5711 	}
5712 
5713 	mutex_enter(&dtrace_provider_lock);
5714 	mutex_enter(&dtrace_lock);
5715 
5716 	/*
5717 	 * If there is at least one provider registered, we'll add this
5718 	 * provider after the first provider.
5719 	 */
5720 	if (dtrace_provider != NULL) {
5721 		provider->dtpv_next = dtrace_provider->dtpv_next;
5722 		dtrace_provider->dtpv_next = provider;
5723 	} else {
5724 		dtrace_provider = provider;
5725 	}
5726 
5727 	if (dtrace_retained != NULL) {
5728 		dtrace_enabling_provide(provider);
5729 
5730 		/*
5731 		 * Now we need to call dtrace_enabling_matchall() -- which
5732 		 * will acquire cpu_lock and dtrace_lock.  We therefore need
5733 		 * to drop all of our locks before calling into it...
5734 		 */
5735 		mutex_exit(&dtrace_lock);
5736 		mutex_exit(&dtrace_provider_lock);
5737 		dtrace_enabling_matchall();
5738 
5739 		return (0);
5740 	}
5741 
5742 	mutex_exit(&dtrace_lock);
5743 	mutex_exit(&dtrace_provider_lock);
5744 
5745 	return (0);
5746 }
5747 
5748 /*
5749  * Unregister the specified provider from the DTrace framework.  This should
5750  * generally be called by DTrace providers in their detach(9E) entry point.
5751  */
5752 int
5753 dtrace_unregister(dtrace_provider_id_t id)
5754 {
5755 	dtrace_provider_t *old = (dtrace_provider_t *)id;
5756 	dtrace_provider_t *prev = NULL;
5757 	int i, self = 0;
5758 	dtrace_probe_t *probe, *first = NULL;
5759 
5760 	if (old->dtpv_pops.dtps_enable ==
5761 	    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop) {
5762 		/*
5763 		 * If DTrace itself is the provider, we're called with locks
5764 		 * already held.
5765 		 */
5766 		ASSERT(old == dtrace_provider);
5767 		ASSERT(dtrace_devi != NULL);
5768 		ASSERT(MUTEX_HELD(&dtrace_provider_lock));
5769 		ASSERT(MUTEX_HELD(&dtrace_lock));
5770 		self = 1;
5771 
5772 		if (dtrace_provider->dtpv_next != NULL) {
5773 			/*
5774 			 * There's another provider here; return failure.
5775 			 */
5776 			return (EBUSY);
5777 		}
5778 	} else {
5779 		mutex_enter(&dtrace_provider_lock);
5780 		mutex_enter(&mod_lock);
5781 		mutex_enter(&dtrace_lock);
5782 	}
5783 
5784 	/*
5785 	 * If anyone has /dev/dtrace open, or if there are anonymous enabled
5786 	 * probes, we refuse to let providers slither away, unless this
5787 	 * provider has already been explicitly invalidated.
5788 	 */
5789 	if (!old->dtpv_defunct &&
5790 	    (dtrace_opens || (dtrace_anon.dta_state != NULL &&
5791 	    dtrace_anon.dta_state->dts_necbs > 0))) {
5792 		if (!self) {
5793 			mutex_exit(&dtrace_lock);
5794 			mutex_exit(&mod_lock);
5795 			mutex_exit(&dtrace_provider_lock);
5796 		}
5797 		return (EBUSY);
5798 	}
5799 
5800 	/*
5801 	 * Attempt to destroy the probes associated with this provider.
5802 	 */
5803 	for (i = 0; i < dtrace_nprobes; i++) {
5804 		if ((probe = dtrace_probes[i]) == NULL)
5805 			continue;
5806 
5807 		if (probe->dtpr_provider != old)
5808 			continue;
5809 
5810 		if (probe->dtpr_ecb == NULL)
5811 			continue;
5812 
5813 		/*
5814 		 * We have at least one ECB; we can't remove this provider.
5815 		 */
5816 		if (!self) {
5817 			mutex_exit(&dtrace_lock);
5818 			mutex_exit(&mod_lock);
5819 			mutex_exit(&dtrace_provider_lock);
5820 		}
5821 		return (EBUSY);
5822 	}
5823 
5824 	/*
5825 	 * All of the probes for this provider are disabled; we can safely
5826 	 * remove all of them from their hash chains and from the probe array.
5827 	 */
5828 	for (i = 0; i < dtrace_nprobes; i++) {
5829 		if ((probe = dtrace_probes[i]) == NULL)
5830 			continue;
5831 
5832 		if (probe->dtpr_provider != old)
5833 			continue;
5834 
5835 		dtrace_probes[i] = NULL;
5836 
5837 		dtrace_hash_remove(dtrace_bymod, probe);
5838 		dtrace_hash_remove(dtrace_byfunc, probe);
5839 		dtrace_hash_remove(dtrace_byname, probe);
5840 
5841 		if (first == NULL) {
5842 			first = probe;
5843 			probe->dtpr_nextmod = NULL;
5844 		} else {
5845 			probe->dtpr_nextmod = first;
5846 			first = probe;
5847 		}
5848 	}
5849 
5850 	/*
5851 	 * The provider's probes have been removed from the hash chains and
5852 	 * from the probe array.  Now issue a dtrace_sync() to be sure that
5853 	 * everyone has cleared out from any probe array processing.
5854 	 */
5855 	dtrace_sync();
5856 
5857 	for (probe = first; probe != NULL; probe = first) {
5858 		first = probe->dtpr_nextmod;
5859 
5860 		old->dtpv_pops.dtps_destroy(old->dtpv_arg, probe->dtpr_id,
5861 		    probe->dtpr_arg);
5862 		kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
5863 		kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
5864 		kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
5865 		vmem_free(dtrace_arena, (void *)(uintptr_t)(probe->dtpr_id), 1);
5866 		kmem_free(probe, sizeof (dtrace_probe_t));
5867 	}
5868 
5869 	if ((prev = dtrace_provider) == old) {
5870 		ASSERT(self || dtrace_devi == NULL);
5871 		ASSERT(old->dtpv_next == NULL || dtrace_devi == NULL);
5872 		dtrace_provider = old->dtpv_next;
5873 	} else {
5874 		while (prev != NULL && prev->dtpv_next != old)
5875 			prev = prev->dtpv_next;
5876 
5877 		if (prev == NULL) {
5878 			panic("attempt to unregister non-existent "
5879 			    "dtrace provider %p\n", (void *)id);
5880 		}
5881 
5882 		prev->dtpv_next = old->dtpv_next;
5883 	}
5884 
5885 	if (!self) {
5886 		mutex_exit(&dtrace_lock);
5887 		mutex_exit(&mod_lock);
5888 		mutex_exit(&dtrace_provider_lock);
5889 	}
5890 
5891 	kmem_free(old->dtpv_name, strlen(old->dtpv_name) + 1);
5892 	kmem_free(old, sizeof (dtrace_provider_t));
5893 
5894 	return (0);
5895 }
5896 
5897 /*
5898  * Invalidate the specified provider.  All subsequent probe lookups for the
5899  * specified provider will fail, but its probes will not be removed.
5900  */
5901 void
5902 dtrace_invalidate(dtrace_provider_id_t id)
5903 {
5904 	dtrace_provider_t *pvp = (dtrace_provider_t *)id;
5905 
5906 	ASSERT(pvp->dtpv_pops.dtps_enable !=
5907 	    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop);
5908 
5909 	mutex_enter(&dtrace_provider_lock);
5910 	mutex_enter(&dtrace_lock);
5911 
5912 	pvp->dtpv_defunct = 1;
5913 
5914 	mutex_exit(&dtrace_lock);
5915 	mutex_exit(&dtrace_provider_lock);
5916 }
5917 
5918 /*
5919  * Indicate whether or not DTrace has attached.
5920  */
5921 int
5922 dtrace_attached(void)
5923 {
5924 	/*
5925 	 * dtrace_provider will be non-NULL iff the DTrace driver has
5926 	 * attached.  (It's non-NULL because DTrace is always itself a
5927 	 * provider.)
5928 	 */
5929 	return (dtrace_provider != NULL);
5930 }
5931 
5932 /*
5933  * Remove all the unenabled probes for the given provider.  This function is
5934  * not unlike dtrace_unregister(), except that it doesn't remove the provider
5935  * -- just as many of its associated probes as it can.
5936  */
5937 int
5938 dtrace_condense(dtrace_provider_id_t id)
5939 {
5940 	dtrace_provider_t *prov = (dtrace_provider_t *)id;
5941 	int i;
5942 	dtrace_probe_t *probe;
5943 
5944 	/*
5945 	 * Make sure this isn't the dtrace provider itself.
5946 	 */
5947 	ASSERT(prov->dtpv_pops.dtps_enable !=
5948 	    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop);
5949 
5950 	mutex_enter(&dtrace_provider_lock);
5951 	mutex_enter(&dtrace_lock);
5952 
5953 	/*
5954 	 * Attempt to destroy the probes associated with this provider.
5955 	 */
5956 	for (i = 0; i < dtrace_nprobes; i++) {
5957 		if ((probe = dtrace_probes[i]) == NULL)
5958 			continue;
5959 
5960 		if (probe->dtpr_provider != prov)
5961 			continue;
5962 
5963 		if (probe->dtpr_ecb != NULL)
5964 			continue;
5965 
5966 		dtrace_probes[i] = NULL;
5967 
5968 		dtrace_hash_remove(dtrace_bymod, probe);
5969 		dtrace_hash_remove(dtrace_byfunc, probe);
5970 		dtrace_hash_remove(dtrace_byname, probe);
5971 
5972 		prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, i + 1,
5973 		    probe->dtpr_arg);
5974 		kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
5975 		kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
5976 		kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
5977 		kmem_free(probe, sizeof (dtrace_probe_t));
5978 		vmem_free(dtrace_arena, (void *)((uintptr_t)i + 1), 1);
5979 	}
5980 
5981 	mutex_exit(&dtrace_lock);
5982 	mutex_exit(&dtrace_provider_lock);
5983 
5984 	return (0);
5985 }
5986 
5987 /*
5988  * DTrace Probe Management Functions
5989  *
5990  * The functions in this section perform the DTrace probe management,
5991  * including functions to create probes, look-up probes, and call into the
5992  * providers to request that probes be provided.  Some of these functions are
5993  * in the Provider-to-Framework API; these functions can be identified by the
5994  * fact that they are not declared "static".
5995  */
5996 
5997 /*
5998  * Create a probe with the specified module name, function name, and name.
5999  */
6000 dtrace_id_t
6001 dtrace_probe_create(dtrace_provider_id_t prov, const char *mod,
6002     const char *func, const char *name, int aframes, void *arg)
6003 {
6004 	dtrace_probe_t *probe, **probes;
6005 	dtrace_provider_t *provider = (dtrace_provider_t *)prov;
6006 	dtrace_id_t id;
6007 
6008 	if (provider == dtrace_provider) {
6009 		ASSERT(MUTEX_HELD(&dtrace_lock));
6010 	} else {
6011 		mutex_enter(&dtrace_lock);
6012 	}
6013 
6014 	id = (dtrace_id_t)(uintptr_t)vmem_alloc(dtrace_arena, 1,
6015 	    VM_BESTFIT | VM_SLEEP);
6016 	probe = kmem_zalloc(sizeof (dtrace_probe_t), KM_SLEEP);
6017 
6018 	probe->dtpr_id = id;
6019 	probe->dtpr_gen = dtrace_probegen++;
6020 	probe->dtpr_mod = dtrace_strdup(mod);
6021 	probe->dtpr_func = dtrace_strdup(func);
6022 	probe->dtpr_name = dtrace_strdup(name);
6023 	probe->dtpr_arg = arg;
6024 	probe->dtpr_aframes = aframes;
6025 	probe->dtpr_provider = provider;
6026 
6027 	dtrace_hash_add(dtrace_bymod, probe);
6028 	dtrace_hash_add(dtrace_byfunc, probe);
6029 	dtrace_hash_add(dtrace_byname, probe);
6030 
6031 	if (id - 1 >= dtrace_nprobes) {
6032 		size_t osize = dtrace_nprobes * sizeof (dtrace_probe_t *);
6033 		size_t nsize = osize << 1;
6034 
6035 		if (nsize == 0) {
6036 			ASSERT(osize == 0);
6037 			ASSERT(dtrace_probes == NULL);
6038 			nsize = sizeof (dtrace_probe_t *);
6039 		}
6040 
6041 		probes = kmem_zalloc(nsize, KM_SLEEP);
6042 
6043 		if (dtrace_probes == NULL) {
6044 			ASSERT(osize == 0);
6045 			dtrace_probes = probes;
6046 			dtrace_nprobes = 1;
6047 		} else {
6048 			dtrace_probe_t **oprobes = dtrace_probes;
6049 
6050 			bcopy(oprobes, probes, osize);
6051 			dtrace_membar_producer();
6052 			dtrace_probes = probes;
6053 
6054 			dtrace_sync();
6055 
6056 			/*
6057 			 * All CPUs are now seeing the new probes array; we can
6058 			 * safely free the old array.
6059 			 */
6060 			kmem_free(oprobes, osize);
6061 			dtrace_nprobes <<= 1;
6062 		}
6063 
6064 		ASSERT(id - 1 < dtrace_nprobes);
6065 	}
6066 
6067 	ASSERT(dtrace_probes[id - 1] == NULL);
6068 	dtrace_probes[id - 1] = probe;
6069 
6070 	if (provider != dtrace_provider)
6071 		mutex_exit(&dtrace_lock);
6072 
6073 	return (id);
6074 }
6075 
6076 static dtrace_probe_t *
6077 dtrace_probe_lookup_id(dtrace_id_t id)
6078 {
6079 	ASSERT(MUTEX_HELD(&dtrace_lock));
6080 
6081 	if (id == 0 || id > dtrace_nprobes)
6082 		return (NULL);
6083 
6084 	return (dtrace_probes[id - 1]);
6085 }
6086 
6087 static int
6088 dtrace_probe_lookup_match(dtrace_probe_t *probe, void *arg)
6089 {
6090 	*((dtrace_id_t *)arg) = probe->dtpr_id;
6091 
6092 	return (DTRACE_MATCH_DONE);
6093 }
6094 
6095 /*
6096  * Look up a probe based on provider and one or more of module name, function
6097  * name and probe name.
6098  */
6099 dtrace_id_t
6100 dtrace_probe_lookup(dtrace_provider_id_t prid, const char *mod,
6101     const char *func, const char *name)
6102 {
6103 	dtrace_probekey_t pkey;
6104 	dtrace_id_t id;
6105 	int match;
6106 
6107 	pkey.dtpk_prov = ((dtrace_provider_t *)prid)->dtpv_name;
6108 	pkey.dtpk_pmatch = &dtrace_match_string;
6109 	pkey.dtpk_mod = mod;
6110 	pkey.dtpk_mmatch = mod ? &dtrace_match_string : &dtrace_match_nul;
6111 	pkey.dtpk_func = func;
6112 	pkey.dtpk_fmatch = func ? &dtrace_match_string : &dtrace_match_nul;
6113 	pkey.dtpk_name = name;
6114 	pkey.dtpk_nmatch = name ? &dtrace_match_string : &dtrace_match_nul;
6115 	pkey.dtpk_id = DTRACE_IDNONE;
6116 
6117 	mutex_enter(&dtrace_lock);
6118 	match = dtrace_match(&pkey, DTRACE_PRIV_ALL, 0,
6119 	    dtrace_probe_lookup_match, &id);
6120 	mutex_exit(&dtrace_lock);
6121 
6122 	ASSERT(match == 1 || match == 0);
6123 	return (match ? id : 0);
6124 }
6125 
6126 /*
6127  * Returns the probe argument associated with the specified probe.
6128  */
6129 void *
6130 dtrace_probe_arg(dtrace_provider_id_t id, dtrace_id_t pid)
6131 {
6132 	dtrace_probe_t *probe;
6133 	void *rval = NULL;
6134 
6135 	mutex_enter(&dtrace_lock);
6136 
6137 	if ((probe = dtrace_probe_lookup_id(pid)) != NULL &&
6138 	    probe->dtpr_provider == (dtrace_provider_t *)id)
6139 		rval = probe->dtpr_arg;
6140 
6141 	mutex_exit(&dtrace_lock);
6142 
6143 	return (rval);
6144 }
6145 
6146 /*
6147  * Copy a probe into a probe description.
6148  */
6149 static void
6150 dtrace_probe_description(const dtrace_probe_t *prp, dtrace_probedesc_t *pdp)
6151 {
6152 	bzero(pdp, sizeof (dtrace_probedesc_t));
6153 	pdp->dtpd_id = prp->dtpr_id;
6154 
6155 	(void) strncpy(pdp->dtpd_provider,
6156 	    prp->dtpr_provider->dtpv_name, DTRACE_PROVNAMELEN - 1);
6157 
6158 	(void) strncpy(pdp->dtpd_mod, prp->dtpr_mod, DTRACE_MODNAMELEN - 1);
6159 	(void) strncpy(pdp->dtpd_func, prp->dtpr_func, DTRACE_FUNCNAMELEN - 1);
6160 	(void) strncpy(pdp->dtpd_name, prp->dtpr_name, DTRACE_NAMELEN - 1);
6161 }
6162 
6163 /*
6164  * Called to indicate that a probe -- or probes -- should be provided by a
6165  * specfied provider.  If the specified description is NULL, the provider will
6166  * be told to provide all of its probes.  (This is done whenever a new
6167  * consumer comes along, or whenever a retained enabling is to be matched.) If
6168  * the specified description is non-NULL, the provider is given the
6169  * opportunity to dynamically provide the specified probe, allowing providers
6170  * to support the creation of probes on-the-fly.  (So-called _autocreated_
6171  * probes.)  If the provider is NULL, the operations will be applied to all
6172  * providers; if the provider is non-NULL the operations will only be applied
6173  * to the specified provider.  The dtrace_provider_lock must be held, and the
6174  * dtrace_lock must _not_ be held -- the provider's dtps_provide() operation
6175  * will need to grab the dtrace_lock when it reenters the framework through
6176  * dtrace_probe_lookup(), dtrace_probe_create(), etc.
6177  */
6178 static void
6179 dtrace_probe_provide(dtrace_probedesc_t *desc, dtrace_provider_t *prv)
6180 {
6181 	struct modctl *ctl;
6182 	int all = 0;
6183 
6184 	ASSERT(MUTEX_HELD(&dtrace_provider_lock));
6185 
6186 	if (prv == NULL) {
6187 		all = 1;
6188 		prv = dtrace_provider;
6189 	}
6190 
6191 	do {
6192 		/*
6193 		 * First, call the blanket provide operation.
6194 		 */
6195 		prv->dtpv_pops.dtps_provide(prv->dtpv_arg, desc);
6196 
6197 		/*
6198 		 * Now call the per-module provide operation.  We will grab
6199 		 * mod_lock to prevent the list from being modified.  Note
6200 		 * that this also prevents the mod_busy bits from changing.
6201 		 * (mod_busy can only be changed with mod_lock held.)
6202 		 */
6203 		mutex_enter(&mod_lock);
6204 
6205 		ctl = &modules;
6206 		do {
6207 			if (ctl->mod_busy || ctl->mod_mp == NULL)
6208 				continue;
6209 
6210 			prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl);
6211 
6212 		} while ((ctl = ctl->mod_next) != &modules);
6213 
6214 		mutex_exit(&mod_lock);
6215 	} while (all && (prv = prv->dtpv_next) != NULL);
6216 }
6217 
6218 /*
6219  * Iterate over each probe, and call the Framework-to-Provider API function
6220  * denoted by offs.
6221  */
6222 static void
6223 dtrace_probe_foreach(uintptr_t offs)
6224 {
6225 	dtrace_provider_t *prov;
6226 	void (*func)(void *, dtrace_id_t, void *);
6227 	dtrace_probe_t *probe;
6228 	dtrace_icookie_t cookie;
6229 	int i;
6230 
6231 	/*
6232 	 * We disable interrupts to walk through the probe array.  This is
6233 	 * safe -- the dtrace_sync() in dtrace_unregister() assures that we
6234 	 * won't see stale data.
6235 	 */
6236 	cookie = dtrace_interrupt_disable();
6237 
6238 	for (i = 0; i < dtrace_nprobes; i++) {
6239 		if ((probe = dtrace_probes[i]) == NULL)
6240 			continue;
6241 
6242 		if (probe->dtpr_ecb == NULL) {
6243 			/*
6244 			 * This probe isn't enabled -- don't call the function.
6245 			 */
6246 			continue;
6247 		}
6248 
6249 		prov = probe->dtpr_provider;
6250 		func = *((void(**)(void *, dtrace_id_t, void *))
6251 		    ((uintptr_t)&prov->dtpv_pops + offs));
6252 
6253 		func(prov->dtpv_arg, i + 1, probe->dtpr_arg);
6254 	}
6255 
6256 	dtrace_interrupt_enable(cookie);
6257 }
6258 
6259 static int
6260 dtrace_probe_enable(const dtrace_probedesc_t *desc, dtrace_enabling_t *enab)
6261 {
6262 	dtrace_probekey_t pkey;
6263 	uint32_t priv;
6264 	uid_t uid;
6265 
6266 	ASSERT(MUTEX_HELD(&dtrace_lock));
6267 	dtrace_ecb_create_cache = NULL;
6268 
6269 	if (desc == NULL) {
6270 		/*
6271 		 * If we're passed a NULL description, we're being asked to
6272 		 * create an ECB with a NULL probe.
6273 		 */
6274 		(void) dtrace_ecb_create_enable(NULL, enab);
6275 		return (0);
6276 	}
6277 
6278 	dtrace_probekey(desc, &pkey);
6279 	dtrace_cred2priv(CRED(), &priv, &uid);
6280 
6281 	return (dtrace_match(&pkey, priv, uid, dtrace_ecb_create_enable, enab));
6282 }
6283 
6284 /*
6285  * DTrace Helper Provider Functions
6286  */
6287 static void
6288 dtrace_dofattr2attr(dtrace_attribute_t *attr, const dof_attr_t dofattr)
6289 {
6290 	attr->dtat_name = DOF_ATTR_NAME(dofattr);
6291 	attr->dtat_data = DOF_ATTR_DATA(dofattr);
6292 	attr->dtat_class = DOF_ATTR_CLASS(dofattr);
6293 }
6294 
6295 static void
6296 dtrace_dofprov2hprov(dtrace_helper_provdesc_t *hprov,
6297     const dof_provider_t *dofprov, char *strtab)
6298 {
6299 	hprov->dthpv_provname = strtab + dofprov->dofpv_name;
6300 	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_provider,
6301 	    dofprov->dofpv_provattr);
6302 	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_mod,
6303 	    dofprov->dofpv_modattr);
6304 	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_func,
6305 	    dofprov->dofpv_funcattr);
6306 	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_name,
6307 	    dofprov->dofpv_nameattr);
6308 	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_args,
6309 	    dofprov->dofpv_argsattr);
6310 }
6311 
6312 static void
6313 dtrace_helper_provide_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid)
6314 {
6315 	dof_hdr_t *dof = (dof_hdr_t *)dhp->dofhp_dof;
6316 	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
6317 	dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec;
6318 	dof_provider_t *provider;
6319 	dof_probe_t *probe;
6320 	uint32_t *off;
6321 	uint8_t *arg;
6322 	char *strtab;
6323 	uint_t i, nprobes;
6324 	dtrace_helper_provdesc_t dhpv;
6325 	dtrace_helper_probedesc_t dhpb;
6326 	dtrace_meta_t *meta = dtrace_meta_pid;
6327 	dtrace_mops_t *mops = &meta->dtm_mops;
6328 	void *parg;
6329 
6330 	provider = (dof_provider_t *)(daddr + sec->dofs_offset);
6331 	str_sec = (dof_sec_t *)(daddr + dof->dofh_secoff +
6332 	    provider->dofpv_strtab * dof->dofh_secsize);
6333 	prb_sec = (dof_sec_t *)(daddr + dof->dofh_secoff +
6334 	    provider->dofpv_probes * dof->dofh_secsize);
6335 	arg_sec = (dof_sec_t *)(daddr + dof->dofh_secoff +
6336 	    provider->dofpv_prargs * dof->dofh_secsize);
6337 	off_sec = (dof_sec_t *)(daddr + dof->dofh_secoff +
6338 	    provider->dofpv_proffs * dof->dofh_secsize);
6339 
6340 	strtab = (char *)(daddr + str_sec->dofs_offset);
6341 	off = (uint32_t *)(daddr + off_sec->dofs_offset);
6342 	arg = (uint8_t *)(daddr + arg_sec->dofs_offset);
6343 
6344 	nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize;
6345 
6346 	/*
6347 	 * Create the provider.
6348 	 */
6349 	dtrace_dofprov2hprov(&dhpv, provider, strtab);
6350 
6351 	if ((parg = mops->dtms_provide_pid(meta->dtm_arg, &dhpv, pid)) == NULL)
6352 		return;
6353 
6354 	meta->dtm_count++;
6355 
6356 	/*
6357 	 * Create the probes.
6358 	 */
6359 	for (i = 0; i < nprobes; i++) {
6360 		probe = (dof_probe_t *)(daddr + prb_sec->dofs_offset +
6361 		    i * prb_sec->dofs_entsize);
6362 
6363 		dhpb.dthpb_mod = dhp->dofhp_mod;
6364 		dhpb.dthpb_func = strtab + probe->dofpr_func;
6365 		dhpb.dthpb_name = strtab + probe->dofpr_name;
6366 		dhpb.dthpb_base = probe->dofpr_addr;
6367 		dhpb.dthpb_offs = off + probe->dofpr_offidx;
6368 		dhpb.dthpb_noffs = probe->dofpr_noffs;
6369 		dhpb.dthpb_args = arg + probe->dofpr_argidx;
6370 		dhpb.dthpb_nargc = probe->dofpr_nargc;
6371 		dhpb.dthpb_xargc = probe->dofpr_xargc;
6372 		dhpb.dthpb_ntypes = strtab + probe->dofpr_nargv;
6373 		dhpb.dthpb_xtypes = strtab + probe->dofpr_xargv;
6374 
6375 		mops->dtms_create_probe(meta->dtm_arg, parg, &dhpb);
6376 	}
6377 }
6378 
6379 static void
6380 dtrace_helper_provide(dof_helper_t *dhp, pid_t pid)
6381 {
6382 	dof_hdr_t *dof = (dof_hdr_t *)dhp->dofhp_dof;
6383 	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
6384 	int i;
6385 
6386 	ASSERT(MUTEX_HELD(&dtrace_meta_lock));
6387 
6388 	for (i = 0; i < dof->dofh_secnum; i++) {
6389 		dof_sec_t *sec = (dof_sec_t *)(daddr + dof->dofh_secoff +
6390 		    i * dof->dofh_secsize);
6391 
6392 		if (sec->dofs_type != DOF_SECT_PROVIDER)
6393 			continue;
6394 
6395 		dtrace_helper_provide_one(dhp, sec, pid);
6396 	}
6397 }
6398 
6399 static void
6400 dtrace_helper_remove_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid)
6401 {
6402 	dof_hdr_t *dof = (dof_hdr_t *)dhp->dofhp_dof;
6403 	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
6404 	dof_sec_t *str_sec;
6405 	dof_provider_t *provider;
6406 	char *strtab;
6407 	dtrace_helper_provdesc_t dhpv;
6408 	dtrace_meta_t *meta = dtrace_meta_pid;
6409 	dtrace_mops_t *mops = &meta->dtm_mops;
6410 
6411 	provider = (dof_provider_t *)(daddr + sec->dofs_offset);
6412 	str_sec = (dof_sec_t *)(daddr + dof->dofh_secoff +
6413 	    provider->dofpv_strtab * dof->dofh_secsize);
6414 
6415 	strtab = (char *)(daddr + str_sec->dofs_offset);
6416 
6417 	/*
6418 	 * Create the provider.
6419 	 */
6420 	dtrace_dofprov2hprov(&dhpv, provider, strtab);
6421 
6422 	mops->dtms_remove_pid(meta->dtm_arg, &dhpv, pid);
6423 
6424 	meta->dtm_count--;
6425 }
6426 
6427 static void
6428 dtrace_helper_remove(dof_helper_t *dhp, pid_t pid)
6429 {
6430 	dof_hdr_t *dof = (dof_hdr_t *)dhp->dofhp_dof;
6431 	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
6432 	int i;
6433 
6434 	ASSERT(MUTEX_HELD(&dtrace_meta_lock));
6435 
6436 	for (i = 0; i < dof->dofh_secnum; i++) {
6437 		dof_sec_t *sec = (dof_sec_t *)(daddr + dof->dofh_secoff +
6438 		    i * dof->dofh_secsize);
6439 
6440 		if (sec->dofs_type != DOF_SECT_PROVIDER)
6441 			continue;
6442 
6443 		dtrace_helper_remove_one(dhp, sec, pid);
6444 	}
6445 }
6446 
6447 /*
6448  * DTrace Meta Provider-to-Framework API Functions
6449  *
6450  * These functions implement the Meta Provider-to-Framework API, as described
6451  * in <sys/dtrace.h>.
6452  */
6453 int
6454 dtrace_meta_register(const char *name, const dtrace_mops_t *mops, void *arg,
6455     dtrace_meta_provider_id_t *idp)
6456 {
6457 	dtrace_meta_t *meta;
6458 	dtrace_helpers_t *help, *next;
6459 	int i;
6460 
6461 	*idp = DTRACE_METAPROVNONE;
6462 
6463 	/*
6464 	 * We strictly don't need the name, but we hold onto it for
6465 	 * debuggability. All hail error queues!
6466 	 */
6467 	if (name == NULL) {
6468 		cmn_err(CE_WARN, "failed to register meta-provider: "
6469 		    "invalid name");
6470 		return (EINVAL);
6471 	}
6472 
6473 	if (mops == NULL ||
6474 	    mops->dtms_create_probe == NULL ||
6475 	    mops->dtms_provide_pid == NULL ||
6476 	    mops->dtms_remove_pid == NULL) {
6477 		cmn_err(CE_WARN, "failed to register meta-register %s: "
6478 		    "invalid ops", name);
6479 		return (EINVAL);
6480 	}
6481 
6482 	meta = kmem_zalloc(sizeof (dtrace_meta_t), KM_SLEEP);
6483 	meta->dtm_mops = *mops;
6484 	meta->dtm_name = kmem_alloc(strlen(name) + 1, KM_SLEEP);
6485 	(void) strcpy(meta->dtm_name, name);
6486 	meta->dtm_arg = arg;
6487 
6488 	mutex_enter(&dtrace_meta_lock);
6489 	mutex_enter(&dtrace_lock);
6490 
6491 	if (dtrace_meta_pid != NULL) {
6492 		mutex_exit(&dtrace_lock);
6493 		mutex_exit(&dtrace_meta_lock);
6494 		cmn_err(CE_WARN, "failed to register meta-register %s: "
6495 		    "user-land meta-provider exists", name);
6496 		kmem_free(meta->dtm_name, strlen(meta->dtm_name) + 1);
6497 		kmem_free(meta, sizeof (dtrace_meta_t));
6498 		return (EINVAL);
6499 	}
6500 
6501 	dtrace_meta_pid = meta;
6502 	*idp = (dtrace_meta_provider_id_t)meta;
6503 
6504 	/*
6505 	 * If there are providers and probes ready to go, pass them
6506 	 * off to the new meta provider now.
6507 	 */
6508 
6509 	help = dtrace_deferred_pid;
6510 	dtrace_deferred_pid = NULL;
6511 
6512 	mutex_exit(&dtrace_lock);
6513 
6514 	while (help != NULL) {
6515 		for (i = 0; i < help->dthps_nprovs; i++) {
6516 			dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov,
6517 			    help->dthps_pid);
6518 		}
6519 
6520 		next = help->dthps_next;
6521 		help->dthps_next = NULL;
6522 		help->dthps_prev = NULL;
6523 		help = next;
6524 	}
6525 
6526 	mutex_exit(&dtrace_meta_lock);
6527 
6528 	return (0);
6529 }
6530 
6531 int
6532 dtrace_meta_unregister(dtrace_meta_provider_id_t id)
6533 {
6534 	dtrace_meta_t **pp, *old = (dtrace_meta_t *)id;
6535 
6536 	mutex_enter(&dtrace_meta_lock);
6537 	mutex_enter(&dtrace_lock);
6538 
6539 	if (old == dtrace_meta_pid) {
6540 		pp = &dtrace_meta_pid;
6541 	} else {
6542 		panic("attempt to unregister non-existent "
6543 		    "dtrace meta-provider %p\n", (void *)old);
6544 	}
6545 
6546 	if (old->dtm_count != 0) {
6547 		mutex_exit(&dtrace_lock);
6548 		mutex_exit(&dtrace_meta_lock);
6549 		return (EBUSY);
6550 	}
6551 
6552 	*pp = NULL;
6553 
6554 	mutex_exit(&dtrace_lock);
6555 	mutex_exit(&dtrace_meta_lock);
6556 
6557 	kmem_free(old->dtm_name, strlen(old->dtm_name) + 1);
6558 	kmem_free(old, sizeof (dtrace_meta_t));
6559 
6560 	return (0);
6561 }
6562 
6563 
6564 /*
6565  * DTrace DIF Object Functions
6566  */
6567 static int
6568 dtrace_difo_err(uint_t pc, const char *format, ...)
6569 {
6570 	if (dtrace_err_verbose) {
6571 		va_list alist;
6572 
6573 		(void) uprintf("dtrace DIF object error: [%u]: ", pc);
6574 		va_start(alist, format);
6575 		(void) vuprintf(format, alist);
6576 		va_end(alist);
6577 	}
6578 
6579 #ifdef DTRACE_ERRDEBUG
6580 	dtrace_errdebug(format);
6581 #endif
6582 	return (1);
6583 }
6584 
6585 /*
6586  * Validate a DTrace DIF object by checking the IR instructions.  The following
6587  * rules are currently enforced by dtrace_difo_validate():
6588  *
6589  * 1. Each instruction must have a valid opcode
6590  * 2. Each register, string, variable, or subroutine reference must be valid
6591  * 3. No instruction can modify register %r0 (must be zero)
6592  * 4. All instruction reserved bits must be set to zero
6593  * 5. The last instruction must be a "ret" instruction
6594  * 6. All branch targets must reference a valid instruction _after_ the branch
6595  */
6596 static int
6597 dtrace_difo_validate(dtrace_difo_t *dp, dtrace_vstate_t *vstate, uint_t nregs,
6598     cred_t *cr)
6599 {
6600 	int err = 0, i;
6601 	int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err;
6602 	int kcheck;
6603 	uint_t pc;
6604 
6605 	kcheck = cr == NULL ||
6606 	    PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE) == 0;
6607 
6608 	dp->dtdo_destructive = 0;
6609 
6610 	for (pc = 0; pc < dp->dtdo_len && err == 0; pc++) {
6611 		dif_instr_t instr = dp->dtdo_buf[pc];
6612 
6613 		uint_t r1 = DIF_INSTR_R1(instr);
6614 		uint_t r2 = DIF_INSTR_R2(instr);
6615 		uint_t rd = DIF_INSTR_RD(instr);
6616 		uint_t rs = DIF_INSTR_RS(instr);
6617 		uint_t label = DIF_INSTR_LABEL(instr);
6618 		uint_t v = DIF_INSTR_VAR(instr);
6619 		uint_t subr = DIF_INSTR_SUBR(instr);
6620 		uint_t type = DIF_INSTR_TYPE(instr);
6621 		uint_t op = DIF_INSTR_OP(instr);
6622 
6623 		switch (op) {
6624 		case DIF_OP_OR:
6625 		case DIF_OP_XOR:
6626 		case DIF_OP_AND:
6627 		case DIF_OP_SLL:
6628 		case DIF_OP_SRL:
6629 		case DIF_OP_SRA:
6630 		case DIF_OP_SUB:
6631 		case DIF_OP_ADD:
6632 		case DIF_OP_MUL:
6633 		case DIF_OP_SDIV:
6634 		case DIF_OP_UDIV:
6635 		case DIF_OP_SREM:
6636 		case DIF_OP_UREM:
6637 		case DIF_OP_COPYS:
6638 			if (r1 >= nregs)
6639 				err += efunc(pc, "invalid register %u\n", r1);
6640 			if (r2 >= nregs)
6641 				err += efunc(pc, "invalid register %u\n", r2);
6642 			if (rd >= nregs)
6643 				err += efunc(pc, "invalid register %u\n", rd);
6644 			if (rd == 0)
6645 				err += efunc(pc, "cannot write to %r0\n");
6646 			break;
6647 		case DIF_OP_NOT:
6648 		case DIF_OP_MOV:
6649 		case DIF_OP_ALLOCS:
6650 			if (r1 >= nregs)
6651 				err += efunc(pc, "invalid register %u\n", r1);
6652 			if (r2 != 0)
6653 				err += efunc(pc, "non-zero reserved bits\n");
6654 			if (rd >= nregs)
6655 				err += efunc(pc, "invalid register %u\n", rd);
6656 			if (rd == 0)
6657 				err += efunc(pc, "cannot write to %r0\n");
6658 			break;
6659 		case DIF_OP_LDSB:
6660 		case DIF_OP_LDSH:
6661 		case DIF_OP_LDSW:
6662 		case DIF_OP_LDUB:
6663 		case DIF_OP_LDUH:
6664 		case DIF_OP_LDUW:
6665 		case DIF_OP_LDX:
6666 			if (r1 >= nregs)
6667 				err += efunc(pc, "invalid register %u\n", r1);
6668 			if (r2 != 0)
6669 				err += efunc(pc, "non-zero reserved bits\n");
6670 			if (rd >= nregs)
6671 				err += efunc(pc, "invalid register %u\n", rd);
6672 			if (rd == 0)
6673 				err += efunc(pc, "cannot write to %r0\n");
6674 			if (kcheck)
6675 				dp->dtdo_buf[pc] = DIF_INSTR_LOAD(op +
6676 				    DIF_OP_RLDSB - DIF_OP_LDSB, r1, rd);
6677 			break;
6678 		case DIF_OP_RLDSB:
6679 		case DIF_OP_RLDSH:
6680 		case DIF_OP_RLDSW:
6681 		case DIF_OP_RLDUB:
6682 		case DIF_OP_RLDUH:
6683 		case DIF_OP_RLDUW:
6684 		case DIF_OP_RLDX:
6685 			if (r1 >= nregs)
6686 				err += efunc(pc, "invalid register %u\n", r1);
6687 			if (r2 != 0)
6688 				err += efunc(pc, "non-zero reserved bits\n");
6689 			if (rd >= nregs)
6690 				err += efunc(pc, "invalid register %u\n", rd);
6691 			if (rd == 0)
6692 				err += efunc(pc, "cannot write to %r0\n");
6693 			break;
6694 		case DIF_OP_ULDSB:
6695 		case DIF_OP_ULDSH:
6696 		case DIF_OP_ULDSW:
6697 		case DIF_OP_ULDUB:
6698 		case DIF_OP_ULDUH:
6699 		case DIF_OP_ULDUW:
6700 		case DIF_OP_ULDX:
6701 			if (r1 >= nregs)
6702 				err += efunc(pc, "invalid register %u\n", r1);
6703 			if (r2 != 0)
6704 				err += efunc(pc, "non-zero reserved bits\n");
6705 			if (rd >= nregs)
6706 				err += efunc(pc, "invalid register %u\n", rd);
6707 			if (rd == 0)
6708 				err += efunc(pc, "cannot write to %r0\n");
6709 			break;
6710 		case DIF_OP_STB:
6711 		case DIF_OP_STH:
6712 		case DIF_OP_STW:
6713 		case DIF_OP_STX:
6714 			if (r1 >= nregs)
6715 				err += efunc(pc, "invalid register %u\n", r1);
6716 			if (r2 != 0)
6717 				err += efunc(pc, "non-zero reserved bits\n");
6718 			if (rd >= nregs)
6719 				err += efunc(pc, "invalid register %u\n", rd);
6720 			if (rd == 0)
6721 				err += efunc(pc, "cannot write to 0 address\n");
6722 			break;
6723 		case DIF_OP_CMP:
6724 		case DIF_OP_SCMP:
6725 			if (r1 >= nregs)
6726 				err += efunc(pc, "invalid register %u\n", r1);
6727 			if (r2 >= nregs)
6728 				err += efunc(pc, "invalid register %u\n", r2);
6729 			if (rd != 0)
6730 				err += efunc(pc, "non-zero reserved bits\n");
6731 			break;
6732 		case DIF_OP_TST:
6733 			if (r1 >= nregs)
6734 				err += efunc(pc, "invalid register %u\n", r1);
6735 			if (r2 != 0 || rd != 0)
6736 				err += efunc(pc, "non-zero reserved bits\n");
6737 			break;
6738 		case DIF_OP_BA:
6739 		case DIF_OP_BE:
6740 		case DIF_OP_BNE:
6741 		case DIF_OP_BG:
6742 		case DIF_OP_BGU:
6743 		case DIF_OP_BGE:
6744 		case DIF_OP_BGEU:
6745 		case DIF_OP_BL:
6746 		case DIF_OP_BLU:
6747 		case DIF_OP_BLE:
6748 		case DIF_OP_BLEU:
6749 			if (label >= dp->dtdo_len) {
6750 				err += efunc(pc, "invalid branch target %u\n",
6751 				    label);
6752 			}
6753 			if (label <= pc) {
6754 				err += efunc(pc, "backward branch to %u\n",
6755 				    label);
6756 			}
6757 			break;
6758 		case DIF_OP_RET:
6759 			if (r1 != 0 || r2 != 0)
6760 				err += efunc(pc, "non-zero reserved bits\n");
6761 			if (rd >= nregs)
6762 				err += efunc(pc, "invalid register %u\n", rd);
6763 			break;
6764 		case DIF_OP_NOP:
6765 		case DIF_OP_POPTS:
6766 		case DIF_OP_FLUSHTS:
6767 			if (r1 != 0 || r2 != 0 || rd != 0)
6768 				err += efunc(pc, "non-zero reserved bits\n");
6769 			break;
6770 		case DIF_OP_SETX:
6771 			if (DIF_INSTR_INTEGER(instr) >= dp->dtdo_intlen) {
6772 				err += efunc(pc, "invalid integer ref %u\n",
6773 				    DIF_INSTR_INTEGER(instr));
6774 			}
6775 			if (rd >= nregs)
6776 				err += efunc(pc, "invalid register %u\n", rd);
6777 			if (rd == 0)
6778 				err += efunc(pc, "cannot write to %r0\n");
6779 			break;
6780 		case DIF_OP_SETS:
6781 			if (DIF_INSTR_STRING(instr) >= dp->dtdo_strlen) {
6782 				err += efunc(pc, "invalid string ref %u\n",
6783 				    DIF_INSTR_STRING(instr));
6784 			}
6785 			if (rd >= nregs)
6786 				err += efunc(pc, "invalid register %u\n", rd);
6787 			if (rd == 0)
6788 				err += efunc(pc, "cannot write to %r0\n");
6789 			break;
6790 		case DIF_OP_LDGA:
6791 		case DIF_OP_LDTA:
6792 			if (r1 > DIF_VAR_ARRAY_MAX)
6793 				err += efunc(pc, "invalid array %u\n", r1);
6794 			if (r2 >= nregs)
6795 				err += efunc(pc, "invalid register %u\n", r2);
6796 			if (rd >= nregs)
6797 				err += efunc(pc, "invalid register %u\n", rd);
6798 			if (rd == 0)
6799 				err += efunc(pc, "cannot write to %r0\n");
6800 			break;
6801 		case DIF_OP_LDGS:
6802 		case DIF_OP_LDTS:
6803 		case DIF_OP_LDLS:
6804 		case DIF_OP_LDGAA:
6805 		case DIF_OP_LDTAA:
6806 			if (v < DIF_VAR_OTHER_MIN || v > DIF_VAR_OTHER_MAX)
6807 				err += efunc(pc, "invalid variable %u\n", v);
6808 			if (rd >= nregs)
6809 				err += efunc(pc, "invalid register %u\n", rd);
6810 			if (rd == 0)
6811 				err += efunc(pc, "cannot write to %r0\n");
6812 			break;
6813 		case DIF_OP_STGS:
6814 		case DIF_OP_STTS:
6815 		case DIF_OP_STLS:
6816 		case DIF_OP_STGAA:
6817 		case DIF_OP_STTAA:
6818 			if (v < DIF_VAR_OTHER_UBASE || v > DIF_VAR_OTHER_MAX)
6819 				err += efunc(pc, "invalid variable %u\n", v);
6820 			if (rs >= nregs)
6821 				err += efunc(pc, "invalid register %u\n", rd);
6822 			break;
6823 		case DIF_OP_CALL:
6824 			if (subr > DIF_SUBR_MAX)
6825 				err += efunc(pc, "invalid subr %u\n", subr);
6826 			if (rd >= nregs)
6827 				err += efunc(pc, "invalid register %u\n", rd);
6828 			if (rd == 0)
6829 				err += efunc(pc, "cannot write to %r0\n");
6830 
6831 			if (subr == DIF_SUBR_COPYOUT ||
6832 			    subr == DIF_SUBR_COPYOUTSTR) {
6833 				dp->dtdo_destructive = 1;
6834 			}
6835 			break;
6836 		case DIF_OP_PUSHTR:
6837 			if (type != DIF_TYPE_STRING && type != DIF_TYPE_CTF)
6838 				err += efunc(pc, "invalid ref type %u\n", type);
6839 			if (r2 >= nregs)
6840 				err += efunc(pc, "invalid register %u\n", r2);
6841 			if (rs >= nregs)
6842 				err += efunc(pc, "invalid register %u\n", rs);
6843 			break;
6844 		case DIF_OP_PUSHTV:
6845 			if (type != DIF_TYPE_CTF)
6846 				err += efunc(pc, "invalid val type %u\n", type);
6847 			if (r2 >= nregs)
6848 				err += efunc(pc, "invalid register %u\n", r2);
6849 			if (rs >= nregs)
6850 				err += efunc(pc, "invalid register %u\n", rs);
6851 			break;
6852 		default:
6853 			err += efunc(pc, "invalid opcode %u\n",
6854 			    DIF_INSTR_OP(instr));
6855 		}
6856 	}
6857 
6858 	if (dp->dtdo_len != 0 &&
6859 	    DIF_INSTR_OP(dp->dtdo_buf[dp->dtdo_len - 1]) != DIF_OP_RET) {
6860 		err += efunc(dp->dtdo_len - 1,
6861 		    "expected 'ret' as last DIF instruction\n");
6862 	}
6863 
6864 	if (!(dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) {
6865 		/*
6866 		 * If we're not returning by reference, the size must be either
6867 		 * 0 or the size of one of the base types.
