xref: /titanic_44/usr/src/uts/common/crypto/api/kcf_random.c (revision cc7641ccbef3fd0f5eeedc74f555d11723b3926c)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /*
27  * This file implements the interfaces that the /dev/random
28  * driver uses for read(2), write(2) and poll(2) on /dev/random or
29  * /dev/urandom. It also implements the kernel API - random_add_entropy(),
30  * random_add_pseudo_entropy(), random_get_pseudo_bytes()
31  * and random_get_bytes().
32  *
33  * We periodically collect random bits from providers which are registered
34  * with the Kernel Cryptographic Framework (kCF) as capable of random
35  * number generation. The random bits are maintained in a cache and
36  * it is used for high quality random numbers (/dev/random) requests.
37  * We pick a provider and call its SPI routine, if the cache does not have
38  * enough bytes to satisfy a request.
39  *
40  * /dev/urandom requests use a software-based generator algorithm that uses the
41  * random bits in the cache as a seed. We create one pseudo-random generator
42  * (for /dev/urandom) per possible CPU on the system, and use it,
43  * kmem-magazine-style, to avoid cache line contention.
44  *
45  * LOCKING HIERARCHY:
46  *	1) rmp->rm_mag.rm_lock protects the per-cpu pseudo-random generators.
47  * 	2) rndpool_lock protects the high-quality randomness pool.
48  *		It may be locked while a rmp->rm_mag.rm_lock is held.
49  *
50  * A history note: The kernel API and the software-based algorithms in this
51  * file used to be part of the /dev/random driver.
52  */
53 
54 #include <sys/types.h>
55 #include <sys/conf.h>
56 #include <sys/sunddi.h>
57 #include <sys/disp.h>
58 #include <sys/modctl.h>
59 #include <sys/ddi.h>
60 #include <sys/crypto/common.h>
61 #include <sys/crypto/api.h>
62 #include <sys/crypto/impl.h>
63 #include <sys/crypto/sched_impl.h>
64 #include <sys/random.h>
65 #include <sys/sha1.h>
66 #include <sys/time.h>
67 #include <sys/sysmacros.h>
68 #include <sys/cpuvar.h>
69 #include <sys/taskq.h>
70 #include <rng/fips_random.h>
71 
72 #define	RNDPOOLSIZE		1024	/* Pool size in bytes */
73 #define	MINEXTRACTBYTES		20
74 #define	MAXEXTRACTBYTES		1024
75 #define	PRNG_MAXOBLOCKS		1310720	/* Max output block per prng key */
76 #define	TIMEOUT_INTERVAL	5	/* Periodic mixing interval in secs */
77 
78 typedef enum    extract_type {
79 	NONBLOCK_EXTRACT,
80 	BLOCKING_EXTRACT,
81 	ALWAYS_EXTRACT
82 } extract_type_t;
83 
84 /*
85  * Hash-algo generic definitions. For now, they are SHA1's. We use SHA1
86  * routines directly instead of using k-API because we can't return any
87  * error code in /dev/urandom case and we can get an error using k-API
88  * if a mechanism is disabled.
89  */
90 #define	HASHSIZE		20
91 #define	HASH_CTX		SHA1_CTX
92 #define	HashInit(ctx)		SHA1Init((ctx))
93 #define	HashUpdate(ctx, p, s)	SHA1Update((ctx), (p), (s))
94 #define	HashFinal(d, ctx)	SHA1Final((d), (ctx))
95 
96 /* HMAC-SHA1 */
97 #define	HMAC_KEYSIZE			20
98 
99 /*
100  * Cache of random bytes implemented as a circular buffer. findex and rindex
101  * track the front and back of the circular buffer.
102  */
103 uint8_t rndpool[RNDPOOLSIZE];
104 static int findex, rindex;
105 static int rnbyte_cnt;		/* Number of bytes in the cache */
106 
107 static kmutex_t rndpool_lock;	/* protects r/w accesses to the cache, */
108 				/* and the global variables */
109 static kcondvar_t rndpool_read_cv; /* serializes poll/read syscalls */
110 static int num_waiters;		/* #threads waiting to read from /dev/random */
111 
112 static struct pollhead rnd_pollhead;
113 /* LINTED E_STATIC_UNUSED */
114 static timeout_id_t kcf_rndtimeout_id;
115 static crypto_mech_type_t rngmech_type = CRYPTO_MECH_INVALID;
116 rnd_stats_t rnd_stats;
117 static boolean_t rng_prov_found = B_TRUE;
118 static boolean_t rng_ok_to_log = B_TRUE;
119 static boolean_t rngprov_task_idle = B_TRUE;
120 
121 static void rndc_addbytes(uint8_t *, size_t);
122 static void rndc_getbytes(uint8_t *ptr, size_t len);
123 static void rnd_handler(void *);
124 static void rnd_alloc_magazines();
125 
126 void
127 kcf_rnd_init()
128 {
129 	hrtime_t ts;
130 	time_t now;
131 
132 	mutex_init(&rndpool_lock, NULL, MUTEX_DEFAULT, NULL);
133 	cv_init(&rndpool_read_cv, NULL, CV_DEFAULT, NULL);
134 
135 	/*
136 	 * Add bytes to the cache using
137 	 * . 2 unpredictable times: high resolution time since the boot-time,
138 	 *   and the current time-of-the day.
