1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #include <sys/types.h> 28 #include <sys/param.h> 29 #include <sys/sysmacros.h> 30 #include <sys/signal.h> 31 #include <sys/stack.h> 32 #include <sys/pcb.h> 33 #include <sys/user.h> 34 #include <sys/systm.h> 35 #include <sys/sysinfo.h> 36 #include <sys/errno.h> 37 #include <sys/cmn_err.h> 38 #include <sys/cred.h> 39 #include <sys/resource.h> 40 #include <sys/task.h> 41 #include <sys/project.h> 42 #include <sys/proc.h> 43 #include <sys/debug.h> 44 #include <sys/disp.h> 45 #include <sys/class.h> 46 #include <vm/seg_kmem.h> 47 #include <vm/seg_kp.h> 48 #include <sys/machlock.h> 49 #include <sys/kmem.h> 50 #include <sys/varargs.h> 51 #include <sys/turnstile.h> 52 #include <sys/poll.h> 53 #include <sys/vtrace.h> 54 #include <sys/callb.h> 55 #include <c2/audit.h> 56 #include <sys/tnf.h> 57 #include <sys/sobject.h> 58 #include <sys/cpupart.h> 59 #include <sys/pset.h> 60 #include <sys/door.h> 61 #include <sys/spl.h> 62 #include <sys/copyops.h> 63 #include <sys/rctl.h> 64 #include <sys/brand.h> 65 #include <sys/pool.h> 66 #include <sys/zone.h> 67 #include <sys/tsol/label.h> 68 #include <sys/tsol/tndb.h> 69 #include <sys/cpc_impl.h> 70 #include <sys/sdt.h> 71 #include <sys/reboot.h> 72 #include <sys/kdi.h> 73 #include <sys/schedctl.h> 74 #include <sys/waitq.h> 75 #include <sys/cpucaps.h> 76 #include <sys/kiconv.h> 77 78 struct kmem_cache *thread_cache; /* cache of free threads */ 79 struct kmem_cache *lwp_cache; /* cache of free lwps */ 80 struct kmem_cache *turnstile_cache; /* cache of free turnstiles */ 81 82 /* 83 * allthreads is only for use by kmem_readers. All kernel loops can use 84 * the current thread as a start/end point. 85 */ 86 static kthread_t *allthreads = &t0; /* circular list of all threads */ 87 88 static kcondvar_t reaper_cv; /* synchronization var */ 89 kthread_t *thread_deathrow; /* circular list of reapable threads */ 90 kthread_t *lwp_deathrow; /* circular list of reapable threads */ 91 kmutex_t reaplock; /* protects lwp and thread deathrows */ 92 int thread_reapcnt = 0; /* number of threads on deathrow */ 93 int lwp_reapcnt = 0; /* number of lwps on deathrow */ 94 int reaplimit = 16; /* delay reaping until reaplimit */ 95 96 thread_free_lock_t *thread_free_lock; 97 /* protects tick thread from reaper */ 98 99 extern int nthread; 100 101 /* System Scheduling classes. */ 102 id_t syscid; /* system scheduling class ID */ 103 id_t sysdccid = CLASS_UNUSED; /* reset when SDC loads */ 104 105 void *segkp_thread; /* cookie for segkp pool */ 106 107 int lwp_cache_sz = 32; 108 int t_cache_sz = 8; 109 static kt_did_t next_t_id = 1; 110 111 /* Default mode for thread binding to CPUs and processor sets */ 112 int default_binding_mode = TB_ALLHARD; 113 114 /* 115 * Min/Max stack sizes for stack size parameters 116 */ 117 #define MAX_STKSIZE (32 * DEFAULTSTKSZ) 118 #define MIN_STKSIZE DEFAULTSTKSZ 119 120 /* 121 * default_stksize overrides lwp_default_stksize if it is set. 122 */ 123 int default_stksize; 124 int lwp_default_stksize; 125 126 static zone_key_t zone_thread_key; 127 128 unsigned int kmem_stackinfo; /* stackinfo feature on-off */ 129 kmem_stkinfo_t *kmem_stkinfo_log; /* stackinfo circular log */ 130 static kmutex_t kmem_stkinfo_lock; /* protects kmem_stkinfo_log */ 131 132 /* 133 * forward declarations for internal thread specific data (tsd) 134 */ 135 static void *tsd_realloc(void *, size_t, size_t); 136 137 void thread_reaper(void); 138 139 /* forward declarations for stackinfo feature */ 140 static void stkinfo_begin(kthread_t *); 141 static void stkinfo_end(kthread_t *); 142 static size_t stkinfo_percent(caddr_t, caddr_t, caddr_t); 143 144 /*ARGSUSED*/ 145 static int 146 turnstile_constructor(void *buf, void *cdrarg, int kmflags) 147 { 148 bzero(buf, sizeof (turnstile_t)); 149 return (0); 150 } 151 152 /*ARGSUSED*/ 153 static void 154 turnstile_destructor(void *buf, void *cdrarg) 155 { 156 turnstile_t *ts = buf; 157 158 ASSERT(ts->ts_free == NULL); 159 ASSERT(ts->ts_waiters == 0); 160 ASSERT(ts->ts_inheritor == NULL); 161 ASSERT(ts->ts_sleepq[0].sq_first == NULL); 162 ASSERT(ts->ts_sleepq[1].sq_first == NULL); 163 } 164 165 void 166 thread_init(void) 167 { 168 kthread_t *tp; 169 extern char sys_name[]; 170 extern void idle(); 171 struct cpu *cpu = CPU; 172 int i; 173 kmutex_t *lp; 174 175 mutex_init(&reaplock, NULL, MUTEX_SPIN, (void *)ipltospl(DISP_LEVEL)); 176 thread_free_lock = 177 kmem_alloc(sizeof (thread_free_lock_t) * THREAD_FREE_NUM, KM_SLEEP); 178 for (i = 0; i < THREAD_FREE_NUM; i++) { 179 lp = &thread_free_lock[i].tf_lock; 180 mutex_init(lp, NULL, MUTEX_DEFAULT, NULL); 181 } 182 183 #if defined(__i386) || defined(__amd64) 184 thread_cache = kmem_cache_create("thread_cache", sizeof (kthread_t), 185 PTR24_ALIGN, NULL, NULL, NULL, NULL, NULL, 0); 186 187 /* 188 * "struct _klwp" includes a "struct pcb", which includes a 189 * "struct fpu", which needs to be 16-byte aligned on amd64 190 * (and even on i386 for fxsave/fxrstor). 191 */ 192 lwp_cache = kmem_cache_create("lwp_cache", sizeof (klwp_t), 193 16, NULL, NULL, NULL, NULL, NULL, 0); 194 #else 195 /* 196 * Allocate thread structures from static_arena. This prevents 197 * issues where a thread tries to relocate its own thread 198 * structure and touches it after the mapping has been suspended. 199 */ 200 thread_cache = kmem_cache_create("thread_cache", sizeof (kthread_t), 201 PTR24_ALIGN, NULL, NULL, NULL, NULL, static_arena, 0); 202 203 lwp_stk_cache_init(); 204 205 lwp_cache = kmem_cache_create("lwp_cache", sizeof (klwp_t), 206 0, NULL, NULL, NULL, NULL, NULL, 0); 207 #endif 208 209 turnstile_cache = kmem_cache_create("turnstile_cache", 210 sizeof (turnstile_t), 0, 211 turnstile_constructor, turnstile_destructor, NULL, NULL, NULL, 0); 212 213 label_init(); 214 cred_init(); 215 216 /* 217 * Initialize various resource management facilities. 218 */ 219 rctl_init(); 220 cpucaps_init(); 221 /* 222 * Zone_init() should be called before project_init() so that project ID 223 * for the first project is initialized correctly. 224 */ 225 zone_init(); 226 project_init(); 227 brand_init(); 228 kiconv_init(); 229 task_init(); 230 tcache_init(); 231 pool_init(); 232 233 curthread->t_ts = kmem_cache_alloc(turnstile_cache, KM_SLEEP); 234 235 /* 236 * Originally, we had two parameters to set default stack 237 * size: one for lwp's (lwp_default_stksize), and one for 238 * kernel-only threads (DEFAULTSTKSZ, a.k.a. _defaultstksz). 239 * Now we have a third parameter that overrides both if it is 240 * set to a legal stack size, called default_stksize. 241 */ 242 243 if (default_stksize == 0) { 244 default_stksize = DEFAULTSTKSZ; 245 } else if (default_stksize % PAGESIZE != 0 || 246 default_stksize > MAX_STKSIZE || 247 default_stksize < MIN_STKSIZE) { 248 cmn_err(CE_WARN, "Illegal stack size. Using %d", 249 (int)DEFAULTSTKSZ); 250 default_stksize = DEFAULTSTKSZ; 251 } else { 252 lwp_default_stksize = default_stksize; 253 } 254 255 if (lwp_default_stksize == 0) { 256 lwp_default_stksize = default_stksize; 257 } else if (lwp_default_stksize % PAGESIZE != 0 || 258 lwp_default_stksize > MAX_STKSIZE || 259 lwp_default_stksize < MIN_STKSIZE) { 260 cmn_err(CE_WARN, "Illegal stack size. Using %d", 261 default_stksize); 262 lwp_default_stksize = default_stksize; 263 } 264 265 segkp_lwp = segkp_cache_init(segkp, lwp_cache_sz, 266 lwp_default_stksize, 267 (KPD_NOWAIT | KPD_HASREDZONE | KPD_LOCKED)); 268 269 segkp_thread = segkp_cache_init(segkp, t_cache_sz, 270 default_stksize, KPD_HASREDZONE | KPD_LOCKED | KPD_NO_ANON); 271 272 (void) getcid(sys_name, &syscid); 273 curthread->t_cid = syscid; /* current thread is t0 */ 274 275 /* 276 * Set up the first CPU's idle thread. 