1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 #include <sys/types.h> 29 #include <sys/param.h> 30 #include <sys/sysmacros.h> 31 #include <sys/signal.h> 32 #include <sys/stack.h> 33 #include <sys/pcb.h> 34 #include <sys/user.h> 35 #include <sys/systm.h> 36 #include <sys/sysinfo.h> 37 #include <sys/var.h> 38 #include <sys/errno.h> 39 #include <sys/cmn_err.h> 40 #include <sys/cred.h> 41 #include <sys/resource.h> 42 #include <sys/task.h> 43 #include <sys/project.h> 44 #include <sys/proc.h> 45 #include <sys/debug.h> 46 #include <sys/inline.h> 47 #include <sys/disp.h> 48 #include <sys/class.h> 49 #include <vm/seg_kmem.h> 50 #include <vm/seg_kp.h> 51 #include <sys/machlock.h> 52 #include <sys/kmem.h> 53 #include <sys/varargs.h> 54 #include <sys/turnstile.h> 55 #include <sys/poll.h> 56 #include <sys/vtrace.h> 57 #include <sys/callb.h> 58 #include <c2/audit.h> 59 #include <sys/tnf.h> 60 #include <sys/sobject.h> 61 #include <sys/cpupart.h> 62 #include <sys/pset.h> 63 #include <sys/door.h> 64 #include <sys/spl.h> 65 #include <sys/copyops.h> 66 #include <sys/rctl.h> 67 #include <sys/brand.h> 68 #include <sys/pool.h> 69 #include <sys/zone.h> 70 #include <sys/tsol/label.h> 71 #include <sys/tsol/tndb.h> 72 #include <sys/cpc_impl.h> 73 #include <sys/sdt.h> 74 #include <sys/reboot.h> 75 #include <sys/kdi.h> 76 #include <sys/waitq.h> 77 #include <sys/cpucaps.h> 78 #include <inet/ip.h> 79 #include <inet/ip_if.h> 80 81 struct kmem_cache *thread_cache; /* cache of free threads */ 82 struct kmem_cache *lwp_cache; /* cache of free lwps */ 83 struct kmem_cache *turnstile_cache; /* cache of free turnstiles */ 84 85 /* 86 * allthreads is only for use by kmem_readers. All kernel loops can use 87 * the current thread as a start/end point. 88 */ 89 static kthread_t *allthreads = &t0; /* circular list of all threads */ 90 91 static kcondvar_t reaper_cv; /* synchronization var */ 92 kthread_t *thread_deathrow; /* circular list of reapable threads */ 93 kthread_t *lwp_deathrow; /* circular list of reapable threads */ 94 kmutex_t reaplock; /* protects lwp and thread deathrows */ 95 kmutex_t thread_free_lock; /* protects clock from reaper */ 96 int thread_reapcnt = 0; /* number of threads on deathrow */ 97 int lwp_reapcnt = 0; /* number of lwps on deathrow */ 98 int reaplimit = 16; /* delay reaping until reaplimit */ 99 100 extern int nthread; 101 102 id_t syscid; /* system scheduling class ID */ 103 void *segkp_thread; /* cookie for segkp pool */ 104 105 int lwp_cache_sz = 32; 106 int t_cache_sz = 8; 107 static kt_did_t next_t_id = 1; 108 109 /* 110 * Min/Max stack sizes for stack size parameters 111 */ 112 #define MAX_STKSIZE (32 * DEFAULTSTKSZ) 113 #define MIN_STKSIZE DEFAULTSTKSZ 114 115 /* 116 * default_stksize overrides lwp_default_stksize if it is set. 117 */ 118 int default_stksize; 119 int lwp_default_stksize; 120 121 static zone_key_t zone_thread_key; 122 123 /* 124 * forward declarations for internal thread specific data (tsd) 125 */ 126 static void *tsd_realloc(void *, size_t, size_t); 127 128 void thread_reaper(void); 129 130 /*ARGSUSED*/ 131 static int 132 turnstile_constructor(void *buf, void *cdrarg, int kmflags) 133 { 134 bzero(buf, sizeof (turnstile_t)); 135 return (0); 136 } 137 138 /*ARGSUSED*/ 139 static void 140 turnstile_destructor(void *buf, void *cdrarg) 141 { 142 turnstile_t *ts = buf; 143 144 ASSERT(ts->ts_free == NULL); 145 ASSERT(ts->ts_waiters == 0); 146 ASSERT(ts->ts_inheritor == NULL); 147 ASSERT(ts->ts_sleepq[0].sq_first == NULL); 148 ASSERT(ts->ts_sleepq[1].sq_first == NULL); 149 } 150 151 void 152 thread_init(void) 153 { 154 kthread_t *tp; 155 extern char sys_name[]; 156 extern void idle(); 157 struct cpu *cpu = CPU; 158 159 mutex_init(&reaplock, NULL, MUTEX_SPIN, (void *)ipltospl(DISP_LEVEL)); 160 161 #if defined(__i386) || defined(__amd64) 162 thread_cache = kmem_cache_create("thread_cache", sizeof (kthread_t), 163 PTR24_ALIGN, NULL, NULL, NULL, NULL, NULL, 0); 164 165 /* 166 * "struct _klwp" includes a "struct pcb", which includes a 167 * "struct fpu", which needs to be 16-byte aligned on amd64 168 * (and even on i386 for fxsave/fxrstor). 169 */ 170 lwp_cache = kmem_cache_create("lwp_cache", sizeof (klwp_t), 171 16, NULL, NULL, NULL, NULL, NULL, 0); 172 #else 173 /* 174 * Allocate thread structures from static_arena. This prevents 175 * issues where a thread tries to relocate its own thread 176 * structure and touches it after the mapping has been suspended. 177 */ 178 thread_cache = kmem_cache_create("thread_cache", sizeof (kthread_t), 179 PTR24_ALIGN, NULL, NULL, NULL, NULL, static_arena, 0); 180 181 lwp_stk_cache_init(); 182 183 lwp_cache = kmem_cache_create("lwp_cache", sizeof (klwp_t), 184 0, NULL, NULL, NULL, NULL, NULL, 0); 185 #endif 186 187 turnstile_cache = kmem_cache_create("turnstile_cache", 188 sizeof (turnstile_t), 0, 189 turnstile_constructor, turnstile_destructor, NULL, NULL, NULL, 0); 190 191 label_init(); 192 cred_init(); 193 194 /* 195 * Initialize various resource management facilities. 196 */ 197 rctl_init(); 198 cpucaps_init(); 199 /* 200 * Zone_init() should be called before project_init() so that project ID 201 * for the first project is initialized correctly. 202 */ 203 zone_init(); 204 project_init(); 205 brand_init(); 206 task_init(); 207 tcache_init(); 208 pool_init(); 209 210 curthread->t_ts = kmem_cache_alloc(turnstile_cache, KM_SLEEP); 211 212 /* 213 * Originally, we had two parameters to set default stack 214 * size: one for lwp's (lwp_default_stksize), and one for 215 * kernel-only threads (DEFAULTSTKSZ, a.k.a. _defaultstksz). 216 * Now we have a third parameter that overrides both if it is 217 * set to a legal stack size, called default_stksize. 