6868 		 */
6869 		switch (dp->dtdo_rtype.dtdt_size) {
6870 		case 0:
6871 		case sizeof (uint8_t):
6872 		case sizeof (uint16_t):
6873 		case sizeof (uint32_t):
6874 		case sizeof (uint64_t):
6875 			break;
6876 
6877 		default:
6878 			err += efunc(dp->dtdo_len - 1, "bad return size");
6879 		}
6880 	}
6881 
6882 	for (i = 0; i < dp->dtdo_varlen && err == 0; i++) {
6883 		dtrace_difv_t *v = &dp->dtdo_vartab[i], *existing = NULL;
6884 		dtrace_diftype_t *vt, *et;
6885 		uint_t id, ndx;
6886 
6887 		if (v->dtdv_scope != DIFV_SCOPE_GLOBAL &&
6888 		    v->dtdv_scope != DIFV_SCOPE_THREAD &&
6889 		    v->dtdv_scope != DIFV_SCOPE_LOCAL) {
6890 			err += efunc(i, "unrecognized variable scope %d\n",
6891 			    v->dtdv_scope);
6892 			break;
6893 		}
6894 
6895 		if (v->dtdv_kind != DIFV_KIND_ARRAY &&
6896 		    v->dtdv_kind != DIFV_KIND_SCALAR) {
6897 			err += efunc(i, "unrecognized variable type %d\n",
6898 			    v->dtdv_kind);
6899 			break;
6900 		}
6901 
6902 		if ((id = v->dtdv_id) > DIF_VARIABLE_MAX) {
6903 			err += efunc(i, "%d exceeds variable id limit\n", id);
6904 			break;
6905 		}
6906 
6907 		if (id < DIF_VAR_OTHER_UBASE)
6908 			continue;
6909 
6910 		/*
6911 		 * For user-defined variables, we need to check that this
6912 		 * definition is identical to any previous definition that we
6913 		 * encountered.
6914 		 */
6915 		ndx = id - DIF_VAR_OTHER_UBASE;
6916 
6917 		switch (v->dtdv_scope) {
6918 		case DIFV_SCOPE_GLOBAL:
6919 			if (ndx < vstate->dtvs_nglobals) {
6920 				dtrace_statvar_t *svar;
6921 
6922 				if ((svar = vstate->dtvs_globals[ndx]) != NULL)
6923 					existing = &svar->dtsv_var;
6924 			}
6925 
6926 			break;
6927 
6928 		case DIFV_SCOPE_THREAD:
6929 			if (ndx < vstate->dtvs_ntlocals)
6930 				existing = &vstate->dtvs_tlocals[ndx];
6931 			break;
6932 
6933 		case DIFV_SCOPE_LOCAL:
6934 			if (ndx < vstate->dtvs_nlocals) {
6935 				dtrace_statvar_t *svar;
6936 
6937 				if ((svar = vstate->dtvs_locals[ndx]) != NULL)
6938 					existing = &svar->dtsv_var;
6939 			}
6940 
6941 			break;
6942 		}
6943 
6944 		vt = &v->dtdv_type;
6945 
6946 		if (vt->dtdt_flags & DIF_TF_BYREF) {
6947 			if (vt->dtdt_size == 0) {
6948 				err += efunc(i, "zero-sized variable\n");
6949 				break;
6950 			}
6951 
6952 			if (v->dtdv_scope == DIFV_SCOPE_GLOBAL &&
6953 			    vt->dtdt_size > dtrace_global_maxsize) {
6954 				err += efunc(i, "oversized by-ref global\n");
6955 				break;
6956 			}
6957 		}
6958 
6959 		if (existing == NULL || existing->dtdv_id == 0)
6960 			continue;
6961 
6962 		ASSERT(existing->dtdv_id == v->dtdv_id);
6963 		ASSERT(existing->dtdv_scope == v->dtdv_scope);
6964 
6965 		if (existing->dtdv_kind != v->dtdv_kind)
6966 			err += efunc(i, "%d changed variable kind\n", id);
6967 
6968 		et = &existing->dtdv_type;
6969 
6970 		if (vt->dtdt_flags != et->dtdt_flags) {
6971 			err += efunc(i, "%d changed variable type flags\n", id);
6972 			break;
6973 		}
6974 
6975 		if (vt->dtdt_size != 0 && vt->dtdt_size != et->dtdt_size) {
6976 			err += efunc(i, "%d changed variable type size\n", id);
6977 			break;
6978 		}
6979 	}
6980 
6981 	return (err);
6982 }
6983 
6984 /*
6985  * Validate a DTrace DIF object that it is to be used as a helper.  Helpers
6986  * are much more constrained than normal DIFOs.  Specifically, they may
6987  * not:
6988  *
6989  * 1. Make calls to subroutines other than copyin() or copyinstr().
6990  * 2. Access DTrace variables other than the args[] array, and the
6991  *    curthread, pid, tid and execname variables.
6992  * 3. Have thread-local variables.
6993  * 4. Have dynamic variables.
6994  */
6995 static int
6996 dtrace_difo_validate_helper(dtrace_difo_t *dp)
6997 {
6998 	int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err;
6999 	int err = 0;
7000 	uint_t pc;
7001 
7002 	for (pc = 0; pc < dp->dtdo_len; pc++) {
7003 		dif_instr_t instr = dp->dtdo_buf[pc];
7004 
7005 		uint_t v = DIF_INSTR_VAR(instr);
7006 		uint_t subr = DIF_INSTR_SUBR(instr);
7007 		uint_t op = DIF_INSTR_OP(instr);
7008 
7009 		switch (op) {
7010 		case DIF_OP_OR:
7011 		case DIF_OP_XOR:
7012 		case DIF_OP_AND:
7013 		case DIF_OP_SLL:
7014 		case DIF_OP_SRL:
7015 		case DIF_OP_SRA:
7016 		case DIF_OP_SUB:
7017 		case DIF_OP_ADD:
7018 		case DIF_OP_MUL:
7019 		case DIF_OP_SDIV:
7020 		case DIF_OP_UDIV:
7021 		case DIF_OP_SREM:
7022 		case DIF_OP_UREM:
7023 		case DIF_OP_COPYS:
7024 		case DIF_OP_NOT:
7025 		case DIF_OP_MOV:
7026 		case DIF_OP_RLDSB:
7027 		case DIF_OP_RLDSH:
7028 		case DIF_OP_RLDSW:
7029 		case DIF_OP_RLDUB:
7030 		case DIF_OP_RLDUH:
7031 		case DIF_OP_RLDUW:
7032 		case DIF_OP_RLDX:
7033 		case DIF_OP_ULDSB:
7034 		case DIF_OP_ULDSH:
7035 		case DIF_OP_ULDSW:
7036 		case DIF_OP_ULDUB:
7037 		case DIF_OP_ULDUH:
7038 		case DIF_OP_ULDUW:
7039 		case DIF_OP_ULDX:
7040 		case DIF_OP_STB:
7041 		case DIF_OP_STH:
7042 		case DIF_OP_STW:
7043 		case DIF_OP_STX:
7044 		case DIF_OP_ALLOCS:
7045 		case DIF_OP_CMP:
7046 		case DIF_OP_SCMP:
7047 		case DIF_OP_TST:
7048 		case DIF_OP_BA:
7049 		case DIF_OP_BE:
7050 		case DIF_OP_BNE:
7051 		case DIF_OP_BG:
7052 		case DIF_OP_BGU:
7053 		case DIF_OP_BGE:
7054 		case DIF_OP_BGEU:
7055 		case DIF_OP_BL:
7056 		case DIF_OP_BLU:
7057 		case DIF_OP_BLE:
7058 		case DIF_OP_BLEU:
7059 		case DIF_OP_RET:
7060 		case DIF_OP_NOP:
7061 		case DIF_OP_POPTS:
7062 		case DIF_OP_FLUSHTS:
7063 		case DIF_OP_SETX:
7064 		case DIF_OP_SETS:
7065 		case DIF_OP_LDGA:
7066 		case DIF_OP_LDLS:
7067 		case DIF_OP_STGS:
7068 		case DIF_OP_STLS:
7069 		case DIF_OP_PUSHTR:
7070 		case DIF_OP_PUSHTV:
7071 			break;
7072 
7073 		case DIF_OP_LDGS:
7074 			if (v >= DIF_VAR_OTHER_UBASE)
7075 				break;
7076 
7077 			if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9)
7078 				break;
7079 
7080 			if (v == DIF_VAR_CURTHREAD || v == DIF_VAR_PID ||
7081 			    v == DIF_VAR_TID || v == DIF_VAR_EXECNAME ||
7082 			    v == DIF_VAR_ZONENAME)
7083 				break;
7084 
7085 			err += efunc(pc, "illegal variable %u\n", v);
7086 			break;
7087 
7088 		case DIF_OP_LDTA:
7089 		case DIF_OP_LDTS:
7090 		case DIF_OP_LDGAA:
7091 		case DIF_OP_LDTAA:
7092 			err += efunc(pc, "illegal dynamic variable load\n");
7093 			break;
7094 
7095 		case DIF_OP_STTS:
7096 		case DIF_OP_STGAA:
7097 		case DIF_OP_STTAA:
7098 			err += efunc(pc, "illegal dynamic variable store\n");
7099 			break;
7100 
7101 		case DIF_OP_CALL:
7102 			if (subr == DIF_SUBR_ALLOCA ||
7103 			    subr == DIF_SUBR_BCOPY ||
7104 			    subr == DIF_SUBR_COPYIN ||
7105 			    subr == DIF_SUBR_COPYINTO ||
7106 			    subr == DIF_SUBR_COPYINSTR)
7107 				break;
7108 
7109 			err += efunc(pc, "invalid subr %u\n", subr);
7110 			break;
7111 
7112 		default:
7113 			err += efunc(pc, "invalid opcode %u\n",
7114 			    DIF_INSTR_OP(instr));
7115 		}
7116 	}
7117 
7118 	return (err);
7119 }
7120 
7121 /*
7122  * Returns 1 if the expression in the DIF object can be cached on a per-thread
7123  * basis; 0 if not.
7124  */
7125 static int
7126 dtrace_difo_cacheable(dtrace_difo_t *dp)
7127 {
7128 	int i;
7129 
7130 	if (dp == NULL)
7131 		return (0);
7132 
7133 	for (i = 0; i < dp->dtdo_varlen; i++) {
7134 		dtrace_difv_t *v = &dp->dtdo_vartab[i];
7135 
7136 		if (v->dtdv_scope != DIFV_SCOPE_GLOBAL)
7137 			continue;
7138 
7139 		switch (v->dtdv_id) {
7140 		case DIF_VAR_CURTHREAD:
7141 		case DIF_VAR_PID:
7142 		case DIF_VAR_TID:
7143 		case DIF_VAR_EXECNAME:
7144 		case DIF_VAR_ZONENAME:
7145 			break;
7146 
7147 		default:
7148 			return (0);
7149 		}
7150 	}
7151 
7152 	/*
7153 	 * This DIF object may be cacheable.  Now we need to look for any
7154 	 * load variant instructions, or any stores to thread-local variables.
7155 	 */
7156 	for (i = 0; i < dp->dtdo_len; i++) {
7157 		uint_t op = DIF_INSTR_OP(dp->dtdo_buf[i]);
7158 
7159 		if ((op >= DIF_OP_LDSB && op <= DIF_OP_LDX) ||
7160 		    (op >= DIF_OP_ULDSB && op <= DIF_OP_ULDX) ||
7161 		    (op >= DIF_OP_RLDSB && op <= DIF_OP_RLDX) ||
7162 		    (op == DIF_OP_STTS))
7163 			return (0);
7164 	}
7165 
7166 	return (1);
7167 }
7168 
7169 static void
7170 dtrace_difo_hold(dtrace_difo_t *dp)
7171 {
7172 	int i;
7173 
7174 	ASSERT(MUTEX_HELD(&dtrace_lock));
7175 
7176 	dp->dtdo_refcnt++;
7177 	ASSERT(dp->dtdo_refcnt != 0);
7178 
7179 	/*
7180 	 * We need to check this DIF object for references to the variable
7181 	 * DIF_VAR_VTIMESTAMP.
7182 	 */
7183 	for (i = 0; i < dp->dtdo_varlen; i++) {
7184 		dtrace_difv_t *v = &dp->dtdo_vartab[i];
7185 
7186 		if (v->dtdv_id != DIF_VAR_VTIMESTAMP)
7187 			continue;
7188 
7189 		if (dtrace_vtime_references++ == 0)
7190 			dtrace_vtime_enable();
7191 	}
7192 }
7193 
7194 /*
7195  * This routine calculates the dynamic variable chunksize for a given DIF
7196  * object.  The calculation is not fool-proof, and can probably be tricked by
7197  * malicious DIF -- but it works for all compiler-generated DIF.  Because this
7198  * calculation is likely imperfect, dtrace_dynvar() is able to gracefully fail
7199  * if a dynamic variable size exceeds the chunksize.
7200  */
7201 static void
7202 dtrace_difo_chunksize(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
7203 {
7204 	uint64_t sval;
7205 	dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */
7206 	const dif_instr_t *text = dp->dtdo_buf;
7207 	uint_t pc, srd = 0;
7208 	uint_t ttop = 0;
7209 	size_t size, ksize;
7210 	uint_t id, i;
7211 
7212 	for (pc = 0; pc < dp->dtdo_len; pc++) {
7213 		dif_instr_t instr = text[pc];
7214 		uint_t op = DIF_INSTR_OP(instr);
7215 		uint_t rd = DIF_INSTR_RD(instr);
7216 		uint_t r1 = DIF_INSTR_R1(instr);
7217 		uint_t nkeys = 0;
7218 		uchar_t scope;
7219 
7220 		dtrace_key_t *key = tupregs;
7221 
7222 		switch (op) {
7223 		case DIF_OP_SETX:
7224 			sval = dp->dtdo_inttab[DIF_INSTR_INTEGER(instr)];
7225 			srd = rd;
7226 			continue;
7227 
7228 		case DIF_OP_STTS:
7229 			key = &tupregs[DIF_DTR_NREGS];
7230 			key[0].dttk_size = 0;
7231 			key[1].dttk_size = 0;
7232 			nkeys = 2;
7233 			scope = DIFV_SCOPE_THREAD;
7234 			break;
7235 
7236 		case DIF_OP_STGAA:
7237 		case DIF_OP_STTAA:
7238 			nkeys = ttop;
7239 
7240 			if (DIF_INSTR_OP(instr) == DIF_OP_STTAA)
7241 				key[nkeys++].dttk_size = 0;
7242 
7243 			key[nkeys++].dttk_size = 0;
7244 
7245 			if (op == DIF_OP_STTAA) {
7246 				scope = DIFV_SCOPE_THREAD;
7247 			} else {
7248 				scope = DIFV_SCOPE_GLOBAL;
7249 			}
7250 
7251 			break;
7252 
7253 		case DIF_OP_PUSHTR:
7254 			if (ttop == DIF_DTR_NREGS)
7255 				return;
7256 
7257 			if ((srd == 0 || sval == 0) && r1 == DIF_TYPE_STRING) {
7258 				/*
7259 				 * If the register for the size of the "pushtr"
7260 				 * is %r0 (or the value is 0) and the type is
7261 				 * a string, we'll use the system-wide default
7262 				 * string size.
7263 				 */
7264 				tupregs[ttop++].dttk_size =
7265 				    dtrace_strsize_default;
7266 			} else {
7267 				if (srd == 0)
7268 					return;
7269 
7270 				tupregs[ttop++].dttk_size = sval;
7271 			}
7272 
7273 			break;
7274 
7275 		case DIF_OP_PUSHTV:
7276 			if (ttop == DIF_DTR_NREGS)
7277 				return;
7278 
7279 			tupregs[ttop++].dttk_size = 0;
7280 			break;
7281 
7282 		case DIF_OP_FLUSHTS:
7283 			ttop = 0;
7284 			break;
7285 
7286 		case DIF_OP_POPTS:
7287 			if (ttop != 0)
7288 				ttop--;
7289 			break;
7290 		}
7291 
7292 		sval = 0;
7293 		srd = 0;
7294 
7295 		if (nkeys == 0)
7296 			continue;
7297 
7298 		/*
7299 		 * We have a dynamic variable allocation; calculate its size.
7300 		 */
7301 		for (ksize = 0, i = 0; i < nkeys; i++)
7302 			ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t));
7303 
7304 		size = sizeof (dtrace_dynvar_t);
7305 		size += sizeof (dtrace_key_t) * (nkeys - 1);
7306 		size += ksize;
7307 
7308 		/*
7309 		 * Now we need to determine the size of the stored data.
7310 		 */
7311 		id = DIF_INSTR_VAR(instr);
7312 
7313 		for (i = 0; i < dp->dtdo_varlen; i++) {
7314 			dtrace_difv_t *v = &dp->dtdo_vartab[i];
7315 
7316 			if (v->dtdv_id == id && v->dtdv_scope == scope) {
7317 				size += v->dtdv_type.dtdt_size;
7318 				break;
7319 			}
7320 		}
7321 
7322 		if (i == dp->dtdo_varlen)
7323 			return;
7324 
7325 		/*
7326 		 * We have the size.  If this is larger than the chunk size
7327 		 * for our dynamic variable state, reset the chunk size.
7328 		 */
7329 		size = P2ROUNDUP(size, sizeof (uint64_t));
7330 
7331 		if (size > vstate->dtvs_dynvars.dtds_chunksize)
7332 			vstate->dtvs_dynvars.dtds_chunksize = size;
7333 	}
7334 }
7335 
7336 static void
7337 dtrace_difo_init(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
7338 {
7339 	int i, oldsvars, osz, nsz, otlocals, ntlocals;
7340 	uint_t id;
7341 
7342 	ASSERT(MUTEX_HELD(&dtrace_lock));
7343 	ASSERT(dp->dtdo_buf != NULL && dp->dtdo_len != 0);
7344 
7345 	for (i = 0; i < dp->dtdo_varlen; i++) {
7346 		dtrace_difv_t *v = &dp->dtdo_vartab[i];
7347 		dtrace_statvar_t *svar, ***svarp;
7348 		size_t dsize = 0;
7349 		uint8_t scope = v->dtdv_scope;
7350 		int *np;
7351 
7352 		if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE)
7353 			continue;
7354 
7355 		id -= DIF_VAR_OTHER_UBASE;
7356 
7357 		switch (scope) {
7358 		case DIFV_SCOPE_THREAD:
7359 			while (id >= (otlocals = vstate->dtvs_ntlocals)) {
7360 				dtrace_difv_t *tlocals;
7361 
7362 				if ((ntlocals = (otlocals << 1)) == 0)
7363 					ntlocals = 1;
7364 
7365 				osz = otlocals * sizeof (dtrace_difv_t);
7366 				nsz = ntlocals * sizeof (dtrace_difv_t);
7367 
7368 				tlocals = kmem_zalloc(nsz, KM_SLEEP);
7369 
7370 				if (osz != 0) {
7371 					bcopy(vstate->dtvs_tlocals,
7372 					    tlocals, osz);
7373 					kmem_free(vstate->dtvs_tlocals, osz);
7374 				}
7375 
7376 				vstate->dtvs_tlocals = tlocals;
7377 				vstate->dtvs_ntlocals = ntlocals;
7378 			}
7379 
7380 			vstate->dtvs_tlocals[id] = *v;
7381 			continue;
7382 
7383 		case DIFV_SCOPE_LOCAL:
7384 			np = &vstate->dtvs_nlocals;
7385 			svarp = &vstate->dtvs_locals;
7386 
7387 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF)
7388 				dsize = NCPU * (v->dtdv_type.dtdt_size +
7389 				    sizeof (uint64_t));
7390 			else
7391 				dsize = NCPU * sizeof (uint64_t);
7392 
7393 			break;
7394 
7395 		case DIFV_SCOPE_GLOBAL:
7396 			np = &vstate->dtvs_nglobals;
7397 			svarp = &vstate->dtvs_globals;
7398 
7399 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF)
7400 				dsize = v->dtdv_type.dtdt_size +
7401 				    sizeof (uint64_t);
7402 
7403 			break;
7404 
7405 		default:
7406 			ASSERT(0);
7407 		}
7408 
7409 		while (id >= (oldsvars = *np)) {
7410 			dtrace_statvar_t **statics;
7411 			int newsvars, oldsize, newsize;
7412 
7413 			if ((newsvars = (oldsvars << 1)) == 0)
7414 				newsvars = 1;
7415 
7416 			oldsize = oldsvars * sizeof (dtrace_statvar_t *);
7417 			newsize = newsvars * sizeof (dtrace_statvar_t *);
7418 
7419 			statics = kmem_zalloc(newsize, KM_SLEEP);
7420 
7421 			if (oldsize != 0) {
7422 				bcopy(*svarp, statics, oldsize);
7423 				kmem_free(*svarp, oldsize);
7424 			}
7425 
7426 			*svarp = statics;
7427 			*np = newsvars;
7428 		}
7429 
7430 		if ((svar = (*svarp)[id]) == NULL) {
7431 			svar = kmem_zalloc(sizeof (dtrace_statvar_t), KM_SLEEP);
7432 			svar->dtsv_var = *v;
7433 
7434 			if ((svar->dtsv_size = dsize) != 0) {
7435 				svar->dtsv_data = (uint64_t)(uintptr_t)
7436 				    kmem_zalloc(dsize, KM_SLEEP);
7437 			}
7438 
7439 			(*svarp)[id] = svar;
7440 		}
7441 
7442 		svar->dtsv_refcnt++;
7443 	}
7444 
7445 	dtrace_difo_chunksize(dp, vstate);
7446 	dtrace_difo_hold(dp);
7447 }
7448 
7449 static dtrace_difo_t *
7450 dtrace_difo_duplicate(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
7451 {
7452 	dtrace_difo_t *new;
7453 	size_t sz;
7454 
7455 	ASSERT(dp->dtdo_buf != NULL);
7456 	ASSERT(dp->dtdo_refcnt != 0);
7457 
7458 	new = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP);
7459 
7460 	ASSERT(dp->dtdo_buf != NULL);
7461 	sz = dp->dtdo_len * sizeof (dif_instr_t);
7462 	new->dtdo_buf = kmem_alloc(sz, KM_SLEEP);
7463 	bcopy(dp->dtdo_buf, new->dtdo_buf, sz);
7464 	new->dtdo_len = dp->dtdo_len;
7465 
7466 	if (dp->dtdo_strtab != NULL) {
7467 		ASSERT(dp->dtdo_strlen != 0);
7468 		new->dtdo_strtab = kmem_alloc(dp->dtdo_strlen, KM_SLEEP);
7469 		bcopy(dp->dtdo_strtab, new->dtdo_strtab, dp->dtdo_strlen);
7470 		new->dtdo_strlen = dp->dtdo_strlen;
7471 	}
7472 
7473 	if (dp->dtdo_inttab != NULL) {
7474 		ASSERT(dp->dtdo_intlen != 0);
7475 		sz = dp->dtdo_intlen * sizeof (uint64_t);
7476 		new->dtdo_inttab = kmem_alloc(sz, KM_SLEEP);
7477 		bcopy(dp->dtdo_inttab, new->dtdo_inttab, sz);
7478 		new->dtdo_intlen = dp->dtdo_intlen;
7479 	}
7480 
7481 	if (dp->dtdo_vartab != NULL) {
7482 		ASSERT(dp->dtdo_varlen != 0);
7483 		sz = dp->dtdo_varlen * sizeof (dtrace_difv_t);
7484 		new->dtdo_vartab = kmem_alloc(sz, KM_SLEEP);
7485 		bcopy(dp->dtdo_vartab, new->dtdo_vartab, sz);
7486 		new->dtdo_varlen = dp->dtdo_varlen;
7487 	}
7488 
7489 	dtrace_difo_init(new, vstate);
7490 	return (new);
7491 }
7492 
7493 static void
7494 dtrace_difo_destroy(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
7495 {
7496 	int i;
7497 
7498 	ASSERT(dp->dtdo_refcnt == 0);
7499 
7500 	for (i = 0; i < dp->dtdo_varlen; i++) {
7501 		dtrace_difv_t *v = &dp->dtdo_vartab[i];
7502 		dtrace_statvar_t *svar, **svarp;
7503 		uint_t id;
7504 		uint8_t scope = v->dtdv_scope;
7505 		int *np;
7506 
7507 		switch (scope) {
7508 		case DIFV_SCOPE_THREAD:
7509 			continue;
7510 
7511 		case DIFV_SCOPE_LOCAL:
7512 			np = &vstate->dtvs_nlocals;
7513 			svarp = vstate->dtvs_locals;
7514 			break;
7515 
7516 		case DIFV_SCOPE_GLOBAL:
7517 			np = &vstate->dtvs_nglobals;
7518 			svarp = vstate->dtvs_globals;
7519 			break;
7520 
7521 		default:
7522 			ASSERT(0);
7523 		}
7524 
7525 		if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE)
7526 			continue;
7527 
7528 		id -= DIF_VAR_OTHER_UBASE;
7529 		ASSERT(id < *np);
7530 
7531 		svar = svarp[id];
7532 		ASSERT(svar != NULL);
7533 		ASSERT(svar->dtsv_refcnt > 0);
7534 
7535 		if (--svar->dtsv_refcnt > 0)
7536 			continue;
7537 
7538 		if (svar->dtsv_size != 0) {
7539 			ASSERT(svar->dtsv_data != NULL);
7540 			kmem_free((void *)(uintptr_t)svar->dtsv_data,
7541 			    svar->dtsv_size);
7542 		}
7543 
7544 		kmem_free(svar, sizeof (dtrace_statvar_t));
7545 		svarp[id] = NULL;
7546 	}
7547 
7548 	kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t));
7549 	kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t));
7550 	kmem_free(dp->dtdo_strtab, dp->dtdo_strlen);
7551 	kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t));
7552 
7553 	kmem_free(dp, sizeof (dtrace_difo_t));
7554 }
7555 
7556 static void
7557 dtrace_difo_release(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
7558 {
7559 	int i;
7560 
7561 	ASSERT(MUTEX_HELD(&dtrace_lock));
7562 	ASSERT(dp->dtdo_refcnt != 0);
7563 
7564 	for (i = 0; i < dp->dtdo_varlen; i++) {
7565 		dtrace_difv_t *v = &dp->dtdo_vartab[i];
7566 
7567 		if (v->dtdv_id != DIF_VAR_VTIMESTAMP)
7568 			continue;
7569 
7570 		ASSERT(dtrace_vtime_references > 0);
7571 		if (--dtrace_vtime_references == 0)
7572 			dtrace_vtime_disable();
7573 	}
7574 
7575 	if (--dp->dtdo_refcnt == 0)
7576 		dtrace_difo_destroy(dp, vstate);
7577 }
7578 
7579 /*
7580  * DTrace Format Functions
7581  */
7582 static uint16_t
7583 dtrace_format_add(dtrace_state_t *state, char *str)
7584 {
7585 	char *fmt, **new;
7586 	uint16_t ndx, len = strlen(str) + 1;
7587 
7588 	fmt = kmem_zalloc(len, KM_SLEEP);
7589 	bcopy(str, fmt, len);
7590 
7591 	for (ndx = 0; ndx < state->dts_nformats; ndx++) {
7592 		if (state->dts_formats[ndx] == NULL) {
7593 			state->dts_formats[ndx] = fmt;
7594 			return (ndx + 1);
7595 		}
7596 	}
7597 
7598 	if (state->dts_nformats == USHRT_MAX) {
7599 		/*
7600 		 * This is only likely if a denial-of-service attack is being
7601 		 * attempted.  As such, it's okay to fail silently here.
7602 		 */
7603 		kmem_free(fmt, len);
7604 		return (0);
7605 	}
7606 
7607 	/*
7608 	 * For simplicity, we always resize the formats array to be exactly the
7609 	 * number of formats.
7610 	 */
7611 	ndx = state->dts_nformats++;
7612 	new = kmem_alloc((ndx + 1) * sizeof (char *), KM_SLEEP);
7613 
7614 	if (state->dts_formats != NULL) {
7615 		ASSERT(ndx != 0);
7616 		bcopy(state->dts_formats, new, ndx * sizeof (char *));
7617 		kmem_free(state->dts_formats, ndx * sizeof (char *));
7618 	}
7619 
7620 	state->dts_formats = new;
7621 	state->dts_formats[ndx] = fmt;
7622 
7623 	return (ndx + 1);
7624 }
7625 
7626 static void
7627 dtrace_format_remove(dtrace_state_t *state, uint16_t format)
7628 {
7629 	char *fmt;
7630 
7631 	ASSERT(state->dts_formats != NULL);
7632 	ASSERT(format <= state->dts_nformats);
7633 	ASSERT(state->dts_formats[format - 1] != NULL);
7634 
7635 	fmt = state->dts_formats[format - 1];
7636 	kmem_free(fmt, strlen(fmt) + 1);
7637 	state->dts_formats[format - 1] = NULL;
7638 }
7639 
7640 static void
7641 dtrace_format_destroy(dtrace_state_t *state)
7642 {
7643 	int i;
7644 
7645 	if (state->dts_nformats == 0) {
7646 		ASSERT(state->dts_formats == NULL);
7647 		return;
7648 	}
7649 
7650 	ASSERT(state->dts_formats != NULL);
7651 
7652 	for (i = 0; i < state->dts_nformats; i++) {
7653 		char *fmt = state->dts_formats[i];
7654 
7655 		if (fmt == NULL)
7656 			continue;
7657 
7658 		kmem_free(fmt, strlen(fmt) + 1);
7659 	}
7660 
7661 	kmem_free(state->dts_formats, state->dts_nformats * sizeof (char *));
7662 	state->dts_nformats = 0;
7663 	state->dts_formats = NULL;
7664 }
7665 
7666 /*
7667  * DTrace Predicate Functions
7668  */
7669 static dtrace_predicate_t *
7670 dtrace_predicate_create(dtrace_difo_t *dp)
7671 {
7672 	dtrace_predicate_t *pred;
7673 
7674 	ASSERT(MUTEX_HELD(&dtrace_lock));
7675 	ASSERT(dp->dtdo_refcnt != 0);
7676 
7677 	pred = kmem_zalloc(sizeof (dtrace_predicate_t), KM_SLEEP);
7678 	pred->dtp_difo = dp;
7679 	pred->dtp_refcnt = 1;
7680 
7681 	if (!dtrace_difo_cacheable(dp))
7682 		return (pred);
7683 
7684 	if (dtrace_predcache_id == DTRACE_CACHEIDNONE) {
7685 		/*
7686 		 * This is only theoretically possible -- we have had 2^32
7687 		 * cacheable predicates on this machine.  We cannot allow any
7688 		 * more predicates to become cacheable:  as unlikely as it is,
7689 		 * there may be a thread caching a (now stale) predicate cache
7690 		 * ID. (N.B.: the temptation is being successfully resisted to
7691 		 * have this cmn_err() "Holy shit -- we executed this code!")
7692 		 */
7693 		return (pred);
7694 	}
7695 
7696 	pred->dtp_cacheid = dtrace_predcache_id++;
7697 
7698 	return (pred);
7699 }
7700 
7701 static void
7702 dtrace_predicate_hold(dtrace_predicate_t *pred)
7703 {
7704 	ASSERT(MUTEX_HELD(&dtrace_lock));
7705 	ASSERT(pred->dtp_difo != NULL && pred->dtp_difo->dtdo_refcnt != 0);
7706 	ASSERT(pred->dtp_refcnt > 0);
7707 
7708 	pred->dtp_refcnt++;
7709 }
7710 
7711 static void
7712 dtrace_predicate_release(dtrace_predicate_t *pred, dtrace_vstate_t *vstate)
7713 {
7714 	dtrace_difo_t *dp = pred->dtp_difo;
7715 
7716 	ASSERT(MUTEX_HELD(&dtrace_lock));
7717 	ASSERT(dp != NULL && dp->dtdo_refcnt != 0);
7718 	ASSERT(pred->dtp_refcnt > 0);
7719 
7720 	if (--pred->dtp_refcnt == 0) {
7721 		dtrace_difo_release(pred->dtp_difo, vstate);
7722 		kmem_free(pred, sizeof (dtrace_predicate_t));
7723 	}
7724 }
7725 
7726 /*
7727  * DTrace Action Description Functions
7728  */
7729 static dtrace_actdesc_t *
7730 dtrace_actdesc_create(dtrace_actkind_t kind, uint32_t ntuple,
7731     uint64_t uarg, uint64_t arg)
7732 {
7733 	dtrace_actdesc_t *act;
7734 
7735 	ASSERT(!DTRACEACT_ISPRINTFLIKE(kind) || (arg != NULL &&
7736 	    arg >= KERNELBASE) || (arg == NULL && kind == DTRACEACT_PRINTA));
7737 
7738 	act = kmem_zalloc(sizeof (dtrace_actdesc_t), KM_SLEEP);
7739 	act->dtad_kind = kind;
7740 	act->dtad_ntuple = ntuple;
7741 	act->dtad_uarg = uarg;
7742 	act->dtad_arg = arg;
7743 	act->dtad_refcnt = 1;
7744 
7745 	return (act);
7746 }
7747 
7748 static void
7749 dtrace_actdesc_hold(dtrace_actdesc_t *act)
7750 {
7751 	ASSERT(act->dtad_refcnt >= 1);
7752 	act->dtad_refcnt++;
7753 }
7754 
7755 static void
7756 dtrace_actdesc_release(dtrace_actdesc_t *act, dtrace_vstate_t *vstate)
7757 {
7758 	dtrace_actkind_t kind = act->dtad_kind;
7759 	dtrace_difo_t *dp;
7760 
7761 	ASSERT(act->dtad_refcnt >= 1);
7762 
7763 	if (--act->dtad_refcnt != 0)
7764 		return;
7765 
7766 	if ((dp = act->dtad_difo) != NULL)
7767 		dtrace_difo_release(dp, vstate);
7768 
7769 	if (DTRACEACT_ISPRINTFLIKE(kind)) {
7770 		char *str = (char *)(uintptr_t)act->dtad_arg;
7771 
7772 		ASSERT((str != NULL && (uintptr_t)str >= KERNELBASE) ||
7773 		    (str == NULL && act->dtad_kind == DTRACEACT_PRINTA));
7774 
7775 		if (str != NULL)
7776 			kmem_free(str, strlen(str) + 1);
7777 	}
7778 
7779 	kmem_free(act, sizeof (dtrace_actdesc_t));
7780 }
7781 
7782 /*
7783  * DTrace ECB Functions
7784  */
7785 static dtrace_ecb_t *
7786 dtrace_ecb_add(dtrace_state_t *state, dtrace_probe_t *probe)
7787 {
7788 	dtrace_ecb_t *ecb;
7789 	dtrace_epid_t epid;
7790 
7791 	ASSERT(MUTEX_HELD(&dtrace_lock));
7792 
7793 	ecb = kmem_zalloc(sizeof (dtrace_ecb_t), KM_SLEEP);
7794 	ecb->dte_predicate = NULL;
7795 	ecb->dte_probe = probe;
7796 
7797 	/*
7798 	 * The default size is the size of the default action: recording
7799 	 * the epid.
