xref: /titanic_44/usr/src/uts/common/crypto/api/kcf_miscapi.c (revision ead1f93ee620d7580f7e53350fe5a884fc4f158a)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #include <sys/types.h>
27 #include <sys/sunddi.h>
28 #include <sys/disp.h>
29 #include <sys/modctl.h>
30 #include <sys/sysmacros.h>
31 #include <sys/crypto/common.h>
32 #include <sys/crypto/api.h>
33 #include <sys/crypto/impl.h>
34 #include <sys/crypto/sched_impl.h>
35 
36 #define	isspace(ch)	(((ch) == ' ') || ((ch) == '\r') || ((ch) == '\n') || \
37 			((ch) == '\t') || ((ch) == '\f'))
38 
39 #define	CRYPTO_OPS_OFFSET(f)		offsetof(crypto_ops_t, co_##f)
40 #define	CRYPTO_KEY_OFFSET(f)		offsetof(crypto_key_ops_t, f)
41 #define	CRYPTO_PROVIDER_OFFSET(f)	\
42 	offsetof(crypto_provider_management_ops_t, f)
43 
44 /* Miscellaneous exported entry points */
45 
46 /*
47  * All event subscribers are put on a list. kcf_notify_list_lock
48  * protects changes to this list.
49  *
50  * The following locking order is maintained in the code - The
51  * global kcf_notify_list_lock followed by the individual lock
52  * in a kcf_ntfy_elem structure (kn_lock).
53  */
54 kmutex_t		ntfy_list_lock;
55 kcondvar_t		ntfy_list_cv;   /* cv the service thread waits on */
56 static kcf_ntfy_elem_t *ntfy_list_head;
57 static kcf_ntfy_elem_t *ntfy_list_tail;
58 
59 /* count all the hardware and software providers */
60 #define	PROV_COUNT(me) \
61 	(((me)->me_sw_prov != NULL ? 1 : 0) + (me)->me_num_hwprov)
62 
63 /*
64  * crypto_mech2id()
65  *
66  * Arguments:
67  *	. mechname: A null-terminated string identifying the mechanism name.
68  *
69  * Description:
70  *	Walks the mechanisms tables, looking for an entry that matches the
71  *	mechname. Once it find it, it builds the 64-bit mech_type and returns
72  *	it.  If there are no hardware or software providers for the mechanism,
73  *	but there is an unloaded software provider, this routine will attempt
74  *	to load it.
75  *
76  * Context:
77  *	Process and interruption.
78  *
79  * Returns:
80  *	The unique mechanism identified by 'mechname', if found.
81  *	CRYPTO_MECH_INVALID otherwise.
82  */
83 crypto_mech_type_t
84 crypto_mech2id(char *mechname)
85 {
86 	return (crypto_mech2id_common(mechname, B_TRUE));
87 }
88 
89 /*
90  * crypto_get_mech_list()
91  *
92  * Arguments:
93  *	. countp: pointer to contain the number of mech names returned
94  *	. kmflag: memory allocation flag.
95  *
96  * Description:
97  *	Allocates an array of crypto_mech_name_t containing all the mechanisms
98  *	currently available on the system. Sets *countp with the number of
99  *	mechanism names returned.
100  *
101  *	We get a list of mech names which have a hardware provider by walking
102  *	all the mechanism tables. We merge them with mech names obtained from
103  *	the hint list. A mech name in the hint list is considered only if it
104  *	is not disabled for the provider. Note that the hint list contains only
105  *	software providers and the mech names supported by them.
106  *
107  * Context:
108  *	Process and interruption. kmflag should be KM_NOSLEEP when called
109  *	from an interruption context.
110  *
111  * Returns:
112  *	The array of the crypto_mech_t allocated.
113  *	NULL otherwise.
114  */
115 crypto_mech_name_t *
116 crypto_get_mech_list(uint_t *countp, int kmflag)
117 {
118 	uint_t count = 0, me_tab_size, i, j;
119 	kcf_ops_class_t cl;
120 	kcf_mech_entry_t *me, *me_tab;
121 	crypto_mech_name_t *mech_name_tab, *tmp_mech_name_tab;
122 	char *mech_name, *hint_mech, *end;
123 	kcf_soft_conf_entry_t *p;
124 	size_t n;
125 	kcf_lock_withpad_t *mp;
126 
127 	/*
128 	 * Count the maximum possible mechanisms that can come from the
129 	 * hint list.
