1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 #include <sys/types.h> 29 #include <sys/param.h> 30 #include <sys/sysmacros.h> 31 #include <sys/signal.h> 32 #include <sys/stack.h> 33 #include <sys/pcb.h> 34 #include <sys/user.h> 35 #include <sys/systm.h> 36 #include <sys/sysinfo.h> 37 #include <sys/var.h> 38 #include <sys/errno.h> 39 #include <sys/cmn_err.h> 40 #include <sys/cred.h> 41 #include <sys/resource.h> 42 #include <sys/task.h> 43 #include <sys/project.h> 44 #include <sys/proc.h> 45 #include <sys/debug.h> 46 #include <sys/inline.h> 47 #include <sys/disp.h> 48 #include <sys/class.h> 49 #include <vm/seg_kmem.h> 50 #include <vm/seg_kp.h> 51 #include <sys/machlock.h> 52 #include <sys/kmem.h> 53 #include <sys/varargs.h> 54 #include <sys/turnstile.h> 55 #include <sys/poll.h> 56 #include <sys/vtrace.h> 57 #include <sys/callb.h> 58 #include <c2/audit.h> 59 #include <sys/tnf.h> 60 #include <sys/sobject.h> 61 #include <sys/cpupart.h> 62 #include <sys/pset.h> 63 #include <sys/door.h> 64 #include <sys/spl.h> 65 #include <sys/copyops.h> 66 #include <sys/rctl.h> 67 #include <sys/brand.h> 68 #include <sys/pool.h> 69 #include <sys/zone.h> 70 #include <sys/tsol/label.h> 71 #include <sys/tsol/tndb.h> 72 #include <sys/cpc_impl.h> 73 #include <sys/sdt.h> 74 #include <sys/reboot.h> 75 #include <sys/kdi.h> 76 #include <sys/waitq.h> 77 #include <sys/cpucaps.h> 78 #include <inet/ip.h> 79 #include <inet/ip_if.h> 80 81 struct kmem_cache *thread_cache; /* cache of free threads */ 82 struct kmem_cache *lwp_cache; /* cache of free lwps */ 83 struct kmem_cache *turnstile_cache; /* cache of free turnstiles */ 84 85 /* 86 * allthreads is only for use by kmem_readers. All kernel loops can use 87 * the current thread as a start/end point. 88 */ 89 static kthread_t *allthreads = &t0; /* circular list of all threads */ 90 91 static kcondvar_t reaper_cv; /* synchronization var */ 92 kthread_t *thread_deathrow; /* circular list of reapable threads */ 93 kthread_t *lwp_deathrow; /* circular list of reapable threads */ 94 kmutex_t reaplock; /* protects lwp and thread deathrows */ 95 kmutex_t thread_free_lock; /* protects clock from reaper */ 96 int thread_reapcnt = 0; /* number of threads on deathrow */ 97 int lwp_reapcnt = 0; /* number of lwps on deathrow */ 98 int reaplimit = 16; /* delay reaping until reaplimit */ 99 100 extern int nthread; 101 102 id_t syscid; /* system scheduling class ID */ 103 void *segkp_thread; /* cookie for segkp pool */ 104 105 int lwp_cache_sz = 32; 106 int t_cache_sz = 8; 107 static kt_did_t next_t_id = 1; 108 109 /* 110 * Min/Max stack sizes for stack size parameters 111 */ 112 #define MAX_STKSIZE (32 * DEFAULTSTKSZ) 113 #define MIN_STKSIZE DEFAULTSTKSZ 114 115 /* 116 * default_stksize overrides lwp_default_stksize if it is set. 117 */ 118 int default_stksize; 119 int lwp_default_stksize; 120 121 static zone_key_t zone_thread_key; 122 123 /* 124 * forward declarations for internal thread specific data (tsd) 125 */ 126 static void *tsd_realloc(void *, size_t, size_t); 127 128 void thread_reaper(void); 129 130 /*ARGSUSED*/ 131 static int 132 turnstile_constructor(void *buf, void *cdrarg, int kmflags) 133 { 134 bzero(buf, sizeof (turnstile_t)); 135 return (0); 136 } 137 138 /*ARGSUSED*/ 139 static void 140 turnstile_destructor(void *buf, void *cdrarg) 141 { 142 turnstile_t *ts = buf; 143 144 ASSERT(ts->ts_free == NULL); 145 ASSERT(ts->ts_waiters == 0); 146 ASSERT(ts->ts_inheritor == NULL); 147 ASSERT(ts->ts_sleepq[0].sq_first == NULL); 148 ASSERT(ts->ts_sleepq[1].sq_first == NULL); 149 } 150 151 void 152 thread_init(void) 153 { 154 kthread_t *tp; 155 extern char sys_name[]; 156 extern void idle(); 157 struct cpu *cpu = CPU; 158 159 mutex_init(&reaplock, NULL, MUTEX_SPIN, (void *)ipltospl(DISP_LEVEL)); 160 161 #if defined(__i386) || defined(__amd64) 162 thread_cache = kmem_cache_create("thread_cache", sizeof (kthread_t), 163 PTR24_ALIGN, NULL, NULL, NULL, NULL, NULL, 0); 164 165 /* 166 * "struct _klwp" includes a "struct pcb", which includes a 167 * "struct fpu", which needs to be 16-byte aligned on amd64 168 * (and even on i386 for fxsave/fxrstor). 169 */ 170 lwp_cache = kmem_cache_create("lwp_cache", sizeof (klwp_t), 171 16, NULL, NULL, NULL, NULL, NULL, 0); 172 #else 173 /* 174 * Allocate thread structures from static_arena. This prevents 175 * issues where a thread tries to relocate its own thread 176 * structure and touches it after the mapping has been suspended. 177 */ 178 thread_cache = kmem_cache_create("thread_cache", sizeof (kthread_t), 179 PTR24_ALIGN, NULL, NULL, NULL, NULL, static_arena, 0); 180 181 lwp_stk_cache_init(); 182 183 lwp_cache = kmem_cache_create("lwp_cache", sizeof (klwp_t), 184 0, NULL, NULL, NULL, NULL, NULL, 0); 185 #endif 186 187 turnstile_cache = kmem_cache_create("turnstile_cache", 188 sizeof (turnstile_t), 0, 189 turnstile_constructor, turnstile_destructor, NULL, NULL, NULL, 0); 190 191 label_init(); 192 cred_init(); 193 194 /* 195 * Initialize various resource management facilities. 196 */ 197 rctl_init(); 198 cpucaps_init(); 199 /* 200 * Zone_init() should be called before project_init() so that project ID 201 * for the first project is initialized correctly. 202 */ 203 zone_init(); 204 project_init(); 205 brand_init(); 206 task_init(); 207 tcache_init(); 208 pool_init(); 209 210 curthread->t_ts = kmem_cache_alloc(turnstile_cache, KM_SLEEP); 211 212 /* 213 * Originally, we had two parameters to set default stack 214 * size: one for lwp's (lwp_default_stksize), and one for 215 * kernel-only threads (DEFAULTSTKSZ, a.k.a. _defaultstksz). 216 * Now we have a third parameter that overrides both if it is 217 * set to a legal stack size, called default_stksize. 