7800 	 */
7801 	ecb->dte_size = ecb->dte_needed = sizeof (dtrace_epid_t);
7802 	ecb->dte_alignment = sizeof (dtrace_epid_t);
7803 
7804 	epid = state->dts_epid++;
7805 
7806 	if (epid - 1 >= state->dts_necbs) {
7807 		dtrace_ecb_t **oecbs = state->dts_ecbs, **ecbs;
7808 		int necbs = state->dts_necbs << 1;
7809 
7810 		ASSERT(epid == state->dts_necbs + 1);
7811 
7812 		if (necbs == 0) {
7813 			ASSERT(oecbs == NULL);
7814 			necbs = 1;
7815 		}
7816 
7817 		ecbs = kmem_zalloc(necbs * sizeof (*ecbs), KM_SLEEP);
7818 
7819 		if (oecbs != NULL)
7820 			bcopy(oecbs, ecbs, state->dts_necbs * sizeof (*ecbs));
7821 
7822 		dtrace_membar_producer();
7823 		state->dts_ecbs = ecbs;
7824 
7825 		if (oecbs != NULL) {
7826 			/*
7827 			 * If this state is active, we must dtrace_sync()
7828 			 * before we can free the old dts_ecbs array:  we're
7829 			 * coming in hot, and there may be active ring
7830 			 * buffer processing (which indexes into the dts_ecbs
7831 			 * array) on another CPU.
7832 			 */
7833 			if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
7834 				dtrace_sync();
7835 
7836 			kmem_free(oecbs, state->dts_necbs * sizeof (*ecbs));
7837 		}
7838 
7839 		dtrace_membar_producer();
7840 		state->dts_necbs = necbs;
7841 	}
7842 
7843 	ecb->dte_state = state;
7844 
7845 	ASSERT(state->dts_ecbs[epid - 1] == NULL);
7846 	dtrace_membar_producer();
7847 	state->dts_ecbs[(ecb->dte_epid = epid) - 1] = ecb;
7848 
7849 	return (ecb);
7850 }
7851 
7852 static void
7853 dtrace_ecb_enable(dtrace_ecb_t *ecb)
7854 {
7855 	dtrace_probe_t *probe = ecb->dte_probe;
7856 
7857 	ASSERT(MUTEX_HELD(&cpu_lock));
7858 	ASSERT(MUTEX_HELD(&dtrace_lock));
7859 	ASSERT(ecb->dte_next == NULL);
7860 
7861 	if (probe == NULL) {
7862 		/*
7863 		 * This is the NULL probe -- there's nothing to do.
7864 		 */
7865 		return;
7866 	}
7867 
7868 	if (probe->dtpr_ecb == NULL) {
7869 		dtrace_provider_t *prov = probe->dtpr_provider;
7870 
7871 		/*
7872 		 * We're the first ECB on this probe.
7873 		 */
7874 		probe->dtpr_ecb = probe->dtpr_ecb_last = ecb;
7875 
7876 		if (ecb->dte_predicate != NULL)
7877 			probe->dtpr_predcache = ecb->dte_predicate->dtp_cacheid;
7878 
7879 		prov->dtpv_pops.dtps_enable(prov->dtpv_arg,
7880 		    probe->dtpr_id, probe->dtpr_arg);
7881 	} else {
7882 		/*
7883 		 * This probe is already active.  Swing the last pointer to
7884 		 * point to the new ECB, and issue a dtrace_sync() to assure
7885 		 * that all CPUs have seen the change.
7886 		 */
7887 		ASSERT(probe->dtpr_ecb_last != NULL);
7888 		probe->dtpr_ecb_last->dte_next = ecb;
7889 		probe->dtpr_ecb_last = ecb;
7890 		probe->dtpr_predcache = 0;
7891 
7892 		dtrace_sync();
7893 	}
7894 }
7895 
7896 static void
7897 dtrace_ecb_resize(dtrace_ecb_t *ecb)
7898 {
7899 	uint32_t maxalign = sizeof (dtrace_epid_t);
7900 	uint32_t align = sizeof (uint8_t), offs, diff;
7901 	dtrace_action_t *act;
7902 	int wastuple = 0;
7903 	uint32_t aggbase = UINT32_MAX;
7904 	dtrace_state_t *state = ecb->dte_state;
7905 
7906 	/*
7907 	 * If we record anything, we always record the epid.  (And we always
7908 	 * record it first.)
7909 	 */
7910 	offs = sizeof (dtrace_epid_t);
7911 	ecb->dte_size = ecb->dte_needed = sizeof (dtrace_epid_t);
7912 
7913 	for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
7914 		dtrace_recdesc_t *rec = &act->dta_rec;
7915 
7916 		if ((align = rec->dtrd_alignment) > maxalign)
7917 			maxalign = align;
7918 
7919 		if (!wastuple && act->dta_intuple) {
7920 			/*
7921 			 * This is the first record in a tuple.  Align the
7922 			 * offset to be at offset 4 in an 8-byte aligned
7923 			 * block.
7924 			 */
7925 			diff = offs + sizeof (dtrace_aggid_t);
7926 
7927 			if (diff = (diff & (sizeof (uint64_t) - 1)))
7928 				offs += sizeof (uint64_t) - diff;
7929 
7930 			aggbase = offs - sizeof (dtrace_aggid_t);
7931 			ASSERT(!(aggbase & (sizeof (uint64_t) - 1)));
7932 		}
7933 
7934 		/*LINTED*/
7935 		if (rec->dtrd_size != 0 && (diff = (offs & (align - 1)))) {
7936 			/*
7937 			 * The current offset is not properly aligned; align it.
7938 			 */
7939 			offs += align - diff;
7940 		}
7941 
7942 		rec->dtrd_offset = offs;
7943 
7944 		if (offs + rec->dtrd_size > ecb->dte_needed) {
7945 			ecb->dte_needed = offs + rec->dtrd_size;
7946 
7947 			if (ecb->dte_needed > state->dts_needed)
7948 				state->dts_needed = ecb->dte_needed;
7949 		}
7950 
7951 		if (DTRACEACT_ISAGG(act->dta_kind)) {
7952 			dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act;
7953 			dtrace_action_t *first = agg->dtag_first, *prev;
7954 
7955 			ASSERT(rec->dtrd_size != 0 && first != NULL);
7956 			ASSERT(wastuple);
7957 			ASSERT(aggbase != UINT32_MAX);
7958 
7959 			agg->dtag_base = aggbase;
7960 
7961 			while ((prev = first->dta_prev) != NULL &&
7962 			    DTRACEACT_ISAGG(prev->dta_kind)) {
7963 				agg = (dtrace_aggregation_t *)prev;
7964 				first = agg->dtag_first;
7965 			}
7966 
7967 			if (prev != NULL) {
7968 				offs = prev->dta_rec.dtrd_offset +
7969 				    prev->dta_rec.dtrd_size;
7970 			} else {
7971 				offs = sizeof (dtrace_epid_t);
7972 			}
7973 			wastuple = 0;
7974 		} else {
7975 			if (!act->dta_intuple)
7976 				ecb->dte_size = offs + rec->dtrd_size;
7977 
7978 			offs += rec->dtrd_size;
7979 		}
7980 
7981 		wastuple = act->dta_intuple;
7982 	}
7983 
7984 	if ((act = ecb->dte_action) != NULL &&
7985 	    !(act->dta_kind == DTRACEACT_SPECULATE && act->dta_next == NULL) &&
7986 	    ecb->dte_size == sizeof (dtrace_epid_t)) {
7987 		/*
7988 		 * If the size is still sizeof (dtrace_epid_t), then all
7989 		 * actions store no data; set the size to 0.
7990 		 */
7991 		ecb->dte_alignment = maxalign;
7992 		ecb->dte_size = 0;
7993 
7994 		/*
7995 		 * If the needed space is still sizeof (dtrace_epid_t), then
7996 		 * all actions need no additional space; set the needed
7997 		 * size to 0.
7998 		 */
7999 		if (ecb->dte_needed == sizeof (dtrace_epid_t))
8000 			ecb->dte_needed = 0;
8001 
8002 		return;
8003 	}
8004 
8005 	/*
8006 	 * Set our alignment, and make sure that the dte_size and dte_needed
8007 	 * are aligned to the size of an EPID.
8008 	 */
8009 	ecb->dte_alignment = maxalign;
8010 	ecb->dte_size = (ecb->dte_size + (sizeof (dtrace_epid_t) - 1)) &
8011 	    ~(sizeof (dtrace_epid_t) - 1);
8012 	ecb->dte_needed = (ecb->dte_needed + (sizeof (dtrace_epid_t) - 1)) &
8013 	    ~(sizeof (dtrace_epid_t) - 1);
8014 	ASSERT(ecb->dte_size <= ecb->dte_needed);
8015 }
8016 
8017 static dtrace_action_t *
8018 dtrace_ecb_aggregation_create(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc)
8019 {
8020 	dtrace_aggregation_t *agg;
8021 	size_t size = sizeof (uint64_t);
8022 	int ntuple = desc->dtad_ntuple;
8023 	dtrace_action_t *act;
8024 	dtrace_recdesc_t *frec;
8025 	dtrace_aggid_t aggid;
8026 	dtrace_state_t *state = ecb->dte_state;
8027 
8028 	agg = kmem_zalloc(sizeof (dtrace_aggregation_t), KM_SLEEP);
8029 	agg->dtag_ecb = ecb;
8030 
8031 	ASSERT(DTRACEACT_ISAGG(desc->dtad_kind));
8032 
8033 	switch (desc->dtad_kind) {
8034 	case DTRACEAGG_MIN:
8035 		agg->dtag_initial = UINT64_MAX;
8036 		agg->dtag_aggregate = dtrace_aggregate_min;
8037 		break;
8038 
8039 	case DTRACEAGG_MAX:
8040 		agg->dtag_aggregate = dtrace_aggregate_max;
8041 		break;
8042 
8043 	case DTRACEAGG_COUNT:
8044 		agg->dtag_aggregate = dtrace_aggregate_count;
8045 		break;
8046 
8047 	case DTRACEAGG_QUANTIZE:
8048 		agg->dtag_aggregate = dtrace_aggregate_quantize;
8049 		size = (((sizeof (uint64_t) * NBBY) - 1) * 2 + 1) *
8050 		    sizeof (uint64_t);
8051 		break;
8052 
8053 	case DTRACEAGG_LQUANTIZE: {
8054 		uint16_t step = DTRACE_LQUANTIZE_STEP(desc->dtad_arg);
8055 		uint16_t levels = DTRACE_LQUANTIZE_LEVELS(desc->dtad_arg);
8056 
8057 		agg->dtag_initial = desc->dtad_arg;
8058 		agg->dtag_aggregate = dtrace_aggregate_lquantize;
8059 
8060 		if (step == 0 || levels == 0)
8061 			goto err;
8062 
8063 		size = levels * sizeof (uint64_t) + 3 * sizeof (uint64_t);
8064 		break;
8065 	}
8066 
8067 	case DTRACEAGG_AVG:
8068 		agg->dtag_aggregate = dtrace_aggregate_avg;
8069 		size = sizeof (uint64_t) * 2;
8070 		break;
8071 
8072 	case DTRACEAGG_SUM:
8073 		agg->dtag_aggregate = dtrace_aggregate_sum;
8074 		break;
8075 
8076 	default:
8077 		goto err;
8078 	}
8079 
8080 	agg->dtag_action.dta_rec.dtrd_size = size;
8081 
8082 	if (ntuple == 0)
8083 		goto err;
8084 
8085 	/*
8086 	 * We must make sure that we have enough actions for the n-tuple.
8087 	 */
8088 	for (act = ecb->dte_action_last; act != NULL; act = act->dta_prev) {
8089 		if (DTRACEACT_ISAGG(act->dta_kind))
8090 			break;
8091 
8092 		if (--ntuple == 0) {
8093 			/*
8094 			 * This is the action with which our n-tuple begins.
8095 			 */
8096 			agg->dtag_first = act;
8097 			goto success;
8098 		}
8099 	}
8100 
8101 	/*
8102 	 * This n-tuple is short by ntuple elements.  Return failure.
8103 	 */
8104 	ASSERT(ntuple != 0);
8105 err:
8106 	kmem_free(agg, sizeof (dtrace_aggregation_t));
8107 	return (NULL);
8108 
8109 success:
8110 	/*
8111 	 * We need to allocate an id for this aggregation.
8112 	 */
8113 	aggid = (dtrace_aggid_t)(uintptr_t)vmem_alloc(state->dts_aggid_arena, 1,
8114 	    VM_BESTFIT | VM_SLEEP);
8115 
8116 	if (aggid - 1 >= state->dts_naggregations) {
8117 		dtrace_aggregation_t **oaggs = state->dts_aggregations;
8118 		dtrace_aggregation_t **aggs;
8119 		int naggs = state->dts_naggregations << 1;
8120 		int onaggs = state->dts_naggregations;
8121 
8122 		ASSERT(aggid == state->dts_naggregations + 1);
8123 
8124 		if (naggs == 0) {
8125 			ASSERT(oaggs == NULL);
8126 			naggs = 1;
8127 		}
8128 
8129 		aggs = kmem_zalloc(naggs * sizeof (*aggs), KM_SLEEP);
8130 
8131 		if (oaggs != NULL) {
8132 			bcopy(oaggs, aggs, onaggs * sizeof (*aggs));
8133 			kmem_free(oaggs, onaggs * sizeof (*aggs));
8134 		}
8135 
8136 		state->dts_aggregations = aggs;
8137 		state->dts_naggregations = naggs;
8138 	}
8139 
8140 	ASSERT(state->dts_aggregations[aggid - 1] == NULL);
8141 	state->dts_aggregations[(agg->dtag_id = aggid) - 1] = agg;
8142 
8143 	frec = &agg->dtag_first->dta_rec;
8144 	if (frec->dtrd_alignment < sizeof (dtrace_aggid_t))
8145 		frec->dtrd_alignment = sizeof (dtrace_aggid_t);
8146 
8147 	for (act = agg->dtag_first; act != NULL; act = act->dta_next) {
8148 		ASSERT(!act->dta_intuple);
8149 		act->dta_intuple = 1;
8150 	}
8151 
8152 	return (&agg->dtag_action);
8153 }
8154 
8155 static void
8156 dtrace_ecb_aggregation_destroy(dtrace_ecb_t *ecb, dtrace_action_t *act)
8157 {
8158 	dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act;
8159 	dtrace_state_t *state = ecb->dte_state;
8160 	dtrace_aggid_t aggid = agg->dtag_id;
8161 
8162 	ASSERT(DTRACEACT_ISAGG(act->dta_kind));
8163 	vmem_free(state->dts_aggid_arena, (void *)(uintptr_t)aggid, 1);
8164 
8165 	ASSERT(state->dts_aggregations[aggid - 1] == agg);
8166 	state->dts_aggregations[aggid - 1] = NULL;
8167 
8168 	kmem_free(agg, sizeof (dtrace_aggregation_t));
8169 }
8170 
8171 static int
8172 dtrace_ecb_action_add(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc)
8173 {
8174 	dtrace_action_t *action, *last;
8175 	dtrace_difo_t *dp = desc->dtad_difo;
8176 	uint32_t size = 0, align = sizeof (uint8_t), mask;
8177 	uint16_t format = 0;
8178 	dtrace_recdesc_t *rec;
8179 	dtrace_state_t *state = ecb->dte_state;
8180 	dtrace_optval_t *opt = state->dts_options, nframes, strsize;
8181 	uint64_t arg = desc->dtad_arg;
8182 
8183 	ASSERT(MUTEX_HELD(&dtrace_lock));
8184 	ASSERT(ecb->dte_action == NULL || ecb->dte_action->dta_refcnt == 1);
8185 
8186 	if (DTRACEACT_ISAGG(desc->dtad_kind)) {
8187 		/*
8188 		 * If this is an aggregating action, there must be neither
8189 		 * a speculate nor a commit on the action chain.
8190 		 */
8191 		dtrace_action_t *act;
8192 
8193 		for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
8194 			if (act->dta_kind == DTRACEACT_COMMIT)
8195 				return (EINVAL);
8196 
8197 			if (act->dta_kind == DTRACEACT_SPECULATE)
8198 				return (EINVAL);
8199 		}
8200 
8201 		action = dtrace_ecb_aggregation_create(ecb, desc);
8202 
8203 		if (action == NULL)
8204 			return (EINVAL);
8205 	} else {
8206 		if (DTRACEACT_ISDESTRUCTIVE(desc->dtad_kind) ||
8207 		    (desc->dtad_kind == DTRACEACT_DIFEXPR &&
8208 		    dp != NULL && dp->dtdo_destructive)) {
8209 			state->dts_destructive = 1;
8210 		}
8211 
8212 		switch (desc->dtad_kind) {
8213 		case DTRACEACT_PRINTF:
8214 		case DTRACEACT_PRINTA:
8215 		case DTRACEACT_SYSTEM:
8216 		case DTRACEACT_FREOPEN:
8217 			/*
8218 			 * We know that our arg is a string -- turn it into a
8219 			 * format.
8220 			 */
8221 			if (arg == NULL) {
8222 				ASSERT(desc->dtad_kind == DTRACEACT_PRINTA);
8223 				format = 0;
8224 			} else {
8225 				ASSERT(arg != NULL);
8226 				ASSERT(arg > KERNELBASE);
8227 				format = dtrace_format_add(state,
8228 				    (char *)(uintptr_t)arg);
8229 			}
8230 
8231 			/*FALLTHROUGH*/
8232 		case DTRACEACT_LIBACT:
8233 		case DTRACEACT_DIFEXPR:
8234 			if (dp == NULL)
8235 				return (EINVAL);
8236 
8237 			if ((size = dp->dtdo_rtype.dtdt_size) != 0)
8238 				break;
8239 
8240 			if (dp->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) {
8241 				if (!(dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
8242 					return (EINVAL);
8243 
8244 				size = opt[DTRACEOPT_STRSIZE];
8245 			}
8246 
8247 			break;
8248 
8249 		case DTRACEACT_STACK:
8250 			if ((nframes = arg) == 0) {
8251 				nframes = opt[DTRACEOPT_STACKFRAMES];
8252 				ASSERT(nframes > 0);
8253 				arg = nframes;
8254 			}
8255 
8256 			size = nframes * sizeof (pc_t);
8257 			break;
8258 
8259 		case DTRACEACT_JSTACK:
8260 			if ((strsize = DTRACE_USTACK_STRSIZE(arg)) == 0)
8261 				strsize = opt[DTRACEOPT_JSTACKSTRSIZE];
8262 
8263 			if ((nframes = DTRACE_USTACK_NFRAMES(arg)) == 0)
8264 				nframes = opt[DTRACEOPT_JSTACKFRAMES];
8265 
8266 			arg = DTRACE_USTACK_ARG(nframes, strsize);
8267 
8268 			/*FALLTHROUGH*/
8269 		case DTRACEACT_USTACK:
8270 			if (desc->dtad_kind != DTRACEACT_JSTACK &&
8271 			    (nframes = DTRACE_USTACK_NFRAMES(arg)) == 0) {
8272 				strsize = DTRACE_USTACK_STRSIZE(arg);
8273 				nframes = opt[DTRACEOPT_USTACKFRAMES];
8274 				ASSERT(nframes > 0);
8275 				arg = DTRACE_USTACK_ARG(nframes, strsize);
8276 			}
8277 
8278 			/*
8279 			 * Save a slot for the pid.
8280 			 */
8281 			size = (nframes + 1) * sizeof (uint64_t);
8282 			size += DTRACE_USTACK_STRSIZE(arg);
8283 			size = P2ROUNDUP(size, (uint32_t)(sizeof (uintptr_t)));
8284 
8285 			break;
8286 
8287 		case DTRACEACT_STOP:
8288 		case DTRACEACT_BREAKPOINT:
8289 		case DTRACEACT_PANIC:
8290 			break;
8291 
8292 		case DTRACEACT_CHILL:
8293 		case DTRACEACT_DISCARD:
8294 		case DTRACEACT_RAISE:
8295 			if (dp == NULL)
8296 				return (EINVAL);
8297 			break;
8298 
8299 		case DTRACEACT_EXIT:
8300 			if (dp == NULL ||
8301 			    (size = dp->dtdo_rtype.dtdt_size) != sizeof (int) ||
8302 			    (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
8303 				return (EINVAL);
8304 			break;
8305 
8306 		case DTRACEACT_SPECULATE:
8307 
8308 			if (ecb->dte_action != NULL && ecb->dte_size != 0)
8309 				return (EINVAL);
8310 
8311 			if (dp == NULL)
8312 				return (EINVAL);
8313 
8314 			state->dts_speculates = 1;
8315 			break;
8316 
8317 		case DTRACEACT_COMMIT: {
8318 			dtrace_action_t *act = ecb->dte_action;
8319 
8320 			for (; act != NULL; act = act->dta_next) {
8321 				if (act->dta_kind == DTRACEACT_COMMIT)
8322 					return (EINVAL);
8323 			}
8324 
8325 			if (dp == NULL)
8326 				return (EINVAL);
8327 			break;
8328 		}
8329 
8330 		default:
8331 			return (EINVAL);
8332 		}
8333 
8334 		if (size != 0 || desc->dtad_kind == DTRACEACT_SPECULATE) {
8335 			/*
8336 			 * If this is a data-storing action or a speculate,
8337 			 * we must be sure that there isn't a commit on the
8338 			 * action chain.
8339 			 */
8340 			dtrace_action_t *act = ecb->dte_action;
8341 
8342 			for (; act != NULL; act = act->dta_next) {
8343 				if (act->dta_kind == DTRACEACT_COMMIT)
8344 					return (EINVAL);
8345 			}
8346 		}
8347 
8348 		action = kmem_zalloc(sizeof (dtrace_action_t), KM_SLEEP);
8349 		action->dta_rec.dtrd_size = size;
8350 	}
8351 
8352 	action->dta_refcnt = 1;
8353 	rec = &action->dta_rec;
8354 	size = rec->dtrd_size;
8355 
8356 	for (mask = sizeof (uint64_t) - 1; size != 0 && mask > 0; mask >>= 1) {
8357 		if (!(size & mask)) {
8358 			align = mask + 1;
8359 			break;
8360 		}
8361 	}
8362 
8363 	action->dta_kind = desc->dtad_kind;
8364 
8365 	if ((action->dta_difo = dp) != NULL)
8366 		dtrace_difo_hold(dp);
8367 
8368 	rec->dtrd_action = action->dta_kind;
8369 	rec->dtrd_arg = arg;
8370 
8371 	if (ecb->dte_state == dtrace_anon.dta_state) {
8372 		/*
8373 		 * If this is an anonymous enabling, explicitly clear the uarg.
8374 		 */
8375 		rec->dtrd_uarg = 0;
8376 	} else {
8377 		rec->dtrd_uarg = desc->dtad_uarg;
8378 	}
8379 
8380 	rec->dtrd_alignment = (uint16_t)align;
8381 	rec->dtrd_format = format;
8382 
8383 	if ((last = ecb->dte_action_last) != NULL) {
8384 		ASSERT(ecb->dte_action != NULL);
8385 		action->dta_prev = last;
8386 		last->dta_next = action;
8387 	} else {
8388 		ASSERT(ecb->dte_action == NULL);
8389 		ecb->dte_action = action;
8390 	}
8391 
8392 	ecb->dte_action_last = action;
8393 
8394 	return (0);
8395 }
8396 
8397 static void
8398 dtrace_ecb_action_remove(dtrace_ecb_t *ecb)
8399 {
8400 	dtrace_action_t *act = ecb->dte_action, *next;
8401 	dtrace_vstate_t *vstate = &ecb->dte_state->dts_vstate;
8402 	dtrace_difo_t *dp;
8403 	uint16_t format;
8404 
8405 	if (act != NULL && act->dta_refcnt > 1) {
8406 		ASSERT(act->dta_next == NULL || act->dta_next->dta_refcnt == 1);
8407 		act->dta_refcnt--;
8408 	} else {
8409 		for (; act != NULL; act = next) {
8410 			next = act->dta_next;
8411 			ASSERT(next != NULL || act == ecb->dte_action_last);
8412 			ASSERT(act->dta_refcnt == 1);
8413 
8414 			if ((format = act->dta_rec.dtrd_format) != 0)
8415 				dtrace_format_remove(ecb->dte_state, format);
8416 
8417 			if ((dp = act->dta_difo) != NULL)
8418 				dtrace_difo_release(dp, vstate);
8419 
8420 			if (DTRACEACT_ISAGG(act->dta_kind)) {
8421 				dtrace_ecb_aggregation_destroy(ecb, act);
8422 			} else {
8423 				kmem_free(act, sizeof (dtrace_action_t));
8424 			}
8425 		}
8426 	}
8427 
8428 	ecb->dte_action = NULL;
8429 	ecb->dte_action_last = NULL;
8430 	ecb->dte_size = sizeof (dtrace_epid_t);
8431 }
8432 
8433 static void
8434 dtrace_ecb_disable(dtrace_ecb_t *ecb)
8435 {
8436 	/*
8437 	 * We disable the ECB by removing it from its probe.
8438 	 */
8439 	dtrace_ecb_t *pecb, *prev = NULL;
8440 	dtrace_probe_t *probe = ecb->dte_probe;
8441 
8442 	ASSERT(MUTEX_HELD(&dtrace_lock));
8443 
8444 	if (probe == NULL) {
8445 		/*
8446 		 * This is the NULL probe; there is nothing to disable.
8447 		 */
8448 		return;
8449 	}
8450 
8451 	for (pecb = probe->dtpr_ecb; pecb != NULL; pecb = pecb->dte_next) {
8452 		if (pecb == ecb)
8453 			break;
8454 		prev = pecb;
8455 	}
8456 
8457 	ASSERT(pecb != NULL);
8458 
8459 	if (prev == NULL) {
8460 		probe->dtpr_ecb = ecb->dte_next;
8461 	} else {
8462 		prev->dte_next = ecb->dte_next;
8463 	}
8464 
8465 	if (ecb == probe->dtpr_ecb_last) {
8466 		ASSERT(ecb->dte_next == NULL);
8467 		probe->dtpr_ecb_last = prev;
8468 	}
8469 
8470 	/*
8471 	 * The ECB has been disconnected from the probe; now sync to assure
8472 	 * that all CPUs have seen the change before returning.
8473 	 */
8474 	dtrace_sync();
8475 
8476 	if (probe->dtpr_ecb == NULL) {
8477 		/*
8478 		 * That was the last ECB on the probe; clear the predicate
8479 		 * cache ID for the probe, disable it and sync one more time
8480 		 * to assure that we'll never hit it again.
8481 		 */
8482 		dtrace_provider_t *prov = probe->dtpr_provider;
8483 
8484 		ASSERT(ecb->dte_next == NULL);
8485 		ASSERT(probe->dtpr_ecb_last == NULL);
8486 		probe->dtpr_predcache = DTRACE_CACHEIDNONE;
8487 		prov->dtpv_pops.dtps_disable(prov->dtpv_arg,
8488 		    probe->dtpr_id, probe->dtpr_arg);
8489 		dtrace_sync();
8490 	} else {
8491 		/*
8492 		 * There is at least one ECB remaining on the probe.  If there
8493 		 * is _exactly_ one, set the probe's predicate cache ID to be
8494 		 * the predicate cache ID of the remaining ECB.
8495 		 */
8496 		ASSERT(probe->dtpr_ecb_last != NULL);
8497 		ASSERT(probe->dtpr_predcache == DTRACE_CACHEIDNONE);
8498 
8499 		if (probe->dtpr_ecb == probe->dtpr_ecb_last) {
8500 			dtrace_predicate_t *p = probe->dtpr_ecb->dte_predicate;
8501 
8502 			ASSERT(probe->dtpr_ecb->dte_next == NULL);
8503 
8504 			if (p != NULL)
8505 				probe->dtpr_predcache = p->dtp_cacheid;
8506 		}
8507 
8508 		ecb->dte_next = NULL;
8509 	}
8510 }
8511 
8512 static void
8513 dtrace_ecb_destroy(dtrace_ecb_t *ecb)
8514 {
8515 	dtrace_state_t *state = ecb->dte_state;
8516 	dtrace_vstate_t *vstate = &state->dts_vstate;
8517 	dtrace_predicate_t *pred;
8518 	dtrace_epid_t epid = ecb->dte_epid;
8519 
8520 	ASSERT(MUTEX_HELD(&dtrace_lock));
8521 	ASSERT(ecb->dte_next == NULL);
8522 	ASSERT(ecb->dte_probe == NULL || ecb->dte_probe->dtpr_ecb != ecb);
8523 
8524 	if ((pred = ecb->dte_predicate) != NULL)
8525 		dtrace_predicate_release(pred, vstate);
8526 
8527 	dtrace_ecb_action_remove(ecb);
8528 
8529 	ASSERT(state->dts_ecbs[epid - 1] == ecb);
8530 	state->dts_ecbs[epid - 1] = NULL;
8531 
8532 	kmem_free(ecb, sizeof (dtrace_ecb_t));
8533 }
8534 
8535 static dtrace_ecb_t *
8536 dtrace_ecb_create(dtrace_state_t *state, dtrace_probe_t *probe,
8537     dtrace_enabling_t *enab)
8538 {
8539 	dtrace_ecb_t *ecb;
8540 	dtrace_predicate_t *pred;
8541 	dtrace_actdesc_t *act;
8542 	dtrace_provider_t *prov;
8543 	dtrace_ecbdesc_t *desc = enab->dten_current;
8544 
8545 	ASSERT(MUTEX_HELD(&dtrace_lock));
8546 	ASSERT(state != NULL);
8547 
8548 	ecb = dtrace_ecb_add(state, probe);
8549 	ecb->dte_uarg = desc->dted_uarg;
8550 
8551 	if ((pred = desc->dted_pred.dtpdd_predicate) != NULL) {
8552 		dtrace_predicate_hold(pred);
8553 		ecb->dte_predicate = pred;
8554 	}
8555 
8556 	if (probe != NULL) {
8557 		/*
8558 		 * If the provider shows more leg than the consumer is old
8559 		 * enough to see, we need to enable the appropriate implicit
8560 		 * predicate bits to prevent the ecb from activating at
8561 		 * revealing times.
8562 		 */
8563 		prov = probe->dtpr_provider;
8564 		if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLPROC) &&
8565 		    (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER))
8566 			ecb->dte_cond |= DTRACE_COND_OWNER;
8567 
8568 		if (!(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) &&
8569 		    (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_KERNEL))
8570 			ecb->dte_cond |= DTRACE_COND_USERMODE;
8571 	}
8572 
8573 	if (dtrace_ecb_create_cache != NULL) {
8574 		/*
8575 		 * If we have a cached ecb, we'll use its action list instead
8576 		 * of creating our own (saving both time and space).
8577 		 */
8578 		dtrace_ecb_t *cached = dtrace_ecb_create_cache;
8579 		dtrace_action_t *act = cached->dte_action;
8580 
8581 		if (act != NULL) {
8582 			ASSERT(act->dta_refcnt > 0);
8583 			act->dta_refcnt++;
8584 			ecb->dte_action = act;
8585 			ecb->dte_action_last = cached->dte_action_last;
8586 			ecb->dte_needed = cached->dte_needed;
8587 			ecb->dte_size = cached->dte_size;
8588 			ecb->dte_alignment = cached->dte_alignment;
8589 		}
8590 
8591 		return (ecb);
8592 	}
8593 
8594 	for (act = desc->dted_action; act != NULL; act = act->dtad_next) {
8595 		if ((enab->dten_error = dtrace_ecb_action_add(ecb, act)) != 0) {
8596 			dtrace_ecb_destroy(ecb);
8597 			return (NULL);
8598 		}
8599 	}
8600 
8601 	dtrace_ecb_resize(ecb);
8602 
8603 	return (dtrace_ecb_create_cache = ecb);
8604 }
8605 
8606 static int
8607 dtrace_ecb_create_enable(dtrace_probe_t *probe, void *arg)
8608 {
8609 	dtrace_ecb_t *ecb;
8610 	dtrace_enabling_t *enab = arg;
8611 	dtrace_state_t *state = enab->dten_vstate->dtvs_state;
8612 
8613 	ASSERT(state != NULL);
8614 
8615 	if (probe != NULL && probe->dtpr_gen < enab->dten_probegen) {
8616 		/*
8617 		 * This probe was created in a generation for which this
8618 		 * enabling has previously created ECBs; we don't want to
8619 		 * enable it again, so just kick out.
8620 		 */
8621 		return (DTRACE_MATCH_NEXT);
8622 	}
8623 
8624 	if ((ecb = dtrace_ecb_create(state, probe, enab)) == NULL)
8625 		return (DTRACE_MATCH_DONE);
8626 
8627 	dtrace_ecb_enable(ecb);
8628 	return (DTRACE_MATCH_NEXT);
8629 }
8630 
8631 static dtrace_ecb_t *
8632 dtrace_epid2ecb(dtrace_state_t *state, dtrace_epid_t id)
8633 {
8634 	dtrace_ecb_t *ecb;
8635 
8636 	ASSERT(MUTEX_HELD(&dtrace_lock));
8637 
8638 	if (id == 0 || id > state->dts_necbs)
8639 		return (NULL);
8640 
8641 	ASSERT(state->dts_necbs > 0 && state->dts_ecbs != NULL);
8642 	ASSERT((ecb = state->dts_ecbs[id - 1]) == NULL || ecb->dte_epid == id);
8643 
8644 	return (state->dts_ecbs[id - 1]);
8645 }
8646 
8647 static dtrace_aggregation_t *
8648 dtrace_aggid2agg(dtrace_state_t *state, dtrace_aggid_t id)
8649 {
8650 	dtrace_aggregation_t *agg;
8651 
8652 	ASSERT(MUTEX_HELD(&dtrace_lock));
8653 
8654 	if (id == 0 || id > state->dts_naggregations)
8655 		return (NULL);
8656 
8657 	ASSERT(state->dts_naggregations > 0 && state->dts_aggregations != NULL);
8658 	ASSERT((agg = state->dts_aggregations[id - 1]) == NULL ||
8659 	    agg->dtag_id == id);
8660 
8661 	return (state->dts_aggregations[id - 1]);
8662 }
8663 
8664 /*
8665  * DTrace Buffer Functions
8666  *
8667  * The following functions manipulate DTrace buffers.  Most of these functions
8668  * are called in the context of establishing or processing consumer state;
8669  * exceptions are explicitly noted.
8670  */
8671 
8672 /*
8673  * Note:  called from cross call context.  This function switches the two
8674  * buffers on a given CPU.  The atomicity of this operation is assured by
8675  * disabling interrupts while the actual switch takes place; the disabling of
8676  * interrupts serializes the execution with any execution of dtrace_probe() on
8677  * the same CPU.
8678  */
8679 static void
8680 dtrace_buffer_switch(dtrace_buffer_t *buf)
8681 {
8682 	caddr_t tomax = buf->dtb_tomax;
8683 	caddr_t xamot = buf->dtb_xamot;
8684 	dtrace_icookie_t cookie;
8685 
8686 	ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
8687 	ASSERT(!(buf->dtb_flags & DTRACEBUF_RING));
8688 
8689 	cookie = dtrace_interrupt_disable();
8690 	buf->dtb_tomax = xamot;
8691 	buf->dtb_xamot = tomax;
8692 	buf->dtb_xamot_drops = buf->dtb_drops;
8693 	buf->dtb_xamot_offset = buf->dtb_offset;
8694 	buf->dtb_xamot_errors = buf->dtb_errors;
8695 	buf->dtb_xamot_flags = buf->dtb_flags;
8696 	buf->dtb_offset = 0;
8697 	buf->dtb_drops = 0;
8698 	buf->dtb_errors = 0;
8699 	buf->dtb_flags &= ~(DTRACEBUF_ERROR | DTRACEBUF_DROPPED);
8700 	dtrace_interrupt_enable(cookie);
8701 }
8702 
8703 /*
8704  * Note:  called from cross call context.  This function activates a buffer
8705  * on a CPU.  As with dtrace_buffer_switch(), the atomicity of the operation
8706  * is guaranteed by the disabling of interrupts.
8707  */
8708 static void
8709 dtrace_buffer_activate(dtrace_state_t *state)
8710 {
8711 	dtrace_buffer_t *buf;
8712 	dtrace_icookie_t cookie = dtrace_interrupt_disable();
8713 
8714 	buf = &state->dts_buffer[CPU->cpu_id];
8715 
8716 	if (buf->dtb_tomax != NULL) {
8717 		/*
8718 		 * We might like to assert that the buffer is marked inactive,
8719 		 * but this isn't necessarily true:  the buffer for the CPU
8720 		 * that processes the BEGIN probe has its buffer activated
8721 		 * manually.  In this case, we take the (harmless) action
8722 		 * re-clearing the bit INACTIVE bit.
8723 		 */
8724 		buf->dtb_flags &= ~DTRACEBUF_INACTIVE;
8725 	}
8726 
8727 	dtrace_interrupt_enable(cookie);
8728 }
8729 
8730 static int
8731 dtrace_buffer_alloc(dtrace_buffer_t *bufs, size_t size, int flags,
8732     processorid_t cpu)
8733 {
8734 	cpu_t *cp;
8735 	dtrace_buffer_t *buf;
8736 
8737 	ASSERT(MUTEX_HELD(&cpu_lock));
8738 	ASSERT(MUTEX_HELD(&dtrace_lock));
8739 
8740 	if (crgetuid(CRED()) != 0 && size > dtrace_nonroot_maxsize)
8741 		return (EFBIG);
8742 
8743 	cp = cpu_list;
8744 
8745 	do {
8746 		if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id)
8747 			continue;
8748 
8749 		buf = &bufs[cp->cpu_id];
8750 
8751 		/*
8752 		 * If there is already a buffer allocated for this CPU, it
8753 		 * is only possible that this is a DR event.  In this case,
8754 		 * the buffer size must match our specified size.
8755 		 */
8756 		if (buf->dtb_tomax != NULL) {
8757 			ASSERT(buf->dtb_size == size);
8758 			continue;
8759 		}
8760 
8761 		ASSERT(buf->dtb_xamot == NULL);
8762 
8763 		if ((buf->dtb_tomax = kmem_zalloc(size, KM_NOSLEEP)) == NULL)
8764 			goto err;
8765 
8766 		buf->dtb_size = size;
8767 		buf->dtb_flags = flags;
8768 		buf->dtb_offset = 0;
8769 		buf->dtb_drops = 0;
8770 
8771 		if (flags & DTRACEBUF_NOSWITCH)
8772 			continue;
8773 
8774 		if ((buf->dtb_xamot = kmem_zalloc(size, KM_NOSLEEP)) == NULL)
8775 			goto err;
8776 	} while ((cp = cp->cpu_next) != cpu_list);
8777 
8778 	return (0);
8779 
8780 err:
8781 	cp = cpu_list;
8782 
8783 	do {
8784 		if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id)
8785 			continue;
8786 
8787 		buf = &bufs[cp->cpu_id];
8788 
8789 		if (buf->dtb_xamot != NULL) {
8790 			ASSERT(buf->dtb_tomax != NULL);
8791 			ASSERT(buf->dtb_size == size);
8792 			kmem_free(buf->dtb_xamot, size);
8793 		}
8794 
8795 		if (buf->dtb_tomax != NULL) {
8796 			ASSERT(buf->dtb_size == size);
8797 			kmem_free(buf->dtb_tomax, size);
8798 		}
8799 
8800 		buf->dtb_tomax = NULL;
8801 		buf->dtb_xamot = NULL;
8802 		buf->dtb_size = 0;
8803 	} while ((cp = cp->cpu_next) != cpu_list);
8804 
8805 	return (ENOMEM);
8806 }
8807 
8808 /*
8809  * Note:  called from probe context.  This function just increments the drop
8810  * count on a buffer.  It has been made a function to allow for the
8811  * possibility of understanding the source of mysterious drop counts.  (A
8812  * problem for which one may be particularly disappointed that DTrace cannot
8813  * be used to understand DTrace.)