218 */ 219 220 if (default_stksize == 0) { 221 default_stksize = DEFAULTSTKSZ; 222 } else if (default_stksize % PAGESIZE != 0 || 223 default_stksize > MAX_STKSIZE || 224 default_stksize < MIN_STKSIZE) { 225 cmn_err(CE_WARN, "Illegal stack size. Using %d", 226 (int)DEFAULTSTKSZ); 227 default_stksize = DEFAULTSTKSZ; 228 } else { 229 lwp_default_stksize = default_stksize; 230 } 231 232 if (lwp_default_stksize == 0) { 233 lwp_default_stksize = default_stksize; 234 } else if (lwp_default_stksize % PAGESIZE != 0 || 235 lwp_default_stksize > MAX_STKSIZE || 236 lwp_default_stksize < MIN_STKSIZE) { 237 cmn_err(CE_WARN, "Illegal stack size. Using %d", 238 default_stksize); 239 lwp_default_stksize = default_stksize; 240 } 241 242 segkp_lwp = segkp_cache_init(segkp, lwp_cache_sz, 243 lwp_default_stksize, 244 (KPD_NOWAIT | KPD_HASREDZONE | KPD_LOCKED)); 245 246 segkp_thread = segkp_cache_init(segkp, t_cache_sz, 247 default_stksize, KPD_HASREDZONE | KPD_LOCKED | KPD_NO_ANON); 248 249 (void) getcid(sys_name, &syscid); 250 curthread->t_cid = syscid; /* current thread is t0 */ 251 252 /* 253 * Set up the first CPU's idle thread. 254 * It runs whenever the CPU has nothing worthwhile to do. 255 */ 256 tp = thread_create(NULL, 0, idle, NULL, 0, &p0, TS_STOPPED, -1); 257 cpu->cpu_idle_thread = tp; 258 tp->t_preempt = 1; 259 tp->t_disp_queue = cpu->cpu_disp; 260 ASSERT(tp->t_disp_queue != NULL); 261 tp->t_bound_cpu = cpu; 262 tp->t_affinitycnt = 1; 263 264 /* 265 * Registering a thread in the callback table is usually 266 * done in the initialization code of the thread. In this 267 * case, we do it right after thread creation to avoid 268 * blocking idle thread while registering itself. It also 269 * avoids the possibility of reregistration in case a CPU 270 * restarts its idle thread. 271 */ 272 CALLB_CPR_INIT_SAFE(tp, "idle"); 273 274 /* 275 * Create the thread_reaper daemon. From this point on, exited 276 * threads will get reaped. 277 */ 278 (void) thread_create(NULL, 0, (void (*)())thread_reaper, 279 NULL, 0, &p0, TS_RUN, minclsyspri); 280 281 /* 282 * Finish initializing the kernel memory allocator now that 283 * thread_create() is available. 284 */ 285 kmem_thread_init(); 286 287 if (boothowto & RB_DEBUG) 288 kdi_dvec_thravail(); 289 } 290 291 /* 292 * Create a thread. 293 * 294 * thread_create() blocks for memory if necessary. It never fails. 295 * 296 * If stk is NULL, the thread is created at the base of the stack 297 * and cannot be swapped. 298 */ 299 kthread_t * 300 thread_create( 301 caddr_t stk, 302 size_t stksize, 303 void (*proc)(), 304 void *arg, 305 size_t len, 306 proc_t *pp, 307 int state, 308 pri_t pri) 309 { 310 kthread_t *t; 311 extern struct classfuncs sys_classfuncs; 312 turnstile_t *ts; 313 314 /* 315 * Every thread keeps a turnstile around in case it needs to block. 316 * The only reason the turnstile is not simply part of the thread 317 * structure is that we may have to break the association whenever 318 * more than one thread blocks on a given synchronization object. 319 * From a memory-management standpoint, turnstiles are like the 320 * "attached mblks" that hang off dblks in the streams allocator. 321 */ 322 ts = kmem_cache_alloc(turnstile_cache, KM_SLEEP); 323 324 if (stk == NULL) { 325 /* 326 * alloc both thread and stack in segkp chunk 327 */ 328 329 if (stksize < default_stksize) 330 stksize = default_stksize; 331 332 if (stksize == default_stksize) { 333 stk = (caddr_t)segkp_cache_get(segkp_thread); 334 } else { 335 stksize = roundup(stksize, PAGESIZE); 336 stk = (caddr_t)segkp_get(segkp, stksize, 337 (KPD_HASREDZONE | KPD_NO_ANON | KPD_LOCKED)); 338 } 339 340 ASSERT(stk != NULL); 341 342 /* 343 * The machine-dependent mutex code may require that 344 * thread pointers (since they may be used for mutex owner 345 * fields) have certain alignment requirements. 346 * PTR24_ALIGN is the size of the alignment quanta. 347 * XXX - assumes stack grows toward low addresses. 348 */ 349 if (stksize <= sizeof (kthread_t) + PTR24_ALIGN) 350 cmn_err(CE_PANIC, "thread_create: proposed stack size" 351 " too small to hold thread."); 352 #ifdef STACK_GROWTH_DOWN 353 stksize -= SA(sizeof (kthread_t) + PTR24_ALIGN - 1); 354 stksize &= -PTR24_ALIGN; /* make thread aligned */ 355 t = (kthread_t *)(stk + stksize); 356 bzero(t, sizeof (kthread_t)); 357 #ifdef C2_AUDIT 358 if (audit_active) 359 audit_thread_create(t); 360 #endif 361 t->t_stk = stk + stksize; 362 t->t_stkbase = stk; 363 #else /* stack grows to larger addresses */ 364 stksize -= SA(sizeof (kthread_t)); 365 t = (kthread_t *)(stk); 366 bzero(t, sizeof (kthread_t)); 367 t->t_stk = stk + sizeof (kthread_t); 368 t->t_stkbase = stk + stksize + sizeof (kthread_t); 369 #endif /* STACK_GROWTH_DOWN */ 370 t->t_flag |= T_TALLOCSTK; 371 t->t_swap = stk; 372 } else { 373 t = kmem_cache_alloc(thread_cache, KM_SLEEP); 374 bzero(t, sizeof (kthread_t)); 375 ASSERT(((uintptr_t)t & (PTR24_ALIGN - 1)) == 0); 376 #ifdef C2_AUDIT 377 if (audit_active) 378 audit_thread_create(t); 379 #endif 380 /* 381 * Initialize t_stk to the kernel stack pointer to use 382 * upon entry to the kernel 383 */ 384 #ifdef STACK_GROWTH_DOWN 385 t->t_stk = stk + stksize; 386 t->t_stkbase = stk; 387 #else 388 t->t_stk = stk; /* 3b2-like */ 389 t->t_stkbase = stk + stksize; 390 #endif /* STACK_GROWTH_DOWN */ 391 } 392 393 /* set default stack flag */ 394 if (stksize == lwp_default_stksize) 395 t->t_flag |= T_DFLTSTK; 396 397 t->t_ts = ts; 398 399 /* 400 * p_cred could be NULL if it thread_create is called before cred_init 401 * is called in main. 402 */ 403 mutex_enter(&pp->p_crlock); 404 if (pp->p_cred) 405 crhold(t->t_cred = pp->p_cred); 406 mutex_exit(&pp->p_crlock); 407 t->t_start = gethrestime_sec(); 408 t->t_startpc = proc; 409 t->t_procp = pp; 410 t->t_clfuncs = &sys_classfuncs.thread; 411 t->t_cid = syscid; 412 t->t_pri = pri; 413 t->t_stime = lbolt; 414 t->t_schedflag = TS_LOAD | TS_DONT_SWAP; 415 t->t_bind_cpu = PBIND_NONE; 416 t->t_bind_pset = PS_NONE; 417 t->t_plockp = &pp->p_lock; 418 t->t_copyops = NULL; 419 t->t_taskq = NULL; 420 t->t_anttime = 0; 421 t->t_hatdepth = 0; 422 423 t->t_dtrace_vtime = 1; /* assure vtimestamp is always non-zero */ 424 425 CPU_STATS_ADDQ(CPU, sys, nthreads, 1); 426 #ifndef NPROBE 427 /* Kernel probe */ 428 tnf_thread_create(t); 429 #endif /* NPROBE */ 430 LOCK_INIT_CLEAR(&t->t_lock); 431 432 /* 433 * Callers who give us a NULL proc must do their own 434 * stack initialization. e.g. lwp_create() 435 */ 436 if (proc != NULL) { 437 t->t_stk = thread_stk_init(t->t_stk); 438 thread_load(t, proc, arg, len); 439 } 440 441 /* 442 * Put a hold on project0. If this thread is actually in a 443 * different project, then t_proj will be changed later in 444 * lwp_create(). All kernel-only threads must be in project 0. 