218 */ 219 220 if (default_stksize == 0) { 221 default_stksize = DEFAULTSTKSZ; 222 } else if (default_stksize % PAGESIZE != 0 || 223 default_stksize > MAX_STKSIZE || 224 default_stksize < MIN_STKSIZE) { 225 cmn_err(CE_WARN, "Illegal stack size. Using %d", 226 (int)DEFAULTSTKSZ); 227 default_stksize = DEFAULTSTKSZ; 228 } else { 229 lwp_default_stksize = default_stksize; 230 } 231 232 if (lwp_default_stksize == 0) { 233 lwp_default_stksize = default_stksize; 234 } else if (lwp_default_stksize % PAGESIZE != 0 || 235 lwp_default_stksize > MAX_STKSIZE || 236 lwp_default_stksize < MIN_STKSIZE) { 237 cmn_err(CE_WARN, "Illegal stack size. Using %d", 238 default_stksize); 239 lwp_default_stksize = default_stksize; 240 } 241 242 segkp_lwp = segkp_cache_init(segkp, lwp_cache_sz, 243 lwp_default_stksize, 244 (KPD_NOWAIT | KPD_HASREDZONE | KPD_LOCKED)); 245 246 segkp_thread = segkp_cache_init(segkp, t_cache_sz, 247 default_stksize, KPD_HASREDZONE | KPD_LOCKED | KPD_NO_ANON); 248 249 (void) getcid(sys_name, &syscid); 250 curthread->t_cid = syscid; /* current thread is t0 */ 251 252 /* 253 * Set up the first CPU's idle thread. 254 * It runs whenever the CPU has nothing worthwhile to do. 255 */ 256 tp = thread_create(NULL, 0, idle, NULL, 0, &p0, TS_STOPPED, -1); 257 cpu->cpu_idle_thread = tp; 258 tp->t_preempt = 1; 259 tp->t_disp_queue = cpu->cpu_disp; 260 ASSERT(tp->t_disp_queue != NULL); 261 tp->t_bound_cpu = cpu; 262 tp->t_affinitycnt = 1; 263 264 /* 265 * Registering a thread in the callback table is usually 266 * done in the initialization code of the thread. In this 267 * case, we do it right after thread creation to avoid 268 * blocking idle thread while registering itself. It also 269 * avoids the possibility of reregistration in case a CPU 270 * restarts its idle thread. 271 */ 272 CALLB_CPR_INIT_SAFE(tp, "idle"); 273 274 /* 275 * Create the thread_reaper daemon. From this point on, exited 276 * threads will get reaped. 277 */ 278 (void) thread_create(NULL, 0, (void (*)())thread_reaper, 279 NULL, 0, &p0, TS_RUN, minclsyspri); 280 281 /* 282 * Finish initializing the kernel memory allocator now that 283 * thread_create() is available. 284 */ 285 kmem_thread_init(); 286 287 if (boothowto & RB_DEBUG) 288 kdi_dvec_thravail(); 289 } 290 291 /* 292 * Create a thread. 293 * 294 * thread_create() blocks for memory if necessary. It never fails. 295 * 296 * If stk is NULL, the thread is created at the base of the stack 297 * and cannot be swapped. 298 */ 299 kthread_t * 300 thread_create( 301 caddr_t stk, 302 size_t stksize, 303 void (*proc)(), 304 void *arg, 305 size_t len, 306 proc_t *pp, 307 int state, 308 pri_t pri) 309 { 310 kthread_t *t; 311 extern struct classfuncs sys_classfuncs; 312 turnstile_t *ts; 313 314 /* 315 * Every thread keeps a turnstile around in case it needs to block. 316 * The only reason the turnstile is not simply part of the thread 317 * structure is that we may have to break the association whenever 318 * more than one thread blocks on a given synchronization object. 319 * From a memory-management standpoint, turnstiles are like the 320 * "attached mblks" that hang off dblks in the streams allocator. 321 */ 322 ts = kmem_cache_alloc(turnstile_cache, KM_SLEEP); 323 324 if (stk == NULL) { 325 /* 326 * alloc both thread and stack in segkp chunk 327 */ 328 329 if (stksize < default_stksize) 330 stksize = default_stksize; 331 332 if (stksize == default_stksize) { 333 stk = (caddr_t)segkp_cache_get(segkp_thread); 334 } else { 335 stksize = roundup(stksize, PAGESIZE); 336 stk = (caddr_t)segkp_get(segkp, stksize, 337 (KPD_HASREDZONE | KPD_NO_ANON | KPD_LOCKED)); 338 } 339 340 ASSERT(stk != NULL); 341 342 /* 343 * The machine-dependent mutex code may require that 344 * thread pointers (since they may be used for mutex owner 345 * fields) have certain alignment requirements. 346 * PTR24_ALIGN is the size of the alignment quanta. 347 * XXX - assumes stack grows toward low addresses. 348 */ 349 if (stksize <= sizeof (kthread_t) + PTR24_ALIGN) 350 cmn_err(CE_PANIC, "thread_create: proposed stack size" 351 " too small to hold thread."); 352 #ifdef STACK_GROWTH_DOWN 353 stksize -= SA(sizeof (kthread_t) + PTR24_ALIGN - 1); 354 stksize &= -PTR24_ALIGN; /* make thread aligned */ 355 t = (kthread_t *)(stk + stksize); 356 bzero(t, sizeof (kthread_t)); 357 #ifdef C2_AUDIT 358 if (audit_active) 359 audit_thread_create(t); 360 #endif 361 t->t_stk = stk + stksize; 362 t->t_stkbase = stk; 363 #else /* stack grows to larger addresses */ 364 stksize -= SA(sizeof (kthread_t)); 365 t = (kthread_t *)(stk); 366 bzero(t, sizeof (kthread_t)); 367 t->t_stk = stk + sizeof (kthread_t); 368 t->t_stkbase = stk + stksize + sizeof (kthread_t); 369 #endif /* STACK_GROWTH_DOWN */ 370 t->t_flag |= T_TALLOCSTK; 371 t->t_swap = stk; 372 } else { 373 t = kmem_cache_alloc(thread_cache, KM_SLEEP); 374 bzero(t, sizeof (kthread_t)); 375 ASSERT(((uintptr_t)t & (PTR24_ALIGN - 1)) == 0); 376 #ifdef C2_AUDIT 377 if (audit_active) 378 audit_thread_create(t); 379 #endif 380 /* 381 * Initialize t_stk to the kernel stack pointer to use 382 * upon entry to the kernel 383 */ 384 #ifdef STACK_GROWTH_DOWN 385 t->t_stk = stk + stksize; 386 t->t_stkbase = stk; 387 #else 388 t->t_stk = stk; /* 3b2-like */ 389 t->t_stkbase = stk + stksize; 390 #endif /* STACK_GROWTH_DOWN */ 391 } 392 393 /* set default stack flag */ 394 if (stksize == lwp_default_stksize) 395 t->t_flag |= T_DFLTSTK; 396 397 t->t_ts = ts; 398 399 /* 400 * p_cred could be NULL if it thread_create is called before cred_init 401 * is called in main. 402 */ 403 mutex_enter(&pp->p_crlock); 404 if (pp->p_cred) 405 crhold(t->t_cred = pp->p_cred); 406 mutex_exit(&pp->p_crlock); 407 t->t_start = gethrestime_sec(); 408 t->t_startpc = proc; 409 t->t_procp = pp; 410 t->t_clfuncs = &sys_classfuncs.thread; 411 t->t_cid = syscid; 412 t->t_pri = pri; 413 t->t_stime = lbolt; 414 t->t_schedflag = TS_LOAD | TS_DONT_SWAP; 415 t->t_bind_cpu = PBIND_NONE; 416 t->t_bind_pset = PS_NONE; 417 t->t_plockp = &pp->p_lock; 418 t->t_copyops = NULL; 419 t->t_taskq = NULL; 420 t->t_anttime = 0; 421 t->t_hatdepth = 0; 422 423 t->t_dtrace_vtime = 1; /* assure vtimestamp is always non-zero */ 424 425 CPU_STATS_ADDQ(CPU, sys, nthreads, 1); 426 #ifndef NPROBE 427 /* Kernel probe */ 428 tnf_thread_create(t); 429 #endif /* NPROBE */ 430 LOCK_INIT_CLEAR(&t->t_lock); 431 432 /* 433 * Callers who give us a NULL proc must do their own 434 * stack initialization. e.g. lwp_create() 435 */ 436 if (proc != NULL) { 437 t->t_stk = thread_stk_init(t->t_stk); 438 thread_load(t, proc, arg, len); 439 } 440 441 /* 442 * Put a hold on project0. If this thread is actually in a 443 * different project, then t_proj will be changed later in 444 * lwp_create(). All kernel-only threads must be in project 0. 