8814  */
8815 static void
8816 dtrace_buffer_drop(dtrace_buffer_t *buf)
8817 {
8818 	buf->dtb_drops++;
8819 }
8820 
8821 /*
8822  * Note:  called from probe context.  This function is called to reserve space
8823  * in a buffer.  If mstate is non-NULL, sets the scratch base and size in the
8824  * mstate.  Returns the new offset in the buffer, or a negative value if an
8825  * error has occurred.
8826  */
8827 static intptr_t
8828 dtrace_buffer_reserve(dtrace_buffer_t *buf, size_t needed, size_t align,
8829     dtrace_state_t *state, dtrace_mstate_t *mstate)
8830 {
8831 	intptr_t offs = buf->dtb_offset, soffs;
8832 	intptr_t woffs;
8833 	caddr_t tomax;
8834 	size_t total;
8835 
8836 	if (buf->dtb_flags & DTRACEBUF_INACTIVE)
8837 		return (-1);
8838 
8839 	if ((tomax = buf->dtb_tomax) == NULL) {
8840 		dtrace_buffer_drop(buf);
8841 		return (-1);
8842 	}
8843 
8844 	if (!(buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL))) {
8845 		while (offs & (align - 1)) {
8846 			/*
8847 			 * Assert that our alignment is off by a number which
8848 			 * is itself sizeof (uint32_t) aligned.
8849 			 */
8850 			ASSERT(!((align - (offs & (align - 1))) &
8851 			    (sizeof (uint32_t) - 1)));
8852 			DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE);
8853 			offs += sizeof (uint32_t);
8854 		}
8855 
8856 		if ((soffs = offs + needed) > buf->dtb_size) {
8857 			dtrace_buffer_drop(buf);
8858 			return (-1);
8859 		}
8860 
8861 		if (mstate == NULL)
8862 			return (offs);
8863 
8864 		mstate->dtms_scratch_base = (uintptr_t)tomax + soffs;
8865 		mstate->dtms_scratch_size = buf->dtb_size - soffs;
8866 		mstate->dtms_scratch_ptr = mstate->dtms_scratch_base;
8867 
8868 		return (offs);
8869 	}
8870 
8871 	if (buf->dtb_flags & DTRACEBUF_FILL) {
8872 		if (state->dts_activity != DTRACE_ACTIVITY_COOLDOWN &&
8873 		    (buf->dtb_flags & DTRACEBUF_FULL))
8874 			return (-1);
8875 		goto out;
8876 	}
8877 
8878 	total = needed + (offs & (align - 1));
8879 
8880 	/*
8881 	 * For a ring buffer, life is quite a bit more complicated.  Before
8882 	 * we can store any padding, we need to adjust our wrapping offset.
8883 	 * (If we've never before wrapped or we're not about to, no adjustment
8884 	 * is required.)
8885 	 */
8886 	if ((buf->dtb_flags & DTRACEBUF_WRAPPED) ||
8887 	    offs + total > buf->dtb_size) {
8888 		woffs = buf->dtb_xamot_offset;
8889 
8890 		if (offs + total > buf->dtb_size) {
8891 			/*
8892 			 * We can't fit in the end of the buffer.  First, a
8893 			 * sanity check that we can fit in the buffer at all.
8894 			 */
8895 			if (total > buf->dtb_size) {
8896 				dtrace_buffer_drop(buf);
8897 				return (-1);
8898 			}
8899 
8900 			/*
8901 			 * We're going to be storing at the top of the buffer,
8902 			 * so now we need to deal with the wrapped offset.  We
8903 			 * only reset our wrapped offset to 0 if it is
8904 			 * currently greater than the current offset.  If it
8905 			 * is less than the current offset, it is because a
8906 			 * previous allocation induced a wrap -- but the
8907 			 * allocation didn't subsequently take the space due
8908 			 * to an error or false predicate evaluation.  In this
8909 			 * case, we'll just leave the wrapped offset alone: if
8910 			 * the wrapped offset hasn't been advanced far enough
8911 			 * for this allocation, it will be adjusted in the
8912 			 * lower loop.
8913 			 */
8914 			if (buf->dtb_flags & DTRACEBUF_WRAPPED) {
8915 				if (woffs >= offs)
8916 					woffs = 0;
8917 			} else {
8918 				woffs = 0;
8919 			}
8920 
8921 			/*
8922 			 * Now we know that we're going to be storing to the
8923 			 * top of the buffer and that there is room for us
8924 			 * there.  We need to clear the buffer from the current
8925 			 * offset to the end (there may be old gunk there).
8926 			 */
8927 			while (offs < buf->dtb_size)
8928 				tomax[offs++] = 0;
8929 
8930 			/*
8931 			 * We need to set our offset to zero.  And because we
8932 			 * are wrapping, we need to set the bit indicating as
8933 			 * much.  We can also adjust our needed space back
8934 			 * down to the space required by the ECB -- we know
8935 			 * that the top of the buffer is aligned.
8936 			 */
8937 			offs = 0;
8938 			total = needed;
8939 			buf->dtb_flags |= DTRACEBUF_WRAPPED;
8940 		} else {
8941 			/*
8942 			 * There is room for us in the buffer, so we simply
8943 			 * need to check the wrapped offset.
8944 			 */
8945 			if (woffs < offs) {
8946 				/*
8947 				 * The wrapped offset is less than the offset.
8948 				 * This can happen if we allocated buffer space
8949 				 * that induced a wrap, but then we didn't
8950 				 * subsequently take the space due to an error
8951 				 * or false predicate evaluation.  This is
8952 				 * okay; we know that _this_ allocation isn't
8953 				 * going to induce a wrap.  We still can't
8954 				 * reset the wrapped offset to be zero,
8955 				 * however: the space may have been trashed in
8956 				 * the previous failed probe attempt.  But at
8957 				 * least the wrapped offset doesn't need to
8958 				 * be adjusted at all...
8959 				 */
8960 				goto out;
8961 			}
8962 		}
8963 
8964 		while (offs + total > woffs) {
8965 			dtrace_epid_t epid = *(uint32_t *)(tomax + woffs);
8966 			size_t size;
8967 
8968 			if (epid == DTRACE_EPIDNONE) {
8969 				size = sizeof (uint32_t);
8970 			} else {
8971 				ASSERT(epid <= state->dts_necbs);
8972 				ASSERT(state->dts_ecbs[epid - 1] != NULL);
8973 
8974 				size = state->dts_ecbs[epid - 1]->dte_size;
8975 			}
8976 
8977 			ASSERT(woffs + size <= buf->dtb_size);
8978 			ASSERT(size != 0);
8979 
8980 			if (woffs + size == buf->dtb_size) {
8981 				/*
8982 				 * We've reached the end of the buffer; we want
8983 				 * to set the wrapped offset to 0 and break
8984 				 * out.  However, if the offs is 0, then we're
8985 				 * in a strange edge-condition:  the amount of
8986 				 * space that we want to reserve plus the size
8987 				 * of the record that we're overwriting is
8988 				 * greater than the size of the buffer.  This
8989 				 * is problematic because if we reserve the
8990 				 * space but subsequently don't consume it (due
8991 				 * to a failed predicate or error) the wrapped
8992 				 * offset will be 0 -- yet the EPID at offset 0
8993 				 * will not be committed.  This situation is
8994 				 * relatively easy to deal with:  if we're in
8995 				 * this case, the buffer is indistinguishable
8996 				 * from one that hasn't wrapped; we need only
8997 				 * finish the job by clearing the wrapped bit,
8998 				 * explicitly setting the offset to be 0, and
8999 				 * zero'ing out the old data in the buffer.
9000 				 */
9001 				if (offs == 0) {
9002 					buf->dtb_flags &= ~DTRACEBUF_WRAPPED;
9003 					buf->dtb_offset = 0;
9004 					woffs = total;
9005 
9006 					while (woffs < buf->dtb_size)
9007 						tomax[woffs++] = 0;
9008 				}
9009 
9010 				woffs = 0;
9011 				break;
9012 			}
9013 
9014 			woffs += size;
9015 		}
9016 
9017 		/*
9018 		 * We have a wrapped offset.  It may be that the wrapped offset
9019 		 * has become zero -- that's okay.
9020 		 */
9021 		buf->dtb_xamot_offset = woffs;
9022 	}
9023 
9024 out:
9025 	/*
9026 	 * Now we can plow the buffer with any necessary padding.
9027 	 */
9028 	while (offs & (align - 1)) {
9029 		/*
9030 		 * Assert that our alignment is off by a number which
9031 		 * is itself sizeof (uint32_t) aligned.
9032 		 */
9033 		ASSERT(!((align - (offs & (align - 1))) &
9034 		    (sizeof (uint32_t) - 1)));
9035 		DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE);
9036 		offs += sizeof (uint32_t);
9037 	}
9038 
9039 	if (buf->dtb_flags & DTRACEBUF_FILL) {
9040 		if (offs + needed > buf->dtb_size - state->dts_reserve) {
9041 			buf->dtb_flags |= DTRACEBUF_FULL;
9042 			return (-1);
9043 		}
9044 	}
9045 
9046 	if (mstate == NULL)
9047 		return (offs);
9048 
9049 	/*
9050 	 * For ring buffers and fill buffers, the scratch space is always
9051 	 * the inactive buffer.
9052 	 */
9053 	mstate->dtms_scratch_base = (uintptr_t)buf->dtb_xamot;
9054 	mstate->dtms_scratch_size = buf->dtb_size;
9055 	mstate->dtms_scratch_ptr = mstate->dtms_scratch_base;
9056 
9057 	return (offs);
9058 }
9059 
9060 static void
9061 dtrace_buffer_polish(dtrace_buffer_t *buf)
9062 {
9063 	ASSERT(buf->dtb_flags & DTRACEBUF_RING);
9064 	ASSERT(MUTEX_HELD(&dtrace_lock));
9065 
9066 	if (!(buf->dtb_flags & DTRACEBUF_WRAPPED))
9067 		return;
9068 
9069 	/*
9070 	 * We need to polish the ring buffer.  There are three cases:
9071 	 *
9072 	 * - The first (and presumably most common) is that there is no gap
9073 	 *   between the buffer offset and the wrapped offset.  In this case,
9074 	 *   there is nothing in the buffer that isn't valid data; we can
9075 	 *   mark the buffer as polished and return.
9076 	 *
9077 	 * - The second (less common than the first but still more common
9078 	 *   than the third) is that there is a gap between the buffer offset
9079 	 *   and the wrapped offset, and the wrapped offset is larger than the
9080 	 *   buffer offset.  This can happen because of an alignment issue, or
9081 	 *   can happen because of a call to dtrace_buffer_reserve() that
9082 	 *   didn't subsequently consume the buffer space.  In this case,
9083 	 *   we need to zero the data from the buffer offset to the wrapped
9084 	 *   offset.
9085 	 *
9086 	 * - The third (and least common) is that there is a gap between the
9087 	 *   buffer offset and the wrapped offset, but the wrapped offset is
9088 	 *   _less_ than the buffer offset.  This can only happen because a
9089 	 *   call to dtrace_buffer_reserve() induced a wrap, but the space
9090 	 *   was not subsequently consumed.  In this case, we need to zero the
9091 	 *   space from the offset to the end of the buffer _and_ from the
9092 	 *   top of the buffer to the wrapped offset.
9093 	 */
9094 	if (buf->dtb_offset < buf->dtb_xamot_offset) {
9095 		bzero(buf->dtb_tomax + buf->dtb_offset,
9096 		    buf->dtb_xamot_offset - buf->dtb_offset);
9097 	}
9098 
9099 	if (buf->dtb_offset > buf->dtb_xamot_offset) {
9100 		bzero(buf->dtb_tomax + buf->dtb_offset,
9101 		    buf->dtb_size - buf->dtb_offset);
9102 		bzero(buf->dtb_tomax, buf->dtb_xamot_offset);
9103 	}
9104 }
9105 
9106 static void
9107 dtrace_buffer_free(dtrace_buffer_t *bufs)
9108 {
9109 	int i;
9110 
9111 	for (i = 0; i < NCPU; i++) {
9112 		dtrace_buffer_t *buf = &bufs[i];
9113 
9114 		if (buf->dtb_tomax == NULL) {
9115 			ASSERT(buf->dtb_xamot == NULL);
9116 			ASSERT(buf->dtb_size == 0);
9117 			continue;
9118 		}
9119 
9120 		if (buf->dtb_xamot != NULL) {
9121 			ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
9122 			kmem_free(buf->dtb_xamot, buf->dtb_size);
9123 		}
9124 
9125 		kmem_free(buf->dtb_tomax, buf->dtb_size);
9126 		buf->dtb_size = 0;
9127 		buf->dtb_tomax = NULL;
9128 		buf->dtb_xamot = NULL;
9129 	}
9130 }
9131 
9132 /*
9133  * DTrace Enabling Functions
9134  */
9135 static dtrace_enabling_t *
9136 dtrace_enabling_create(dtrace_vstate_t *vstate)
9137 {
9138 	dtrace_enabling_t *enab;
9139 
9140 	enab = kmem_zalloc(sizeof (dtrace_enabling_t), KM_SLEEP);
9141 	enab->dten_vstate = vstate;
9142 
9143 	return (enab);
9144 }
9145 
9146 static void
9147 dtrace_enabling_add(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb)
9148 {
9149 	dtrace_ecbdesc_t **ndesc;
9150 	size_t osize, nsize;
9151 
9152 	/*
9153 	 * We can't add to enablings after we've enabled them, or after we've
9154 	 * retained them.
9155 	 */
9156 	ASSERT(enab->dten_probegen == 0);
9157 	ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL);
9158 
9159 	if (enab->dten_ndesc < enab->dten_maxdesc) {
9160 		enab->dten_desc[enab->dten_ndesc++] = ecb;
9161 		return;
9162 	}
9163 
9164 	osize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *);
9165 
9166 	if (enab->dten_maxdesc == 0) {
9167 		enab->dten_maxdesc = 1;
9168 	} else {
9169 		enab->dten_maxdesc <<= 1;
9170 	}
9171 
9172 	ASSERT(enab->dten_ndesc < enab->dten_maxdesc);
9173 
9174 	nsize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *);
9175 	ndesc = kmem_zalloc(nsize, KM_SLEEP);
9176 	bcopy(enab->dten_desc, ndesc, osize);
9177 	kmem_free(enab->dten_desc, osize);
9178 
9179 	enab->dten_desc = ndesc;
9180 	enab->dten_desc[enab->dten_ndesc++] = ecb;
9181 }
9182 
9183 static void
9184 dtrace_enabling_addlike(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb,
9185     dtrace_probedesc_t *pd)
9186 {
9187 	dtrace_ecbdesc_t *new;
9188 	dtrace_predicate_t *pred;
9189 	dtrace_actdesc_t *act;
9190 
9191 	/*
9192 	 * We're going to create a new ECB description that matches the
9193 	 * specified ECB in every way, but has the specified probe description.
9194 	 */
9195 	new = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP);
9196 
9197 	if ((pred = ecb->dted_pred.dtpdd_predicate) != NULL)
9198 		dtrace_predicate_hold(pred);
9199 
9200 	for (act = ecb->dted_action; act != NULL; act = act->dtad_next)
9201 		dtrace_actdesc_hold(act);
9202 
9203 	new->dted_action = ecb->dted_action;
9204 	new->dted_pred = ecb->dted_pred;
9205 	new->dted_probe = *pd;
9206 	new->dted_uarg = ecb->dted_uarg;
9207 
9208 	dtrace_enabling_add(enab, new);
9209 }
9210 
9211 static void
9212 dtrace_enabling_dump(dtrace_enabling_t *enab)
9213 {
9214 	int i;
9215 
9216 	for (i = 0; i < enab->dten_ndesc; i++) {
9217 		dtrace_probedesc_t *desc = &enab->dten_desc[i]->dted_probe;
9218 
9219 		cmn_err(CE_NOTE, "enabling probe %d (%s:%s:%s:%s)", i,
9220 		    desc->dtpd_provider, desc->dtpd_mod,
9221 		    desc->dtpd_func, desc->dtpd_name);
9222 	}
9223 }
9224 
9225 static void
9226 dtrace_enabling_destroy(dtrace_enabling_t *enab)
9227 {
9228 	int i;
9229 	dtrace_ecbdesc_t *ep;
9230 	dtrace_vstate_t *vstate = enab->dten_vstate;
9231 
9232 	ASSERT(MUTEX_HELD(&dtrace_lock));
9233 
9234 	for (i = 0; i < enab->dten_ndesc; i++) {
9235 		dtrace_actdesc_t *act, *next;
9236 		dtrace_predicate_t *pred;
9237 
9238 		ep = enab->dten_desc[i];
9239 
9240 		if ((pred = ep->dted_pred.dtpdd_predicate) != NULL)
9241 			dtrace_predicate_release(pred, vstate);
9242 
9243 		for (act = ep->dted_action; act != NULL; act = next) {
9244 			next = act->dtad_next;
9245 			dtrace_actdesc_release(act, vstate);
9246 		}
9247 
9248 		kmem_free(ep, sizeof (dtrace_ecbdesc_t));
9249 	}
9250 
9251 	kmem_free(enab->dten_desc,
9252 	    enab->dten_maxdesc * sizeof (dtrace_enabling_t *));
9253 
9254 	/*
9255 	 * If this was a retained enabling, decrement the dts_nretained count
9256 	 * and take it off of the dtrace_retained list.
9257 	 */
9258 	if (enab->dten_prev != NULL || enab->dten_next != NULL ||
9259 	    dtrace_retained == enab) {
9260 		ASSERT(enab->dten_vstate->dtvs_state != NULL);
9261 		ASSERT(enab->dten_vstate->dtvs_state->dts_nretained > 0);
9262 		enab->dten_vstate->dtvs_state->dts_nretained--;
9263 	}
9264 
9265 	if (enab->dten_prev == NULL) {
9266 		if (dtrace_retained == enab) {
9267 			dtrace_retained = enab->dten_next;
9268 
9269 			if (dtrace_retained != NULL)
9270 				dtrace_retained->dten_prev = NULL;
9271 		}
9272 	} else {
9273 		ASSERT(enab != dtrace_retained);
9274 		ASSERT(dtrace_retained != NULL);
9275 		enab->dten_prev->dten_next = enab->dten_next;
9276 	}
9277 
9278 	if (enab->dten_next != NULL) {
9279 		ASSERT(dtrace_retained != NULL);
9280 		enab->dten_next->dten_prev = enab->dten_prev;
9281 	}
9282 
9283 	kmem_free(enab, sizeof (dtrace_enabling_t));
9284 }
9285 
9286 static int
9287 dtrace_enabling_retain(dtrace_enabling_t *enab)
9288 {
9289 	dtrace_state_t *state;
9290 
9291 	ASSERT(MUTEX_HELD(&dtrace_lock));
9292 	ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL);
9293 	ASSERT(enab->dten_vstate != NULL);
9294 
9295 	state = enab->dten_vstate->dtvs_state;
9296 	ASSERT(state != NULL);
9297 
9298 	/*
9299 	 * We only allow each state to retain dtrace_retain_max enablings.
9300 	 */
9301 	if (state->dts_nretained >= dtrace_retain_max)
9302 		return (ENOSPC);
9303 
9304 	state->dts_nretained++;
9305 
9306 	if (dtrace_retained == NULL) {
9307 		dtrace_retained = enab;
9308 		return (0);
9309 	}
9310 
9311 	enab->dten_next = dtrace_retained;
9312 	dtrace_retained->dten_prev = enab;
9313 	dtrace_retained = enab;
9314 
9315 	return (0);
9316 }
9317 
9318 static int
9319 dtrace_enabling_replicate(dtrace_state_t *state, dtrace_probedesc_t *match,
9320     dtrace_probedesc_t *create)
9321 {
9322 	dtrace_enabling_t *new, *enab;
9323 	int found = 0, err = ENOENT;
9324 
9325 	ASSERT(MUTEX_HELD(&dtrace_lock));
9326 	ASSERT(strlen(match->dtpd_provider) < DTRACE_PROVNAMELEN);
9327 	ASSERT(strlen(match->dtpd_mod) < DTRACE_MODNAMELEN);
9328 	ASSERT(strlen(match->dtpd_func) < DTRACE_FUNCNAMELEN);
9329 	ASSERT(strlen(match->dtpd_name) < DTRACE_NAMELEN);
9330 
9331 	new = dtrace_enabling_create(&state->dts_vstate);
9332 
9333 	/*
9334 	 * Iterate over all retained enablings, looking for enablings that
9335 	 * match the specified state.
9336 	 */
9337 	for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
9338 		int i;
9339 
9340 		/*
9341 		 * dtvs_state can only be NULL for helper enablings -- and
9342 		 * helper enablings can't be retained.
9343 		 */
9344 		ASSERT(enab->dten_vstate->dtvs_state != NULL);
9345 
9346 		if (enab->dten_vstate->dtvs_state != state)
9347 			continue;
9348 
9349 		/*
9350 		 * Now iterate over each probe description; we're looking for
9351 		 * an exact match to the specified probe description.
9352 		 */
9353 		for (i = 0; i < enab->dten_ndesc; i++) {
9354 			dtrace_ecbdesc_t *ep = enab->dten_desc[i];
9355 			dtrace_probedesc_t *pd = &ep->dted_probe;
9356 
9357 			if (strcmp(pd->dtpd_provider, match->dtpd_provider))
9358 				continue;
9359 
9360 			if (strcmp(pd->dtpd_mod, match->dtpd_mod))
9361 				continue;
9362 
9363 			if (strcmp(pd->dtpd_func, match->dtpd_func))
9364 				continue;
9365 
9366 			if (strcmp(pd->dtpd_name, match->dtpd_name))
9367 				continue;
9368 
9369 			/*
9370 			 * We have a winning probe!  Add it to our growing
9371 			 * enabling.
9372 			 */
9373 			found = 1;
9374 			dtrace_enabling_addlike(new, ep, create);
9375 		}
9376 	}
9377 
9378 	if (!found || (err = dtrace_enabling_retain(new)) != 0) {
9379 		dtrace_enabling_destroy(new);
9380 		return (err);
9381 	}
9382 
9383 	return (0);
9384 }
9385 
9386 static void
9387 dtrace_enabling_retract(dtrace_state_t *state)
9388 {
9389 	dtrace_enabling_t *enab, *next;
9390 
9391 	ASSERT(MUTEX_HELD(&dtrace_lock));
9392 
9393 	/*
9394 	 * Iterate over all retained enablings, destroy the enablings retained
9395 	 * for the specified state.
9396 	 */
9397 	for (enab = dtrace_retained; enab != NULL; enab = next) {
9398 		next = enab->dten_next;
9399 
9400 		/*
9401 		 * dtvs_state can only be NULL for helper enablings -- and
9402 		 * helper enablings can't be retained.
9403 		 */
9404 		ASSERT(enab->dten_vstate->dtvs_state != NULL);
9405 
9406 		if (enab->dten_vstate->dtvs_state == state) {
9407 			ASSERT(state->dts_nretained > 0);
9408 			dtrace_enabling_destroy(enab);
9409 		}
9410 	}
9411 
9412 	ASSERT(state->dts_nretained == 0);
9413 }
9414 
9415 static int
9416 dtrace_enabling_match(dtrace_enabling_t *enab, int *nmatched)
9417 {
9418 	int i = 0;
9419 	int matched = 0;
9420 
9421 	ASSERT(MUTEX_HELD(&cpu_lock));
9422 	ASSERT(MUTEX_HELD(&dtrace_lock));
9423 
9424 	for (i = 0; i < enab->dten_ndesc; i++) {
9425 		dtrace_ecbdesc_t *ep = enab->dten_desc[i];
9426 
9427 		enab->dten_current = ep;
9428 		enab->dten_error = 0;
9429 
9430 		matched += dtrace_probe_enable(&ep->dted_probe, enab);
9431 
9432 		if (enab->dten_error != 0) {
9433 			/*
9434 			 * If we get an error half-way through enabling the
9435 			 * probes, we kick out -- perhaps with some number of
9436 			 * them enabled.  Leaving enabled probes enabled may
9437 			 * be slightly confusing for user-level, but we expect
9438 			 * that no one will attempt to actually drive on in
9439 			 * the face of such errors.  If this is an anonymous
9440 			 * enabling (indicated with a NULL nmatched pointer),
9441 			 * we cmn_err() a message.  We aren't expecting to
9442 			 * get such an error -- such as it can exist at all,
9443 			 * it would be a result of corrupted DOF in the driver
9444 			 * properties.
9445 			 */
9446 			if (nmatched == NULL) {
9447 				cmn_err(CE_WARN, "dtrace_enabling_match() "
9448 				    "error on %p: %d", (void *)ep,
9449 				    enab->dten_error);
9450 			}
9451 
9452 			return (enab->dten_error);
9453 		}
9454 	}
9455 
9456 	enab->dten_probegen = dtrace_probegen;
9457 	if (nmatched != NULL)
9458 		*nmatched = matched;
9459 
9460 	return (0);
9461 }
9462 
9463 static void
9464 dtrace_enabling_matchall(void)
9465 {
9466 	dtrace_enabling_t *enab;
9467 
9468 	mutex_enter(&cpu_lock);
9469 	mutex_enter(&dtrace_lock);
9470 
9471 	/*
9472 	 * Because we can be called after dtrace_detach() has been called, we
9473 	 * cannot assert that there are retained enablings.  We can safely
9474 	 * load from dtrace_retained, however:  the taskq_destroy() at the
9475 	 * end of dtrace_detach() will block pending our completion.
9476 	 */
9477 	for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next)
9478 		(void) dtrace_enabling_match(enab, NULL);
9479 
9480 	mutex_exit(&dtrace_lock);
9481 	mutex_exit(&cpu_lock);
9482 }
9483 
9484 static int
9485 dtrace_enabling_matchstate(dtrace_state_t *state, int *nmatched)
9486 {
9487 	dtrace_enabling_t *enab;
9488 	int matched, total = 0, err;
9489 
9490 	ASSERT(MUTEX_HELD(&cpu_lock));
9491 	ASSERT(MUTEX_HELD(&dtrace_lock));
9492 
9493 	for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
9494 		ASSERT(enab->dten_vstate->dtvs_state != NULL);
9495 
9496 		if (enab->dten_vstate->dtvs_state != state)
9497 			continue;
9498 
9499 		if ((err = dtrace_enabling_match(enab, &matched)) != 0)
9500 			return (err);
9501 
9502 		total += matched;
9503 	}
9504 
9505 	if (nmatched != NULL)
9506 		*nmatched = total;
9507 
9508 	return (0);
9509 }
9510 
9511 /*
9512  * If an enabling is to be enabled without having matched probes (that is, if
9513  * dtrace_state_go() is to be called on the underlying dtrace_state_t), the
9514  * enabling must be _primed_ by creating an ECB for every ECB description.
9515  * This must be done to assure that we know the number of speculations, the
9516  * number of aggregations, the minimum buffer size needed, etc. before we
9517  * transition out of DTRACE_ACTIVITY_INACTIVE.  To do this without actually
9518  * enabling any probes, we create ECBs for every ECB decription, but with a
9519  * NULL probe -- which is exactly what this function does.
9520  */
9521 static void
9522 dtrace_enabling_prime(dtrace_state_t *state)
9523 {
9524 	dtrace_enabling_t *enab;
9525 	int i;
9526 
9527 	for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
9528 		ASSERT(enab->dten_vstate->dtvs_state != NULL);
9529 
9530 		if (enab->dten_vstate->dtvs_state != state)
9531 			continue;
9532 
9533 		/*
9534 		 * We don't want to prime an enabling more than once, lest
9535 		 * we allow a malicious user to induce resource exhaustion.
9536 		 * (The ECBs that result from priming an enabling aren't
9537 		 * leaked -- but they also aren't deallocated until the
9538 		 * consumer state is destroyed.)
9539 		 */
9540 		if (enab->dten_primed)
9541 			continue;
9542 
9543 		for (i = 0; i < enab->dten_ndesc; i++) {
9544 			enab->dten_current = enab->dten_desc[i];
9545 			(void) dtrace_probe_enable(NULL, enab);
9546 		}
9547 
9548 		enab->dten_primed = 1;
9549 	}
9550 }
9551 
9552 /*
9553  * Called to indicate that probes should be provided due to retained
9554  * enablings.  This is implemented in terms of dtrace_probe_provide(), but it
9555  * must take an initial lap through the enabling calling the dtps_provide()
9556  * entry point explicitly to allow for autocreated probes.
9557  */
9558 static void
9559 dtrace_enabling_provide(dtrace_provider_t *prv)
9560 {
9561 	int i, all = 0;
9562 	dtrace_probedesc_t desc;
9563 
9564 	ASSERT(MUTEX_HELD(&dtrace_lock));
9565 	ASSERT(MUTEX_HELD(&dtrace_provider_lock));
9566 
9567 	if (prv == NULL) {
9568 		all = 1;
9569 		prv = dtrace_provider;
9570 	}
9571 
9572 	do {
9573 		dtrace_enabling_t *enab = dtrace_retained;
9574 		void *parg = prv->dtpv_arg;
9575 
9576 		for (; enab != NULL; enab = enab->dten_next) {
9577 			for (i = 0; i < enab->dten_ndesc; i++) {
9578 				desc = enab->dten_desc[i]->dted_probe;
9579 				mutex_exit(&dtrace_lock);
9580 				prv->dtpv_pops.dtps_provide(parg, &desc);
9581 				mutex_enter(&dtrace_lock);
9582 			}
9583 		}
9584 	} while (all && (prv = prv->dtpv_next) != NULL);
9585 
9586 	mutex_exit(&dtrace_lock);
9587 	dtrace_probe_provide(NULL, all ? NULL : prv);
9588 	mutex_enter(&dtrace_lock);
9589 }
9590 
9591 /*
9592  * DTrace DOF Functions
9593  */
9594 /*ARGSUSED*/
9595 static void
9596 dtrace_dof_error(dof_hdr_t *dof, const char *str)
9597 {
9598 	if (dtrace_err_verbose)
9599 		cmn_err(CE_WARN, "failed to process DOF: %s", str);
9600 
9601 #ifdef DTRACE_ERRDEBUG
9602 	dtrace_errdebug(str);
9603 #endif
9604 }
9605 
9606 /*
9607  * Create DOF out of a currently enabled state.  Right now, we only create
9608  * DOF containing the run-time options -- but this could be expanded to create
9609  * complete DOF representing the enabled state.
9610  */
9611 static dof_hdr_t *
9612 dtrace_dof_create(dtrace_state_t *state)
9613 {
9614 	dof_hdr_t *dof;
9615 	dof_sec_t *sec;
9616 	dof_optdesc_t *opt;
9617 	int i, len = sizeof (dof_hdr_t) +
9618 	    roundup(sizeof (dof_sec_t), sizeof (uint64_t)) +
9619 	    sizeof (dof_optdesc_t) * DTRACEOPT_MAX;
9620 
9621 	ASSERT(MUTEX_HELD(&dtrace_lock));
9622 
9623 	dof = kmem_zalloc(len, KM_SLEEP);
9624 	dof->dofh_ident[DOF_ID_MAG0] = DOF_MAG_MAG0;
9625 	dof->dofh_ident[DOF_ID_MAG1] = DOF_MAG_MAG1;
9626 	dof->dofh_ident[DOF_ID_MAG2] = DOF_MAG_MAG2;
9627 	dof->dofh_ident[DOF_ID_MAG3] = DOF_MAG_MAG3;
9628 
9629 	dof->dofh_ident[DOF_ID_MODEL] = DOF_MODEL_NATIVE;
9630 	dof->dofh_ident[DOF_ID_ENCODING] = DOF_ENCODE_NATIVE;
9631 	dof->dofh_ident[DOF_ID_VERSION] = DOF_VERSION_1;
9632 	dof->dofh_ident[DOF_ID_DIFVERS] = DIF_VERSION;
9633 	dof->dofh_ident[DOF_ID_DIFIREG] = DIF_DIR_NREGS;
9634 	dof->dofh_ident[DOF_ID_DIFTREG] = DIF_DTR_NREGS;
9635 
9636 	dof->dofh_flags = 0;
9637 	dof->dofh_hdrsize = sizeof (dof_hdr_t);
9638 	dof->dofh_secsize = sizeof (dof_sec_t);
9639 	dof->dofh_secnum = 1;	/* only DOF_SECT_OPTDESC */
9640 	dof->dofh_secoff = sizeof (dof_hdr_t);
9641 	dof->dofh_loadsz = len;
9642 	dof->dofh_filesz = len;
9643 	dof->dofh_pad = 0;
9644 
9645 	/*
9646 	 * Fill in the option section header...
9647 	 */
9648 	sec = (dof_sec_t *)((uintptr_t)dof + sizeof (dof_hdr_t));
9649 	sec->dofs_type = DOF_SECT_OPTDESC;
9650 	sec->dofs_align = sizeof (uint64_t);
9651 	sec->dofs_flags = DOF_SECF_LOAD;
9652 	sec->dofs_entsize = sizeof (dof_optdesc_t);
9653 
9654 	opt = (dof_optdesc_t *)((uintptr_t)sec +
9655 	    roundup(sizeof (dof_sec_t), sizeof (uint64_t)));
9656 
9657 	sec->dofs_offset = (uintptr_t)opt - (uintptr_t)dof;
9658 	sec->dofs_size = sizeof (dof_optdesc_t) * DTRACEOPT_MAX;
9659 
9660 	for (i = 0; i < DTRACEOPT_MAX; i++) {
9661 		opt[i].dofo_option = i;
9662 		opt[i].dofo_strtab = DOF_SECIDX_NONE;
9663 		opt[i].dofo_value = state->dts_options[i];
9664 	}
9665 
9666 	return (dof);
9667 }
9668 
9669 static dof_hdr_t *
9670 dtrace_dof_copyin(uintptr_t uarg, int *errp)
9671 {
9672 	dof_hdr_t hdr, *dof;
9673 
9674 	ASSERT(!MUTEX_HELD(&dtrace_lock));
9675 
9676 	/*
9677 	 * First, we're going to copyin() the sizeof (dof_hdr_t).
9678 	 */
9679 	if (copyin((void *)uarg, &hdr, sizeof (hdr)) != 0) {
9680 		dtrace_dof_error(NULL, "failed to copyin DOF header");
9681 		*errp = EFAULT;
9682 		return (NULL);
9683 	}
9684 
9685 	/*
9686 	 * Now we'll allocate the entire DOF and copy it in -- provided
9687 	 * that the length isn't outrageous.
9688 	 */
9689 	if (hdr.dofh_loadsz >= dtrace_dof_maxsize) {
9690 		dtrace_dof_error(&hdr, "load size exceeds maximum");
9691 		*errp = E2BIG;
9692 		return (NULL);
9693 	}
9694 
9695 	if (hdr.dofh_loadsz < sizeof (hdr)) {
9696 		dtrace_dof_error(&hdr, "invalid load size");
9697 		*errp = EINVAL;
9698 		return (NULL);
9699 	}
9700 
9701 	dof = kmem_alloc(hdr.dofh_loadsz, KM_SLEEP);
9702 
9703 	if (copyin((void *)uarg, dof, hdr.dofh_loadsz) != 0) {
9704 		kmem_free(dof, hdr.dofh_loadsz);
9705 		*errp = EFAULT;
9706 		return (NULL);
9707 	}
9708 
9709 	return (dof);
9710 }
9711 
9712 static dof_hdr_t *
9713 dtrace_dof_property(const char *name)
9714 {
9715 	uchar_t *buf;
9716 	uint64_t loadsz;
9717 	unsigned int len, i;
9718 	dof_hdr_t *dof;
9719 
9720 	/*
9721 	 * Unfortunately, array of values in .conf files are always (and
9722 	 * only) interpreted to be integer arrays.  We must read our DOF
9723 	 * as an integer array, and then squeeze it into a byte array.
9724 	 */
9725 	if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dtrace_devi, 0,
9726 	    (char *)name, (int **)&buf, &len) != DDI_PROP_SUCCESS)
9727 		return (NULL);
9728 
9729 	for (i = 0; i < len; i++)
9730 		buf[i] = (uchar_t)(((int *)buf)[i]);
9731 
9732 	if (len < sizeof (dof_hdr_t)) {
9733 		ddi_prop_free(buf);
9734 		dtrace_dof_error(NULL, "truncated header");
9735 		return (NULL);
9736 	}
9737 
9738 	if (len < (loadsz = ((dof_hdr_t *)buf)->dofh_loadsz)) {
9739 		ddi_prop_free(buf);
9740 		dtrace_dof_error(NULL, "truncated DOF");
9741 		return (NULL);
9742 	}
9743 
9744 	if (loadsz >= dtrace_dof_maxsize) {
9745 		ddi_prop_free(buf);
9746 		dtrace_dof_error(NULL, "oversized DOF");
9747 		return (NULL);
9748 	}
9749 
9750 	dof = kmem_alloc(loadsz, KM_SLEEP);
9751 	bcopy(buf, dof, loadsz);
9752 	ddi_prop_free(buf);
9753 
9754 	return (dof);
9755 }
9756 
9757 static void
9758 dtrace_dof_destroy(dof_hdr_t *dof)
9759 {
9760 	kmem_free(dof, dof->dofh_loadsz);
9761 }
9762 
9763 /*
9764  * Return the dof_sec_t pointer corresponding to a given section index.  If the
9765  * index is not valid, dtrace_dof_error() is called and NULL is returned.  If
9766  * a type other than DOF_SECT_NONE is specified, the header is checked against
9767  * this type and NULL is returned if the types do not match.