139 	 * This is used only to make the timeout value in the timer
140 	 * unpredictable.
141 	 */
142 	ts = gethrtime();
143 	rndc_addbytes((uint8_t *)&ts, sizeof (ts));
144 
145 	(void) drv_getparm(TIME, &now);
146 	rndc_addbytes((uint8_t *)&now, sizeof (now));
147 
148 	rnbyte_cnt = 0;
149 	findex = rindex = 0;
150 	num_waiters = 0;
151 	rngmech_type = KCF_MECHID(KCF_MISC_CLASS, 0);
152 
153 	rnd_alloc_magazines();
154 }
155 
156 /*
157  * Return TRUE if at least one provider exists that can
158  * supply random numbers.
159  */
160 boolean_t
161 kcf_rngprov_check(void)
162 {
163 	int rv;
164 	kcf_provider_desc_t *pd;
165 
166 	if ((pd = kcf_get_mech_provider(rngmech_type, NULL, NULL, &rv,
167 	    NULL, CRYPTO_FG_RANDOM, B_FALSE, 0)) != NULL) {
168 		KCF_PROV_REFRELE(pd);
169 		/*
170 		 * We logged a warning once about no provider being available
171 		 * and now a provider became available. So, set the flag so
172 		 * that we can log again if the problem recurs.
173 		 */
174 		rng_ok_to_log = B_TRUE;
175 		rng_prov_found = B_TRUE;
176 		return (B_TRUE);
177 	} else {
178 		rng_prov_found = B_FALSE;
179 		return (B_FALSE);
180 	}
181 }
182 
183 /*
184  * Pick a software-based provider and submit a request to seed
185  * its random number generator.
186  */
187 static void
188 rngprov_seed(uint8_t *buf, int len, uint_t entropy_est, uint32_t flags)
189 {
190 	kcf_provider_desc_t *pd = NULL;
191 
192 	if (kcf_get_sw_prov(rngmech_type, &pd, NULL, B_FALSE) ==
193 	    CRYPTO_SUCCESS) {
194 		(void) KCF_PROV_SEED_RANDOM(pd, pd->pd_sid, buf, len,
195 		    entropy_est, flags, NULL);
196 		KCF_PROV_REFRELE(pd);
197 	}
198 }
199 
200 /*
201  * This routine is called for blocking reads.
202  *
203  * The argument is_taskq_thr indicates whether the caller is
204  * the taskq thread dispatched by the timeout handler routine.
205  * In this case, we cycle through all the providers
206  * submitting a request to each provider to generate random numbers.
207  *
208  * For other cases, we pick a provider and submit a request to generate
209  * random numbers. We retry using another provider if we get an error.
210  *
211  * Returns the number of bytes that are written to 'ptr'. Returns -1
212  * if no provider is found. ptr and need are unchanged.
213  */
214 static int
215 rngprov_getbytes(uint8_t *ptr, size_t need, boolean_t is_taskq_thr)
216 {
217 	int rv;
218 	int prov_cnt = 0;
219 	int total_bytes = 0;
220 	kcf_provider_desc_t *pd;
221 	kcf_req_params_t params;
222 	kcf_prov_tried_t *list = NULL;
223 
224 	while ((pd = kcf_get_mech_provider(rngmech_type, NULL, NULL, &rv,
225 	    list, CRYPTO_FG_RANDOM, B_FALSE, 0)) != NULL) {
226 
227 		prov_cnt++;
228 
229 		KCF_WRAP_RANDOM_OPS_PARAMS(&params, KCF_OP_RANDOM_GENERATE,
230 		    pd->pd_sid, ptr, need, 0, 0);
231 		rv = kcf_submit_request(pd, NULL, NULL, &params, B_FALSE);
232 		ASSERT(rv != CRYPTO_QUEUED);
233 
234 		if (rv == CRYPTO_SUCCESS) {
235 			total_bytes += need;
236 			if (is_taskq_thr)
237 				rndc_addbytes(ptr, need);
238 			else {
239 				KCF_PROV_REFRELE(pd);
240 				break;
241 			}
242 		}
243 
244 		if (is_taskq_thr || rv != CRYPTO_SUCCESS) {
245 			/* Add pd to the linked list of providers tried. */
246 			if (kcf_insert_triedlist(&list, pd, KM_SLEEP) == NULL) {
247 				KCF_PROV_REFRELE(pd);
248 				break;
249 			}
250 		}
251 
252 	}
253 
254 	if (list != NULL)
255 		kcf_free_triedlist(list);
256 
257 	if (prov_cnt == 0) { /* no provider could be found. */
258 		rng_prov_found = B_FALSE;
259 		return (-1);
260 	} else {
261 		rng_prov_found = B_TRUE;
262 		/* See comments in kcf_rngprov_check() */
263 		rng_ok_to_log = B_TRUE;
264 	}
265 
266 	return (total_bytes);
267 }
268 
269 static void
270 notify_done(void *arg, int rv)
271 {
272 	uchar_t *rndbuf = arg;
273 
274 	if (rv == CRYPTO_SUCCESS)
275 		rndc_addbytes(rndbuf, MINEXTRACTBYTES);
276 
277 	bzero(rndbuf, MINEXTRACTBYTES);
278 	kmem_free(rndbuf, MINEXTRACTBYTES);
279 }
280 
281 /*
282  * Cycle through all the providers submitting a request to each provider
283  * to generate random numbers. This is called for the modes - NONBLOCK_EXTRACT
284  * and ALWAYS_EXTRACT.