130 	 */
131 	mutex_enter(&soft_config_mutex);
132 	p = soft_config_list;
133 	while (p != NULL) {
134 		count += p->ce_count;
135 		p = p->ce_next;
136 	}
137 	mutex_exit(&soft_config_mutex);
138 
139 	/* First let's count'em, for mem allocation */
140 	for (cl = KCF_FIRST_OPSCLASS; cl <= KCF_LAST_OPSCLASS; cl++) {
141 		me_tab_size = kcf_mech_tabs_tab[cl].met_size;
142 		me_tab = kcf_mech_tabs_tab[cl].met_tab;
143 		for (i = 0; i < me_tab_size; i++) {
144 			me = &me_tab[i];
145 			mp = &me_mutexes[CPU_SEQID];
146 			mutex_enter(&mp->kl_lock);
147 			if ((me->me_name[0] != 0) && (me->me_num_hwprov >= 1)) {
148 				ASSERT(me->me_hw_prov_chain != NULL);
149 				count++;
150 			}
151 			mutex_exit(&mp->kl_lock);
152 		}
153 	}
154 
155 	/*
156 	 * Allocate a buffer to hold the mechanisms from
157 	 * mech tabs and mechanisms from the hint list.
158 	 */
159 	n = count * CRYPTO_MAX_MECH_NAME;
160 
161 again:
162 	count = 0;
163 	tmp_mech_name_tab = kmem_zalloc(n, kmflag);
164 	if (tmp_mech_name_tab == NULL) {
165 		*countp = 0;
166 		return (NULL);
167 	}
168 
169 	/*
170 	 * Second round, fill in the table
171 	 */
172 
173 	mech_name = (char *)tmp_mech_name_tab;
174 	end = mech_name + n;
175 
176 	for (cl = KCF_FIRST_OPSCLASS; cl <= KCF_LAST_OPSCLASS; cl++) {
177 		me_tab_size = kcf_mech_tabs_tab[cl].met_size;
178 		me_tab = kcf_mech_tabs_tab[cl].met_tab;
179 		for (i = 0; i < me_tab_size; i++) {
180 			me = &me_tab[i];
181 			mp = &me_mutexes[CPU_SEQID];
182 			mutex_enter(&mp->kl_lock);
183 			if ((me->me_name[0] != 0) && (me->me_num_hwprov >= 1)) {
184 				ASSERT(me->me_hw_prov_chain != NULL);
185 				if ((mech_name + CRYPTO_MAX_MECH_NAME) > end) {
186 					mutex_exit(&mp->kl_lock);
187 					kmem_free(tmp_mech_name_tab, n);
188 					n = n << 1;
189 					goto again;
190 				}
191 				(void) strncpy(mech_name, me->me_name,
192 				    CRYPTO_MAX_MECH_NAME);
193 
194 				mech_name += CRYPTO_MAX_MECH_NAME;
195 				count++;
196 			}
197 			mutex_exit(&mp->kl_lock);
198 		}
199 	}
200 
201 	/*
202 	 * Search tmp_mech_name_tab for each mechanism in the hint list. We
203 	 * have to add any new mechanisms found in the hint list. Note that we
204 	 * should not modload the providers here as it will be too early. It
205 	 * may be the case that the caller never uses a provider.
206 	 */
207 	mutex_enter(&soft_config_mutex);
208 	p = soft_config_list;
209 	while (p != NULL) {
210 		for (i = 0; i < p->ce_count; i++) {
211 			hint_mech = p->ce_mechs[i];
212 
213 			/* Do not consider the mechanism if it is disabled. */
214 			if (is_mech_disabled_byname(CRYPTO_SW_PROVIDER,
215 			    p->ce_name, 0, hint_mech))
216 				continue;
217 
218 			/*
219 			 * There may be duplicate mechanisms in the hint list.
220 			 * So, we need to search all the entries that have been
221 			 * added so far. That number would be count.