445 */ 446 t->t_proj = project_hold(proj0p); 447 448 lgrp_affinity_init(&t->t_lgrp_affinity); 449 450 mutex_enter(&pidlock); 451 nthread++; 452 t->t_did = next_t_id++; 453 t->t_prev = curthread->t_prev; 454 t->t_next = curthread; 455 456 /* 457 * Add the thread to the list of all threads, and initialize 458 * its t_cpu pointer. We need to block preemption since 459 * cpu_offline walks the thread list looking for threads 460 * with t_cpu pointing to the CPU being offlined. We want 461 * to make sure that the list is consistent and that if t_cpu 462 * is set, the thread is on the list. 463 */ 464 kpreempt_disable(); 465 curthread->t_prev->t_next = t; 466 curthread->t_prev = t; 467 468 /* 469 * Threads should never have a NULL t_cpu pointer so assign it 470 * here. If the thread is being created with state TS_RUN a 471 * better CPU may be chosen when it is placed on the run queue. 472 * 473 * We need to keep kernel preemption disabled when setting all 474 * three fields to keep them in sync. Also, always create in 475 * the default partition since that's where kernel threads go 476 * (if this isn't a kernel thread, t_cpupart will be changed 477 * in lwp_create before setting the thread runnable). 478 */ 479 t->t_cpupart = &cp_default; 480 481 /* 482 * For now, affiliate this thread with the root lgroup. 483 * Since the kernel does not (presently) allocate its memory 484 * in a locality aware fashion, the root is an appropriate home. 485 * If this thread is later associated with an lwp, it will have 486 * it's lgroup re-assigned at that time. 487 */ 488 lgrp_move_thread(t, &cp_default.cp_lgrploads[LGRP_ROOTID], 1); 489 490 /* 491 * Inherit the current cpu. If this cpu isn't part of the chosen 492 * lgroup, a new cpu will be chosen by cpu_choose when the thread 493 * is ready to run. 494 */ 495 if (CPU->cpu_part == &cp_default) 496 t->t_cpu = CPU; 497 else 498 t->t_cpu = disp_lowpri_cpu(cp_default.cp_cpulist, t->t_lpl, 499 t->t_pri, NULL); 500 501 t->t_disp_queue = t->t_cpu->cpu_disp; 502 kpreempt_enable(); 503 504 /* 505 * Initialize thread state and the dispatcher lock pointer. 506 * Need to hold onto pidlock to block allthreads walkers until 507 * the state is set. 508 */ 509 switch (state) { 510 case TS_RUN: 511 curthread->t_oldspl = splhigh(); /* get dispatcher spl */ 512 THREAD_SET_STATE(t, TS_STOPPED, &transition_lock); 513 CL_SETRUN(t); 514 thread_unlock(t); 515 break; 516 517 case TS_ONPROC: 518 THREAD_ONPROC(t, t->t_cpu); 519 break; 520 521 case TS_FREE: 522 /* 523 * Free state will be used for intr threads. 524 * The interrupt routine must set the thread dispatcher 525 * lock pointer (t_lockp) if starting on a CPU 526 * other than the current one. 527 */ 528 THREAD_FREEINTR(t, CPU); 529 break; 530 531 case TS_STOPPED: 532 THREAD_SET_STATE(t, TS_STOPPED, &stop_lock); 533 break; 534 535 default: /* TS_SLEEP, TS_ZOMB or TS_TRANS */ 536 cmn_err(CE_PANIC, "thread_create: invalid state %d", state); 537 } 538 mutex_exit(&pidlock); 539 return (t); 540 } 541 542 /* 543 * Move thread to project0 and take care of project reference counters. 544 */ 545 void 546 thread_rele(kthread_t *t) 547 { 548 kproject_t *kpj; 549 550 thread_lock(t); 551 552 ASSERT(t == curthread || t->t_state == TS_FREE || t->t_procp == &p0); 553 kpj = ttoproj(t); 554 t->t_proj = proj0p; 555 556 thread_unlock(t); 557 558 if (kpj != proj0p) { 559 project_rele(kpj); 560 (void) project_hold(proj0p); 561 } 562 } 563 564 /* 565 * This is a function which is called from thread_exit 566 * that can be used to debug reference count issues in IP. 567 */ 568 void (*ip_cleanup_func)(void); 569 570 void 571 thread_exit() 572 { 573 kthread_t *t = curthread; 574 575 if ((t->t_proc_flag & TP_ZTHREAD) != 0) 576 cmn_err(CE_PANIC, "thread_exit: zthread_exit() not called"); 577 578 if (ip_cleanup_func != NULL) 579 (*ip_cleanup_func)(); 580 581 tsd_exit(); /* Clean up this thread's TSD */ 582 583 kcpc_passivate(); /* clean up performance counter state */ 584 585 /* 586 * No kernel thread should have called poll() without arranging 587 * calling pollcleanup() here. 588 */ 589 ASSERT(t->t_pollstate == NULL); 590 ASSERT(t->t_schedctl == NULL); 591 if (t->t_door) 592 door_slam(); /* in case thread did an upcall */ 593 594 #ifndef NPROBE 595 /* Kernel probe */ 596 if (t->t_tnf_tpdp) 597 tnf_thread_exit(); 598 #endif /* NPROBE */ 599 600 thread_rele(t); 601 t->t_preempt++; 602 603 /* 604 * remove thread from the all threads list so that 605 * death-row can use the same pointers. 606 */ 607 mutex_enter(&pidlock); 608 t->t_next->t_prev = t->t_prev; 609 t->t_prev->t_next = t->t_next; 610 ASSERT(allthreads != t); /* t0 never exits */ 611 cv_broadcast(&t->t_joincv); /* wake up anyone in thread_join */ 612 mutex_exit(&pidlock); 613 614 if (t->t_ctx != NULL) 615 exitctx(t); 616 if (t->t_procp->p_pctx != NULL) 617 exitpctx(t->t_procp); 618 619 t->t_state = TS_ZOMB; /* set zombie thread */ 620 621 swtch_from_zombie(); /* give up the CPU */ 622 /* NOTREACHED */ 623 } 624 625 /* 626 * Check to see if the specified thread is active (defined as being on 627 * the thread list). This is certainly a slow way to do this; if there's 628 * ever a reason to speed it up, we could maintain a hash table of active 629 * threads indexed by their t_did. 630 */ 631 static kthread_t * 632 did_to_thread(kt_did_t tid) 633 { 634 kthread_t *t; 635 636 ASSERT(MUTEX_HELD(&pidlock)); 637 for (t = curthread->t_next; t != curthread; t = t->t_next) { 638 if (t->t_did == tid) 639 break; 640 } 641 if (t->t_did == tid) 642 return (t); 643 else 644 return (NULL); 645 } 646 647 /* 648 * Wait for specified thread to exit. Returns immediately if the thread 649 * could not be found, meaning that it has either already exited or never 650 * existed. 