285  *
286  * Returns the number of bytes that are written to 'ptr'. Returns -1
287  * if no provider is found. ptr and len are unchanged.
288  */
289 static int
290 rngprov_getbytes_nblk(uint8_t *ptr, size_t len)
291 {
292 	int rv, total_bytes;
293 	size_t blen;
294 	uchar_t *rndbuf;
295 	kcf_provider_desc_t *pd;
296 	kcf_req_params_t params;
297 	crypto_call_req_t req;
298 	kcf_prov_tried_t *list = NULL;
299 	int prov_cnt = 0;
300 
301 	blen = 0;
302 	total_bytes = 0;
303 	req.cr_flag = CRYPTO_SKIP_REQID;
304 	req.cr_callback_func = notify_done;
305 
306 	while ((pd = kcf_get_mech_provider(rngmech_type, NULL, NULL, &rv,
307 	    list, CRYPTO_FG_RANDOM, CHECK_RESTRICT(&req), 0)) != NULL) {
308 
309 		prov_cnt ++;
310 		switch (pd->pd_prov_type) {
311 		case CRYPTO_HW_PROVIDER:
312 			/*
313 			 * We have to allocate a buffer here as we can not
314 			 * assume that the input buffer will remain valid
315 			 * when the callback comes. We use a fixed size buffer
316 			 * to simplify the book keeping.
317 			 */
318 			rndbuf = kmem_alloc(MINEXTRACTBYTES, KM_NOSLEEP);
319 			if (rndbuf == NULL) {
320 				KCF_PROV_REFRELE(pd);
321 				if (list != NULL)
322 					kcf_free_triedlist(list);
323 				return (total_bytes);
324 			}
325 			req.cr_callback_arg = rndbuf;
326 			KCF_WRAP_RANDOM_OPS_PARAMS(&params,
327 			    KCF_OP_RANDOM_GENERATE,
328 			    pd->pd_sid, rndbuf, MINEXTRACTBYTES, 0, 0);
329 			break;
330 
331 		case CRYPTO_SW_PROVIDER:
332 			/*
333 			 * We do not need to allocate a buffer in the software
334 			 * provider case as there is no callback involved. We
335 			 * avoid any extra data copy by directly passing 'ptr'.
336 			 */
337 			KCF_WRAP_RANDOM_OPS_PARAMS(&params,
338 			    KCF_OP_RANDOM_GENERATE,
339 			    pd->pd_sid, ptr, len, 0, 0);
340 			break;
341 		}
342 
343 		rv = kcf_submit_request(pd, NULL, &req, &params, B_FALSE);
344 		if (rv == CRYPTO_SUCCESS) {
345 			switch (pd->pd_prov_type) {
346 			case CRYPTO_HW_PROVIDER:
347 				/*
348 				 * Since we have the input buffer handy,
349 				 * we directly copy to it rather than
350 				 * adding to the pool.
351 				 */
352 				blen = min(MINEXTRACTBYTES, len);
353 				bcopy(rndbuf, ptr, blen);
354 				if (len < MINEXTRACTBYTES)
355 					rndc_addbytes(rndbuf + len,
356 					    MINEXTRACTBYTES - len);
357 				ptr += blen;
358 				len -= blen;
359 				total_bytes += blen;
360 				break;
361 
362 			case CRYPTO_SW_PROVIDER:
363 				total_bytes += len;
364 				len = 0;
365 				break;
366 			}
367 		}
368 
369 		/*
370 		 * We free the buffer in the callback routine
371 		 * for the CRYPTO_QUEUED case.
372 		 */
373 		if (pd->pd_prov_type == CRYPTO_HW_PROVIDER &&
374 		    rv != CRYPTO_QUEUED) {
375 			bzero(rndbuf, MINEXTRACTBYTES);
376 			kmem_free(rndbuf, MINEXTRACTBYTES);
377 		}
378 
379 		if (len == 0) {
380 			KCF_PROV_REFRELE(pd);
381 			break;
382 		}
383 
384 		if (rv != CRYPTO_SUCCESS) {
385 			/* Add pd to the linked list of providers tried. */
386 			if (kcf_insert_triedlist(&list, pd, KM_NOSLEEP) ==
387 			    NULL) {
388 				KCF_PROV_REFRELE(pd);
389 				break;
390 			}
391 		}
392 	}
393 
394 	if (list != NULL) {
395 		kcf_free_triedlist(list);
396 	}
397 
398 	if (prov_cnt == 0) { /* no provider could be found. */
399 		rng_prov_found = B_FALSE;
400 		return (-1);
401 	} else {
402 		rng_prov_found = B_TRUE;
403 		/* See comments in kcf_rngprov_check() */
404 		rng_ok_to_log = B_TRUE;
405 	}
406 
407 	return (total_bytes);
408 }
409 
410 static void
411 rngprov_task(void *arg)
412 {
413 	int len = (int)(uintptr_t)arg;
414 	uchar_t tbuf[MAXEXTRACTBYTES];
415 
416 	ASSERT(len <= MAXEXTRACTBYTES);
417 	(void) rngprov_getbytes(tbuf, len, B_TRUE);
418 	rngprov_task_idle = B_TRUE;
419 }
420 
421 /*
422  * Returns "len" random or pseudo-random bytes in *ptr.