222 			 */
223 			for (j = 0; j < count; j++) {
224 				if (strcmp(hint_mech,
225 				    tmp_mech_name_tab[j]) == 0)
226 					break;
227 			}
228 
229 			if (j == count) {	/* This is a new one. Add it. */
230 				ASSERT((char *)&tmp_mech_name_tab[count] ==
231 				    mech_name);
232 				if ((mech_name + CRYPTO_MAX_MECH_NAME) > end) {
233 					mutex_exit(&soft_config_mutex);
234 					kmem_free(tmp_mech_name_tab, n);
235 					n = n << 1;
236 					goto again;
237 				}
238 				(void) strncpy(tmp_mech_name_tab[count],
239 				    hint_mech, CRYPTO_MAX_MECH_NAME);
240 				mech_name += CRYPTO_MAX_MECH_NAME;
241 				count++;
242 			}
243 		}
244 		p = p->ce_next;
245 	}
246 	mutex_exit(&soft_config_mutex);
247 
248 	/*
249 	 * Check if we have consumed all of the space. We are done if
250 	 * this is the case.
251 	 */
252 	ASSERT(mech_name <= end);
253 	if (mech_name == end) {
254 		mech_name_tab = tmp_mech_name_tab;
255 		goto done;
256 	}
257 
258 	/*
259 	 * Allocate a buffer of the right size now that we have the
260 	 * correct count.
261 	 */
262 	mech_name_tab = kmem_zalloc(count * CRYPTO_MAX_MECH_NAME, kmflag);
263 	if (mech_name_tab == NULL) {
264 		kmem_free(tmp_mech_name_tab, n);
265 		*countp = 0;
266 		return (NULL);
267 	}
268 
269 	bcopy(tmp_mech_name_tab, mech_name_tab, count * CRYPTO_MAX_MECH_NAME);
270 	kmem_free(tmp_mech_name_tab, n);
271 
272 done:
273 	*countp = count;
274 	return (mech_name_tab);
275 }
276 
277 /*
278  * crypto_free_mech_list()
279  *
280  * Arguments:
281  *	. mech_names: An array of crypto_mech_name_t previously allocated by
282  *	  crypto_get_mech_list.
283  *	. count: the number of mech names in mech_names
284  *
285  * Description:
286  *	Frees the the mech_names array.
287  *
288  * Context:
289  *	Process and interruption.
290  */
291 void
292 crypto_free_mech_list(crypto_mech_name_t *mech_names, uint_t count)
293 {
294 	if ((mech_names != NULL) && (count > 0))
295 		kmem_free(mech_names, count * CRYPTO_MAX_MECH_NAME);
296 }
297 
298 /*
299  * crypto_notify_events()
300  *
301  * Arguments:
302  *	. nf: Callback function to invoke when event occurs.
303  *	. event_mask: Mask of events.
304  *
305  * Description:
306  *	Allocates a new element and inserts it in to the notification
307  *	list.
308  *
309  * Context:
310  *	Process context.
311  *
312  * Returns:
313  *	A handle is returned if the client is put on the notification list.
314  *	NULL is returned otherwise.
315  */
316 crypto_notify_handle_t
317 crypto_notify_events(crypto_notify_callback_t nf, uint32_t event_mask)
318 {
319 	kcf_ntfy_elem_t *nep;
320 	crypto_notify_handle_t hndl;
321 
322 	/* Check the input */
323 	if (nf == NULL || !(event_mask & (CRYPTO_EVENT_MECHS_CHANGED |
324 	    CRYPTO_EVENT_PROVIDER_REGISTERED |
325 	    CRYPTO_EVENT_PROVIDER_UNREGISTERED))) {
326 		return (NULL);
327 	}
328 
329 	nep = kmem_zalloc(sizeof (kcf_ntfy_elem_t), KM_SLEEP);
330 	mutex_init(&nep->kn_lock, NULL, MUTEX_DEFAULT, NULL);
331 	cv_init(&nep->kn_cv, NULL, CV_DEFAULT, NULL);
332 	nep->kn_state = NTFY_WAITING;
333 	nep->kn_func = nf;
334 	nep->kn_event_mask = event_mask;
335 
336 	mutex_enter(&ntfy_list_lock);
337 	if (ntfy_list_head == NULL) {
338 		ntfy_list_head = ntfy_list_tail = nep;
339 	} else {
340 		ntfy_list_tail->kn_next = nep;
341 		nep->kn_prev = ntfy_list_tail;
342 		ntfy_list_tail = nep;
343 	}
344 
345 	hndl = (crypto_notify_handle_t)nep;
346 	mutex_exit(&ntfy_list_lock);
347 
348 	return (hndl);
349 }
350 
351 /*
352  * crypto_unnotify_events()
353  *
354  * Arguments:
355  *	. hndl - Handle returned from an earlier crypto_notify_events().