277 * It runs whenever the CPU has nothing worthwhile to do. 278 */ 279 tp = thread_create(NULL, 0, idle, NULL, 0, &p0, TS_STOPPED, -1); 280 cpu->cpu_idle_thread = tp; 281 tp->t_preempt = 1; 282 tp->t_disp_queue = cpu->cpu_disp; 283 ASSERT(tp->t_disp_queue != NULL); 284 tp->t_bound_cpu = cpu; 285 tp->t_affinitycnt = 1; 286 287 /* 288 * Registering a thread in the callback table is usually 289 * done in the initialization code of the thread. In this 290 * case, we do it right after thread creation to avoid 291 * blocking idle thread while registering itself. It also 292 * avoids the possibility of reregistration in case a CPU 293 * restarts its idle thread. 294 */ 295 CALLB_CPR_INIT_SAFE(tp, "idle"); 296 297 /* 298 * Create the thread_reaper daemon. From this point on, exited 299 * threads will get reaped. 300 */ 301 (void) thread_create(NULL, 0, (void (*)())thread_reaper, 302 NULL, 0, &p0, TS_RUN, minclsyspri); 303 304 /* 305 * Finish initializing the kernel memory allocator now that 306 * thread_create() is available. 307 */ 308 kmem_thread_init(); 309 310 if (boothowto & RB_DEBUG) 311 kdi_dvec_thravail(); 312 } 313 314 /* 315 * Create a thread. 316 * 317 * thread_create() blocks for memory if necessary. It never fails. 318 * 319 * If stk is NULL, the thread is created at the base of the stack 320 * and cannot be swapped. 321 */ 322 kthread_t * 323 thread_create( 324 caddr_t stk, 325 size_t stksize, 326 void (*proc)(), 327 void *arg, 328 size_t len, 329 proc_t *pp, 330 int state, 331 pri_t pri) 332 { 333 kthread_t *t; 334 extern struct classfuncs sys_classfuncs; 335 turnstile_t *ts; 336 337 /* 338 * Every thread keeps a turnstile around in case it needs to block. 339 * The only reason the turnstile is not simply part of the thread 340 * structure is that we may have to break the association whenever 341 * more than one thread blocks on a given synchronization object. 342 * From a memory-management standpoint, turnstiles are like the 343 * "attached mblks" that hang off dblks in the streams allocator. 344 */ 345 ts = kmem_cache_alloc(turnstile_cache, KM_SLEEP); 346 347 if (stk == NULL) { 348 /* 349 * alloc both thread and stack in segkp chunk 350 */ 351 352 if (stksize < default_stksize) 353 stksize = default_stksize; 354 355 if (stksize == default_stksize) { 356 stk = (caddr_t)segkp_cache_get(segkp_thread); 357 } else { 358 stksize = roundup(stksize, PAGESIZE); 359 stk = (caddr_t)segkp_get(segkp, stksize, 360 (KPD_HASREDZONE | KPD_NO_ANON | KPD_LOCKED)); 361 } 362 363 ASSERT(stk != NULL); 364 365 /* 366 * The machine-dependent mutex code may require that 367 * thread pointers (since they may be used for mutex owner 368 * fields) have certain alignment requirements. 369 * PTR24_ALIGN is the size of the alignment quanta. 370 * XXX - assumes stack grows toward low addresses. 371 */ 372 if (stksize <= sizeof (kthread_t) + PTR24_ALIGN) 373 cmn_err(CE_PANIC, "thread_create: proposed stack size" 374 " too small to hold thread."); 375 #ifdef STACK_GROWTH_DOWN 376 stksize -= SA(sizeof (kthread_t) + PTR24_ALIGN - 1); 377 stksize &= -PTR24_ALIGN; /* make thread aligned */ 378 t = (kthread_t *)(stk + stksize); 379 bzero(t, sizeof (kthread_t)); 380 if (audit_active) 381 audit_thread_create(t); 382 t->t_stk = stk + stksize; 383 t->t_stkbase = stk; 384 #else /* stack grows to larger addresses */ 385 stksize -= SA(sizeof (kthread_t)); 386 t = (kthread_t *)(stk); 387 bzero(t, sizeof (kthread_t)); 388 t->t_stk = stk + sizeof (kthread_t); 389 t->t_stkbase = stk + stksize + sizeof (kthread_t); 390 #endif /* STACK_GROWTH_DOWN */ 391 t->t_flag |= T_TALLOCSTK; 392 t->t_swap = stk; 393 } else { 394 t = kmem_cache_alloc(thread_cache, KM_SLEEP); 395 bzero(t, sizeof (kthread_t)); 396 ASSERT(((uintptr_t)t & (PTR24_ALIGN - 1)) == 0); 397 if (audit_active) 398 audit_thread_create(t); 399 /* 400 * Initialize t_stk to the kernel stack pointer to use 401 * upon entry to the kernel 402 */ 403 #ifdef STACK_GROWTH_DOWN 404 t->t_stk = stk + stksize; 405 t->t_stkbase = stk; 406 #else 407 t->t_stk = stk; /* 3b2-like */ 408 t->t_stkbase = stk + stksize; 409 #endif /* STACK_GROWTH_DOWN */ 410 } 411 412 if (kmem_stackinfo != 0) { 413 stkinfo_begin(t); 414 } 415 416 /* set default stack flag */ 417 if (stksize == lwp_default_stksize) 418 t->t_flag |= T_DFLTSTK; 419 420 t->t_ts = ts; 421 422 /* 423 * p_cred could be NULL if it thread_create is called before cred_init 424 * is called in main. 425 */ 426 mutex_enter(&pp->p_crlock); 427 if (pp->p_cred) 428 crhold(t->t_cred = pp->p_cred); 429 mutex_exit(&pp->p_crlock); 430 t->t_start = gethrestime_sec(); 431 t->t_startpc = proc; 432 t->t_procp = pp; 433 t->t_clfuncs = &sys_classfuncs.thread; 434 t->t_cid = syscid; 435 t->t_pri = pri; 436 t->t_stime = ddi_get_lbolt(); 437 t->t_schedflag = TS_LOAD | TS_DONT_SWAP; 438 t->t_bind_cpu = PBIND_NONE; 439 t->t_bindflag = (uchar_t)default_binding_mode; 440 t->t_bind_pset = PS_NONE; 441 t->t_plockp = &pp->p_lock; 442 t->t_copyops = NULL; 443 t->t_taskq = NULL; 444 t->t_anttime = 0; 445 t->t_hatdepth = 0; 446 447 t->t_dtrace_vtime = 1; /* assure vtimestamp is always non-zero */ 448 449 CPU_STATS_ADDQ(CPU, sys, nthreads, 1); 450 #ifndef NPROBE 451 /* Kernel probe */ 452 tnf_thread_create(t); 453 #endif /* NPROBE */ 454 LOCK_INIT_CLEAR(&t->t_lock); 455 456 /* 457 * Callers who give us a NULL proc must do their own 458 * stack initialization. e.g. lwp_create() 459 */ 460 if (proc != NULL) { 461 t->t_stk = thread_stk_init(t->t_stk); 462 thread_load(t, proc, arg, len); 463 } 464 465 /* 466 * Put a hold on project0. If this thread is actually in a 467 * different project, then t_proj will be changed later in 468 * lwp_create(). All kernel-only threads must be in project 0. 469 */ 470 t->t_proj = project_hold(proj0p); 471 472 lgrp_affinity_init(&t->t_lgrp_affinity); 473 474 mutex_enter(&pidlock); 475 nthread++; 476 t->t_did = next_t_id++; 477 t->t_prev = curthread->t_prev; 478 t->t_next = curthread; 479 480 /* 481 * Add the thread to the list of all threads, and initialize 482 * its t_cpu pointer. We need to block preemption since 483 * cpu_offline walks the thread list looking for threads 484 * with t_cpu pointing to the CPU being offlined. We want 485 * to make sure that the list is consistent and that if t_cpu 486 * is set, the thread is on the list. 487 */ 488 kpreempt_disable(); 489 curthread->t_prev->t_next = t; 490 curthread->t_prev = t; 491 492 /* 493 * Threads should never have a NULL t_cpu pointer so assign it 494 * here. If the thread is being created with state TS_RUN a 495 * better CPU may be chosen when it is placed on the run queue. 496 * 497 * We need to keep kernel preemption disabled when setting all 498 * three fields to keep them in sync. Also, always create in 499 * the default partition since that's where kernel threads go 500 * (if this isn't a kernel thread, t_cpupart will be changed 501 * in lwp_create before setting the thread runnable). 