423  * Will block if not enough random bytes are available and the
424  * call is blocking.
425  *
426  * Called with rndpool_lock held (allowing caller to do optimistic locking;
427  * releases the lock before return).
428  */
429 static int
430 rnd_get_bytes(uint8_t *ptr, size_t len, extract_type_t how)
431 {
432 	size_t bytes;
433 	size_t got;
434 
435 	ASSERT(mutex_owned(&rndpool_lock));
436 	/*
437 	 * Check if the request can be satisfied from the cache
438 	 * of random bytes.
439 	 */
440 	if (len <= rnbyte_cnt) {
441 		rndc_getbytes(ptr, len);
442 		mutex_exit(&rndpool_lock);
443 		return (0);
444 	}
445 	mutex_exit(&rndpool_lock);
446 
447 	switch (how) {
448 	case BLOCKING_EXTRACT:
449 		if ((got = rngprov_getbytes(ptr, len, B_FALSE)) == -1)
450 			break;	/* No provider found */
451 
452 		if (got == len)
453 			return (0);
454 		len -= got;
455 		ptr += got;
456 		break;
457 
458 	case NONBLOCK_EXTRACT:
459 	case ALWAYS_EXTRACT:
460 		if ((got = rngprov_getbytes_nblk(ptr, len)) == -1) {
461 			/* No provider found */
462 			if (how == NONBLOCK_EXTRACT) {
463 				return (EAGAIN);
464 			}
465 		} else {
466 			if (got == len)
467 				return (0);
468 			len -= got;
469 			ptr += got;
470 		}
471 		if (how == NONBLOCK_EXTRACT && (rnbyte_cnt < len))
472 			return (EAGAIN);
473 		break;
474 	}
475 
476 	mutex_enter(&rndpool_lock);
477 	while (len > 0) {
478 		if (how == BLOCKING_EXTRACT) {
479 			/* Check if there is enough */
480 			while (rnbyte_cnt < MINEXTRACTBYTES) {
481 				num_waiters++;
482 				if (cv_wait_sig(&rndpool_read_cv,
483 				    &rndpool_lock) == 0) {
484 					num_waiters--;
485 					mutex_exit(&rndpool_lock);
486 					return (EINTR);
487 				}
488 				num_waiters--;
489 			}
490 		}
491 
492 		/* Figure out how many bytes to extract */
493 		bytes = min(len, rnbyte_cnt);
494 		rndc_getbytes(ptr, bytes);
495 
496 		len -= bytes;
497 		ptr += bytes;
498 
499 		if (len > 0 && how == ALWAYS_EXTRACT) {
500 			/*
501 			 * There are not enough bytes, but we can not block.
502 			 * This only happens in the case of /dev/urandom which
503 			 * runs an additional generation algorithm. So, there
504 			 * is no problem.
505 			 */
506 			while (len > 0) {
507 				*ptr = rndpool[findex];
508 				ptr++; len--;
509 				rindex = findex = (findex + 1) &
510 				    (RNDPOOLSIZE - 1);
511 			}
512 			break;
513 		}
514 	}
515 
516 	mutex_exit(&rndpool_lock);
517 	return (0);
518 }
519 
520 int
521 kcf_rnd_get_bytes(uint8_t *ptr, size_t len, boolean_t noblock)
522 {
523 	extract_type_t how;
524 	int error;
525 
526 	how = noblock ? NONBLOCK_EXTRACT : BLOCKING_EXTRACT;
527 	mutex_enter(&rndpool_lock);
528 	if ((error = rnd_get_bytes(ptr, len, how)) != 0)
529 		return (error);
530 
531 	BUMP_RND_STATS(rs_rndOut, len);
532 	return (0);
533 }
534 
535 /*
536  * Revisit this if the structs grow or we come up with a better way
537  * of cache-line-padding structures.
538  */
539 #define	RND_CPU_CACHE_SIZE	64
540 #define	RND_CPU_PAD_SIZE	RND_CPU_CACHE_SIZE*6
541 #define	RND_CPU_PAD (RND_CPU_PAD_SIZE - \
542 	sizeof (rndmag_t))
543 /*
544  * Per-CPU random state.  Somewhat like like kmem's magazines, this provides
545  * a per-CPU instance of the pseudo-random generator.  We have it much easier
546  * than kmem, as we can afford to "leak" random bits if a CPU is DR'ed out.