356  *
357  * Description:
358  *	Removes the element specified by hndl from the notification list.
359  *	We wait for the notification routine to complete, if the routine
360  *	is currently being called. We also free the element.
361  *
362  * Context:
363  *	Process context.
364  */
365 void
366 crypto_unnotify_events(crypto_notify_handle_t hndl)
367 {
368 	kcf_ntfy_elem_t *nep = (kcf_ntfy_elem_t *)hndl;
369 
370 	if (hndl == NULL)
371 		return;
372 
373 retry:
374 	mutex_enter(&ntfy_list_lock);
375 	mutex_enter(&nep->kn_lock);
376 
377 	if (nep->kn_state == NTFY_WAITING) {
378 		kcf_ntfy_elem_t *nextp = nep->kn_next;
379 		kcf_ntfy_elem_t *prevp = nep->kn_prev;
380 
381 		if (nextp != NULL)
382 			nextp->kn_prev = prevp;
383 		else
384 			ntfy_list_tail = prevp;
385 
386 		if (prevp != NULL)
387 			prevp->kn_next = nextp;
388 		else
389 			ntfy_list_head = nextp;
390 	} else {
391 		ASSERT(nep->kn_state == NTFY_RUNNING);
392 
393 		/*
394 		 * We have to drop this lock as the client might call
395 		 * crypto_notify_events() in the callback routine resulting
396 		 * in a deadlock.
397 		 */
398 		mutex_exit(&ntfy_list_lock);
399 
400 		/*
401 		 * Another thread is working on this element. We will wait
402 		 * for that thread to signal us when done. No other thread
403 		 * will free this element. So, we can be sure it stays valid
404 		 * after the wait.
405 		 */
406 		while (nep->kn_state == NTFY_RUNNING)
407 			cv_wait(&nep->kn_cv, &nep->kn_lock);
408 		mutex_exit(&nep->kn_lock);
409 
410 		/*
411 		 * We have to remove the element from the notification list.
412 		 * So, start over and do the work (acquire locks etc.). This is
413 		 * safe (i.e. We won't be in this routine forever) as the
414 		 * events do not happen frequently. We have to revisit this
415 		 * code if we add a new event that happens often.
416 		 */
417 		goto retry;
418 	}
419 
420 	mutex_exit(&nep->kn_lock);
421 
422 	/* Free the element */
423 	mutex_destroy(&nep->kn_lock);
424 	cv_destroy(&nep->kn_cv);
425 	kmem_free(nep, sizeof (kcf_ntfy_elem_t));
426 
427 	mutex_exit(&ntfy_list_lock);
428 }
429 
430 /*
431  * We walk the notification list and do the callbacks.
432  */
433 void
434 kcf_walk_ntfylist(uint32_t event, void *event_arg)
435 {
436 	kcf_ntfy_elem_t *nep;
437 	int nelem = 0;
438 
439 	mutex_enter(&ntfy_list_lock);
440 
441 	/*
442 	 * Count how many clients are on the notification list. We need
443 	 * this count to ensure that clients which joined the list after we
444 	 * have started this walk, are not wrongly notified.
445 	 */
446 	for (nep = ntfy_list_head; nep != NULL; nep = nep->kn_next)
447 		nelem++;
448 
449 	for (nep = ntfy_list_head; (nep != NULL && nelem); nep = nep->kn_next) {
450 		nelem--;
451 
452 		/*
453 		 * Check if this client is interested in the
454 		 * event.