502 */ 503 t->t_cpupart = &cp_default; 504 505 /* 506 * For now, affiliate this thread with the root lgroup. 507 * Since the kernel does not (presently) allocate its memory 508 * in a locality aware fashion, the root is an appropriate home. 509 * If this thread is later associated with an lwp, it will have 510 * it's lgroup re-assigned at that time. 511 */ 512 lgrp_move_thread(t, &cp_default.cp_lgrploads[LGRP_ROOTID], 1); 513 514 /* 515 * Inherit the current cpu. If this cpu isn't part of the chosen 516 * lgroup, a new cpu will be chosen by cpu_choose when the thread 517 * is ready to run. 518 */ 519 if (CPU->cpu_part == &cp_default) 520 t->t_cpu = CPU; 521 else 522 t->t_cpu = disp_lowpri_cpu(cp_default.cp_cpulist, t->t_lpl, 523 t->t_pri, NULL); 524 525 t->t_disp_queue = t->t_cpu->cpu_disp; 526 kpreempt_enable(); 527 528 /* 529 * Initialize thread state and the dispatcher lock pointer. 530 * Need to hold onto pidlock to block allthreads walkers until 531 * the state is set. 532 */ 533 switch (state) { 534 case TS_RUN: 535 curthread->t_oldspl = splhigh(); /* get dispatcher spl */ 536 THREAD_SET_STATE(t, TS_STOPPED, &transition_lock); 537 CL_SETRUN(t); 538 thread_unlock(t); 539 break; 540 541 case TS_ONPROC: 542 THREAD_ONPROC(t, t->t_cpu); 543 break; 544 545 case TS_FREE: 546 /* 547 * Free state will be used for intr threads. 548 * The interrupt routine must set the thread dispatcher 549 * lock pointer (t_lockp) if starting on a CPU 550 * other than the current one. 551 */ 552 THREAD_FREEINTR(t, CPU); 553 break; 554 555 case TS_STOPPED: 556 THREAD_SET_STATE(t, TS_STOPPED, &stop_lock); 557 break; 558 559 default: /* TS_SLEEP, TS_ZOMB or TS_TRANS */ 560 cmn_err(CE_PANIC, "thread_create: invalid state %d", state); 561 } 562 mutex_exit(&pidlock); 563 return (t); 564 } 565 566 /* 567 * Move thread to project0 and take care of project reference counters. 568 */ 569 void 570 thread_rele(kthread_t *t) 571 { 572 kproject_t *kpj; 573 574 thread_lock(t); 575 576 ASSERT(t == curthread || t->t_state == TS_FREE || t->t_procp == &p0); 577 kpj = ttoproj(t); 578 t->t_proj = proj0p; 579 580 thread_unlock(t); 581 582 if (kpj != proj0p) { 583 project_rele(kpj); 584 (void) project_hold(proj0p); 585 } 586 } 587 588 void 589 thread_exit(void) 590 { 591 kthread_t *t = curthread; 592 593 if ((t->t_proc_flag & TP_ZTHREAD) != 0) 594 cmn_err(CE_PANIC, "thread_exit: zthread_exit() not called"); 595 596 tsd_exit(); /* Clean up this thread's TSD */ 597 598 kcpc_passivate(); /* clean up performance counter state */ 599 600 /* 601 * No kernel thread should have called poll() without arranging 602 * calling pollcleanup() here. 603 */ 604 ASSERT(t->t_pollstate == NULL); 605 ASSERT(t->t_schedctl == NULL); 606 if (t->t_door) 607 door_slam(); /* in case thread did an upcall */ 608 609 #ifndef NPROBE 610 /* Kernel probe */ 611 if (t->t_tnf_tpdp) 612 tnf_thread_exit(); 613 #endif /* NPROBE */ 614 615 thread_rele(t); 616 t->t_preempt++; 617 618 /* 619 * remove thread from the all threads list so that 620 * death-row can use the same pointers. 621 */ 622 mutex_enter(&pidlock); 623 t->t_next->t_prev = t->t_prev; 624 t->t_prev->t_next = t->t_next; 625 ASSERT(allthreads != t); /* t0 never exits */ 626 cv_broadcast(&t->t_joincv); /* wake up anyone in thread_join */ 627 mutex_exit(&pidlock); 628 629 if (t->t_ctx != NULL) 630 exitctx(t); 631 if (t->t_procp->p_pctx != NULL) 632 exitpctx(t->t_procp); 633 634 if (kmem_stackinfo != 0) { 635 stkinfo_end(t); 636 } 637 638 t->t_state = TS_ZOMB; /* set zombie thread */ 639 640 swtch_from_zombie(); /* give up the CPU */ 641 /* NOTREACHED */ 642 } 643 644 /* 645 * Check to see if the specified thread is active (defined as being on 646 * the thread list). This is certainly a slow way to do this; if there's 647 * ever a reason to speed it up, we could maintain a hash table of active 648 * threads indexed by their t_did. 649 */ 650 static kthread_t * 651 did_to_thread(kt_did_t tid) 652 { 653 kthread_t *t; 654 655 ASSERT(MUTEX_HELD(&pidlock)); 656 for (t = curthread->t_next; t != curthread; t = t->t_next) { 657 if (t->t_did == tid) 658 break; 659 } 660 if (t->t_did == tid) 661 return (t); 662 else 663 return (NULL); 664 } 665 666 /* 667 * Wait for specified thread to exit. Returns immediately if the thread 668 * could not be found, meaning that it has either already exited or never 669 * existed. 670 */ 671 void 672 thread_join(kt_did_t tid) 673 { 674 kthread_t *t; 675 676 ASSERT(tid != curthread->t_did); 677 ASSERT(tid != t0.t_did); 678 679 mutex_enter(&pidlock); 680 /* 681 * Make sure we check that the thread is on the thread list 682 * before blocking on it; otherwise we could end up blocking on 683 * a cv that's already been freed. In other words, don't cache 684 * the thread pointer across calls to cv_wait. 685 * 686 * The choice of loop invariant means that whenever a thread 687 * is taken off the allthreads list, a cv_broadcast must be 688 * performed on that thread's t_joincv to wake up any waiters. 689 * The broadcast doesn't have to happen right away, but it 690 * shouldn't be postponed indefinitely (e.g., by doing it in 691 * thread_free which may only be executed when the deathrow 692 * queue is processed. 693 */ 694 while (t = did_to_thread(tid)) 695 cv_wait(&t->t_joincv, &pidlock); 696 mutex_exit(&pidlock); 697 } 698 699 void 700 thread_free_prevent(kthread_t *t) 701 { 702 kmutex_t *lp; 703 704 lp = &thread_free_lock[THREAD_FREE_HASH(t)].tf_lock; 705 mutex_enter(lp); 706 } 707 708 void 709 thread_free_allow(kthread_t *t) 710 { 711 kmutex_t *lp; 712 713 lp = &thread_free_lock[THREAD_FREE_HASH(t)].tf_lock; 714 mutex_exit(lp); 715 } 716 717 static void 718 thread_free_barrier(kthread_t *t) 719 { 720 kmutex_t *lp; 721 722 lp = &thread_free_lock[THREAD_FREE_HASH(t)].tf_lock; 723 mutex_enter(lp); 724 mutex_exit(lp); 725 } 726 727 void 728 thread_free(kthread_t *t) 729 { 730 ASSERT(t != &t0 && t->t_state == TS_FREE); 731 ASSERT(t->t_door == NULL); 732 ASSERT(t->t_schedctl == NULL); 733 ASSERT(t->t_pollstate == NULL); 734 735 t->t_pri = 0; 736 t->t_pc = 0; 737 t->t_sp = 0; 738 t->t_wchan0 = NULL; 739 t->t_wchan = NULL; 740 if (t->t_cred != NULL) { 741 crfree(t->t_cred); 742 t->t_cred = 0; 743 } 744 if (t->t_pdmsg) { 745 kmem_free(t->t_pdmsg, strlen(t->t_pdmsg) + 1); 746 t->t_pdmsg = NULL; 747 } 748 if (audit_active) 749 audit_thread_free(t); 750 #ifndef NPROBE 751 if (t->t_tnf_tpdp) 752 tnf_thread_free(t); 753 #endif /* NPROBE */ 754 if (t->t_cldata) { 755 CL_EXITCLASS(t->t_cid, (caddr_t *)t->t_cldata); 756 } 757 if (t->t_rprof != NULL) { 758 kmem_free(t->t_rprof, sizeof (*t->t_rprof)); 759 t->t_rprof = NULL; 760 } 761 t->t_lockp = NULL; /* nothing should try to lock this thread now */ 762 if (t->t_lwp) 763 lwp_freeregs(t->t_lwp, 0); 764 if (t->t_ctx) 765 freectx(t, 0); 766 t->t_stk = NULL; 767 if (t->t_lwp) 768 lwp_stk_fini(t->t_lwp); 769 lock_clear(&t->t_lock); 770 771 if (t->t_ts->ts_waiters > 0) 772 panic("thread_free: turnstile still active"); 773 774 kmem_cache_free(turnstile_cache, t->t_ts); 775 776 free_afd(&t->t_activefd); 777 778 /* 779 * Barrier for the tick accounting code. The tick accounting code 780 * holds this lock to keep the thread from going away while it's 781 * looking at it. 782 */ 783 thread_free_barrier(t); 784 785 ASSERT(ttoproj(t) == proj0p); 786 project_rele(ttoproj(t)); 787 788 lgrp_affinity_free(&t->t_lgrp_affinity); 789 790 /* 791 * Free thread struct and its stack. 