547  *
548  * Note that this usage is preemption-safe; a thread
549  * entering a critical section remembers which generator it locked
550  * and unlocks the same one; should it be preempted and wind up running on
551  * a different CPU, there will be a brief period of increased contention
552  * before it exits the critical section but nothing will melt.
553  */
554 typedef struct rndmag_s
555 {
556 	kmutex_t	rm_lock;
557 	uint8_t		*rm_buffer;	/* Start of buffer */
558 	uint8_t		*rm_eptr;	/* End of buffer */
559 	uint8_t		*rm_rptr;	/* Current read pointer */
560 	uint32_t	rm_oblocks;	/* time to rekey? */
561 	uint32_t	rm_ofuzz;	/* Rekey backoff state */
562 	uint32_t	rm_olimit;	/* Hard rekey limit */
563 	rnd_stats_t	rm_stats;	/* Per-CPU Statistics */
564 	uint32_t	rm_key[HASHSIZE/BYTES_IN_WORD];	/* FIPS XKEY */
565 	uint32_t	rm_seed[HASHSIZE/BYTES_IN_WORD]; /* seed for rekey */
566 	uint32_t	rm_previous[HASHSIZE/BYTES_IN_WORD]; /* prev random */
567 } rndmag_t;
568 
569 typedef struct rndmag_pad_s
570 {
571 	rndmag_t	rm_mag;
572 	uint8_t		rm_pad[RND_CPU_PAD];
573 } rndmag_pad_t;
574 
575 /*
576  * Generate random bytes for /dev/urandom by applying the
577  * FIPS 186-2 algorithm with a key created from bytes extracted
578  * from the pool.  A maximum of PRNG_MAXOBLOCKS output blocks
579  * is generated before a new key is obtained.
580  *
581  * Note that callers to this routine are likely to assume it can't fail.
582  *
583  * Called with rmp locked; releases lock.
584  */
585 static int
586 rnd_generate_pseudo_bytes(rndmag_pad_t *rmp, uint8_t *ptr, size_t len)
587 {
588 	size_t bytes = len, size;
589 	int nblock;
590 	uint32_t oblocks;
591 	uint32_t tempout[HASHSIZE/BYTES_IN_WORD];
592 	uint32_t seed[HASHSIZE/BYTES_IN_WORD];
593 	int i;
594 	hrtime_t timestamp;
595 	uint8_t *src, *dst;
596 
597 	ASSERT(mutex_owned(&rmp->rm_mag.rm_lock));
598 
599 	/* Nothing is being asked */
600 	if (len == 0) {
601 		mutex_exit(&rmp->rm_mag.rm_lock);
602 		return (0);
603 	}
604 
605 	nblock = howmany(len, HASHSIZE);
606 
607 	rmp->rm_mag.rm_oblocks += nblock;
608 	oblocks = rmp->rm_mag.rm_oblocks;
609 
610 	do {
611 		if (oblocks >= rmp->rm_mag.rm_olimit) {
612 
613 			/*
614 			 * Contention-avoiding rekey: see if
615 			 * the pool is locked, and if so, wait a bit.
616 			 * Do an 'exponential back-in' to ensure we don't
617 			 * run too long without rekey.
618 			 */
619 			if (rmp->rm_mag.rm_ofuzz) {
620 				/*
621 				 * Decaying exponential back-in for rekey.
622 				 */
623 				if ((rnbyte_cnt < MINEXTRACTBYTES) ||
624 				    (!mutex_tryenter(&rndpool_lock))) {
625 					rmp->rm_mag.rm_olimit +=
626 					    rmp->rm_mag.rm_ofuzz;
627 					rmp->rm_mag.rm_ofuzz >>= 1;
628 					goto punt;
629 				}
630 			} else {
631 				mutex_enter(&rndpool_lock);
632 			}
633 
634 			/* Get a new chunk of entropy */
635 			(void) rnd_get_bytes((uint8_t *)rmp->rm_mag.rm_key,
636 			    HMAC_KEYSIZE, ALWAYS_EXTRACT);
637 
638 			rmp->rm_mag.rm_olimit = PRNG_MAXOBLOCKS/2;
639 			rmp->rm_mag.rm_ofuzz = PRNG_MAXOBLOCKS/4;
640 			oblocks = 0;
641 			rmp->rm_mag.rm_oblocks = nblock;
642 		}
643 punt:
644 		timestamp = gethrtime();
645 
646 		src = (uint8_t *)&timestamp;
647 		dst = (uint8_t *)rmp->rm_mag.rm_seed;
648 
649 		for (i = 0; i < HASHSIZE; i++) {
650 			dst[i] ^= src[i % sizeof (timestamp)];
651 		}
652 
653 		bcopy(rmp->rm_mag.rm_seed, seed, HASHSIZE);
654 
655 		fips_random_inner(rmp->rm_mag.rm_key, tempout,
656 		    seed);
657 
658 		if (bytes >= HASHSIZE) {
659 			size = HASHSIZE;
660 		} else {
661 			size = min(bytes, HASHSIZE);
662 		}
663 
664 		/*
665 		 * FIPS 140-2: Continuous RNG test - each generation
666 		 * of an n-bit block shall be compared with the previously
667 		 * generated block. Test shall fail if any two compared
668 		 * n-bit blocks are equal.