651 */ 652 void 653 thread_join(kt_did_t tid) 654 { 655 kthread_t *t; 656 657 ASSERT(tid != curthread->t_did); 658 ASSERT(tid != t0.t_did); 659 660 mutex_enter(&pidlock); 661 /* 662 * Make sure we check that the thread is on the thread list 663 * before blocking on it; otherwise we could end up blocking on 664 * a cv that's already been freed. In other words, don't cache 665 * the thread pointer across calls to cv_wait. 666 * 667 * The choice of loop invariant means that whenever a thread 668 * is taken off the allthreads list, a cv_broadcast must be 669 * performed on that thread's t_joincv to wake up any waiters. 670 * The broadcast doesn't have to happen right away, but it 671 * shouldn't be postponed indefinitely (e.g., by doing it in 672 * thread_free which may only be executed when the deathrow 673 * queue is processed. 674 */ 675 while (t = did_to_thread(tid)) 676 cv_wait(&t->t_joincv, &pidlock); 677 mutex_exit(&pidlock); 678 } 679 680 void 681 thread_free(kthread_t *t) 682 { 683 ASSERT(t != &t0 && t->t_state == TS_FREE); 684 ASSERT(t->t_door == NULL); 685 ASSERT(t->t_schedctl == NULL); 686 ASSERT(t->t_pollstate == NULL); 687 688 t->t_pri = 0; 689 t->t_pc = 0; 690 t->t_sp = 0; 691 t->t_wchan0 = NULL; 692 t->t_wchan = NULL; 693 if (t->t_cred != NULL) { 694 crfree(t->t_cred); 695 t->t_cred = 0; 696 } 697 if (t->t_pdmsg) { 698 kmem_free(t->t_pdmsg, strlen(t->t_pdmsg) + 1); 699 t->t_pdmsg = NULL; 700 } 701 #ifdef C2_AUDIT 702 if (audit_active) 703 audit_thread_free(t); 704 #endif 705 #ifndef NPROBE 706 if (t->t_tnf_tpdp) 707 tnf_thread_free(t); 708 #endif /* NPROBE */ 709 if (t->t_cldata) { 710 CL_EXITCLASS(t->t_cid, (caddr_t *)t->t_cldata); 711 } 712 if (t->t_rprof != NULL) { 713 kmem_free(t->t_rprof, sizeof (*t->t_rprof)); 714 t->t_rprof = NULL; 715 } 716 t->t_lockp = NULL; /* nothing should try to lock this thread now */ 717 if (t->t_lwp) 718 lwp_freeregs(t->t_lwp, 0); 719 if (t->t_ctx) 720 freectx(t, 0); 721 t->t_stk = NULL; 722 if (t->t_lwp) 723 lwp_stk_fini(t->t_lwp); 724 lock_clear(&t->t_lock); 725 726 if (t->t_ts->ts_waiters > 0) 727 panic("thread_free: turnstile still active"); 728 729 kmem_cache_free(turnstile_cache, t->t_ts); 730 731 free_afd(&t->t_activefd); 732 733 /* 734 * Barrier for clock thread. The clock holds this lock to 735 * keep the thread from going away while it's looking at it. 736 */ 737 mutex_enter(&thread_free_lock); 738 mutex_exit(&thread_free_lock); 739 740 ASSERT(ttoproj(t) == proj0p); 741 project_rele(ttoproj(t)); 742 743 lgrp_affinity_free(&t->t_lgrp_affinity); 744 745 /* 746 * Free thread struct and its stack. 747 */ 748 if (t->t_flag & T_TALLOCSTK) { 749 /* thread struct is embedded in stack */ 750 segkp_release(segkp, t->t_swap); 751 mutex_enter(&pidlock); 752 nthread--; 753 mutex_exit(&pidlock); 754 } else { 755 if (t->t_swap) { 756 segkp_release(segkp, t->t_swap); 757 t->t_swap = NULL; 758 } 759 if (t->t_lwp) { 760 kmem_cache_free(lwp_cache, t->t_lwp); 761 t->t_lwp = NULL; 762 } 763 mutex_enter(&pidlock); 764 nthread--; 765 mutex_exit(&pidlock); 766 kmem_cache_free(thread_cache, t); 767 } 768 } 769 770 /* 771 * Removes threads associated with the given zone from a deathrow queue. 772 * tp is a pointer to the head of the deathrow queue, and countp is a 773 * pointer to the current deathrow count. Returns a linked list of 774 * threads removed from the list. 775 */ 776 static kthread_t * 777 thread_zone_cleanup(kthread_t **tp, int *countp, zoneid_t zoneid) 778 { 779 kthread_t *tmp, *list = NULL; 780 cred_t *cr; 781 782 ASSERT(MUTEX_HELD(&reaplock)); 783 while (*tp != NULL) { 784 if ((cr = (*tp)->t_cred) != NULL && crgetzoneid(cr) == zoneid) { 785 tmp = *tp; 786 *tp = tmp->t_forw; 787 tmp->t_forw = list; 788 list = tmp; 789 (*countp)--; 790 } else { 791 tp = &(*tp)->t_forw; 792 } 793 } 794 return (list); 795 } 796 797 static void 798 thread_reap_list(kthread_t *t) 799 { 800 kthread_t *next; 801 802 while (t != NULL) { 803 next = t->t_forw; 804 thread_free(t); 805 t = next; 806 } 807 } 808 809 /* ARGSUSED */ 810 static void 811 thread_zone_destroy(zoneid_t zoneid, void *unused) 812 { 813 kthread_t *t, *l; 814 815 mutex_enter(&reaplock); 816 /* 817 * Pull threads and lwps associated with zone off deathrow lists. 818 */ 819 t = thread_zone_cleanup(&thread_deathrow, &thread_reapcnt, zoneid); 820 l = thread_zone_cleanup(&lwp_deathrow, &lwp_reapcnt, zoneid); 821 mutex_exit(&reaplock); 822 823 /* 824 * Reap threads 825 */ 826 thread_reap_list(t); 827 828 /* 829 * Reap lwps 830 */ 831 thread_reap_list(l); 832 } 833 834 /* 835 * cleanup zombie threads that are on deathrow. 836 */ 837 void 838 thread_reaper() 839 { 840 kthread_t *t, *l; 841 callb_cpr_t cprinfo; 842 843 /* 844 * Register callback to clean up threads when zone is destroyed. 845 */ 846 zone_key_create(&zone_thread_key, NULL, NULL, thread_zone_destroy); 847 848 CALLB_CPR_INIT(&cprinfo, &reaplock, callb_generic_cpr, "t_reaper"); 849 for (;;) { 850 mutex_enter(&reaplock); 851 while (thread_deathrow == NULL && lwp_deathrow == NULL) { 852 CALLB_CPR_SAFE_BEGIN(&cprinfo); 853 cv_wait(&reaper_cv, &reaplock); 854 CALLB_CPR_SAFE_END(&cprinfo, &reaplock); 855 } 856 t = thread_deathrow; 857 l = lwp_deathrow; 858 thread_deathrow = NULL; 859 lwp_deathrow = NULL; 860 thread_reapcnt = 0; 861 lwp_reapcnt = 0; 862 mutex_exit(&reaplock); 863 864 /* 865 * Reap threads 866 */ 867 thread_reap_list(t); 868 869 /* 870 * Reap lwps 871 */ 872 thread_reap_list(l); 873 } 874 } 875 876 /* 877 * This is called by resume() to put a zombie thread onto deathrow. 878 * The thread's state is changed to TS_FREE to indicate that is reapable. 879 * This is called from the idle thread so it must not block (just spin). 