9768  */
9769 static dof_sec_t *
9770 dtrace_dof_sect(dof_hdr_t *dof, uint32_t type, dof_secidx_t i)
9771 {
9772 	dof_sec_t *sec = (dof_sec_t *)
9773 	    ((uintptr_t)dof + dof->dofh_secoff + i * dof->dofh_secsize);
9774 
9775 	if (i >= dof->dofh_secnum) {
9776 		dtrace_dof_error(dof, "referenced section index is invalid");
9777 		return (NULL);
9778 	}
9779 
9780 	if (!(sec->dofs_flags & DOF_SECF_LOAD)) {
9781 		dtrace_dof_error(dof, "referenced section is not loadable");
9782 		return (NULL);
9783 	}
9784 
9785 	if (type != DOF_SECT_NONE && type != sec->dofs_type) {
9786 		dtrace_dof_error(dof, "referenced section is the wrong type");
9787 		return (NULL);
9788 	}
9789 
9790 	return (sec);
9791 }
9792 
9793 static dtrace_probedesc_t *
9794 dtrace_dof_probedesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_probedesc_t *desc)
9795 {
9796 	dof_probedesc_t *probe;
9797 	dof_sec_t *strtab;
9798 	uintptr_t daddr = (uintptr_t)dof;
9799 	uintptr_t str;
9800 	size_t size;
9801 
9802 	if (sec->dofs_type != DOF_SECT_PROBEDESC) {
9803 		dtrace_dof_error(dof, "invalid probe section");
9804 		return (NULL);
9805 	}
9806 
9807 	if (sec->dofs_align != sizeof (dof_secidx_t)) {
9808 		dtrace_dof_error(dof, "bad alignment in probe description");
9809 		return (NULL);
9810 	}
9811 
9812 	if (sec->dofs_offset + sizeof (dof_probedesc_t) > dof->dofh_loadsz) {
9813 		dtrace_dof_error(dof, "truncated probe description");
9814 		return (NULL);
9815 	}
9816 
9817 	probe = (dof_probedesc_t *)(uintptr_t)(daddr + sec->dofs_offset);
9818 	strtab = dtrace_dof_sect(dof, DOF_SECT_STRTAB, probe->dofp_strtab);
9819 
9820 	if (strtab == NULL)
9821 		return (NULL);
9822 
9823 	str = daddr + strtab->dofs_offset;
9824 	size = strtab->dofs_size;
9825 
9826 	if (probe->dofp_provider >= strtab->dofs_size) {
9827 		dtrace_dof_error(dof, "corrupt probe provider");
9828 		return (NULL);
9829 	}
9830 
9831 	(void) strncpy(desc->dtpd_provider,
9832 	    (char *)(str + probe->dofp_provider),
9833 	    MIN(DTRACE_PROVNAMELEN - 1, size - probe->dofp_provider));
9834 
9835 	if (probe->dofp_mod >= strtab->dofs_size) {
9836 		dtrace_dof_error(dof, "corrupt probe module");
9837 		return (NULL);
9838 	}
9839 
9840 	(void) strncpy(desc->dtpd_mod, (char *)(str + probe->dofp_mod),
9841 	    MIN(DTRACE_MODNAMELEN - 1, size - probe->dofp_mod));
9842 
9843 	if (probe->dofp_func >= strtab->dofs_size) {
9844 		dtrace_dof_error(dof, "corrupt probe function");
9845 		return (NULL);
9846 	}
9847 
9848 	(void) strncpy(desc->dtpd_func, (char *)(str + probe->dofp_func),
9849 	    MIN(DTRACE_FUNCNAMELEN - 1, size - probe->dofp_func));
9850 
9851 	if (probe->dofp_name >= strtab->dofs_size) {
9852 		dtrace_dof_error(dof, "corrupt probe name");
9853 		return (NULL);
9854 	}
9855 
9856 	(void) strncpy(desc->dtpd_name, (char *)(str + probe->dofp_name),
9857 	    MIN(DTRACE_NAMELEN - 1, size - probe->dofp_name));
9858 
9859 	return (desc);
9860 }
9861 
9862 static dtrace_difo_t *
9863 dtrace_dof_difo(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
9864     cred_t *cr)
9865 {
9866 	dtrace_difo_t *dp;
9867 	size_t ttl = 0;
9868 	dof_difohdr_t *dofd;
9869 	uintptr_t daddr = (uintptr_t)dof;
9870 	size_t max = dtrace_difo_maxsize;
9871 	int i, l, n;
9872 
9873 	static const struct {
9874 		int section;
9875 		int bufoffs;
9876 		int lenoffs;
9877 		int entsize;
9878 		int align;
9879 		const char *msg;
9880 	} difo[] = {
9881 		{ DOF_SECT_DIF, offsetof(dtrace_difo_t, dtdo_buf),
9882 		offsetof(dtrace_difo_t, dtdo_len), sizeof (dif_instr_t),
9883 		sizeof (dif_instr_t), "multiple DIF sections" },
9884 
9885 		{ DOF_SECT_INTTAB, offsetof(dtrace_difo_t, dtdo_inttab),
9886 		offsetof(dtrace_difo_t, dtdo_intlen), sizeof (uint64_t),
9887 		sizeof (uint64_t), "multiple integer tables" },
9888 
9889 		{ DOF_SECT_STRTAB, offsetof(dtrace_difo_t, dtdo_strtab),
9890 		offsetof(dtrace_difo_t, dtdo_strlen), 0,
9891 		sizeof (char), "multiple string tables" },
9892 
9893 		{ DOF_SECT_VARTAB, offsetof(dtrace_difo_t, dtdo_vartab),
9894 		offsetof(dtrace_difo_t, dtdo_varlen), sizeof (dtrace_difv_t),
9895 		sizeof (uint_t), "multiple variable tables" },
9896 
9897 		{ DOF_SECT_NONE, 0, 0, 0, NULL }
9898 	};
9899 
9900 	if (sec->dofs_type != DOF_SECT_DIFOHDR) {
9901 		dtrace_dof_error(dof, "invalid DIFO header section");
9902 		return (NULL);
9903 	}
9904 
9905 	if (sec->dofs_align != sizeof (dof_secidx_t)) {
9906 		dtrace_dof_error(dof, "bad alignment in DIFO header");
9907 		return (NULL);
9908 	}
9909 
9910 	if (sec->dofs_size < sizeof (dof_difohdr_t) ||
9911 	    sec->dofs_size % sizeof (dof_secidx_t)) {
9912 		dtrace_dof_error(dof, "bad size in DIFO header");
9913 		return (NULL);
9914 	}
9915 
9916 	dofd = (dof_difohdr_t *)(daddr + sec->dofs_offset);
9917 	n = (sec->dofs_size - sizeof (*dofd)) / sizeof (dof_secidx_t) + 1;
9918 
9919 	dp = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP);
9920 	dp->dtdo_rtype = dofd->dofd_rtype;
9921 
9922 	for (l = 0; l < n; l++) {
9923 		dof_sec_t *subsec;
9924 		void **bufp;
9925 		uint32_t *lenp;
9926 
9927 		if ((subsec = dtrace_dof_sect(dof, DOF_SECT_NONE,
9928 		    dofd->dofd_links[l])) == NULL)
9929 			goto err; /* invalid section link */
9930 
9931 		if (ttl + subsec->dofs_size > max) {
9932 			dtrace_dof_error(dof, "exceeds maximum size");
9933 			goto err;
9934 		}
9935 
9936 		ttl += subsec->dofs_size;
9937 
9938 		for (i = 0; difo[i].section != DOF_SECT_NONE; i++) {
9939 			if (subsec->dofs_type != difo[i].section)
9940 				continue;
9941 
9942 			if (!(subsec->dofs_flags & DOF_SECF_LOAD)) {
9943 				dtrace_dof_error(dof, "section not loaded");
9944 				goto err;
9945 			}
9946 
9947 			if (subsec->dofs_align != difo[i].align) {
9948 				dtrace_dof_error(dof, "bad alignment");
9949 				goto err;
9950 			}
9951 
9952 			bufp = (void **)((uintptr_t)dp + difo[i].bufoffs);
9953 			lenp = (uint32_t *)((uintptr_t)dp + difo[i].lenoffs);
9954 
9955 			if (*bufp != NULL) {
9956 				dtrace_dof_error(dof, difo[i].msg);
9957 				goto err;
9958 			}
9959 
9960 			if (difo[i].entsize != subsec->dofs_entsize) {
9961 				dtrace_dof_error(dof, "entry size mismatch");
9962 				goto err;
9963 			}
9964 
9965 			if (subsec->dofs_entsize != 0 &&
9966 			    (subsec->dofs_size % subsec->dofs_entsize) != 0) {
9967 				dtrace_dof_error(dof, "corrupt entry size");
9968 				goto err;
9969 			}
9970 
9971 			*lenp = subsec->dofs_size;
9972 			*bufp = kmem_alloc(subsec->dofs_size, KM_SLEEP);
9973 			bcopy((char *)(uintptr_t)(daddr + subsec->dofs_offset),
9974 			    *bufp, subsec->dofs_size);
9975 
9976 			if (subsec->dofs_entsize != 0)
9977 				*lenp /= subsec->dofs_entsize;
9978 
9979 			break;
9980 		}
9981 
9982 		/*
9983 		 * If we encounter a loadable DIFO sub-section that is not
9984 		 * known to us, assume this is a broken program and fail.
9985 		 */
9986 		if (difo[i].section == DOF_SECT_NONE &&
9987 		    (subsec->dofs_flags & DOF_SECF_LOAD)) {
9988 			dtrace_dof_error(dof, "unrecognized DIFO subsection");
9989 			goto err;
9990 		}
9991 	}
9992 
9993 	if (dp->dtdo_buf == NULL) {
9994 		/*
9995 		 * We can't have a DIF object without DIF text.
9996 		 */
9997 		dtrace_dof_error(dof, "missing DIF text");
9998 		goto err;
9999 	}
10000 
10001 	/*
10002 	 * Before we validate the DIF object, run through the variable table
10003 	 * looking for the strings -- if any of their size are under, we'll set
10004 	 * their size to be the system-wide default string size.  Note that
10005 	 * this should _not_ happen if the "strsize" option has been set --
10006 	 * in this case, the compiler should have set the size to reflect the
10007 	 * setting of the option.
10008 	 */
10009 	for (i = 0; i < dp->dtdo_varlen; i++) {
10010 		dtrace_difv_t *v = &dp->dtdo_vartab[i];
10011 		dtrace_diftype_t *t = &v->dtdv_type;
10012 
10013 		if (v->dtdv_id < DIF_VAR_OTHER_UBASE)
10014 			continue;
10015 
10016 		if (t->dtdt_kind == DIF_TYPE_STRING && t->dtdt_size == 0)
10017 			t->dtdt_size = dtrace_strsize_default;
10018 	}
10019 
10020 	if (dtrace_difo_validate(dp, vstate, DIF_DIR_NREGS, cr) != 0)
10021 		goto err;
10022 
10023 	dtrace_difo_init(dp, vstate);
10024 	return (dp);
10025 
10026 err:
10027 	kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t));
10028 	kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t));
10029 	kmem_free(dp->dtdo_strtab, dp->dtdo_strlen);
10030 	kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t));
10031 
10032 	kmem_free(dp, sizeof (dtrace_difo_t));
10033 	return (NULL);
10034 }
10035 
10036 static dtrace_predicate_t *
10037 dtrace_dof_predicate(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
10038     cred_t *cr)
10039 {
10040 	dtrace_difo_t *dp;
10041 
10042 	if ((dp = dtrace_dof_difo(dof, sec, vstate, cr)) == NULL)
10043 		return (NULL);
10044 
10045 	return (dtrace_predicate_create(dp));
10046 }
10047 
10048 static dtrace_actdesc_t *
10049 dtrace_dof_actdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
10050     cred_t *cr)
10051 {
10052 	dtrace_actdesc_t *act, *first = NULL, *last = NULL, *next;
10053 	dof_actdesc_t *desc;
10054 	dof_sec_t *difosec;
10055 	size_t offs;
10056 	uintptr_t daddr = (uintptr_t)dof;
10057 	uint64_t arg;
10058 	dtrace_actkind_t kind;
10059 
10060 	if (sec->dofs_type != DOF_SECT_ACTDESC) {
10061 		dtrace_dof_error(dof, "invalid action section");
10062 		return (NULL);
10063 	}
10064 
10065 	if (sec->dofs_offset + sizeof (dof_actdesc_t) > dof->dofh_loadsz) {
10066 		dtrace_dof_error(dof, "truncated action description");
10067 		return (NULL);
10068 	}
10069 
10070 	if (sec->dofs_align != sizeof (uint64_t)) {
10071 		dtrace_dof_error(dof, "bad alignment in action description");
10072 		return (NULL);
10073 	}
10074 
10075 	if (sec->dofs_size < sec->dofs_entsize) {
10076 		dtrace_dof_error(dof, "section entry size exceeds total size");
10077 		return (NULL);
10078 	}
10079 
10080 	if (sec->dofs_entsize != sizeof (dof_actdesc_t)) {
10081 		dtrace_dof_error(dof, "bad entry size in action description");
10082 		return (NULL);
10083 	}
10084 
10085 	if (sec->dofs_size / sec->dofs_entsize > dtrace_actions_max) {
10086 		dtrace_dof_error(dof, "actions exceed dtrace_actions_max");
10087 		return (NULL);
10088 	}
10089 
10090 	for (offs = 0; offs < sec->dofs_size; offs += sec->dofs_entsize) {
10091 		desc = (dof_actdesc_t *)(daddr +
10092 		    (uintptr_t)sec->dofs_offset + offs);
10093 		kind = (dtrace_actkind_t)desc->dofa_kind;
10094 
10095 		if (DTRACEACT_ISPRINTFLIKE(kind) &&
10096 		    (kind != DTRACEACT_PRINTA ||
10097 		    desc->dofa_strtab != DOF_SECIDX_NONE)) {
10098 			dof_sec_t *strtab;
10099 			char *str, *fmt;
10100 			uint64_t i;
10101 
10102 			/*
10103 			 * printf()-like actions must have a format string.
10104 			 */
10105 			if ((strtab = dtrace_dof_sect(dof,
10106 			    DOF_SECT_STRTAB, desc->dofa_strtab)) == NULL)
10107 				goto err;
10108 
10109 			str = (char *)((uintptr_t)dof +
10110 			    (uintptr_t)strtab->dofs_offset);
10111 
10112 			for (i = desc->dofa_arg; i < strtab->dofs_size; i++) {
10113 				if (str[i] == '\0')
10114 					break;
10115 			}
10116 
10117 			if (i >= strtab->dofs_size) {
10118 				dtrace_dof_error(dof, "bogus format string");
10119 				goto err;
10120 			}
10121 
10122 			if (i == desc->dofa_arg) {
10123 				dtrace_dof_error(dof, "empty format string");
10124 				goto err;
10125 			}
10126 
10127 			i -= desc->dofa_arg;
10128 			fmt = kmem_alloc(i + 1, KM_SLEEP);
10129 			bcopy(&str[desc->dofa_arg], fmt, i + 1);
10130 			arg = (uint64_t)(uintptr_t)fmt;
10131 		} else {
10132 			if (kind == DTRACEACT_PRINTA) {
10133 				ASSERT(desc->dofa_strtab == DOF_SECIDX_NONE);
10134 				arg = 0;
10135 			} else {
10136 				arg = desc->dofa_arg;
10137 			}
10138 		}
10139 
10140 		act = dtrace_actdesc_create(kind, desc->dofa_ntuple,
10141 		    desc->dofa_uarg, arg);
10142 
10143 		if (last != NULL) {
10144 			last->dtad_next = act;
10145 		} else {
10146 			first = act;
10147 		}
10148 
10149 		last = act;
10150 
10151 		if (desc->dofa_difo == DOF_SECIDX_NONE)
10152 			continue;
10153 
10154 		if ((difosec = dtrace_dof_sect(dof,
10155 		    DOF_SECT_DIFOHDR, desc->dofa_difo)) == NULL)
10156 			goto err;
10157 
10158 		act->dtad_difo = dtrace_dof_difo(dof, difosec, vstate, cr);
10159 
10160 		if (act->dtad_difo == NULL)
10161 			goto err;
10162 	}
10163 
10164 	ASSERT(first != NULL);
10165 	return (first);
10166 
10167 err:
10168 	for (act = first; act != NULL; act = next) {
10169 		next = act->dtad_next;
10170 		dtrace_actdesc_release(act, vstate);
10171 	}
10172 
10173 	return (NULL);
10174 }
10175 
10176 static dtrace_ecbdesc_t *
10177 dtrace_dof_ecbdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
10178     cred_t *cr)
10179 {
10180 	dtrace_ecbdesc_t *ep;
10181 	dof_ecbdesc_t *ecb;
10182 	dtrace_probedesc_t *desc;
10183 	dtrace_predicate_t *pred = NULL;
10184 
10185 	if (sec->dofs_size < sizeof (dof_ecbdesc_t)) {
10186 		dtrace_dof_error(dof, "truncated ECB description");
10187 		return (NULL);
10188 	}
10189 
10190 	if (sec->dofs_align != sizeof (uint64_t)) {
10191 		dtrace_dof_error(dof, "bad alignment in ECB description");
10192 		return (NULL);
10193 	}
10194 
10195 	ecb = (dof_ecbdesc_t *)((uintptr_t)dof + (uintptr_t)sec->dofs_offset);
10196 	sec = dtrace_dof_sect(dof, DOF_SECT_PROBEDESC, ecb->dofe_probes);
10197 
10198 	if (sec == NULL)
10199 		return (NULL);
10200 
10201 	ep = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP);
10202 	ep->dted_uarg = ecb->dofe_uarg;
10203 	desc = &ep->dted_probe;
10204 
10205 	if (dtrace_dof_probedesc(dof, sec, desc) == NULL)
10206 		goto err;
10207 
10208 	if (ecb->dofe_pred != DOF_SECIDX_NONE) {
10209 		if ((sec = dtrace_dof_sect(dof,
10210 		    DOF_SECT_DIFOHDR, ecb->dofe_pred)) == NULL)
10211 			goto err;
10212 
10213 		if ((pred = dtrace_dof_predicate(dof, sec, vstate, cr)) == NULL)
10214 			goto err;
10215 
10216 		ep->dted_pred.dtpdd_predicate = pred;
10217 	}
10218 
10219 	if (ecb->dofe_actions != DOF_SECIDX_NONE) {
10220 		if ((sec = dtrace_dof_sect(dof,
10221 		    DOF_SECT_ACTDESC, ecb->dofe_actions)) == NULL)
10222 			goto err;
10223 
10224 		ep->dted_action = dtrace_dof_actdesc(dof, sec, vstate, cr);
10225 
10226 		if (ep->dted_action == NULL)
10227 			goto err;
10228 	}
10229 
10230 	return (ep);
10231 
10232 err:
10233 	if (pred != NULL)
10234 		dtrace_predicate_release(pred, vstate);
10235 	kmem_free(ep, sizeof (dtrace_ecbdesc_t));
10236 	return (NULL);
10237 }
10238 
10239 /*
10240  * Apply the relocations from the specified 'sec' (a DOF_SECT_URELHDR) to the
10241  * specified DOF.  At present, this amounts to simply adding 'ubase' to the
10242  * site of any user SETX relocations to account for load object base address.
10243  * In the future, if we need other relocations, this function can be extended.
10244  */
10245 static int
10246 dtrace_dof_relocate(dof_hdr_t *dof, dof_sec_t *sec, uint64_t ubase)
10247 {
10248 	uintptr_t daddr = (uintptr_t)dof;
10249 	dof_relohdr_t *dofr = (dof_relohdr_t *)(daddr + sec->dofs_offset);
10250 	dof_sec_t *ss, *rs, *ts;
10251 	dof_relodesc_t *r;
10252 	uint_t i, n;
10253 
10254 	if (sec->dofs_size < sizeof (dof_relohdr_t) ||
10255 	    sec->dofs_align != sizeof (dof_secidx_t)) {
10256 		dtrace_dof_error(dof, "invalid relocation header");
10257 		return (-1);
10258 	}
10259 
10260 	ss = dtrace_dof_sect(dof, DOF_SECT_STRTAB, dofr->dofr_strtab);
10261 	rs = dtrace_dof_sect(dof, DOF_SECT_RELTAB, dofr->dofr_relsec);
10262 	ts = dtrace_dof_sect(dof, DOF_SECT_NONE, dofr->dofr_tgtsec);
10263 
10264 	if (ss == NULL || rs == NULL || ts == NULL)
10265 		return (-1); /* dtrace_dof_error() has been called already */
10266 
10267 	if (rs->dofs_entsize < sizeof (dof_relodesc_t) ||
10268 	    rs->dofs_align != sizeof (uint64_t)) {
10269 		dtrace_dof_error(dof, "invalid relocation section");
10270 		return (-1);
10271 	}
10272 
10273 	r = (dof_relodesc_t *)(daddr + rs->dofs_offset);
10274 	n = rs->dofs_size / rs->dofs_entsize;
10275 
10276 	for (i = 0; i < n; i++) {
10277 		uintptr_t taddr = daddr + ts->dofs_offset + r->dofr_offset;
10278 
10279 		switch (r->dofr_type) {
10280 		case DOF_RELO_NONE:
10281 			break;
10282 		case DOF_RELO_SETX:
10283 			if (r->dofr_offset >= ts->dofs_size || r->dofr_offset +
10284 			    sizeof (uint64_t) > ts->dofs_size) {
10285 				dtrace_dof_error(dof, "bad relocation offset");
10286 				return (-1);
10287 			}
10288 
10289 			if (!IS_P2ALIGNED(taddr, sizeof (uint64_t))) {
10290 				dtrace_dof_error(dof, "misaligned setx relo");
10291 				return (-1);
10292 			}
10293 
10294 			*(uint64_t *)taddr += ubase;
10295 			break;
10296 		default:
10297 			dtrace_dof_error(dof, "invalid relocation type");
10298 			return (-1);
10299 		}
10300 
10301 		r = (dof_relodesc_t *)((uintptr_t)r + rs->dofs_entsize);
10302 	}
10303 
10304 	return (0);
10305 }
10306 
10307 /*
10308  * The dof_hdr_t passed to dtrace_dof_slurp() should be a partially validated
10309  * header:  it should be at the front of a memory region that is at least
10310  * sizeof (dof_hdr_t) in size -- and then at least dof_hdr.dofh_loadsz in
10311  * size.  It need not be validated in any other way.
10312  */
10313 static int
10314 dtrace_dof_slurp(dof_hdr_t *dof, dtrace_vstate_t *vstate, cred_t *cr,
10315     dtrace_enabling_t **enabp, uint64_t ubase, int noprobes)
10316 {
10317 	uint64_t len = dof->dofh_loadsz, seclen;
10318 	uintptr_t daddr = (uintptr_t)dof;
10319 	dtrace_ecbdesc_t *ep;
10320 	dtrace_enabling_t *enab;
10321 	uint_t i;
10322 
10323 	ASSERT(MUTEX_HELD(&dtrace_lock));
10324 	ASSERT(dof->dofh_loadsz >= sizeof (dof_hdr_t));
10325 
10326 	/*
10327 	 * Check the DOF header identification bytes.  In addition to checking
10328 	 * valid settings, we also verify that unused bits/bytes are zeroed so
10329 	 * we can use them later without fear of regressing existing binaries.
10330 	 */
10331 	if (bcmp(&dof->dofh_ident[DOF_ID_MAG0],
10332 	    DOF_MAG_STRING, DOF_MAG_STRLEN) != 0) {
10333 		dtrace_dof_error(dof, "DOF magic string mismatch");
10334 		return (-1);
10335 	}
10336 
10337 	if (dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_ILP32 &&
10338 	    dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_LP64) {
10339 		dtrace_dof_error(dof, "DOF has invalid data model");
10340 		return (-1);
10341 	}
10342 
10343 	if (dof->dofh_ident[DOF_ID_ENCODING] != DOF_ENCODE_NATIVE) {
10344 		dtrace_dof_error(dof, "DOF encoding mismatch");
10345 		return (-1);
10346 	}
10347 
10348 	if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1) {
10349 		dtrace_dof_error(dof, "DOF version mismatch");
10350 		return (-1);
10351 	}
10352 
10353 	if (dof->dofh_ident[DOF_ID_DIFVERS] != DIF_VERSION_2) {
10354 		dtrace_dof_error(dof, "DOF uses unsupported instruction set");
10355 		return (-1);
10356 	}
10357 
10358 	if (dof->dofh_ident[DOF_ID_DIFIREG] > DIF_DIR_NREGS) {
10359 		dtrace_dof_error(dof, "DOF uses too many integer registers");
10360 		return (-1);
10361 	}
10362 
10363 	if (dof->dofh_ident[DOF_ID_DIFTREG] > DIF_DTR_NREGS) {
10364 		dtrace_dof_error(dof, "DOF uses too many tuple registers");
10365 		return (-1);
10366 	}
10367 
10368 	for (i = DOF_ID_PAD; i < DOF_ID_SIZE; i++) {
10369 		if (dof->dofh_ident[i] != 0) {
10370 			dtrace_dof_error(dof, "DOF has invalid ident byte set");
10371 			return (-1);
10372 		}
10373 	}
10374 
10375 	if (dof->dofh_flags & ~DOF_FL_VALID) {
10376 		dtrace_dof_error(dof, "DOF has invalid flag bits set");
10377 		return (-1);
10378 	}
10379 
10380 	if (dof->dofh_secsize == 0) {
10381 		dtrace_dof_error(dof, "zero section header size");
10382 		return (-1);
10383 	}
10384 
10385 	/*
10386 	 * Check that the section headers don't exceed the amount of DOF
10387 	 * data.  Note that we cast the section size and number of sections
10388 	 * to uint64_t's to prevent possible overflow in the multiplication.
10389 	 */
10390 	seclen = (uint64_t)dof->dofh_secnum * (uint64_t)dof->dofh_secsize;
10391 
10392 	if (dof->dofh_secoff > len || seclen > len ||
10393 	    dof->dofh_secoff + seclen > len) {
10394 		dtrace_dof_error(dof, "truncated section headers");
10395 		return (-1);
10396 	}
10397 
10398 	if (!IS_P2ALIGNED(dof->dofh_secoff, sizeof (uint64_t))) {
10399 		dtrace_dof_error(dof, "misaligned section headers");
10400 		return (-1);
10401 	}
10402 
10403 	if (!IS_P2ALIGNED(dof->dofh_secsize, sizeof (uint64_t))) {
10404 		dtrace_dof_error(dof, "misaligned section size");
10405 		return (-1);
10406 	}
10407 
10408 	/*
10409 	 * Take an initial pass through the section headers to be sure that
10410 	 * the headers don't have stray offsets.  If the 'noprobes' flag is
10411 	 * set, do not permit sections relating to providers, probes, or args.
10412 	 */
10413 	for (i = 0; i < dof->dofh_secnum; i++) {
10414 		dof_sec_t *sec = (dof_sec_t *)(daddr +
10415 		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
10416 
10417 		if (noprobes) {
10418 			switch (sec->dofs_type) {
10419 			case DOF_SECT_PROVIDER:
10420 			case DOF_SECT_PROBES:
10421 			case DOF_SECT_PRARGS:
10422 			case DOF_SECT_PROFFS:
10423 				dtrace_dof_error(dof, "illegal sections "
10424 				    "for enabling");
10425 				return (-1);
10426 			}
10427 		}
10428 
10429 		if (!(sec->dofs_flags & DOF_SECF_LOAD))
10430 			continue; /* just ignore non-loadable sections */
10431 
10432 		if (sec->dofs_align & (sec->dofs_align - 1)) {
10433 			dtrace_dof_error(dof, "bad section alignment");
10434 			return (-1);
10435 		}
10436 
10437 		if (sec->dofs_offset & (sec->dofs_align - 1)) {
10438 			dtrace_dof_error(dof, "misaligned section");
10439 			return (-1);
10440 		}
10441 
10442 		if (sec->dofs_offset > len || sec->dofs_size > len ||
10443 		    sec->dofs_offset + sec->dofs_size > len) {
10444 			dtrace_dof_error(dof, "corrupt section header");
10445 			return (-1);
10446 		}
10447 
10448 		if (sec->dofs_type == DOF_SECT_STRTAB && *((char *)daddr +
10449 		    sec->dofs_offset + sec->dofs_size - 1) != '\0') {
10450 			dtrace_dof_error(dof, "non-terminating string table");
10451 			return (-1);
10452 		}
10453 	}
10454 
10455 	/*
10456 	 * Take a second pass through the sections and locate and perform any
10457 	 * relocations that are present.  We do this after the first pass to
10458 	 * be sure that all sections have had their headers validated.
10459 	 */
10460 	for (i = 0; i < dof->dofh_secnum; i++) {
10461 		dof_sec_t *sec = (dof_sec_t *)(daddr +
10462 		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
10463 
10464 		if (!(sec->dofs_flags & DOF_SECF_LOAD))
10465 			continue; /* skip sections that are not loadable */
10466 
10467 		switch (sec->dofs_type) {
10468 		case DOF_SECT_URELHDR:
10469 			if (dtrace_dof_relocate(dof, sec, ubase) != 0)
10470 				return (-1);
10471 			break;
10472 		}
10473 	}
10474 
10475 	if ((enab = *enabp) == NULL)
10476 		enab = *enabp = dtrace_enabling_create(vstate);
10477 
10478 	for (i = 0; i < dof->dofh_secnum; i++) {
10479 		dof_sec_t *sec = (dof_sec_t *)(daddr +
10480 		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
10481 
10482 		if (sec->dofs_type != DOF_SECT_ECBDESC)
10483 			continue;
10484 
10485 		if ((ep = dtrace_dof_ecbdesc(dof, sec, vstate, cr)) == NULL) {
10486 			dtrace_enabling_destroy(enab);
10487 			*enabp = NULL;
10488 			return (-1);
10489 		}
10490 
10491 		dtrace_enabling_add(enab, ep);
10492 	}
10493 
10494 	return (0);
10495 }
10496 
10497 /*
10498  * Process DOF for any options.  This routine assumes that the DOF has been
10499  * at least processed by dtrace_dof_slurp().
10500  */
10501 static int
10502 dtrace_dof_options(dof_hdr_t *dof, dtrace_state_t *state)
10503 {
10504 	int i, rval;
10505 	uint32_t entsize;
10506 	size_t offs;
10507 	dof_optdesc_t *desc;
10508 
10509 	for (i = 0; i < dof->dofh_secnum; i++) {
10510 		dof_sec_t *sec = (dof_sec_t *)((uintptr_t)dof +
10511 		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
10512 
10513 		if (sec->dofs_type != DOF_SECT_OPTDESC)
10514 			continue;
10515 
10516 		if (sec->dofs_align != sizeof (uint64_t)) {
10517 			dtrace_dof_error(dof, "bad alignment in "
10518 			    "option description");
10519 			return (EINVAL);
10520 		}
10521 
10522 		if ((entsize = sec->dofs_entsize) == 0) {
10523 			dtrace_dof_error(dof, "zeroed option entry size");
10524 			return (EINVAL);
10525 		}
10526 
10527 		if (entsize < sizeof (dof_optdesc_t)) {
10528 			dtrace_dof_error(dof, "bad option entry size");
10529 			return (EINVAL);
10530 		}
10531 
10532 		for (offs = 0; offs < sec->dofs_size; offs += entsize) {
10533 			desc = (dof_optdesc_t *)((uintptr_t)dof +
10534 			    (uintptr_t)sec->dofs_offset + offs);
10535 
10536 			if (desc->dofo_strtab != DOF_SECIDX_NONE) {
10537 				dtrace_dof_error(dof, "non-zero option string");
10538 				return (EINVAL);
10539 			}
10540 
10541 			if (desc->dofo_value == DTRACEOPT_UNSET) {
10542 				dtrace_dof_error(dof, "unset option");
10543 				return (EINVAL);
10544 			}
10545 
10546 			if ((rval = dtrace_state_option(state,
10547 			    desc->dofo_option, desc->dofo_value)) != 0) {
10548 				dtrace_dof_error(dof, "rejected option");
10549 				return (rval);
10550 			}
10551 		}
10552 	}
10553 
10554 	return (0);
10555 }
10556 
10557 /*
10558  * DTrace Consumer State Functions
10559  */
10560 int
10561 dtrace_dstate_init(dtrace_dstate_t *dstate, size_t size)
10562 {
10563 	size_t hashsize, maxper, min, chunksize = dstate->dtds_chunksize;
10564 	void *base;
10565 	uintptr_t limit;
10566 	dtrace_dynvar_t *dvar, *next, *start;
10567 	int i;
10568 
10569 	ASSERT(MUTEX_HELD(&dtrace_lock));
10570 	ASSERT(dstate->dtds_base == NULL && dstate->dtds_percpu == NULL);
10571 
10572 	bzero(dstate, sizeof (dtrace_dstate_t));
10573 
10574 	if ((dstate->dtds_chunksize = chunksize) == 0)
10575 		dstate->dtds_chunksize = DTRACE_DYNVAR_CHUNKSIZE;
10576 
10577 	if (size < (min = dstate->dtds_chunksize + sizeof (dtrace_dynhash_t)))
10578 		size = min;
10579 
10580 	if ((base = kmem_zalloc(size, KM_NOSLEEP)) == NULL)
10581 		return (ENOMEM);
10582 
10583 	dstate->dtds_size = size;
10584 	dstate->dtds_base = base;
10585 	dstate->dtds_percpu = kmem_cache_alloc(dtrace_state_cache, KM_SLEEP);
10586 	bzero(dstate->dtds_percpu, NCPU * sizeof (dtrace_dstate_percpu_t));
10587 
10588 	hashsize = size / (dstate->dtds_chunksize + sizeof (dtrace_dynhash_t));
10589 
10590 	if (hashsize != 1 && (hashsize & 1))
10591 		hashsize--;
10592 
10593 	dstate->dtds_hashsize = hashsize;
10594 	dstate->dtds_hash = dstate->dtds_base;
10595 
10596 	/*
10597 	 * Determine number of active CPUs.  Divide free list evenly among
10598 	 * active CPUs.
10599 	 */
10600 	start = (dtrace_dynvar_t *)
10601 	    ((uintptr_t)base + hashsize * sizeof (dtrace_dynhash_t));
10602 	limit = (uintptr_t)base + size;
10603 
10604 	maxper = (limit - (uintptr_t)start) / NCPU;
10605 	maxper = (maxper / dstate->dtds_chunksize) * dstate->dtds_chunksize;
10606 
10607 	for (i = 0; i < NCPU; i++) {
10608 		dstate->dtds_percpu[i].dtdsc_free = dvar = start;
10609 
10610 		/*
10611 		 * If we don't even have enough chunks to make it once through
10612 		 * NCPUs, we're just going to allocate everything to the first
10613 		 * CPU.  And if we're on the last CPU, we're going to allocate
10614 		 * whatever is left over.  In either case, we set the limit to
10615 		 * be the limit of the dynamic variable space.
10616 		 */
10617 		if (maxper == 0 || i == NCPU - 1) {
10618 			limit = (uintptr_t)base + size;
10619 			start = NULL;
10620 		} else {
10621 			limit = (uintptr_t)start + maxper;
10622 			start = (dtrace_dynvar_t *)limit;
10623 		}
10624 
10625 		ASSERT(limit <= (uintptr_t)base + size);
10626 
10627 		for (;;) {
10628 			next = (dtrace_dynvar_t *)((uintptr_t)dvar +
10629 			    dstate->dtds_chunksize);
10630 
10631 			if ((uintptr_t)next + dstate->dtds_chunksize >= limit)
10632 				break;
10633 
10634 			dvar->dtdv_next = next;
10635 			dvar = next;
10636 		}
10637 
10638 		if (maxper == 0)
10639 			break;
10640 	}
10641 
10642 	return (0);
10643 }
10644 
10645 void
10646 dtrace_dstate_fini(dtrace_dstate_t *dstate)
10647 {
10648 	ASSERT(MUTEX_HELD(&cpu_lock));
10649 
10650 	if (dstate->dtds_base == NULL)
10651 		return;
10652 
10653 	kmem_free(dstate->dtds_base, dstate->dtds_size);
10654 	kmem_cache_free(dtrace_state_cache, dstate->dtds_percpu);
10655 }
10656 
10657 static void
10658 dtrace_vstate_fini(dtrace_vstate_t *vstate)
10659 {
10660 	/*
10661 	 * Logical XOR, where are you?
10662 	 */
10663 	ASSERT((vstate->dtvs_nglobals == 0) ^ (vstate->dtvs_globals != NULL));
10664 
10665 	if (vstate->dtvs_nglobals > 0) {
10666 		kmem_free(vstate->dtvs_globals, vstate->dtvs_nglobals *
10667 		    sizeof (dtrace_statvar_t *));
10668 	}
10669 
10670 	if (vstate->dtvs_ntlocals > 0) {
10671 		kmem_free(vstate->dtvs_tlocals, vstate->dtvs_ntlocals *
10672 		    sizeof (dtrace_difv_t));
10673 	}
10674 
10675 	ASSERT((vstate->dtvs_nlocals == 0) ^ (vstate->dtvs_locals != NULL));
10676 
10677 	if (vstate->dtvs_nlocals > 0) {
10678 		kmem_free(vstate->dtvs_locals, vstate->dtvs_nlocals *
10679 		    sizeof (dtrace_statvar_t *));
10680 	}
10681 }
10682 
10683 static void
10684 dtrace_state_clean(dtrace_state_t *state)
10685 {
10686 	if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE)
10687 		return;
10688 
10689 	dtrace_dynvar_clean(&state->dts_vstate.dtvs_dynvars);
10690 	dtrace_speculation_clean(state);
10691 }
10692 
10693 static void
10694 dtrace_state_deadman(dtrace_state_t *state)
10695 {
10696 	hrtime_t now;
10697 
10698 	dtrace_sync();
10699 
10700 	now = dtrace_gethrtime();
10701 
10702 	if (state != dtrace_anon.dta_state &&
10703 	    now - state->dts_laststatus >= dtrace_deadman_user)
10704 		return;
10705 
10706 	/*
10707 	 * We must be sure that dts_alive never appears to be less than the
10708 	 * value upon entry to dtrace_state_deadman(), and because we lack a
10709 	 * dtrace_cas64(), we cannot store to it atomically.  We thus instead
10710 	 * store INT64_MAX to it, followed by a memory barrier, followed by
10711 	 * the new value.  This assures that dts_alive never appears to be
10712 	 * less than its true value, regardless of the order in which the
10713 	 * stores to the underlying storage are issued.
10714 	 */
10715 	state->dts_alive = INT64_MAX;
10716 	dtrace_membar_producer();
10717 	state->dts_alive = now;
10718 }
10719 
10720 dtrace_state_t *
10721 dtrace_state_create(dev_t *devp, cred_t *cr)
10722 {
10723 	minor_t minor;
10724 	major_t major;
10725 	char c[30];
10726 	dtrace_state_t *state;
10727 	dtrace_optval_t *opt;
10728 	int bufsize = NCPU * sizeof (dtrace_buffer_t), i;
10729 
10730 	ASSERT(MUTEX_HELD(&dtrace_lock));
10731 	ASSERT(MUTEX_HELD(&cpu_lock));
10732 
10733 	minor = (minor_t)(uintptr_t)vmem_alloc(dtrace_minor, 1,
10734 	    VM_BESTFIT | VM_SLEEP);
10735 
10736 	if (ddi_soft_state_zalloc(dtrace_softstate, minor) != DDI_SUCCESS) {
10737 		vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1);
10738 		return (NULL);
10739 	}
10740 
10741 	state = ddi_get_soft_state(dtrace_softstate, minor);
10742 	state->dts_epid = DTRACE_EPIDNONE + 1;
10743 
10744 	(void) snprintf(c, sizeof (c), "dtrace_aggid_%d", minor);
10745 	state->dts_aggid_arena = vmem_create(c, (void *)1, UINT32_MAX, 1,
10746 	    NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER);
10747 
10748 	if (devp != NULL) {
10749 		major = getemajor(*devp);
10750 	} else {
10751 		major = ddi_driver_major(dtrace_devi);
10752 	}
10753 
10754 	state->dts_dev = makedevice(major, minor);
10755 
10756 	if (devp != NULL)
10757 		*devp = state->dts_dev;
10758 
10759 	/*
10760 	 * We allocate NCPU buffers.  On the one hand, this can be quite
10761 	 * a bit of memory per instance (nearly 36K on a Starcat).  On the
10762 	 * other hand, it saves an additional memory reference in the probe
10763 	 * path.
10764 	 */
10765 	state->dts_buffer = kmem_zalloc(bufsize, KM_SLEEP);
10766 	state->dts_aggbuffer = kmem_zalloc(bufsize, KM_SLEEP);
10767 	state->dts_cleaner = CYCLIC_NONE;
10768 	state->dts_deadman = CYCLIC_NONE;
10769 	state->dts_vstate.dtvs_state = state;
10770 
10771 	for (i = 0; i < DTRACEOPT_MAX; i++)
10772 		state->dts_options[i] = DTRACEOPT_UNSET;
10773 
10774 	/*
10775 	 * Set the default options.
10776 	 */
10777 	opt = state->dts_options;
10778 	opt[DTRACEOPT_BUFPOLICY] = DTRACEOPT_BUFPOLICY_SWITCH;
10779 	opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_AUTO;
10780 	opt[DTRACEOPT_NSPEC] = dtrace_nspec_default;
10781 	opt[DTRACEOPT_SPECSIZE] = dtrace_specsize_default;
10782 	opt[DTRACEOPT_CPU] = (dtrace_optval_t)DTRACE_CPUALL;
10783 	opt[DTRACEOPT_STRSIZE] = dtrace_strsize_default;
10784 	opt[DTRACEOPT_STACKFRAMES] = dtrace_stackframes_default;
10785 	opt[DTRACEOPT_USTACKFRAMES] = dtrace_ustackframes_default;
10786 	opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_default;
10787 	opt[DTRACEOPT_AGGRATE] = dtrace_aggrate_default;
10788 	opt[DTRACEOPT_SWITCHRATE] = dtrace_switchrate_default;
10789 	opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_default;
10790 	opt[DTRACEOPT_JSTACKFRAMES] = dtrace_jstackframes_default;
10791 	opt[DTRACEOPT_JSTACKSTRSIZE] = dtrace_jstackstrsize_default;
10792 
10793 	state->dts_activity = DTRACE_ACTIVITY_INACTIVE;
10794 
10795 	/*
10796 	 * Set up the credentials for this instantiation.