669 		 */
670 		for (i = 0; i < HASHSIZE/BYTES_IN_WORD; i++) {
671 			if (tempout[i] != rmp->rm_mag.rm_previous[i])
672 				break;
673 		}
674 		if (i == HASHSIZE/BYTES_IN_WORD) {
675 			cmn_err(CE_WARN, "kcf_random: The value of 160-bit "
676 			    "block random bytes are same as the previous "
677 			    "one.\n");
678 			/* discard random bytes and return error */
679 			return (EIO);
680 		}
681 
682 		bcopy(tempout, rmp->rm_mag.rm_previous,
683 		    HASHSIZE);
684 
685 		bcopy(tempout, ptr, size);
686 		ptr += size;
687 		bytes -= size;
688 		oblocks++;
689 		nblock--;
690 	} while (bytes > 0);
691 
692 	/* Zero out sensitive information */
693 	bzero(seed, HASHSIZE);
694 	bzero(tempout, HASHSIZE);
695 	mutex_exit(&rmp->rm_mag.rm_lock);
696 	return (0);
697 }
698 
699 /*
700  * Per-CPU Random magazines.
701  */
702 static rndmag_pad_t *rndmag;
703 static uint8_t	*rndbuf;
704 static size_t 	rndmag_total;
705 /*
706  * common/os/cpu.c says that platform support code can shrinkwrap
707  * max_ncpus.  On the off chance that we get loaded very early, we
708  * read it exactly once, to copy it here.
709  */
710 static uint32_t	random_max_ncpus = 0;
711 
712 /*
713  * Boot-time tunables, for experimentation.
714  */
715 size_t	rndmag_threshold = 2560;
716 size_t	rndbuf_len = 5120;
717 size_t	rndmag_size = 1280;
718 
719 
720 int
721 kcf_rnd_get_pseudo_bytes(uint8_t *ptr, size_t len)
722 {
723 	rndmag_pad_t *rmp;
724 	uint8_t *cptr, *eptr;
725 
726 	/*
727 	 * Anyone who asks for zero bytes of randomness should get slapped.
728 	 */
729 	ASSERT(len > 0);
730 
731 	/*
732 	 * Fast path.
733 	 */
734 	for (;;) {
735 		rmp = &rndmag[CPU->cpu_seqid];
736 		mutex_enter(&rmp->rm_mag.rm_lock);
737 
738 		/*
739 		 * Big requests bypass buffer and tail-call the
740 		 * generate routine directly.
741 		 */
742 		if (len > rndmag_threshold) {
743 			BUMP_CPU_RND_STATS(rmp, rs_urndOut, len);
744 			return (rnd_generate_pseudo_bytes(rmp, ptr, len));
745 		}
746 
747 		cptr = rmp->rm_mag.rm_rptr;
748 		eptr = cptr + len;
749 
750 		if (eptr <= rmp->rm_mag.rm_eptr) {
751 			rmp->rm_mag.rm_rptr = eptr;
752 			bcopy(cptr, ptr, len);
753 			BUMP_CPU_RND_STATS(rmp, rs_urndOut, len);
754 			mutex_exit(&rmp->rm_mag.rm_lock);
755 
756 			return (0);
757 		}
758 		/*
759 		 * End fast path.
760 		 */
761 		rmp->rm_mag.rm_rptr = rmp->rm_mag.rm_buffer;
762 		/*
763 		 * Note:  We assume the generate routine always succeeds
764 		 * in this case (because it does at present..)
765 		 * It also always releases rm_lock.
766 		 */
767 		(void) rnd_generate_pseudo_bytes(rmp, rmp->rm_mag.rm_buffer,
768 		    rndbuf_len);
769 	}
770 }
771 
772 /*
773  * We set up (empty) magazines for all of max_ncpus, possibly wasting a
774  * little memory on big systems that don't have the full set installed.
775  * See above;  "empty" means "rptr equal to eptr"; this will trigger the
776  * refill path in rnd_get_pseudo_bytes above on the first call for each CPU.
777  *
778  * TODO: make rndmag_size tunable at run time!
779  */
780 static void
781 rnd_alloc_magazines()
782 {
783 	rndmag_pad_t *rmp;
784 	int i;
785 	uint8_t discard_buf[HASHSIZE];
786 
787 	rndbuf_len = roundup(rndbuf_len, HASHSIZE);
788 	if (rndmag_size < rndbuf_len)
789 		rndmag_size = rndbuf_len;
790 	rndmag_size = roundup(rndmag_size, RND_CPU_CACHE_SIZE);
791 
792 	random_max_ncpus = max_ncpus;
793 	rndmag_total = rndmag_size * random_max_ncpus;
794 
795 	rndbuf = kmem_alloc(rndmag_total, KM_SLEEP);
796 	rndmag = kmem_zalloc(sizeof (rndmag_pad_t) * random_max_ncpus,
797 	    KM_SLEEP);
798 
799 	for (i = 0; i < random_max_ncpus; i++) {
800 		uint8_t *buf;
801 
802 		rmp = &rndmag[i];
803 		mutex_init(&rmp->rm_mag.rm_lock, NULL, MUTEX_DRIVER, NULL);
804 
805 		buf = rndbuf + i * rndmag_size;
806 
807 		rmp->rm_mag.rm_buffer = buf;
808 		rmp->rm_mag.rm_eptr = buf + rndbuf_len;
809 		rmp->rm_mag.rm_rptr = buf + rndbuf_len;
810 		rmp->rm_mag.rm_oblocks = 1;
811 
812 		mutex_enter(&rndpool_lock);
813 		/*
814 		 * FIPS 140-2: the first n-bit (n > 15) block generated
815 		 * after power-up, initialization, or reset shall not
816 		 * be used, but shall be saved for comparison.