880 */ 881 void 882 reapq_add(kthread_t *t) 883 { 884 mutex_enter(&reaplock); 885 886 /* 887 * lwp_deathrow contains only threads with lwp linkage 888 * that are of the default stacksize. Anything else goes 889 * on thread_deathrow. 890 */ 891 if (ttolwp(t) && (t->t_flag & T_DFLTSTK)) { 892 t->t_forw = lwp_deathrow; 893 lwp_deathrow = t; 894 lwp_reapcnt++; 895 } else { 896 t->t_forw = thread_deathrow; 897 thread_deathrow = t; 898 thread_reapcnt++; 899 } 900 if (lwp_reapcnt + thread_reapcnt > reaplimit) 901 cv_signal(&reaper_cv); /* wake the reaper */ 902 t->t_state = TS_FREE; 903 lock_clear(&t->t_lock); 904 mutex_exit(&reaplock); 905 } 906 907 /* 908 * Install thread context ops for the current thread. 909 */ 910 void 911 installctx( 912 kthread_t *t, 913 void *arg, 914 void (*save)(void *), 915 void (*restore)(void *), 916 void (*fork)(void *, void *), 917 void (*lwp_create)(void *, void *), 918 void (*exit)(void *), 919 void (*free)(void *, int)) 920 { 921 struct ctxop *ctx; 922 923 ctx = kmem_alloc(sizeof (struct ctxop), KM_SLEEP); 924 ctx->save_op = save; 925 ctx->restore_op = restore; 926 ctx->fork_op = fork; 927 ctx->lwp_create_op = lwp_create; 928 ctx->exit_op = exit; 929 ctx->free_op = free; 930 ctx->arg = arg; 931 ctx->next = t->t_ctx; 932 t->t_ctx = ctx; 933 } 934 935 /* 936 * Remove the thread context ops from a thread. 937 */ 938 int 939 removectx( 940 kthread_t *t, 941 void *arg, 942 void (*save)(void *), 943 void (*restore)(void *), 944 void (*fork)(void *, void *), 945 void (*lwp_create)(void *, void *), 946 void (*exit)(void *), 947 void (*free)(void *, int)) 948 { 949 struct ctxop *ctx, *prev_ctx; 950 951 /* 952 * The incoming kthread_t (which is the thread for which the 953 * context ops will be removed) should be one of the following: 954 * 955 * a) the current thread, 956 * 957 * b) a thread of a process that's being forked (SIDL), 958 * 959 * c) a thread that belongs to the same process as the current 960 * thread and for which the current thread is the agent thread, 961 * 962 * d) a thread that is TS_STOPPED which is indicative of it 963 * being (if curthread is not an agent) a thread being created 964 * as part of an lwp creation. 965 */ 966 ASSERT(t == curthread || ttoproc(t)->p_stat == SIDL || 967 ttoproc(t)->p_agenttp == curthread || t->t_state == TS_STOPPED); 968 969 /* 970 * Serialize modifications to t->t_ctx to prevent the agent thread 971 * and the target thread from racing with each other during lwp exit. 972 */ 973 mutex_enter(&t->t_ctx_lock); 974 prev_ctx = NULL; 975 for (ctx = t->t_ctx; ctx != NULL; ctx = ctx->next) { 976 if (ctx->save_op == save && ctx->restore_op == restore && 977 ctx->fork_op == fork && ctx->lwp_create_op == lwp_create && 978 ctx->exit_op == exit && ctx->free_op == free && 979 ctx->arg == arg) { 980 if (prev_ctx) 981 prev_ctx->next = ctx->next; 982 else 983 t->t_ctx = ctx->next; 984 mutex_exit(&t->t_ctx_lock); 985 if (ctx->free_op != NULL) 986 (ctx->free_op)(ctx->arg, 0); 987 kmem_free(ctx, sizeof (struct ctxop)); 988 return (1); 989 } 990 prev_ctx = ctx; 991 } 992 mutex_exit(&t->t_ctx_lock); 993 994 return (0); 995 } 996 997 void 998 savectx(kthread_t *t) 999 { 1000 struct ctxop *ctx; 1001 1002 ASSERT(t == curthread); 1003 for (ctx = t->t_ctx; ctx != 0; ctx = ctx->next) 1004 if (ctx->save_op != NULL) 1005 (ctx->save_op)(ctx->arg); 1006 } 1007 1008 void 1009 restorectx(kthread_t *t) 1010 { 1011 struct ctxop *ctx; 1012 1013 ASSERT(t == curthread); 1014 for (ctx = t->t_ctx; ctx != 0; ctx = ctx->next) 1015 if (ctx->restore_op != NULL) 1016 (ctx->restore_op)(ctx->arg); 1017 } 1018 1019 void 1020 forkctx(kthread_t *t, kthread_t *ct) 1021 { 1022 struct ctxop *ctx; 1023 1024 for (ctx = t->t_ctx; ctx != NULL; ctx = ctx->next) 1025 if (ctx->fork_op != NULL) 1026 (ctx->fork_op)(t, ct); 1027 } 1028 1029 /* 1030 * Note that this operator is only invoked via the _lwp_create 1031 * system call. The system may have other reasons to create lwps 1032 * e.g. the agent lwp or the doors unreferenced lwp. 1033 */ 1034 void 1035 lwp_createctx(kthread_t *t, kthread_t *ct) 1036 { 1037 struct ctxop *ctx; 1038 1039 for (ctx = t->t_ctx; ctx != NULL; ctx = ctx->next) 1040 if (ctx->lwp_create_op != NULL) 1041 (ctx->lwp_create_op)(t, ct); 1042 } 1043 1044 /* 1045 * exitctx is called from thread_exit() and lwp_exit() to perform any actions 1046 * needed when the thread/LWP leaves the processor for the last time. This 1047 * routine is not intended to deal with freeing memory; freectx() is used for 1048 * that purpose during thread_free(). This routine is provided to allow for 1049 * clean-up that can't wait until thread_free(). 1050 */ 1051 void 1052 exitctx(kthread_t *t) 1053 { 1054 struct ctxop *ctx; 1055 1056 for (ctx = t->t_ctx; ctx != NULL; ctx = ctx->next) 1057 if (ctx->exit_op != NULL) 1058 (ctx->exit_op)(t); 1059 } 1060 1061 /* 1062 * freectx is called from thread_free() and exec() to get 1063 * rid of old thread context ops. 1064 */ 1065 void 1066 freectx(kthread_t *t, int isexec) 1067 { 1068 struct ctxop *ctx; 1069 1070 while ((ctx = t->t_ctx) != NULL) { 1071 t->t_ctx = ctx->next; 1072 if (ctx->free_op != NULL) 1073 (ctx->free_op)(ctx->arg, isexec); 1074 kmem_free(ctx, sizeof (struct ctxop)); 1075 } 1076 } 1077 1078 /* 1079 * Set the thread running; arrange for it to be swapped in if necessary. 1080 */ 1081 void 1082 setrun_locked(kthread_t *t) 1083 { 1084 ASSERT(THREAD_LOCK_HELD(t)); 1085 if (t->t_state == TS_SLEEP) { 1086 /* 1087 * Take off sleep queue. 1088 */ 1089 SOBJ_UNSLEEP(t->t_sobj_ops, t); 1090 } else if (t->t_state & (TS_RUN | TS_ONPROC)) { 1091 /* 1092 * Already on dispatcher queue. 1093 */ 1094 return; 1095 } else if (t->t_state == TS_WAIT) { 1096 waitq_setrun(t); 1097 } else if (t->t_state == TS_STOPPED) { 1098 /* 1099 * All of the sending of SIGCONT (TC_XSTART) and /proc 1100 * (TC_PSTART) and lwp_continue() (TC_CSTART) must have 1101 * requested that the thread be run. 1102 * Just calling setrun() is not sufficient to set a stopped 1103 * thread running. TP_TXSTART is always set if the thread 1104 * is not stopped by a jobcontrol stop signal. 