792 */ 793 if (t->t_flag & T_TALLOCSTK) { 794 /* thread struct is embedded in stack */ 795 segkp_release(segkp, t->t_swap); 796 mutex_enter(&pidlock); 797 nthread--; 798 mutex_exit(&pidlock); 799 } else { 800 if (t->t_swap) { 801 segkp_release(segkp, t->t_swap); 802 t->t_swap = NULL; 803 } 804 if (t->t_lwp) { 805 kmem_cache_free(lwp_cache, t->t_lwp); 806 t->t_lwp = NULL; 807 } 808 mutex_enter(&pidlock); 809 nthread--; 810 mutex_exit(&pidlock); 811 kmem_cache_free(thread_cache, t); 812 } 813 } 814 815 /* 816 * Removes threads associated with the given zone from a deathrow queue. 817 * tp is a pointer to the head of the deathrow queue, and countp is a 818 * pointer to the current deathrow count. Returns a linked list of 819 * threads removed from the list. 820 */ 821 static kthread_t * 822 thread_zone_cleanup(kthread_t **tp, int *countp, zoneid_t zoneid) 823 { 824 kthread_t *tmp, *list = NULL; 825 cred_t *cr; 826 827 ASSERT(MUTEX_HELD(&reaplock)); 828 while (*tp != NULL) { 829 if ((cr = (*tp)->t_cred) != NULL && crgetzoneid(cr) == zoneid) { 830 tmp = *tp; 831 *tp = tmp->t_forw; 832 tmp->t_forw = list; 833 list = tmp; 834 (*countp)--; 835 } else { 836 tp = &(*tp)->t_forw; 837 } 838 } 839 return (list); 840 } 841 842 static void 843 thread_reap_list(kthread_t *t) 844 { 845 kthread_t *next; 846 847 while (t != NULL) { 848 next = t->t_forw; 849 thread_free(t); 850 t = next; 851 } 852 } 853 854 /* ARGSUSED */ 855 static void 856 thread_zone_destroy(zoneid_t zoneid, void *unused) 857 { 858 kthread_t *t, *l; 859 860 mutex_enter(&reaplock); 861 /* 862 * Pull threads and lwps associated with zone off deathrow lists. 863 */ 864 t = thread_zone_cleanup(&thread_deathrow, &thread_reapcnt, zoneid); 865 l = thread_zone_cleanup(&lwp_deathrow, &lwp_reapcnt, zoneid); 866 mutex_exit(&reaplock); 867 868 /* 869 * Guard against race condition in mutex_owner_running: 870 * thread=owner(mutex) 871 * <interrupt> 872 * thread exits mutex 873 * thread exits 874 * thread reaped 875 * thread struct freed 876 * cpu = thread->t_cpu <- BAD POINTER DEREFERENCE. 877 * A cross call to all cpus will cause the interrupt handler 878 * to reset the PC if it is in mutex_owner_running, refreshing 879 * stale thread pointers. 880 */ 881 mutex_sync(); /* sync with mutex code */ 882 883 /* 884 * Reap threads 885 */ 886 thread_reap_list(t); 887 888 /* 889 * Reap lwps 890 */ 891 thread_reap_list(l); 892 } 893 894 /* 895 * cleanup zombie threads that are on deathrow. 896 */ 897 void 898 thread_reaper() 899 { 900 kthread_t *t, *l; 901 callb_cpr_t cprinfo; 902 903 /* 904 * Register callback to clean up threads when zone is destroyed. 905 */ 906 zone_key_create(&zone_thread_key, NULL, NULL, thread_zone_destroy); 907 908 CALLB_CPR_INIT(&cprinfo, &reaplock, callb_generic_cpr, "t_reaper"); 909 for (;;) { 910 mutex_enter(&reaplock); 911 while (thread_deathrow == NULL && lwp_deathrow == NULL) { 912 CALLB_CPR_SAFE_BEGIN(&cprinfo); 913 cv_wait(&reaper_cv, &reaplock); 914 CALLB_CPR_SAFE_END(&cprinfo, &reaplock); 915 } 916 /* 917 * mutex_sync() needs to be called when reaping, but 918 * not too often. We limit reaping rate to once 919 * per second. Reaplimit is max rate at which threads can 920 * be freed. Does not impact thread destruction/creation. 921 */ 922 t = thread_deathrow; 923 l = lwp_deathrow; 924 thread_deathrow = NULL; 925 lwp_deathrow = NULL; 926 thread_reapcnt = 0; 927 lwp_reapcnt = 0; 928 mutex_exit(&reaplock); 929 930 /* 931 * Guard against race condition in mutex_owner_running: 932 * thread=owner(mutex) 933 * <interrupt> 934 * thread exits mutex 935 * thread exits 936 * thread reaped 937 * thread struct freed 938 * cpu = thread->t_cpu <- BAD POINTER DEREFERENCE. 939 * A cross call to all cpus will cause the interrupt handler 940 * to reset the PC if it is in mutex_owner_running, refreshing 941 * stale thread pointers. 942 */ 943 mutex_sync(); /* sync with mutex code */ 944 /* 945 * Reap threads 946 */ 947 thread_reap_list(t); 948 949 /* 950 * Reap lwps 951 */ 952 thread_reap_list(l); 953 delay(hz); 954 } 955 } 956 957 /* 958 * This is called by lwpcreate, etc.() to put a lwp_deathrow thread onto 959 * thread_deathrow. The thread's state is changed already TS_FREE to indicate 960 * that is reapable. The thread already holds the reaplock, and was already 961 * freed. 962 */ 963 void 964 reapq_move_lq_to_tq(kthread_t *t) 965 { 966 ASSERT(t->t_state == TS_FREE); 967 ASSERT(MUTEX_HELD(&reaplock)); 968 t->t_forw = thread_deathrow; 969 thread_deathrow = t; 970 thread_reapcnt++; 971 if (lwp_reapcnt + thread_reapcnt > reaplimit) 972 cv_signal(&reaper_cv); /* wake the reaper */ 973 } 974 975 /* 976 * This is called by resume() to put a zombie thread onto deathrow. 977 * The thread's state is changed to TS_FREE to indicate that is reapable. 978 * This is called from the idle thread so it must not block - just spin. 979 */ 980 void 981 reapq_add(kthread_t *t) 982 { 983 mutex_enter(&reaplock); 984 985 /* 986 * lwp_deathrow contains only threads with lwp linkage 987 * that are of the default stacksize. Anything else goes 988 * on thread_deathrow. 989 */ 990 if (ttolwp(t) && (t->t_flag & T_DFLTSTK)) { 991 t->t_forw = lwp_deathrow; 992 lwp_deathrow = t; 993 lwp_reapcnt++; 994 } else { 995 t->t_forw = thread_deathrow; 996 thread_deathrow = t; 997 thread_reapcnt++; 998 } 999 if (lwp_reapcnt + thread_reapcnt > reaplimit) 1000 cv_signal(&reaper_cv); /* wake the reaper */ 1001 t->t_state = TS_FREE; 1002 lock_clear(&t->t_lock); 1003 1004 /* 1005 * Before we return, we need to grab and drop the thread lock for 1006 * the dead thread. At this point, the current thread is the idle 1007 * thread, and the dead thread's CPU lock points to the current 1008 * CPU -- and we must grab and drop the lock to synchronize with 1009 * a racing thread walking a blocking chain that the zombie thread 1010 * was recently in. By this point, that blocking chain is (by 1011 * definition) stale: the dead thread is not holding any locks, and 1012 * is therefore not in any blocking chains -- but if we do not regrab 1013 * our lock before freeing the dead thread's data structures, the 1014 * thread walking the (stale) blocking chain will die on memory 1015 * corruption when it attempts to drop the dead thread's lock. We 1016 * only need do this once because there is no way for the dead thread 1017 * to ever again be on a blocking chain: once we have grabbed and 1018 * dropped the thread lock, we are guaranteed that anyone that could 1019 * have seen this thread in a blocking chain can no longer see it. 1020 */ 1021 thread_lock(t); 1022 thread_unlock(t); 1023 1024 mutex_exit(&reaplock); 1025 } 1026 1027 /* 1028 * Install thread context ops for the current thread. 1029 */ 1030 void 1031 installctx( 1032 kthread_t *t, 1033 void *arg, 1034 void (*save)(void *), 1035 void (*restore)(void *), 1036 void (*fork)(void *, void *), 1037 void (*lwp_create)(void *, void *), 1038 void (*exit)(void *), 1039 void (*free)(void *, int)) 1040 { 1041 struct ctxop *ctx; 1042 1043 ctx = kmem_alloc(sizeof (struct ctxop), KM_SLEEP); 1044 ctx->save_op = save; 1045 ctx->restore_op = restore; 1046 ctx->fork_op = fork; 1047 ctx->lwp_create_op = lwp_create; 1048 ctx->exit_op = exit; 1049 ctx->free_op = free; 1050 ctx->arg = arg; 1051 ctx->next = t->t_ctx; 1052 t->t_ctx = ctx; 1053 } 1054 1055 /* 1056 * Remove the thread context ops from a thread. 