445 */ 446 t->t_proj = project_hold(proj0p); 447 448 lgrp_affinity_init(&t->t_lgrp_affinity); 449 450 mutex_enter(&pidlock); 451 nthread++; 452 t->t_did = next_t_id++; 453 t->t_prev = curthread->t_prev; 454 t->t_next = curthread; 455 456 /* 457 * Add the thread to the list of all threads, and initialize 458 * its t_cpu pointer. We need to block preemption since 459 * cpu_offline walks the thread list looking for threads 460 * with t_cpu pointing to the CPU being offlined. We want 461 * to make sure that the list is consistent and that if t_cpu 462 * is set, the thread is on the list. 463 */ 464 kpreempt_disable(); 465 curthread->t_prev->t_next = t; 466 curthread->t_prev = t; 467 468 /* 469 * Threads should never have a NULL t_cpu pointer so assign it 470 * here. If the thread is being created with state TS_RUN a 471 * better CPU may be chosen when it is placed on the run queue. 472 * 473 * We need to keep kernel preemption disabled when setting all 474 * three fields to keep them in sync. Also, always create in 475 * the default partition since that's where kernel threads go 476 * (if this isn't a kernel thread, t_cpupart will be changed 477 * in lwp_create before setting the thread runnable). 478 */ 479 t->t_cpupart = &cp_default; 480 481 /* 482 * For now, affiliate this thread with the root lgroup. 483 * Since the kernel does not (presently) allocate its memory 484 * in a locality aware fashion, the root is an appropriate home. 485 * If this thread is later associated with an lwp, it will have 486 * it's lgroup re-assigned at that time. 487 */ 488 lgrp_move_thread(t, &cp_default.cp_lgrploads[LGRP_ROOTID], 1); 489 490 /* 491 * Inherit the current cpu. If this cpu isn't part of the chosen 492 * lgroup, a new cpu will be chosen by cpu_choose when the thread 493 * is ready to run. 494 */ 495 if (CPU->cpu_part == &cp_default) 496 t->t_cpu = CPU; 497 else 498 t->t_cpu = disp_lowpri_cpu(cp_default.cp_cpulist, t->t_lpl, 499 t->t_pri, NULL); 500 501 t->t_disp_queue = t->t_cpu->cpu_disp; 502 kpreempt_enable(); 503 504 /* 505 * Initialize thread state and the dispatcher lock pointer. 506 * Need to hold onto pidlock to block allthreads walkers until 507 * the state is set. 508 */ 509 switch (state) { 510 case TS_RUN: 511 curthread->t_oldspl = splhigh(); /* get dispatcher spl */ 512 THREAD_SET_STATE(t, TS_STOPPED, &transition_lock); 513 CL_SETRUN(t); 514 thread_unlock(t); 515 break; 516 517 case TS_ONPROC: 518 THREAD_ONPROC(t, t->t_cpu); 519 break; 520 521 case TS_FREE: 522 /* 523 * Free state will be used for intr threads. 524 * The interrupt routine must set the thread dispatcher 525 * lock pointer (t_lockp) if starting on a CPU 526 * other than the current one. 527 */ 528 THREAD_FREEINTR(t, CPU); 529 break; 530 531 case TS_STOPPED: 532 THREAD_SET_STATE(t, TS_STOPPED, &stop_lock); 533 break; 534 535 default: /* TS_SLEEP, TS_ZOMB or TS_TRANS */ 536 cmn_err(CE_PANIC, "thread_create: invalid state %d", state); 537 } 538 mutex_exit(&pidlock); 539 return (t); 540 } 541 542 /* 543 * Move thread to project0 and take care of project reference counters. 544 */ 545 void 546 thread_rele(kthread_t *t) 547 { 548 kproject_t *kpj; 549 550 thread_lock(t); 551 552 ASSERT(t == curthread || t->t_state == TS_FREE || t->t_procp == &p0); 553 kpj = ttoproj(t); 554 t->t_proj = proj0p; 555 556 thread_unlock(t); 557 558 if (kpj != proj0p) { 559 project_rele(kpj); 560 (void) project_hold(proj0p); 561 } 562 } 563 564 /* 565 * This is a function which is called from thread_exit 566 * that can be used to debug reference count issues in IP. 567 */ 568 void (*ip_cleanup_func)(void); 569 570 void 571 thread_exit() 572 { 573 kthread_t *t = curthread; 574 575 if ((t->t_proc_flag & TP_ZTHREAD) != 0) 576 cmn_err(CE_PANIC, "thread_exit: zthread_exit() not called"); 577 578 if (ip_cleanup_func != NULL) 579 (*ip_cleanup_func)(); 580 581 tsd_exit(); /* Clean up this thread's TSD */ 582 583 kcpc_passivate(); /* clean up performance counter state */ 584 585 /* 586 * No kernel thread should have called poll() without arranging 587 * calling pollcleanup() here. 588 */ 589 ASSERT(t->t_pollstate == NULL); 590 ASSERT(t->t_schedctl == NULL); 591 if (t->t_door) 592 door_slam(); /* in case thread did an upcall */ 593 594 #ifndef NPROBE 595 /* Kernel probe */ 596 if (t->t_tnf_tpdp) 597 tnf_thread_exit(); 598 #endif /* NPROBE */ 599 600 thread_rele(t); 601 t->t_preempt++; 602 603 /* 604 * remove thread from the all threads list so that 605 * death-row can use the same pointers. 606 */ 607 mutex_enter(&pidlock); 608 t->t_next->t_prev = t->t_prev; 609 t->t_prev->t_next = t->t_next; 610 ASSERT(allthreads != t); /* t0 never exits */ 611 cv_broadcast(&t->t_joincv); /* wake up anyone in thread_join */ 612 mutex_exit(&pidlock); 613 614 if (t->t_ctx != NULL) 615 exitctx(t); 616 if (t->t_procp->p_pctx != NULL) 617 exitpctx(t->t_procp); 618 619 t->t_state = TS_ZOMB; /* set zombie thread */ 620 621 swtch_from_zombie(); /* give up the CPU */ 622 /* NOTREACHED */ 623 } 624 625 /* 626 * Check to see if the specified thread is active (defined as being on 627 * the thread list). This is certainly a slow way to do this; if there's 628 * ever a reason to speed it up, we could maintain a hash table of active 629 * threads indexed by their t_did. 630 */ 631 static kthread_t * 632 did_to_thread(kt_did_t tid) 633 { 634 kthread_t *t; 635 636 ASSERT(MUTEX_HELD(&pidlock)); 637 for (t = curthread->t_next; t != curthread; t = t->t_next) { 638 if (t->t_did == tid) 639 break; 640 } 641 if (t->t_did == tid) 642 return (t); 643 else 644 return (NULL); 645 } 646 647 /* 648 * Wait for specified thread to exit. Returns immediately if the thread 649 * could not be found, meaning that it has either already exited or never 650 * existed. 