455 		 */
456 		if (!(nep->kn_event_mask & event))
457 			continue;
458 
459 		mutex_enter(&nep->kn_lock);
460 		nep->kn_state = NTFY_RUNNING;
461 		mutex_exit(&nep->kn_lock);
462 		mutex_exit(&ntfy_list_lock);
463 
464 		/*
465 		 * We invoke the callback routine with no locks held. Another
466 		 * client could have joined the list meanwhile. This is fine
467 		 * as we maintain nelem as stated above. The NULL check in the
468 		 * for loop guards against shrinkage. Also, any callers of
469 		 * crypto_unnotify_events() at this point cv_wait till kn_state
470 		 * changes to NTFY_WAITING. Hence, nep is assured to be valid.
471 		 */
472 		(*nep->kn_func)(event, event_arg);
473 
474 		mutex_enter(&nep->kn_lock);
475 		nep->kn_state = NTFY_WAITING;
476 		cv_broadcast(&nep->kn_cv);
477 		mutex_exit(&nep->kn_lock);
478 
479 		mutex_enter(&ntfy_list_lock);
480 	}
481 
482 	mutex_exit(&ntfy_list_lock);
483 }
484 
485 /*
486  * crypto_key_check()
487  *
488  * Arguments:
489  *	. mech: the mechanism to check the key with.
490  *	. key: the key to check for validity and weakness.
491  *
492  * Description:
493  *	Checks the validity and strength of the key for the mechanism.
494  *	CRYPTO_KEY_REFERENCE is not supported for this routine.
495  *	If more than one provider is capable of key checking for the mechanism,
496  *	then run the key through them all.
497  *	A conservative approach is adopted here: New weak keys may be
498  *	discovered with more recent providers. If at least one provider is
499  *	not happy with a key, then it is no good.
500  *
501  * Context:
502  *	Process and interruption.
503  */
504 int
505 crypto_key_check(crypto_mechanism_t *mech, crypto_key_t *key)
506 {
507 	int error;
508 	kcf_mech_entry_t *me;
509 	kcf_provider_desc_t *pd;
510 	kcf_prov_mech_desc_t *prov_chain;
511 	kcf_lock_withpad_t *mp;
512 
513 	/* when mech is a valid mechanism, me will be its mech_entry */
514 	if ((mech == NULL) || (key == NULL) ||
515 	    (key->ck_format == CRYPTO_KEY_REFERENCE))
516 		return (CRYPTO_ARGUMENTS_BAD);
517 
518 	if ((error = kcf_get_mech_entry(mech->cm_type, &me)) != KCF_SUCCESS) {
519 		/* error is one of the KCF_INVALID_MECH_XXX's */
520 		return (CRYPTO_MECHANISM_INVALID);
521 	}
522 
523 	mp = &me_mutexes[CPU_SEQID];
524 	mutex_enter(&mp->kl_lock);
525 
526 	/* First let the software provider check this key */
527 	if (me->me_sw_prov != NULL) {
528 		pd = me->me_sw_prov->pm_prov_desc;
529 		KCF_PROV_REFHOLD(pd);
530 
531 		if ((KCF_PROV_KEY_OPS(pd) != NULL) &&
532 		    (KCF_PROV_KEY_OPS(pd)->key_check != NULL)) {
533 			crypto_mechanism_t lmech;
534 
535 			mutex_exit(&mp->kl_lock);
536 			lmech = *mech;
537 			KCF_SET_PROVIDER_MECHNUM(mech->cm_type, pd, &lmech);
538 			error = KCF_PROV_KEY_CHECK(pd, &lmech, key);
539 
540 			if (error != CRYPTO_SUCCESS) {
541 				KCF_PROV_REFRELE(pd);
542 				return (error);
543 			}
544 
545 			mutex_enter(&mp->kl_lock);