1105 * TP_TPSTART is always set if /proc is not controlling it. 1106 * TP_TCSTART is always set if lwp_suspend() didn't stop it. 1107 * The thread won't be stopped unless one of these 1108 * three mechanisms did it. 1109 * 1110 * These flags must be set before calling setrun_locked(t). 1111 * They can't be passed as arguments because the streams 1112 * code calls setrun() indirectly and the mechanism for 1113 * doing so admits only one argument. Note that the 1114 * thread must be locked in order to change t_schedflags. 1115 */ 1116 if ((t->t_schedflag & TS_ALLSTART) != TS_ALLSTART) 1117 return; 1118 /* 1119 * Process is no longer stopped (a thread is running). 1120 */ 1121 t->t_whystop = 0; 1122 t->t_whatstop = 0; 1123 /* 1124 * Strictly speaking, we do not have to clear these 1125 * flags here; they are cleared on entry to stop(). 1126 * However, they are confusing when doing kernel 1127 * debugging or when they are revealed by ps(1). 1128 */ 1129 t->t_schedflag &= ~TS_ALLSTART; 1130 THREAD_TRANSITION(t); /* drop stopped-thread lock */ 1131 ASSERT(t->t_lockp == &transition_lock); 1132 ASSERT(t->t_wchan0 == NULL && t->t_wchan == NULL); 1133 /* 1134 * Let the class put the process on the dispatcher queue. 1135 */ 1136 CL_SETRUN(t); 1137 } 1138 } 1139 1140 void 1141 setrun(kthread_t *t) 1142 { 1143 thread_lock(t); 1144 setrun_locked(t); 1145 thread_unlock(t); 1146 } 1147 1148 /* 1149 * Unpin an interrupted thread. 1150 * When an interrupt occurs, the interrupt is handled on the stack 1151 * of an interrupt thread, taken from a pool linked to the CPU structure. 1152 * 1153 * When swtch() is switching away from an interrupt thread because it 1154 * blocked or was preempted, this routine is called to complete the 1155 * saving of the interrupted thread state, and returns the interrupted 1156 * thread pointer so it may be resumed. 1157 * 1158 * Called by swtch() only at high spl. 1159 */ 1160 kthread_t * 1161 thread_unpin() 1162 { 1163 kthread_t *t = curthread; /* current thread */ 1164 kthread_t *itp; /* interrupted thread */ 1165 int i; /* interrupt level */ 1166 extern int intr_passivate(); 1167 1168 ASSERT(t->t_intr != NULL); 1169 1170 itp = t->t_intr; /* interrupted thread */ 1171 t->t_intr = NULL; /* clear interrupt ptr */ 1172 1173 /* 1174 * Get state from interrupt thread for the one 1175 * it interrupted. 1176 */ 1177 1178 i = intr_passivate(t, itp); 1179 1180 TRACE_5(TR_FAC_INTR, TR_INTR_PASSIVATE, 1181 "intr_passivate:level %d curthread %p (%T) ithread %p (%T)", 1182 i, t, t, itp, itp); 1183 1184 /* 1185 * Dissociate the current thread from the interrupted thread's LWP. 1186 */ 1187 t->t_lwp = NULL; 1188 1189 /* 1190 * Interrupt handlers above the level that spinlocks block must 1191 * not block. 1192 */ 1193 #if DEBUG 1194 if (i < 0 || i > LOCK_LEVEL) 1195 cmn_err(CE_PANIC, "thread_unpin: ipl out of range %x", i); 1196 #endif 1197 1198 /* 1199 * Compute the CPU's base interrupt level based on the active 1200 * interrupts. 1201 */ 1202 ASSERT(CPU->cpu_intr_actv & (1 << i)); 1203 set_base_spl(); 1204 1205 return (itp); 1206 } 1207 1208 /* 1209 * Create and initialize an interrupt thread. 1210 * Returns non-zero on error. 1211 * Called at spl7() or better. 1212 */ 1213 void 1214 thread_create_intr(struct cpu *cp) 1215 { 1216 kthread_t *tp; 1217 1218 tp = thread_create(NULL, 0, 1219 (void (*)())thread_create_intr, NULL, 0, &p0, TS_ONPROC, 0); 1220 1221 /* 1222 * Set the thread in the TS_FREE state. The state will change 1223 * to TS_ONPROC only while the interrupt is active. Think of these 1224 * as being on a private free list for the CPU. Being TS_FREE keeps 1225 * inactive interrupt threads out of debugger thread lists. 1226 * 1227 * We cannot call thread_create with TS_FREE because of the current 1228 * checks there for ONPROC. Fix this when thread_create takes flags. 1229 */ 1230 THREAD_FREEINTR(tp, cp); 1231 1232 /* 1233 * Nobody should ever reference the credentials of an interrupt 1234 * thread so make it NULL to catch any such references. 1235 */ 1236 tp->t_cred = NULL; 1237 tp->t_flag |= T_INTR_THREAD; 1238 tp->t_cpu = cp; 1239 tp->t_bound_cpu = cp; 1240 tp->t_disp_queue = cp->cpu_disp; 1241 tp->t_affinitycnt = 1; 1242 tp->t_preempt = 1; 1243 1244 /* 1245 * Don't make a user-requested binding on this thread so that 1246 * the processor can be offlined. 1247 */ 1248 tp->t_bind_cpu = PBIND_NONE; /* no USER-requested binding */ 1249 tp->t_bind_pset = PS_NONE; 1250 1251 #if defined(__i386) || defined(__amd64) 1252 tp->t_stk -= STACK_ALIGN; 1253 *(tp->t_stk) = 0; /* terminate intr thread stack */ 1254 #endif 1255 1256 /* 1257 * Link onto CPU's interrupt pool. 1258 */ 1259 tp->t_link = cp->cpu_intr_thread; 1260 cp->cpu_intr_thread = tp; 1261 } 1262 1263 /* 1264 * TSD -- THREAD SPECIFIC DATA 1265 */ 1266 static kmutex_t tsd_mutex; /* linked list spin lock */ 1267 static uint_t tsd_nkeys; /* size of destructor array */ 1268 /* per-key destructor funcs */ 1269 static void (**tsd_destructor)(void *); 1270 /* list of tsd_thread's */ 1271 static struct tsd_thread *tsd_list; 1272 1273 /* 1274 * Default destructor 1275 * Needed because NULL destructor means that the key is unused 1276 */ 1277 /* ARGSUSED */ 1278 void 1279 tsd_defaultdestructor(void *value) 1280 {} 1281 1282 /* 1283 * Create a key (index into per thread array) 1284 * Locks out tsd_create, tsd_destroy, and tsd_exit 1285 * May allocate memory with lock held 1286 */ 1287 void 1288 tsd_create(uint_t *keyp, void (*destructor)(void *)) 1289 { 1290 int i; 1291 uint_t nkeys; 1292 1293 /* 1294 * if key is allocated, do nothing 1295 */ 1296 mutex_enter(&tsd_mutex); 1297 if (*keyp) { 1298 mutex_exit(&tsd_mutex); 1299 return; 1300 } 1301 /* 1302 * find an unused key 1303 */ 1304 if (destructor == NULL) 1305 destructor = tsd_defaultdestructor; 1306 1307 for (i = 0; i < tsd_nkeys; ++i) 1308 if (tsd_destructor[i] == NULL) 1309 break; 