10797 	 */
10798 	if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) {
10799 		state->dts_cred.dcr_visible = DTRACE_CRV_ALL;
10800 		state->dts_cred.dcr_action = DTRACE_CRA_ALL;
10801 	} else {
10802 		state->dts_cred.dcr_uid = crgetuid(cr);
10803 		state->dts_cred.dcr_gid = crgetgid(cr);
10804 
10805 		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE) ||
10806 		    PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) {
10807 			state->dts_cred.dcr_action |= DTRACE_CRA_PROC;
10808 		}
10809 
10810 		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE) &&
10811 		    PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) {
10812 			state->dts_cred.dcr_visible |= DTRACE_CRV_ALLPROC;
10813 			state->dts_cred.dcr_action |=
10814 			    DTRACE_CRA_PROC_DESTRUCTIVE;
10815 		}
10816 
10817 		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE)) {
10818 			state->dts_cred.dcr_visible |= DTRACE_CRV_KERNEL |
10819 			    DTRACE_CRV_ALLPROC;
10820 			state->dts_cred.dcr_action |= DTRACE_CRA_KERNEL |
10821 			    DTRACE_CRA_PROC;
10822 
10823 			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
10824 				state->dts_cred.dcr_action |=
10825 				    DTRACE_CRA_PROC_DESTRUCTIVE;
10826 		}
10827 	}
10828 
10829 	return (state);
10830 }
10831 
10832 static int
10833 dtrace_state_buffer(dtrace_state_t *state, dtrace_buffer_t *buf, int which)
10834 {
10835 	dtrace_optval_t *opt = state->dts_options, size;
10836 	processorid_t cpu;
10837 	int flags = 0, rval;
10838 
10839 	ASSERT(MUTEX_HELD(&dtrace_lock));
10840 	ASSERT(MUTEX_HELD(&cpu_lock));
10841 	ASSERT(which < DTRACEOPT_MAX);
10842 	ASSERT(state->dts_activity == DTRACE_ACTIVITY_INACTIVE ||
10843 	    (state == dtrace_anon.dta_state &&
10844 	    state->dts_activity == DTRACE_ACTIVITY_ACTIVE));
10845 
10846 	if (opt[which] == DTRACEOPT_UNSET || opt[which] == 0)
10847 		return (0);
10848 
10849 	if (opt[DTRACEOPT_CPU] != DTRACEOPT_UNSET)
10850 		cpu = opt[DTRACEOPT_CPU];
10851 
10852 	if (which == DTRACEOPT_SPECSIZE)
10853 		flags |= DTRACEBUF_NOSWITCH;
10854 
10855 	if (which == DTRACEOPT_BUFSIZE) {
10856 		if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_RING)
10857 			flags |= DTRACEBUF_RING;
10858 
10859 		if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_FILL)
10860 			flags |= DTRACEBUF_FILL;
10861 
10862 		flags |= DTRACEBUF_INACTIVE;
10863 	}
10864 
10865 	for (size = opt[which]; size >= sizeof (uint64_t); size >>= 1) {
10866 		/*
10867 		 * The size must be 8-byte aligned.  If the size is not 8-byte
10868 		 * aligned, drop it down by the difference.
10869 		 */
10870 		if (size & (sizeof (uint64_t) - 1))
10871 			size -= size & (sizeof (uint64_t) - 1);
10872 
10873 		if (size < state->dts_reserve) {
10874 			/*
10875 			 * Buffers always must be large enough to accommodate
10876 			 * their prereserved space.  We return E2BIG instead
10877 			 * of ENOMEM in this case to allow for user-level
10878 			 * software to differentiate the cases.
10879 			 */
10880 			return (E2BIG);
10881 		}
10882 
10883 		rval = dtrace_buffer_alloc(buf, size, flags, cpu);
10884 
10885 		if (rval != ENOMEM) {
10886 			opt[which] = size;
10887 			return (rval);
10888 		}
10889 
10890 		if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL)
10891 			return (rval);
10892 	}
10893 
10894 	return (ENOMEM);
10895 }
10896 
10897 static int
10898 dtrace_state_buffers(dtrace_state_t *state)
10899 {
10900 	dtrace_speculation_t *spec = state->dts_speculations;
10901 	int rval, i;
10902 
10903 	if ((rval = dtrace_state_buffer(state, state->dts_buffer,
10904 	    DTRACEOPT_BUFSIZE)) != 0)
10905 		return (rval);
10906 
10907 	if ((rval = dtrace_state_buffer(state, state->dts_aggbuffer,
10908 	    DTRACEOPT_AGGSIZE)) != 0)
10909 		return (rval);
10910 
10911 	for (i = 0; i < state->dts_nspeculations; i++) {
10912 		if ((rval = dtrace_state_buffer(state,
10913 		    spec[i].dtsp_buffer, DTRACEOPT_SPECSIZE)) != 0)
10914 			return (rval);
10915 	}
10916 
10917 	return (0);
10918 }
10919 
10920 static void
10921 dtrace_state_prereserve(dtrace_state_t *state)
10922 {
10923 	dtrace_ecb_t *ecb;
10924 	dtrace_probe_t *probe;
10925 
10926 	state->dts_reserve = 0;
10927 
10928 	if (state->dts_options[DTRACEOPT_BUFPOLICY] != DTRACEOPT_BUFPOLICY_FILL)
10929 		return;
10930 
10931 	/*
10932 	 * If our buffer policy is a "fill" buffer policy, we need to set the
10933 	 * prereserved space to be the space required by the END probes.
10934 	 */
10935 	probe = dtrace_probes[dtrace_probeid_end - 1];
10936 	ASSERT(probe != NULL);
10937 
10938 	for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) {
10939 		if (ecb->dte_state != state)
10940 			continue;
10941 
10942 		state->dts_reserve += ecb->dte_needed + ecb->dte_alignment;
10943 	}
10944 }
10945 
10946 static int
10947 dtrace_state_go(dtrace_state_t *state, processorid_t *cpu)
10948 {
10949 	dtrace_optval_t *opt = state->dts_options, sz, nspec;
10950 	dtrace_speculation_t *spec;
10951 	dtrace_buffer_t *buf;
10952 	cyc_handler_t hdlr;
10953 	cyc_time_t when;
10954 	int rval = 0, i, bufsize = NCPU * sizeof (dtrace_buffer_t);
10955 	dtrace_icookie_t cookie;
10956 
10957 	mutex_enter(&cpu_lock);
10958 	mutex_enter(&dtrace_lock);
10959 
10960 	if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) {
10961 		rval = EBUSY;
10962 		goto out;
10963 	}
10964 
10965 	/*
10966 	 * Before we can perform any checks, we must prime all of the
10967 	 * retained enablings that correspond to this state.
10968 	 */
10969 	dtrace_enabling_prime(state);
10970 
10971 	if (state->dts_destructive && !state->dts_cred.dcr_destructive) {
10972 		rval = EACCES;
10973 		goto out;
10974 	}
10975 
10976 	dtrace_state_prereserve(state);
10977 
10978 	/*
10979 	 * Now we want to do is try to allocate our speculations.
10980 	 * We do not automatically resize the number of speculations; if
10981 	 * this fails, we will fail the operation.
10982 	 */
10983 	nspec = opt[DTRACEOPT_NSPEC];
10984 	ASSERT(nspec != DTRACEOPT_UNSET);
10985 
10986 	if (nspec > INT_MAX) {
10987 		rval = ENOMEM;
10988 		goto out;
10989 	}
10990 
10991 	spec = kmem_zalloc(nspec * sizeof (dtrace_speculation_t), KM_NOSLEEP);
10992 
10993 	if (spec == NULL) {
10994 		rval = ENOMEM;
10995 		goto out;
10996 	}
10997 
10998 	state->dts_speculations = spec;
10999 	state->dts_nspeculations = (int)nspec;
11000 
11001 	for (i = 0; i < nspec; i++) {
11002 		if ((buf = kmem_zalloc(bufsize, KM_NOSLEEP)) == NULL) {
11003 			rval = ENOMEM;
11004 			goto err;
11005 		}
11006 
11007 		spec[i].dtsp_buffer = buf;
11008 	}
11009 
11010 	if (opt[DTRACEOPT_GRABANON] != DTRACEOPT_UNSET) {
11011 		if (dtrace_anon.dta_state == NULL) {
11012 			rval = ENOENT;
11013 			goto out;
11014 		}
11015 
11016 		if (state->dts_necbs != 0) {
11017 			rval = EALREADY;
11018 			goto out;
11019 		}
11020 
11021 		state->dts_anon = dtrace_anon_grab();
11022 		ASSERT(state->dts_anon != NULL);
11023 
11024 		*cpu = dtrace_anon.dta_beganon;
11025 
11026 		/*
11027 		 * If the anonymous state is active (as it almost certainly
11028 		 * is if the anonymous enabling ultimately matched anything),
11029 		 * we don't allow any further option processing -- but we
11030 		 * don't return failure.
11031 		 */
11032 		state = state->dts_anon;
11033 
11034 		if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
11035 			goto out;
11036 	}
11037 
11038 	if (opt[DTRACEOPT_AGGSIZE] != DTRACEOPT_UNSET &&
11039 	    opt[DTRACEOPT_AGGSIZE] != 0) {
11040 		if (state->dts_aggregations == NULL) {
11041 			/*
11042 			 * We're not going to create an aggregation buffer
11043 			 * because we don't have any ECBs that contain
11044 			 * aggregations -- set this option to 0.
11045 			 */
11046 			opt[DTRACEOPT_AGGSIZE] = 0;
11047 		} else {
11048 			/*
11049 			 * If we have an aggregation buffer, we must also have
11050 			 * a buffer to use as scratch.
11051 			 */
11052 			if (opt[DTRACEOPT_BUFSIZE] == DTRACEOPT_UNSET ||
11053 			    opt[DTRACEOPT_BUFSIZE] < state->dts_needed) {
11054 				opt[DTRACEOPT_BUFSIZE] = state->dts_needed;
11055 			}
11056 		}
11057 	}
11058 
11059 	if (opt[DTRACEOPT_SPECSIZE] != DTRACEOPT_UNSET &&
11060 	    opt[DTRACEOPT_SPECSIZE] != 0) {
11061 		if (!state->dts_speculates) {
11062 			/*
11063 			 * We're not going to create speculation buffers
11064 			 * because we don't have any ECBs that actually
11065 			 * speculate -- set the speculation size to 0.
11066 			 */
11067 			opt[DTRACEOPT_SPECSIZE] = 0;
11068 		}
11069 	}
11070 
11071 	/*
11072 	 * The bare minimum size for any buffer that we're actually going to
11073 	 * do anything to is sizeof (uint64_t).
11074 	 */
11075 	sz = sizeof (uint64_t);
11076 
11077 	if ((state->dts_needed != 0 && opt[DTRACEOPT_BUFSIZE] < sz) ||
11078 	    (state->dts_speculates && opt[DTRACEOPT_SPECSIZE] < sz) ||
11079 	    (state->dts_aggregations != NULL && opt[DTRACEOPT_AGGSIZE] < sz)) {
11080 		/*
11081 		 * A buffer size has been explicitly set to 0 (or to a size
11082 		 * that will be adjusted to 0) and we need the space -- we
11083 		 * need to return failure.  We return ENOSPC to differentiate
11084 		 * it from failing to allocate a buffer due to failure to meet
11085 		 * the reserve (for which we return E2BIG).
11086 		 */
11087 		rval = ENOSPC;
11088 		goto out;
11089 	}
11090 
11091 	if ((rval = dtrace_state_buffers(state)) != 0)
11092 		goto err;
11093 
11094 	if ((sz = opt[DTRACEOPT_DYNVARSIZE]) == DTRACEOPT_UNSET)
11095 		sz = dtrace_dstate_defsize;
11096 
11097 	do {
11098 		rval = dtrace_dstate_init(&state->dts_vstate.dtvs_dynvars, sz);
11099 
11100 		if (rval == 0)
11101 			break;
11102 
11103 		if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL)
11104 			goto err;
11105 	} while (sz >>= 1);
11106 
11107 	opt[DTRACEOPT_DYNVARSIZE] = sz;
11108 
11109 	if (rval != 0)
11110 		goto err;
11111 
11112 	if (opt[DTRACEOPT_STATUSRATE] > dtrace_statusrate_max)
11113 		opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_max;
11114 
11115 	if (opt[DTRACEOPT_CLEANRATE] == 0)
11116 		opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max;
11117 
11118 	if (opt[DTRACEOPT_CLEANRATE] < dtrace_cleanrate_min)
11119 		opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_min;
11120 
11121 	if (opt[DTRACEOPT_CLEANRATE] > dtrace_cleanrate_max)
11122 		opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max;
11123 
11124 	hdlr.cyh_func = (cyc_func_t)dtrace_state_clean;
11125 	hdlr.cyh_arg = state;
11126 	hdlr.cyh_level = CY_LOW_LEVEL;
11127 
11128 	when.cyt_when = 0;
11129 	when.cyt_interval = opt[DTRACEOPT_CLEANRATE];
11130 
11131 	state->dts_cleaner = cyclic_add(&hdlr, &when);
11132 
11133 	hdlr.cyh_func = (cyc_func_t)dtrace_state_deadman;
11134 	hdlr.cyh_arg = state;
11135 	hdlr.cyh_level = CY_LOW_LEVEL;
11136 
11137 	when.cyt_when = 0;
11138 	when.cyt_interval = dtrace_deadman_interval;
11139 
11140 	state->dts_alive = state->dts_laststatus = dtrace_gethrtime();
11141 	state->dts_deadman = cyclic_add(&hdlr, &when);
11142 
11143 	state->dts_activity = DTRACE_ACTIVITY_WARMUP;
11144 
11145 	/*
11146 	 * Now it's time to actually fire the BEGIN probe.  We need to disable
11147 	 * interrupts here both to record the CPU on which we fired the BEGIN
11148 	 * probe (the data from this CPU will be processed first at user
11149 	 * level) and to manually activate the buffer for this CPU.
11150 	 */
11151 	cookie = dtrace_interrupt_disable();
11152 	*cpu = CPU->cpu_id;
11153 	ASSERT(state->dts_buffer[*cpu].dtb_flags & DTRACEBUF_INACTIVE);
11154 	state->dts_buffer[*cpu].dtb_flags &= ~DTRACEBUF_INACTIVE;
11155 
11156 	dtrace_probe(dtrace_probeid_begin,
11157 	    (uint64_t)(uintptr_t)state, 0, 0, 0, 0);
11158 	dtrace_interrupt_enable(cookie);
11159 	/*
11160 	 * We may have had an exit action from a BEGIN probe; only change our
11161 	 * state to ACTIVE if we're still in WARMUP.
11162 	 */
11163 	ASSERT(state->dts_activity == DTRACE_ACTIVITY_WARMUP ||
11164 	    state->dts_activity == DTRACE_ACTIVITY_DRAINING);
11165 
11166 	if (state->dts_activity == DTRACE_ACTIVITY_WARMUP)
11167 		state->dts_activity = DTRACE_ACTIVITY_ACTIVE;
11168 
11169 	/*
11170 	 * Regardless of whether or not now we're in ACTIVE or DRAINING, we
11171 	 * want each CPU to transition its principal buffer out of the
11172 	 * INACTIVE state.  Doing this assures that no CPU will suddenly begin
11173 	 * processing an ECB halfway down a probe's ECB chain; all CPUs will
11174 	 * atomically transition from processing none of a state's ECBs to
11175 	 * processing all of them.
11176 	 */
11177 	dtrace_xcall(DTRACE_CPUALL,
11178 	    (dtrace_xcall_t)dtrace_buffer_activate, state);
11179 	goto out;
11180 
11181 err:
11182 	dtrace_buffer_free(state->dts_buffer);
11183 	dtrace_buffer_free(state->dts_aggbuffer);
11184 
11185 	if ((nspec = state->dts_nspeculations) == 0) {
11186 		ASSERT(state->dts_speculations == NULL);
11187 		goto out;
11188 	}
11189 
11190 	spec = state->dts_speculations;
11191 	ASSERT(spec != NULL);
11192 
11193 	for (i = 0; i < state->dts_nspeculations; i++) {
11194 		if ((buf = spec[i].dtsp_buffer) == NULL)
11195 			break;
11196 
11197 		dtrace_buffer_free(buf);
11198 		kmem_free(buf, bufsize);
11199 	}
11200 
11201 	kmem_free(spec, nspec * sizeof (dtrace_speculation_t));
11202 	state->dts_nspeculations = 0;
11203 	state->dts_speculations = NULL;
11204 
11205 out:
11206 	mutex_exit(&dtrace_lock);
11207 	mutex_exit(&cpu_lock);
11208 
11209 	return (rval);
11210 }
11211 
11212 static int
11213 dtrace_state_stop(dtrace_state_t *state, processorid_t *cpu)
11214 {
11215 	dtrace_icookie_t cookie;
11216 
11217 	ASSERT(MUTEX_HELD(&dtrace_lock));
11218 
11219 	if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE &&
11220 	    state->dts_activity != DTRACE_ACTIVITY_DRAINING)
11221 		return (EINVAL);
11222 
11223 	/*
11224 	 * We'll set the activity to DTRACE_ACTIVITY_DRAINING, and issue a sync
11225 	 * to be sure that every CPU has seen it.  See below for the details
11226 	 * on why this is done.
11227 	 */
11228 	state->dts_activity = DTRACE_ACTIVITY_DRAINING;
11229 	dtrace_sync();
11230 
11231 	/*
11232 	 * By this point, it is impossible for any CPU to be still processing
11233 	 * with DTRACE_ACTIVITY_ACTIVE.  We can thus set our activity to
11234 	 * DTRACE_ACTIVITY_COOLDOWN and know that we're not racing with any
11235 	 * other CPU in dtrace_buffer_reserve().  This allows dtrace_probe()
11236 	 * and callees to know that the activity is DTRACE_ACTIVITY_COOLDOWN
11237 	 * iff we're in the END probe.
11238 	 */
11239 	state->dts_activity = DTRACE_ACTIVITY_COOLDOWN;
11240 	dtrace_sync();
11241 	ASSERT(state->dts_activity == DTRACE_ACTIVITY_COOLDOWN);
11242 
11243 	/*
11244 	 * Finally, we can release the reserve and call the END probe.  We
11245 	 * disable interrupts across calling the END probe to allow us to
11246 	 * return the CPU on which we actually called the END probe.  This
11247 	 * allows user-land to be sure that this CPU's principal buffer is
11248 	 * processed last.
11249 	 */
11250 	state->dts_reserve = 0;
11251 
11252 	cookie = dtrace_interrupt_disable();
11253 	*cpu = CPU->cpu_id;
11254 	dtrace_probe(dtrace_probeid_end,
11255 	    (uint64_t)(uintptr_t)state, 0, 0, 0, 0);
11256 	dtrace_interrupt_enable(cookie);
11257 
11258 	state->dts_activity = DTRACE_ACTIVITY_STOPPED;
11259 	dtrace_sync();
11260 
11261 	return (0);
11262 }
11263 
11264 static int
11265 dtrace_state_option(dtrace_state_t *state, dtrace_optid_t option,
11266     dtrace_optval_t val)
11267 {
11268 	ASSERT(MUTEX_HELD(&dtrace_lock));
11269 
11270 	if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
11271 		return (EBUSY);
11272 
11273 	if (option >= DTRACEOPT_MAX)
11274 		return (EINVAL);
11275 
11276 	if (option != DTRACEOPT_CPU && val < 0)
11277 		return (EINVAL);
11278 
11279 	switch (option) {
11280 	case DTRACEOPT_DESTRUCTIVE:
11281 		if (dtrace_destructive_disallow)
11282 			return (EACCES);
11283 
11284 		state->dts_cred.dcr_destructive = 1;
11285 		break;
11286 
11287 	case DTRACEOPT_BUFSIZE:
11288 	case DTRACEOPT_DYNVARSIZE:
11289 	case DTRACEOPT_AGGSIZE:
11290 	case DTRACEOPT_SPECSIZE:
11291 	case DTRACEOPT_STRSIZE:
11292 		if (val < 0)
11293 			return (EINVAL);
11294 
11295 		if (val >= LONG_MAX) {
11296 			/*
11297 			 * If this is an otherwise negative value, set it to
11298 			 * the highest multiple of 128m less than LONG_MAX.
11299 			 * Technically, we're adjusting the size without
11300 			 * regard to the buffer resizing policy, but in fact,
11301 			 * this has no effect -- if we set the buffer size to
11302 			 * ~LONG_MAX and the buffer policy is ultimately set to
11303 			 * be "manual", the buffer allocation is guaranteed to
11304 			 * fail, if only because the allocation requires two
11305 			 * buffers.  (We set the the size to the highest
11306 			 * multiple of 128m because it ensures that the size
11307 			 * will remain a multiple of a megabyte when
11308 			 * repeatedly halved -- all the way down to 15m.)
11309 			 */
11310 			val = LONG_MAX - (1 << 27) + 1;
11311 		}
11312 	}
11313 
11314 	state->dts_options[option] = val;
11315 
11316 	return (0);
11317 }
11318 
11319 static void
11320 dtrace_state_destroy(dtrace_state_t *state)
11321 {
11322 	dtrace_ecb_t *ecb;
11323 	dtrace_vstate_t *vstate = &state->dts_vstate;
11324 	minor_t minor = getminor(state->dts_dev);
11325 	int i, bufsize = NCPU * sizeof (dtrace_buffer_t);
11326 	dtrace_speculation_t *spec = state->dts_speculations;
11327 	int nspec = state->dts_nspeculations;
11328 	uint32_t match;
11329 
11330 	ASSERT(MUTEX_HELD(&dtrace_lock));
11331 	ASSERT(MUTEX_HELD(&cpu_lock));
11332 
11333 	/*
11334 	 * First, retract any retained enablings for this state.
11335 	 */
11336 	dtrace_enabling_retract(state);
11337 	ASSERT(state->dts_nretained == 0);
11338 
11339 	/*
11340 	 * Now we need to disable and destroy any enabled probes.  Because any
11341 	 * DTRACE_PRIV_KERNEL probes may actually be slowing our progress
11342 	 * (especially if they're all enabled), we take two passes through
11343 	 * the ECBs:  in the first, we disable just DTRACE_PRIV_KERNEL probes,
11344 	 * and in the second we disable whatever is left over.
11345 	 */
11346 	for (match = DTRACE_PRIV_KERNEL; ; match = 0) {
11347 		for (i = 0; i < state->dts_necbs; i++) {
11348 			if ((ecb = state->dts_ecbs[i]) == NULL)
11349 				continue;
11350 
11351 			if (match && ecb->dte_probe != NULL) {
11352 				dtrace_probe_t *probe = ecb->dte_probe;
11353 				dtrace_provider_t *prov = probe->dtpr_provider;
11354 
11355 				if (!(prov->dtpv_priv.dtpp_flags & match))
11356 					continue;
11357 			}
11358 
11359 			dtrace_ecb_disable(ecb);
11360 			dtrace_ecb_destroy(ecb);
11361 		}
11362 
11363 		if (!match)
11364 			break;
11365 	}
11366 
11367 	/*
11368 	 * Before we free the buffers, perform one more sync to assure that
11369 	 * every CPU is out of probe context.
11370 	 */
11371 	dtrace_sync();
11372 
11373 	dtrace_buffer_free(state->dts_buffer);
11374 	dtrace_buffer_free(state->dts_aggbuffer);
11375 
11376 	for (i = 0; i < nspec; i++)
11377 		dtrace_buffer_free(spec[i].dtsp_buffer);
11378 
11379 	if (state->dts_cleaner != CYCLIC_NONE)
11380 		cyclic_remove(state->dts_cleaner);
11381 
11382 	if (state->dts_deadman != CYCLIC_NONE)
11383 		cyclic_remove(state->dts_deadman);
11384 
11385 	dtrace_dstate_fini(&vstate->dtvs_dynvars);
11386 	dtrace_vstate_fini(vstate);
11387 	kmem_free(state->dts_ecbs, state->dts_necbs * sizeof (dtrace_ecb_t *));
11388 
11389 	if (state->dts_aggregations != NULL) {
11390 #ifdef DEBUG
11391 		for (i = 0; i < state->dts_naggregations; i++)
11392 			ASSERT(state->dts_aggregations[i] == NULL);
11393 #endif
11394 		ASSERT(state->dts_naggregations > 0);
11395 		kmem_free(state->dts_aggregations,
11396 		    state->dts_naggregations * sizeof (dtrace_aggregation_t *));
11397 	}
11398 
11399 	kmem_free(state->dts_buffer, bufsize);
11400 	kmem_free(state->dts_aggbuffer, bufsize);
11401 
11402 	for (i = 0; i < nspec; i++)
11403 		kmem_free(spec[i].dtsp_buffer, bufsize);
11404 
11405 	kmem_free(spec, nspec * sizeof (dtrace_speculation_t));
11406 
11407 	dtrace_format_destroy(state);
11408 
11409 	vmem_destroy(state->dts_aggid_arena);
11410 	ddi_soft_state_free(dtrace_softstate, minor);
11411 	vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1);
11412 }
11413 
11414 /*
11415  * DTrace Anonymous Enabling Functions
11416  */
11417 static dtrace_state_t *
11418 dtrace_anon_grab(void)
11419 {
11420 	dtrace_state_t *state;
11421 
11422 	ASSERT(MUTEX_HELD(&dtrace_lock));
11423 
11424 	if ((state = dtrace_anon.dta_state) == NULL) {
11425 		ASSERT(dtrace_anon.dta_enabling == NULL);
11426 		return (NULL);
11427 	}
11428 
11429 	ASSERT(dtrace_anon.dta_enabling != NULL);
11430 	ASSERT(dtrace_retained != NULL);
11431 
11432 	dtrace_enabling_destroy(dtrace_anon.dta_enabling);
11433 	dtrace_anon.dta_enabling = NULL;
11434 	dtrace_anon.dta_state = NULL;
11435 
11436 	return (state);
11437 }
11438 
11439 static void
11440 dtrace_anon_property(void)
11441 {
11442 	int i, rv;
11443 	dtrace_state_t *state;
11444 	dof_hdr_t *dof;
11445 	char c[32];		/* enough for "dof-data-" + digits */
11446 
11447 	ASSERT(MUTEX_HELD(&dtrace_lock));
11448 	ASSERT(MUTEX_HELD(&cpu_lock));
11449 
11450 	for (i = 0; ; i++) {
11451 		(void) snprintf(c, sizeof (c), "dof-data-%d", i);
11452 
11453 		dtrace_err_verbose = 1;
11454 
11455 		if ((dof = dtrace_dof_property(c)) == NULL) {
11456 			dtrace_err_verbose = 0;
11457 			break;
11458 		}
11459 
11460 		/*
11461 		 * We want to create anonymous state, so we need to transition
11462 		 * the kernel debugger to indicate that DTrace is active.  If
11463 		 * this fails (e.g. because the debugger has modified text in
11464 		 * some way), we won't continue with the processing.
11465 		 */
11466 		if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) {
11467 			cmn_err(CE_NOTE, "kernel debugger active; anonymous "
11468 			    "enabling ignored.");
11469 			dtrace_dof_destroy(dof);
11470 			break;
11471 		}
11472 
11473 		/*
11474 		 * If we haven't allocated an anonymous state, we'll do so now.
11475 		 */
11476 		if ((state = dtrace_anon.dta_state) == NULL) {
11477 			state = dtrace_state_create(NULL, NULL);
11478 			dtrace_anon.dta_state = state;
11479 
11480 			if (state == NULL) {
11481 				/*
11482 				 * This basically shouldn't happen:  the only
11483 				 * failure mode from dtrace_state_create() is a
11484 				 * failure of ddi_soft_state_zalloc() that
11485 				 * itself should never happen.  Still, the
11486 				 * interface allows for a failure mode, and
11487 				 * we want to fail as gracefully as possible:
11488 				 * we'll emit an error message and cease
11489 				 * processing anonymous state in this case.
11490 				 */
11491 				cmn_err(CE_WARN, "failed to create "
11492 				    "anonymous state");
11493 				dtrace_dof_destroy(dof);
11494 				break;
11495 			}
11496 		}
11497 
11498 		rv = dtrace_dof_slurp(dof, &state->dts_vstate, CRED(),
11499 		    &dtrace_anon.dta_enabling, 0, B_TRUE);
11500 
11501 		if (rv == 0)
11502 			rv = dtrace_dof_options(dof, state);
11503 
11504 		dtrace_err_verbose = 0;
11505 		dtrace_dof_destroy(dof);
11506 
11507 		if (rv != 0) {
11508 			/*
11509 			 * This is malformed DOF; chuck any anonymous state
11510 			 * that we created.
11511 			 */
11512 			ASSERT(dtrace_anon.dta_enabling == NULL);
11513 			dtrace_state_destroy(state);
11514 			dtrace_anon.dta_state = NULL;
11515 			break;
11516 		}
11517 
11518 		ASSERT(dtrace_anon.dta_enabling != NULL);
11519 	}
11520 
11521 	if (dtrace_anon.dta_enabling != NULL) {
11522 		int rval;
11523 
11524 		/*
11525 		 * dtrace_enabling_retain() can only fail because we are
11526 		 * trying to retain more enablings than are allowed -- but
11527 		 * we only have one anonymous enabling, and we are guaranteed
11528 		 * to be allowed at least one retained enabling; we assert
11529 		 * that dtrace_enabling_retain() returns success.
11530 		 */
11531 		rval = dtrace_enabling_retain(dtrace_anon.dta_enabling);
11532 		ASSERT(rval == 0);
11533 
11534 		dtrace_enabling_dump(dtrace_anon.dta_enabling);
11535 	}
11536 }
11537 
11538 /*
11539  * DTrace Helper Functions
11540  */
11541 static void
11542 dtrace_helper_trace(dtrace_helper_action_t *helper, dtrace_vstate_t *vstate,
11543     int where)
11544 {
11545 	uint32_t size, next, nnext, i;
11546 	dtrace_helptrace_t *ent;
11547 
11548 	if (!dtrace_helptrace_enabled)
11549 		return;
11550 
11551 	ASSERT(vstate->dtvs_nlocals <= dtrace_helptrace_nlocals);
11552 
11553 	/*
11554 	 * What would a tracing framework be without its own tracing
11555 	 * framework?  (Well, a hell of a lot simpler, for starters...)
11556 	 */
11557 	size = sizeof (dtrace_helptrace_t) + dtrace_helptrace_nlocals *
11558 	    sizeof (uint64_t) - sizeof (uint64_t);
11559 
11560 	/*
11561 	 * Iterate until we can allocate a slot in the trace buffer.
11562 	 */
11563 	do {
11564 		next = dtrace_helptrace_next;
11565 
11566 		if (next + size < dtrace_helptrace_bufsize) {
11567 			nnext = next + size;
11568 		} else {
11569 			nnext = size;
11570 		}
11571 	} while (dtrace_cas32(&dtrace_helptrace_next, next, nnext) != next);
11572 
11573 	/*
11574 	 * We have our slot; fill it in.
11575 	 */
11576 	if (nnext == size)
11577 		next = 0;
11578 
11579 	ent = (dtrace_helptrace_t *)&dtrace_helptrace_buffer[next];
11580 	ent->dtht_helper = helper;
11581 	ent->dtht_where = where;
11582 	ent->dtht_nlocals = vstate->dtvs_nlocals;
11583 
11584 	for (i = 0; i < vstate->dtvs_nlocals; i++) {
11585 		dtrace_statvar_t *svar;
11586 
11587 		if ((svar = vstate->dtvs_locals[i]) == NULL)
11588 			continue;
11589 
11590 		ASSERT(svar->dtsv_size >= NCPU * sizeof (uint64_t));
11591 		ent->dtht_locals[i] =
11592 		    ((uint64_t *)svar->dtsv_data)[CPU->cpu_id];
11593 	}
11594 }
11595 
11596 static uint64_t
11597 dtrace_helper(int which, dtrace_mstate_t *mstate,
11598     dtrace_state_t *state, uint64_t arg0, uint64_t arg1)
11599 {
11600 	uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
11601 	uint64_t sarg0 = mstate->dtms_arg[0];
11602 	uint64_t sarg1 = mstate->dtms_arg[1];
11603 	uint64_t rval;
11604 	dtrace_helpers_t *helpers = curproc->p_dtrace_helpers;
11605 	dtrace_helper_action_t *helper;
11606 	dtrace_vstate_t *vstate;
11607 	dtrace_difo_t *pred;
11608 	int i, trace = dtrace_helptrace_enabled;
11609 
11610 	ASSERT(which >= 0 && which < DTRACE_NHELPER_ACTIONS);
11611 
11612 	if (helpers == NULL)
11613 		return (0);
11614 
11615 	if ((helper = helpers->dthps_actions[which]) == NULL)
11616 		return (0);
11617 
11618 	vstate = &helpers->dthps_vstate;
11619 	mstate->dtms_arg[0] = arg0;
11620 	mstate->dtms_arg[1] = arg1;
11621 
11622 	/*
11623 	 * Now iterate over each helper.  If its predicate evaluates to 'true',
11624 	 * we'll call the corresponding actions.  Note that the below calls
11625 	 * to dtrace_dif_emulate() may set faults in machine state.  This is
11626 	 * okay:  our caller (the outer dtrace_dif_emulate()) will simply plow
11627 	 * the stored DIF offset with its own (which is the desired behavior).
11628 	 * Also, note the calls to dtrace_dif_emulate() may allocate scratch
11629 	 * from machine state; this is okay, too.
11630 	 */
11631 	for (; helper != NULL; helper = helper->dthp_next) {
11632 		if ((pred = helper->dthp_predicate) != NULL) {
11633 			if (trace)
11634 				dtrace_helper_trace(helper, vstate, 0);
11635 
11636 			if (!dtrace_dif_emulate(pred, mstate, vstate, state))
11637 				goto next;
11638 
11639 			if (*flags & CPU_DTRACE_FAULT)
11640 				goto err;
11641 		}
11642 
11643 		for (i = 0; i < helper->dthp_nactions; i++) {
11644 			if (trace)
11645 				dtrace_helper_trace(helper, vstate, i + 1);
11646 
11647 			rval = dtrace_dif_emulate(helper->dthp_actions[i],
11648 			    mstate, vstate, state);
11649 
11650 			if (*flags & CPU_DTRACE_FAULT)
11651 				goto err;
11652 		}
11653 
11654 next:
11655 		if (trace)
11656 			dtrace_helper_trace(helper, vstate,
11657 			    DTRACE_HELPTRACE_NEXT);
11658 	}
11659 
11660 	if (trace)
11661 		dtrace_helper_trace(helper, vstate, DTRACE_HELPTRACE_DONE);
11662 
11663 	/*
11664 	 * Restore the arg0 that we saved upon entry.
11665 	 */
11666 	mstate->dtms_arg[0] = sarg0;
11667 	mstate->dtms_arg[1] = sarg1;
11668 
11669 	return (rval);
11670 
11671 err:
11672 	if (trace)
11673 		dtrace_helper_trace(helper, vstate, DTRACE_HELPTRACE_ERR);
11674 
11675 	/*
11676 	 * Restore the arg0 that we saved upon entry.
11677 	 */
11678 	mstate->dtms_arg[0] = sarg0;
11679 	mstate->dtms_arg[1] = sarg1;
11680 
11681 	return (NULL);
11682 }
11683 
11684 static void
11685 dtrace_helper_destroy(dtrace_helper_action_t *helper, dtrace_vstate_t *vstate)
11686 {
11687 	int i;
11688 
11689 	if (helper->dthp_predicate != NULL)
11690 		dtrace_difo_release(helper->dthp_predicate, vstate);
11691 
11692 	for (i = 0; i < helper->dthp_nactions; i++) {
11693 		ASSERT(helper->dthp_actions[i] != NULL);
11694 		dtrace_difo_release(helper->dthp_actions[i], vstate);
11695 	}
11696 
11697 	kmem_free(helper->dthp_actions,
11698 	    helper->dthp_nactions * sizeof (dtrace_difo_t *));
11699 	kmem_free(helper, sizeof (dtrace_helper_action_t));
11700 }
11701 
11702 static int
11703 dtrace_helper_destroygen(int gen)
11704 {
11705 	dtrace_helpers_t *help = curproc->p_dtrace_helpers;
11706 	dtrace_vstate_t *vstate;
11707 	int i;
11708 
11709 	ASSERT(MUTEX_HELD(&dtrace_lock));
11710 
11711 	if (help == NULL || gen > help->dthps_generation)
11712 		return (EINVAL);
11713 
11714 	vstate = &help->dthps_vstate;
11715 
11716 	for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
11717 		dtrace_helper_action_t *last = NULL, *h, *next;
11718 
11719 		for (h = help->dthps_actions[i]; h != NULL; h = next) {
11720 			next = h->dthp_next;
11721 
11722 			if (h->dthp_generation == gen) {
11723 				if (last != NULL) {
11724 					last->dthp_next = next;
11725 				} else {
11726 					help->dthps_actions[i] = next;
11727 				}
11728 
11729 				dtrace_helper_destroy(h, vstate);
11730 			} else {
11731 				last = h;
11732 			}
11733 		}
11734 	}
11735 
11736 	return (0);
11737 }
11738 
11739 static int
11740 dtrace_helper_validate(dtrace_helper_action_t *helper)
11741 {
11742 	int err = 0, i;
11743 	dtrace_difo_t *dp;
11744 
11745 	if ((dp = helper->dthp_predicate) != NULL)
11746 		err += dtrace_difo_validate_helper(dp);
11747 
11748 	for (i = 0; i < helper->dthp_nactions; i++)
11749 		err += dtrace_difo_validate_helper(helper->dthp_actions[i]);
11750 
11751 	return (err == 0);
11752 }
11753 
11754 static int
11755 dtrace_helper_action_add(int which, dtrace_ecbdesc_t *ep)
11756 {
11757 	dtrace_helpers_t *help;
11758 	dtrace_helper_action_t *helper, *last;
11759 	dtrace_actdesc_t *act;
11760 	dtrace_vstate_t *vstate;
11761 	dtrace_predicate_t *pred;
11762 	int count = 0, nactions = 0, i;
11763 
11764 	if (which < 0 || which >= DTRACE_NHELPER_ACTIONS)
11765 		return (EINVAL);
11766 
11767 	help = curproc->p_dtrace_helpers;
11768 	last = help->dthps_actions[which];
11769 	vstate = &help->dthps_vstate;
11770 
11771 	for (count = 0; last != NULL; last = last->dthp_next) {
11772 		count++;
11773 		if (last->dthp_next == NULL)
11774 			break;
11775 	}
11776 
11777 	/*
11778 	 * If we already have dtrace_helper_actions_max helper actions for this
11779 	 * helper action type, we'll refuse to add a new one.
11780 	 */
11781 	if (count >= dtrace_helper_actions_max)
11782 		return (ENOSPC);
11783 
11784 	helper = kmem_zalloc(sizeof (dtrace_helper_action_t), KM_SLEEP);
11785 	helper->dthp_generation = help->dthps_generation;
11786 
11787 	if ((pred = ep->dted_pred.dtpdd_predicate) != NULL) {
11788 		ASSERT(pred->dtp_difo != NULL);
11789 		dtrace_difo_hold(pred->dtp_difo);
11790 		helper->dthp_predicate = pred->dtp_difo;
11791 	}
11792 
11793 	for (act = ep->dted_action; act != NULL; act = act->dtad_next) {
11794 		if (act->dtad_kind != DTRACEACT_DIFEXPR)
11795 			goto err;
11796 
11797 		if (act->dtad_difo == NULL)
11798 			goto err;
11799 
11800 		nactions++;
11801 	}
11802 
11803 	helper->dthp_actions = kmem_zalloc(sizeof (dtrace_difo_t *) *
11804 	    (helper->dthp_nactions = nactions), KM_SLEEP);
11805 
11806 	for (act = ep->dted_action, i = 0; act != NULL; act = act->dtad_next) {
11807 		dtrace_difo_hold(act->dtad_difo);
11808 		helper->dthp_actions[i++] = act->dtad_difo;
11809 	}
11810 
11811 	if (!dtrace_helper_validate(helper))
11812 		goto err;
11813 
11814 	if (last == NULL) {
11815 		help->dthps_actions[which] = helper;
11816 	} else {
11817 		last->dthp_next = helper;
11818 	}
11819 
11820 	if (vstate->dtvs_nlocals > dtrace_helptrace_nlocals) {
11821 		dtrace_helptrace_nlocals = vstate->dtvs_nlocals;
11822 		dtrace_helptrace_next = 0;
11823 	}
11824 
11825 	return (0);
11826 err:
11827 	dtrace_helper_destroy(helper, vstate);
11828 	return (EINVAL);
11829 }
11830 
11831 static void
11832 dtrace_helper_provider_register(proc_t *p, dtrace_helpers_t *help,
11833     dof_helper_t *dofhp)
11834 {
11835 	ASSERT(MUTEX_NOT_HELD(&dtrace_lock));
11836 
11837 	mutex_enter(&dtrace_meta_lock);
11838 	mutex_enter(&dtrace_lock);
11839 
11840 	if (!dtrace_attached() || dtrace_meta_pid == NULL) {
11841 		/*
11842 		 * If the dtrace module is loaded but not attached, or if
11843 		 * there aren't isn't a meta provider registered to deal with
11844 		 * these provider descriptions, we need to postpone creating
11845 		 * the actual providers until later.