546 		}
547 		KCF_PROV_REFRELE(pd);
548 	}
549 
550 	prov_chain = me->me_hw_prov_chain;
551 	while (prov_chain != NULL) {
552 		pd = prov_chain->pm_prov_desc;
553 		KCF_PROV_REFHOLD(pd);
554 
555 		if ((KCF_PROV_KEY_OPS(pd) != NULL) &&
556 		    (KCF_PROV_KEY_OPS(pd)->key_check != NULL)) {
557 			crypto_mechanism_t lmech;
558 
559 			mutex_exit(&mp->kl_lock);
560 			lmech = *mech;
561 			KCF_SET_PROVIDER_MECHNUM(mech->cm_type, pd,
562 			    &lmech);
563 			error = KCF_PROV_KEY_CHECK(pd, &lmech, key);
564 
565 			if (error != CRYPTO_SUCCESS) {
566 				KCF_PROV_REFRELE(pd);
567 				return (error);
568 			}
569 			mutex_enter(&mp->kl_lock);
570 		}
571 		KCF_PROV_REFRELE(pd);
572 		prov_chain = prov_chain->pm_next;
573 	}
574 
575 	mutex_exit(&mp->kl_lock);
576 
577 	/* All are happy with this key */
578 	return (CRYPTO_SUCCESS);
579 }
580 
581 int
582 crypto_key_check_prov(crypto_provider_t provider, crypto_mechanism_t *mech,
583     crypto_key_t *key)
584 {
585 	kcf_provider_desc_t *pd = provider;
586 	kcf_provider_desc_t *real_provider = pd;
587 	crypto_mechanism_t lmech;
588 	int rv;
589 
590 	ASSERT(KCF_PROV_REFHELD(pd));
591 
592 	if ((mech == NULL) || (key == NULL) ||
593 	    (key->ck_format == CRYPTO_KEY_REFERENCE))
594 		return (CRYPTO_ARGUMENTS_BAD);
595 
596 	/* no logical providers currently support the key check */
597 	if (pd->pd_prov_type == CRYPTO_LOGICAL_PROVIDER) {
598 		return (CRYPTO_NOT_SUPPORTED);
599 	}
600 
601 	lmech = *mech;
602 	KCF_SET_PROVIDER_MECHNUM(mech->cm_type, real_provider, &lmech);
603 	rv = KCF_PROV_KEY_CHECK(real_provider, &lmech, key);
604 	if (pd->pd_prov_type == CRYPTO_LOGICAL_PROVIDER)
605 		KCF_PROV_REFRELE(real_provider);
606 
607 	return (rv);
608 }
609 
610 /*
611  * Initialize the specified crypto_mechanism_info_t structure for
612  * the specified mechanism provider descriptor. Used by
613  * crypto_get_all_mech_info().
614  */
615 static void
616 init_mechanism_info(crypto_mechanism_info_t *mech_info,
617     kcf_prov_mech_desc_t *pmd)
618 {
619 	crypto_func_group_t fg = pmd->pm_mech_info.cm_func_group_mask;
620 
621 	/* min/max key sizes */
622 	mech_info->mi_keysize_unit = pmd->pm_mech_info.cm_mech_flags &
623 	    (CRYPTO_KEYSIZE_UNIT_IN_BITS | CRYPTO_KEYSIZE_UNIT_IN_BYTES);
624 	mech_info->mi_min_key_size =
625 	    (size_t)pmd->pm_mech_info.cm_min_key_length;
626 	mech_info->mi_max_key_size =
627 	    (size_t)pmd->pm_mech_info.cm_max_key_length;
628 
629 	/* usage flag */
630 	mech_info->mi_usage = 0;
631 	if (fg & (CRYPTO_FG_ENCRYPT | CRYPTO_FG_ENCRYPT_ATOMIC))
632 		mech_info->mi_usage |= CRYPTO_MECH_USAGE_ENCRYPT;
633 	if (fg & (CRYPTO_FG_DECRYPT | CRYPTO_FG_DECRYPT_ATOMIC))
634 		mech_info->mi_usage |= CRYPTO_MECH_USAGE_DECRYPT;
635 	if (fg & (CRYPTO_FG_MAC | CRYPTO_FG_MAC_ATOMIC))
636 		mech_info->mi_usage |= CRYPTO_MECH_USAGE_MAC;
637 }
638 
639 /*
640  * Return the mechanism info for the specified mechanism.