651 */ 652 void 653 thread_join(kt_did_t tid) 654 { 655 kthread_t *t; 656 657 ASSERT(tid != curthread->t_did); 658 ASSERT(tid != t0.t_did); 659 660 mutex_enter(&pidlock); 661 /* 662 * Make sure we check that the thread is on the thread list 663 * before blocking on it; otherwise we could end up blocking on 664 * a cv that's already been freed. In other words, don't cache 665 * the thread pointer across calls to cv_wait. 666 * 667 * The choice of loop invariant means that whenever a thread 668 * is taken off the allthreads list, a cv_broadcast must be 669 * performed on that thread's t_joincv to wake up any waiters. 670 * The broadcast doesn't have to happen right away, but it 671 * shouldn't be postponed indefinitely (e.g., by doing it in 672 * thread_free which may only be executed when the deathrow 673 * queue is processed. 674 */ 675 while (t = did_to_thread(tid)) 676 cv_wait(&t->t_joincv, &pidlock); 677 mutex_exit(&pidlock); 678 } 679 680 void 681 thread_free(kthread_t *t) 682 { 683 ASSERT(t != &t0 && t->t_state == TS_FREE); 684 ASSERT(t->t_door == NULL); 685 ASSERT(t->t_schedctl == NULL); 686 ASSERT(t->t_pollstate == NULL); 687 688 t->t_pri = 0; 689 t->t_pc = 0; 690 t->t_sp = 0; 691 t->t_wchan0 = NULL; 692 t->t_wchan = NULL; 693 if (t->t_cred != NULL) { 694 crfree(t->t_cred); 695 t->t_cred = 0; 696 } 697 if (t->t_pdmsg) { 698 kmem_free(t->t_pdmsg, strlen(t->t_pdmsg) + 1); 699 t->t_pdmsg = NULL; 700 } 701 #ifdef C2_AUDIT 702 if (audit_active) 703 audit_thread_free(t); 704 #endif 705 #ifndef NPROBE 706 if (t->t_tnf_tpdp) 707 tnf_thread_free(t); 708 #endif /* NPROBE */ 709 if (t->t_cldata) { 710 CL_EXITCLASS(t->t_cid, (caddr_t *)t->t_cldata); 711 } 712 if (t->t_rprof != NULL) { 713 kmem_free(t->t_rprof, sizeof (*t->t_rprof)); 714 t->t_rprof = NULL; 715 } 716 t->t_lockp = NULL; /* nothing should try to lock this thread now */ 717 if (t->t_lwp) 718 lwp_freeregs(t->t_lwp, 0); 719 if (t->t_ctx) 720 freectx(t, 0); 721 t->t_stk = NULL; 722 if (t->t_lwp) 723 lwp_stk_fini(t->t_lwp); 724 lock_clear(&t->t_lock); 725 726 if (t->t_ts->ts_waiters > 0) 727 panic("thread_free: turnstile still active"); 728 729 kmem_cache_free(turnstile_cache, t->t_ts); 730 731 free_afd(&t->t_activefd); 732 733 /* 734 * Barrier for clock thread. The clock holds this lock to 735 * keep the thread from going away while it's looking at it. 736 */ 737 mutex_enter(&thread_free_lock); 738 mutex_exit(&thread_free_lock); 739 740 ASSERT(ttoproj(t) == proj0p); 741 project_rele(ttoproj(t)); 742 743 lgrp_affinity_free(&t->t_lgrp_affinity); 744 745 /* 746 * Free thread struct and its stack. 747 */ 748 if (t->t_flag & T_TALLOCSTK) { 749 /* thread struct is embedded in stack */ 750 segkp_release(segkp, t->t_swap); 751 mutex_enter(&pidlock); 752 nthread--; 753 mutex_exit(&pidlock); 754 } else { 755 if (t->t_swap) { 756 segkp_release(segkp, t->t_swap); 757 t->t_swap = NULL; 758 } 759 if (t->t_lwp) { 760 kmem_cache_free(lwp_cache, t->t_lwp); 761 t->t_lwp = NULL; 762 } 763 mutex_enter(&pidlock); 764 nthread--; 765 mutex_exit(&pidlock); 766 kmem_cache_free(thread_cache, t); 767 } 768 } 769 770 /* 771 * Removes threads associated with the given zone from a deathrow queue. 772 * tp is a pointer to the head of the deathrow queue, and countp is a 773 * pointer to the current deathrow count. Returns a linked list of 774 * threads removed from the list. 775 */ 776 static kthread_t * 777 thread_zone_cleanup(kthread_t **tp, int *countp, zoneid_t zoneid) 778 { 779 kthread_t *tmp, *list = NULL; 780 cred_t *cr; 781 782 ASSERT(MUTEX_HELD(&reaplock)); 783 while (*tp != NULL) { 784 if ((cr = (*tp)->t_cred) != NULL && crgetzoneid(cr) == zoneid) { 785 tmp = *tp; 786 *tp = tmp->t_forw; 787 tmp->t_forw = list; 788 list = tmp; 789 (*countp)--; 790 } else { 791 tp = &(*tp)->t_forw; 792 } 793 } 794 return (list); 795 } 796 797 static void 798 thread_reap_list(kthread_t *t) 799 { 800 kthread_t *next; 801 802 while (t != NULL) { 803 next = t->t_forw; 804 thread_free(t); 805 t = next; 806 } 807 } 808 809 /* ARGSUSED */ 810 static void 811 thread_zone_destroy(zoneid_t zoneid, void *unused) 812 { 813 kthread_t *t, *l; 814 815 mutex_enter(&reaplock); 816 /* 817 * Pull threads and lwps associated with zone off deathrow lists. 818 */ 819 t = thread_zone_cleanup(&thread_deathrow, &thread_reapcnt, zoneid); 820 l = thread_zone_cleanup(&lwp_deathrow, &lwp_reapcnt, zoneid); 821 mutex_exit(&reaplock); 822 823 /* 824 * Reap threads 825 */ 826 thread_reap_list(t); 827 828 /* 829 * Reap lwps 830 */ 831 thread_reap_list(l); 832 } 833 834 /* 835 * cleanup zombie threads that are on deathrow. 836 */ 837 void 838 thread_reaper() 839 { 840 kthread_t *t, *l; 841 callb_cpr_t cprinfo; 842 843 /* 844 * Register callback to clean up threads when zone is destroyed. 845 */ 846 zone_key_create(&zone_thread_key, NULL, NULL, thread_zone_destroy); 847 848 CALLB_CPR_INIT(&cprinfo, &reaplock, callb_generic_cpr, "t_reaper"); 849 for (;;) { 850 mutex_enter(&reaplock); 851 while (thread_deathrow == NULL && lwp_deathrow == NULL) { 852 CALLB_CPR_SAFE_BEGIN(&cprinfo); 853 cv_wait(&reaper_cv, &reaplock); 854 CALLB_CPR_SAFE_END(&cprinfo, &reaplock); 855 } 856 t = thread_deathrow; 857 l = lwp_deathrow; 858 thread_deathrow = NULL; 859 lwp_deathrow = NULL; 860 thread_reapcnt = 0; 861 lwp_reapcnt = 0; 862 mutex_exit(&reaplock); 863 864 /* 865 * Reap threads 866 */ 867 thread_reap_list(t); 868 869 /* 870 * Reap lwps 871 */ 872 thread_reap_list(l); 873 } 874 } 875 876 /* 877 * This is called by resume() to put a zombie thread onto deathrow. 878 * The thread's state is changed to TS_FREE to indicate that is reapable. 879 * This is called from the idle thread so it must not block (just spin). 880 */ 881 void 882 reapq_add(kthread_t *t) 883 { 884 mutex_enter(&reaplock); 885 886 /* 887 * lwp_deathrow contains only threads with lwp linkage 888 * that are of the default stacksize. Anything else goes 889 * on thread_deathrow. 