11846 		 */
11847 
11848 		if (help->dthps_next == NULL && help->dthps_prev == NULL &&
11849 		    dtrace_deferred_pid != help) {
11850 			help->dthps_pid = p->p_pid;
11851 			help->dthps_next = dtrace_deferred_pid;
11852 			help->dthps_prev = NULL;
11853 			if (dtrace_deferred_pid != NULL)
11854 				dtrace_deferred_pid->dthps_prev = help;
11855 			dtrace_deferred_pid = help;
11856 		}
11857 
11858 		mutex_exit(&dtrace_lock);
11859 
11860 	} else if (dofhp != NULL) {
11861 		/*
11862 		 * If the dtrace module is loaded and we have a particular
11863 		 * helper provider description, pass that off to the
11864 		 * meta provider.
11865 		 */
11866 
11867 		mutex_exit(&dtrace_lock);
11868 
11869 		dtrace_helper_provide(dofhp, p->p_pid);
11870 
11871 	} else {
11872 		/*
11873 		 * Otherwise, just pass all the helper provider descriptions
11874 		 * off to the meta provider.
11875 		 */
11876 
11877 		int i;
11878 		mutex_exit(&dtrace_lock);
11879 
11880 		for (i = 0; i < help->dthps_nprovs; i++) {
11881 			dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov,
11882 			    p->p_pid);
11883 		}
11884 	}
11885 
11886 	mutex_exit(&dtrace_meta_lock);
11887 }
11888 
11889 static int
11890 dtrace_helper_provider_add(dof_helper_t *dofhp)
11891 {
11892 	dtrace_helpers_t *help;
11893 	dtrace_helper_provider_t *hprov, **tmp_provs;
11894 	uint_t tmp_nprovs, i;
11895 
11896 	help = curproc->p_dtrace_helpers;
11897 	ASSERT(help != NULL);
11898 
11899 	/*
11900 	 * If we already have dtrace_helper_providers_max helper providers,
11901 	 * we're refuse to add a new one.
11902 	 */
11903 	if (help->dthps_nprovs >= dtrace_helper_providers_max)
11904 		return (ENOSPC);
11905 
11906 	/*
11907 	 * Check to make sure this isn't a duplicate.
11908 	 */
11909 	for (i = 0; i < help->dthps_nprovs; i++) {
11910 		if (dofhp->dofhp_addr ==
11911 		    help->dthps_provs[i]->dthp_prov.dofhp_addr)
11912 			return (EALREADY);
11913 	}
11914 
11915 	hprov = kmem_zalloc(sizeof (dtrace_helper_provider_t), KM_SLEEP);
11916 	hprov->dthp_prov = *dofhp;
11917 	hprov->dthp_ref = 1;
11918 
11919 	tmp_nprovs = help->dthps_nprovs;
11920 	tmp_provs = help->dthps_provs;
11921 	help->dthps_nprovs++;
11922 	help->dthps_provs = kmem_zalloc(help->dthps_nprovs *
11923 	    sizeof (dtrace_helper_provider_t *), KM_SLEEP);
11924 
11925 	help->dthps_provs[tmp_nprovs] = hprov;
11926 	if (tmp_provs != NULL) {
11927 		bcopy(tmp_provs, help->dthps_provs, tmp_nprovs *
11928 		    sizeof (dtrace_helper_provider_t *));
11929 		kmem_free(tmp_provs, tmp_nprovs *
11930 		    sizeof (dtrace_helper_provider_t *));
11931 	}
11932 
11933 	return (0);
11934 }
11935 
11936 static void
11937 dtrace_helper_provider_remove(dtrace_helper_provider_t *hprov)
11938 {
11939 	mutex_enter(&dtrace_lock);
11940 
11941 	if (--hprov->dthp_ref == 0) {
11942 		mutex_exit(&dtrace_lock);
11943 		dtrace_dof_destroy((dof_hdr_t *)hprov->dthp_prov.dofhp_dof);
11944 		kmem_free(hprov, sizeof (dtrace_helper_provider_t));
11945 	} else {
11946 		mutex_exit(&dtrace_lock);
11947 	}
11948 }
11949 
11950 static int
11951 dtrace_helper_provider_validate(dof_hdr_t *dof, dof_sec_t *sec)
11952 {
11953 	uintptr_t daddr = (uintptr_t)dof;
11954 	dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec;
11955 	dof_provider_t *provider;
11956 	dof_probe_t *probe;
11957 	uint8_t *arg;
11958 	char *strtab, *typestr;
11959 	dof_stridx_t typeidx;
11960 	size_t typesz;
11961 	uint_t nprobes, j, k;
11962 
11963 	ASSERT(sec->dofs_type == DOF_SECT_PROVIDER);
11964 
11965 	if (sec->dofs_offset & (sizeof (uint_t) - 1)) {
11966 		dtrace_dof_error(dof, "misaligned section offset");
11967 		return (-1);
11968 	}
11969 
11970 	provider = (dof_provider_t *)(daddr + sec->dofs_offset);
11971 	str_sec = dtrace_dof_sect(dof, DOF_SECT_STRTAB, provider->dofpv_strtab);
11972 	prb_sec = dtrace_dof_sect(dof, DOF_SECT_PROBES, provider->dofpv_probes);
11973 	arg_sec = dtrace_dof_sect(dof, DOF_SECT_PRARGS, provider->dofpv_prargs);
11974 	off_sec = dtrace_dof_sect(dof, DOF_SECT_PROFFS, provider->dofpv_proffs);
11975 
11976 	if (str_sec == NULL || prb_sec == NULL ||
11977 	    arg_sec == NULL || off_sec == NULL)
11978 		return (-1);
11979 
11980 	strtab = (char *)(daddr + str_sec->dofs_offset);
11981 
11982 	if (provider->dofpv_name >= str_sec->dofs_size ||
11983 	    strlen(strtab + provider->dofpv_name) >= DTRACE_PROVNAMELEN) {
11984 		dtrace_dof_error(dof, "invalid provider name");
11985 		return (-1);
11986 	}
11987 
11988 	if (prb_sec->dofs_entsize == 0 ||
11989 	    prb_sec->dofs_entsize > prb_sec->dofs_size) {
11990 		dtrace_dof_error(dof, "invalid entry size");
11991 		return (-1);
11992 	}
11993 
11994 	if (prb_sec->dofs_entsize & (sizeof (uintptr_t) - 1)) {
11995 		dtrace_dof_error(dof, "misaligned entry size");
11996 		return (-1);
11997 	}
11998 
11999 	if (off_sec->dofs_entsize != sizeof (uint32_t)) {
12000 		dtrace_dof_error(dof, "invalid entry size");
12001 		return (-1);
12002 	}
12003 
12004 	if (off_sec->dofs_offset & (sizeof (uint32_t) - 1)) {
12005 		dtrace_dof_error(dof, "misaligned section offset");
12006 		return (-1);
12007 	}
12008 
12009 	if (arg_sec->dofs_entsize != sizeof (uint8_t)) {
12010 		dtrace_dof_error(dof, "invalid entry size");
12011 		return (-1);
12012 	}
12013 
12014 	arg = (uint8_t *)(daddr + arg_sec->dofs_offset);
12015 
12016 	nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize;
12017 
12018 	/*
12019 	 * Take a pass through the probes to check for errors.
12020 	 */
12021 	for (j = 0; j < nprobes; j++) {
12022 		probe = (dof_probe_t *)(daddr + prb_sec->dofs_offset +
12023 		    j * prb_sec->dofs_entsize);
12024 
12025 		if (probe->dofpr_func >= str_sec->dofs_size) {
12026 			dtrace_dof_error(dof, "invalid function name");
12027 			return (-1);
12028 		}
12029 
12030 		if (strlen(strtab + probe->dofpr_func) >= DTRACE_FUNCNAMELEN) {
12031 			dtrace_dof_error(dof, "function name too long");
12032 			return (-1);
12033 		}
12034 
12035 		if (probe->dofpr_name >= str_sec->dofs_size ||
12036 		    strlen(strtab + probe->dofpr_name) >= DTRACE_NAMELEN) {
12037 			dtrace_dof_error(dof, "invalid probe name");
12038 			return (-1);
12039 		}
12040 
12041 
12042 		if (probe->dofpr_offidx + probe->dofpr_noffs <
12043 		    probe->dofpr_offidx ||
12044 		    (probe->dofpr_offidx + probe->dofpr_noffs) *
12045 		    off_sec->dofs_entsize > off_sec->dofs_size) {
12046 			dtrace_dof_error(dof, "invalid probe offset");
12047 			return (-1);
12048 		}
12049 
12050 		if (probe->dofpr_argidx + probe->dofpr_xargc <
12051 		    probe->dofpr_argidx ||
12052 		    (probe->dofpr_argidx + probe->dofpr_xargc) *
12053 		    arg_sec->dofs_entsize > arg_sec->dofs_size) {
12054 			dtrace_dof_error(dof, "invalid args");
12055 			return (-1);
12056 		}
12057 
12058 		typeidx = probe->dofpr_nargv;
12059 		typestr = strtab + probe->dofpr_nargv;
12060 		for (k = 0; k < probe->dofpr_nargc; k++) {
12061 			if (typeidx >= str_sec->dofs_size) {
12062 				dtrace_dof_error(dof, "bad "
12063 				    "native argument type");
12064 				return (-1);
12065 			}
12066 
12067 			typesz = strlen(typestr) + 1;
12068 			if (typesz > DTRACE_ARGTYPELEN) {
12069 				dtrace_dof_error(dof, "native "
12070 				    "argument type too long");
12071 				return (-1);
12072 			}
12073 			typeidx += typesz;
12074 			typestr += typesz;
12075 		}
12076 
12077 		typeidx = probe->dofpr_xargv;
12078 		typestr = strtab + probe->dofpr_xargv;
12079 		for (k = 0; k < probe->dofpr_xargc; k++) {
12080 			if (arg[probe->dofpr_argidx + k] > probe->dofpr_nargc) {
12081 				dtrace_dof_error(dof, "bad "
12082 				    "native argument index");
12083 				return (-1);
12084 			}
12085 
12086 			if (typeidx >= str_sec->dofs_size) {
12087 				dtrace_dof_error(dof, "bad "
12088 				    "translated argument type");
12089 				return (-1);
12090 			}
12091 
12092 			typesz = strlen(typestr) + 1;
12093 			if (typesz > DTRACE_ARGTYPELEN) {
12094 				dtrace_dof_error(dof, "translated argument "
12095 				    "type too long");
12096 				return (-1);
12097 			}
12098 
12099 			typeidx += typesz;
12100 			typestr += typesz;
12101 		}
12102 	}
12103 
12104 	return (0);
12105 }
12106 
12107 static int
12108 dtrace_helper_slurp(dof_hdr_t *dof, dof_helper_t *dhp)
12109 {
12110 	dtrace_helpers_t *help;
12111 	dtrace_vstate_t *vstate;
12112 	dtrace_enabling_t *enab = NULL;
12113 	int i, gen, rv, nhelpers = 0, destroy = 1;
12114 
12115 	ASSERT(MUTEX_HELD(&dtrace_lock));
12116 
12117 	if ((help = curproc->p_dtrace_helpers) == NULL)
12118 		help = dtrace_helpers_create(curproc);
12119 
12120 	vstate = &help->dthps_vstate;
12121 
12122 	if ((rv = dtrace_dof_slurp(dof, vstate, NULL, &enab,
12123 	    dhp != NULL ? dhp->dofhp_addr : 0, B_FALSE)) != 0) {
12124 		dtrace_dof_destroy(dof);
12125 		return (rv);
12126 	}
12127 
12128 	/*
12129 	 * Now we need to walk through the ECB descriptions in the enabling.
12130 	 */
12131 	for (i = 0; i < enab->dten_ndesc; i++) {
12132 		dtrace_ecbdesc_t *ep = enab->dten_desc[i];
12133 		dtrace_probedesc_t *desc = &ep->dted_probe;
12134 
12135 		if (strcmp(desc->dtpd_provider, "dtrace") != 0)
12136 			continue;
12137 
12138 		if (strcmp(desc->dtpd_mod, "helper") != 0)
12139 			continue;
12140 
12141 		if (strcmp(desc->dtpd_func, "ustack") != 0)
12142 			continue;
12143 
12144 		if ((rv = dtrace_helper_action_add(DTRACE_HELPER_ACTION_USTACK,
12145 		    ep)) != 0) {
12146 			/*
12147 			 * Adding this helper action failed -- we are now going
12148 			 * to rip out the entire generation and return failure.
12149 			 */
12150 			(void) dtrace_helper_destroygen(help->dthps_generation);
12151 			dtrace_enabling_destroy(enab);
12152 			dtrace_dof_destroy(dof);
12153 			dtrace_error = rv;
12154 			return (-1);
12155 		}
12156 
12157 		nhelpers++;
12158 	}
12159 
12160 	if (nhelpers < enab->dten_ndesc)
12161 		dtrace_dof_error(dof, "unmatched helpers");
12162 
12163 	if (dhp != NULL) {
12164 		uintptr_t daddr = (uintptr_t)dof;
12165 		int err = 0;
12166 
12167 		/*
12168 		 * Look for helper probes.
12169 		 */
12170 		for (i = 0; i < dof->dofh_secnum; i++) {
12171 			dof_sec_t *sec = (dof_sec_t *)(daddr +
12172 			    dof->dofh_secoff + i * dof->dofh_secsize);
12173 
12174 			if (sec->dofs_type != DOF_SECT_PROVIDER)
12175 				continue;
12176 
12177 			if (dtrace_helper_provider_validate(dof, sec) != 0) {
12178 				err = 1;
12179 				break;
12180 			}
12181 		}
12182 
12183 		dhp->dofhp_dof = (uint64_t)dof;
12184 		if (err == 0 && dtrace_helper_provider_add(dhp) == 0)
12185 			destroy = 0;
12186 		else
12187 			dhp = NULL;
12188 	}
12189 
12190 	gen = help->dthps_generation++;
12191 	dtrace_enabling_destroy(enab);
12192 
12193 	if (dhp != NULL) {
12194 		mutex_exit(&dtrace_lock);
12195 		dtrace_helper_provider_register(curproc, help, dhp);
12196 		mutex_enter(&dtrace_lock);
12197 	}
12198 
12199 	if (destroy)
12200 		dtrace_dof_destroy(dof);
12201 
12202 	return (gen);
12203 }
12204 
12205 static dtrace_helpers_t *
12206 dtrace_helpers_create(proc_t *p)
12207 {
12208 	dtrace_helpers_t *help;
12209 
12210 	ASSERT(MUTEX_HELD(&dtrace_lock));
12211 	ASSERT(p->p_dtrace_helpers == NULL);
12212 
12213 	help = kmem_zalloc(sizeof (dtrace_helpers_t), KM_SLEEP);
12214 	help->dthps_actions = kmem_zalloc(sizeof (dtrace_helper_action_t *) *
12215 	    DTRACE_NHELPER_ACTIONS, KM_SLEEP);
12216 
12217 	p->p_dtrace_helpers = help;
12218 	dtrace_opens++;
12219 
12220 	return (help);
12221 }
12222 
12223 static void
12224 dtrace_helpers_destroy(void)
12225 {
12226 	dtrace_helpers_t *help;
12227 	dtrace_vstate_t *vstate;
12228 	proc_t *p = curproc;
12229 	int i;
12230 
12231 	mutex_enter(&dtrace_lock);
12232 
12233 	ASSERT(p->p_dtrace_helpers != NULL);
12234 	ASSERT(dtrace_opens > 0);
12235 
12236 	help = p->p_dtrace_helpers;
12237 	vstate = &help->dthps_vstate;
12238 
12239 	/*
12240 	 * We're now going to lose the help from this process.
12241 	 */
12242 	p->p_dtrace_helpers = NULL;
12243 	dtrace_sync();
12244 
12245 	/*
12246 	 * Destory the helper actions.
12247 	 */
12248 	for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
12249 		dtrace_helper_action_t *h, *next;
12250 
12251 		for (h = help->dthps_actions[i]; h != NULL; h = next) {
12252 			next = h->dthp_next;
12253 			dtrace_helper_destroy(h, vstate);
12254 			h = next;
12255 		}
12256 	}
12257 
12258 	mutex_exit(&dtrace_lock);
12259 
12260 	/*
12261 	 * Destroy the helper providers.
12262 	 */
12263 	if (help->dthps_nprovs > 0) {
12264 		mutex_enter(&dtrace_meta_lock);
12265 		if (dtrace_meta_pid != NULL) {
12266 			ASSERT(dtrace_deferred_pid == NULL);
12267 
12268 			for (i = 0; i < help->dthps_nprovs; i++) {
12269 				dtrace_helper_remove(
12270 				    &help->dthps_provs[i]->dthp_prov, p->p_pid);
12271 			}
12272 		} else {
12273 			mutex_enter(&dtrace_lock);
12274 			ASSERT(dtrace_deferred_pid != NULL);
12275 
12276 			/*
12277 			 * Remove the helper from the deferred list.
12278 			 */
12279 			if (help->dthps_next != NULL)
12280 				help->dthps_next->dthps_prev = help->dthps_prev;
12281 			if (help->dthps_prev != NULL)
12282 				help->dthps_prev->dthps_next = help->dthps_next;
12283 			if (dtrace_deferred_pid == help) {
12284 				dtrace_deferred_pid = help->dthps_next;
12285 				ASSERT(help->dthps_prev == NULL);
12286 			}
12287 
12288 			mutex_exit(&dtrace_lock);
12289 		}
12290 
12291 		mutex_exit(&dtrace_meta_lock);
12292 
12293 		for (i = 0; i < help->dthps_nprovs; i++) {
12294 			dtrace_helper_provider_remove(help->dthps_provs[i]);
12295 		}
12296 
12297 		kmem_free(help->dthps_provs, help->dthps_nprovs *
12298 		    sizeof (dtrace_helper_provider_t *));
12299 	}
12300 
12301 	mutex_enter(&dtrace_lock);
12302 
12303 	dtrace_vstate_fini(&help->dthps_vstate);
12304 	kmem_free(help->dthps_actions,
12305 	    sizeof (dtrace_helper_action_t *) * DTRACE_NHELPER_ACTIONS);
12306 	kmem_free(help, sizeof (dtrace_helpers_t));
12307 
12308 	if (--dtrace_opens == 0)
12309 		(void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
12310 
12311 	mutex_exit(&dtrace_lock);
12312 }
12313 
12314 static void
12315 dtrace_helpers_duplicate(proc_t *from, proc_t *to)
12316 {
12317 	dtrace_helpers_t *help, *newhelp;
12318 	dtrace_helper_action_t *helper, *new, *last;
12319 	dtrace_difo_t *dp;
12320 	dtrace_vstate_t *vstate;
12321 	int i, j, sz, hasprovs = 0;
12322 
12323 	mutex_enter(&dtrace_lock);
12324 	ASSERT(from->p_dtrace_helpers != NULL);
12325 	ASSERT(dtrace_opens > 0);
12326 
12327 	help = from->p_dtrace_helpers;
12328 	newhelp = dtrace_helpers_create(to);
12329 	ASSERT(to->p_dtrace_helpers != NULL);
12330 
12331 	newhelp->dthps_generation = help->dthps_generation;
12332 	vstate = &newhelp->dthps_vstate;
12333 
12334 	/*
12335 	 * Duplicate the helper actions.
12336 	 */
12337 	for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
12338 		if ((helper = help->dthps_actions[i]) == NULL)
12339 			continue;
12340 
12341 		for (last = NULL; helper != NULL; helper = helper->dthp_next) {
12342 			new = kmem_zalloc(sizeof (dtrace_helper_action_t),
12343 			    KM_SLEEP);
12344 			new->dthp_generation = helper->dthp_generation;
12345 
12346 			if ((dp = helper->dthp_predicate) != NULL) {
12347 				dp = dtrace_difo_duplicate(dp, vstate);
12348 				new->dthp_predicate = dp;
12349 			}
12350 
12351 			new->dthp_nactions = helper->dthp_nactions;
12352 			sz = sizeof (dtrace_difo_t *) * new->dthp_nactions;
12353 			new->dthp_actions = kmem_alloc(sz, KM_SLEEP);
12354 
12355 			for (j = 0; j < new->dthp_nactions; j++) {
12356 				dtrace_difo_t *dp = helper->dthp_actions[j];
12357 
12358 				ASSERT(dp != NULL);
12359 				dp = dtrace_difo_duplicate(dp, vstate);
12360 				new->dthp_actions[j] = dp;
12361 			}
12362 
12363 			if (last != NULL) {
12364 				last->dthp_next = new;
12365 			} else {
12366 				newhelp->dthps_actions[i] = new;
12367 			}
12368 
12369 			last = new;
12370 		}
12371 	}
12372 
12373 	/*
12374 	 * Duplicate the helper providers and register them with the
12375 	 * DTrace framework.
12376 	 */
12377 	if (help->dthps_nprovs > 0) {
12378 		newhelp->dthps_nprovs = help->dthps_nprovs;
12379 		newhelp->dthps_provs = kmem_alloc(newhelp->dthps_nprovs *
12380 		    sizeof (dtrace_helper_provider_t *), KM_SLEEP);
12381 		for (i = 0; i < newhelp->dthps_nprovs; i++) {
12382 			newhelp->dthps_provs[i] = help->dthps_provs[i];
12383 			newhelp->dthps_provs[i]->dthp_ref++;
12384 		}
12385 
12386 		hasprovs = 1;
12387 	}
12388 
12389 	mutex_exit(&dtrace_lock);
12390 
12391 	if (hasprovs)
12392 		dtrace_helper_provider_register(to, newhelp, NULL);
12393 }
12394 
12395 /*
12396  * DTrace Hook Functions
12397  */
12398 static void
12399 dtrace_module_loaded(struct modctl *ctl)
12400 {
12401 	dtrace_provider_t *prv;
12402 
12403 	mutex_enter(&dtrace_provider_lock);
12404 	mutex_enter(&mod_lock);
12405 
12406 	ASSERT(ctl->mod_busy);
12407 
12408 	/*
12409 	 * We're going to call each providers per-module provide operation
12410 	 * specifying only this module.
12411 	 */
12412 	for (prv = dtrace_provider; prv != NULL; prv = prv->dtpv_next)
12413 		prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl);
12414 
12415 	mutex_exit(&mod_lock);
12416 	mutex_exit(&dtrace_provider_lock);
12417 
12418 	/*
12419 	 * If we have any retained enablings, we need to match against them.
12420 	 * Enabling probes requires that cpu_lock be held, and we cannot hold
12421 	 * cpu_lock here -- it is legal for cpu_lock to be held when loading a
12422 	 * module.  (In particular, this happens when loading scheduling
12423 	 * classes.)  So if we have any retained enablings, we need to dispatch
12424 	 * our task queue to do the match for us.
12425 	 */
12426 	mutex_enter(&dtrace_lock);
12427 
12428 	if (dtrace_retained == NULL) {
12429 		mutex_exit(&dtrace_lock);
12430 		return;
12431 	}
12432 
12433 	(void) taskq_dispatch(dtrace_taskq,
12434 	    (task_func_t *)dtrace_enabling_matchall, NULL, TQ_SLEEP);
12435 
12436 	mutex_exit(&dtrace_lock);
12437 
12438 	/*
12439 	 * And now, for a little heuristic sleaze:  in general, we want to
12440 	 * match modules as soon as they load.  However, we cannot guarantee
12441 	 * this, because it would lead us to the lock ordering violation
12442 	 * outlined above.  The common case, of course, is that cpu_lock is
12443 	 * _not_ held -- so we delay here for a clock tick, hoping that that's
12444 	 * long enough for the task queue to do its work.  If it's not, it's
12445 	 * not a serious problem -- it just means that the module that we
12446 	 * just loaded may not be immediately instrumentable.
12447 	 */
12448 	delay(1);
12449 }
12450 
12451 static void
12452 dtrace_module_unloaded(struct modctl *ctl)
12453 {
12454 	dtrace_probe_t template, *probe, *first, *next;
12455 	dtrace_provider_t *prov;
12456 
12457 	template.dtpr_mod = ctl->mod_modname;
12458 
12459 	mutex_enter(&dtrace_provider_lock);
12460 	mutex_enter(&mod_lock);
12461 	mutex_enter(&dtrace_lock);
12462 
12463 	if (dtrace_bymod == NULL) {
12464 		/*
12465 		 * The DTrace module is loaded (obviously) but not attached;
12466 		 * we don't have any work to do.
12467 		 */
12468 		mutex_exit(&dtrace_provider_lock);
12469 		mutex_exit(&mod_lock);
12470 		mutex_exit(&dtrace_lock);
12471 		return;
12472 	}
12473 
12474 	for (probe = first = dtrace_hash_lookup(dtrace_bymod, &template);
12475 	    probe != NULL; probe = probe->dtpr_nextmod) {
12476 		if (probe->dtpr_ecb != NULL) {
12477 			mutex_exit(&dtrace_provider_lock);
12478 			mutex_exit(&mod_lock);
12479 			mutex_exit(&dtrace_lock);
12480 
12481 			/*
12482 			 * This shouldn't _actually_ be possible -- we're
12483 			 * unloading a module that has an enabled probe in it.
12484 			 * (It's normally up to the provider to make sure that
12485 			 * this can't happen.)  However, because dtps_enable()
12486 			 * doesn't have a failure mode, there can be an
12487 			 * enable/unload race.  Upshot:  we don't want to
12488 			 * assert, but we're not going to disable the
12489 			 * probe, either.
12490 			 */
12491 			if (dtrace_err_verbose) {
12492 				cmn_err(CE_WARN, "unloaded module '%s' had "
12493 				    "enabled probes", ctl->mod_modname);
12494 			}
12495 
12496 			return;
12497 		}
12498 	}
12499 
12500 	probe = first;
12501 
12502 	for (first = NULL; probe != NULL; probe = next) {
12503 		ASSERT(dtrace_probes[probe->dtpr_id - 1] == probe);
12504 
12505 		dtrace_probes[probe->dtpr_id - 1] = NULL;
12506 
12507 		next = probe->dtpr_nextmod;
12508 		dtrace_hash_remove(dtrace_bymod, probe);
12509 		dtrace_hash_remove(dtrace_byfunc, probe);
12510 		dtrace_hash_remove(dtrace_byname, probe);
12511 
12512 		if (first == NULL) {
12513 			first = probe;
12514 			probe->dtpr_nextmod = NULL;
12515 		} else {
12516 			probe->dtpr_nextmod = first;
12517 			first = probe;
12518 		}
12519 	}
12520 
12521 	/*
12522 	 * We've removed all of the module's probes from the hash chains and
12523 	 * from the probe array.  Now issue a dtrace_sync() to be sure that
12524 	 * everyone has cleared out from any probe array processing.
12525 	 */
12526 	dtrace_sync();
12527 
12528 	for (probe = first; probe != NULL; probe = first) {
12529 		first = probe->dtpr_nextmod;
12530 		prov = probe->dtpr_provider;
12531 		prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, probe->dtpr_id,
12532 		    probe->dtpr_arg);
12533 		kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
12534 		kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
12535 		kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
12536 		vmem_free(dtrace_arena, (void *)(uintptr_t)probe->dtpr_id, 1);
12537 		kmem_free(probe, sizeof (dtrace_probe_t));
12538 	}
12539 
12540 	mutex_exit(&dtrace_lock);
12541 	mutex_exit(&mod_lock);
12542 	mutex_exit(&dtrace_provider_lock);
12543 }
12544 
12545 void
12546 dtrace_suspend(void)
12547 {
12548 	dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_suspend));
12549 }
12550 
12551 void
12552 dtrace_resume(void)
12553 {
12554 	dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_resume));
12555 }
12556 
12557 static int
12558 dtrace_cpu_setup(cpu_setup_t what, processorid_t cpu)
12559 {
12560 	ASSERT(MUTEX_HELD(&cpu_lock));
12561 	mutex_enter(&dtrace_lock);
12562 
12563 	switch (what) {
12564 	case CPU_CONFIG: {
12565 		dtrace_state_t *state;
12566 		dtrace_optval_t *opt, rs, c;
12567 
12568 		/*
12569 		 * For now, we only allocate a new buffer for anonymous state.
12570 		 */
12571 		if ((state = dtrace_anon.dta_state) == NULL)
12572 			break;
12573 
12574 		if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE)
12575 			break;
12576 
12577 		opt = state->dts_options;
12578 		c = opt[DTRACEOPT_CPU];
12579 
12580 		if (c != DTRACE_CPUALL && c != DTRACEOPT_UNSET && c != cpu)
12581 			break;
12582 
12583 		/*
12584 		 * Regardless of what the actual policy is, we're going to
12585 		 * temporarily set our resize policy to be manual.  We're
12586 		 * also going to temporarily set our CPU option to denote
12587 		 * the newly configured CPU.
12588 		 */
12589 		rs = opt[DTRACEOPT_BUFRESIZE];
12590 		opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_MANUAL;
12591 		opt[DTRACEOPT_CPU] = (dtrace_optval_t)cpu;
12592 
12593 		(void) dtrace_state_buffers(state);
12594 
12595 		opt[DTRACEOPT_BUFRESIZE] = rs;
12596 		opt[DTRACEOPT_CPU] = c;
12597 
12598 		break;
12599 	}
12600 
12601 	case CPU_UNCONFIG:
12602 		/*
12603 		 * We don't free the buffer in the CPU_UNCONFIG case.  (The
12604 		 * buffer will be freed when the consumer exits.)
12605 		 */
12606 		break;
12607 
12608 	default:
12609 		break;
12610 	}
12611 
12612 	mutex_exit(&dtrace_lock);
12613 	return (0);
12614 }
12615 
12616 static void
12617 dtrace_cpu_setup_initial(processorid_t cpu)
12618 {
12619 	(void) dtrace_cpu_setup(CPU_CONFIG, cpu);
12620 }
12621 
12622 static void
12623 dtrace_toxrange_add(uintptr_t base, uintptr_t limit)
12624 {
12625 	if (dtrace_toxranges >= dtrace_toxranges_max) {
12626 		int osize, nsize;
12627 		dtrace_toxrange_t *range;
12628 
12629 		osize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t);
12630 
12631 		if (osize == 0) {
12632 			ASSERT(dtrace_toxrange == NULL);
12633 			ASSERT(dtrace_toxranges_max == 0);
12634 			dtrace_toxranges_max = 1;
12635 		} else {
12636 			dtrace_toxranges_max <<= 1;
12637 		}
12638 
12639 		nsize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t);
12640 		range = kmem_zalloc(nsize, KM_SLEEP);
12641 
12642 		if (dtrace_toxrange != NULL) {
12643 			ASSERT(osize != 0);
12644 			bcopy(dtrace_toxrange, range, osize);
12645 			kmem_free(dtrace_toxrange, osize);
12646 		}
12647 
12648 		dtrace_toxrange = range;
12649 	}
12650 
12651 	ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_base == NULL);
12652 	ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_limit == NULL);
12653 
12654 	dtrace_toxrange[dtrace_toxranges].dtt_base = base;
12655 	dtrace_toxrange[dtrace_toxranges].dtt_limit = limit;
12656 	dtrace_toxranges++;
12657 }
12658 
12659 /*
12660  * DTrace Driver Cookbook Functions
12661  */
12662 /*ARGSUSED*/
12663 static int
12664 dtrace_attach(dev_info_t *devi, ddi_attach_cmd_t cmd)
12665 {
12666 	dtrace_provider_id_t id;
12667 	dtrace_state_t *state = NULL;
12668 	dtrace_enabling_t *enab;
12669 
12670 	mutex_enter(&cpu_lock);
12671 	mutex_enter(&dtrace_provider_lock);
12672 	mutex_enter(&dtrace_lock);
12673 
12674 	if (ddi_soft_state_init(&dtrace_softstate, sizeof (dtrace_state_t) +
12675 	    NCPU * sizeof (dtrace_buffer_t), 0) != 0) {
12676 		cmn_err(CE_NOTE, "/dev/dtrace failed to initialize soft state");
12677 		mutex_exit(&cpu_lock);
12678 		mutex_exit(&dtrace_provider_lock);
12679 		mutex_exit(&dtrace_lock);
12680 		return (DDI_FAILURE);
12681 	}
12682 
12683 	if (ddi_create_minor_node(devi, DTRACEMNR_DTRACE, S_IFCHR,
12684 	    DTRACEMNRN_DTRACE, DDI_PSEUDO, NULL) == DDI_FAILURE ||
12685 	    ddi_create_minor_node(devi, DTRACEMNR_HELPER, S_IFCHR,
12686 	    DTRACEMNRN_HELPER, DDI_PSEUDO, NULL) == DDI_FAILURE) {
12687 		cmn_err(CE_NOTE, "/dev/dtrace couldn't create minor nodes");
12688 		ddi_remove_minor_node(devi, NULL);
12689 		ddi_soft_state_fini(&dtrace_softstate);
12690 		mutex_exit(&cpu_lock);
12691 		mutex_exit(&dtrace_provider_lock);
12692 		mutex_exit(&dtrace_lock);
12693 		return (DDI_FAILURE);
12694 	}
12695 
12696 	ddi_report_dev(devi);
12697 	dtrace_devi = devi;
12698 
12699 	dtrace_modload = dtrace_module_loaded;
12700 	dtrace_modunload = dtrace_module_unloaded;
12701 	dtrace_cpu_init = dtrace_cpu_setup_initial;
12702 	dtrace_helpers_cleanup = dtrace_helpers_destroy;
12703 	dtrace_helpers_fork = dtrace_helpers_duplicate;
12704 	dtrace_cpustart_init = dtrace_suspend;
12705 	dtrace_cpustart_fini = dtrace_resume;
12706 	dtrace_debugger_init = dtrace_suspend;
12707 	dtrace_debugger_fini = dtrace_resume;
12708 	dtrace_kreloc_init = dtrace_suspend;
12709 	dtrace_kreloc_fini = dtrace_resume;
12710 
12711 	register_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL);
12712 
12713 	ASSERT(MUTEX_HELD(&cpu_lock));
12714 
12715 	dtrace_arena = vmem_create("dtrace", (void *)1, UINT32_MAX, 1,
12716 	    NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER);
12717 	dtrace_minor = vmem_create("dtrace_minor", (void *)DTRACEMNRN_CLONE,
12718 	    UINT32_MAX - DTRACEMNRN_CLONE, 1, NULL, NULL, NULL, 0,
12719 	    VM_SLEEP | VMC_IDENTIFIER);
12720 	dtrace_taskq = taskq_create("dtrace_taskq", 1, maxclsyspri,
12721 	    1, INT_MAX, 0);
12722 
12723 	dtrace_state_cache = kmem_cache_create("dtrace_state_cache",
12724 	    sizeof (dtrace_dstate_percpu_t) * NCPU, DTRACE_STATE_ALIGN,
12725 	    NULL, NULL, NULL, NULL, NULL, 0);
12726 
12727 	ASSERT(MUTEX_HELD(&cpu_lock));
12728 	dtrace_bymod = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_mod),
12729 	    offsetof(dtrace_probe_t, dtpr_nextmod),
12730 	    offsetof(dtrace_probe_t, dtpr_prevmod));
12731 
12732 	dtrace_byfunc = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_func),
12733 	    offsetof(dtrace_probe_t, dtpr_nextfunc),
12734 	    offsetof(dtrace_probe_t, dtpr_prevfunc));
12735 
12736 	dtrace_byname = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_name),
12737 	    offsetof(dtrace_probe_t, dtpr_nextname),
12738 	    offsetof(dtrace_probe_t, dtpr_prevname));
12739 
12740 	if (dtrace_retain_max < 1) {
12741 		cmn_err(CE_WARN, "illegal value (%lu) for dtrace_retain_max; "
12742 		    "setting to 1", dtrace_retain_max);
12743 		dtrace_retain_max = 1;
12744 	}
12745 
12746 	/*
12747 	 * Now discover our toxic ranges.
12748 	 */
12749 	dtrace_toxic_ranges(dtrace_toxrange_add);
12750 
12751 	/*
12752 	 * Before we register ourselves as a provider to our own framework,
12753 	 * we would like to assert that dtrace_provider is NULL -- but that's
12754 	 * not true if we were loaded as a dependency of a DTrace provider.
12755 	 * Once we've registered, we can assert that dtrace_provider is our
12756 	 * pseudo provider.
12757 	 */
12758 	(void) dtrace_register("dtrace", &dtrace_provider_attr,
12759 	    DTRACE_PRIV_NONE, 0, &dtrace_provider_ops, NULL, &id);
12760 
12761 	ASSERT(dtrace_provider != NULL);
12762 	ASSERT((dtrace_provider_id_t)dtrace_provider == id);
12763 
12764 	dtrace_probeid_begin = dtrace_probe_create((dtrace_provider_id_t)
12765 	    dtrace_provider, NULL, NULL, "BEGIN", 0, NULL);
12766 	dtrace_probeid_end = dtrace_probe_create((dtrace_provider_id_t)
12767 	    dtrace_provider, NULL, NULL, "END", 0, NULL);
12768 	dtrace_probeid_error = dtrace_probe_create((dtrace_provider_id_t)
12769 	    dtrace_provider, NULL, NULL, "ERROR", 1, NULL);
12770 
12771 	dtrace_anon_property();
12772 	mutex_exit(&cpu_lock);
12773 
12774 	/*
12775 	 * If DTrace helper tracing is enabled, we need to allocate the
12776 	 * trace buffer and initialize the values.
12777 	 */
12778 	if (dtrace_helptrace_enabled) {
12779 		ASSERT(dtrace_helptrace_buffer == NULL);
12780 		dtrace_helptrace_buffer =
12781 		    kmem_zalloc(dtrace_helptrace_bufsize, KM_SLEEP);
12782 		dtrace_helptrace_next = 0;
12783 	}
12784 
12785 	/*
12786 	 * If there are already providers, we must ask them to provide their
12787 	 * probes, and then match any anonymous enabling against them.  Note
12788 	 * that there should be no other retained enablings at this time:
12789 	 * the only retained enablings at this time should be the anonymous
12790 	 * enabling.
12791 	 */
12792 	if (dtrace_anon.dta_enabling != NULL) {
12793 		ASSERT(dtrace_retained == dtrace_anon.dta_enabling);
12794 
12795 		dtrace_enabling_provide(NULL);
12796 		state = dtrace_anon.dta_state;
12797 
12798 		/*
12799 		 * We couldn't hold cpu_lock across the above call to
12800 		 * dtrace_enabling_provide(), but we must hold it to actually
12801 		 * enable the probes.  We have to drop all of our locks, pick
12802 		 * up cpu_lock, and regain our locks before matching the
12803 		 * retained anonymous enabling.
12804 		 */
12805 		mutex_exit(&dtrace_lock);
12806 		mutex_exit(&dtrace_provider_lock);
12807 
12808 		mutex_enter(&cpu_lock);
12809 		mutex_enter(&dtrace_provider_lock);
12810 		mutex_enter(&dtrace_lock);
12811 
12812 		if ((enab = dtrace_anon.dta_enabling) != NULL)
12813 			(void) dtrace_enabling_match(enab, NULL);
12814 
12815 		mutex_exit(&cpu_lock);
12816 	}
12817 
12818 	mutex_exit(&dtrace_lock);
12819 	mutex_exit(&dtrace_provider_lock);
12820 
12821 	if (state != NULL) {
12822 		/*
12823 		 * If we created any anonymous state, set it going now.