641  */
642 int
643 crypto_get_all_mech_info(crypto_mech_type_t mech_type,
644     crypto_mechanism_info_t **mech_infos, uint_t *num_mech_infos,
645     int km_flag)
646 {
647 	uint_t ninfos, cur_info;
648 	kcf_mech_entry_t *me;
649 	int rv;
650 	kcf_prov_mech_desc_t *hwp;
651 	crypto_mechanism_info_t *infos;
652 	size_t infos_size;
653 	kcf_lock_withpad_t *mp;
654 
655 	/* get to the mech entry corresponding to the specified mech type */
656 	if ((rv = kcf_get_mech_entry(mech_type, &me)) != CRYPTO_SUCCESS) {
657 		return (rv);
658 	}
659 
660 	/* compute the number of key size ranges to return */
661 	mp = &me_mutexes[CPU_SEQID];
662 	mutex_enter(&mp->kl_lock);
663 again:
664 	ninfos = PROV_COUNT(me);
665 	mutex_exit(&mp->kl_lock);
666 
667 	if (ninfos == 0) {
668 		infos = NULL;
669 		rv = CRYPTO_SUCCESS;
670 		goto bail;
671 	}
672 	infos_size = ninfos * sizeof (crypto_mechanism_info_t);
673 	infos = kmem_alloc(infos_size, km_flag);
674 	if (infos == NULL) {
675 		rv = CRYPTO_HOST_MEMORY;
676 		goto bail;
677 	}
678 
679 	mutex_enter(&mp->kl_lock);
680 	if (ninfos != PROV_COUNT(me)) {
681 		kmem_free(infos, infos_size);
682 		goto again;
683 	}
684 
685 	/* populate array of crypto mechanism infos */
686 	cur_info = 0;
687 
688 	/* software provider, if present */
689 	if (me->me_sw_prov != NULL)
690 		init_mechanism_info(&infos[cur_info++], me->me_sw_prov);
691 
692 	/* hardware providers */
693 	for (hwp = me->me_hw_prov_chain; hwp != NULL; hwp = hwp->pm_next)
694 		init_mechanism_info(&infos[cur_info++], hwp);
695 
696 	mutex_exit(&mp->kl_lock);
697 	ASSERT(cur_info == ninfos);
698 bail:
699 	*mech_infos = infos;
700 	*num_mech_infos = ninfos;
701 	return (rv);
702 }
703 
704 /*
705  * Frees the array of mechanism infos previously allocated by
706  * crypto_get_all_mech_info().
707  */
708 void
709 crypto_free_all_mech_info(crypto_mechanism_info_t *mech_infos, uint_t count)
710 {
711 	if ((mech_infos != NULL) && (count > 0))
712 		kmem_free(mech_infos, count * sizeof (crypto_mechanism_info_t));
713 }
714 
715 /*
716  * memcmp_pad_max() is a specialized version of memcmp() which
717  * compares two pieces of data up to a maximum length.  If the
718  * the two data match up the maximum length, they are considered
719  * matching.  Trailing blanks do not cause the match to fail if
720  * one of the data is shorter.
721  *
722  * Examples of matches:
723  *	"one"           |
724  *	"one      "     |
725  *	                ^maximum length
726  *
727  *	"Number One     |  X"	(X is beyond maximum length)
728  *	"Number One   " |
729  *	                ^maximum length
730  *
731  * Examples of mismatches:
732  *	" one"
733  *	"one"
734  *
735  *	"Number One    X|"
736  *	"Number One     |"
737  *	                ^maximum length
738  */
739 static int
740 memcmp_pad_max(void *d1, uint_t d1_len, void *d2, uint_t d2_len, uint_t max_sz)
741 {
742 	uint_t		len, extra_len;
743 	char		*marker;
744 
745 	/* No point in comparing anything beyond max_sz */
746 	if (d1_len > max_sz)
747 		d1_len = max_sz;
748 	if (d2_len > max_sz)
749 		d2_len = max_sz;
750 
751 	/* Find shorter of the two data. */
752 	if (d1_len <= d2_len) {
753 		len = d1_len;
754 		extra_len = d2_len;
755 		marker = d2;
756 	} else {	/* d1_len > d2_len */
757 		len = d2_len;
758 		extra_len = d1_len;
759 		marker = d1;
760 	}
761 
762 	/* Have a match in the shortest length of data? */
763 	if (memcmp(d1, d2, len) != 0)
764 		/* CONSTCOND */
765 		return (!0);
766 
767 	/* If the rest of longer data is nulls or blanks, call it a match. */
768 	while (len < extra_len)
769 		if (!isspace(marker[len++]))
770 			/* CONSTCOND */
771 			return (!0);
772 	return (0);
773 }
774 
775 /*
776  * Obtain ext info for specified provider and see if it matches.