1057 */ 1058 int 1059 removectx( 1060 kthread_t *t, 1061 void *arg, 1062 void (*save)(void *), 1063 void (*restore)(void *), 1064 void (*fork)(void *, void *), 1065 void (*lwp_create)(void *, void *), 1066 void (*exit)(void *), 1067 void (*free)(void *, int)) 1068 { 1069 struct ctxop *ctx, *prev_ctx; 1070 1071 /* 1072 * The incoming kthread_t (which is the thread for which the 1073 * context ops will be removed) should be one of the following: 1074 * 1075 * a) the current thread, 1076 * 1077 * b) a thread of a process that's being forked (SIDL), 1078 * 1079 * c) a thread that belongs to the same process as the current 1080 * thread and for which the current thread is the agent thread, 1081 * 1082 * d) a thread that is TS_STOPPED which is indicative of it 1083 * being (if curthread is not an agent) a thread being created 1084 * as part of an lwp creation. 1085 */ 1086 ASSERT(t == curthread || ttoproc(t)->p_stat == SIDL || 1087 ttoproc(t)->p_agenttp == curthread || t->t_state == TS_STOPPED); 1088 1089 /* 1090 * Serialize modifications to t->t_ctx to prevent the agent thread 1091 * and the target thread from racing with each other during lwp exit. 1092 */ 1093 mutex_enter(&t->t_ctx_lock); 1094 prev_ctx = NULL; 1095 for (ctx = t->t_ctx; ctx != NULL; ctx = ctx->next) { 1096 if (ctx->save_op == save && ctx->restore_op == restore && 1097 ctx->fork_op == fork && ctx->lwp_create_op == lwp_create && 1098 ctx->exit_op == exit && ctx->free_op == free && 1099 ctx->arg == arg) { 1100 if (prev_ctx) 1101 prev_ctx->next = ctx->next; 1102 else 1103 t->t_ctx = ctx->next; 1104 mutex_exit(&t->t_ctx_lock); 1105 if (ctx->free_op != NULL) 1106 (ctx->free_op)(ctx->arg, 0); 1107 kmem_free(ctx, sizeof (struct ctxop)); 1108 return (1); 1109 } 1110 prev_ctx = ctx; 1111 } 1112 mutex_exit(&t->t_ctx_lock); 1113 1114 return (0); 1115 } 1116 1117 void 1118 savectx(kthread_t *t) 1119 { 1120 struct ctxop *ctx; 1121 1122 ASSERT(t == curthread); 1123 for (ctx = t->t_ctx; ctx != 0; ctx = ctx->next) 1124 if (ctx->save_op != NULL) 1125 (ctx->save_op)(ctx->arg); 1126 } 1127 1128 void 1129 restorectx(kthread_t *t) 1130 { 1131 struct ctxop *ctx; 1132 1133 ASSERT(t == curthread); 1134 for (ctx = t->t_ctx; ctx != 0; ctx = ctx->next) 1135 if (ctx->restore_op != NULL) 1136 (ctx->restore_op)(ctx->arg); 1137 } 1138 1139 void 1140 forkctx(kthread_t *t, kthread_t *ct) 1141 { 1142 struct ctxop *ctx; 1143 1144 for (ctx = t->t_ctx; ctx != NULL; ctx = ctx->next) 1145 if (ctx->fork_op != NULL) 1146 (ctx->fork_op)(t, ct); 1147 } 1148 1149 /* 1150 * Note that this operator is only invoked via the _lwp_create 1151 * system call. The system may have other reasons to create lwps 1152 * e.g. the agent lwp or the doors unreferenced lwp. 1153 */ 1154 void 1155 lwp_createctx(kthread_t *t, kthread_t *ct) 1156 { 1157 struct ctxop *ctx; 1158 1159 for (ctx = t->t_ctx; ctx != NULL; ctx = ctx->next) 1160 if (ctx->lwp_create_op != NULL) 1161 (ctx->lwp_create_op)(t, ct); 1162 } 1163 1164 /* 1165 * exitctx is called from thread_exit() and lwp_exit() to perform any actions 1166 * needed when the thread/LWP leaves the processor for the last time. This 1167 * routine is not intended to deal with freeing memory; freectx() is used for 1168 * that purpose during thread_free(). This routine is provided to allow for 1169 * clean-up that can't wait until thread_free(). 1170 */ 1171 void 1172 exitctx(kthread_t *t) 1173 { 1174 struct ctxop *ctx; 1175 1176 for (ctx = t->t_ctx; ctx != NULL; ctx = ctx->next) 1177 if (ctx->exit_op != NULL) 1178 (ctx->exit_op)(t); 1179 } 1180 1181 /* 1182 * freectx is called from thread_free() and exec() to get 1183 * rid of old thread context ops. 1184 */ 1185 void 1186 freectx(kthread_t *t, int isexec) 1187 { 1188 struct ctxop *ctx; 1189 1190 while ((ctx = t->t_ctx) != NULL) { 1191 t->t_ctx = ctx->next; 1192 if (ctx->free_op != NULL) 1193 (ctx->free_op)(ctx->arg, isexec); 1194 kmem_free(ctx, sizeof (struct ctxop)); 1195 } 1196 } 1197 1198 /* 1199 * freectx_ctx is called from lwp_create() when lwp is reused from 1200 * lwp_deathrow and its thread structure is added to thread_deathrow. 1201 * The thread structure to which this ctx was attached may be already 1202 * freed by the thread reaper so free_op implementations shouldn't rely 1203 * on thread structure to which this ctx was attached still being around. 1204 */ 1205 void 1206 freectx_ctx(struct ctxop *ctx) 1207 { 1208 struct ctxop *nctx; 1209 1210 ASSERT(ctx != NULL); 1211 1212 do { 1213 nctx = ctx->next; 1214 if (ctx->free_op != NULL) 1215 (ctx->free_op)(ctx->arg, 0); 1216 kmem_free(ctx, sizeof (struct ctxop)); 1217 } while ((ctx = nctx) != NULL); 1218 } 1219 1220 /* 1221 * Set the thread running; arrange for it to be swapped in if necessary. 1222 */ 1223 void 1224 setrun_locked(kthread_t *t) 1225 { 1226 ASSERT(THREAD_LOCK_HELD(t)); 1227 if (t->t_state == TS_SLEEP) { 1228 /* 1229 * Take off sleep queue. 1230 */ 1231 SOBJ_UNSLEEP(t->t_sobj_ops, t); 1232 } else if (t->t_state & (TS_RUN | TS_ONPROC)) { 1233 /* 1234 * Already on dispatcher queue. 1235 */ 1236 return; 1237 } else if (t->t_state == TS_WAIT) { 1238 waitq_setrun(t); 1239 } else if (t->t_state == TS_STOPPED) { 1240 /* 1241 * All of the sending of SIGCONT (TC_XSTART) and /proc 1242 * (TC_PSTART) and lwp_continue() (TC_CSTART) must have 1243 * requested that the thread be run. 1244 * Just calling setrun() is not sufficient to set a stopped 1245 * thread running. TP_TXSTART is always set if the thread 1246 * is not stopped by a jobcontrol stop signal. 1247 * TP_TPSTART is always set if /proc is not controlling it. 1248 * TP_TCSTART is always set if lwp_suspend() didn't stop it. 1249 * The thread won't be stopped unless one of these 1250 * three mechanisms did it. 1251 * 1252 * These flags must be set before calling setrun_locked(t). 1253 * They can't be passed as arguments because the streams 1254 * code calls setrun() indirectly and the mechanism for 1255 * doing so admits only one argument. Note that the 1256 * thread must be locked in order to change t_schedflags. 1257 */ 1258 if ((t->t_schedflag & TS_ALLSTART) != TS_ALLSTART) 1259 return; 1260 /* 1261 * Process is no longer stopped (a thread is running). 1262 */ 1263 t->t_whystop = 0; 1264 t->t_whatstop = 0; 1265 /* 1266 * Strictly speaking, we do not have to clear these 1267 * flags here; they are cleared on entry to stop(). 1268 * However, they are confusing when doing kernel 1269 * debugging or when they are revealed by ps(1). 1270 */ 1271 t->t_schedflag &= ~TS_ALLSTART; 1272 THREAD_TRANSITION(t); /* drop stopped-thread lock */ 1273 ASSERT(t->t_lockp == &transition_lock); 1274 ASSERT(t->t_wchan0 == NULL && t->t_wchan == NULL); 1275 /* 1276 * Let the class put the process on the dispatcher queue. 1277 */ 1278 CL_SETRUN(t); 1279 } 1280 } 1281 1282 void 1283 setrun(kthread_t *t) 1284 { 1285 thread_lock(t); 1286 setrun_locked(t); 1287 thread_unlock(t); 1288 } 1289 1290 /* 1291 * Unpin an interrupted thread. 1292 * When an interrupt occurs, the interrupt is handled on the stack 1293 * of an interrupt thread, taken from a pool linked to the CPU structure. 1294 * 1295 * When swtch() is switching away from an interrupt thread because it 1296 * blocked or was preempted, this routine is called to complete the 1297 * saving of the interrupted thread state, and returns the interrupted 1298 * thread pointer so it may be resumed. 