1310 1311 /* 1312 * if no unused keys, increase the size of the destructor array 1313 */ 1314 if (i == tsd_nkeys) { 1315 if ((nkeys = (tsd_nkeys << 1)) == 0) 1316 nkeys = 1; 1317 tsd_destructor = 1318 (void (**)(void *))tsd_realloc((void *)tsd_destructor, 1319 (size_t)(tsd_nkeys * sizeof (void (*)(void *))), 1320 (size_t)(nkeys * sizeof (void (*)(void *)))); 1321 tsd_nkeys = nkeys; 1322 } 1323 1324 /* 1325 * allocate the next available unused key 1326 */ 1327 tsd_destructor[i] = destructor; 1328 *keyp = i + 1; 1329 mutex_exit(&tsd_mutex); 1330 } 1331 1332 /* 1333 * Destroy a key -- this is for unloadable modules 1334 * 1335 * Assumes that the caller is preventing tsd_set and tsd_get 1336 * Locks out tsd_create, tsd_destroy, and tsd_exit 1337 * May free memory with lock held 1338 */ 1339 void 1340 tsd_destroy(uint_t *keyp) 1341 { 1342 uint_t key; 1343 struct tsd_thread *tsd; 1344 1345 /* 1346 * protect the key namespace and our destructor lists 1347 */ 1348 mutex_enter(&tsd_mutex); 1349 key = *keyp; 1350 *keyp = 0; 1351 1352 ASSERT(key <= tsd_nkeys); 1353 1354 /* 1355 * if the key is valid 1356 */ 1357 if (key != 0) { 1358 uint_t k = key - 1; 1359 /* 1360 * for every thread with TSD, call key's destructor 1361 */ 1362 for (tsd = tsd_list; tsd; tsd = tsd->ts_next) { 1363 /* 1364 * no TSD for key in this thread 1365 */ 1366 if (key > tsd->ts_nkeys) 1367 continue; 1368 /* 1369 * call destructor for key 1370 */ 1371 if (tsd->ts_value[k] && tsd_destructor[k]) 1372 (*tsd_destructor[k])(tsd->ts_value[k]); 1373 /* 1374 * reset value for key 1375 */ 1376 tsd->ts_value[k] = NULL; 1377 } 1378 /* 1379 * actually free the key (NULL destructor == unused) 1380 */ 1381 tsd_destructor[k] = NULL; 1382 } 1383 1384 mutex_exit(&tsd_mutex); 1385 } 1386 1387 /* 1388 * Quickly return the per thread value that was stored with the specified key 1389 * Assumes the caller is protecting key from tsd_create and tsd_destroy 1390 */ 1391 void * 1392 tsd_get(uint_t key) 1393 { 1394 return (tsd_agent_get(curthread, key)); 1395 } 1396 1397 /* 1398 * Set a per thread value indexed with the specified key 1399 */ 1400 int 1401 tsd_set(uint_t key, void *value) 1402 { 1403 return (tsd_agent_set(curthread, key, value)); 1404 } 1405 1406 /* 1407 * Like tsd_get(), except that the agent lwp can get the tsd of 1408 * another thread in the same process (the agent thread only runs when the 1409 * process is completely stopped by /proc), or syslwp is creating a new lwp. 1410 */ 1411 void * 1412 tsd_agent_get(kthread_t *t, uint_t key) 1413 { 1414 struct tsd_thread *tsd = t->t_tsd; 1415 1416 ASSERT(t == curthread || 1417 ttoproc(t)->p_agenttp == curthread || t->t_state == TS_STOPPED); 1418 1419 if (key && tsd != NULL && key <= tsd->ts_nkeys) 1420 return (tsd->ts_value[key - 1]); 1421 return (NULL); 1422 } 1423 1424 /* 1425 * Like tsd_set(), except that the agent lwp can set the tsd of 1426 * another thread in the same process, or syslwp can set the tsd 1427 * of a thread it's in the middle of creating. 1428 * 1429 * Assumes the caller is protecting key from tsd_create and tsd_destroy 1430 * May lock out tsd_destroy (and tsd_create), may allocate memory with 1431 * lock held 1432 */ 1433 int 1434 tsd_agent_set(kthread_t *t, uint_t key, void *value) 1435 { 1436 struct tsd_thread *tsd = t->t_tsd; 1437 1438 ASSERT(t == curthread || 1439 ttoproc(t)->p_agenttp == curthread || t->t_state == TS_STOPPED); 1440 1441 if (key == 0) 1442 return (EINVAL); 1443 if (tsd == NULL) 1444 tsd = t->t_tsd = kmem_zalloc(sizeof (*tsd), KM_SLEEP); 1445 if (key <= tsd->ts_nkeys) { 1446 tsd->ts_value[key - 1] = value; 1447 return (0); 1448 } 1449 1450 ASSERT(key <= tsd_nkeys); 1451 1452 /* 1453 * lock out tsd_destroy() 1454 */ 1455 mutex_enter(&tsd_mutex); 1456 if (tsd->ts_nkeys == 0) { 1457 /* 1458 * Link onto list of threads with TSD 1459 */ 1460 if ((tsd->ts_next = tsd_list) != NULL) 1461 tsd_list->ts_prev = tsd; 1462 tsd_list = tsd; 1463 } 1464 1465 /* 1466 * Allocate thread local storage and set the value for key 1467 */ 1468 tsd->ts_value = tsd_realloc(tsd->ts_value, 1469 tsd->ts_nkeys * sizeof (void *), 1470 key * sizeof (void *)); 1471 tsd->ts_nkeys = key; 1472 tsd->ts_value[key - 1] = value; 1473 mutex_exit(&tsd_mutex); 1474 1475 return (0); 1476 } 1477 1478 1479 /* 1480 * Return the per thread value that was stored with the specified key 1481 * If necessary, create the key and the value 1482 * Assumes the caller is protecting *keyp from tsd_destroy 1483 */ 1484 void * 1485 tsd_getcreate(uint_t *keyp, void (*destroy)(void *), void *(*allocate)(void)) 1486 { 1487 void *value; 1488 uint_t key = *keyp; 1489 struct tsd_thread *tsd = curthread->t_tsd; 1490 1491 if (tsd == NULL) 1492 tsd = curthread->t_tsd = kmem_zalloc(sizeof (*tsd), KM_SLEEP); 1493 if (key && key <= tsd->ts_nkeys && (value = tsd->ts_value[key - 1])) 1494 return (value); 1495 if (key == 0) 1496 tsd_create(keyp, destroy); 1497 (void) tsd_set(*keyp, value = (*allocate)()); 1498 1499 return (value); 1500 } 1501 1502 /* 1503 * Called from thread_exit() to run the destructor function for each tsd 1504 * Locks out tsd_create and tsd_destroy 1505 * Assumes that the destructor *DOES NOT* use tsd 1506 */ 1507 void 1508 tsd_exit(void) 1509 { 1510 int i; 1511 struct tsd_thread *tsd = curthread->t_tsd; 1512 1513 if (tsd == NULL) 1514 return; 1515 1516 if (tsd->ts_nkeys == 0) { 1517 kmem_free(tsd, sizeof (*tsd)); 1518 curthread->t_tsd = NULL; 1519 return; 1520 } 1521 1522 /* 1523 * lock out tsd_create and tsd_destroy, call 1524 * the destructor, and mark the value as destroyed. 