777  */
778 static boolean_t
779 match_ext_info(kcf_provider_desc_t *pd, char *label, char *manuf, char *serial,
780     crypto_provider_ext_info_t *ext_info)
781 {
782 	int rv;
783 
784 	rv = crypto_get_provinfo(pd, ext_info);
785 	ASSERT(rv != CRYPTO_NOT_SUPPORTED);
786 	if (rv != CRYPTO_SUCCESS)
787 		return (B_FALSE);
788 
789 	if (memcmp_pad_max(ext_info->ei_label, CRYPTO_EXT_SIZE_LABEL,
790 	    label, strlen(label), CRYPTO_EXT_SIZE_LABEL))
791 		return (B_FALSE);
792 
793 	if (manuf != NULL) {
794 		if (memcmp_pad_max(ext_info->ei_manufacturerID,
795 		    CRYPTO_EXT_SIZE_MANUF, manuf, strlen(manuf),
796 		    CRYPTO_EXT_SIZE_MANUF))
797 			return (B_FALSE);
798 	}
799 
800 	if (serial != NULL) {
801 		if (memcmp_pad_max(ext_info->ei_serial_number,
802 		    CRYPTO_EXT_SIZE_SERIAL, serial, strlen(serial),
803 		    CRYPTO_EXT_SIZE_SERIAL))
804 			return (B_FALSE);
805 	}
806 	return (B_TRUE);
807 }
808 
809 /*
810  * Find a provider based on its label, manufacturer ID, and serial number.
811  */
812 crypto_provider_t
813 crypto_get_provider(char *label, char *manuf, char *serial)
814 {
815 	kcf_provider_desc_t **provider_array, *pd;
816 	crypto_provider_ext_info_t *ext_info;
817 	uint_t count;
818 	int i;
819 
820 	/* manuf and serial are optional */
821 	if (label == NULL)
822 		return (NULL);
823 
824 	if (kcf_get_slot_list(&count, &provider_array, B_FALSE)
825 	    != CRYPTO_SUCCESS)
826 		return (NULL);
827 
828 	if (count == 0)
829 		return (NULL);
830 
831 	ext_info = kmem_zalloc(sizeof (crypto_provider_ext_info_t), KM_SLEEP);
832 
833 	for (i = 0; i < count; i++) {
834 		pd = provider_array[i];
835 		if (match_ext_info(pd, label, manuf, serial, ext_info)) {
836 			KCF_PROV_REFHOLD(pd);
837 			break;
838 		}
839 	}
840 	if (i == count)
841 		pd = NULL;
842 
843 	kcf_free_provider_tab(count, provider_array);
844 	kmem_free(ext_info, sizeof (crypto_provider_ext_info_t));
845 	return (pd);
846 }
847 
848 /*
849  * Get the provider information given a provider handle. The caller
850  * needs to allocate the space for the argument, info.
851  */
852 int
853 crypto_get_provinfo(crypto_provider_t hndl, crypto_provider_ext_info_t *info)
854 {
855 	int rv;
856 	kcf_req_params_t params;
857 	kcf_provider_desc_t *pd;
858 	kcf_provider_desc_t *real_provider;
859 
860 	pd = (kcf_provider_desc_t *)hndl;
861 	rv = kcf_get_hardware_provider_nomech(
862 	    CRYPTO_OPS_OFFSET(provider_ops), CRYPTO_PROVIDER_OFFSET(ext_info),
863 	    CHECK_RESTRICT_FALSE, pd, &real_provider);
864 
865 	if (rv == CRYPTO_SUCCESS && real_provider != NULL) {
866 		ASSERT(real_provider == pd ||
867 		    pd->pd_prov_type == CRYPTO_LOGICAL_PROVIDER);
868 		KCF_WRAP_PROVMGMT_OPS_PARAMS(&params, KCF_OP_MGMT_EXTINFO,
869 		    0, NULL, 0, NULL, 0, NULL, info, pd);
870 		rv = kcf_submit_request(real_provider, NULL, NULL, &params,
871 		    B_FALSE);
872 		KCF_PROV_REFRELE(real_provider);
873 	}
874 
875 	return (rv);
876 }
877 
878 void
879 crypto_release_provider(crypto_provider_t provider)
880 {
881 	KCF_PROV_REFRELE((kcf_provider_desc_t *)provider);
882 }
883