1299 * 1300 * Called by swtch() only at high spl. 1301 */ 1302 kthread_t * 1303 thread_unpin() 1304 { 1305 kthread_t *t = curthread; /* current thread */ 1306 kthread_t *itp; /* interrupted thread */ 1307 int i; /* interrupt level */ 1308 extern int intr_passivate(); 1309 1310 ASSERT(t->t_intr != NULL); 1311 1312 itp = t->t_intr; /* interrupted thread */ 1313 t->t_intr = NULL; /* clear interrupt ptr */ 1314 1315 /* 1316 * Get state from interrupt thread for the one 1317 * it interrupted. 1318 */ 1319 1320 i = intr_passivate(t, itp); 1321 1322 TRACE_5(TR_FAC_INTR, TR_INTR_PASSIVATE, 1323 "intr_passivate:level %d curthread %p (%T) ithread %p (%T)", 1324 i, t, t, itp, itp); 1325 1326 /* 1327 * Dissociate the current thread from the interrupted thread's LWP. 1328 */ 1329 t->t_lwp = NULL; 1330 1331 /* 1332 * Interrupt handlers above the level that spinlocks block must 1333 * not block. 1334 */ 1335 #if DEBUG 1336 if (i < 0 || i > LOCK_LEVEL) 1337 cmn_err(CE_PANIC, "thread_unpin: ipl out of range %x", i); 1338 #endif 1339 1340 /* 1341 * Compute the CPU's base interrupt level based on the active 1342 * interrupts. 1343 */ 1344 ASSERT(CPU->cpu_intr_actv & (1 << i)); 1345 set_base_spl(); 1346 1347 return (itp); 1348 } 1349 1350 /* 1351 * Create and initialize an interrupt thread. 1352 * Returns non-zero on error. 1353 * Called at spl7() or better. 1354 */ 1355 void 1356 thread_create_intr(struct cpu *cp) 1357 { 1358 kthread_t *tp; 1359 1360 tp = thread_create(NULL, 0, 1361 (void (*)())thread_create_intr, NULL, 0, &p0, TS_ONPROC, 0); 1362 1363 /* 1364 * Set the thread in the TS_FREE state. The state will change 1365 * to TS_ONPROC only while the interrupt is active. Think of these 1366 * as being on a private free list for the CPU. Being TS_FREE keeps 1367 * inactive interrupt threads out of debugger thread lists. 1368 * 1369 * We cannot call thread_create with TS_FREE because of the current 1370 * checks there for ONPROC. Fix this when thread_create takes flags. 1371 */ 1372 THREAD_FREEINTR(tp, cp); 1373 1374 /* 1375 * Nobody should ever reference the credentials of an interrupt 1376 * thread so make it NULL to catch any such references. 1377 */ 1378 tp->t_cred = NULL; 1379 tp->t_flag |= T_INTR_THREAD; 1380 tp->t_cpu = cp; 1381 tp->t_bound_cpu = cp; 1382 tp->t_disp_queue = cp->cpu_disp; 1383 tp->t_affinitycnt = 1; 1384 tp->t_preempt = 1; 1385 1386 /* 1387 * Don't make a user-requested binding on this thread so that 1388 * the processor can be offlined. 1389 */ 1390 tp->t_bind_cpu = PBIND_NONE; /* no USER-requested binding */ 1391 tp->t_bind_pset = PS_NONE; 1392 1393 #if defined(__i386) || defined(__amd64) 1394 tp->t_stk -= STACK_ALIGN; 1395 *(tp->t_stk) = 0; /* terminate intr thread stack */ 1396 #endif 1397 1398 /* 1399 * Link onto CPU's interrupt pool. 1400 */ 1401 tp->t_link = cp->cpu_intr_thread; 1402 cp->cpu_intr_thread = tp; 1403 } 1404 1405 /* 1406 * TSD -- THREAD SPECIFIC DATA 1407 */ 1408 static kmutex_t tsd_mutex; /* linked list spin lock */ 1409 static uint_t tsd_nkeys; /* size of destructor array */ 1410 /* per-key destructor funcs */ 1411 static void (**tsd_destructor)(void *); 1412 /* list of tsd_thread's */ 1413 static struct tsd_thread *tsd_list; 1414 1415 /* 1416 * Default destructor 1417 * Needed because NULL destructor means that the key is unused 1418 */ 1419 /* ARGSUSED */ 1420 void 1421 tsd_defaultdestructor(void *value) 1422 {} 1423 1424 /* 1425 * Create a key (index into per thread array) 1426 * Locks out tsd_create, tsd_destroy, and tsd_exit 1427 * May allocate memory with lock held 1428 */ 1429 void 1430 tsd_create(uint_t *keyp, void (*destructor)(void *)) 1431 { 1432 int i; 1433 uint_t nkeys; 1434 1435 /* 1436 * if key is allocated, do nothing 1437 */ 1438 mutex_enter(&tsd_mutex); 1439 if (*keyp) { 1440 mutex_exit(&tsd_mutex); 1441 return; 1442 } 1443 /* 1444 * find an unused key 1445 */ 1446 if (destructor == NULL) 1447 destructor = tsd_defaultdestructor; 1448 1449 for (i = 0; i < tsd_nkeys; ++i) 1450 if (tsd_destructor[i] == NULL) 1451 break; 1452 1453 /* 1454 * if no unused keys, increase the size of the destructor array 1455 */ 1456 if (i == tsd_nkeys) { 1457 if ((nkeys = (tsd_nkeys << 1)) == 0) 1458 nkeys = 1; 1459 tsd_destructor = 1460 (void (**)(void *))tsd_realloc((void *)tsd_destructor, 1461 (size_t)(tsd_nkeys * sizeof (void (*)(void *))), 1462 (size_t)(nkeys * sizeof (void (*)(void *)))); 1463 tsd_nkeys = nkeys; 1464 } 1465 1466 /* 1467 * allocate the next available unused key 1468 */ 1469 tsd_destructor[i] = destructor; 1470 *keyp = i + 1; 1471 mutex_exit(&tsd_mutex); 1472 } 1473 1474 /* 1475 * Destroy a key -- this is for unloadable modules 1476 * 1477 * Assumes that the caller is preventing tsd_set and tsd_get 1478 * Locks out tsd_create, tsd_destroy, and tsd_exit 1479 * May free memory with lock held 1480 */ 1481 void 1482 tsd_destroy(uint_t *keyp) 1483 { 1484 uint_t key; 1485 struct tsd_thread *tsd; 1486 1487 /* 1488 * protect the key namespace and our destructor lists 1489 */ 1490 mutex_enter(&tsd_mutex); 1491 key = *keyp; 1492 *keyp = 0; 1493 1494 ASSERT(key <= tsd_nkeys); 1495 1496 /* 1497 * if the key is valid 1498 */ 1499 if (key != 0) { 1500 uint_t k = key - 1; 1501 /* 1502 * for every thread with TSD, call key's destructor 1503 */ 1504 for (tsd = tsd_list; tsd; tsd = tsd->ts_next) { 1505 /* 1506 * no TSD for key in this thread 1507 */ 1508 if (key > tsd->ts_nkeys) 1509 continue; 1510 /* 1511 * call destructor for key 1512 */ 1513 if (tsd->ts_value[k] && tsd_destructor[k]) 1514 (*tsd_destructor[k])(tsd->ts_value[k]); 1515 /* 1516 * reset value for key 1517 */ 1518 tsd->ts_value[k] = NULL; 1519 } 1520 /* 1521 * actually free the key (NULL destructor == unused) 1522 */ 1523 tsd_destructor[k] = NULL; 1524 } 1525 1526 mutex_exit(&tsd_mutex); 1527 } 1528 1529 /* 1530 * Quickly return the per thread value that was stored with the specified key 1531 * Assumes the caller is protecting key from tsd_create and tsd_destroy 1532 */ 1533 void * 1534 tsd_get(uint_t key) 1535 { 1536 return (tsd_agent_get(curthread, key)); 1537 } 1538 1539 /* 1540 * Set a per thread value indexed with the specified key 1541 */ 1542 int 1543 tsd_set(uint_t key, void *value) 1544 { 1545 return (tsd_agent_set(curthread, key, value)); 1546 } 1547 1548 /* 1549 * Like tsd_get(), except that the agent lwp can get the tsd of 1550 * another thread in the same process (the agent thread only runs when the 1551 * process is completely stopped by /proc), or syslwp is creating a new lwp. 1552 */ 1553 void * 1554 tsd_agent_get(kthread_t *t, uint_t key) 1555 { 1556 struct tsd_thread *tsd = t->t_tsd; 1557 1558 ASSERT(t == curthread || 1559 ttoproc(t)->p_agenttp == curthread || t->t_state == TS_STOPPED); 1560 1561 if (key && tsd != NULL && key <= tsd->ts_nkeys) 1562 return (tsd->ts_value[key - 1]); 1563 return (NULL); 1564 } 1565 1566 /* 1567 * Like tsd_set(), except that the agent lwp can set the tsd of 1568 * another thread in the same process, or syslwp can set the tsd 1569 * of a thread it's in the middle of creating. 