890 */ 891 if (ttolwp(t) && (t->t_flag & T_DFLTSTK)) { 892 t->t_forw = lwp_deathrow; 893 lwp_deathrow = t; 894 lwp_reapcnt++; 895 } else { 896 t->t_forw = thread_deathrow; 897 thread_deathrow = t; 898 thread_reapcnt++; 899 } 900 if (lwp_reapcnt + thread_reapcnt > reaplimit) 901 cv_signal(&reaper_cv); /* wake the reaper */ 902 t->t_state = TS_FREE; 903 lock_clear(&t->t_lock); 904 905 /* 906 * Before we return, we need to grab and drop the thread lock for 907 * the dead thread. At this point, the current thread is the idle 908 * thread, and the dead thread's CPU lock points to the current 909 * CPU -- and we must grab and drop the lock to synchronize with 910 * a racing thread walking a blocking chain that the zombie thread 911 * was recently in. By this point, that blocking chain is (by 912 * definition) stale: the dead thread is not holding any locks, and 913 * is therefore not in any blocking chains -- but if we do not regrab 914 * our lock before freeing the dead thread's data structures, the 915 * thread walking the (stale) blocking chain will die on memory 916 * corruption when it attempts to drop the dead thread's lock. We 917 * only need do this once because there is no way for the dead thread 918 * to ever again be on a blocking chain: once we have grabbed and 919 * dropped the thread lock, we are guaranteed that anyone that could 920 * have seen this thread in a blocking chain can no longer see it. 921 */ 922 thread_lock(t); 923 thread_unlock(t); 924 925 mutex_exit(&reaplock); 926 } 927 928 /* 929 * Install thread context ops for the current thread. 930 */ 931 void 932 installctx( 933 kthread_t *t, 934 void *arg, 935 void (*save)(void *), 936 void (*restore)(void *), 937 void (*fork)(void *, void *), 938 void (*lwp_create)(void *, void *), 939 void (*exit)(void *), 940 void (*free)(void *, int)) 941 { 942 struct ctxop *ctx; 943 944 ctx = kmem_alloc(sizeof (struct ctxop), KM_SLEEP); 945 ctx->save_op = save; 946 ctx->restore_op = restore; 947 ctx->fork_op = fork; 948 ctx->lwp_create_op = lwp_create; 949 ctx->exit_op = exit; 950 ctx->free_op = free; 951 ctx->arg = arg; 952 ctx->next = t->t_ctx; 953 t->t_ctx = ctx; 954 } 955 956 /* 957 * Remove the thread context ops from a thread. 958 */ 959 int 960 removectx( 961 kthread_t *t, 962 void *arg, 963 void (*save)(void *), 964 void (*restore)(void *), 965 void (*fork)(void *, void *), 966 void (*lwp_create)(void *, void *), 967 void (*exit)(void *), 968 void (*free)(void *, int)) 969 { 970 struct ctxop *ctx, *prev_ctx; 971 972 /* 973 * The incoming kthread_t (which is the thread for which the 974 * context ops will be removed) should be one of the following: 975 * 976 * a) the current thread, 977 * 978 * b) a thread of a process that's being forked (SIDL), 979 * 980 * c) a thread that belongs to the same process as the current 981 * thread and for which the current thread is the agent thread, 982 * 983 * d) a thread that is TS_STOPPED which is indicative of it 984 * being (if curthread is not an agent) a thread being created 985 * as part of an lwp creation. 986 */ 987 ASSERT(t == curthread || ttoproc(t)->p_stat == SIDL || 988 ttoproc(t)->p_agenttp == curthread || t->t_state == TS_STOPPED); 989 990 /* 991 * Serialize modifications to t->t_ctx to prevent the agent thread 992 * and the target thread from racing with each other during lwp exit. 993 */ 994 mutex_enter(&t->t_ctx_lock); 995 prev_ctx = NULL; 996 for (ctx = t->t_ctx; ctx != NULL; ctx = ctx->next) { 997 if (ctx->save_op == save && ctx->restore_op == restore && 998 ctx->fork_op == fork && ctx->lwp_create_op == lwp_create && 999 ctx->exit_op == exit && ctx->free_op == free && 1000 ctx->arg == arg) { 1001 if (prev_ctx) 1002 prev_ctx->next = ctx->next; 1003 else 1004 t->t_ctx = ctx->next; 1005 mutex_exit(&t->t_ctx_lock); 1006 if (ctx->free_op != NULL) 1007 (ctx->free_op)(ctx->arg, 0); 1008 kmem_free(ctx, sizeof (struct ctxop)); 1009 return (1); 1010 } 1011 prev_ctx = ctx; 1012 } 1013 mutex_exit(&t->t_ctx_lock); 1014 1015 return (0); 1016 } 1017 1018 void 1019 savectx(kthread_t *t) 1020 { 1021 struct ctxop *ctx; 1022 1023 ASSERT(t == curthread); 1024 for (ctx = t->t_ctx; ctx != 0; ctx = ctx->next) 1025 if (ctx->save_op != NULL) 1026 (ctx->save_op)(ctx->arg); 1027 } 1028 1029 void 1030 restorectx(kthread_t *t) 1031 { 1032 struct ctxop *ctx; 1033 1034 ASSERT(t == curthread); 1035 for (ctx = t->t_ctx; ctx != 0; ctx = ctx->next) 1036 if (ctx->restore_op != NULL) 1037 (ctx->restore_op)(ctx->arg); 1038 } 1039 1040 void 1041 forkctx(kthread_t *t, kthread_t *ct) 1042 { 1043 struct ctxop *ctx; 1044 1045 for (ctx = t->t_ctx; ctx != NULL; ctx = ctx->next) 1046 if (ctx->fork_op != NULL) 1047 (ctx->fork_op)(t, ct); 1048 } 1049 1050 /* 1051 * Note that this operator is only invoked via the _lwp_create 1052 * system call. The system may have other reasons to create lwps 1053 * e.g. the agent lwp or the doors unreferenced lwp. 1054 */ 1055 void 1056 lwp_createctx(kthread_t *t, kthread_t *ct) 1057 { 1058 struct ctxop *ctx; 1059 1060 for (ctx = t->t_ctx; ctx != NULL; ctx = ctx->next) 1061 if (ctx->lwp_create_op != NULL) 1062 (ctx->lwp_create_op)(t, ct); 1063 } 1064 1065 /* 1066 * exitctx is called from thread_exit() and lwp_exit() to perform any actions 1067 * needed when the thread/LWP leaves the processor for the last time. This 1068 * routine is not intended to deal with freeing memory; freectx() is used for 1069 * that purpose during thread_free(). This routine is provided to allow for 1070 * clean-up that can't wait until thread_free(). 1071 */ 1072 void 1073 exitctx(kthread_t *t) 1074 { 1075 struct ctxop *ctx; 1076 1077 for (ctx = t->t_ctx; ctx != NULL; ctx = ctx->next) 1078 if (ctx->exit_op != NULL) 1079 (ctx->exit_op)(t); 1080 } 1081 1082 /* 1083 * freectx is called from thread_free() and exec() to get 1084 * rid of old thread context ops. 1085 */ 1086 void 1087 freectx(kthread_t *t, int isexec) 1088 { 1089 struct ctxop *ctx; 1090 1091 while ((ctx = t->t_ctx) != NULL) { 1092 t->t_ctx = ctx->next; 1093 if (ctx->free_op != NULL) 1094 (ctx->free_op)(ctx->arg, isexec); 1095 kmem_free(ctx, sizeof (struct ctxop)); 1096 } 1097 } 1098 1099 /* 1100 * Set the thread running; arrange for it to be swapped in if necessary. 1101 */ 1102 void 1103 setrun_locked(kthread_t *t) 1104 { 1105 ASSERT(THREAD_LOCK_HELD(t)); 1106 if (t->t_state == TS_SLEEP) { 1107 /* 1108 * Take off sleep queue. 1109 */ 1110 SOBJ_UNSLEEP(t->t_sobj_ops, t); 1111 } else if (t->t_state & (TS_RUN | TS_ONPROC)) { 1112 /* 1113 * Already on dispatcher queue. 