817 		 */
818 		(void) rnd_get_bytes(discard_buf,
819 		    HMAC_KEYSIZE, ALWAYS_EXTRACT);
820 		bcopy(discard_buf, rmp->rm_mag.rm_previous,
821 		    HMAC_KEYSIZE);
822 		/* rnd_get_bytes() will call mutex_exit(&rndpool_lock) */
823 		mutex_enter(&rndpool_lock);
824 		(void) rnd_get_bytes((uint8_t *)rmp->rm_mag.rm_key,
825 		    HMAC_KEYSIZE, ALWAYS_EXTRACT);
826 		/* rnd_get_bytes() will call mutex_exit(&rndpool_lock) */
827 		mutex_enter(&rndpool_lock);
828 		(void) rnd_get_bytes((uint8_t *)rmp->rm_mag.rm_seed,
829 		    HMAC_KEYSIZE, ALWAYS_EXTRACT);
830 	}
831 }
832 
833 void
834 kcf_rnd_schedule_timeout(boolean_t do_mech2id)
835 {
836 	clock_t ut;	/* time in microseconds */
837 
838 	if (do_mech2id)
839 		rngmech_type = crypto_mech2id(SUN_RANDOM);
840 
841 	/*
842 	 * The new timeout value is taken from the buffer of random bytes.
843 	 * We're merely reading the first 32 bits from the buffer here, not
844 	 * consuming any random bytes.
845 	 * The timeout multiplier value is a random value between 0.5 sec and
846 	 * 1.544480 sec (0.5 sec + 0xFF000 microseconds).
847 	 * The new timeout is TIMEOUT_INTERVAL times that multiplier.
848 	 */
849 	ut = 500000 + (clock_t)((((uint32_t)rndpool[findex]) << 12) & 0xFF000);
850 	kcf_rndtimeout_id = timeout(rnd_handler, NULL,
851 	    TIMEOUT_INTERVAL * drv_usectohz(ut));
852 }
853 
854 /*
855  * Called from the driver for a poll on /dev/random
856  * . POLLOUT always succeeds.
857  * . POLLIN and POLLRDNORM will block until a
858  *   minimum amount of entropy is available.
859  *
860  * &rnd_pollhead is passed in *phpp in order to indicate the calling thread
861  * will block. When enough random bytes are available, later, the timeout
862  * handler routine will issue the pollwakeup() calls.
863  */
864 void
865 kcf_rnd_chpoll(short events, int anyyet, short *reventsp,
866     struct pollhead **phpp)
867 {
868 	*reventsp = events & POLLOUT;
869 
870 	if (events & (POLLIN | POLLRDNORM)) {
871 		/*
872 		 * Sampling of rnbyte_cnt is an atomic
873 		 * operation. Hence we do not need any locking.
874 		 */
875 		if (rnbyte_cnt >= MINEXTRACTBYTES)
876 			*reventsp |= (events & (POLLIN | POLLRDNORM));
877 	}
878 
879 	if (*reventsp == 0 && !anyyet)
880 		*phpp = &rnd_pollhead;
881 }
882 
883 /*ARGSUSED*/
884 static void
885 rnd_handler(void *arg)
886 {
887 	int len = 0;
888 
889 	if (!rng_prov_found && rng_ok_to_log) {
890 		cmn_err(CE_WARN, "No randomness provider enabled for "
891 		    "/dev/random. Use cryptoadm(1M) to enable a provider.");
892 		rng_ok_to_log = B_FALSE;
893 	}
894 
895 	if (num_waiters > 0)
896 		/*
897 		 * Note: len has no relationship with how many bytes
898 		 * a poll thread needs.
899 		 */
900 		len = MAXEXTRACTBYTES;
901 	else if (rnbyte_cnt < RNDPOOLSIZE)
902 		len = MINEXTRACTBYTES;
903 
904 	/*
905 	 * Only one thread gets to set rngprov_task_idle at a given point
906 	 * of time and the order of the writes is defined. Also, it is OK
907 	 * if we read an older value of it and skip the dispatch once
908 	 * since we will get the correct value during the next time here.
909 	 * So, no locking is needed here.
910 	 */
911 	if (len > 0 && rngprov_task_idle) {
912 		rngprov_task_idle = B_FALSE;
913 
914 		/*
915 		 * It is OK if taskq_dispatch fails here. We will retry
916 		 * the next time around. Meanwhile, a thread doing a
917 		 * read() will go to the provider directly, if the
918 		 * cache becomes empty.