1570 * 1571 * Assumes the caller is protecting key from tsd_create and tsd_destroy 1572 * May lock out tsd_destroy (and tsd_create), may allocate memory with 1573 * lock held 1574 */ 1575 int 1576 tsd_agent_set(kthread_t *t, uint_t key, void *value) 1577 { 1578 struct tsd_thread *tsd = t->t_tsd; 1579 1580 ASSERT(t == curthread || 1581 ttoproc(t)->p_agenttp == curthread || t->t_state == TS_STOPPED); 1582 1583 if (key == 0) 1584 return (EINVAL); 1585 if (tsd == NULL) 1586 tsd = t->t_tsd = kmem_zalloc(sizeof (*tsd), KM_SLEEP); 1587 if (key <= tsd->ts_nkeys) { 1588 tsd->ts_value[key - 1] = value; 1589 return (0); 1590 } 1591 1592 ASSERT(key <= tsd_nkeys); 1593 1594 /* 1595 * lock out tsd_destroy() 1596 */ 1597 mutex_enter(&tsd_mutex); 1598 if (tsd->ts_nkeys == 0) { 1599 /* 1600 * Link onto list of threads with TSD 1601 */ 1602 if ((tsd->ts_next = tsd_list) != NULL) 1603 tsd_list->ts_prev = tsd; 1604 tsd_list = tsd; 1605 } 1606 1607 /* 1608 * Allocate thread local storage and set the value for key 1609 */ 1610 tsd->ts_value = tsd_realloc(tsd->ts_value, 1611 tsd->ts_nkeys * sizeof (void *), 1612 key * sizeof (void *)); 1613 tsd->ts_nkeys = key; 1614 tsd->ts_value[key - 1] = value; 1615 mutex_exit(&tsd_mutex); 1616 1617 return (0); 1618 } 1619 1620 1621 /* 1622 * Return the per thread value that was stored with the specified key 1623 * If necessary, create the key and the value 1624 * Assumes the caller is protecting *keyp from tsd_destroy 1625 */ 1626 void * 1627 tsd_getcreate(uint_t *keyp, void (*destroy)(void *), void *(*allocate)(void)) 1628 { 1629 void *value; 1630 uint_t key = *keyp; 1631 struct tsd_thread *tsd = curthread->t_tsd; 1632 1633 if (tsd == NULL) 1634 tsd = curthread->t_tsd = kmem_zalloc(sizeof (*tsd), KM_SLEEP); 1635 if (key && key <= tsd->ts_nkeys && (value = tsd->ts_value[key - 1])) 1636 return (value); 1637 if (key == 0) 1638 tsd_create(keyp, destroy); 1639 (void) tsd_set(*keyp, value = (*allocate)()); 1640 1641 return (value); 1642 } 1643 1644 /* 1645 * Called from thread_exit() to run the destructor function for each tsd 1646 * Locks out tsd_create and tsd_destroy 1647 * Assumes that the destructor *DOES NOT* use tsd 1648 */ 1649 void 1650 tsd_exit(void) 1651 { 1652 int i; 1653 struct tsd_thread *tsd = curthread->t_tsd; 1654 1655 if (tsd == NULL) 1656 return; 1657 1658 if (tsd->ts_nkeys == 0) { 1659 kmem_free(tsd, sizeof (*tsd)); 1660 curthread->t_tsd = NULL; 1661 return; 1662 } 1663 1664 /* 1665 * lock out tsd_create and tsd_destroy, call 1666 * the destructor, and mark the value as destroyed. 1667 */ 1668 mutex_enter(&tsd_mutex); 1669 1670 for (i = 0; i < tsd->ts_nkeys; i++) { 1671 if (tsd->ts_value[i] && tsd_destructor[i]) 1672 (*tsd_destructor[i])(tsd->ts_value[i]); 1673 tsd->ts_value[i] = NULL; 1674 } 1675 1676 /* 1677 * remove from linked list of threads with TSD 1678 */ 1679 if (tsd->ts_next) 1680 tsd->ts_next->ts_prev = tsd->ts_prev; 1681 if (tsd->ts_prev) 1682 tsd->ts_prev->ts_next = tsd->ts_next; 1683 if (tsd_list == tsd) 1684 tsd_list = tsd->ts_next; 1685 1686 mutex_exit(&tsd_mutex); 1687 1688 /* 1689 * free up the TSD 1690 */ 1691 kmem_free(tsd->ts_value, tsd->ts_nkeys * sizeof (void *)); 1692 kmem_free(tsd, sizeof (struct tsd_thread)); 1693 curthread->t_tsd = NULL; 1694 } 1695 1696 /* 1697 * realloc 1698 */ 1699 static void * 1700 tsd_realloc(void *old, size_t osize, size_t nsize) 1701 { 1702 void *new; 1703 1704 new = kmem_zalloc(nsize, KM_SLEEP); 1705 if (old) { 1706 bcopy(old, new, osize); 1707 kmem_free(old, osize); 1708 } 1709 return (new); 1710 } 1711 1712 /* 1713 * Return non-zero if an interrupt is being serviced. 1714 */ 1715 int 1716 servicing_interrupt() 1717 { 1718 int onintr = 0; 1719 1720 /* Are we an interrupt thread */ 1721 if (curthread->t_flag & T_INTR_THREAD) 1722 return (1); 1723 /* Are we servicing a high level interrupt? */ 1724 if (CPU_ON_INTR(CPU)) { 1725 kpreempt_disable(); 1726 onintr = CPU_ON_INTR(CPU); 1727 kpreempt_enable(); 1728 } 1729 return (onintr); 1730 } 1731 1732 1733 /* 1734 * Change the dispatch priority of a thread in the system. 1735 * Used when raising or lowering a thread's priority. 1736 * (E.g., priority inheritance) 1737 * 1738 * Since threads are queued according to their priority, we 1739 * we must check the thread's state to determine whether it 1740 * is on a queue somewhere. If it is, we've got to: 1741 * 1742 * o Dequeue the thread. 1743 * o Change its effective priority. 1744 * o Enqueue the thread. 1745 * 1746 * Assumptions: The thread whose priority we wish to change 1747 * must be locked before we call thread_change_(e)pri(). 1748 * The thread_change(e)pri() function doesn't drop the thread 1749 * lock--that must be done by its caller. 1750 */ 1751 void 1752 thread_change_epri(kthread_t *t, pri_t disp_pri) 1753 { 1754 uint_t state; 1755 1756 ASSERT(THREAD_LOCK_HELD(t)); 1757 1758 /* 1759 * If the inherited priority hasn't actually changed, 1760 * just return. 1761 */ 1762 if (t->t_epri == disp_pri) 1763 return; 1764 1765 state = t->t_state; 1766 1767 /* 1768 * If it's not on a queue, change the priority with impunity. 1769 */ 1770 if ((state & (TS_SLEEP | TS_RUN | TS_WAIT)) == 0) { 1771 t->t_epri = disp_pri; 1772 if (state == TS_ONPROC) { 1773 cpu_t *cp = t->t_disp_queue->disp_cpu; 1774 1775 if (t == cp->cpu_dispthread) 1776 cp->cpu_dispatch_pri = DISP_PRIO(t); 1777 } 1778 } else if (state == TS_SLEEP) { 1779 /* 1780 * Take the thread out of its sleep queue. 1781 * Change the inherited priority. 1782 * Re-enqueue the thread. 1783 * Each synchronization object exports a function 1784 * to do this in an appropriate manner. 1785 */ 1786 SOBJ_CHANGE_EPRI(t->t_sobj_ops, t, disp_pri); 1787 } else if (state == TS_WAIT) { 1788 /* 1789 * Re-enqueue a thread on the wait queue if its 1790 * effective priority needs to change. 1791 */ 1792 if (disp_pri != t->t_epri) 1793 waitq_change_pri(t, disp_pri); 1794 } else { 1795 /* 1796 * The thread is on a run queue. 1797 * Note: setbackdq() may not put the thread 1798 * back on the same run queue where it originally 1799 * resided. 1800 */ 1801 (void) dispdeq(t); 1802 t->t_epri = disp_pri; 1803 setbackdq(t); 1804 } 1805 schedctl_set_cidpri(t); 1806 } 1807 1808 /* 1809 * Function: Change the t_pri field of a thread. 1810 * Side Effects: Adjust the thread ordering on a run queue 1811 * or sleep queue, if necessary. 1812 * Returns: 1 if the thread was on a run queue, else 0. 1813 */ 1814 int 1815 thread_change_pri(kthread_t *t, pri_t disp_pri, int front) 1816 { 1817 uint_t state; 1818 int on_rq = 0; 1819 1820 ASSERT(THREAD_LOCK_HELD(t)); 1821 1822 state = t->t_state; 1823 THREAD_WILLCHANGE_PRI(t, disp_pri); 1824 1825 /* 1826 * If it's not on a queue, change the priority with impunity. 1827 */ 1828 if ((state & (TS_SLEEP | TS_RUN | TS_WAIT)) == 0) { 1829 t->t_pri = disp_pri; 1830 1831 if (state == TS_ONPROC) { 1832 cpu_t *cp = t->t_disp_queue->disp_cpu; 1833 1834 if (t == cp->cpu_dispthread) 1835 cp->cpu_dispatch_pri = DISP_PRIO(t); 1836 } 1837 } else if (state == TS_SLEEP) { 1838 /* 1839 * If the priority has changed, take the thread out of 1840 * its sleep queue and change the priority. 1841 * Re-enqueue the thread. 1842 * Each synchronization object exports a function 1843 * to do this in an appropriate manner. 1844 */ 1845 if (disp_pri != t->t_pri) 1846 SOBJ_CHANGE_PRI(t->t_sobj_ops, t, disp_pri); 1847 } else if (state == TS_WAIT) { 1848 /* 1849 * Re-enqueue a thread on the wait queue if its 1850 * priority needs to change. 