12824 		 */
12825 		(void) dtrace_state_go(state, &dtrace_anon.dta_beganon);
12826 	}
12827 
12828 	return (DDI_SUCCESS);
12829 }
12830 
12831 /*ARGSUSED*/
12832 static int
12833 dtrace_open(dev_t *devp, int flag, int otyp, cred_t *cred_p)
12834 {
12835 	dtrace_state_t *state;
12836 	uint32_t priv;
12837 	uid_t uid;
12838 
12839 	if (getminor(*devp) == DTRACEMNRN_HELPER)
12840 		return (0);
12841 
12842 	/*
12843 	 * If this wasn't an open with the "helper" minor, then it must be
12844 	 * the "dtrace" minor.
12845 	 */
12846 	ASSERT(getminor(*devp) == DTRACEMNRN_DTRACE);
12847 
12848 	/*
12849 	 * If no DTRACE_PRIV_* bits are set in the credential, then the
12850 	 * caller lacks sufficient permission to do anything with DTrace.
12851 	 */
12852 	dtrace_cred2priv(cred_p, &priv, &uid);
12853 	if (priv == DTRACE_PRIV_NONE)
12854 		return (EACCES);
12855 
12856 	/*
12857 	 * Ask all providers to provide all their probes.
12858 	 */
12859 	mutex_enter(&dtrace_provider_lock);
12860 	dtrace_probe_provide(NULL, NULL);
12861 	mutex_exit(&dtrace_provider_lock);
12862 
12863 	mutex_enter(&cpu_lock);
12864 	mutex_enter(&dtrace_lock);
12865 	dtrace_opens++;
12866 	dtrace_membar_producer();
12867 
12868 	/*
12869 	 * If the kernel debugger is active (that is, if the kernel debugger
12870 	 * modified text in some way), we won't allow the open.
12871 	 */
12872 	if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) {
12873 		dtrace_opens--;
12874 		mutex_exit(&cpu_lock);
12875 		mutex_exit(&dtrace_lock);
12876 		return (EBUSY);
12877 	}
12878 
12879 	state = dtrace_state_create(devp, cred_p);
12880 	mutex_exit(&cpu_lock);
12881 
12882 	if (state == NULL) {
12883 		if (--dtrace_opens == 0)
12884 			(void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
12885 		mutex_exit(&dtrace_lock);
12886 		return (EAGAIN);
12887 	}
12888 
12889 	mutex_exit(&dtrace_lock);
12890 
12891 	return (0);
12892 }
12893 
12894 /*ARGSUSED*/
12895 static int
12896 dtrace_close(dev_t dev, int flag, int otyp, cred_t *cred_p)
12897 {
12898 	minor_t minor = getminor(dev);
12899 	dtrace_state_t *state;
12900 
12901 	if (minor == DTRACEMNRN_HELPER)
12902 		return (0);
12903 
12904 	state = ddi_get_soft_state(dtrace_softstate, minor);
12905 
12906 	mutex_enter(&cpu_lock);
12907 	mutex_enter(&dtrace_lock);
12908 
12909 	if (state->dts_anon) {
12910 		/*
12911 		 * There is anonymous state. Destroy that first.
12912 		 */
12913 		ASSERT(dtrace_anon.dta_state == NULL);
12914 		dtrace_state_destroy(state->dts_anon);
12915 	}
12916 
12917 	dtrace_state_destroy(state);
12918 	ASSERT(dtrace_opens > 0);
12919 	if (--dtrace_opens == 0)
12920 		(void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
12921 
12922 	mutex_exit(&dtrace_lock);
12923 	mutex_exit(&cpu_lock);
12924 
12925 	return (0);
12926 }
12927 
12928 /*ARGSUSED*/
12929 static int
12930 dtrace_ioctl_helper(int cmd, intptr_t arg, int *rv)
12931 {
12932 	int rval;
12933 	dof_helper_t help, *dhp = NULL;
12934 
12935 	switch (cmd) {
12936 	case DTRACEHIOC_ADDDOF:
12937 		if (copyin((void *)arg, &help, sizeof (help)) != 0) {
12938 			dtrace_dof_error(NULL, "failed to copyin DOF helper");
12939 			return (EFAULT);
12940 		}
12941 
12942 		dhp = &help;
12943 		arg = (intptr_t)help.dofhp_dof;
12944 		/*FALLTHROUGH*/
12945 
12946 	case DTRACEHIOC_ADD: {
12947 		dof_hdr_t *dof = dtrace_dof_copyin(arg, &rval);
12948 
12949 		if (dof == NULL)
12950 			return (rval);
12951 
12952 		mutex_enter(&dtrace_lock);
12953 		dtrace_error = 0;
12954 
12955 		/*
12956 		 * dtrace_helper_slurp() takes responsibility for the dof --
12957 		 * it may free it now or it may save it and free it later.
12958 		 */
12959 		if ((rval = dtrace_helper_slurp(dof, dhp)) != -1) {
12960 			*rv = rval;
12961 			rval = 0;
12962 		} else {
12963 			rval = EINVAL;
12964 		}
12965 
12966 		mutex_exit(&dtrace_lock);
12967 		return (rval);
12968 	}
12969 
12970 	case DTRACEHIOC_REMOVE: {
12971 		mutex_enter(&dtrace_lock);
12972 		rval = dtrace_helper_destroygen(arg);
12973 		mutex_exit(&dtrace_lock);
12974 
12975 		return (rval);
12976 	}
12977 
12978 	default:
12979 		break;
12980 	}
12981 
12982 	return (ENOTTY);
12983 }
12984 
12985 /*ARGSUSED*/
12986 static int
12987 dtrace_ioctl(dev_t dev, int cmd, intptr_t arg, int md, cred_t *cr, int *rv)
12988 {
12989 	minor_t minor = getminor(dev);
12990 	dtrace_state_t *state;
12991 	int rval;
12992 
12993 	if (minor == DTRACEMNRN_HELPER)
12994 		return (dtrace_ioctl_helper(cmd, arg, rv));
12995 
12996 	state = ddi_get_soft_state(dtrace_softstate, minor);
12997 
12998 	if (state->dts_anon) {
12999 		ASSERT(dtrace_anon.dta_state == NULL);
13000 		state = state->dts_anon;
13001 	}
13002 
13003 	switch (cmd) {
13004 	case DTRACEIOC_PROVIDER: {
13005 		dtrace_providerdesc_t pvd;
13006 		dtrace_provider_t *pvp;
13007 
13008 		if (copyin((void *)arg, &pvd, sizeof (pvd)) != 0)
13009 			return (EFAULT);
13010 
13011 		pvd.dtvd_name[DTRACE_PROVNAMELEN - 1] = '\0';
13012 		mutex_enter(&dtrace_provider_lock);
13013 
13014 		for (pvp = dtrace_provider; pvp != NULL; pvp = pvp->dtpv_next) {
13015 			if (strcmp(pvp->dtpv_name, pvd.dtvd_name) == 0)
13016 				break;
13017 		}
13018 
13019 		mutex_exit(&dtrace_provider_lock);
13020 
13021 		if (pvp == NULL)
13022 			return (ESRCH);
13023 
13024 		bcopy(&pvp->dtpv_priv, &pvd.dtvd_priv, sizeof (dtrace_ppriv_t));
13025 		bcopy(&pvp->dtpv_attr, &pvd.dtvd_attr, sizeof (dtrace_pattr_t));
13026 		if (copyout(&pvd, (void *)arg, sizeof (pvd)) != 0)
13027 			return (EFAULT);
13028 
13029 		return (0);
13030 	}
13031 
13032 	case DTRACEIOC_EPROBE: {
13033 		dtrace_eprobedesc_t epdesc;
13034 		dtrace_ecb_t *ecb;
13035 		dtrace_action_t *act;
13036 		void *buf;
13037 		size_t size;
13038 		uintptr_t dest;
13039 		int nrecs;
13040 
13041 		if (copyin((void *)arg, &epdesc, sizeof (epdesc)) != 0)
13042 			return (EFAULT);
13043 
13044 		mutex_enter(&dtrace_lock);
13045 
13046 		if ((ecb = dtrace_epid2ecb(state, epdesc.dtepd_epid)) == NULL) {
13047 			mutex_exit(&dtrace_lock);
13048 			return (EINVAL);
13049 		}
13050 
13051 		if (ecb->dte_probe == NULL) {
13052 			mutex_exit(&dtrace_lock);
13053 			return (EINVAL);
13054 		}
13055 
13056 		epdesc.dtepd_probeid = ecb->dte_probe->dtpr_id;
13057 		epdesc.dtepd_uarg = ecb->dte_uarg;
13058 		epdesc.dtepd_size = ecb->dte_size;
13059 
13060 		nrecs = epdesc.dtepd_nrecs;
13061 		epdesc.dtepd_nrecs = 0;
13062 		for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
13063 			if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple)
13064 				continue;
13065 
13066 			epdesc.dtepd_nrecs++;
13067 		}
13068 
13069 		/*
13070 		 * Now that we have the size, we need to allocate a temporary
13071 		 * buffer in which to store the complete description.  We need
13072 		 * the temporary buffer to be able to drop dtrace_lock()
13073 		 * across the copyout(), below.
13074 		 */
13075 		size = sizeof (dtrace_eprobedesc_t) +
13076 		    (epdesc.dtepd_nrecs * sizeof (dtrace_recdesc_t));
13077 
13078 		buf = kmem_alloc(size, KM_SLEEP);
13079 		dest = (uintptr_t)buf;
13080 
13081 		bcopy(&epdesc, (void *)dest, sizeof (epdesc));
13082 		dest += offsetof(dtrace_eprobedesc_t, dtepd_rec[0]);
13083 
13084 		for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
13085 			if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple)
13086 				continue;
13087 
13088 			if (nrecs-- == 0)
13089 				break;
13090 
13091 			bcopy(&act->dta_rec, (void *)dest,
13092 			    sizeof (dtrace_recdesc_t));
13093 			dest += sizeof (dtrace_recdesc_t);
13094 		}
13095 
13096 		mutex_exit(&dtrace_lock);
13097 
13098 		if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) {
13099 			kmem_free(buf, size);
13100 			return (EFAULT);
13101 		}
13102 
13103 		kmem_free(buf, size);
13104 		return (0);
13105 	}
13106 
13107 	case DTRACEIOC_AGGDESC: {
13108 		dtrace_aggdesc_t aggdesc;
13109 		dtrace_action_t *act;
13110 		dtrace_aggregation_t *agg;
13111 		int nrecs;
13112 		uint32_t offs;
13113 		dtrace_recdesc_t *lrec;
13114 		void *buf;
13115 		size_t size;
13116 		uintptr_t dest;
13117 
13118 		if (copyin((void *)arg, &aggdesc, sizeof (aggdesc)) != 0)
13119 			return (EFAULT);
13120 
13121 		mutex_enter(&dtrace_lock);
13122 
13123 		if ((agg = dtrace_aggid2agg(state, aggdesc.dtagd_id)) == NULL) {
13124 			mutex_exit(&dtrace_lock);
13125 			return (EINVAL);
13126 		}
13127 
13128 		aggdesc.dtagd_epid = agg->dtag_ecb->dte_epid;
13129 
13130 		nrecs = aggdesc.dtagd_nrecs;
13131 		aggdesc.dtagd_nrecs = 0;
13132 
13133 		offs = agg->dtag_base;
13134 		lrec = &agg->dtag_action.dta_rec;
13135 		aggdesc.dtagd_size = lrec->dtrd_offset + lrec->dtrd_size - offs;
13136 
13137 		for (act = agg->dtag_first; ; act = act->dta_next) {
13138 			ASSERT(act->dta_intuple ||
13139 			    DTRACEACT_ISAGG(act->dta_kind));
13140 			aggdesc.dtagd_nrecs++;
13141 
13142 			if (act == &agg->dtag_action)
13143 				break;
13144 		}
13145 
13146 		/*
13147 		 * Now that we have the size, we need to allocate a temporary
13148 		 * buffer in which to store the complete description.  We need
13149 		 * the temporary buffer to be able to drop dtrace_lock()
13150 		 * across the copyout(), below.
13151 		 */
13152 		size = sizeof (dtrace_aggdesc_t) +
13153 		    (aggdesc.dtagd_nrecs * sizeof (dtrace_recdesc_t));
13154 
13155 		buf = kmem_alloc(size, KM_SLEEP);
13156 		dest = (uintptr_t)buf;
13157 
13158 		bcopy(&aggdesc, (void *)dest, sizeof (aggdesc));
13159 		dest += offsetof(dtrace_aggdesc_t, dtagd_rec[0]);
13160 
13161 		for (act = agg->dtag_first; ; act = act->dta_next) {
13162 			dtrace_recdesc_t rec = act->dta_rec;
13163 
13164 			if (nrecs-- == 0)
13165 				break;
13166 
13167 			rec.dtrd_offset -= offs;
13168 			bcopy(&rec, (void *)dest, sizeof (rec));
13169 			dest += sizeof (dtrace_recdesc_t);
13170 
13171 			if (act == &agg->dtag_action)
13172 				break;
13173 		}
13174 
13175 		mutex_exit(&dtrace_lock);
13176 
13177 		if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) {
13178 			kmem_free(buf, size);
13179 			return (EFAULT);
13180 		}
13181 
13182 		kmem_free(buf, size);
13183 		return (0);
13184 	}
13185 
13186 	case DTRACEIOC_ENABLE: {
13187 		dof_hdr_t *dof;
13188 		dtrace_enabling_t *enab = NULL;
13189 		dtrace_vstate_t *vstate;
13190 		int err = 0;
13191 
13192 		*rv = 0;
13193 
13194 		/*
13195 		 * If a NULL argument has been passed, we take this as our
13196 		 * cue to reevaluate our enablings.
13197 		 */
13198 		if (arg == NULL) {
13199 			mutex_enter(&cpu_lock);
13200 			mutex_enter(&dtrace_lock);
13201 			err = dtrace_enabling_matchstate(state, rv);
13202 			mutex_exit(&dtrace_lock);
13203 			mutex_exit(&cpu_lock);
13204 
13205 			return (err);
13206 		}
13207 
13208 		if ((dof = dtrace_dof_copyin(arg, &rval)) == NULL)
13209 			return (rval);
13210 
13211 		mutex_enter(&cpu_lock);
13212 		mutex_enter(&dtrace_lock);
13213 		vstate = &state->dts_vstate;
13214 
13215 		if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) {
13216 			mutex_exit(&dtrace_lock);
13217 			mutex_exit(&cpu_lock);
13218 			dtrace_dof_destroy(dof);
13219 			return (EBUSY);
13220 		}
13221 
13222 		if (dtrace_dof_slurp(dof, vstate, cr, &enab, 0, B_TRUE) != 0) {
13223 			mutex_exit(&dtrace_lock);
13224 			mutex_exit(&cpu_lock);
13225 			dtrace_dof_destroy(dof);
13226 			return (EINVAL);
13227 		}
13228 
13229 		if ((rval = dtrace_dof_options(dof, state)) != 0) {
13230 			dtrace_enabling_destroy(enab);
13231 			mutex_exit(&dtrace_lock);
13232 			mutex_exit(&cpu_lock);
13233 			dtrace_dof_destroy(dof);
13234 			return (rval);
13235 		}
13236 
13237 		if ((err = dtrace_enabling_match(enab, rv)) == 0) {
13238 			err = dtrace_enabling_retain(enab);
13239 		} else {
13240 			dtrace_enabling_destroy(enab);
13241 		}
13242 
13243 		mutex_exit(&cpu_lock);
13244 		mutex_exit(&dtrace_lock);
13245 		dtrace_dof_destroy(dof);
13246 
13247 		return (err);
13248 	}
13249 
13250 	case DTRACEIOC_REPLICATE: {
13251 		dtrace_repldesc_t desc;
13252 		dtrace_probedesc_t *match = &desc.dtrpd_match;
13253 		dtrace_probedesc_t *create = &desc.dtrpd_create;
13254 		int err;
13255 
13256 		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
13257 			return (EFAULT);
13258 
13259 		match->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
13260 		match->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
13261 		match->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
13262 		match->dtpd_name[DTRACE_NAMELEN - 1] = '\0';
13263 
13264 		create->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
13265 		create->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
13266 		create->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
13267 		create->dtpd_name[DTRACE_NAMELEN - 1] = '\0';
13268 
13269 		mutex_enter(&dtrace_lock);
13270 		err = dtrace_enabling_replicate(state, match, create);
13271 		mutex_exit(&dtrace_lock);
13272 
13273 		return (err);
13274 	}
13275 
13276 	case DTRACEIOC_PROBEMATCH:
13277 	case DTRACEIOC_PROBES: {
13278 		dtrace_probe_t *probe = NULL;
13279 		dtrace_probedesc_t desc;
13280 		dtrace_probekey_t pkey;
13281 		dtrace_id_t i;
13282 		int m = 0;
13283 		uint32_t priv;
13284 		uid_t uid;
13285 
13286 		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
13287 			return (EFAULT);
13288 
13289 		desc.dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
13290 		desc.dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
13291 		desc.dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
13292 		desc.dtpd_name[DTRACE_NAMELEN - 1] = '\0';
13293 
13294 		/*
13295 		 * Before we attempt to match this probe, we want to give
13296 		 * all providers the opportunity to provide it.
13297 		 */
13298 		if (desc.dtpd_id == DTRACE_IDNONE) {
13299 			mutex_enter(&dtrace_provider_lock);
13300 			dtrace_probe_provide(&desc, NULL);
13301 			mutex_exit(&dtrace_provider_lock);
13302 			desc.dtpd_id++;
13303 		}
13304 
13305 		if (cmd == DTRACEIOC_PROBEMATCH)  {
13306 			dtrace_probekey(&desc, &pkey);
13307 			pkey.dtpk_id = DTRACE_IDNONE;
13308 		}
13309 
13310 		uid = crgetuid(cr);
13311 		dtrace_cred2priv(cr, &priv, &uid);
13312 
13313 		mutex_enter(&dtrace_lock);
13314 
13315 		if (cmd == DTRACEIOC_PROBEMATCH) {
13316 			for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) {
13317 				if ((probe = dtrace_probes[i - 1]) != NULL &&
13318 				    (m = dtrace_match_probe(probe, &pkey,
13319 				    priv, uid)) != 0)
13320 					break;
13321 			}
13322 
13323 			if (m < 0) {
13324 				mutex_exit(&dtrace_lock);
13325 				return (EINVAL);
13326 			}
13327 
13328 		} else {
13329 			for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) {
13330 				if ((probe = dtrace_probes[i - 1]) != NULL &&
13331 				    dtrace_match_priv(probe, priv, uid))
13332 					break;
13333 			}
13334 		}
13335 
13336 		if (probe == NULL) {
13337 			mutex_exit(&dtrace_lock);
13338 			return (ESRCH);
13339 		}
13340 
13341 		dtrace_probe_description(probe, &desc);
13342 		mutex_exit(&dtrace_lock);
13343 
13344 		if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
13345 			return (EFAULT);
13346 
13347 		return (0);
13348 	}
13349 
13350 	case DTRACEIOC_PROBEARG: {
13351 		dtrace_argdesc_t desc;
13352 		dtrace_probe_t *probe;
13353 		dtrace_provider_t *prov;
13354 
13355 		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
13356 			return (EFAULT);
13357 
13358 		if (desc.dtargd_id == DTRACE_IDNONE)
13359 			return (EINVAL);
13360 
13361 		if (desc.dtargd_ndx == DTRACE_ARGNONE)
13362 			return (EINVAL);
13363 
13364 		mutex_enter(&dtrace_provider_lock);
13365 		mutex_enter(&mod_lock);
13366 		mutex_enter(&dtrace_lock);
13367 
13368 		if (desc.dtargd_id > dtrace_nprobes) {
13369 			mutex_exit(&dtrace_lock);
13370 			mutex_exit(&mod_lock);
13371 			mutex_exit(&dtrace_provider_lock);
13372 			return (EINVAL);
13373 		}
13374 
13375 		if ((probe = dtrace_probes[desc.dtargd_id - 1]) == NULL) {
13376 			mutex_exit(&dtrace_lock);
13377 			mutex_exit(&mod_lock);
13378 			mutex_exit(&dtrace_provider_lock);
13379 			return (EINVAL);
13380 		}
13381 
13382 		mutex_exit(&dtrace_lock);
13383 
13384 		prov = probe->dtpr_provider;
13385 
13386 		if (prov->dtpv_pops.dtps_getargdesc == NULL) {
13387 			/*
13388 			 * There isn't any typed information for this probe.
13389 			 * Set the argument number to DTRACE_ARGNONE.
13390 			 */
13391 			desc.dtargd_ndx = DTRACE_ARGNONE;
13392 		} else {
13393 			desc.dtargd_native[0] = '\0';
13394 			desc.dtargd_xlate[0] = '\0';
13395 			desc.dtargd_mapping = desc.dtargd_ndx;
13396 
13397 			prov->dtpv_pops.dtps_getargdesc(prov->dtpv_arg,
13398 			    probe->dtpr_id, probe->dtpr_arg, &desc);
13399 		}
13400 
13401 		mutex_exit(&mod_lock);
13402 		mutex_exit(&dtrace_provider_lock);
13403 
13404 		if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
13405 			return (EFAULT);
13406 
13407 		return (0);
13408 	}
13409 
13410 	case DTRACEIOC_GO: {
13411 		processorid_t cpuid;
13412 		rval = dtrace_state_go(state, &cpuid);
13413 
13414 		if (rval != 0)
13415 			return (rval);
13416 
13417 		if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0)
13418 			return (EFAULT);
13419 
13420 		return (0);
13421 	}
13422 
13423 	case DTRACEIOC_STOP: {
13424 		processorid_t cpuid;
13425 
13426 		mutex_enter(&dtrace_lock);
13427 		rval = dtrace_state_stop(state, &cpuid);
13428 		mutex_exit(&dtrace_lock);
13429 
13430 		if (rval != 0)
13431 			return (rval);
13432 
13433 		if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0)
13434 			return (EFAULT);
13435 
13436 		return (0);
13437 	}
13438 
13439 	case DTRACEIOC_DOFGET: {
13440 		dof_hdr_t hdr, *dof;
13441 		uint64_t len;
13442 
13443 		if (copyin((void *)arg, &hdr, sizeof (hdr)) != 0)
13444 			return (EFAULT);
13445 
13446 		mutex_enter(&dtrace_lock);
13447 		dof = dtrace_dof_create(state);
13448 		mutex_exit(&dtrace_lock);
13449 
13450 		len = MIN(hdr.dofh_loadsz, dof->dofh_loadsz);
13451 		rval = copyout(dof, (void *)arg, len);
13452 		dtrace_dof_destroy(dof);
13453 
13454 		return (rval == 0 ? 0 : EFAULT);
13455 	}
13456 
13457 	case DTRACEIOC_AGGSNAP:
13458 	case DTRACEIOC_BUFSNAP: {
13459 		dtrace_bufdesc_t desc;
13460 		caddr_t cached;
13461 		dtrace_buffer_t *buf;
13462 
13463 		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
13464 			return (EFAULT);
13465 
13466 		if (desc.dtbd_cpu < 0 || desc.dtbd_cpu >= NCPU)
13467 			return (EINVAL);
13468 
13469 		mutex_enter(&dtrace_lock);
13470 
13471 		if (cmd == DTRACEIOC_BUFSNAP) {
13472 			buf = &state->dts_buffer[desc.dtbd_cpu];
13473 		} else {
13474 			buf = &state->dts_aggbuffer[desc.dtbd_cpu];
13475 		}
13476 
13477 		if (buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL)) {
13478 			size_t sz = buf->dtb_offset;
13479 
13480 			if (state->dts_activity != DTRACE_ACTIVITY_STOPPED) {
13481 				mutex_exit(&dtrace_lock);
13482 				return (EBUSY);
13483 			}
13484 
13485 			/*
13486 			 * If this buffer has already been consumed, we're
13487 			 * going to indicate that there's nothing left here
13488 			 * to consume.
13489 			 */
13490 			if (buf->dtb_flags & DTRACEBUF_CONSUMED) {
13491 				mutex_exit(&dtrace_lock);
13492 
13493 				desc.dtbd_size = 0;
13494 				desc.dtbd_drops = 0;
13495 				desc.dtbd_errors = 0;
13496 				desc.dtbd_oldest = 0;
13497 				sz = sizeof (desc);
13498 
13499 				if (copyout(&desc, (void *)arg, sz) != 0)
13500 					return (EFAULT);
13501 
13502 				return (0);
13503 			}
13504 
13505 			/*
13506 			 * If this is a ring buffer that has wrapped, we want
13507 			 * to copy the whole thing out.
13508 			 */
13509 			if (buf->dtb_flags & DTRACEBUF_WRAPPED) {
13510 				dtrace_buffer_polish(buf);
13511 				sz = buf->dtb_size;
13512 			}
13513 
13514 			if (copyout(buf->dtb_tomax, desc.dtbd_data, sz) != 0) {
13515 				mutex_exit(&dtrace_lock);
13516 				return (EFAULT);
13517 			}
13518 
13519 			desc.dtbd_size = sz;
13520 			desc.dtbd_drops = buf->dtb_drops;
13521 			desc.dtbd_errors = buf->dtb_errors;
13522 			desc.dtbd_oldest = buf->dtb_xamot_offset;
13523 
13524 			mutex_exit(&dtrace_lock);
13525 
13526 			if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
13527 				return (EFAULT);
13528 
13529 			buf->dtb_flags |= DTRACEBUF_CONSUMED;
13530 
13531 			return (0);
13532 		}
13533 
13534 		if (buf->dtb_tomax == NULL) {
13535 			ASSERT(buf->dtb_xamot == NULL);
13536 			mutex_exit(&dtrace_lock);
13537 			return (ENOENT);
13538 		}
13539 
13540 		cached = buf->dtb_tomax;
13541 		ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
13542 
13543 		dtrace_xcall(desc.dtbd_cpu,
13544 		    (dtrace_xcall_t)dtrace_buffer_switch, buf);
13545 
13546 		state->dts_errors += buf->dtb_xamot_errors;
13547 
13548 		/*
13549 		 * If the buffers did not actually switch, then the cross call
13550 		 * did not take place -- presumably because the given CPU is
13551 		 * not in the ready set.  If this is the case, we'll return
13552 		 * ENOENT.
13553 		 */
13554 		if (buf->dtb_tomax == cached) {
13555 			ASSERT(buf->dtb_xamot != cached);
13556 			mutex_exit(&dtrace_lock);
13557 			return (ENOENT);
13558 		}
13559 
13560 		ASSERT(cached == buf->dtb_xamot);
13561 
13562 		/*
13563 		 * We have our snapshot; now copy it out.
13564 		 */
13565 		if (copyout(buf->dtb_xamot, desc.dtbd_data,
13566 		    buf->dtb_xamot_offset) != 0) {
13567 			mutex_exit(&dtrace_lock);
13568 			return (EFAULT);
13569 		}
13570 
13571 		desc.dtbd_size = buf->dtb_xamot_offset;
13572 		desc.dtbd_drops = buf->dtb_xamot_drops;
13573 		desc.dtbd_errors = buf->dtb_xamot_errors;
13574 		desc.dtbd_oldest = 0;
13575 
13576 		mutex_exit(&dtrace_lock);
13577 
13578 		/*
13579 		 * Finally, copy out the buffer description.
13580 		 */
13581 		if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
13582 			return (EFAULT);
13583 
13584 		return (0);
13585 	}
13586 
13587 	case DTRACEIOC_CONF: {
13588 		dtrace_conf_t conf;
13589 
13590 		bzero(&conf, sizeof (conf));
13591 		conf.dtc_difversion = DIF_VERSION;
13592 		conf.dtc_difintregs = DIF_DIR_NREGS;
13593 		conf.dtc_diftupregs = DIF_DTR_NREGS;
13594 		conf.dtc_ctfmodel = CTF_MODEL_NATIVE;
13595 
13596 		if (copyout(&conf, (void *)arg, sizeof (conf)) != 0)
13597 			return (EFAULT);
13598 
13599 		return (0);
13600 	}
13601 
13602 	case DTRACEIOC_STATUS: {
13603 		dtrace_status_t stat;
13604 		dtrace_dstate_t *dstate;
13605 		int i, j;
13606 		uint64_t nerrs;
13607 
13608 		/*
13609 		 * See the comment in dtrace_state_deadman() for the reason
13610 		 * for setting dts_laststatus to INT64_MAX before setting
13611 		 * it to the correct value.
13612 		 */
13613 		state->dts_laststatus = INT64_MAX;
13614 		dtrace_membar_producer();
13615 		state->dts_laststatus = dtrace_gethrtime();
13616 
13617 		bzero(&stat, sizeof (stat));
13618 
13619 		mutex_enter(&dtrace_lock);
13620 
13621 		if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE) {
13622 			mutex_exit(&dtrace_lock);
13623 			return (ENOENT);
13624 		}
13625 
13626 		if (state->dts_activity == DTRACE_ACTIVITY_DRAINING)
13627 			stat.dtst_exiting = 1;
13628 
13629 		nerrs = state->dts_errors;
13630 		dstate = &state->dts_vstate.dtvs_dynvars;
13631 
13632 		for (i = 0; i < NCPU; i++) {
13633 			dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[i];
13634 
13635 			stat.dtst_dyndrops += dcpu->dtdsc_drops;
13636 			stat.dtst_dyndrops_dirty += dcpu->dtdsc_dirty_drops;
13637 			stat.dtst_dyndrops_rinsing += dcpu->dtdsc_rinsing_drops;
13638 
13639 			if (state->dts_buffer[i].dtb_flags & DTRACEBUF_FULL)
13640 				stat.dtst_filled++;
13641 
13642 			nerrs += state->dts_buffer[i].dtb_errors;
13643 
13644 			for (j = 0; j < state->dts_nspeculations; j++) {
13645 				dtrace_speculation_t *spec;
13646 				dtrace_buffer_t *buf;
13647 
13648 				spec = &state->dts_speculations[j];
13649 				buf = &spec->dtsp_buffer[i];
13650 				stat.dtst_specdrops += buf->dtb_xamot_drops;
13651 			}
13652 		}
13653 
13654 		stat.dtst_specdrops_busy = state->dts_speculations_busy;
13655 		stat.dtst_specdrops_unavail = state->dts_speculations_unavail;
13656 		stat.dtst_killed =
13657 		    (state->dts_activity == DTRACE_ACTIVITY_KILLED);
13658 		stat.dtst_errors = nerrs;
13659 
13660 		mutex_exit(&dtrace_lock);
13661 
13662 		if (copyout(&stat, (void *)arg, sizeof (stat)) != 0)
13663 			return (EFAULT);
13664 
13665 		return (0);
13666 	}
13667 
13668 	case DTRACEIOC_FORMAT: {
13669 		dtrace_fmtdesc_t fmt;
13670 		char *str;
13671 		int len;
13672 
13673 		if (copyin((void *)arg, &fmt, sizeof (fmt)) != 0)
13674 			return (EFAULT);
13675 
13676 		mutex_enter(&dtrace_lock);
13677 
13678 		if (fmt.dtfd_format == 0 ||
13679 		    fmt.dtfd_format > state->dts_nformats) {
13680 			mutex_exit(&dtrace_lock);
13681 			return (EINVAL);
13682 		}
13683 
13684 		/*
13685 		 * Format strings are allocated contiguously and they are
13686 		 * never freed; if a format index is less than the number
13687 		 * of formats, we can assert that the format map is non-NULL
13688 		 * and that the format for the specified index is non-NULL.
13689 		 */
13690 		ASSERT(state->dts_formats != NULL);
13691 		str = state->dts_formats[fmt.dtfd_format - 1];
13692 		ASSERT(str != NULL);
13693 
13694 		len = strlen(str) + 1;
13695 
13696 		if (len > fmt.dtfd_length) {
13697 			fmt.dtfd_length = len;
13698 
13699 			if (copyout(&fmt, (void *)arg, sizeof (fmt)) != 0) {
13700 				mutex_exit(&dtrace_lock);
13701 				return (EINVAL);
13702 			}
13703 		} else {
13704 			if (copyout(str, fmt.dtfd_string, len) != 0) {
13705 				mutex_exit(&dtrace_lock);
13706 				return (EINVAL);
13707 			}
13708 		}
13709 
13710 		mutex_exit(&dtrace_lock);
13711 		return (0);
13712 	}
13713 
13714 	default:
13715 		break;
13716 	}
13717 
13718 	return (ENOTTY);
13719 }
13720 
13721 /*ARGSUSED*/
13722 static int
13723 dtrace_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
13724 {
13725 	dtrace_state_t *state;
13726 
13727 	switch (cmd) {
13728 	case DDI_DETACH:
13729 		break;
13730 
13731 	case DDI_SUSPEND:
13732 		return (DDI_SUCCESS);
13733 
13734 	default:
13735 		return (DDI_FAILURE);
13736 	}
13737 
13738 	mutex_enter(&cpu_lock);
13739 	mutex_enter(&dtrace_provider_lock);
13740 	mutex_enter(&dtrace_lock);
13741 
13742 	if (dtrace_opens > 0) {
13743 		/*
13744 		 * This is only possible because of DTrace helpers attached
13745 		 * to a process -- they count as a DTrace open.  If the locking
13746 		 * weren't such a mess, we could assert that p_dtrace_helpers
13747 		 * is non-NULL for some process.
13748 		 */
13749 		mutex_exit(&dtrace_provider_lock);
13750 		mutex_exit(&dtrace_lock);
13751 		mutex_exit(&cpu_lock);
13752 		return (DDI_FAILURE);
13753 	}
13754 
13755 	if (dtrace_unregister((dtrace_provider_id_t)dtrace_provider) != 0) {
13756 		mutex_exit(&dtrace_provider_lock);
13757 		mutex_exit(&dtrace_lock);
13758 		mutex_exit(&cpu_lock);
13759 		return (DDI_FAILURE);
13760 	}
13761 
13762 	dtrace_provider = NULL;
13763 
13764 	if ((state = dtrace_anon_grab()) != NULL) {
13765 		/*
13766 		 * If there were ECBs on this state, the provider should
13767 		 * have not been allowed to detach; assert that there is
13768 		 * none.
13769 		 */
13770 		ASSERT(state->dts_necbs == 0);
13771 		dtrace_state_destroy(state);
13772 
13773 		/*
13774 		 * If we're being detached with anonymous state, we need to
13775 		 * indicate to the kernel debugger that DTrace is now inactive.
13776 		 */
13777 		(void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
13778 	}
13779 
13780 	bzero(&dtrace_anon, sizeof (dtrace_anon_t));
13781 	unregister_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL);
13782 	dtrace_cpu_init = NULL;
13783 	dtrace_helpers_cleanup = NULL;
13784 	dtrace_helpers_fork = NULL;
13785 	dtrace_cpustart_init = NULL;
13786 	dtrace_cpustart_fini = NULL;
13787 	dtrace_debugger_init = NULL;
13788 	dtrace_debugger_fini = NULL;
13789 	dtrace_kreloc_init = NULL;
13790 	dtrace_kreloc_fini = NULL;
13791 	dtrace_modload = NULL;
13792 	dtrace_modunload = NULL;
13793 
13794 	mutex_exit(&cpu_lock);
13795 
13796 	if (dtrace_helptrace_enabled) {
13797 		kmem_free(dtrace_helptrace_buffer, dtrace_helptrace_bufsize);
13798 		dtrace_helptrace_buffer = NULL;
13799 	}
13800 
13801 	kmem_free(dtrace_probes, dtrace_nprobes * sizeof (dtrace_probe_t *));
13802 	dtrace_probes = NULL;
13803 	dtrace_nprobes = 0;
13804 
13805 	dtrace_hash_destroy(dtrace_bymod);
13806 	dtrace_hash_destroy(dtrace_byfunc);
13807 	dtrace_hash_destroy(dtrace_byname);
13808 	dtrace_bymod = NULL;
13809 	dtrace_byfunc = NULL;
13810 	dtrace_byname = NULL;
13811 
13812 	kmem_cache_destroy(dtrace_state_cache);
13813 	vmem_destroy(dtrace_minor);
13814 	vmem_destroy(dtrace_arena);
13815 
13816 	if (dtrace_toxrange != NULL) {
13817 		kmem_free(dtrace_toxrange,
13818 		    dtrace_toxranges_max * sizeof (dtrace_toxrange_t));
13819 		dtrace_toxrange = NULL;
13820 		dtrace_toxranges = 0;
13821 		dtrace_toxranges_max = 0;
13822 	}
13823 
13824 	ddi_remove_minor_node(dtrace_devi, NULL);
13825 	dtrace_devi = NULL;
13826 
13827 	ddi_soft_state_fini(&dtrace_softstate);
13828 
13829 	ASSERT(dtrace_vtime_references == 0);
13830 	ASSERT(dtrace_opens == 0);
13831 	ASSERT(dtrace_retained == NULL);
13832 
13833 	mutex_exit(&dtrace_lock);
13834 	mutex_exit(&dtrace_provider_lock);
13835 
13836 	/*
13837 	 * We don't destroy the task queue until after we have dropped our
13838 	 * locks (taskq_destroy() may block on running tasks).  To prevent
13839 	 * attempting to do work after we have effectively detached but before
13840 	 * the task queue has been destroyed, all tasks dispatched via the
13841 	 * task queue must check that DTrace is still attached before
13842 	 * performing any operation.
13843 	 */
13844 	taskq_destroy(dtrace_taskq);
13845 	dtrace_taskq = NULL;
13846 
13847 	return (DDI_SUCCESS);
13848 }
13849 
13850 /*ARGSUSED*/
13851 static int
13852 dtrace_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result)
13853 {
13854 	int error;
13855 
13856 	switch (infocmd) {
13857 	case DDI_INFO_DEVT2DEVINFO:
13858 		*result = (void *)dtrace_devi;
13859 		error = DDI_SUCCESS;
13860 		break;
13861 	case DDI_INFO_DEVT2INSTANCE:
13862 		*result = (void *)0;
13863 		error = DDI_SUCCESS;
13864 		break;
13865 	default:
13866 		error = DDI_FAILURE;
13867 	}
13868 	return (error);
13869 }
13870 
13871 static struct cb_ops dtrace_cb_ops = {
13872 	dtrace_open,		/* open */
13873 	dtrace_close,		/* close */
13874 	nulldev,		/* strategy */
13875 	nulldev,		/* print */
13876 	nodev,			/* dump */
13877 	nodev,			/* read */
13878 	nodev,			/* write */
13879 	dtrace_ioctl,		/* ioctl */
13880 	nodev,			/* devmap */
13881 	nodev,			/* mmap */
13882 	nodev,			/* segmap */
13883 	nochpoll,		/* poll */
13884 	ddi_prop_op,		/* cb_prop_op */
13885 	0,			/* streamtab  */
13886 	D_NEW | D_MP		/* Driver compatibility flag */
13887 };
13888 
13889 static struct dev_ops dtrace_ops = {
13890 	DEVO_REV,		/* devo_rev */
13891 	0,			/* refcnt */
13892 	dtrace_info,		/* get_dev_info */
13893 	nulldev,		/* identify */
13894 	nulldev,		/* probe */
13895 	dtrace_attach,		/* attach */
13896 	dtrace_detach,		/* detach */
13897 	nodev,			/* reset */
13898 	&dtrace_cb_ops,		/* driver operations */
13899 	NULL,			/* bus operations */
13900 	nodev			/* dev power */
13901 };
13902 
13903 static struct modldrv modldrv = {
13904 	&mod_driverops,		/* module type (this is a pseudo driver) */
13905 	"Dynamic Tracing",	/* name of module */
13906 	&dtrace_ops,		/* driver ops */
13907 };
13908 
13909 static struct modlinkage modlinkage = {
13910 	MODREV_1,
13911 	(void *)&modldrv,
13912 	NULL
13913 };
13914 
13915 int
13916 _init(void)
13917 {
13918 	return (mod_install(&modlinkage));
13919 }
13920 
13921 int
13922 _info(struct modinfo *modinfop)
13923 {
13924 	return (mod_info(&modlinkage, modinfop));
13925 }
13926 
13927 int
13928 _fini(void)
13929 {
13930 	return (mod_remove(&modlinkage));
13931 }
13932