1114 */ 1115 return; 1116 } else if (t->t_state == TS_WAIT) { 1117 waitq_setrun(t); 1118 } else if (t->t_state == TS_STOPPED) { 1119 /* 1120 * All of the sending of SIGCONT (TC_XSTART) and /proc 1121 * (TC_PSTART) and lwp_continue() (TC_CSTART) must have 1122 * requested that the thread be run. 1123 * Just calling setrun() is not sufficient to set a stopped 1124 * thread running. TP_TXSTART is always set if the thread 1125 * is not stopped by a jobcontrol stop signal. 1126 * TP_TPSTART is always set if /proc is not controlling it. 1127 * TP_TCSTART is always set if lwp_suspend() didn't stop it. 1128 * The thread won't be stopped unless one of these 1129 * three mechanisms did it. 1130 * 1131 * These flags must be set before calling setrun_locked(t). 1132 * They can't be passed as arguments because the streams 1133 * code calls setrun() indirectly and the mechanism for 1134 * doing so admits only one argument. Note that the 1135 * thread must be locked in order to change t_schedflags. 1136 */ 1137 if ((t->t_schedflag & TS_ALLSTART) != TS_ALLSTART) 1138 return; 1139 /* 1140 * Process is no longer stopped (a thread is running). 1141 */ 1142 t->t_whystop = 0; 1143 t->t_whatstop = 0; 1144 /* 1145 * Strictly speaking, we do not have to clear these 1146 * flags here; they are cleared on entry to stop(). 1147 * However, they are confusing when doing kernel 1148 * debugging or when they are revealed by ps(1). 1149 */ 1150 t->t_schedflag &= ~TS_ALLSTART; 1151 THREAD_TRANSITION(t); /* drop stopped-thread lock */ 1152 ASSERT(t->t_lockp == &transition_lock); 1153 ASSERT(t->t_wchan0 == NULL && t->t_wchan == NULL); 1154 /* 1155 * Let the class put the process on the dispatcher queue. 1156 */ 1157 CL_SETRUN(t); 1158 } 1159 } 1160 1161 void 1162 setrun(kthread_t *t) 1163 { 1164 thread_lock(t); 1165 setrun_locked(t); 1166 thread_unlock(t); 1167 } 1168 1169 /* 1170 * Unpin an interrupted thread. 1171 * When an interrupt occurs, the interrupt is handled on the stack 1172 * of an interrupt thread, taken from a pool linked to the CPU structure. 1173 * 1174 * When swtch() is switching away from an interrupt thread because it 1175 * blocked or was preempted, this routine is called to complete the 1176 * saving of the interrupted thread state, and returns the interrupted 1177 * thread pointer so it may be resumed. 1178 * 1179 * Called by swtch() only at high spl. 1180 */ 1181 kthread_t * 1182 thread_unpin() 1183 { 1184 kthread_t *t = curthread; /* current thread */ 1185 kthread_t *itp; /* interrupted thread */ 1186 int i; /* interrupt level */ 1187 extern int intr_passivate(); 1188 1189 ASSERT(t->t_intr != NULL); 1190 1191 itp = t->t_intr; /* interrupted thread */ 1192 t->t_intr = NULL; /* clear interrupt ptr */ 1193 1194 /* 1195 * Get state from interrupt thread for the one 1196 * it interrupted. 1197 */ 1198 1199 i = intr_passivate(t, itp); 1200 1201 TRACE_5(TR_FAC_INTR, TR_INTR_PASSIVATE, 1202 "intr_passivate:level %d curthread %p (%T) ithread %p (%T)", 1203 i, t, t, itp, itp); 1204 1205 /* 1206 * Dissociate the current thread from the interrupted thread's LWP. 1207 */ 1208 t->t_lwp = NULL; 1209 1210 /* 1211 * Interrupt handlers above the level that spinlocks block must 1212 * not block. 1213 */ 1214 #if DEBUG 1215 if (i < 0 || i > LOCK_LEVEL) 1216 cmn_err(CE_PANIC, "thread_unpin: ipl out of range %x", i); 1217 #endif 1218 1219 /* 1220 * Compute the CPU's base interrupt level based on the active 1221 * interrupts. 1222 */ 1223 ASSERT(CPU->cpu_intr_actv & (1 << i)); 1224 set_base_spl(); 1225 1226 return (itp); 1227 } 1228 1229 /* 1230 * Create and initialize an interrupt thread. 1231 * Returns non-zero on error. 1232 * Called at spl7() or better. 1233 */ 1234 void 1235 thread_create_intr(struct cpu *cp) 1236 { 1237 kthread_t *tp; 1238 1239 tp = thread_create(NULL, 0, 1240 (void (*)())thread_create_intr, NULL, 0, &p0, TS_ONPROC, 0); 1241 1242 /* 1243 * Set the thread in the TS_FREE state. The state will change 1244 * to TS_ONPROC only while the interrupt is active. Think of these 1245 * as being on a private free list for the CPU. Being TS_FREE keeps 1246 * inactive interrupt threads out of debugger thread lists. 1247 * 1248 * We cannot call thread_create with TS_FREE because of the current 1249 * checks there for ONPROC. Fix this when thread_create takes flags. 1250 */ 1251 THREAD_FREEINTR(tp, cp); 1252 1253 /* 1254 * Nobody should ever reference the credentials of an interrupt 1255 * thread so make it NULL to catch any such references. 1256 */ 1257 tp->t_cred = NULL; 1258 tp->t_flag |= T_INTR_THREAD; 1259 tp->t_cpu = cp; 1260 tp->t_bound_cpu = cp; 1261 tp->t_disp_queue = cp->cpu_disp; 1262 tp->t_affinitycnt = 1; 1263 tp->t_preempt = 1; 1264 1265 /* 1266 * Don't make a user-requested binding on this thread so that 1267 * the processor can be offlined. 1268 */ 1269 tp->t_bind_cpu = PBIND_NONE; /* no USER-requested binding */ 1270 tp->t_bind_pset = PS_NONE; 1271 1272 #if defined(__i386) || defined(__amd64) 1273 tp->t_stk -= STACK_ALIGN; 1274 *(tp->t_stk) = 0; /* terminate intr thread stack */ 1275 #endif 1276 1277 /* 1278 * Link onto CPU's interrupt pool. 1279 */ 1280 tp->t_link = cp->cpu_intr_thread; 1281 cp->cpu_intr_thread = tp; 1282 } 1283 1284 /* 1285 * TSD -- THREAD SPECIFIC DATA 1286 */ 1287 static kmutex_t tsd_mutex; /* linked list spin lock */ 1288 static uint_t tsd_nkeys; /* size of destructor array */ 1289 /* per-key destructor funcs */ 1290 static void (**tsd_destructor)(void *); 1291 /* list of tsd_thread's */ 1292 static struct tsd_thread *tsd_list; 1293 1294 /* 1295 * Default destructor 1296 * Needed because NULL destructor means that the key is unused 1297 */ 1298 /* ARGSUSED */ 1299 void 1300 tsd_defaultdestructor(void *value) 1301 {} 1302 1303 /* 1304 * Create a key (index into per thread array) 1305 * Locks out tsd_create, tsd_destroy, and tsd_exit 1306 * May allocate memory with lock held 1307 */ 1308 void 1309 tsd_create(uint_t *keyp, void (*destructor)(void *)) 1310 { 1311 int i; 1312 uint_t nkeys; 1313 1314 /* 1315 * if key is allocated, do nothing 1316 */ 1317 mutex_enter(&tsd_mutex); 