1851 */ 1852 if (disp_pri != t->t_pri) 1853 waitq_change_pri(t, disp_pri); 1854 } else { 1855 /* 1856 * The thread is on a run queue. 1857 * Note: setbackdq() may not put the thread 1858 * back on the same run queue where it originally 1859 * resided. 1860 * 1861 * We still requeue the thread even if the priority 1862 * is unchanged to preserve round-robin (and other) 1863 * effects between threads of the same priority. 1864 */ 1865 on_rq = dispdeq(t); 1866 ASSERT(on_rq); 1867 t->t_pri = disp_pri; 1868 if (front) { 1869 setfrontdq(t); 1870 } else { 1871 setbackdq(t); 1872 } 1873 } 1874 schedctl_set_cidpri(t); 1875 return (on_rq); 1876 } 1877 1878 /* 1879 * Tunable kmem_stackinfo is set, fill the kernel thread stack with a 1880 * specific pattern. 1881 */ 1882 static void 1883 stkinfo_begin(kthread_t *t) 1884 { 1885 caddr_t start; /* stack start */ 1886 caddr_t end; /* stack end */ 1887 uint64_t *ptr; /* pattern pointer */ 1888 1889 /* 1890 * Stack grows up or down, see thread_create(), 1891 * compute stack memory area start and end (start < end). 1892 */ 1893 if (t->t_stk > t->t_stkbase) { 1894 /* stack grows down */ 1895 start = t->t_stkbase; 1896 end = t->t_stk; 1897 } else { 1898 /* stack grows up */ 1899 start = t->t_stk; 1900 end = t->t_stkbase; 1901 } 1902 1903 /* 1904 * Stackinfo pattern size is 8 bytes. Ensure proper 8 bytes 1905 * alignement for start and end in stack area boundaries 1906 * (protection against corrupt t_stkbase/t_stk data). 1907 */ 1908 if ((((uintptr_t)start) & 0x7) != 0) { 1909 start = (caddr_t)((((uintptr_t)start) & (~0x7)) + 8); 1910 } 1911 end = (caddr_t)(((uintptr_t)end) & (~0x7)); 1912 1913 if ((end <= start) || (end - start) > (1024 * 1024)) { 1914 /* negative or stack size > 1 meg, assume bogus */ 1915 return; 1916 } 1917 1918 /* fill stack area with a pattern (instead of zeros) */ 1919 ptr = (uint64_t *)((void *)start); 1920 while (ptr < (uint64_t *)((void *)end)) { 1921 *ptr++ = KMEM_STKINFO_PATTERN; 1922 } 1923 } 1924 1925 1926 /* 1927 * Tunable kmem_stackinfo is set, create stackinfo log if doesn't already exist, 1928 * compute the percentage of kernel stack really used, and set in the log 1929 * if it's the latest highest percentage. 1930 */ 1931 static void 1932 stkinfo_end(kthread_t *t) 1933 { 1934 caddr_t start; /* stack start */ 1935 caddr_t end; /* stack end */ 1936 uint64_t *ptr; /* pattern pointer */ 1937 size_t stksz; /* stack size */ 1938 size_t smallest = 0; 1939 size_t percent = 0; 1940 uint_t index = 0; 1941 uint_t i; 1942 static size_t smallest_percent = (size_t)-1; 1943 static uint_t full = 0; 1944 1945 /* create the stackinfo log, if doesn't already exist */ 1946 mutex_enter(&kmem_stkinfo_lock); 1947 if (kmem_stkinfo_log == NULL) { 1948 kmem_stkinfo_log = (kmem_stkinfo_t *) 1949 kmem_zalloc(KMEM_STKINFO_LOG_SIZE * 1950 (sizeof (kmem_stkinfo_t)), KM_NOSLEEP); 1951 if (kmem_stkinfo_log == NULL) { 1952 mutex_exit(&kmem_stkinfo_lock); 1953 return; 1954 } 1955 } 1956 mutex_exit(&kmem_stkinfo_lock); 1957 1958 /* 1959 * Stack grows up or down, see thread_create(), 1960 * compute stack memory area start and end (start < end). 1961 */ 1962 if (t->t_stk > t->t_stkbase) { 1963 /* stack grows down */ 1964 start = t->t_stkbase; 1965 end = t->t_stk; 1966 } else { 1967 /* stack grows up */ 1968 start = t->t_stk; 1969 end = t->t_stkbase; 1970 } 1971 1972 /* stack size as found in kthread_t */ 1973 stksz = end - start; 1974 1975 /* 1976 * Stackinfo pattern size is 8 bytes. Ensure proper 8 bytes 1977 * alignement for start and end in stack area boundaries 1978 * (protection against corrupt t_stkbase/t_stk data). 1979 */ 1980 if ((((uintptr_t)start) & 0x7) != 0) { 1981 start = (caddr_t)((((uintptr_t)start) & (~0x7)) + 8); 1982 } 1983 end = (caddr_t)(((uintptr_t)end) & (~0x7)); 1984 1985 if ((end <= start) || (end - start) > (1024 * 1024)) { 1986 /* negative or stack size > 1 meg, assume bogus */ 1987 return; 1988 } 1989 1990 /* search until no pattern in the stack */ 1991 if (t->t_stk > t->t_stkbase) { 1992 /* stack grows down */ 1993 #if defined(__i386) || defined(__amd64) 1994 /* 1995 * 6 longs are pushed on stack, see thread_load(). Skip 1996 * them, so if kthread has never run, percent is zero. 1997 * 8 bytes alignement is preserved for a 32 bit kernel, 1998 * 6 x 4 = 24, 24 is a multiple of 8. 1999 * 2000 */ 2001 end -= (6 * sizeof (long)); 2002 #endif 2003 ptr = (uint64_t *)((void *)start); 2004 while (ptr < (uint64_t *)((void *)end)) { 2005 if (*ptr != KMEM_STKINFO_PATTERN) { 2006 percent = stkinfo_percent(end, 2007 start, (caddr_t)ptr); 2008 break; 2009 } 2010 ptr++; 2011 } 2012 } else { 2013 /* stack grows up */ 2014 ptr = (uint64_t *)((void *)end); 2015 ptr--; 2016 while (ptr >= (uint64_t *)((void *)start)) { 2017 if (*ptr != KMEM_STKINFO_PATTERN) { 2018 percent = stkinfo_percent(start, 2019 end, (caddr_t)ptr); 2020 break; 2021 } 2022 ptr--; 2023 } 2024 } 2025 2026 DTRACE_PROBE3(stack__usage, kthread_t *, t, 2027 size_t, stksz, size_t, percent); 2028 2029 if (percent == 0) { 2030 return; 2031 } 2032 2033 mutex_enter(&kmem_stkinfo_lock); 2034 if (full == KMEM_STKINFO_LOG_SIZE && percent < smallest_percent) { 2035 /* 2036 * The log is full and already contains the highest values 2037 */ 2038 mutex_exit(&kmem_stkinfo_lock); 2039 return; 2040 } 2041 2042 /* keep a log of the highest used stack */ 2043 for (i = 0; i < KMEM_STKINFO_LOG_SIZE; i++) { 2044 if (kmem_stkinfo_log[i].percent == 0) { 2045 index = i; 2046 full++; 2047 break; 2048 } 2049 if (smallest == 0) { 2050 smallest = kmem_stkinfo_log[i].percent; 2051 index = i; 2052 continue; 2053 } 2054 if (kmem_stkinfo_log[i].percent < smallest) { 2055 smallest = kmem_stkinfo_log[i].percent; 2056 index = i; 2057 } 2058 } 2059 2060 if (percent >= kmem_stkinfo_log[index].percent) { 2061 kmem_stkinfo_log[index].kthread = (caddr_t)t; 2062 kmem_stkinfo_log[index].t_startpc = (caddr_t)t->t_startpc; 2063 kmem_stkinfo_log[index].start = start; 2064 kmem_stkinfo_log[index].stksz = stksz; 2065 kmem_stkinfo_log[index].percent = percent; 2066 kmem_stkinfo_log[index].t_tid = t->t_tid; 2067 kmem_stkinfo_log[index].cmd[0] = '\0'; 2068 if (t->t_tid != 0) { 2069 stksz = strlen((t->t_procp)->p_user.u_comm); 2070 if (stksz >= KMEM_STKINFO_STR_SIZE) { 2071 stksz = KMEM_STKINFO_STR_SIZE - 1; 2072 kmem_stkinfo_log[index].cmd[stksz] = '\0'; 2073 } else { 2074 stksz += 1; 2075 } 2076 (void) memcpy(kmem_stkinfo_log[index].cmd, 2077 (t->t_procp)->p_user.u_comm, stksz); 2078 } 2079 if (percent < smallest_percent) { 2080 smallest_percent = percent; 2081 } 2082 } 2083 mutex_exit(&kmem_stkinfo_lock); 2084 } 2085 2086 /* 2087 * Tunable kmem_stackinfo is set, compute stack utilization percentage. 2088 */ 2089 static size_t 2090 stkinfo_percent(caddr_t t_stk, caddr_t t_stkbase, caddr_t sp) 2091 { 2092 size_t percent; 2093 size_t s; 2094 2095 if (t_stk > t_stkbase) { 2096 /* stack grows down */ 2097 if (sp > t_stk) { 2098 return (0); 2099 } 2100 if (sp < t_stkbase) { 2101 return (100); 2102 } 2103 percent = t_stk - sp + 1; 2104 s = t_stk - t_stkbase + 1; 2105 } else { 2106 /* stack grows up */ 2107 if (sp < t_stk) { 2108 return (0); 2109 } 2110 if (sp > t_stkbase) { 2111 return (100); 2112 } 2113 percent = sp - t_stk + 1; 2114 s = t_stkbase - t_stk + 1; 2115 } 2116 percent = ((100 * percent) / s) + 1; 2117 if (percent > 100) { 2118 percent = 100; 2119 } 2120 return (percent); 2121 } 2122