919 		 */
920 		if (taskq_dispatch(system_taskq, rngprov_task,
921 		    (void *)(uintptr_t)len, TQ_NOSLEEP | TQ_NOQUEUE) == 0) {
922 			rngprov_task_idle = B_TRUE;
923 		}
924 	}
925 
926 	mutex_enter(&rndpool_lock);
927 	/*
928 	 * Wake up threads waiting in poll() or for enough accumulated
929 	 * random bytes to read from /dev/random. In case a poll() is
930 	 * concurrent with a read(), the polling process may be woken up
931 	 * indicating that enough randomness is now available for reading,
932 	 * and another process *steals* the bits from the pool, causing the
933 	 * subsequent read() from the first process to block. It is acceptable
934 	 * since the blocking will eventually end, after the timeout
935 	 * has expired enough times to honor the read.
936 	 *
937 	 * Note - Since we hold the rndpool_lock across the pollwakeup() call
938 	 * we MUST NOT grab the rndpool_lock in kcf_rndchpoll().
939 	 */
940 	if (rnbyte_cnt >= MINEXTRACTBYTES)
941 		pollwakeup(&rnd_pollhead, POLLIN | POLLRDNORM);
942 
943 	if (num_waiters > 0)
944 		cv_broadcast(&rndpool_read_cv);
945 	mutex_exit(&rndpool_lock);
946 
947 	kcf_rnd_schedule_timeout(B_FALSE);
948 }
949 
950 static void
951 rndc_addbytes(uint8_t *ptr, size_t len)
952 {
953 	ASSERT(ptr != NULL && len > 0);
954 	ASSERT(rnbyte_cnt <= RNDPOOLSIZE);
955 
956 	mutex_enter(&rndpool_lock);
957 	while ((len > 0) && (rnbyte_cnt < RNDPOOLSIZE)) {
958 		rndpool[rindex] ^= *ptr;
959 		ptr++; len--;
960 		rindex = (rindex + 1) & (RNDPOOLSIZE - 1);
961 		rnbyte_cnt++;
962 	}
963 
964 	/* Handle buffer full case */
965 	while (len > 0) {
966 		rndpool[rindex] ^= *ptr;
967 		ptr++; len--;
968 		findex = rindex = (rindex + 1) & (RNDPOOLSIZE - 1);
969 	}
970 	mutex_exit(&rndpool_lock);
971 }
972 
973 /*
974  * Caller should check len <= rnbyte_cnt under the
975  * rndpool_lock before calling.
976  */
977 static void
978 rndc_getbytes(uint8_t *ptr, size_t len)
979 {
980 	ASSERT(MUTEX_HELD(&rndpool_lock));
981 	ASSERT(len <= rnbyte_cnt && rnbyte_cnt <= RNDPOOLSIZE);
982 
983 	BUMP_RND_STATS(rs_rndcOut, len);
984 
985 	while (len > 0) {
986 		*ptr = rndpool[findex];
987 		ptr++; len--;
988 		findex = (findex + 1) & (RNDPOOLSIZE - 1);
989 		rnbyte_cnt--;
990 	}
991 }
992 
993 /* Random number exported entry points */
994 
995 /*
996  * Mix the supplied bytes into the entropy pool of a kCF
997  * RNG provider.
998  */
999 int
1000 random_add_pseudo_entropy(uint8_t *ptr, size_t len, uint_t entropy_est)
1001 {
1002 	if (len < 1)
1003 		return (-1);
1004 
1005 	rngprov_seed(ptr, len, entropy_est, 0);
1006 
1007 	return (0);
1008 }
1009 
1010 /*
1011  * Mix the supplied bytes into the entropy pool of a kCF
1012  * RNG provider. Mix immediately.
1013  */
1014 int
1015 random_add_entropy(uint8_t *ptr, size_t len, uint_t entropy_est)
1016 {
1017 	if (len < 1)
1018 		return (-1);
1019 
1020 	rngprov_seed(ptr, len, entropy_est, CRYPTO_SEED_NOW);
1021 
1022 	return (0);
1023 }
1024 
1025 /*
1026  * Get bytes from the /dev/urandom generator. This function
1027  * always succeeds. Returns 0.
1028  */
1029 int
1030 random_get_pseudo_bytes(uint8_t *ptr, size_t len)
1031 {
1032 	ASSERT(!mutex_owned(&rndpool_lock));
1033 
1034 	if (len < 1)
1035 		return (0);
1036 	return (kcf_rnd_get_pseudo_bytes(ptr, len));
1037 }
1038 
1039 /*
1040  * Get bytes from the /dev/random generator. Returns 0
1041  * on success. Returns EAGAIN if there is insufficient entropy.
1042  */
1043 int
1044 random_get_bytes(uint8_t *ptr, size_t len)
1045 {
1046 	ASSERT(!mutex_owned(&rndpool_lock));
1047 
1048 	if (len < 1)
1049 		return (0);
1050 	return (kcf_rnd_get_bytes(ptr, len, B_TRUE));
1051 }
1052