1318 if (*keyp) { 1319 mutex_exit(&tsd_mutex); 1320 return; 1321 } 1322 /* 1323 * find an unused key 1324 */ 1325 if (destructor == NULL) 1326 destructor = tsd_defaultdestructor; 1327 1328 for (i = 0; i < tsd_nkeys; ++i) 1329 if (tsd_destructor[i] == NULL) 1330 break; 1331 1332 /* 1333 * if no unused keys, increase the size of the destructor array 1334 */ 1335 if (i == tsd_nkeys) { 1336 if ((nkeys = (tsd_nkeys << 1)) == 0) 1337 nkeys = 1; 1338 tsd_destructor = 1339 (void (**)(void *))tsd_realloc((void *)tsd_destructor, 1340 (size_t)(tsd_nkeys * sizeof (void (*)(void *))), 1341 (size_t)(nkeys * sizeof (void (*)(void *)))); 1342 tsd_nkeys = nkeys; 1343 } 1344 1345 /* 1346 * allocate the next available unused key 1347 */ 1348 tsd_destructor[i] = destructor; 1349 *keyp = i + 1; 1350 mutex_exit(&tsd_mutex); 1351 } 1352 1353 /* 1354 * Destroy a key -- this is for unloadable modules 1355 * 1356 * Assumes that the caller is preventing tsd_set and tsd_get 1357 * Locks out tsd_create, tsd_destroy, and tsd_exit 1358 * May free memory with lock held 1359 */ 1360 void 1361 tsd_destroy(uint_t *keyp) 1362 { 1363 uint_t key; 1364 struct tsd_thread *tsd; 1365 1366 /* 1367 * protect the key namespace and our destructor lists 1368 */ 1369 mutex_enter(&tsd_mutex); 1370 key = *keyp; 1371 *keyp = 0; 1372 1373 ASSERT(key <= tsd_nkeys); 1374 1375 /* 1376 * if the key is valid 1377 */ 1378 if (key != 0) { 1379 uint_t k = key - 1; 1380 /* 1381 * for every thread with TSD, call key's destructor 1382 */ 1383 for (tsd = tsd_list; tsd; tsd = tsd->ts_next) { 1384 /* 1385 * no TSD for key in this thread 1386 */ 1387 if (key > tsd->ts_nkeys) 1388 continue; 1389 /* 1390 * call destructor for key 1391 */ 1392 if (tsd->ts_value[k] && tsd_destructor[k]) 1393 (*tsd_destructor[k])(tsd->ts_value[k]); 1394 /* 1395 * reset value for key 1396 */ 1397 tsd->ts_value[k] = NULL; 1398 } 1399 /* 1400 * actually free the key (NULL destructor == unused) 1401 */ 1402 tsd_destructor[k] = NULL; 1403 } 1404 1405 mutex_exit(&tsd_mutex); 1406 } 1407 1408 /* 1409 * Quickly return the per thread value that was stored with the specified key 1410 * Assumes the caller is protecting key from tsd_create and tsd_destroy 1411 */ 1412 void * 1413 tsd_get(uint_t key) 1414 { 1415 return (tsd_agent_get(curthread, key)); 1416 } 1417 1418 /* 1419 * Set a per thread value indexed with the specified key 1420 */ 1421 int 1422 tsd_set(uint_t key, void *value) 1423 { 1424 return (tsd_agent_set(curthread, key, value)); 1425 } 1426 1427 /* 1428 * Like tsd_get(), except that the agent lwp can get the tsd of 1429 * another thread in the same process (the agent thread only runs when the 1430 * process is completely stopped by /proc), or syslwp is creating a new lwp. 1431 */ 1432 void * 1433 tsd_agent_get(kthread_t *t, uint_t key) 1434 { 1435 struct tsd_thread *tsd = t->t_tsd; 1436 1437 ASSERT(t == curthread || 1438 ttoproc(t)->p_agenttp == curthread || t->t_state == TS_STOPPED); 1439 1440 if (key && tsd != NULL && key <= tsd->ts_nkeys) 1441 return (tsd->ts_value[key - 1]); 1442 return (NULL); 1443 } 1444 1445 /* 1446 * Like tsd_set(), except that the agent lwp can set the tsd of 1447 * another thread in the same process, or syslwp can set the tsd 1448 * of a thread it's in the middle of creating. 1449 * 1450 * Assumes the caller is protecting key from tsd_create and tsd_destroy 1451 * May lock out tsd_destroy (and tsd_create), may allocate memory with 1452 * lock held 1453 */ 1454 int 1455 tsd_agent_set(kthread_t *t, uint_t key, void *value) 1456 { 1457 struct tsd_thread *tsd = t->t_tsd; 1458 1459 ASSERT(t == curthread || 1460 ttoproc(t)->p_agenttp == curthread || t->t_state == TS_STOPPED); 1461 1462 if (key == 0) 1463 return (EINVAL); 1464 if (tsd == NULL) 1465 tsd = t->t_tsd = kmem_zalloc(sizeof (*tsd), KM_SLEEP); 1466 if (key <= tsd->ts_nkeys) { 1467 tsd->ts_value[key - 1] = value; 1468 return (0); 1469 } 1470 1471 ASSERT(key <= tsd_nkeys); 1472 1473 /* 1474 * lock out tsd_destroy() 1475 */ 1476 mutex_enter(&tsd_mutex); 1477 if (tsd->ts_nkeys == 0) { 1478 /* 1479 * Link onto list of threads with TSD 1480 */ 1481 if ((tsd->ts_next = tsd_list) != NULL) 1482 tsd_list->ts_prev = tsd; 1483 tsd_list = tsd; 1484 } 1485 1486 /* 1487 * Allocate thread local storage and set the value for key 1488 */ 1489 tsd->ts_value = tsd_realloc(tsd->ts_value, 1490 tsd->ts_nkeys * sizeof (void *), 1491 key * sizeof (void *)); 1492 tsd->ts_nkeys = key; 1493 tsd->ts_value[key - 1] = value; 1494 mutex_exit(&tsd_mutex); 1495 1496 return (0); 1497 } 1498 1499 1500 /* 1501 * Return the per thread value that was stored with the specified key 1502 * If necessary, create the key and the value 1503 * Assumes the caller is protecting *keyp from tsd_destroy 1504 */ 1505 void * 1506 tsd_getcreate(uint_t *keyp, void (*destroy)(void *), void *(*allocate)(void)) 1507 { 1508 void *value; 1509 uint_t key = *keyp; 1510 struct tsd_thread *tsd = curthread->t_tsd; 1511 1512 if (tsd == NULL) 1513 tsd = curthread->t_tsd = kmem_zalloc(sizeof (*tsd), KM_SLEEP); 1514 if (key && key <= tsd->ts_nkeys && (value = tsd->ts_value[key - 1])) 1515 return (value); 1516 if (key == 0) 1517 tsd_create(keyp, destroy); 1518 (void) tsd_set(*keyp, value = (*allocate)()); 1519 1520 return (value); 1521 } 1522 1523 /* 1524 * Called from thread_exit() to run the destructor function for each tsd 1525 * Locks out tsd_create and tsd_destroy 1526 * Assumes that the destructor *DOES NOT* use tsd 1527 */ 1528 void 1529 tsd_exit(void) 1530 { 1531 int i; 1532 struct tsd_thread *tsd = curthread->t_tsd; 1533 1534 if (tsd == NULL) 1535 return; 1536 1537 if (tsd->ts_nkeys == 0) { 1538 kmem_free(tsd, sizeof (*tsd)); 1539 curthread->t_tsd = NULL; 1540 return; 1541 } 1542 1543 /* 1544 * lock out tsd_create and tsd_destroy, call 1545 * the destructor, and mark the value as destroyed. 