1525 */ 1526 mutex_enter(&tsd_mutex); 1527 1528 for (i = 0; i < tsd->ts_nkeys; i++) { 1529 if (tsd->ts_value[i] && tsd_destructor[i]) 1530 (*tsd_destructor[i])(tsd->ts_value[i]); 1531 tsd->ts_value[i] = NULL; 1532 } 1533 1534 /* 1535 * remove from linked list of threads with TSD 1536 */ 1537 if (tsd->ts_next) 1538 tsd->ts_next->ts_prev = tsd->ts_prev; 1539 if (tsd->ts_prev) 1540 tsd->ts_prev->ts_next = tsd->ts_next; 1541 if (tsd_list == tsd) 1542 tsd_list = tsd->ts_next; 1543 1544 mutex_exit(&tsd_mutex); 1545 1546 /* 1547 * free up the TSD 1548 */ 1549 kmem_free(tsd->ts_value, tsd->ts_nkeys * sizeof (void *)); 1550 kmem_free(tsd, sizeof (struct tsd_thread)); 1551 curthread->t_tsd = NULL; 1552 } 1553 1554 /* 1555 * realloc 1556 */ 1557 static void * 1558 tsd_realloc(void *old, size_t osize, size_t nsize) 1559 { 1560 void *new; 1561 1562 new = kmem_zalloc(nsize, KM_SLEEP); 1563 if (old) { 1564 bcopy(old, new, osize); 1565 kmem_free(old, osize); 1566 } 1567 return (new); 1568 } 1569 1570 /* 1571 * Check to see if an interrupt thread might be active at a given ipl. 1572 * If so return true. 1573 * We must be conservative--it is ok to give a false yes, but a false no 1574 * will cause disaster. (But if the situation changes after we check it is 1575 * ok--the caller is trying to ensure that an interrupt routine has been 1576 * exited). 1577 * This is used when trying to remove an interrupt handler from an autovector 1578 * list in avintr.c. 1579 */ 1580 int 1581 intr_active(struct cpu *cp, int level) 1582 { 1583 if (level <= LOCK_LEVEL) 1584 return (cp->cpu_thread != cp->cpu_dispthread); 1585 else 1586 return (CPU_ON_INTR(cp)); 1587 } 1588 1589 /* 1590 * Return non-zero if an interrupt is being serviced. 1591 */ 1592 int 1593 servicing_interrupt() 1594 { 1595 int onintr = 0; 1596 1597 /* Are we an interrupt thread */ 1598 if (curthread->t_flag & T_INTR_THREAD) 1599 return (1); 1600 /* Are we servicing a high level interrupt? */ 1601 if (CPU_ON_INTR(CPU)) { 1602 kpreempt_disable(); 1603 onintr = CPU_ON_INTR(CPU); 1604 kpreempt_enable(); 1605 } 1606 return (onintr); 1607 } 1608 1609 1610 /* 1611 * Change the dispatch priority of a thread in the system. 1612 * Used when raising or lowering a thread's priority. 1613 * (E.g., priority inheritance) 1614 * 1615 * Since threads are queued according to their priority, we 1616 * we must check the thread's state to determine whether it 1617 * is on a queue somewhere. If it is, we've got to: 1618 * 1619 * o Dequeue the thread. 1620 * o Change its effective priority. 1621 * o Enqueue the thread. 1622 * 1623 * Assumptions: The thread whose priority we wish to change 1624 * must be locked before we call thread_change_(e)pri(). 1625 * The thread_change(e)pri() function doesn't drop the thread 1626 * lock--that must be done by its caller. 1627 */ 1628 void 1629 thread_change_epri(kthread_t *t, pri_t disp_pri) 1630 { 1631 uint_t state; 1632 1633 ASSERT(THREAD_LOCK_HELD(t)); 1634 1635 /* 1636 * If the inherited priority hasn't actually changed, 1637 * just return. 1638 */ 1639 if (t->t_epri == disp_pri) 1640 return; 1641 1642 state = t->t_state; 1643 1644 /* 1645 * If it's not on a queue, change the priority with 1646 * impunity. 1647 */ 1648 if ((state & (TS_SLEEP | TS_RUN | TS_WAIT)) == 0) { 1649 t->t_epri = disp_pri; 1650 1651 if (state == TS_ONPROC) { 1652 cpu_t *cp = t->t_disp_queue->disp_cpu; 1653 1654 if (t == cp->cpu_dispthread) 1655 cp->cpu_dispatch_pri = DISP_PRIO(t); 1656 } 1657 return; 1658 } 1659 1660 /* 1661 * It's either on a sleep queue or a run queue. 1662 */ 1663 if (state == TS_SLEEP) { 1664 /* 1665 * Take the thread out of its sleep queue. 1666 * Change the inherited priority. 1667 * Re-enqueue the thread. 1668 * Each synchronization object exports a function 1669 * to do this in an appropriate manner. 1670 */ 1671 SOBJ_CHANGE_EPRI(t->t_sobj_ops, t, disp_pri); 1672 } else if (state == TS_WAIT) { 1673 /* 1674 * Re-enqueue a thread on the wait queue if its 1675 * effective priority needs to change. 1676 */ 1677 if (disp_pri != t->t_epri) 1678 waitq_change_pri(t, disp_pri); 1679 } else { 1680 /* 1681 * The thread is on a run queue. 1682 * Note: setbackdq() may not put the thread 1683 * back on the same run queue where it originally 1684 * resided. 1685 */ 1686 (void) dispdeq(t); 1687 t->t_epri = disp_pri; 1688 setbackdq(t); 1689 } 1690 } /* end of thread_change_epri */ 1691 1692 /* 1693 * Function: Change the t_pri field of a thread. 1694 * Side Effects: Adjust the thread ordering on a run queue 1695 * or sleep queue, if necessary. 1696 * Returns: 1 if the thread was on a run queue, else 0. 1697 */ 1698 int 1699 thread_change_pri(kthread_t *t, pri_t disp_pri, int front) 1700 { 1701 uint_t state; 1702 int on_rq = 0; 1703 1704 ASSERT(THREAD_LOCK_HELD(t)); 1705 1706 state = t->t_state; 1707 THREAD_WILLCHANGE_PRI(t, disp_pri); 1708 1709 /* 1710 * If it's not on a queue, change the priority with 1711 * impunity. 1712 */ 1713 if ((state & (TS_SLEEP | TS_RUN | TS_WAIT)) == 0) { 1714 t->t_pri = disp_pri; 1715 1716 if (state == TS_ONPROC) { 1717 cpu_t *cp = t->t_disp_queue->disp_cpu; 1718 1719 if (t == cp->cpu_dispthread) 1720 cp->cpu_dispatch_pri = DISP_PRIO(t); 1721 } 1722 return (0); 1723 } 1724 1725 /* 1726 * It's either on a sleep queue or a run queue. 1727 */ 1728 if (state == TS_SLEEP) { 1729 /* 1730 * If the priority has changed, take the thread out of 1731 * its sleep queue and change the priority. 1732 * Re-enqueue the thread. 1733 * Each synchronization object exports a function 1734 * to do this in an appropriate manner. 1735 */ 1736 if (disp_pri != t->t_pri) 1737 SOBJ_CHANGE_PRI(t->t_sobj_ops, t, disp_pri); 1738 } else if (state == TS_WAIT) { 1739 /* 1740 * Re-enqueue a thread on the wait queue if its 1741 * priority needs to change. 1742 */ 1743 if (disp_pri != t->t_pri) 1744 waitq_change_pri(t, disp_pri); 1745 } else { 1746 /* 1747 * The thread is on a run queue. 1748 * Note: setbackdq() may not put the thread 1749 * back on the same run queue where it originally 1750 * resided. 1751 * 1752 * We still requeue the thread even if the priority 1753 * is unchanged to preserve round-robin (and other) 1754 * effects between threads of the same priority. 1755 */ 1756 on_rq = dispdeq(t); 1757 ASSERT(on_rq); 1758 t->t_pri = disp_pri; 1759 if (front) { 1760 setfrontdq(t); 1761 } else { 1762 setbackdq(t); 1763 } 1764 } 1765 return (on_rq); 1766 } 1767