1546 */ 1547 mutex_enter(&tsd_mutex); 1548 1549 for (i = 0; i < tsd->ts_nkeys; i++) { 1550 if (tsd->ts_value[i] && tsd_destructor[i]) 1551 (*tsd_destructor[i])(tsd->ts_value[i]); 1552 tsd->ts_value[i] = NULL; 1553 } 1554 1555 /* 1556 * remove from linked list of threads with TSD 1557 */ 1558 if (tsd->ts_next) 1559 tsd->ts_next->ts_prev = tsd->ts_prev; 1560 if (tsd->ts_prev) 1561 tsd->ts_prev->ts_next = tsd->ts_next; 1562 if (tsd_list == tsd) 1563 tsd_list = tsd->ts_next; 1564 1565 mutex_exit(&tsd_mutex); 1566 1567 /* 1568 * free up the TSD 1569 */ 1570 kmem_free(tsd->ts_value, tsd->ts_nkeys * sizeof (void *)); 1571 kmem_free(tsd, sizeof (struct tsd_thread)); 1572 curthread->t_tsd = NULL; 1573 } 1574 1575 /* 1576 * realloc 1577 */ 1578 static void * 1579 tsd_realloc(void *old, size_t osize, size_t nsize) 1580 { 1581 void *new; 1582 1583 new = kmem_zalloc(nsize, KM_SLEEP); 1584 if (old) { 1585 bcopy(old, new, osize); 1586 kmem_free(old, osize); 1587 } 1588 return (new); 1589 } 1590 1591 /* 1592 * Check to see if an interrupt thread might be active at a given ipl. 1593 * If so return true. 1594 * We must be conservative--it is ok to give a false yes, but a false no 1595 * will cause disaster. (But if the situation changes after we check it is 1596 * ok--the caller is trying to ensure that an interrupt routine has been 1597 * exited). 1598 * This is used when trying to remove an interrupt handler from an autovector 1599 * list in avintr.c. 1600 */ 1601 int 1602 intr_active(struct cpu *cp, int level) 1603 { 1604 if (level <= LOCK_LEVEL) 1605 return (cp->cpu_thread != cp->cpu_dispthread); 1606 else 1607 return (CPU_ON_INTR(cp)); 1608 } 1609 1610 /* 1611 * Return non-zero if an interrupt is being serviced. 1612 */ 1613 int 1614 servicing_interrupt() 1615 { 1616 int onintr = 0; 1617 1618 /* Are we an interrupt thread */ 1619 if (curthread->t_flag & T_INTR_THREAD) 1620 return (1); 1621 /* Are we servicing a high level interrupt? */ 1622 if (CPU_ON_INTR(CPU)) { 1623 kpreempt_disable(); 1624 onintr = CPU_ON_INTR(CPU); 1625 kpreempt_enable(); 1626 } 1627 return (onintr); 1628 } 1629 1630 1631 /* 1632 * Change the dispatch priority of a thread in the system. 1633 * Used when raising or lowering a thread's priority. 1634 * (E.g., priority inheritance) 1635 * 1636 * Since threads are queued according to their priority, we 1637 * we must check the thread's state to determine whether it 1638 * is on a queue somewhere. If it is, we've got to: 1639 * 1640 * o Dequeue the thread. 1641 * o Change its effective priority. 1642 * o Enqueue the thread. 1643 * 1644 * Assumptions: The thread whose priority we wish to change 1645 * must be locked before we call thread_change_(e)pri(). 1646 * The thread_change(e)pri() function doesn't drop the thread 1647 * lock--that must be done by its caller. 1648 */ 1649 void 1650 thread_change_epri(kthread_t *t, pri_t disp_pri) 1651 { 1652 uint_t state; 1653 1654 ASSERT(THREAD_LOCK_HELD(t)); 1655 1656 /* 1657 * If the inherited priority hasn't actually changed, 1658 * just return. 1659 */ 1660 if (t->t_epri == disp_pri) 1661 return; 1662 1663 state = t->t_state; 1664 1665 /* 1666 * If it's not on a queue, change the priority with 1667 * impunity. 1668 */ 1669 if ((state & (TS_SLEEP | TS_RUN | TS_WAIT)) == 0) { 1670 t->t_epri = disp_pri; 1671 1672 if (state == TS_ONPROC) { 1673 cpu_t *cp = t->t_disp_queue->disp_cpu; 1674 1675 if (t == cp->cpu_dispthread) 1676 cp->cpu_dispatch_pri = DISP_PRIO(t); 1677 } 1678 return; 1679 } 1680 1681 /* 1682 * It's either on a sleep queue or a run queue. 1683 */ 1684 if (state == TS_SLEEP) { 1685 /* 1686 * Take the thread out of its sleep queue. 1687 * Change the inherited priority. 1688 * Re-enqueue the thread. 1689 * Each synchronization object exports a function 1690 * to do this in an appropriate manner. 1691 */ 1692 SOBJ_CHANGE_EPRI(t->t_sobj_ops, t, disp_pri); 1693 } else if (state == TS_WAIT) { 1694 /* 1695 * Re-enqueue a thread on the wait queue if its 1696 * effective priority needs to change. 1697 */ 1698 if (disp_pri != t->t_epri) 1699 waitq_change_pri(t, disp_pri); 1700 } else { 1701 /* 1702 * The thread is on a run queue. 1703 * Note: setbackdq() may not put the thread 1704 * back on the same run queue where it originally 1705 * resided. 1706 */ 1707 (void) dispdeq(t); 1708 t->t_epri = disp_pri; 1709 setbackdq(t); 1710 } 1711 } /* end of thread_change_epri */ 1712 1713 /* 1714 * Function: Change the t_pri field of a thread. 1715 * Side Effects: Adjust the thread ordering on a run queue 1716 * or sleep queue, if necessary. 1717 * Returns: 1 if the thread was on a run queue, else 0. 1718 */ 1719 int 1720 thread_change_pri(kthread_t *t, pri_t disp_pri, int front) 1721 { 1722 uint_t state; 1723 int on_rq = 0; 1724 1725 ASSERT(THREAD_LOCK_HELD(t)); 1726 1727 state = t->t_state; 1728 THREAD_WILLCHANGE_PRI(t, disp_pri); 1729 1730 /* 1731 * If it's not on a queue, change the priority with 1732 * impunity. 1733 */ 1734 if ((state & (TS_SLEEP | TS_RUN | TS_WAIT)) == 0) { 1735 t->t_pri = disp_pri; 1736 1737 if (state == TS_ONPROC) { 1738 cpu_t *cp = t->t_disp_queue->disp_cpu; 1739 1740 if (t == cp->cpu_dispthread) 1741 cp->cpu_dispatch_pri = DISP_PRIO(t); 1742 } 1743 return (0); 1744 } 1745 1746 /* 1747 * It's either on a sleep queue or a run queue. 1748 */ 1749 if (state == TS_SLEEP) { 1750 /* 1751 * If the priority has changed, take the thread out of 1752 * its sleep queue and change the priority. 1753 * Re-enqueue the thread. 1754 * Each synchronization object exports a function 1755 * to do this in an appropriate manner. 1756 */ 1757 if (disp_pri != t->t_pri) 1758 SOBJ_CHANGE_PRI(t->t_sobj_ops, t, disp_pri); 1759 } else if (state == TS_WAIT) { 1760 /* 1761 * Re-enqueue a thread on the wait queue if its 1762 * priority needs to change. 1763 */ 1764 if (disp_pri != t->t_pri) 1765 waitq_change_pri(t, disp_pri); 1766 } else { 1767 /* 1768 * The thread is on a run queue. 1769 * Note: setbackdq() may not put the thread 1770 * back on the same run queue where it originally 1771 * resided. 1772 * 1773 * We still requeue the thread even if the priority 1774 * is unchanged to preserve round-robin (and other) 1775 * effects between threads of the same priority. 1776 */ 1777 on_rq = dispdeq(t); 1778 ASSERT(on_rq); 1779 t->t_pri = disp_pri; 1780 if (front) { 1781 setfrontdq(t); 1782 } else { 1783 setbackdq(t); 1784 } 1785 } 1786 return (on_rq); 1787 } 1788